WorldWideScience

Sample records for high resolution mode

  1. ASTC-MIMO-TOPS Mode with Digital Beam-Forming in Elevation for High-Resolution Wide-Swath Imaging

    Directory of Open Access Journals (Sweden)

    Pingping Huang

    2015-03-01

    Full Text Available Future spaceborne synthetic aperture radar (SAR missions require complete and frequent coverage of the earth with a high resolution. Terrain Observation by Progressive Scans (TOPS is a novel wide swath mode but has impaired azimuth resolution. In this paper, an innovative extended TOPS mode named Alamouti Space-time Coding multiple-input multiple-output TOPS (ASTC-MIMO-TOPS mode combined with digital beam-forming (DBF in elevation and multi-aperture SAR signal reconstruction in azimuth is proposed. This innovative mode achieves wide-swath coverage with a high geometric resolution and also overcomes major drawbacks in conventional MIMO SAR systems. The data processing scheme of this imaging scheme is presented in detail. The designed system example of the proposed ASTC-MIMO-TOPS mode, which has the imaging capacity of a 400 km wide swath with an azimuth resolution of 3 m, is given. Its system performance analysis results and simulated imaging results on point targets demonstrate the potential of the proposed novel spaceborne SAR mode for high-resolution wide-swath (HRWS imaging.

  2. Effects of whispering gallery mode in microsphere super-resolution imaging

    Science.gov (United States)

    Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui

    2017-09-01

    Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.

  3. Unattented mode monitoring of high resolution gamma-ray spectra

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Van Dyck, P.; Debraix, P.

    1991-01-01

    An Isotope Monitoring System (IMS) for unattended spectrum acquisition is described. This consists of a simple low cost flexible software package running on a Compaq 80386 and controlling up to 4 Canberra Packard System 100 multi-channel analyzer (MCA) cards. The IMS permits the independent configuration of each of the 4 MCA cards for different monitoring cycles and for different spectrum acquisition cycles each being based upon different trigger criteria. In this way IMS is able to automatically identify events, time tag them, and acquire and store valid spectra corresponding to those event. An additional feature of IMS permits to run a Multigroup Analysis (MGA) software package for the determination of plutonium isotopic compositions in batch mode. One particular application is discussed which consists of 4 high resolution gamma-ray detector systems connected together to the IMS for unattended spectrum acquisition. The off-line batch mode analysis of the spectra using MGA is also discussed

  4. MSCT versus CBCT: evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dillenseger, Jean-Philippe; Goetz, Christian [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Matern, Jean-Francois [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Gros, Catherine-Isabelle; Bornert, Fabien [Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Universite de Strasbourg, Faculte de Chirurgie Dentaire, Strasbourg (France); Le Minor, Jean-Marie [Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Universite de Strasbourg, Institut d' Anatomie Normale, Strasbourg (France); Constantinesco, Andre [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Choquet, Philippe [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Hopital de Hautepierre, Imagerie Preclinique, Biophysique et Medecine Nucleaire, Strasbourg Cedex (France)

    2014-09-24

    Our aim was to conduct a quantitative and qualitative evaluation of high-resolution skull-bone imaging for dentistry and otolaryngology using different architectures of recent X-ray computed tomography systems. Three multi-slice computed tomography (MSCT) systems and one Cone-beam computed tomography (CBCT) system were used in this study. All apparatuses were tested with installed acquisition modes and proprietary reconstruction software enabling high-resolution bone imaging. Quantitative analyses were performed with small fields of view with the preclinical vmCT phantom, which permits to measure spatial resolution, geometrical accuracy, linearity and homogeneity. Ten operators performed visual qualitative analyses on the vmCT phantom images, and on dry human skull images. Quantitative analysis showed no significant differences between protocols in terms of linearity and geometric accuracy. All MSCT systems present a better homogeneity than the CBCT. Both quantitative and visual analyses demonstrate that CBCT acquisitions are not better than the collimated helical MSCT mode. Our results demonstrate that current high-resolution MSCT protocols could exceed the performance of a previous generation CBCT system for spatial resolution and image homogeneity. (orig.)

  5. MSCT versus CBCT: evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging

    International Nuclear Information System (INIS)

    Dillenseger, Jean-Philippe; Goetz, Christian; Matern, Jean-Francois; Gros, Catherine-Isabelle; Bornert, Fabien; Le Minor, Jean-Marie; Constantinesco, Andre; Choquet, Philippe

    2015-01-01

    Our aim was to conduct a quantitative and qualitative evaluation of high-resolution skull-bone imaging for dentistry and otolaryngology using different architectures of recent X-ray computed tomography systems. Three multi-slice computed tomography (MSCT) systems and one Cone-beam computed tomography (CBCT) system were used in this study. All apparatuses were tested with installed acquisition modes and proprietary reconstruction software enabling high-resolution bone imaging. Quantitative analyses were performed with small fields of view with the preclinical vmCT phantom, which permits to measure spatial resolution, geometrical accuracy, linearity and homogeneity. Ten operators performed visual qualitative analyses on the vmCT phantom images, and on dry human skull images. Quantitative analysis showed no significant differences between protocols in terms of linearity and geometric accuracy. All MSCT systems present a better homogeneity than the CBCT. Both quantitative and visual analyses demonstrate that CBCT acquisitions are not better than the collimated helical MSCT mode. Our results demonstrate that current high-resolution MSCT protocols could exceed the performance of a previous generation CBCT system for spatial resolution and image homogeneity. (orig.)

  6. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    Science.gov (United States)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  7. A Concept of Multi-Mode High Spectral Resolution Lidar Using Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Jin Yoshitaka

    2016-01-01

    Full Text Available In this paper, we present the design of a High Spectral Resolution Lidar (HSRL using a laser that oscillates in a multi-longitudinal mode. Rayleigh and Mie scattering components are separated using a Mach-Zehnder Interferometer (MZI with the same free spectral range (FSR as the transmitted laser. The transmitted laser light is measured as a reference signal with the same MZI. By scanning the MZI periodically with a scanning range equal to the mode spacing, we can identify the maximum Mie and the maximum Rayleigh signals using the reference signal. The cross talk due to the spectral width of each laser mode can also be estimated.

  8. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  9. Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode

    International Nuclear Information System (INIS)

    Hodoroaba, V-D; Rades, S; Mielke, J; Ortel, E; Salge, T; Schmidt, R

    2016-01-01

    Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. (paper)

  10. Renal stone characterization using high resolution imaging mode on a photon counting detector CT system

    Science.gov (United States)

    Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.

    2017-03-01

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  11. Statistical list-mode image reconstruction for the high resolution research tomograph

    International Nuclear Information System (INIS)

    Rahmim, A; Lenox, M; Reader, A J; Michel, C; Burbar, Z; Ruth, T J; Sossi, V

    2004-01-01

    We have investigated statistical list-mode reconstruction applicable to a depth-encoding high resolution research tomograph. An image non-negativity constraint has been employed in the reconstructions and is shown to effectively remove the overestimation bias introduced by the sinogram non-negativity constraint. We have furthermore implemented a convergent subsetized (CS) list-mode reconstruction algorithm, based on previous work (Hsiao et al 2002 Conf. Rec. SPIE Med. Imaging 4684 10-19; Hsiao et al 2002 Conf. Rec. IEEE Int. Symp. Biomed. Imaging 409-12) on convergent histogram OSEM reconstruction. We have demonstrated that the first step of the convergent algorithm is exactly equivalent (unlike the histogram-mode case) to the regular subsetized list-mode EM algorithm, while the second and final step takes the form of additive updates in image space. We have shown that in terms of contrast, noise as well as FWHM width behaviour, the CS algorithm is robust and does not result in limit cycles. A hybrid algorithm based on the ordinary and the convergent algorithms is also proposed, and is shown to combine the advantages of the two algorithms (i.e. it is able to reach a higher image quality in fewer iterations while maintaining the convergent behaviour), making the hybrid approach a good alternative to the ordinary subsetized list-mode EM algorithm

  12. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance

    International Nuclear Information System (INIS)

    Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K.; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen

    2014-01-01

    A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

  13. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  14. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  15. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance.

    Science.gov (United States)

    Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen

    2014-01-15

    A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

  16. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    Science.gov (United States)

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the

  17. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    Science.gov (United States)

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  18. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy

    International Nuclear Information System (INIS)

    Sahin, Ozgur; Erina, Natalia

    2008-01-01

    High spatial resolution imaging of material properties is an important task for the continued development of nanomaterials and studies of biological systems. Time-varying interaction forces between the vibrating tip and the sample in a tapping-mode atomic force microscope contain detailed information about the elastic, adhesive, and dissipative response of the sample. We report real-time measurement and analysis of the time-varying tip-sample interaction forces with recently introduced torsional harmonic cantilevers. With these measurements, high-resolution maps of elastic modulus, adhesion force, energy dissipation, and topography are generated simultaneously in a single scan. With peak tapping forces as low as 0.6 nN, we demonstrate measurements on blended polymers and self-assembled molecular architectures with feature sizes at 1, 10, and 500 nm. We also observed an elastic modulus measurement range of four orders of magnitude (1 MPa to 10 GPa) for a single cantilever under identical feedback conditions, which can be particularly useful for analyzing heterogeneous samples with largely different material components.

  19. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  20. Assessment of the High Resolution SAR Mode of the RADARSAT Constellation Mission for First Year Ice and Multiyear Ice Characterization

    Directory of Open Access Journals (Sweden)

    Mohammed Dabboor

    2018-04-01

    Full Text Available Simulated compact polarimetry from the RADARSAT Constellation Mission (RCM is evaluated for sea ice classification. Compared to previous studies that evaluated the potential of RCM for sea ice classification, this study focuses on the High Resolution (HR Synthetic Aperture Radar (SAR mode of the RCM associated with a higher noise floor (Noise Equivalent Sigma Zero of −19 dB, which can prove challenging for sea ice monitoring. Twenty three Compact Polarimetric (CP parameters were derived and analyzed for the discrimination between first year ice (FYI and multiyear ice (MYI. The results of the RCM HR mode are compared with those previously obtained for other RCM SAR modes for possible CP consistency parameters in sea ice classification under different noise floors, spatial resolutions, and radar incidence angles. Finally, effective CP parameters were identified and used for the classification of FYI and MYI using the Random Forest (RF classification algorithm. This study indicates that, despite the expected high noise floor of the RCM HR mode, CP SAR data from this mode are promising for the classification of FYI and MYI in dry ice winter conditions. The overall classification accuracies of CP SAR data over two test sites (96.13% and 96.84% were found to be comparable to the accuracies obtained using Full Polarimetric (FP SAR data (98.99% and 99.20%.

  1. High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using Hilbert analysis.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-07-10

    We report on data processing for continuous wave (CW) terahertz (THz) spectroscopy measurements based on a Hilbert spectral analysis to achieve MHz resolution. As an example we investigate the spectral properties of a whispering gallery mode (WGM) THz bubble resonator at critical coupling. The experimental verification clearly demonstrates the significant advantages in relative frequency resolution and required acquisition time of the proposed method over the traditional data analysis. An effective frequency resolution, only limited by the precision and stability of the laser beat signal, can be achieved without complex extensions to a standard commercially available CW THz spectrometer.

  2. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  3. Diagnostic value of high-resolution B-mode and power-mode sonography in the follow-up of thyroid cancer.

    Science.gov (United States)

    Görges, Rainer; Eising, E G; Fotescu, D; Renzing-Köhler, K; Frilling, A; Schmid, K W; Bockisch, A; Dirsch, O

    2003-02-01

    Ultrasonography is an established diagnostic modality in the follow-up of thyroid cancer. Color flow Doppler has been proposed by some authors as an additional tool for differentiating benign from malignant cervical lesions in various types of head and neck cancer. Over the last few years, a new generation of high-resolution ultrasound platforms with the "power-mode" feature has become available, that also enables the imaging of small vessel blood flow. The objective of our study was to find ways of optimizing the differentiation of benign and malignant cervical tumors in thyroid cancer follow-up by means of sonography. Hundred and twelve cervical lesions in 90 patients with thyroid cancer were evaluated by high-end ultrasonography (Sonoline Elegra, Siemens) using a small-part transducer (7.5 L 40, Siemens). B-mode sonography was performed at a frequency of 8 MHz. The Solbiati index (SI= ratio of largest to smallest diameter), configuration, echogenicity, intranodular structures, and margins were assessed. Perinodular and intranodular blood flow was evaluated by color flow Doppler (PRF 1250 Hz for conventional color flow Doppler, 868 Hz for power-mode Doppler). Possible malignancy was validated by histology, cytology, scintigraphy, and follow-up. Thirty five lesions were benign (diameter 0.4-3.0 cm) and 77 were malignant (0.4-5.4 cm). The patients were randomized into a test group and a learning group to determine the diagnostic value of various ultrasound criteria by means of statistical analysis. In the learning group, decision rules based on the dichotomized criteria were developed using a logistic regression model. Sensitivity and specificity of these decision rules were then evaluated in the test group. The presence of an echocomplex pattern or irregular hyperechoic small intranodular structures (criterion A) and the presence of an irregular diffuse intranodular blood flow (criterion B) are the best indicators of malignancy, whereas an SI >2 is highly

  4. High resolution switching mode inductance-to-frequency converter with temperature compensation.

    Science.gov (United States)

    Matko, Vojko; Milanović, Miro

    2014-10-16

    This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85-100 µH to 2-560 kHz.

  5. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensation

    Directory of Open Access Journals (Sweden)

    Vojko Matko

    2014-10-01

    Full Text Available This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal’s natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 µH to 2–560 kHz.

  6. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  7. High-efficiency improvement for high energy resolution experimental mode of DIANA spectrometer at materials and life science facility (MLF) of J-PARC

    International Nuclear Information System (INIS)

    Takahashi, Nobuaki; Shibata, Kaoru; Arai, Masatoshi; Sato, Taku J.

    2006-09-01

    DIANA is an indirect-geometry time-of-flight (TOF) spectrometer which is planed to install at Materials and Life science Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC). It has three exchangeable analyzer crystals, such as PG(002), Ge(311) and Si(111) for different energy transfer, momentum transfer and energy-resolution experiments. Normal experimental mode, either PG(002) or Ge(311) analyzer is used, shows moderate energy resolutions of 15μeV or 41λeV, respectively. We are especially aiming very high energy-resolution of 2 μeV by using Si(111) analyzer crystal together with high speed counter-rotating pulse-shaping choppers with each rotation frequency of 300 Hz as an optional setting for the spectrometer. Although such a high energy-resolution is attained, it is considerably inefficient having a very narrow incident energy (E i ) band if the pulse shaping chopper has only one slit. Therefore, we have designed multiple-slit chopper and have performed Monte-Carlo simulation to study Repetition Rate Multiplication (RRM) capability. RRM has been shown to be achievable by using multiple-slit pulse-shaping choppers. By the consideration of the contamination appeared between the neighbor two pulse-shaped bands, the number of slits has been optimized to eight. By using the 8-slit choppers, 23 pulse-shaped neutron energy bands have been available simultaneously within one measurements. Minimum 10 measurements with different phases of the choppers provide the continuous S(Q, ℎω) spectrum of -1.0 meV<ℎω<+3.4 meV. (author)

  8. High resolution spectroscopy of 1,2-difluoroethane in a molecular beam: A case study of vibrational mode-coupling

    Science.gov (United States)

    Mork, Steven W.; Miller, C. Cameron; Philips, Laura A.

    1992-09-01

    The high resolution infrared spectrum of 1,2-difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1 spectral region. This region corresponds to the symmetric combination of asymmetric C-H stretches in DFE. Observed rotational fine structure indicates that this C-H stretch is undergoing vibrational mode coupling to a single dark mode. The dark mode is split by approximately 19 cm-1 due to tunneling between the two identical gauche conformers. The mechanism of the coupling is largely anharmonic with a minor component of B/C plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. Analysis of the fine structure identifies the dark state as being composed of C-C torsion, CCF bend, and CH2 rock. Coupling between the C-H stretches and the C-C torsion is of particular interest because DFE has been observed to undergo vibrationally induced isomerization from the gauche to trans conformer upon excitation of the C-H stretch.

  9. High degree modes and instrumental effects

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Rabello-Soares, M C; Schou, J [Stanford University, Stanford, CA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    Full-disk observations taken with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, or the upgraded Global Oscillations Network Group (GONG) instruments, have enough spatial resolution to resolve modes up to {iota} = 1000 if not {iota} = 1500. The inclusion of such high-degree modes (i.e., {iota} {<=} 1000) improves dramatically inferences near the surface. Unfortunately, observational and instrumental effects cause the characterization of high degree modes to be quite complicated. Indeed, the characteristics of the solar acoustic spectrum are such that, for a given order, mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases. A direct consequence of this property is that individual modes are resolved only at low and intermediate degrees. At high degrees the individual modes blend into ridges and the power distribution of the ridge defines the ridge central frequency, masking the underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than an ad hoc correction scheme) that results in a methodology that can produce unbiased estimates of high-degree modes. This requires that the instrumental characteristics are well understood, a task that has turned out to pose a major challenge. We also present our latest results, where most of the known instrumental and observational effects that affect specifically high-degree modes were removed. These new results allow us to focus our attention on changes with solar activity. Finally, we present variations of mode

  10. High resolution spectroscopy of jet cooled phenyl radical: The ν{sub 1} and ν{sub 2} a{sub 1} symmetry C–H stretching modes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hsuan; Nesbitt, David J. [JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-07-28

    A series of CH stretch modes in phenyl radical (C{sub 6}H{sub 5}) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (∼60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a{sub 1} symmetry, ν{sub 1} and ν{sub 2}, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν{sub 1} and ν{sub 2} band origins are determined to be 3073.968 50(8) cm{sup −1} and 3062.264 80(7) cm{sup −1}, respectively, which both agree within 5 cm{sup −1} with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm{sup −1} blue shift between gas phase and Ar matrix values for ν{sub 1} and ν{sub 2}. This differs substantially from the much smaller red shift (Δν ≈ − 1 cm{sup −1}) reported for the ν{sub 19} mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet

  11. A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application

    International Nuclear Information System (INIS)

    Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I.; Pace, F.; Walker, B.C.; Woodring, M.

    1999-06-01

    (U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as ''Lynx''. Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in strip map mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside and ±45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers

  12. bHROS: A New High-Resolution Spectrograph Available on Gemini South

    Science.gov (United States)

    Margheim, S. J.; Gemini bHROS Team

    2005-12-01

    The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.

  13. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  14. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    Science.gov (United States)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  15. Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution

    International Nuclear Information System (INIS)

    Nishimura, S; Ogino, T; Shirakashi, J; Takemura, Y

    2008-01-01

    Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution is investigated by optimizing the applied bias voltage (V), scanning speed (S) and the oscillation amplitude of the cantilever (A). We fabricated Si oxide wires with an average width of 9.8 nm (V = 17.5 V, S 250 nm/s, A = 292 nm). In SPM local oxidation with tapping mode operation, it is possible to decrease the size of the water meniscus by enhancing the oscillation amplitude of cantilever. Hence, it seems that the water meniscus with sub-10 nm dimensions could be formed by precisely optimizing the oxidation conditions. Moreover, we quantitatively explain the size (width and height) of Si oxide wires with a model based on the oxidation ratio, which is defined as the oxidation time divided by the period of the cantilever oscillation. The model allows us to understand the mechanism of local oxidation in tapping mode operation with amplitude modulation. The results imply that the sub-10 nm resolution could be achieved using tapping mode SPM local oxidation technique with the optimization of the cantilever dynamics

  16. Motivation for an SSC detector with ultra-high resolution photon detection

    International Nuclear Information System (INIS)

    Gunion, J.F.; Kane, G.

    1992-01-01

    It is well known that incorporating ultra-high resolution photon detection into a general purpose detector for the SSC will be extremely difficult. The authors will argue that the physics signals that could be missed without such resolution are of such importance that a special purpose detector designed specifically for photon final state modes should be constructed, if sufficient resolution cannot be achieved with general purpose detectors. The potentially great value of these signals as a probe of extremely high mass scales is stressed

  17. Automated aberration correction of arbitrary laser modes in high numerical aperture systems

    OpenAIRE

    Hering, Julian; Waller, Erik H.; Freymann, Georg von

    2016-01-01

    Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture...

  18. A new method for high-resolution characterization of hydraulic conductivity

    Science.gov (United States)

    Liu, Gaisheng; Butler, J.J.; Bohling, Geoffrey C.; Reboulet, Ed; Knobbe, Steve; Hyndman, D.W.

    2009-01-01

    A new probe has been developed for high-resolution characterization of hydraulic conductivity (K) in shallow unconsolidated formations. The probe was recently applied at the Macrodispersion Experiment (MADE) site in Mississippi where K was rapidly characterized at a resolution as fine as 0.015 m, which has not previously been possible. Eleven profiles were obtained with K varying up to 7 orders of magnitude in individual profiles. Currently, high-resolution (0.015-m) profiling has an upper K limit of 10 m/d; lower-resolution (???0.4-m) mode is used in more permeable zones pending modifications. The probe presents a new means to help address unresolved issues of solute transport in heterogeneous systems. Copyright 2009 by the American Geophysical Union.

  19. High Resolution Spectroscopy of the Pulsating White Dwarf G29-38

    OpenAIRE

    Thompson, Susan E.; Clemens, J. C.; van Kerkwijk, M. H.; Koester, D.

    2003-01-01

    We present the analysis of time-resolved, high resolution spectra of the cool white dwarf pulsator, G29-38. From measuring the Doppler shifts of the H-alpha core, we detect velocity changes as large as 16.5 km/s and conclude that they are due to the horizontal motions associated with the g-mode pulsations on the star. We detect seven pulsation modes from the velocity time-series and identify the same modes in the flux variations. We discuss the properties of these modes and use the advantage ...

  20. A high resolution animal PET scanner using compact PS-PMT detectors

    International Nuclear Information System (INIS)

    Watanabe, M.; Okada, H.; Shimizu, K.; Omura, T.

    1996-01-01

    A new high resolution PET scanner dedicated to animal studies has been designed, built and tested. The system utilizes 240 block detectors, each of which consists of a new compact position-sensitive photomultiplier tube (PS-PMT) and an 8 x 4 BGO array. A total number of 7,680 crystals (480 per ring) are positioned to form a 508 mm diameter of 16 detector rings with 7.2 mm pitch and 114 mm axial field of view (FOV). The system is designed to perform activation studies using a monkey in a sitting position. The data can be acquired in either 2D or 3D mode, where the slice collimators are retracted in 3D mode. The transaxial resolution is 2.6 mm FWHM at the center of the FOV, and the average axial resolution on the axis of the ring is 3.3 mm FWHM in the direct slice and 3.2 mm FWHM in the cross slice. The scatter fraction, sensitivity and count rate performance were evaluated for a 10 cm diameter cylindrical phantom. The total system sensitivity is 2.3 kcps/kBq/ml in 2D mode and 22.8 kcps/kBq/ml in 3D mode. The noise equivalent count rate with 3D mode is equivalent to that with 2D mode at five times higher radioactivity level. The applicable imaging capabilities of the scanner was demonstrated by animal studies with a monkey

  1. Optical design of the PEPSI high-resolution spectrograph at LBT

    Science.gov (United States)

    Andersen, Michael I.; Spano, Paolo; Woche, Manfred; Strassmeier, Klaus G.; Beckert, Erik

    2004-09-01

    PEPSI is a high-resolution, fiber fed echelle spectrograph with polarimetric capabilities for the LBT. In order to reach a maximum resolution R=120.000 in polarimetric mode and 300.000 in integral light mode with high efficiency in the spectral range 390-1050~nm, we designed a white-pupil configuration with Maksutov collimators. Light is dispersed by an R4 31.6 lines/mm monolithic echelle grating mosaic and split into two arms through dichroics. The two arms, optimized for the spectral range 390-550~nm and 550-1050~nm, respectively, consist of Maksutov transfer collimators, VPH-grism cross dispersers, optimized dioptric cameras and 7.5K x 7.5K 8~μ CCDs. Fibers of different core sizes coupled to different image-slicers allow a high throughput, comparable to that of direct feed instruments. The optical configuration with only spherical and cylindrical surfaces, except for one aspherical surface in each camera, reduces costs and guarantees high optical quality. PEPSI is under construction at AIP with first light expected in 2006.

  2. Tentative identification of polar and mid-polar compounds in extracts from wine lees by liquid chromatography-tandem mass spectrometry in high-resolution mode.

    Science.gov (United States)

    Delgado de la Torre, M P; Priego-Capote, F; Luque de Castro, M D

    2015-06-01

    Sustainable agriculture has a pending goal in the revalorization of agrofood residues. Wine lees are an abundant residue in the oenological industry. This residue, so far, has been used to obtain tartaric acid or pigments but not for being qualitatively characterized as a source of polar and mid-polar compounds such as flavonoids, phenols and essential amino acids. Lees extracts from 11 Spanish wineries have been analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in high resolution mode. The high-resolution power of LC-MS/MS has led to the tentative identification of the most representative compounds present in wine lees, comprising primary amino acids, anthocyans, flavanols, flavonols, flavones and non-flavonoid phenolic compounds, among others. Attending to the profile and content of polar and mid-polar compounds in wine lees, this study underlines the potential of wine lees as an exploitable source to isolate interesting compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Development of a high-resolution cavity-beam position monitor

    Directory of Open Access Journals (Sweden)

    Yoichi Inoue

    2008-06-01

    Full Text Available We have developed a high-resolution cavity-beam position monitor (BPM to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ∼nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5  μm.

  4. Development of a high-resolution cavity-beam position monitor

    Science.gov (United States)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  5. High-Resolution Infrared and Raman Spectra of the Polycrystalline Sinomenine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Liu Xiao-Dong

    2016-01-01

    Full Text Available High-resolution infrared and Raman spectra of the polycrystalline sinomenine (SM hydrochloride have been measured to work out its whole really existing vibrational spectral bands. Except for the hydroxyl stretching modes and IR active bands less than 400 cm−1, most normal modes (about 34 are both IR and Raman active. In addition, 8 Raman bands less than 400 cm−1 are tentatively assigned, for the first time to our knowledge, to stretching/bending modes of the aromatic-ring−methoxyls and (SMH+–Cl− ions, respectively.

  6. Polarized high-brilliance and high-resolution soft x-ray source at ELETTRA: The performance of beamline BACH

    International Nuclear Information System (INIS)

    Zangrando, M.; Zacchigna, M.; Finazzi, M.; Cocco, D.; Rochow, R.; Parmigiani, F.

    2004-01-01

    BACH, a soft x-ray beamline for polarization-dependent experiments at the Italian synchrotron radiation facility ELETTRA, was recently completed and characterized. Its performance, in terms of energy resolution, flux and polarization, is presented. Based on two APPLE II undulators, BACH covers the energy range between 35 and 1600 eV with the control of the light polarization. The monochromator is equipped with four gratings and allows one to work either in a high resolution or in a high flux mode. After the monochromator, the beamline is split into two branches with different refocusing properties. One is optimized to exploit the performance of the soft x-ray spectrometer (ComIXS) available at the beamline. Resolving powers between 12000 at 90 eV photon energy and 6600 near 867 eV were achieved using the high-resolution gratings and the smallest available slit width (10 μm). For the high-brilliance grating, which works between 290 and 1600 eV, resolving powers between 7000 at 400 eV and 2200 at 867 eV were obtained. The flux in the experimental chamber, measured with the high-resolution gratings for linearly polarized light at the best achievable resolution, ranges between 4x10 11 photons/s at 125 eV and 2x10 10 photons/s between 900 and 1250 eV. In circularly polarized mode the flux is two times larger for energies up to 380 eV. A gain of nearly one order of magnitude is obtained for the high-brilliance grating, in accordance with theoretical predictions. Flux beyond 1.3x10 11 photons/s was measured up to 1300 eV, and thus over nearly the complete energy range covered by this high-brilliance grating, with a maximum of 1.6x10 11 photons/s between 800 and 1100 eV. First results from polarization measurements confirm a polarization above 99.7% for both linearly and circularly polarized modes at low energies. Circular dichroism experiments indicate a circular polarization beyond 90% at the Fe L 2 /L 3 edge near 720 eV

  7. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    IR telescope in spece, will enable GRBs to be used as probes of the formation of the first stars and structure in the Universe. HREXI on its own, with broad bandwidth and high spectral and spatial resolution, will extend both Galactic surveys for obscured young supernova remnants (44Ti sources) and for transients, black holes and flaring AGN and TDEs well at greatly increased sensitivity and spatial/spectral resolution than has been done with Swift or INTEGRAL. If the HREXI-1 technology is developed in the first year of this proposed effort, it could be used on the upcoming Brazil-US MIRAX telescope on the Lattes satellite, scheduled for a 2018 launch with imaging detector planes to be provided (under contract) by our group. Finally, the 3D stacking technology development proposed here for imaging detector arrays has broad application to Wide Field soft X-ray imaging, to CMB polarization mode (B mode) imaging detectors with very high detector-pixel count, and to Homeland Security.

  8. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-06-01

    Full Text Available A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM. When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution, when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  9. To assess the intimal thickness, flow velocities, and luminal diameter of carotid arteries using high-resolution B-mode ultrasound doppler imaging

    Science.gov (United States)

    Vemuru, Madhuri; Jabbar, Afzal; Chandra, Suman

    2004-04-01

    Carotid imaging is a Gold Standard test that provides useful information about the structure and functions of carotid arteries. Spectral imaging helps to evaluate the vessel and hemodynamic changes. High resolution B-mode imaging has emerged as one of the methods of choice for determining the anatomic extent of atherosclerosis and its progression and for assessing cardiovascular risks. The measurements made with Doppler correlate well with pathologic measurements. Recent prospective studies have clearly demonstrated that these measurements of carotid intimal thickness are potent predictors of Myocardial Infarction and Stroke. This method appears very attractive as it is non-invasive, extremely safe, well accepted by the patient and relatively inexpensive. It can be performed serially and has the advantage of visualizing the arterial wall in contrast to angiographic techniques which provide only an outline of the arterial lumen. Recently, there has been an interest in the clinical use of this technique in making difficult clinical decisions like deciding on preventive therapies. 30 subjects aged 21-60 years and 30 subjects aged 61-85 years of both sexes are selected after doing a baseline study to exclude Hypertension, Diabetes, Obesity and Hyperlipidemia. The carotid arteries were examined for intimal thickening, blood flow velocities and luminal diameter. With aging there is a narrowing of the carotid vessels and significant increase in intimal thickening with a consequent increase in the blood flow velocities. Inter-observer, intra-observer and instrument variations are seen and there is no significant change in the values when the distal flow pattern is considered for measurements. Aging produces major cardiovascular changes including decreased elasticity and compliance of great arteries leading to structural and functional alterations in heart and vessels. With aging there is increased intimal thickness and increased pulse wave velocity which is clearly

  10. Compressive multi-mode superresolution display

    KAUST Repository

    Heide, Felix

    2014-01-01

    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image. © 2014 Optical Society of America.

  11. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze

  12. “MODAL NOISE” IN SINGLE-MODE FIBERS: A CAUTIONARY NOTE FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Schwab, Christian, E-mail: shalverson@psu.edu [Macquarie University, Sydney, NSW 2109 (Australia)

    2015-12-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes. Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.

  13. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System.

    Science.gov (United States)

    Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).

  14. Comparison of high-resolution and standard zoom imaging modes in cone beam computed tomography for detection of longitudinal root fracture: An in vitro study

    International Nuclear Information System (INIS)

    Taramsari, Mehran; Kajan, Zahra Dalili; Bashizadeh, Parinaz; Salamat, Fatemeh

    2013-01-01

    The purpose of this study was to compare the efficacy of two imaging modes in a cone beam computed tomography (CBCT) system in detecting root fracture in endodontically-treated teeth with fiber posts or screw posts by selecting two fields of view. In this study, 78 endodontically-treated single canal premolars were included. A post space was created in all of them. Then the teeth were randomly set in one of 6 artificial dental arches. In 39 of the 78 teeth set in the 6 dental arches, a root fracture was intentionally created. Next, a fiber post and a screw post were cemented into 26 teeth having equal the root fractures. High resolution (HiRes) and standard zoom images were provided by a CBCT device. Upon considering the reconstructed images, two observers in agreement with each other confirmed the presence or absence of root fracture. A McNemar test was used for comparing the results of the two modes. The frequency of making a correct diagnosis using the HiRes zoom imaging mode was 71.8% and in standard zoom was 59%. The overall sensitivity and specificity in diagnosing root fracture in the HiRes mode were 71.79% and 46.15% and in the standard zoom modes were 58.97% and 33.33%, respectively. There were no significant differences between the diagnostic values of the two imaging modes used in the diagnosis of root fracture or in the presence of root canal restorations. In both modes, the most true-positive results were reported in the post space group.

  15. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    Science.gov (United States)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  16. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography.

    Science.gov (United States)

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I

    2017-08-01

    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  17. Ultra-high resolution AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  18. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  19. On temporal correlations in high-resolution frequency counting

    OpenAIRE

    Dunker, Tim; Hauglin, Harald; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic...

  20. PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT

    Science.gov (United States)

    Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo

    PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.

  1. Flames High Resolution Spectroscopy of RGB Stars in the Carina Dwarf Spheroidal Galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K.; Koleva, M; Prugniel, P; Vauglin,

    Carina is a small and faint classical dwarf spheroidal galaxy in the halo of the Milky Way with a highly episodic star formation history (e.g., Hurley-Keller et al. 1998). Using VLT/FLAMES in high resolution mode, we significantly increase the sample of stars with abundance determinations in Carina,

  2. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  3. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.

    Science.gov (United States)

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2018-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.

  4. Automated aberration correction of arbitrary laser modes in high numerical aperture systems.

    Science.gov (United States)

    Hering, Julian; Waller, Erik H; Von Freymann, Georg

    2016-12-12

    Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture system. Using circularly polarized light for the measurement and first-guess initial conditions for amplitude and phase of the pupil function our scalar approach outperforms recent algorithms with vectorial corrections. Besides laser lithography also applications like optical tweezers and microscopy might benefit from the method presented.

  5. Precision crystal alignment for high-resolution electron microscope imaging

    International Nuclear Information System (INIS)

    Wood, G.J.; Beeching, M.J.

    1990-01-01

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  6. A Multi-Mode Video Driver for a High Resolution LCoS Display

    OpenAIRE

    Farrell, Ronan; Jacob, Mark; Maher, Roger

    2000-01-01

    This paper describes the design of a display driver for Liquid Crystal on Silicon (LCoS) microdisplays. These are high resolution reflective display devices which allow up to 1280x1024 pixels on an area of 3.75cm2, and are typically refreshed at 120Hz. The required driver consists of a digital section capable of taking the common display formats such as SVGA and new formats, SXGA, and processing these to a common 120HzRGB signal, requiring an output rate of 160 mega-pixels/second. This signal...

  7. The surface layer observed by a high-resolution sodar at DOME C, Antarctica

    Directory of Open Access Journals (Sweden)

    Stefania Argentini

    2014-01-01

    Full Text Available One year field experiment has started on December 2011 at the French - Italian station of Concordia at Dome C, East Antarctic Plateau. The objective of the experiment is the study of the surface layer turbulent processes under stable/very stable stratifications, and the mechanisms leading to the formation of the warming events. A sodar was improved to achieve the vertical/time resolution needed to study these processes. The system, named Surface Layer sodar (SL-sodar, may operate both in high vertical resolution (low range and low vertical resolution (high range modes. In situ turbulence and radiation measurements were also provided in the framework of this experiment. A few preliminary results, concerning the standard summer diurnal cycle, a summer warming event, and unusually high frequency boundary layer atmospheric gravity waves are presented.

  8. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  9. Presal36: a high resolution ocean current model for Brazilian pre-salt area: implementation and validation results

    Energy Technology Data Exchange (ETDEWEB)

    Schoellkopf, Jacques P. [Advanced Subsea do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The PRESAL 36 JIP is a project for the development of a powerful Ocean Current Model of 1/36 of a degree resolution, nested in an existing Global Ocean global Model, Mercator PSY4 (1/12-a-degree resolution ), with tide corrections, improved bathymetry accuracy and high frequency atmospheric forcing (every 3 hours). The simulation outputs will be the 3 dimensional structure of the velocity fields (u,v,w) at 50 vertical levels over the water column, including geostrophic, Ekman and tidal currents, together with Temperature, Salinity and sea surface height at a sub-mesoscale spatial resolution. Simulations will run in hindcast, nowcast and forecast modes, with a temporal resolution of 3 hours . This Ocean current model will allow to perform detailed statistical studies on various areas using conditions analysed using hindcast mode, short term operational condition prediction for various surface and sub sea operations using realtime and Forecast modes. The paper presents a publication of significant results of the project, in term of pre-sal zoomed model implementation, and high resolution model validation. It demonstrate the capability to properly describe ocean current phenomenon at beyond mesoscale frontier. This project demonstrate the feasibility of obtaining accurate information for engineering studies and operational conditions, based on a 'zoom technique' starting from global ocean models. (author)

  10. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, David A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  11. Linking structure and vibrational mode coupling using high-resolution infrared spectroscopy: A comparison of gauche and trans 1-chloro-2-fluoroethane

    Science.gov (United States)

    Miller, C. Cameron; Stone, Stephen C.; Philips, Laura A.

    1995-01-01

    The high-resolution infrared spectrum of 1-chloro-2-fluoroethane in a molecular beam was collected over the 2975-2994 cm-1 spectral region. The spectral region of 2975-2981 cm-1 contains a symmetric C-H stretching vibrational band of the gauche conformer containing the 35Cl isotope. The spectral region of 2985-2994 cm-1 contains three vibrational bands of the trans conformer. Two of the three bands are assigned as an antisymmetric C-H stretch of each of the two different chlorine isotopes. The third band is assigned as a symmetric C-H stretch of the 35Cl isotope. The gauche conformer of 1-chloro-2-fluoroethane showed doublet patterns similar to those previously observed in 1,2-difluoroethane. The model for 1,2-difluoroethane is further refined in the present work. These refinements suggest that the coupling dark state in 1,2-difluoroethane is composed of 1 quantum C-H bend, 1 quantum C-C stretch, and 12 quanta of torsion. For 1-chloro-2-fluoroethane the dark state could not be identified due to a small data set. The trans conformer of 1-chloro-2-fluoroethane showed no evidence of mode coupling in the three vibrational bands. Including 2-fluoroethanol in this series of molecules, the extent of vibrational mode coupling did not correlate with the density of states available for coupling. Therefore, density of states alone is insufficient to explain the observed trend. A correlation was observed between the degree of intramolecular interaction and vibrational mode coupling.

  12. A new high resolution neutron powder diffractometer at the Brookhaven high flux beam reactor

    International Nuclear Information System (INIS)

    Passell, L.; Bar-Ziv, S.; Gardner, D.W.; Cox, D.E.; Axe, J.D.

    1991-01-01

    A high resolution neutron powder diffractometer under construction at the Brookhaven HFBR is expected to be completed by mid-1991. The new machine will have a Ge (511) monochromator with a take-off angle of 120 o (λ=1.89A) and 64 3 He counters in the detector bank. There will be interchangeable collimators before the monochromator allowing a choice of 5 or 11' horizontal divergence, and 10 cm-high, 5' collimators in front of the detectors. In the higher resolution mode, Δd/d is expected to be about 6x10 -4 at the resolution minimum. The diffractometer is generally similar to D2B at the Institut Laue-Langevin except for the monochromator. This will consist of a vertically focussing array of segments 3x1.27 cm in dimensions cut from stacks of 20 0.43 mm wafers that have been pressed and brazed together. Preliminary measurements indicate that a mosaic width of 0.1-0.15 o and a peak reflectivity of 25% can be achieved in this way. (author) 2 figs., 22 refs

  13. Highly resolved global distribution of tropospheric NO2 using GOME narrow swath mode data

    Directory of Open Access Journals (Sweden)

    S. Beirle

    2004-01-01

    Full Text Available The Global Ozone Monitoring Experiment (GOME allows the retrieval of tropospheric vertical column densities (VCDs of NO2 on a global scale. Regions with enhanced industrial activity can clearly be detected, but the standard spatial resolution of the GOME ground pixels (320x40km2 is insufficient to resolve regional trace gas distributions or individual cities. Every 10 days within the nominal GOME operation, measurements are executed in the so called narrow swath mode with a much better spatial resolution (80x40km2. We use this data (1997-2001 to construct a detailed picture of the mean global tropospheric NO2 distribution. Since - due to the narrow swath - the global coverage of the high resolution observations is rather poor, it has proved to be essential to deseasonalize the single narrow swath mode observations to retrieve adequate mean maps. This is done by using the GOME backscan information. The retrieved high resolution map illustrates the shortcomings of the standard size GOME pixels and reveals an unprecedented wealth of details in the global distribution of tropospheric NO2. Localised spots of enhanced NO2 VCD can be directly associated to cities, heavy industry centers and even large power plants. Thus our result helps to check emission inventories. The small spatial extent of NO2 'hot spots' allows us to estimate an upper limit of the mean lifetime of boundary layer NOx of 17h on a global scale. The long time series of GOME data allows a quantitative comparison of the narrow swath mode data to the nominal resolution. Thus we can analyse the dependency of NO2 VCDs on pixel size. This is important for comparing GOME data to results of new satellite instruments like SCIAMACHY (launched March 2002 on ENVISAT, OMI (launched July 2004 on AURA or GOME II (to be launched 2005 with an improved spatial resolution.

  14. High-Resolution Powder Diffractometer HRPT for Thermal Neutrons at SINQ

    International Nuclear Information System (INIS)

    Fischer, P.; Koch, M.; Koennecke, M.; Pomjakushin, V.; Schefer, J.; Schlumpf, N.

    1999-01-01

    The new neutron powder diffractometer at the Swiss continuous spallation neutron source SINQ is designed as a flexible instrument for high resolution [best values δd/d: ( -3 with d = lattice spacing in the high resolution or high intensity modes, respectively]. It uses large scattering angles 2Θ M = 120 deg or 90 deg of the monochromator, a 28 cm high, vertically focusing wafer type Ge(hkk) monochromator and a position-sensitive 3 He detector(3.6 bar) produced by Cerca at Romans, France. It has 1600 (25x64) detectors with an angular separation of 0.1 deg and includes modern electronics developed by E. Berruyer, Cerca and PSI. The SICS software of PSI controls the instrument with a server running on an unix workstation and clients written in Java through the TCP/IP network. The design principles and first experiences are presented. The interdisciplinary applications of HRPT will permit high-resolution refinement of chemical and magnetic structures as well as phase analysis including the detection of defects and internal microstrain. In particular real-time investigations of chemical or structural changes and of magnetic phase transitions in crystalline, quasicrystalline, amorphous and liquid samples including technically interesting new materials are possible. (author)

  15. High resolution crystal calorimetry at LHC

    International Nuclear Information System (INIS)

    Schneegans, M.; Ferrere, D.; Lebeau, M.; Vivargent, M.

    1991-01-01

    The search for Higgs bosons above Lep200 reach could be one of the main tasks of the future pp and ee colliders. In the intermediate mass region, and in particular in the range 80-140 GeV/c 2 , only the 2-photon decay mode of a Higgs produced inclusively or in association with a W, gives a good chance of observation. A 'dedicated' very high resolution calorimeter with photon angle reconstruction and pion identification capability should detect a Higgs signal with high probability. A crystal calorimeter can be considered as a conservative approach to such a detector, since a large design and operation experience already exists. The extensive R and D needed for finding a dense, fast and radiation hard crystal, is under way. Guide-lines for designing an optimum calorimeter for LHC are discussed and preliminary configurations are given. (author) 7 refs., 3 figs., 2 tabs

  16. High resolution photoelectron spectroscopy of clusters of Group V elements

    International Nuclear Information System (INIS)

    Wang, Lai-sheng; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    High resolution HeI (580 angstrom) photoelectron spectra of As 2 , As 4 , and P 4 were obtained with a newly-built high temperature molecular beam source. Vibrational structure was resolved in the photoelectron spectra of the three cluster species. The Jahn-Teller effect is discussed for the 2 E and 2 T 2 states of P 4 + and As 4 + . As a result of the Jahn-Teller effect, the 2 E state splits into two bands, and the 2 T 2 state splits into three bands, in combination with the spin-orbit effect. It was observed that the ν 2 normal vibrational mode was involved in the vibronic interaction of the 2 E state, while both the ν 2 and ν 3 modes were active in the 2 T 2 state. 26 refs., 5 figs., 3 tabs

  17. Single-mode molecular beam epitaxy grown PbEuSeTe/PbTe buried-heterostructure diode lasers for CO2 high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Feit, Z.; Kostyk, D.; Woods, R.J.; Mak, P.

    1991-01-01

    Buried-heterostructure tunable PbEuSeTe/PbTe lasers were fabricated using a two-stage molecular beam epitaxy growth procedure. Improvements in the processing technique yielded lasers that show performance characteristics significantly better than those reported previously. A continuous wave (cw) operating temperature of 203 K was realized, which is the highest cw operating temperature ever reported for lead-chalcogenides diode lasers. This laser exhibited exceptionally low-threshold currents of 1.4 mA at 90 K and 43 mA at 160 K with single-mode operation for injection currents up to 30I th and 0.18 mW power at 100 K. The usefulness of the laser, when operating cw at 200 K, was demonstrated by the ability to perform high-resolution spectroscopy of a low-pressure CO 2 gas sample

  18. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    International Nuclear Information System (INIS)

    Eddy, N.; Briegel, C.; Fellenz, B.; Gianfelice-Wendt, E.; Prieto, P.; Rechenmacher, R.; Semenov, A.; Voy, D.; Wendt, M.; Zhang, D.; Terunuma, N.

    2011-01-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R and D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facility (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution (∼100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.

  19. High resolution silicon detectors for colliding beam physics

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Raso, G.; Ristori, L.; Scribano, A.; Stefanini, A.; Tenchini, R.; Tonelli, G.; Triggiani, G.

    1984-01-01

    Resolution and linearity of the position measurement of Pisa multi-electrode silicon detectors are presented. The detectors are operated in slightly underdepleted mode and take advantage of their intrinsic resistivity for resistive charge partition between adjacent strips. 22 μm resolution is achieved with readout lines spaced 300 μm. Possible applications in colliding beam experiments for the detection of secondary vertices are discussed. (orig.)

  20. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  1. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    Science.gov (United States)

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  2. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  3. Ultra-high resolution optical coherence tomography for encapsulation quality inspection

    KAUST Repository

    Czajkowski, Jakub

    2011-08-28

    We present the application of ultra-high resolution optical coherence tomography (UHR-OCT) in evaluation of thin, protective films used in printed electronics. Two types of sample were investigated: microscopy glass and organic field effect transistor (OFET) structure. Samples were coated with thin (1-3 μm) layer of parylene C polymer. Measurements were done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti: sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Submicron resolution offered by the UHR-OCT system applied in the study enables registration of both interfaces of the thin encapsulation layer. Complete, volumetric characterisation of protective layers is presented, demonstrating possibility to use OCT for encapsulation quality inspection. © Springer-Verlag 2011.

  4. High n ballooning modes in highly elongated tokamaks

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1980-02-01

    An analytic study of stability against high n ballooning modes in highly elongated axisymmetric plasmas is presented and compared with computational results. From the equation for the marginal pressure gradient, it is found that the local shear plays an important role on the stability of elongated and shifted plasma, and that high elongation deteriorates the stability by decreasing the stabilizing effects of field line bending and local shear. The net contribution of the local shear to stability decreases with elongation and shift for strongly ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). The computational study of high n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for β/sub p/ less than unity but severely reduce the marginal beta for β/sub p/ larger than unity

  5. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    Energy Technology Data Exchange (ETDEWEB)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wang, J.; Dekany, R.; Delorme, J.-R. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Wallace, J. K.; Vasisht, G.; Mennesson, B.; Choquet, E.; Serabyn, E., E-mail: dmawet@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  6. Transition from L mode to high ion temperature mode in CHS heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Ida, K.; Osakabe, M.; Tanaka, K.

    2001-01-01

    A high ion temperature mode (high T i mode) is observed for neutral beam heated plasmas in the Compact Helical System (CHS) Heliotron/torsatron. The high T i mode plasma is characterized by a high central ion temperature, T i (0), and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. Transition from L mode to high T i mode has been studied in CHS. The central ion temperature in the high T i mode discharges reaches to 1 keV which is 2.5 times higher than that in the L mode discharges. The ion thermal diffusivity is significantly reduced by a factor of more than 2-3 in the high T i mode plasma. The ion loss cone is observed in neutral particle flux in the energy range of 1-6 keV with a narrow range of pitch angle (90±10 degree) in the high T i mode. However, the degradation of ion energy confinement due to this loss cone is negligible. (author)

  7. High Resolution Thz and FIR Spectroscopy of SOCl_2

    Science.gov (United States)

    Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)

  8. HPGe detectors long time behaviour in high-resolution γ spectrometry

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Rosso, D.; Sajo Castelli, A.M.; Napoli, D.R.; Fioretto, E.; Menegazzo, R.; Barros, H.; Ur, C.A.; Palacios, D.; Liendo, J.

    2011-01-01

    A large set of data on long term performance of n-type HPGe detectors used in GASP, EUROBALL and CLARA γ spectrometers, as well as environmental measurements have been collected over two decades. In this paper a detailed statistical analysis of this data is given and detector long term behaviour is provided to the scientific community. We include failure, failure mode, repair frequency, repair outcome and its influence in the energy efficiency and energy resolution. A remarkable result is that the life span distribution is exponential. A detector's failure is a memory-less process, where a previous failure does not influence the upcoming one. Repaired spectrometers result in high reliability with deep implications in the management of large scale high-resolution gamma spectrometry related projects. Findings show that on average, detectors initial counting efficiency is slightly lower (∼2%) than that reported by the manufacturers and the repair process (including annealing) does not affect significantly the energy efficiency, even after a long period of use. Repaired detector energy resolution statistics show that the probability, that a repaired detector will be at least as good as it was originally, is more than 3/4.

  9. Segmentation of arterial vessel wall motion to sub-pixel resolution using M-mode ultrasound.

    Science.gov (United States)

    Fancourt, Craig; Azer, Karim; Ramcharan, Sharmilee L; Bunzel, Michelle; Cambell, Barry R; Sachs, Jeffrey R; Walker, Matthew

    2008-01-01

    We describe a method for segmenting arterial vessel wall motion to sub-pixel resolution, using the returns from M-mode ultrasound. The technique involves measuring the spatial offset between all pairs of scans from their cross-correlation, converting the spatial offsets to relative wall motion through a global optimization, and finally translating from relative to absolute wall motion by interpolation over the M-mode image. The resulting detailed wall distension waveform has the potential to enhance existing vascular biomarkers, such as strain and compliance, as well as enable new ones.

  10. Complete dipole response in 208Pb from high-resolution polarized proton scattering at 0 deg

    International Nuclear Information System (INIS)

    Neumann-Cosel, P. von; Kalmykov, Y.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Adachi, T.; Fujita, Y.; Matsubara, H.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Bertulani, C. A.; Carter, J.; Fujita, H.; Dozono, M.; Fujita, K.; Hashimoto, H.; Hatanaka, K.

    2009-01-01

    The structure of electric and magnetic dipole modes in 208 Pb is investigated in a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg. First results on the E1 strength in the region of the pygmy dipole resonance are reported.

  11. Electrostatic ion trap and Fourier transform measurements for high-resolution mass spectrometry

    International Nuclear Information System (INIS)

    Bhushan, K. G.; Gadkari, S. C.; Yakhmi, J. V.; Sahni, V. C.

    2007-01-01

    We report on the development of an electrostatic ion trap for high-resolution mass spectrometry. The trap works on purely electrostatic fields and hence trapping and storing of ions is not mass restrictive, unlike other techniques based on Penning, Paul, or radio frequency quadrupole ion traps. It allows simultaneous trapping and studying of multiple mass species over a large mass range. Mass spectra were recorded in ''dispersive'' and ''self-bunching'' modes of ions. Storage lifetimes of about 100 ms and mass resolving power of about 20 000 could be achieved from the fifth harmonic Fourier transform spectrum of Xe ions recorded in the self-bunching mode

  12. Automated setpoint adjustment for biological contact mode atomic force microscopy imaging

    International Nuclear Information System (INIS)

    Casuso, Ignacio; Scheuring, Simon

    2010-01-01

    Contact mode atomic force microscopy (AFM) is the most frequently used AFM imaging mode in biology. It is about 5-10 times faster than oscillating mode imaging (in conventional AFM setups), and provides topographs of biological samples with sub-molecular resolution and at a high signal-to-noise ratio. Unfortunately, contact mode imaging is sensitive to the applied force and intrinsic force drift: inappropriate force applied by the AFM tip damages the soft biological samples. We present a methodology that automatically searches for and maintains high resolution imaging forces. We found that the vertical and lateral vibrations of the probe during scanning are valuable signals for the characterization of the actual applied force by the tip. This allows automated adjustment and correction of the setpoint force during an experiment. A system that permanently performs this methodology steered the AFM towards high resolution imaging forces and imaged purple membrane at molecular resolution and live cells at high signal-to-noise ratio for hours without an operator.

  13. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    Science.gov (United States)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  14. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  15. Study of a new magnetic dipole mode in the heavy deformed nuclei 154Sm, 156Gd, 158Gd, 164Dy, 168Er, and 174Yb by high-resolution electron spectroscopy

    International Nuclear Information System (INIS)

    Bohle, D.

    1985-01-01

    By inelastic electron scattering with high energy resolution a new magnetic dipole mode in heavy, deformed nuclei could be detected. For this the nuclei 154 Sm, 156 Gd, 158 Gd, 164 Dy, 168 Er, and 174 Yb were studied at the Darmstadt electron linear accelerator (DALINAC) at small momentum transfer q ≤ 0.6 fm -1 and low excitation energies. A collective magnetic dipole excitation could be discovered in all nuclei at an excitation energy of E x ≅ 66 δA -1/3 MeV whereby δ means the mass deformation. The transition strength extends in the mean to B(M1)↑ ≅ 1.3 μ N 2 . A systematic study of the nucleus 156 Gd yielded hints to a strong fragmentation of the magnetic dipole strength. A comparison of electron scattering, proton scattering, and nuclear resonance fluorescence experiments shows that the new mode is a pure orbital mode. (orig./HSI) [de

  16. Decay modes of high-lying excitations in nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Inelastic, charge-exchange and transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of new high-lying modes embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured branching ratios to the various decay channels as compared to statistical model calculations. As illustrative examples the decay modes of high-spin single-particle states and isovector resonances are discussed. (author) 23 refs.; 14 figs

  17. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors

    Science.gov (United States)

    Watanabe, Mitsuo; Saito, Akinori; Isobe, Takashi; Ote, Kibo; Yamada, Ryoko; Moriya, Takahiro; Omura, Tomohide

    2017-09-01

    A high-resolution positron emission tomography (PET) scanner, dedicated to brain studies, was developed and its performance was evaluated. A four-layer depth of interaction detector was designed containing five detector units axially lined up per layer board. Each of the detector units consists of a finely segmented (1.2 mm) LYSO scintillator array and an 8  ×  8 array of multi-pixel photon counters. Each detector layer has independent front-end and signal processing circuits, and the four detector layers are assembled as a detector module. The new scanner was designed to form a detector ring of 430 mm diameter with 32 detector modules and 168 detector rings with a 1.2 mm pitch. The total crystal number is 655 360. The transaxial and axial field of views (FOVs) are 330 mm in diameter and 201.6 mm, respectively, which are sufficient to measure a whole human brain. The single-event data generated at each detector module were transferred to the data acquisition servers through optical fiber cables. The single-event data from all detector modules were merged and processed to create coincidence event data in on-the-fly software in the data acquisition servers. For image reconstruction, the high-resolution mode (HR-mode) used a 1.2 mm2 crystal segment size and the high-speed mode (HS-mode) used a 4.8 mm2 size by collecting 16 crystal segments of 1.2 mm each to reduce the computational cost. The performance of the brain PET scanner was evaluated. For the intrinsic spatial resolution of the detector module, coincidence response functions of the detector module pair, which faced each other at various angles, were measured by scanning a 0.25 mm diameter 22Na point source. The intrinsic resolutions were obtained with 1.08 mm full width at half-maximum (FWHM) and 1.25 mm FWHM on average at 0 and 22.5 degrees in the first layer pair, respectively. The system spatial resolutions were less than 1.0 mm FWHM throughout the whole FOV, using a

  18. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    Science.gov (United States)

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  19. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  20. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  1. A Novel Atomic Force Microscope with Multi-Mode Scanner

    International Nuclear Information System (INIS)

    Qin, Chun; Zhang, Haijun; Xu, Rui; Han, Xu; Wang, Shuying

    2016-01-01

    A new type of atomic force microscope (AFM) with multi-mode scanner is proposed. The AFM system provides more than four scanning modes using a specially designed scanner with three tube piezoelectric ceramics and three stack piezoelectric ceramics. Sample scanning of small range with high resolution can be realized by using tube piezos, meanwhile, large range scanning can be achieved by stack piezos. Furthermore, the combination with tube piezos and stack piezos not only realizes high-resolution scanning of small samples with large- scale fluctuation structure, but also achieves small range area-selecting scanning. Corresponding experiments are carried out in terms of four different scanning modes showing that the AFM is of reliable stability, high resolution and can be widely applied in the fields of micro/nano-technology. (paper)

  2. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    Science.gov (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  3. Efficient creation of electron vortex beams for high resolution STEM imaging.

    Science.gov (United States)

    Béché, A; Juchtmans, R; Verbeeck, J

    2017-07-01

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  5. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  6. Radiopacity of restorative composites by conventional radiography and digital images with different resolutions

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Raquel Venancio; Samento, Hugo Ramalho [Graduate Program in Dentistry, Federal University of Pelotas, Pelotas (Brazil); Duarte, Rosangela Marques; Raso, Sonia Saeger Meireles Monte; De Andrade Ana Karina Maciel; Anjos-Pontual Maria Luiza Dos [Dept. of Operative Dentistry, Federal University of Paraiba, Pelotas (Brazil)

    2013-09-15

    This study was performed to evaluate and compare the radiopacity of dentin, enamel, and 8 restorative composites on conventional radiograph and digital images with different resolutions. Specimens were fabricated from 8 materials and human molars were longitudinally sectioned 1.0 mm thick to include both enamel and dentin. The specimens and tooth sections were imaged by conventional radiograph using 4 sized intraoral film and digital images were taken in high speed and high resolution modes using a phosphor storage plate. Densitometric evaluation of the enamel, dentin, restorative materials, a lead sheet, and an aluminum step wedge was performed on the radiographic images. For the evaluation, the Al equivalent (mm) for each material was calculated. The data were analyzed using one-way ANOVA and Tukey's test (p<0.05), considering the material factor and then the radiographic method factor, individually. The high speed mode allowed the highest radiopacity, while the high resolution mode generated the lowest values. Furthermore, the high resolution mode was the most efficient method for radiographic differentiation between restorative composites and dentin. The conventional radiograph was the most effective in enabling differentiation between enamel and composites. The high speed mode was the least effective in enabling radiographic differentiation between the dental tissues and restorative composites. The high speed mode of digital imaging was not effective for differentiation between enamel and composites. This made it less effective than the high resolution mode and conventional radiographs. All of the composites evaluated showed radiopacity values that fit the ISO 4049 recommendations.

  7. Land cover in the Guayas Basin using SAR images from low resolution ASAR Global mode to high resolution Sentinel-1 images

    Science.gov (United States)

    Bourrel, Luc; Brodu, Nicolas; Frappart, Frédéric

    2016-04-01

    Remotely sensed images allow a frequent monitoring of land cover variations at regional and global scale. Recently launched Sentinel-1 satellite offers a global cover of land areas at an unprecedented spatial (20 m) and temporal (6 days at the Equator). We propose here to compare the performances of commonly used supervised classification techniques (i.e., k-nearest neighbors, linear and Gaussian support vector machines, naive Bayes, linear and quadratic discriminant analyzes, adaptative boosting, loggit regression, ridge regression with one-vs-one voting, random forest, extremely randomized trees) for land cover applications in the Guayas Basin, the largest river basin of the Pacific coast of Ecuator (area ~32,000 km²). The reason of this choice is the importance of this region in Ecuatorian economy as its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population lives. It also corresponds to the most productive region of Ecuador for agriculture and aquaculture. Fifty percents of the country shrimp farming production comes from this watershed, and represents with agriculture the largest source of revenue of the country. Similar comparisons are also performed using ENVISAT ASAR images acquired in global mode (1 km of spatial resolution). Accuracy of the results will be achieved using land cover map derived from multi-spectral images.

  8. Generation of high order modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  9. High resolution SAW elastography for ex-vivo porcine skin specimen

    Science.gov (United States)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  10. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  11. Implementation and performance of an optical motion tracking system for high resolution brain PET imaging

    Science.gov (United States)

    Lopresti, B. J.; Russo, A.; Jones, W. F.; Fisher, T.; Crouch, D. G.; Altenburger, D. E.; Townsend, D. W.

    1999-12-01

    Head motion during PET scanning is widely regarded as a source of image degradation and resolution loss. Recent improvements in the spatial resolution of state-of-the-art tomographs may be compromised by patient motion during scanning, as these high resolution data will be increasingly susceptible to smaller movements of the head. The authors have developed an opto-electronic motion tracking system based on commercially-available technology that is capable of very accurate real-time measurements of the position and orientation of the patient's head. These positions are transformed to the reference frame of the PET scanner, and could potentially be used to provide motion correction of list-mode emission data on an event-by-event basis.

  12. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  13. Moving on or digging deeper: Regulatory mode and interpersonal conflict resolution.

    Science.gov (United States)

    Webb, Christine E; Coleman, Peter T; Rossignac-Milon, Maya; Tomasulo, Stephen J; Higgins, E Tory

    2017-04-01

    Conflict resolution, in its most basic sense, requires movement and change between opposing motivational states. Although scholars and practitioners have long acknowledged this point, research has yet to investigate whether individual differences in the motivation for movement from state-to-state influence conflict resolution processes. Regulatory Mode Theory (RMT) describes this fundamental motivation as locomotion. RMT simultaneously describes an orthogonal motivational emphasis on assessment, a tendency for critical evaluation and comparison. We argue that this tendency, in the absence of a stronger motivation for locomotion, can obstruct peoples' propensity to reconcile. Five studies, using diverse measures and methods, found that the predominance of an individual's locomotion over assessment facilitates interpersonal conflict resolution. The first two studies present participants with hypothetical conflict scenarios to examine how chronic (Study 1) and experimentally induced (Study 2) individual differences in locomotion predominance influence the motivation to reconcile. The next two studies investigate this relation by way of participants' own conflict experiences, both through essay recall of previous conflict events (Study 3) and verbal narratives of ongoing conflict issues (Study 4). We then explore this association in the context of real-world conflict discussions between roommates (Study 5). Lastly, we examine results across these studies meta-analytically (Study 6). Overall, locomotion and assessment can inform lay theories of individual variation in the motivation to "move on" or "dig deeper" in conflict situations. We conclude by emphasizing the importance of using RMT to go beyond instrumental approaches to conflict resolution to understand fundamental individual motivations underlying its occurrence. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Exploring semiconductor quantum dots and wires by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Molina, S I [Departamento de Ciencia de los Materiales e Ing Metalurgica y Q. Inorganica, F. de Ciencias, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Gonzalez, L; Ripalda, J M [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Varela, M; Pennycook, S J, E-mail: sergio.molina@uca.e [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 (United States)

    2010-02-01

    We review in this communication our contribution to the structural characterisation of semiconductor quantum dots and wires by high resolution electron microscopy, both in phase-contrast and Z-contrast modes. We show how these techniques contribute to predict the preferential sites of nucleation of these nanostructures, and also determine the compositional distribution in 1D and 0D nanostructures. The results presented here were produced in the framework of the European Network of Excellence entitled {sup S}elf-Assembled semiconductor Nanostructures for new Devices in photonics and Electronics (SANDiE){sup .}

  15. Single photon imaging at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, R. [INFN sez. Pisa, Pisa (Italy); Spandre, G. [INFN sez. Pisa, Pisa (Italy)], E-mail: Gloria.Spandre@pi.infn.it; Minuti, M.; Brez, A.; Baldini, L.; Latronico, L.; Omodei, N.; Sgro, C.; Bregeon, J.; Razzano, M.; Pinchera, M. [INFN sez. Pisa, Pisa (Italy); Tremsin, A.; McPhate, J.; Vallerga, J.V.; Siegmund, O. [SSL, Berkeley (United States)

    2008-06-11

    We present a detection system capable of imaging both single photon/positive ion and multiple coincidence photons/positive ions with extremely high spatial resolution. In this detector the photoelectrons excited by the incoming photons are multiplied by microchannel plate(s) (MCP). The process of multiplication is spatially constrained within an MCP pore, which can be as small as 4 {mu}m for commercially available MCPs. An electron cloud originated by a single photoelectron is then encoded by a pixellated custom analog ASIC consisting of 105 K charge sensitive pixels of 50 {mu}m in size arranged on a hexagonal grid. Each pixel registers the charge with an accuracy of <100 electrons rms. Computation of the event centroid from the readout charges results in an accurate event position. A large number of simultaneous photons spatially separated by {approx}0.4 mm can be detected simultaneously allowing multiple coincidence operation for the experiments where a large number of incoming photons/positive ions have to be detected simultaneously. The experimental results prove that the spatial resolution of the readout system itself is {approx}3 {mu}m FWHM enabling detection resolution better than 6 {mu}m for the small pore MCPs. An attractive feature of the detection system is its capability to register the timing of each incoming photon/positive ion (in single photon detection mode) or of the first incoming particle (for the multiple coincidence detection) with an accuracy of {approx}130 ps FWHM. There is also virtually no dark count noise in the detection system making it suitable for low count rate applications.

  16. THE STATISTICS OF RADIO ASTRONOMICAL POLARIMETRY: BRIGHT SOURCES AND HIGH TIME RESOLUTION

    International Nuclear Information System (INIS)

    Van Straten, W.

    2009-01-01

    A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal-broadening phenomenon in single-pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single- and giant-pulse polarimetry typically involves sources with large flux-densities and observations with high time-resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self-noise is shown to fully explain the excess polarization dispersion previously noted in single-pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated.

  17. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    Science.gov (United States)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  18. Liquid chromatography with high resolution mass spectrometry for identification of organic contaminants in fish fillet: screening and quantification assessment using two scan modes for data acquisition.

    Science.gov (United States)

    Munaretto, Juliana S; May, Marília M; Saibt, Nathália; Zanella, Renato

    2016-07-22

    This study proposed a strategy to identify and quantify 182 organic contaminants from different chemical classes, as for instance pesticides, veterinary drug and personal care products, in fish fillet using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF/MS). For this purpose, two different scan methods (full scan and all ions MS/MS) were evaluated to assess the best option for screening analysis in spiked fish fillet samples. In general, full scan acquisition was found to be more reliable (84%) in the automatic identification and quantification when compared to all ions MS/MS with 72% of the compounds detected. Additionally, a qualitative automatic search showed a mass accuracy error below 5ppm for 77% of the compounds in full scan mode compared to only 52% in all ions MS/MS scan. However, all ions MS/MS provides fragmentation information of the target compounds. Undoubtedly, structural information of a wide number of compounds can be obtained using high resolution mass spectrometry (HRMS), but it is necessary thoroughly assess it, in order to choose the best scan mode. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    Science.gov (United States)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  20. Study of an avalanche-mode resistive plate chamber

    International Nuclear Information System (INIS)

    Ying, J.; Ban, Y.; Liu, H.T.; Zhu, Z.M.; Zhu, Z.Y.; Chen, T.; Ma, J.G.; Ye, Y.L.

    2000-01-01

    Resistive plate chambers (RPCs) are widely used to detect high-energy charged particles, especially muons, due to the high gain, moderate time and spatial resolution, simple design and low cost of these detectors. While the simple streamer mode is adequate for cosmic-ray and low-rate accelerator experiments, the avalanche mode is required for high-rate experiments such as CMS at LHC. In this paper construction of a medium-sized double-gap RPC made of Chinese materials is reported. The experimental set-up of cosmic-ray and muon beam tests are introduced. The avalanche mode was clearly observed. Good efficiency and time resolution were obtained from the beam test at CERN under normal irradiation conditions. At very high radiation background the chamber efficiency decreases, indicating the necessity to change the resistivity value of the Chinese bakelites. (author)

  1. Dipping-interface mapping using mode-separated Rayleigh waves

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.

  2. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Daehyeok Kim

    2017-06-01

    Full Text Available In this paper, we present a multi-resolution mode CMOS image sensor (CIS for intelligent surveillance system (ISS applications. A low column fixed-pattern noise (CFPN comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution with supply voltages of 3.3 V (analog and 1.8 V (digital and 14 frame/s of frame rates.

  3. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems.

    Science.gov (United States)

    Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn

    2017-06-25

    In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.

  4. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  5. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience

    Science.gov (United States)

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    ;Pure shift; NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  6. Resolution enhancement of slam using transverse wave

    International Nuclear Information System (INIS)

    Ko, Dae Sik; Moon, Gun; Kim, Young H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Since the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM Image In the transverse wave mode than that in the longitudinal wave mode.

  7. High Resolution Infrared Spectroscopy in Astronomy Proceedings of an ESO Workshop Held at Garching, Germany, 18-21 November 2003

    CERN Document Server

    Käufl, Hans Ulrich; Moorwood, Alan F. M

    2005-01-01

    Two specialized new instruments for ESO's VLT, VISIR and CRIRES, spawned the idea for this workshop. CRIRES is a dedicated very high resolution infrared spectrograph; VISIR features a high resolution spectroscopic mode. Together, the instruments combine the sensitivity of an 8m-telescope with the now well-established reliability of VLT-facility instruments. High resolution here means that lines in cool stellar atmospheres and HII-regions can be resolved. The astrophysical topics discussed in this rather specialized workshop range from the inner solar system to active galactic nuclei. There are many possibilities for new discoveries with these instruments, but the unique capability, which becomes available through high-resolution infrared spectroscopy, is the observation of molecular rotational-vibrational transitions in many astrophysical environments. Particularly interesting and surprising in this context, many papers on modeling and laboratory spectroscopy at the workshop appear to indicate that astronomic...

  8. Montecarlo simulation for a new high resolution elemental analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion

    1996-12-31

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  9. Montecarlo simulation for a new high resolution elemental analysis methodology

    International Nuclear Information System (INIS)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto

    1996-01-01

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2π solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  10. Modal–Physical Hybrid System Identification of High-rise Building via Subspace and Inverse-Mode Methods

    Directory of Open Access Journals (Sweden)

    Kohei Fujita

    2017-08-01

    Full Text Available A system identification (SI problem of high-rise buildings is investigated under restricted data environments. The shear and bending stiffnesses of a shear-bending model (SB model representing the high-rise buildings are identified via the smart combination of the subspace and inverse-mode methods. Since the shear and bending stiffnesses of the SB model can be identified in the inverse-mode method by using the lowest mode of horizontal displacements and floor rotation angles, the lowest mode of the objective building is identified first by using the subspace method. Identification of the lowest mode is performed by using the amplitude of transfer functions derived in the subspace method. Considering the resolution in measuring the floor rotation angles in lower stories, floor rotation angles in most stories are predicted from the floor rotation angle at the top floor. An empirical equation of floor rotation angles is proposed by investigating those for various building models. From the viewpoint of application of the present SI method to practical situations, a non-simultaneous measurement system is also proposed. In order to investigate the reliability and accuracy of the proposed SI method, a 10-story building frame subjected to micro-tremor is examined.

  11. Design considerations for a new, high resolution Micro-Angiographic Fluoroscope based on a CMOS sensor (MAF-CMOS).

    Science.gov (United States)

    Loughran, Brendan; Swetadri Vasan, S N; Singh, Vivek; Ionita, Ciprian N; Jain, Amit; Bednarek, Daniel R; Titus, Albert; Rudin, Stephen

    2013-03-06

    The detectors that are used for endovascular image-guided interventions (EIGI), particularly for neurovascular interventions, do not provide clinicians with adequate visualization to ensure the best possible treatment outcomes. Developing an improved x-ray imaging detector requires the determination of estimated clinical x-ray entrance exposures to the detector. The range of exposures to the detector in clinical studies was found for the three modes of operation: fluoroscopic mode, high frame-rate digital angiographic mode (HD fluoroscopic mode), and DSA mode. Using these estimated detector exposure ranges and available CMOS detector technical specifications, design requirements were developed to pursue a quantum limited, high resolution, dynamic x-ray detector based on a CMOS sensor with 50 μm pixel size. For the proposed MAF-CMOS, the estimated charge collected within the full exposure range was found to be within the estimated full well capacity of the pixels. Expected instrumentation noise for the proposed detector was estimated to be 50-1,300 electrons. Adding a gain stage such as a light image intensifier would minimize the effect of the estimated instrumentation noise on total image noise but may not be necessary to ensure quantum limited detector operation at low exposure levels. A recursive temporal filter may decrease the effective total noise by 2 to 3 times, allowing for the improved signal to noise ratios at the lowest estimated exposures despite consequent loss in temporal resolution. This work can serve as a guide for further development of dynamic x-ray imaging prototypes or improvements for existing dynamic x-ray imaging systems.

  12. High resolution laser spectroscopy as a diagnostic tool in beams

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    The combination of high resolution laser spectroscopy with the technique of molecular beams allows a very detailed beam research since molecules or atoms in specific quantum states can be sampled yielding previously unavailable sources of data. In these experiments a Na/Na 2 beam emerges from a 0.2 mm nozzle and is collimated by a 2 mm wide slit 50 cm downstream. To probe the molecules a single mode Ar + -laser was used which can be tuned within the gain profile of the laser line (8 GHz) to several transitions between specific levels in the ground state and second electronically excited state of the Na 2 molecule. (Auth.)

  13. DUACS: Toward High Resolution Sea Level Products

    Science.gov (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  14. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  15. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  16. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  17. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  18. Far-infrared high resolution synchrotron FTIR spectroscopy of the ν11 bending vibrational fundamental transition of dimethylsulfoxyde

    Science.gov (United States)

    Cuisset, Arnaud; Nanobashvili, Lia; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gaël; Pirali, Olivier; Roy, Pascale; Sadovskií, Dmitrií A.

    2010-05-01

    We report the first successful high resolution gas phase study of the 'parallel' band of DMSO at 380 cm -1 associated with the ν11 bending vibrational mode. The spectrum was recorded with a resolution of 0.0015 cm -1 using the AILES beamline of the SOLEIL synchrotron source, the IFS 125 FTIR spectrometer and a multipass cell providing an optical path of 150 m. The rotational constants and centrifugal corrections obtained from the analysis of the resolved rotational transitions reproduce the spectrum to the experimental accuracy.

  19. Modeling of mode purity in high power gyrotrons

    International Nuclear Information System (INIS)

    Cai, S.Y.; Antonsen, T.M. Jr.; Saraph, G.P.

    1993-01-01

    Spurious mode generation at the same frequency of the operational mode in a high power gyrotron can significantly reduce the power handling capability and the stability of a gyrotron oscillator because these modes are usually not matched at the output window and thus have high absorption and reflection rates. To study the generation of this kind of mode, the authors developed a numerical model based on an existing multimode self-consistent time-dependent computer code. This model includes both TE and TM modes and accounts for mode transformations due to the waveguide inhomogeneity. With this new tool, they study the mode transformation in the gyrotron and the possibility of excitation of parasitic TE and TM modes in the up taper section due to the gyroklystron mechanism. Their preliminary results show moderate excitation of both TE and TM modes at the same frequency as the main operating mode at locations near their cutoff. Details of the model and further simulation results will be presented

  20. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  1. Discernibility of Burial Mounds in High-Resolution X-Band SAR Images for Archaeological Prospections in the Altai Mountains

    Directory of Open Access Journals (Sweden)

    Timo Balz

    2016-09-01

    Full Text Available The Altai Mountains are a heritage-rich archaeological landscape with monuments in almost every valley. Modern nation state borders dissect the region and limit archaeological landscape analysis to intra-national areas of interest. Remote sensing can help to overcome these limitations. Due to its high precision, Synthetic Aperture Radar (SAR data can be a very useful tool for supporting archaeological prospections, but compared to optical imagery, the detectability of sites of archaeological interest is limited. We analyzed the limitations of SAR using TerraSAR-X images in different modes. Based on ground truth, the discernibility of burial mounds was analyzed in different SAR acquisition modes. We show that very-high-resolution TerraSAR-X staring spotlight images are very well suited for the task, with >75% of the larger mounds being discernible, while in images with a lower spatial resolution only a few large sites can be detected, at rates below 50%.

  2. Electron beam fabrication and characterization of high-resolution magnetic force microscopy tips

    Science.gov (United States)

    Rührig, M.; Porthun, S.; Lodder, J. C.; McVitie, S.; Heyderman, L. J.; Johnston, A. B.; Chapman, J. N.

    1996-03-01

    The stray field, magnetic microstructure, and switching behavior of high-resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a thermally evaporated magnetic thin film are transparent to the electron energies used in these TEMs it is possible to observe both the external stray field emanating from the tips as well as their internal domain structure. The experiments confirm the basic features of electron beam fabricated thin film tips concluded from various MFM observations using these tips. Only a weak but highly concentrated stray field is observed emanating from the immediate apex region of the tip, consistent with their capability for high resolution. It also supports the negligible perturbation of the magnetization sample due to the tip stray field observed in MFM experiments. Investigation of the magnetization distributions within the tips, as well as preliminary magnetizing experiments, confirm a preferred single domain state of the high aspect ratio tips. To exclude artefacts of the observation techniques both nonmagnetic tips and those supporting different magnetization states are used for comparison.

  3. A study with high resolution computed tomography of bone destruction in cholesteatoma

    International Nuclear Information System (INIS)

    Kikuchi, Shigeru; Yamaso, Tatsuya; Higo, Ryusaburo; Senba, Tetsuo; Iinuma, Yoshitaka.

    1992-01-01

    The modes and incidences of bone destruction in the middle ear cholesteatoma were evaluated by high resolution computed tomography, comparing with chronic otitis media with central perforation (COM) as control. The head of the malleus, the body and long process of the incus were more markedly destroyed in cholesteatoma than in COM with statistical significance. With the further extension of cholesteatoma into the antrum, the tegmen of the aditus ad antrum, the lateral semicircular canal, the handle of the malleus and the Korner's septum were involved in bone destruction. (author)

  4. Spectroscopic investigation of ELM phenomena in the ASDEX-Upgrade divertor with high time resolution

    International Nuclear Information System (INIS)

    Field, A.R.; Buechl, K.; Fuchs, C.J.; Fussmann, G.; Herrmann, A.; Lieder, G.; Napiontek, B.; Radtke, R.; Wenzel, U.; Zohm, H.

    1993-01-01

    Improved tokamak H-mode confinement is associated with the formation of an insulating zone just within the separatrix. At a critical pressure gradient a sudden burst of MHD activity (an ELM) degrades edge confinement, releasing particles and energy into the scrape-off layer (SOL) which is subsequently transported to the divertor. Here, these phenomena are studied using spectroscopic diagnostics and target plate thermography of high spatial and temporal resolution. (author) 3 refs., 6 figs

  5. Spectroscopic investigation of ELM phenomena in the ASDEX-Upgrade divertor with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Field, A R; Buechl, K; Fuchs, C J; Fussmann, G; Herrmann, A; Lieder, G; Napiontek, B; Radtke, R; Wenzel, U; Zohm, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    Improved tokamak H-mode confinement is associated with the formation of an insulating zone just within the separatrix. At a critical pressure gradient a sudden burst of MHD activity (an ELM) degrades edge confinement, releasing particles and energy into the scrape-off layer (SOL) which is subsequently transported to the divertor. Here, these phenomena are studied using spectroscopic diagnostics and target plate thermography of high spatial and temporal resolution. (author) 3 refs., 6 figs.

  6. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  7. NCAR High-resolution Land Data Assimilation System and Its Recent Applications

    Science.gov (United States)

    Chen, F.; Manning, K.; Barlage, M.; Gochis, D.; Tewari, M.

    2008-05-01

    A High-Resolution Land Data Assimilation System (HRLDAS) has been developed at NCAR to meet the need for high-resolution initial conditions of land state (soil moisture and temperature) by today's numerical weather prediction models coupled to a land surface model such as the WRF/Noah coupled modeling system. Intended for conterminous US application, HRLDAS uses observed hourly 4-km national precipitation analysis and satellite-derived surface-solar-downward radiation to drive, in uncoupled mode, the Noah land surface model to simulate long-term evolution of soil state. The advantage of HRLDAS is its use of 1-km resolution land-use and soil texture maps and 4-km rainfall data. As a result, it is able to capture fine-scale heterogeneity at the surface and in the soil. The ultimate goal of HRLDAS development is to characterize soil moisture/temperature and vegetation variability at small scales (~4km) over large areas to provide improved initial land and vegetation conditions for the WRF/Noah coupled model. Hence, HRLDAS is configured after the WRF/Noah coupled model configuration to ensure the consistency in model resolution, physical configuration (e.g., terrain height), soil model, and parameters between the uncoupled soil initialization system and its coupled forecast counterpart. We will discuss various characteristics of HRLDAS, including its spin-up and sensitivity to errors in forcing data. We will describe recent enhancement in terms of hydrological modeling and the use of remote sensing data. We will discuss recent applications of HRLDAS for flood forecast, agriculture, and arctic land system.

  8. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping

    International Nuclear Information System (INIS)

    Darling, E M

    2011-01-01

    Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.

  9. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  10. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  11. Multi-detection of corticosteroids in sports doping and veterinary control using high-resolution liquid chromatography/time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Touber, M.E.; Engelen, M.C.; Georgakopoulus, C.; Rhijn, van J.A.; Nielen, M.W.F.

    2007-01-01

    A liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) method was developed using the latest high-resolution LC column technology, the ultra performance liquid chromatography (UPLC (TM)), and electrospray ionization (ESI) in the positive ion mode. Gradient UPLC separation conditions

  12. Low-frequency modes with high toroidal mode numbers. A general formulation

    International Nuclear Information System (INIS)

    Pegoraro, F.; Schep, T.J.

    1979-09-01

    Low-frequency waves with high toroidal mode numbers in an axisymmetric toroidal configuration are studied. In particular, the relationship between the periodicity constraints imposed by the geometry, magnetic shear and the spatial structure of eigenmodes is investigated. By exploiting the radial translational invariance and the poloidal periodicity of the gyrokinetic and Maxwell equations, the two-dimensional problem can be converted into a one-dimensional one and the mode structure can be expressed in terms of a single extended poloidal variable. This representation is used in the description of electromagnetic modes with phase velocities larger than the ion thermal velocity and with frequencies below the ion gyro-frequency. Trapped particle, curvature and compressional effects are retained. The dispersion equations for drift mode and Alfven-type modes are given in general geometry and simplified solutions are presented in the configuration of a double periodic plane slab. (Auth.)

  13. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  14. Computer-assisted solid lung nodule 3D volumetry on CT. Influence of scan mode and iterative reconstruction. A CT phantom study

    International Nuclear Information System (INIS)

    Coenen, Adriaan; Honda, Osamu; Tomiyama, Noriyuki; Jagt, Eric J. van der

    2013-01-01

    The objective of this study was to evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution mode) and iterative reconstructions [0, 50 and 100% blending of adaptive statistical iterative reconstruction (ASiR) and filtered back projection]. The nodule volumes were calculated using semiautomatic software and compared with the assumed volume from the nodules. The mean absolute and relative percentage error improved when using iterative reconstruction especially when using the conventional scan mode; however, this effect was not significant. Significant reduction in volume overestimation was observed when using high-resolution scan mode (P=0.011). The high-resolution mode significantly reduces the volume overestimation of 3D volumetry. Iterative reconstruction shows a reduction in volume overestimation and error margin especially with the conventional scan mode; however, this effect was not significant. (author)

  15. High-resolution photoluminescence electro-modulation microscopy by scanning lock-in

    Science.gov (United States)

    Koopman, W.; Muccini, M.; Toffanin, S.

    2018-04-01

    Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved.

  16. High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir

    2018-02-01

    High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.

  17. Assessment of mural invasion depth of gastric carcinoma with high-resolution compound sonographic imaging in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hoon; Kim, Eun A; Yoon, Kwon Ha; Yun, Ki Jung; Kim, Jeong Ho; Won, Jong Jin [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2002-11-01

    To evaluate whether the accuracy of invasion depth assessment in gastric carcinoma in vitro can be improved with high-resolution spatial compound sonographic imaging. In sixteen fresh gastric specimens obtained from patients with preoperatively biopsy proven gastric carcinoma, normal and lesional areas were scanned using conventional and compound imaging technique with a 15-MHz linear transducer. Two radiologists independently compared the sharpness and the contrast of images obtained with two different modes and determined the layers invaded by cancer with consensus. The invasion depths by images were compared with histopathologic results. The sharpness and the contrast in normal and lesional areas were significantly higher in compound imaging (p<0.01) than those in conventional imaging and interobserver agreement was over moderate, with k-value of 0.41 to 0.86. But the accuracy in invasion depth assessment was 68.8% (11/16) on conventional imaging and 75% (12/16) on compound imaging and non different significantly between two modes (p>0305). High-resolution spatial compound sonographic imaging has improved image quality, compared with conventional imaging, but the accuracy of invasion depth assessment in gastric carcinoma was not significantly different.

  18. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  19. Combining a Deconvolution and a Universal Library Search Algorithm for the Nontarget Analysis of Data-Independent Acquisition Mode Liquid Chromatography-High-Resolution Mass Spectrometry Results.

    Science.gov (United States)

    Samanipour, Saer; Reid, Malcolm J; Bæk, Kine; Thomas, Kevin V

    2018-04-17

    Nontarget analysis is considered one of the most comprehensive tools for the identification of unknown compounds in a complex sample analyzed via liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Due to the complexity of the data generated via LC-HRMS, the data-dependent acquisition mode, which produces the MS 2 spectra of a limited number of the precursor ions, has been one of the most common approaches used during nontarget screening. However, data-independent acquisition mode produces highly complex spectra that require proper deconvolution and library search algorithms. We have developed a deconvolution algorithm and a universal library search algorithm (ULSA) for the analysis of complex spectra generated via data-independent acquisition. These algorithms were validated and tested using both semisynthetic and real environmental data. A total of 6000 randomly selected spectra from MassBank were introduced across the total ion chromatograms of 15 sludge extracts at three levels of background complexity for the validation of the algorithms via semisynthetic data. The deconvolution algorithm successfully extracted more than 60% of the added ions in the analytical signal for 95% of processed spectra (i.e., 3 complexity levels multiplied by 6000 spectra). The ULSA ranked the correct spectra among the top three for more than 95% of cases. We further tested the algorithms with 5 wastewater effluent extracts for 59 artificial unknown analytes (i.e., their presence or absence was confirmed via target analysis). These algorithms did not produce any cases of false identifications while correctly identifying ∼70% of the total inquiries. The implications, capabilities, and the limitations of both algorithms are further discussed.

  20. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.

    Science.gov (United States)

    Shen, Shijian; Nie, Xin; Zhang, Xinggan

    2018-02-03

    Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  1. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode

    Directory of Open Access Journals (Sweden)

    Shijian Shen

    2018-02-01

    Full Text Available Gaofen-3 (GF-3 is China’ first C-band multi-polarization synthetic aperture radar (SAR satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP and PFA (Polar Format Algorithm imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  2. Imaging modes for potential mapping in semiconductor devices by electron holography with improved lateral resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sickmann, Jan, E-mail: jan.sickmann@triebenberg.de [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01069 Dresden (Germany); Formanek, Petr; Linck, Martin [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01069 Dresden (Germany); Muehle, Uwe [Institut fuer Werkstoffwissenschaft, Technische Universitaet Bergakademie Freiberg, 09599 Freiberg (Germany); Lichte, Hannes [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01069 Dresden (Germany)

    2011-03-15

    Electron holography is the highest resolving tool for dopant profiling at nanometre-scale resolution. In order to measure the object areas of interest in a hologram, both a wide field of view and a sufficient lateral resolution are required. The usual path of rays for recording holograms with an electron biprism using the standard objective lens does not meet these requirements, because the field of view amounts to some 10 nm only, however, at a resolution of 0.1 nm better than needed here. Therefore, instead of the standard objective lens, the Lorentz lens is widely used for holography of semiconductors, since it provides a field of view up to 1000 nm at a sufficient lateral resolution of about 10 nm. Since the size of semiconductor structures is steadily shrinking, there is now a need for better lateral resolution at an appropriate field of view. Therefore, additional paths of rays for recording holograms are studied with special emphasis on the parameters field of view and lateral resolution. The findings allow an optimized scheme with a field of view of 200 nm and a lateral resolution of 3.3 nm filling the gap between the existing set-ups. In addition, the Lorentz lens is no longer required for investigation of non-magnetic materials, since the new paths of rays are realized with the standard objective lens and diffraction lens. An example proves the applicability of this arrangement for future semiconductor technology. -- Research highlights: {yields} Imaging modes for potential mapping in semiconductor devices by electron holography. {yields} Using objective and diffraction lens for imaging instead of Lorentz lens. {yields} Detailed investigation of four different paths of rays and its basic parameters for holographic application: field of view, lateral resolution, signal resolution. {yields} Measuring the phase profile of a field effect transistor with 3 nm lateral resolution at field of view of 200 nm.

  3. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  4. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  5. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    International Nuclear Information System (INIS)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P.A.; Schmid, Adrien W.

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  6. Computer-assisted solid lung nodule 3D volumetry on CT : influence of scan mode and iterative reconstruction: a CT phantom study

    NARCIS (Netherlands)

    Coenen, Adriaan; Honda, Osamu; van der Jagt, Eric J.; Tomiyama, Noriyuki

    2013-01-01

    To evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution

  7. High resolution reconstruction of PET images using the iterative OSEM algorithm

    International Nuclear Information System (INIS)

    Doll, J.; Bublitz, O.; Werling, A.; Haberkorn, U.; Semmler, W.; Adam, L.E.; Pennsylvania Univ., Philadelphia, PA; Brix, G.

    2004-01-01

    Aim: Improvement of the spatial resolution in positron emission tomography (PET) by incorporation of the image-forming characteristics of the scanner into the process of iterative image reconstruction. Methods: All measurements were performed at the whole-body PET system ECAT EXACT HR + in 3D mode. The acquired 3D sinograms were sorted into 2D sinograms by means of the Fourier rebinning (FORE) algorithm, which allows the usage of 2D algorithms for image reconstruction. The scanner characteristics were described by a spatially variant line-spread function (LSF), which was determined from activated copper-64 line sources. This information was used to model the physical degradation processes in PET measurements during the course of 2D image reconstruction with the iterative OSEM algorithm. To assess the performance of the high-resolution OSEM algorithm, phantom measurements performed at a cylinder phantom, the hotspot Jaszczack phantom, and the 3D Hoffmann brain phantom as well as different patient examinations were analyzed. Results: Scanner characteristics could be described by a Gaussian-shaped LSF with a full-width at half-maximum increasing from 4.8 mm at the center to 5.5 mm at a radial distance of 10.5 cm. Incorporation of the LSF into the iteration formula resulted in a markedly improved resolution of 3.0 and 3.5 mm, respectively. The evaluation of phantom and patient studies showed that the high-resolution OSEM algorithm not only lead to a better contrast resolution in the reconstructed activity distributions but also to an improved accuracy in the quantification of activity concentrations in small structures without leading to an amplification of image noise or even the occurrence of image artifacts. Conclusion: The spatial and contrast resolution of PET scans can markedly be improved by the presented image restauration algorithm, which is of special interest for the examination of both patients with brain disorders and small animals. (orig.)

  8. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    Science.gov (United States)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  9. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  10. Linking high resolution mass spectrometry data with exposure ...

    Science.gov (United States)

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast™ program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC–TOF/molecular feature data (match score ≥ 90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along wi

  11. High-frequency and time resolution rocket observations of structured low- and medium-frequency whistler mode emissions in the auroral ionosphere

    Science.gov (United States)

    LaBelle, J.; McAdams, K. L.; Trimpi, M. L.

    High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.

  12. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  13. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  14. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  15. Internal modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Crew, G.B.

    1983-02-01

    The linear stability of current-carrying toroidal plamsas is examined to determine the possibility of exciting global internal modes. The ideal magnetohydrodynamic (MHD) theory provides a useful framework for the analysis of these modes, which involve a kinking of the central portion of the plasma column. Non-ideal effects can also be important, and these are treated for high-temperature regimes where the plasma is collisionless

  16. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  17. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  18. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  19. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  20. Analysis of high-quality modes in open chaotic microcavities

    International Nuclear Information System (INIS)

    Fang, W.; Yamilov, A.; Cao, H.

    2005-01-01

    We present a numerical study of the high-quality modes in two-dimensional dielectric stadium microcavities. Although the classical ray mechanics is fully chaotic in a stadium billiard, all of the high-quality modes show a 'strong scar' around unstable periodic orbits. When the deformation (ratio of the length of the straight segments over the diameter of the half circles) is small, the high-quality modes correspond to whispering-gallery-type trajectories and their quality factors decrease monotonically with increasing deformation. At large deformation, each high-quality mode is associated with multiple unstable periodic orbits. Its quality factor changes nonmonotonically with the deformation, and there exists an optimal deformation for each mode at which its quality factor reaches a local maximum. This unusual behavior is attributed to the interference of waves propagating along different constituent orbits that could minimize light leakage out of the cavity

  1. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  2. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    Science.gov (United States)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  3. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  4. Sub-micron resolution selected area electron channeling patterns.

    Science.gov (United States)

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Comparison of turbulence measurements from DIII-D low-mode and high-performance plasmas to turbulence simulations and models

    International Nuclear Information System (INIS)

    Rhodes, T.L.; Leboeuf, J.-N.; Sydora, R.D.; Groebner, R.J.; Doyle, E.J.; McKee, G.R.; Peebles, W.A.; Rettig, C.L.; Zeng, L.; Wang, G.

    2002-01-01

    Measured turbulence characteristics (correlation lengths, spectra, etc.) in low-confinement (L-mode) and high-performance plasmas in the DIII-D tokamak [Luxon et al., Proceedings Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] show many similarities with the characteristics determined from turbulence simulations. Radial correlation lengths Δr of density fluctuations from L-mode discharges are found to be numerically similar to the ion poloidal gyroradius ρ θ,s , or 5-10 times the ion gyroradius ρ s over the radial region 0.2 θ,s or 5-10 times ρ s , an experiment was performed which modified ρ θs while keeping other plasma parameters approximately fixed. It was found that the experimental Δr did not scale as ρ θ,s , which was similar to low-resolution UCAN simulations. Finally, both experimental measurements and gyrokinetic simulations indicate a significant reduction in the radial correlation length from high-performance quiescent double barrier discharges, as compared to normal L-mode, consistent with reduced transport in these high-performance plasmas

  6. High-resolution electron-energy-loss spectroscopy studies of clean and hydrogen-covered tungsten (100) surfaces

    International Nuclear Information System (INIS)

    Woods, J.P.

    1986-01-01

    High-resolution (10-meV FWHM) low-energy (≤ 100eV) electrons are scattered from the tungsten (100) surface. Electron-energy-loss spectroscopy (EELS) selection rules are utilized to identify vibrational modes of the surface tungsten atoms. A 36-meV mode is measured on the c(2 X 2) thermally reconstructed surface and is modeled as an overtone of the 18-meV mode at M in the surface Brillouin zone. The superstructure of the reconstructed surface allows this mode to be observed in specular scattering. The surface tungsten atoms return to their bulk lateral positions with saturated hydrogen (β 1 phase) adsorption; and a 26-meV mode identified is due to the perpendicular vibration of the surface tungsten layers. The clean-room temperature surface does not display either low-energy vibrations and the surface is modeled as disordered. The three β 1 phase hydrogen vibrations are observed and a new vibration at 118 meV is identified. The 118-meV cross section displays characteristics of a parallel mode, but calculations show this assignment to be erroneous. There are two hydrogen atoms for each surface tungsten atom in the β 1 phase, and lattice-dynamical calculations show that the 118-meV mode is due to a hydrogen-zone edge vibration. The predicted breakdown of the parallel hydrogen vibration selection rule was not observed

  7. Development of continuous detectors for a high resolution animal PET system

    International Nuclear Information System (INIS)

    Siegel, S.; Cherry, S.R.; Ricci, A.R.; Shao, Y.; Phelps, M.E.

    1995-01-01

    The authors propose a design for a high resolution, gamma-camera style detector that is suitable for use in a positron emission tomograph dedicated to small animal research. Through Monte Carlo simulation the authors modeled the performance of a detector composed of one 76.2 x 76.2 x 8 mm thick LSO crystal coupled to a 3 in. square position sensitive photomultiplier tube (PS-PMT). The authors investigated the effect of optical coupling compounds, surface treatment and dept of interaction on the quantity (efficiency) and distribution (spread) of scintillation photons reaching the photocathode. They also investigated linearization of the position response. The authors propose a PET system consisting of fourteen of these detectors in 2 rings, yielding a 16 cm diameter by 15 cm long tomograph. It would operate in 3-D mode subtending a 68% solid angle to the center. The expected spatial resolution is (≤2 mm), with a system efficiency of ∼ 10% at the center (200 keV lower threshold) and a singles count rate capability of approximately 10 6 cps per detector

  8. The simulation of medicanes in a high-resolution regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Cavicchia, Leone [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Geesthacht (Germany); Ca' Foscari University, Venice (Italy); Storch, Hans von [Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Geesthacht (Germany); University of Hamburg, Meteorological Institute, Hamburg (Germany)

    2012-11-15

    Medicanes, strong mesoscale cyclones with tropical-like features, develop occasionally over the Mediterranean Sea. Due to the scarcity of observations over sea and the coarse resolution of the long-term reanalysis datasets, it is difficult to study systematically the multidecadal statistics of sub-synoptic medicanes. Our goal is to assess the long-term variability and trends of medicanes, obtaining a long-term climatology through dynamical downscaling of the NCEP/NCAR reanalysis data. In this paper, we examine the robustness of this method and investigate the value added for the study of medicanes. To do so, we performed several climate mode simulations with a high resolution regional atmospheric model (CCLM) for a number of test cases described in the literature. We find that the medicanes are formed in the simulations, with deeper pressures and stronger winds than in the driving global NCEP reanalysis. The tracks are adequately reproduced. We conclude that our methodology is suitable for constructing multi-decadal statistics and scenarios of current and possible future medicane activities. (orig.)

  9. High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings

    Science.gov (United States)

    Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.

    2018-01-01

    Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.

  10. Torsional resonance mode magnetic force microscopy: enabling higher lateral resolution magnetic imaging without topography-related effects

    International Nuclear Information System (INIS)

    Kaidatzis, A; García-Martín, J M

    2013-01-01

    We present experimental work that reveals the benefits of performing magnetic force microscopy measurements employing the torsional resonance mode of cantilever oscillation. This approach provides two clear advantages: the ability of performing magnetic imaging without topography-related interference and the significant lateral resolution improvement (approximately 15%). We believe that this work demonstrates a significant improvement to a versatile magnetic imaging technique widely used in academia and in industry. (paper)

  11. Pinhole SPECT: high resolution imaging of brain tumours in small laboratory animals

    International Nuclear Information System (INIS)

    Franceschim, M.; Bokulic, T.; Kusic, Z.; Strand, S.E.; Erlandsson, K.

    1994-01-01

    The performance properties of pinhole SPECT and the application of this technology to evaluate radionuclide uptake in brain in small laboratory animals were investigated. System sensitivity and spatial resolution measurements of a rotating scintillation camera system were made for a low energy pinhole collimator equipped with 2.0 mm aperture pinhole insert. Projection data were acquired at 4 degree increments over 360 degrees in the step and shoot mode using a 4.5 cm radius of rotation. Pinhole planar and SPECT imaging were obtained to evaluate regional uptake of Tl-201, Tc-99m-MIBI, Tc-99m-HMPAO and Tc-99m-DTPA in tumor and control regions of the brain in a primary brain tumor model in Fisher 344 rats. Pinhole SPECT images were reconstructed using a modified cone- beam algorithm developed from a two dimensional fan-beam filtered backprojection algorithm. The reconstructed transaxial resolution of 2.8 FWHM and system sensitivity of 0.086 c/s/kBq with the 2.0 mm pinhole collimator aperture were measured. Tumor to non-tumor uptake ratios at 19-28 days post tumor cell inoculation varied by a factor > 20:1 on SPECT images. Pinhole SPECT provides an important new approach for performing high resolution imaging: the resolution properties of pinhole SPECT are superior to those which have been achieved with conventional SPECT or PET imaging technologies. (author)

  12. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  13. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  14. High efficiency confinement mode by electron cyclotron heating

    International Nuclear Information System (INIS)

    Funahashi, Akimasa

    1987-01-01

    In the medium size nuclear fusion experiment facility JFT-2M in the Japan Atomic Energy Research Institute, the research on the high efficiency plasma confinement mode has been advanced, and in the experiment in June, 1987, the formation of a high efficiency confinement mode was successfully controlled by electron cyclotron heating, for the first time in the world. This result further advanced the control of the formation of a high efficiency plasma confinement mode and the elucidation of the physical mechanism of that mode, and promoted the research and development of the plasma heating by electron cyclotron heating. In this paper, the recent results of the research on a high efficiency confinement mode at the JFT-2M are reported, and the role of the JFT-2M and the experiment on the improvement of core plasma performance are outlined. Now the plasma temperature exceeding 100 million deg C has been attained in large tokamaks, and in medium size facilities, the various measures for improving confinement performance are to be brought forth and their scientific basis is elucidated to assist large facilities. The JFT-2M started the operation in April, 1983, and has accumulated the results smoothly since then. (Kako, I.)

  15. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  16. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  17. Resolution Enhancement of Scanning Laser Acoustic Microscope Using Transverse Wave

    International Nuclear Information System (INIS)

    Ko, D. S.; Park, J. S.; Kim, Y. H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Science the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM image in the transverse wave mode than that in the longitudinal wave mode

  18. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  19. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  20. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  1. High-resolution Greenland Ice Core data show abrupt climate change happens in few years

    DEFF Research Database (Denmark)

    Steffensen, Jørgen Peder; Andersen, Katrine Krogh; Bigler, Matthias

    2008-01-01

    The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture...... source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition...

  2. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Ruhrig, M.; Rührig, M.; Porthun, S.; Porthun, S.; Lodder, J.C.; Mc vitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  3. Resolution enhancement of low-quality videos using a high-resolution frame

    Science.gov (United States)

    Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.

  4. Image thresholding in the high resolution target movement monitor

    Science.gov (United States)

    Moss, Randy H.; Watkins, Steve E.; Jones, Tristan H.; Apel, Derek B.; Bairineni, Deepti

    2009-03-01

    Image thresholding in the High Resolution Target Movement Monitor (HRTMM) is examined. The HRTMM was developed at the Missouri University of Science and Technology to detect and measure wall movements in underground mines to help reduce fatality and injury rates. The system detects the movement of a target with sub-millimeter accuracy based on the images of one or more laser dots projected on the target and viewed by a high-resolution camera. The relative position of the centroid of the laser dot (determined by software using thresholding concepts) in the images is the key factor in detecting the target movement. Prior versions of the HRTMM set the image threshold based on a manual, visual examination of the images. This work systematically examines the effect of varying threshold on the calculated centroid position and describes an algorithm for determining a threshold setting. First, the thresholding effects on the centroid position are determined for a stationary target. Plots of the centroid positions as a function of varying thresholds are obtained to identify clusters of thresholds for which the centroid position does not change for stationary targets. Second, the target is moved away from the camera in sub-millimeter increments and several images are obtained at each position and analyzed as a function of centroid position, target movement and varying threshold values. With this approach, the HRTMM can accommodate images in batch mode without the need for manual intervention. The capability for the HRTMM to provide automated, continuous monitoring of wall movement is enhanced.

  5. Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images

    Science.gov (United States)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2017-04-01

    Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and

  6. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  7. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  8. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  9. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  10. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  11. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  12. Millisecond resolution electron fluxes from the Cluster satellites: Calibrated EDI ambient electron data

    Science.gov (United States)

    Förster, Matthias; Rashev, Mikhail; Haaland, Stein

    2017-04-01

    The Electron Drift Instrument (EDI) onboard Cluster can measure 500 eV and 1 keV electron fluxes with high time resolution during passive operation phases in its Ambient Electron (AE) mode. Data from this mode is available in the Cluster Science Archive since October 2004 with a cadence of 16 Hz in the normal mode or 128 Hz for burst mode telemetry intervals. The fluxes are recorded at pitch angles of 0, 90, and 180 degrees. This paper describes the calibration and validation of these measurements. The high resolution AE data allow precise temporal and spatial diagnostics of magnetospheric boundaries and will be used for case studies and statistical studies of low energy electron fluxes in the near-Earth space. We show examples of applications.

  13. Retrieving high-resolution images over the Internet from an anatomical image database

    Science.gov (United States)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  14. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  15. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  16. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  17. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  18. A high-order mode extended interaction klystron at 0.34 THz

    Science.gov (United States)

    Wang, Dongyang; Wang, Guangqiang; Wang, Jianguo; Li, Shuang; Zeng, Peng; Teng, Yan

    2017-02-01

    We propose the concept of high-order mode extended interaction klystron (EIK) at the terahertz band. Compared to the conventional fundamental mode EIK, it operates at the TM31-2π mode, and its remarkable advantage is to obtain a large structure and good performance. The proposed EIK consists of five identical cavities with five gaps in each cavity. The method is discussed to suppress the mode competition and self-oscillation in the high-order mode cavity. Particle-in-cell simulation demonstrates that the EIK indeed operates at TM31-2π mode without self-oscillation while other modes are well suppressed. Driven by the electron beam with a voltage of 15 kV and a current of 0.3 A, the saturation gain of 43 dB and the output power of 60 W are achieved at the center frequency of 342.4 GHz. The EIK operating at high-order mode seems a promising approach to generate high power terahertz waves.

  19. Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging

    Science.gov (United States)

    Hammer, Daniel X.; Mujat, Mircea; Iftimia, Nicusor V.; Lue, Niyom; Ferguson, R. Daniel

    2010-02-01

    We developed a multimodal adaptive optics (AO) retinal imager for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa (RP). The development represents the first ever high performance AO system constructed that combines AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. The SSOCT channel operates at a wavelength of 1 μm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. The system is designed to operate on a broad clinical population with a dual deformable mirror (DM) configuration that allows simultaneous low- and high-order aberration correction. The system also includes a wide field line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation; an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of rotational eye motion; and a high-resolution LCD-based fixation target for presentation to the subject of stimuli and other visual cues. The system was tested in a limited number of human subjects without retinal disease for performance optimization and validation. The system was able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 μm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve targets deep into the choroid. In addition to instrument hardware development, analysis algorithms were developed for efficient information extraction from clinical imaging sessions, with functionality including automated image registration, photoreceptor counting, strip and montage stitching, and segmentation. The system provides clinicians and researchers with high-resolution, high performance adaptive optics imaging to help

  20. PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope

    Science.gov (United States)

    Strassmeier, K. G.; Ilyin, I.; Järvinen, A.; Weber, M.; Woche, M.; Barnes, S. I.; Bauer, S.-M.; Beckert, E.; Bittner, W.; Bredthauer, R.; Carroll, T. A.; Denker, C.; Dionies, F.; DiVarano, I.; Döscher, D.; Fechner, T.; Feuerstein, D.; Granzer, T.; Hahn, T.; Harnisch, G.; Hofmann, A.; Lesser, M.; Paschke, J.; Pankratow, S.; Plank, V.; Plüschke, D.; Popow, E.; Sablowski, D.

    2015-05-01

    PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9-μm pixels and peak quantum efficiencies of 94-96 % record a total of 92 échelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92-96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of ≈ 20th mag in V in the low-resolution mode. The R = 120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100-μm fibre through a projected sky aperture of 0.74 arcsec, comparable to the median seeing of the LBT site. The 43 000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Pérot étalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. Its full error propagation through all image-processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we

  1. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    Science.gov (United States)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  2. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  3. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  4. Mixed-mode chromatographic matrices for the resolution of transfer ribonucleic acids

    NARCIS (Netherlands)

    Bischoff, Rainer; Mclaughlin, L.W.

    1984-01-01

    Modification of approximately 65% of the amine groups of an aminopropylsilyl bonded-phase silica high-performance liquid chromatographic anion exchanger (APS-Hypersil) with organic acids containing n-alkyl moieties of different chain lengths, results in mixed mode chromatographic matrices of varying

  5. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  6. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  7. Distributed computing strategies for processing of FT-ICR MS imaging datasets for continuous mode data visualization

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco; Kilic, Mehmet; Heeren, Ronald M.

    2015-03-01

    High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, but requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.

  8. Digital pulse processing techniques for high resolution amplitude measurement of radiation detector

    International Nuclear Information System (INIS)

    Singhai, P.; Roy, A.; Dhara, P.; Chatterjee, S.

    2012-01-01

    The digital pulse processing techniques for high resolution amplitude measurement of radiation detector pulse is an effective replacement of expensive and bulky analog processing as the digital domain offers higher channel density and at the same time it is cheaper. We have demonstrated a prototype digital setup with highspeed sampling ADC with sampling frequency of 80-125 MHz followed by series of IIR filters for pulse shaping in a trigger-less acquisition mode. The IIR filters, peak detection algorithm and the data write-out logic was written on VHDL and implemented on FPGA. We used CAMAC as the read out platform. In conjunction with the full hardware implementation we also used a mixed platform with VME digitizer card with raw-sample read out using C code. The rationale behind this mixed platform is to test out various filter algorithms quickly on C and also to benchmark the performance of the chip level ADCs against the standard commercial digitizer in terms of noise or resolution. The paper describes implementation of both the methods with performance obtained in both the methods. (author)

  9. Image quality of high-resolution CT with 16-channel multidetector-row CT. Comparison between helical scan and conventional step-shoot scan

    International Nuclear Information System (INIS)

    Sumikawa, Hiromitsu; Johkoh, Takeshi; Koyama, Mitsuhiro

    2005-01-01

    The aim of this study was to evaluate the image quality of high-resolution CT (HRCT) reconstructed from volumetric data with 16-channel multidetector-row CT (MDCT). Eleven autopsy lungs that were diagnosed histopathologically were scanned by 16-channel MDCT with the step-and-shoot scan mode and three helical scan modes. Each helical mode had each size of focal spot, pitch, and time of gantry rotation. HRCT images were reconstructed from the volumetric data with each helical mode and axial sequence data. Two observers evaluated the image quality and noted the most appropriate diagnosis for each imaging. Visualization of abnormal structures with one helical mode was equal to those with axial mode, whereas those with the other two helical modes were inferior to those with axial mode (Wilcoxon signed rank test; p<0.0001). There was no significant difference in diagnostic efficacy between modes. The image quality of HRCT with appropriate helical mode is equal to that with axial mode and diagnostic efficacy is equal among all modes. These results may indicate that sufficient HRCT images can be obtained by only one helical scan without the addition of conventional axial scans. (author)

  10. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  12. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  13. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

    Science.gov (United States)

    Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil

    2018-03-30

    Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.

  14. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  15. Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Goedbloed, J.P.; Rem, J.; Sakanaka, P.H.; Schep, T.J.; Venema, M.

    1983-01-01

    A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)

  16. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  17. Design and test of a high resolution plastic scintillating fiber detector with intensified CCD readout

    International Nuclear Information System (INIS)

    Rebourgeard, P.

    1991-01-01

    We present the design of a particle detector involving a coherent array of 100 000 plastic scintillating microfibers, with an individual core diameter around 50 micrometers, and an intensified bidimensional CCD array. We investigate both theoretically and experimentally the use of polystyrene based scintillators in optical multimodal fibers. The isotropic excitation of modes and the characteristics of energy transfers between the polystyrene matrix and the added fluorescent dyes are of particular interest. An experimental approach is proposed and applied to the development of a new binary scintillator. In order to study the transmission of the signal from the interaction area to the output face, we specify the loss factors, the resolution and the signal to noise ratio within the fiber array. The low light level at the output face of the detector leads us to use image intensifiers in photon counting mode. This requires a detailed analysis of resolutions, gain, noise and detectivity concepts. We propose to describe these strongly correlated notions by the moment generation formalism. Thus, a previous modelisation of the photoelectronic devices allows us to evaluate the performance of the readout chain. A complete detector has been assembled and tested on a high energy hadron beam; the measurements are in good agreement with the modelisation [fr

  18. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  19. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  20. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    International Nuclear Information System (INIS)

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-01-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). (paper)

  1. SPHERICAL COVERAGE DUAL MODE SENSOR FOR UAS SEPARATION ASSURANCE, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a dual-mode sensor for use aboard unmanned aircraft for safe operation in the NAS that: 1. Incorporates high resolution Millimeter Wave radar with high...

  2. Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    Directory of Open Access Journals (Sweden)

    Andrew Mahre

    2017-02-01

    Full Text Available While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR. The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode, range sampling of 30 m (37.5 m native resolution, and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution. This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow.

  3. Computed tomography with selectable image resolution

    International Nuclear Information System (INIS)

    Dibianca, F.A.; Dallapiazza, D.G.

    1981-01-01

    A computed tomography system x-ray detector has a central group of half-width detector elements and groups of full-width elements on each side of the central group. To obtain x-ray attenuation data for whole body layers, the half-width elements are switched effectively into paralleled pairs so all elements act like full-width elements and an image of normal resolution is obtained. For narrower head layers, the elements in the central group are used as half-width elements so resolution which is twice as great as normal is obtained. The central group is also used in the half-width mode and the outside groups are used in the full-width mode to obtain a high resolution image of a body zone within a full body layer. In one embodiment data signals from the detector are switched by electronic multiplexing and in another embodiment a processor chooses the signals for the various kinds of images that are to be reconstructed. (author)

  4. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  5. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  6. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  7. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  8. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  9. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  10. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region.

    Science.gov (United States)

    Dasa, Manoj Kumar; Markos, Christos; Maria, Michael; Petersen, Christian R; Moselund, Peter M; Bang, Ole

    2018-04-01

    We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source for spectroscopic photoacoustic imaging.

  11. Intra-cavity generation of high order LGpl modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-08-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gaussian beam and force the laser to operate on a higher order LGpl Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  12. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  13. Formation and termination of High ion temperature mode in Heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Ida, K.; Kondo, K.; Nagasaki, K.

    1997-01-01

    Physics of the formation and termination of High ion temperature mode (high T i mode) are studied by controlling density profiles and radial electric field. High ion temperature mode is observed for neutral beam heated plasmas in Heliotron/torsatron plasmas (Heliotron-E). This high T i mode plasma is characterized by a peaked ion temperature profile and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. This high T i mode is terminated by flattening the electron density caused by either gas puffing or second harmonic ECH (core density 'pump-out'). (author)

  14. A full-sky, high-resolution atlas of galactic 12 μm dust emission with WISE

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2014-01-01

    We describe our custom processing of the entire Wide-field Infrared Survey Explorer (WISE) 12 μm imaging data set, and present a high-resolution, full-sky map of diffuse Galactic dust emission that is free of compact sources and other contaminating artifacts. The principal distinctions between our resulting co-added images and the WISE Atlas stacks are our removal of compact sources, including their associated electronic and optical artifacts, and our preservation of spatial modes larger than 1.°5. We provide access to the resulting full-sky map via a set of 430 12.°5 × 12.°5 mosaics. These stacks have been smoothed to 15'' resolution and are accompanied by corresponding coverage maps, artifact images, and bit-masks for point sources, resolved compact sources, and other defects. When combined appropriately with other mid-infrared and far-infrared data sets, we expect our WISE 12 μm co-adds to form the basis for a full-sky dust extinction map with angular resolution several times better than Schlegel et al.

  15. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  16. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  17. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  18. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  19. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  20. Broadband high-resolution two-photon spectroscopy with laser frequency combs

    OpenAIRE

    Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie

    2013-01-01

    Two-photon excitation spectroscopy with broad spectral span is demonstrated at Doppler-limited resolution. We describe first Fourier transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum is revealed by a...

  1. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, A. M., E-mail: garofalo@fusion.gat.com; Burrell, K. H.; Meneghini, O.; Osborne, T. H.; Paz-Soldan, C.; Smith, S. P.; Snyder, P. B.; Turnbull, A. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Eldon, D.; Grierson, B. A.; Solomon, W. M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Hanson, J. M. [Columbia University, 2960 Broadway, New York, New York 10027-6900 (United States); Holland, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Huijsmans, G. T. A.; Liu, F.; Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Zeng, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States)

    2015-05-15

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER-like shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory, the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. The DIII-D results are in excellent agreement with these predictions, and nonlinear magnetohydrodynamic analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.

  2. Towards high-resolution positron emission tomography for small volumes

    International Nuclear Information System (INIS)

    McKee, B.T.A.

    1982-01-01

    Some arguments are made regarding the medical usefulness of high spatial resolution in positron imaging, even if limited to small imaged volumes. Then the intrinsic limitations to spatial resolution in positron imaging are discussed. The project to build a small-volume, high resolution animal research prototype (SHARP) positron imaging system is described. The components of the system, particularly the detectors, are presented and brief mention is made of data acquisition and image reconstruction methods. Finally, some preliminary imaging results are presented; a pair of isolated point sources and 18 F in the bones of a rabbit. Although the detector system is not fully completed, these first results indicate that the goals of high sensitivity and high resolution (4 mm) have been realized. (Auth.)

  3. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  4. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  5. Evaluation of high-resolution climate simulations for West Africa using COSMO-CLM

    Science.gov (United States)

    Dieng, Diarra; Smiatek, Gerhard; Bliefernicht, Jan; Laux, Patrick; Heinzeller, Dominikus; Kunstmann, Harald; Sarr, Abdoulaye; Thierno Gaye, Amadou

    2017-04-01

    The climate change modeling activities within the WASCAL program (West African Science Service Center on Climate Change and Adapted Land Use) concentrate on the provisioning of future climate change scenario data at high spatial and temporal resolution and quality in West Africa. Such information is highly required for impact studies in water resources and agriculture for the development of reliable climate change adaptation and mitigation strategies. In this study, we present a detailed evaluation of high simulation runs based on the regional climate model, COSMO model in CLimate Mode (COSMO-CLM). The model is applied over West Africa in a nested approach with two simulation domains at 0.44° and 0.11° resolution using reanalysis data from ERA-Interim (1979-2013). The models runs are compared to several state-of-the-art observational references (e.g., CRU, CHIRPS) including daily precipitation data provided by national meteorological services in West Africa. Special attention is paid to the reproduction of the dynamics of the West African Monsoon (WMA), its associated precipitation patterns and crucial agro-climatological indices such as the onset of the rainy season. In addition, first outcomes of the regional climate change simulations driven by MPI-ESM-LR are presented for a historical period (1980 to 2010) and two future periods (2020 to 2050, 2070 to 2100). The evaluation of the reanalysis runs shows that COSMO-CLM is able to reproduce the observed major climate characteristics including the West African Monsoon within the range of comparable RCM evaluations studies. However, substantial uncertainties remain, especially in the Sahel zone. The added value of the higher resolution of the nested run is reflected in a smaller bias in extreme precipitation statistics with respect to the reference data.

  6. MHD simulation of high wavenumber ballooning-like modes in LHD

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2008-10-01

    Dynamical growths of high-wavenumber ballooning modes are studied through full-3D nonlinear MHD simulations of the Large Helical Device. The growths of the ballooning modes are identified by studying the growth rates and the radial profiles of the Fourier coefficients of fluctuation variables. The mechanisms to weaken the growth of instability, such as the local fattening of the pressure and the energy release to the parallel kinetic energy, are found being insufficient to suppress the high-wavenumber ballooning modes. Consequently, the mean pressure profile is totally modified when the evolutions of the ballooning modes are saturated. The numerical results reveal that we need some mechanisms which do not originate from an ideal MHD to achieve a mild, saturated behaviors beyond the growths of unstable high ballooning modes in the helical device. The parallel heat conductivity is proposed as one of possible non-ideal mechanisms. (author)

  7. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  8. The 2010 Pakistan floods: high-resolution simulations with the WRF model

    Science.gov (United States)

    Viterbo, Francesca; Parodi, Antonio; Molini, Luca; Provenzale, Antonello; von Hardenberg, Jost; Palazzi, Elisa

    2013-04-01

    Estimating current and future water resources in high mountain regions with complex orography is a difficult but crucial task. In particular, the French-Italian project PAPRIKA is focused on two specific regions in the Hindu-Kush -- Himalaya -- Karakorum (HKKH)region: the Shigar basin in Pakistan, at the feet of K2, and the Khumbu valley in Nepal, at the feet of Mount Everest. In this framework, we use the WRF model to simulate precipitation and meteorological conditions with high resolution in areas with extreme orographic slopes, comparing the model output with station and satellite data. Once validated the model, we shall run a set of three future time-slices at very high spatial resolution, in the periods 2046-2050, 2071-2075 and 2096-2100, nested in different climate change scenarios (EXtreme PREcipitation and Hydrological climate Scenario Simulations -EXPRESS-Hydro project). As a prelude to this study, here we discuss the simulation of specific, high-intensity rainfall events in this area. In this paper we focus on the 2010 Pakistan floods which began in late July 2010, producing heavy monsoon rains in the Khyber Pakhtunkhwa, Sindh, Punjab and Balochistan regions of Pakistan and affecting the Indus River basin. Approximately one-fifth of Pakistan's total land area was underwater, with a death toll of about 2000 people. This event has been simulated with the WRF model (version 3.3.) in cloud-permitting mode (d01 14 km and d02 3.5 km): different convective closures and microphysics parameterization have been used. A deeper understanding of the processes responsible for this event has been gained through comparison with rainfall depth observations, radiosounding data and geostationary/polar satellite images.

  9. A high-resolution regional reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  10. Study of a high-order-mode gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Tsai, C. Y.; Kao, S. H.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2010-01-01

    Physics and performance issues of a TE 01 -mode gyrotron traveling-wave amplifier are studied in theory. For a high order mode, absolute instabilities on neighboring modes at the fundamental and higher cyclotron harmonic frequencies impose severe constraints to the device capability. Methods for their stabilization are outlined, on the basis of which the performance characteristics are examined in a multidimensional parameter space under the marginal stability criterion. The results demonstrate the viability of a high-order-mode traveling-wave amplifier and provide a roadmap for design tradeoffs among power, bandwidth, and efficiency. General trends are observed and illustrated with specific examples.

  11. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  12. New multicore low mode noise scrambling fiber for applications in high-resolution spectroscopy

    Science.gov (United States)

    Haynes, Dionne M.; Gris-Sanchez, Itandehui; Ehrlich, Katjana; Birks, Tim A.; Giannone, Domenico; Haynes, Roger

    2014-07-01

    We present a new type of multicore fiber (MCF) and photonic lantern that consists of 511 individual cores designed to operate over a broadband visible wavelength range (380-860nm). It combines the coupling efficiency of a multimode fiber with modal stability intrinsic to a single mode fibre. It is designed to provide phase and amplitude scrambling to achieve a stable near field and far field illumination pattern during input coupling variations; it also has low modal noise for increased photometric stability. Preliminary results are presented for the new MCF as well as current state of the art octagonal fiber for comparison.

  13. Use of ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry for fast screening in high throughput doping control.

    Science.gov (United States)

    Musenga, Alessandro; Cowan, David A

    2013-05-03

    We describe a sensitive, comprehensive and fast screening method based on liquid chromatography-high resolution mass spectrometry for the detection of a large number of analytes in sports samples. UHPLC coupled to high resolution mass spectrometry with polarity switching capability is applied for the rapid screening of a large number of analytes in human urine samples. Full scan data are acquired alternating both positive and negative ionisation. Collision-induced dissociation with positive ionisation is also performed to produce fragment ions to improve selectivity for some analytes. Data are reviewed as extracted ion chromatograms based on narrow mass/charge windows (±5ppm). A simple sample preparation method was developed, using direct enzymatic hydrolysis of glucuronide conjugates, followed by solid phase extraction with mixed mode ion-exchange cartridges. Within a 10min run time (including re-equilibration) the method presented allows for the analysis of a large number of analytes from most of the classes in the World Anti-Doping Agency (WADA) Prohibited List, including anabolic agents, β2-agonists, hormone antagonists and modulators, diuretics, stimulants, narcotics, glucocorticoids and β-blockers, and does so while meeting the WADA sensitivity requirements. The high throughput of the method and the fast sample pre-treatment reduces analysis cost and increases productivity. The method presented has been used for the analysis of over 5000 samples in about one month and proved to be reliable. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The EPED pedestal model and edge localized mode-suppressed regimes: Studies of quiescent H-mode and development of a model for edge localized mode suppression via resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, P. B.; Osborne, T. H.; Burrell, K. H.; Groebner, R. J.; Leonard, A. W.; Wade, M. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Orlov, D. M. [University of California-San Diego, San Diego, California 92093 (United States); Schmitz, O. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Association FZJ-EURATOM, Juelich (Germany); Wilson, H. R. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2012-05-15

    The EPED model predicts the H-mode pedestal height and width based upon two fundamental and calculable constraints: (1) onset of non-local peeling-ballooning modes at low to intermediate mode number, (2) onset of nearly local kinetic ballooning modes at high mode number. We present detailed tests of the EPED model in discharges with edge localized modes (ELMs), employing new high resolution measurements, and finding good quantitative agreement across a range of parameters. The EPED model is then applied for the first time to quiescent H-mode (QH), finding a similar level of agreement between predicted and observed pedestal height and width, and suggesting that the model can be used to predict the critical density for QH-mode operation. Finally, the model is applied toward understanding the suppression of ELMs with 3D resonant magnetic perturbations (RMP). Combining EPED with plasma response physics, a new working model for RMP ELM suppression is developed. We propose that ELMs are suppressed when a 'wall' associated with the RMP blocks the inward penetration of the edge transport barrier. A calculation of the required location of this 'wall' with EPED is consistent with observed profile changes during RMP ELM suppression and offers an explanation for the observed dependence on safety factor (q{sub 95}).

  15. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  16. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  17. A high resolution detector for H0 → γγ

    International Nuclear Information System (INIS)

    Atiya, M.S.; Kycia, T.F.

    1991-01-01

    SSC detectors represent a challenging departure, both in size and precision, from currently operating detectors. In this note we enumerate some of the benefits of using high magnetic fields both to simplify the detector and improve its resolution and sensitivity. We have chosen an arrangement optimized to search for the reaction H 0 → γγ. The arrangement also has the excellent momentum resolution for muons and electrons considered critical for the discovery of such processes as H 0 → Z 0 Z 0 → ell + ell - ell + ell - , H 0 → Z 0 Z 0 → ell + ell - ell + ell - , new and narrow vector bosons, and bound states of extra generational quarks. This detection scheme represents an improvement in the H 0 → γγ mass resolution of at least a factor of 7 beyond the best currently proposed detectors. In addition, we have a significantly improved rejection of common H 0 → γγ backgrounds. As indeed most experiments do not exceed their initial projections, this extra factor could insure the unambiguous discovery of this decay should it indeed occur. As no reasonably realistic detector can achieve excellent detection for all physics signatures we chose to give tip on excellent hadron calorimetry. For Higgs masses between 80 and 150 GeV/c 2 the Higgs decay into two photons is an excellent signature. To date, all attempts to search for this decay mode have centered on the use of electromagnetic calorimetry. We are proposing a different approach. We will convert the two photons close to the production point and measure the momenta of the electron pairs

  18. An atlas of high-resolution IRAS maps on nearby galaxies

    Science.gov (United States)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  19. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  20. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  1. High-resolution MRI in detecting subareolar breast abscess.

    Science.gov (United States)

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  2. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    International Nuclear Information System (INIS)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-01-01

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE 31,8 -mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE 31,8 -mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE 31,8 mode is possible with only modest sacrifice of efficiency and power

  3. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  4. Automated transmission-mode scanning electron microscopy (tSEM for large volume analysis at nanoscale resolution.

    Directory of Open Access Journals (Sweden)

    Masaaki Kuwajima

    Full Text Available Transmission-mode scanning electron microscopy (tSEM on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm(2 (65.54 µm per side at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM system, which were only 66.59 µm(2 (8.160 µm per side at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm(2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm. Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems.

  5. Recent applications of gas chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Analysis of the Cause of High External Q Modes in the JLab High Gradient Prototype Cryomodule Renascence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Akcelik, V.; Xiao, L.; Lee, L.; Ng, C.; Ko, K.; /SLAC; Wang, H.; Marhauser, F.; Sekutowicz, J.; Reece, C.; Rimmer, R.; /Jefferson Lab

    2008-06-27

    implemented to avoid such problem in the final upgrade design and manufacture. The goal of this work is to utilize advanced simulation tools to understand the high external Q (Q{sub ext}) problem observed in the Renascence cryomodule. In the past years, SLAC has built a set of state-of-the-art advanced simulation tools based on finite-element unstructured meshes and parallel computation implementations on supercomputers [2, 3]. The codes are capable of simulating large complex RF systems with unprecedented resolution and turnaround time. They have been successfully applied to many existing and future accelerator R&D projects to improve the machine performance and to optimize the designs. These tools are essential to perform accurate full system analyses such as the JLab's SRF cavities. We will use the simulation results and the data from the RF measurements to gain a better understanding of the cavity performance and tolerance issues and provide a solid foundation to do the BBU simulation and prediction for the 12GeV Upgrade project by using JLab's BBU codes. In this report, we will focus on the following two main tasks: (1) Ideal cavity simulation--to evaluate the effectiveness of the damping by the higher-order-mode (HOM) couplers, and search for possible trapped modes in a back-to-back cavity pair (e.g. cavity No.4 & No.5). (2) Abnormal cavity study--to understand the cause of the high Q{sub ext} modes in cavity No.5 using an advanced Shape Determination Tool.

  7. Effect of AMOC collapse on ENSO in a high resolution general circulation model

    Science.gov (United States)

    Williamson, Mark S.; Collins, Mat; Drijfhout, Sybren S.; Kahana, Ron; Mecking, Jennifer V.; Lenton, Timothy M.

    2018-04-01

    We look at changes in the El Niño Southern Oscillation (ENSO) in a high-resolution eddy-permitting climate model experiment in which the Atlantic Meridional Circulation (AMOC) is switched off using freshwater hosing. The ENSO mode is shifted eastward and its period becomes longer and more regular when the AMOC is off. The eastward shift can be attributed to an anomalous eastern Ekman transport in the mean equatorial Pacific ocean state. Convergence of this transport deepens the thermocline in the eastern tropical Pacific and increases the temperature anomaly relaxation time, causing increased ENSO period. The anomalous Ekman transport is caused by a surface northerly wind anomaly in response to the meridional sea surface temperature dipole that results from switching the AMOC off. In contrast to a previous study with an earlier version of the model, which showed an increase in ENSO amplitude in an AMOC off experiment, here the amplitude remains the same as in the AMOC on control state. We attribute this difference to variations in the response of decreased stochastic forcing in the different models, which competes with the reduced damping of temperature anomalies. In the new high-resolution model, these effects approximately cancel resulting in no change in amplitude.

  8. A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    CERN Document Server

    Iacobaeus, C.; Lund-Jensen, B.; Ostling, J.; Pavlopoulos, P.; Peskov, V.; Tokanai, F.

    2006-01-01

    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibil...

  9. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    Science.gov (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  10. Two-coordinate mini drift chamber operating in a self-quenching streamer mode

    International Nuclear Information System (INIS)

    Chernenko, S.P.; Smykov, L.P.; Zanevskij, Yu.V.

    1993-01-01

    Two-coordinate mini drift chambers operating in a self-quenching streamer mode have been developed. The tests have demonstrated these chambers to possess an extended counting plateau, a high operating stability and a high uniformity of efficiency over detecting area. The space resolution along anode wires is not worse than 250μm; the expected space resolution for the second coordinate is about 100 μm

  11. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  12. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  13. What Do High-Resolution EIT Waves Tell Us About CMEs?

    Science.gov (United States)

    Thompson, Barbara

    2010-01-01

    Although many studies have demonstrated that some coronal waves are not generated by corona) mass ejections, we have learned a great deal about the ability of corona) mass ejections to drive large-scale corona) waves, also called "EIT waves." We present new results based on EIT wave amplitude, timing, speed, and direction of propagation, with respect to their correlation with CME-related dimmings, speeds, locations and widths. Furthermore, we demonstrate the ability to correlate different aspects of EIT waves with some of the observed structure of CMEs observed in coronagraph data. Finally, we expand on the discussion of the types of wave modes that can be generated by a corona) mass ejection, and how these observations can serve as a diagnostic of the type of impulse a CME can deliver to the surrounding corona. These diagnostics are obtained by examining the motion of individual field lines, requiring high-resolution observations like those provided by TRACE and SDO/AIA.

  14. High-confinement-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Snyder, P.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; La Bombard, B.; Snipes, J.A.; Wolfe, S.; Wilson, H.

    2003-01-01

    For steady state high-confinement-mode (H-mode) operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. Alcator C-Mod [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] sees two such mechanisms--EDA (enhanced D-alpha H mode) and grassy ELMs (edge localized modes), but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasicoherent (QC) electromagnetic mode that exists at moderate pedestal temperature T 95 >3.5, and does not limit the buildup of the edge pressure gradient. The q boundary of the operational space of the mode depends on plasma shape, with the q 95 limit moving down with increasing plasma triangularity. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations ( f<50 kHz) and small irregular ELMs are observed. Ideal MHD (magnetohydrodynamic) stability analysis that includes both pressure and current driven edge modes shows that the discharges where the QC mode is observed are stable. The ELMs are identified as medium n (10< n<50) coupled peeling/ballooning modes. The predicted stability boundary of the modes as a function of pedestal current and pressure gradient is reproduced in experimental observations. The measured dependence of the ELMs' threshold and amplitude on plasma triangularity is consistent with the results of ideal MHD analysis performed with the linear stability code ELITE [Wilson et al., Phys. Plasmas 9, 1277 (2002)

  15. High-resolution metabolomics of occupational exposure to trichloroethylene.

    Science.gov (United States)

    Walker, Douglas I; Uppal, Karan; Zhang, Luoping; Vermeulen, Roel; Smith, Martyn; Hu, Wei; Purdue, Mark P; Tang, Xiaojiang; Reiss, Boris; Kim, Sungkyoon; Li, Laiyu; Huang, Hanlin; Pennell, Kurt D; Jones, Dean P; Rothman, Nathaniel; Lan, Qing

    2016-10-01

    Occupational exposure to trichloroethylene (TCE) has been linked to adverse health outcomes including non-Hodgkin's lymphoma and kidney and liver cancer; however, TCE's mode of action for development of these diseases in humans is not well understood. Non-targeted metabolomics analysis of plasma obtained from 80 TCE-exposed workers [full shift exposure range of 0.4 to 230 parts-per-million of air (ppm a )] and 95 matched controls were completed by ultra-high resolution mass spectrometry. Biological response to TCE exposure was determined using a metabolome-wide association study (MWAS) framework, with metabolic changes and plasma TCE metabolites evaluated by dose-response and pathway enrichment. Biological perturbations were then linked to immunological, renal and exposure molecular markers measured in the same population. Metabolic features associated with TCE exposure included known TCE metabolites, unidentifiable chlorinated compounds and endogenous metabolites. Exposure resulted in a systemic response in endogenous metabolism, including disruption in purine catabolism and decreases in sulphur amino acid and bile acid biosynthesis pathways. Metabolite associations with TCE exposure included uric acid (β = 0.13, P-value = 3.6 × 10 -5 ), glutamine (β = 0.08, P-value = 0.0013), cystine (β = 0.75, P-value = 0.0022), methylthioadenosine (β = -1.6, P-value = 0.0043), taurine (β = -2.4, P-value = 0.0011) and chenodeoxycholic acid (β = -1.3, P-value = 0.0039), which are consistent with known toxic effects of TCE, including immunosuppression, hepatotoxicity and nephrotoxicity. Correlation with additional exposure markers and physiological endpoints supported known disease associations. High-resolution metabolomics correlates measured occupational exposure to internal dose and metabolic response, providing insight into molecular mechanisms of exposure-related disease aetiology. © The Author 2016; all rights

  16. Hyper-resolution urban flood modeling using high-resolution radar precipitation and LiDAR data

    Science.gov (United States)

    Noh, S. J.; Lee, S.; Lee, J.; Seo, D. J.

    2016-12-01

    Floods occur most frequently among all natural hazards, often causing widespread economic damage and loss of human lives. In particular, urban flooding is becoming increasingly costly and difficult to manage with a greater concentration of population and assets in urban centers. Despite of known benefits for accurate representation of small scale features and flow interaction among different flow domains, which have significant impact on flood propagation, high-resolution modeling has not been fully utilized due to expensive computation and various uncertainties from model structure, input and parameters. In this study, we assess the potential of hyper-resolution hydrologic-hydraulic modeling using high-resolution radar precipitation and LiDAR data for improved urban flood prediction and hazard mapping. We describe a hyper-resolution 1D-2D coupled urban flood model for pipe and surface flows and evaluate the accuracy of the street-level inundation information produced. For detailed geometric representation of urban areas and for computational efficiency, we use 1 m-resolution topographical data, processed from LiDAR measurements, in conjunction with adaptive mesh refinement. For street-level simulation in large urban areas at grid sizes of 1 to 10 m, a hybrid parallel computing scheme using MPI and openMP is also implemented in a high-performance computing system. The modeling approach developed is applied for the Johnson Creek Catchment ( 40 km2), which makes up the Arlington Urban Hydroinformatics Testbed. In addition, discussion will be given on availability of hyper-resolution simulation archive for improved real-time flood mapping.

  17. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  18. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    Science.gov (United States)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  19. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  20. Excitation of high frequency pressure driven modes in non-axisymmetric equilibrium at high βpol in PBX-M

    Science.gov (United States)

    Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.

    1993-12-01

    High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded

  1. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  2. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L

    2003-08-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

  3. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    International Nuclear Information System (INIS)

    WEST, WP; BURRELL, KH; DeGRASSIE, JS; DOYLE, EJ; GREENFIELD, CM; LASNIER, CJ; SNYDER, PB; ZENG, L.

    2003-01-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D α time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with β N *H 89L product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved

  4. Development of a new screening method for the detection of antibiotic residues in muscle tissues using liquid chromatography and high resolution mass spectrometry with a LC-LTQ-Orbitrap instrument.

    OpenAIRE

    2011-01-01

    Abstract In the present work, a liquid chromatography- high resolution mass spectrometry method was developed for the screening in meat of a wide range of antibiotics used in veterinary medicine. Full scan mode under high resolution mass spectral conditions using LTQ-Orbitrap mass spectrometer with resolving power 60.000 FWHM was applied for analysis of the samples. Samples were prepared using two extractions protocols prior to LC-MS analysis. The scope of the method focuses on the...

  5. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  6. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  7. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    Science.gov (United States)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  8. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    KAUST Repository

    Jackson, Scott

    2016-03-24

    The propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane-oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half of the Chapman-Jouguet detonation velocity (DCJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3-2.0 m or 317-488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 DCJ and 0.95 DCJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas

  9. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  10. High resolution CT of the chest

    Energy Technology Data Exchange (ETDEWEB)

    Barneveld Binkhuysen, F H [Eemland Hospital (Netherlands), Dept. of Radiology

    1996-12-31

    Compared to conventional CT high resolution CT (HRCT) shows several extra anatomical structures which might effect both diagnosis and therapy. The extra anatomical structures were discussed briefly in this article. (18 refs.).

  11. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  12. High-Resolution MRI in Rectal Cancer

    International Nuclear Information System (INIS)

    Dieguez, Adriana

    2010-01-01

    High-resolution MRI is the best method of assessing the relation of the rectal tumor with the potential circumferential resection margin (CRM). Therefore it is currently considered the method of choice for local staging of rectal cancer. The primary surgery of rectal cancer is total mesorectal excision (TME), which plane of dissection is formed by the mesorectal fascia surrounding mesorectal fat and rectum. This fascia will determine the circumferential margin of resection. At the same time, high resolution MRI allows adequate pre-operative identification of important prognostic risk factors, improving the selection and indication of therapy for each patient. This information includes, besides the circumferential margin of resection, tumor and lymph node staging, extramural vascular invasion and the description of lower rectal tumors. All these should be described in detail in the report, being part of the discussion in the multidisciplinary team, the place where the decisions involving the patient with rectal cancer will take place. The aim of this study is to provide the information necessary to understand the use of high resolution MRI in the identification of prognostic risk factors in rectal cancer. The technical requirements and standardized report for this study will be describe, as well as the anatomical landmarks of importance for the total mesorectal excision (TME), as we have said is the surgery of choice for rectal cancer. (authors) [es

  13. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  14. High Resolution Nature Runs and the Big Data Challenge

    Science.gov (United States)

    Webster, W. Phillip; Duffy, Daniel Q.

    2015-01-01

    NASA's Global Modeling and Assimilation Office at Goddard Space Flight Center is undertaking a series of very computationally intensive Nature Runs and a downscaled reanalysis. The nature runs use the GEOS-5 as an Atmospheric General Circulation Model (AGCM) while the reanalysis uses the GEOS-5 in Data Assimilation mode. This paper will present computational challenges from three runs, two of which are AGCM and one is downscaled reanalysis using the full DAS. The nature runs will be completed at two surface grid resolutions, 7 and 3 kilometers and 72 vertical levels. The 7 km run spanned 2 years (2005-2006) and produced 4 PB of data while the 3 km run will span one year and generate 4 BP of data. The downscaled reanalysis (MERRA-II Modern-Era Reanalysis for Research and Applications) will cover 15 years and generate 1 PB of data. Our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS), a specialization of the concept of business process-as-a-service that is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. In this presentation, we will describe two projects that demonstrate this shift. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS. MERRA/AS enables MapReduce analytics over MERRA reanalysis data collection by bringing together the high-performance computing, scalable data management, and a domain-specific climate data services API. NASA's High-Performance Science Cloud (HPSC) is an example of the type of compute-storage fabric required to support CAaaS. The HPSC comprises a high speed Infinib and network, high performance file systems and object storage, and a virtual system environments specific for data intensive, science applications. These technologies are providing a new tier in the data and analytic services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility

  15. Implementation of a high-resolution workstation for primary diagnosis of projection radiography images

    Science.gov (United States)

    Good, Walter F.; Herron, John M.; Maitz, Glenn S.; Gur, David; Miller, Stephen L.; Straub, William H.; Fuhrman, Carl R.

    1990-08-01

    We designed and implemented a high-resolution video workstation as the central hardware component in a comprehensive multi-project program comparing the use of digital and film modalities. The workstation utilizes a 1.8 GByte real-time disk (RCI) capable of storing 400 full-resolution images and two Tektronix (GMA251) display controllers with 19" monitors (GMA2O2). The display is configured in a portrait format with a resolution of 1536 x 2048 x 8 bit, and operates at 75 Hz in a noninterlaced mode. Transmission of data through a 12 to 8 bit lookup table into the display controllers occurs at 20 MBytes/second (.35 seconds per image). The workstation allows easy use of brightness (level) and contrast (window) to be manipulated with a trackball, and various processing options can be selected using push buttons. Display of any of the 400 images is also performed at 20MBytes/sec (.35 sec/image). A separate text display provides for the automatic display of patient history data and for a scoring form through which readers can interact with the system by means of a computer mouse. In addition, the workstation provides for the randomization of cases and for the immediate entry of diagnostic responses into a master database. Over the past year this workstation has been used for over 10,000 readings in diagnostic studies related to 1) image resolution; 2) film vs. soft display; 3) incorporation of patient history data into the reading process; and 4) usefulness of image processing.

  16. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  17. Detectors for high resolution dynamic pet

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography

  18. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    Science.gov (United States)

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  19. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  20. Internal Kink Mode Dynamics in High-β NSTX Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Stutman, D.; Tritz, K.; Zhu, W.

    2004-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data

  1. Internal kink mode dynamics in high-β NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Zhu, W.; Stutman, D.; Tritz, K.

    2005-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode non-linear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experiment. (author)

  2. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  3. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  4. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Directory of Open Access Journals (Sweden)

    K. Yu

    2016-04-01

    Full Text Available Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2. We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5° to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 % than at coarser resolution (59 %. The cumulative probability distribution functions (CDFs of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy changing little across model resolutions. Model concentrations in the

  5. High Resolution Spectroscopy Using a Tunable Thz Synthesizer Based on Photomixing

    Science.gov (United States)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Eliet, Sophie; Guinet, Mickael; Bocquet, Robin

    2011-06-01

    Optical heterodyning, also know as photomixing is an attractive solution as a single device able to cover the entire frequency range from 300 GHz to 3 THz. As the THz frequency is extracted from the difference frequency of two lasers, the accuracy with which the generated frequency is known is directly determined by the frequency accuracy of the lasers. In order to fully characterize the spectral fingerprint of a given molecule an accuracy approximately one order of magnitude finer than the Doppler linewidth is required, around 100 kHz for smaller polar compounds. To generate accurate cw-THz the frequency spacing of the modes of a Frequency Comb (FC) has been employed to constrain the emission frequency of a photomixing source.footnote{G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.} Two phase locked loops are implemented coherently locking the two cw-lasers (CW1 and CW2) to different modes of the FC. Although this solution allows accurate generation of narrowband THz the continuous tuning of the frequency presents some obstacles. To overcome these difficulties a system architecture with a third cw-laser (CW3) phase locked to CW2 has been implemented. The beatnote between CW2 and CW3 is free from the FC modes therefore the PLL frequency can be freely scanned over its entire operating range, in our case around 200 MHz. The most of polar compounds may be studied at high resolution in the THz domain with this synthesizer. Three different examples of THz analysis with atmospherical and astrophysical interests will be presented: The ground and vibrationnally excited states of H_2CO revisited in the 0.5-2 THz frequency region The rotational dependences of the broadening coefficients of CH_3Cl studied at high J and K values The molecular discrimination of a complex mixture containing methanol and ethanol. F. Hindle, A. Cuisset, G. Mouret, R. Bocquet Comptes Rendus Physique, 2008, 9: 262-275.

  6. Minimal exposure technique in the Cambridge University 600kV high resolution electron microscope

    International Nuclear Information System (INIS)

    Fryer, J.R.; Cleaver, J.R.A.; Smith, D.J.

    1980-01-01

    Radiation damage due to the incident electron beam imposes a fundamental limitation on the information obtainable by electron microscopy about organic materials; it is desirable therefore that exposure of the specimen to the electron beam should be restricted to the actual period during which the image is being recorded. A description is given of methods employed in the observation of the organic aromatic hydrocarbons quaterrylene, ovalene and coronene with the Cambridge University 600kV high resolution electron microscope (HREM). In particular, the condenser-objective mode of operation of this microscope lends itself to the use of an area-defining aperture below the second condenser lens conjugate with the specimen. Furthermore, operation at the higher accelerating voltage of this instrument could be anticipated to reduce the rate of damage, depending on the dominant beam-specimen interaction, whilst the increased width of the first broad band of the contrast transfer function of this microscope at the optimum defocus may overcome the reported resolution limitation of current 100kV microscopes for the observation of related materials. (author)

  7. High resolution tsunami inversion for 2010 Chile earthquake

    Directory of Open Access Journals (Sweden)

    T.-R. Wu

    2011-12-01

    Full Text Available We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  8. High resolution tsunami inversion for 2010 Chile earthquake

    Science.gov (United States)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  9. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  10. Development of a Si-PM-based high-resolution PET system for small animals

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Imaizumi, Masao; Watabe, Tadashi; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2010-01-01

    A Geiger-mode avalanche photodiode (Si-PM) is a promising photodetector for PET, especially for use in a magnetic resonance imaging (MRI) system, because it has high gain and is less sensitive to a static magnetic field. We developed a Si-PM-based depth-of-interaction (DOI) PET system for small animals. Hamamatsu 4 x 4 Si-PM arrays (S11065-025P) were used for its detector blocks. Two types of LGSO scintillator of 0.75 mol% Ce (decay time: ∼45 ns; 1.1 mm x 1.2 mm x 5 mm) and 0.025 mol% Ce (decay time: ∼31 ns; 1.1 mm x 1.2 mm x 6 mm) were optically coupled in the DOI direction to form a DOI detector, arranged in a 11 x 9 matrix, and optically coupled to the Si-PM array. Pulse shape analysis was used for the DOI detection of these two types of LGSOs. Sixteen detector blocks were arranged in a 68 mm diameter ring to form the PET system. Spatial resolution was 1.6 mm FWHM and sensitivity was 0.6% at the center of the field of view. High-resolution mouse and rat images were successfully obtained using the PET system. We confirmed that the developed Si-PM-based PET system is promising for molecular imaging research.

  11. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  12. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  13. High resolution SETI: Experiences and prospects

    Science.gov (United States)

    Horowitz, Paul; Clubok, Ken

    Megachannel spectroscopy with sub-Hertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrowband radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile receiver with an FFT-based 8 megachannel digital spectrum analyzer, on-line signal recognition, and multithreshold archiving. We are using it to conduct a meridian transit search of the northern sky at the Harvard-Smithsonian 26-m antenna, with a second identical system scheduled to begin observations in Argentina this month. Successive 400 kHz spectra, at 0.05 Hz resolution, are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable frequencies (such as λ21 cm), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame. This search has rejected interference admirably, but is greatly limited both in total frequency coverage and sensitivity to signals other than carriers. We summarize five years of high resolution SETI at Harvard, in the context of answering the questions "How useful is narrowband SETI, how serious are its limitations, what can be done to circumvent them, and in what direction should SETI evolve?" Increasingly powerful signal processing hardware, combined with ever-higher memory densities, are particularly relevant, permitting the construction of compact and affordable gigachannel spectrum analyzers covering hundreds of megahertz of instantaneous bandwidth.

  14. The high-resolution regional reanalysis COSMO-REA6

    Science.gov (United States)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  15. Histamine quantification in human plasma using high resolution accurate mass LC-MS technology.

    Science.gov (United States)

    Laurichesse, Mathieu; Gicquel, Thomas; Moreau, Caroline; Tribut, Olivier; Tarte, Karin; Morel, Isabelle; Bendavid, Claude; Amé-Thomas, Patricia

    2016-01-01

    Histamine (HA) is a small amine playing an important role in anaphylactic reactions. In order to identify and quantify HA in plasma matrix, different methods have been developed but present several disadvantages. Here, we developed an alternative method using liquid chromatography coupled with an ultra-high resolution and accurate mass instrument, Q Exactive™ (Thermo Fisher) (LCHRMS). The method includes a protein precipitation of plasma samples spiked with HA-d4 as internal standard (IS). LC separation was performed on a C18 Accucore column (100∗2.1mm, 2.6μm) using a mobile phase containing nonafluoropentanoic acid (3nM) and acetonitrile with 0.1% (v/v) formic acid on gradient mode. Separation of analytes was obtained within 10min. Analysis was performed from full scan mode and targeted MS2 mode using a 5ppm mass window. Ion transitions monitored for targeted MS2 mode were 112.0869>95.0607m/z for HA and 116.1120>99.0855m/z for HA-d4. Calibration curves were obtained by adding standard calibration dilution at 1 to 180nM in TrisBSA. Elution of HA and IS occurred at 4.1min. The method was validated over a range of concentrations from 1nM to 100nM. The intra- and inter-run precisions were <15% for quality controls. Human plasma samples from 30 patients were analyzed by LCHRMS, and the results were highly correlated with those obtained using the gold standard radioimmunoassay (RIA) method. Overall, we demonstrate here that LCHRMS is a sensitive method for histamine quantification in biological human plasmas, suitable for routine use in medical laboratories. In addition, LCHRMS is less time-consuming than RIA, avoids the use of radioactivity, and could then be considered as an alternative quantitative method. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. SRS station 16.3: high-resolution applications

    CERN Document Server

    Murphy, B M; Golshan, M; Moore, M; Reid, J; Kowalski, G

    2001-01-01

    Station 16.3 is a high-resolution X-ray diffraction beamline at Daresbury Laboratory Synchrotron Radiation Source. The data presented demonstrate the high-resolution available on the station utilising the recently commissioned four-reflection Si 1 1 1 monochromator and three-reflection Si 1 1 1 analyser. For comparison, a reciprocal space map of the two-bounce Si 1 1 1 monochromator and two-bounce analyser is also shown. Operation of the station is illustrated with examples for silicon, and for diamond. Lattice parameter variations were measured with accuracies in the part per million range and lattice tilts at the arc second level (DuMond, Phys. Rev. 52 (1937) 872).

  17. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  18. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  20. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    International Nuclear Information System (INIS)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-01

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 (micro)m or smaller will lead to an image resolution of 500 (micro)m when using 18F- or 64Cu-labeled radiotracers, giving a factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.

  1. High frequency single mode traveling wave structure for particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.

  2. Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode

    Science.gov (United States)

    Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.

    1994-10-01

    The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.

  3. Achieving High Resolution Timer Events in Virtualized Environment.

    Science.gov (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  4. High-resolution ultrahigh-pressure long column reversed-phase liquid chromatography for top-down proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yufeng; Tolic, Nikola; Piehowski, Paul D.; Shukla, Anil K.; Kim, Sangtae; Zhao, Rui; Qu, Yi; Robinson, E. W.; Smith, Richard D.; Pasa-Tolic, Ljiljana

    2017-05-01

    We report development of an approach providing high-resolution RPLC of proteins and its utility for mass spectrometry-based top-down proteomics. A chromatographic peak capacity of ~450 was achieved for proteins and large polypeptides having MWs up to 43 kDa in the context of proteomics applications. RPLC column lengths from 20 to 200 cm, particle sizes from 1.5 to 5 m, bonding alkyl chains from C1 to C2, C4, C8, and C18, and particle surface structures that spanned porous, superficially porous (porous shell, core-shell), and nonporous were investigated at pressures up to14K psi. Column length was found as the most important factor for >20 kDa proteins in gradient RPLC, and shortening column length degraded RPLC resolution and sensitivity regardless of the size and surface structure of the packing particles used. The alkyl chains bonded to the silica particle surface significantly affected the RPLC recovery and efficiency, and short alkyl C1-C4 phases provided higher sensitivity and resolution than C8 and C18 phases. Long gradient separations (e.g., >10 hours) with long columns (e.g., 100 cm) were particularly effective in conjunction with use of high accuracy mass spectrometers (e.g., the Orbitrap Elite) for top-down proteomics with improved proteoform coverage by allowing multiple HCD, CID, and ETD dissociation modes. It was also found that HCD produced small fragments useful for proteoform identification, while low energy CID and ETD often complemented HCD by providing large fragments.

  5. A High Resolution Solar Spectrograph for the Berkeley Undergraduate Astronomy Lab

    Science.gov (United States)

    Strickler, R.; Bresloff, C.; Graham, J.

    2005-05-01

    The discovery of extra-solar planets has stimulated interest amongst undergraduates. The Doppler method for detecting exoplanets requires extraction of signals at the 1/1000 of a pixel level. To illustrate this technique, we used a newly built spectrometer to extract sub-pixel Doppler shifts in the solar photosphere. We have used this spectrograph to measure the velocity gradient across the sun and hence infer the solar radius. The limb-to-limb Doppler shift is only 1.8 km/s. A spectral resolution > 100,000 would be required to manifest this motion. Achieving such high spectral resolution is unnecessary since even a small telescope can record high SNR (> 100) spectra. Within a few seconds it is possible to discern solar rotational Doppler shifts at resolutions as low as 10,000. We must also understand coordinate transformation to convert the Doppler signal along the observed diameter to the equatorial rotation speed assuming solid body rotation. The spectrograph system includes an 8-inch Schmidt-Cassegrain stationary telescope; a 100-micron diameter multi-mode fiber; aspheric f-number reformatting optics; a collimating lens; a 110 mm, 80 grooves/mm, θ blaze = 64.5 degree replica echelle grating; and an Apogee 1024 x 1024 thermo-electrically cooled CCD. The spectrometer optics are mounted on a 5-ft x 3-ft optical bench. Operating the spectrometer remotely using VNC and a wireless laptop, we pointed the telescope so that the fiber scanned across a diameter of the solar disk while the CCD took repeated exposures. Although we were "guinea pigs," using the spectrograph for the first time in a class, it worked remarkably well. Combining measurement of the solar radius with observation of the rotation period from sunspots, the earth-sun distance can be deduced. In the future, students may measure the eccentricity of earth's orbit by measuring the sun's radial velocity over the course of a year. This work was supported by the NSF through award DUE-0311536.

  6. Observations of f- and p-mode oscillations of high degree (500 < l < 2500) in quiet and active sun

    International Nuclear Information System (INIS)

    Tarbell, T.; Peri, M.; Frank, Z.; Shine, R.; Title, A.

    1988-01-01

    This poster presents spectra (l - υ diagrams) from high resolution observations taken at the Vacuum Tower Telescope (NSO/Sunspot). The raw data are CCD images taken through the SOUP narrowband filter in Fe I 5576 A. Four filtergrams spaced through the spectral line are combined to form velocity movies. Spectra for 80 minutes of data with 0.5 - 1.5 arcsecond resolution are presented for the entire field-of-view and for quiet and magnetic subregions. Ridges f and p 1 - p 5 are evident in velocity spectra, extending to l = 2500 (f), l = 1800 (p 1 ), and l = 1200 (p 2 ). Much less power is seen in the magnetic region than in the quiet sun. Three-dimensional Fourier filtering shows that oscillation velocity amplitude drops sharply at the boundary of the active region for each family of modes considered

  7. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  8. High-dose mode of mortality in Tribolium: A model system for study of radiation injury and repair in non-proliferative tissues

    International Nuclear Information System (INIS)

    Cheng, Chihing Christina.

    1989-01-01

    With appropriate doses of ionizing radiation, both the acute, or lethal-midlethal, dose-independent pattern of mortality, and the hyperacute, dose-dependent pattern, were demonstrated within a single insect genus (Tribolium). This demonstration provides resolution of apparently contradictory reports of insect radiation responses in terms of doses required to cause lethality and those based on survival time as a function of dose. A dose-dependent mortality pattern was elicited in adult Tribolium receiving high doses, viz., 300 Gy or greater; its time course was complete in 10 days, before the dose-independent pattern of mortality began. Visual observations of heavily-irradiated Tribolium suggested neural and/or neuromuscular damage, as had been previously proposed by others for lethally-irradiated wasps, flies, and mosquitoes. Results of experiments using fractionated high doses supported the suggestion that the hyperacute or high-dose mode of death is the result of damage to nonproliferative tissues. Relative resistance of a strain to the hyperacute or high-dose mode of death was not correlated with resistance to the midlethal mode, which is believed to be the result of damage to the proliferative cells of the midgut. Using the high-dose mode of death as a model of radiation damage to nonproliferative tissues, the effects of age, and of a moderate priming dose were assessed. Beetles showed age-related increase in sensitivity to the high-dose mode of death, suggesting a decline in capacity to repair radiation damage to postmitotic tissue. This correlated with a decrease (50%) in the amount of repair reflected in the sparing effect of dose-fractionation (SDF) between the age of 1 to 3 months. The age related increase in radiosensitivity was reduced by a moderate priming dose (40 or 65 Gy) given at a young age

  9. Compton imaging with a highly-segmented, position-sensitive HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T.; Hirsch, R.; Reiter, P.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Hess, H.; Lewandowski, L. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Gernhaeuser, R.; Maier, L.; Schlarb, M.; Weiler, B.; Winkel, M. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-02-15

    A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8 {sup circle} and 19.1 {sup circle}, depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of 4.6 {sup circle} was determined for the same γ-ray energy. (orig.)

  10. High resolution manometry findings in patients with esophageal epiphrenic diverticula.

    Science.gov (United States)

    Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G

    2011-12-01

    The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.

  11. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  12. High-resolution flood modeling of urban areas using MSN_Flood

    Directory of Open Access Journals (Sweden)

    Michael Hartnett

    2017-07-01

    Full Text Available Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme, MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region. Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.

  13. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  14. High-resolution investigations of edge effects in neutron imaging

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Kuehne, G.; Frei, G.; Manke, I.

    2009-01-01

    Edge enhancement is the main effect measured by the so-called inline or propagation-based neutron phase contrast imaging method. The effect has originally been explained by diffraction, and high spatial coherence has been claimed to be a necessary precondition. However, edge enhancement has also been found in conventional imaging with high resolution. In such cases the effects can produce artefacts and hinder quantification. In this letter the edge effects at cylindrical shaped samples and long straight edges have been studied in detail. The enhancement can be explained by refraction and total reflection. Using high-resolution imaging, where spatial resolutions better than 50 μm could be achieved, refraction and total reflection peaks - similar to diffraction patterns - could be separated and distinguished.

  15. High-Resolution Adaptive Optics Test-Bed for Vision Science

    International Nuclear Information System (INIS)

    Wilks, S.C.; Thomspon, C.A.; Olivier, S.S.; Bauman, B.J.; Barnes, T.; Werner, J.S.

    2001-01-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed

  16. Mode control in a high-gain relativistic klystron amplifier

    Science.gov (United States)

    Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang

    2010-05-01

    Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.

  17. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    Science.gov (United States)

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  18. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    Directory of Open Access Journals (Sweden)

    Tianzhu Yi

    2017-11-01

    Full Text Available This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR data processing. Several nonlinear chirp scaling (NLCS algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC. However, the azimuth depth of focusing (ADOF is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS algorithm that is proposed in this paper uses the method of series reverse (MSR to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  19. Dynamic behaviour of the high confinement mode of fusion plasmas

    International Nuclear Information System (INIS)

    Zohm, H.

    1995-05-01

    This paper describes the dynamic behaviour of the High Confinement mode (H-mode) of fusion plasmas, which is one of the most promising regimes of enhanced energy confinement in magnetic fusion research. The physics of the H-mode is not yet fully understood, and the detailed behaviour is complex. However, we establish a simple physics picture of the phenomenon. Although a first principles theory of the anomalous transport processes in a fusion plasma has not yet been given, we show that within the picture developed here, it is possible to describe the dynamic behaviour of the H-mode, namely the dynamics of the L-H transition and the occurrence of edge localized modes (ELMs). (orig.)

  20. eWaterCycle: A high resolution global hydrological model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  1. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  2. Refinement procedure for the image alignment in high-resolution electron tomography

    International Nuclear Information System (INIS)

    Houben, L.; Bar Sadan, M.

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. -- Highlights: → Alignment procedure for electron tomography based on iterative tomogram contrast optimisation. → Marker-free, independent of object, little user interaction. → Accuracy competitive with fiducial marker methods and suited for high-resolution tomography.

  3. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  4. Using Adobe Acrobat to create high-resolution line art images.

    Science.gov (United States)

    Woo, Hyoun Sik; Lee, Jeong Min

    2009-08-01

    The purpose of this article is to introduce a method for using Adobe Acrobat to make high-resolution and high-quality line art images. High-resolution and high-quality line art images for radiology journal submission can be generated using Adobe Acrobat as a steppingstone, and the customized PDF conversion settings can be used for converting hybrid images, including both bitmap and vector components.

  5. METH-33 - Performance assessment for the high resolution and wide swath (HRWS) post-Sentinel-1 SAR system

    DEFF Research Database (Denmark)

    Zonno, Mariantonietta; Maria J., Sanjuan-Ferrer,; Lopez-Dekker, Paco

    The next generation, post-Sentinel-1, ESA’s C-band synthetic aperture radar (SAR) system is conceived to provide simultaneously high azimuth resolution and wide swath width (HRWS).There are different ways in which the imaging capabilities of the HRWS SAR system can be exploited, which translate...... or numerical models and, if these are not available, real SAR images as well as numerical algorithms and some explicit simulations of the data and of the inversion process are employed. The tool uses as input the HRWS SAR instrument performance for the different applicable modes and produces as output results...

  6. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  7. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  8. High-resolution esophageal pressure topography for esophageal motility disorders

    OpenAIRE

    Hashem Fakhre Yaseri; Gholamreza Hamsi; Tayeb Ramim

    2016-01-01

    Background: High-resolution manometer (HRM) of the esophagus has become the main diagnostic test in the evaluation of esophageal motility disorders. The development of high-resolution manometry catheters and software displays of manometry recordings in color-coded pressure plots have changed the diagnostic assessment of esophageal disease. The first step of the Chicago classification described abnormal esophagogastric junction deglutitive relaxation. The latest classification system, proposed...

  9. Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, Vincenzo

    2016-01-01

    The use of liquid chromatography high-resolution mass spectrometry (LC-HRMS) and direct analysis real-time high-resolution mass spectrometry (DART-HRMS) defines a new scenario in the analysis of thermal-induced toxicants, such as acrylamide. Several factors contribute to the definition of the

  10. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture

    Science.gov (United States)

    Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong

    2018-03-01

    We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.

  11. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    Science.gov (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  12. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  13. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  14. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  15. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  16. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  17. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  18. High-resolution CT of the lungs: Anatomic-pathologic correlation

    International Nuclear Information System (INIS)

    Stein, M.G.; Webb, W.R.; Finkbeiner, W.; Gamsu, G.

    1986-01-01

    The interpretation of thin-section (1.5-mm), high-resolution CT scans of the lungs has been limited by lack of direct radiologic and pathologic correlation. The author scanned fresh inflated isolated lungs from ten healthy and five diseased subjects using thin-section, high-resolution techniques. The lungs were then fixed by inflation with endobronchial Formalin. Gough sections (1 mm thick) were obtained at the same levels as the CT scans. In healthy subjects, secondary lobules were identified by the presence of visible interlobular septa and central arterioles. In some patients with disease, septal thickening was visible. In patients with honeycombing cystic areas of destroyed lung were seen, along with areas of fibrosis. Emphysema was well evaluated. Thin-section, high-resolution CT can define lung architecture and may resolve mild changes of the interstitium

  19. Elementary isovector spin and orbital magnetic dipole modes revisited in the shell model

    International Nuclear Information System (INIS)

    Richter, A.

    1988-08-01

    A review is given on the status of mainly spin magnetic dipole modes in some sd- and fp-shell nuclei studied with inelastic electron and proton scattering, and by β + -decay. Particular emphasis is also placed on a fairly new, mainly orbital magnetic dipole mode investigated by high-resolution (e,e') and (p,p') scattering experiments on a series of fp-shell nuclei. Both modes are discussed in terms of the shell model with various effective interactions. (orig.)

  20. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  1. Science with High Spatial Resolution Far-Infrared Data

    Science.gov (United States)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  2. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs.

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-22

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10(-7) in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  3. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  4. Textural Segmentation of High-Resolution Sidescan Sonar Images

    National Research Council Canada - National Science Library

    Kalcic, Maria; Bibee, Dale

    1995-01-01

    .... The high resolution of the 455 kHz sonar imagery also provides much information about the surficial bottom sediments, however their acoustic scattering properties are not well understood at high frequencies...

  5. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    Science.gov (United States)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample

  6. High-resolution computed tomography findings in pulmonary Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rosana Souza [Universidade Federal do Rio de Janeiro (HUCFF/UFRJ), RJ (Brazil). Hospital Universitario Clementino Fraga Filho. Unit of Radiology; Capone, Domenico; Ferreira Neto, Armando Leao [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2011-07-15

    Objective: The present study was aimed at characterizing main lung changes observed in pulmonary Langerhans cell histiocytosis by means of high-resolution computed tomography. Materials and Methods: High-resolution computed tomography findings in eight patients with proven disease diagnosed by open lung biopsy, immunohistochemistry studies and/or extrapulmonary manifestations were retrospectively evaluated. Results: Small rounded, thin-walled cystic lesions were observed in the lung of all the patients. Nodules with predominantly peripheral distribution over the lung parenchyma were observed in 75% of the patients. The lesions were diffusely distributed, predominantly in the upper and middle lung fields in all of the cases, but involvement of costophrenic angles was observed in 25% of the patients. Conclusion: Comparative analysis of high-resolution computed tomography and chest radiography findings demonstrated that thinwalled cysts and small nodules cannot be satisfactorily evaluated by conventional radiography. Because of its capacity to detect and characterize lung cysts and nodules, high-resolution computed tomography increases the probability of diagnosing pulmonary Langerhans cell histiocytosis. (author)

  7. Acceleration of FDTD mode solver by high-performance computing techniques.

    Science.gov (United States)

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  8. High resolution resonant Raman scattering in InP and GaAs

    International Nuclear Information System (INIS)

    Kernohan, E.T.M.

    1996-04-01

    Previous studies of III-V semiconductors using resonant Raman scattering have concentrated on measuring the variations in scattering intensity under different excitation conditions. The shape of the Raman line also contains important information, but this has usually been lost because the low signal strengths mean that resolution has been sacrificed for sensitivity. It might therefore be expected that further insights into the processes involved in Raman scattering could be obtained by using high resolution methods. In this thesis I have measured single- and multiple- phonon scattering from bulk GaAs and InP with a spectral resolution better than the intrinsic widths of the Raman lines. For scattering in the region of one longitudinal optic (LO) phonon energy, it is found that in InP the scattering in the allowed and forbidden configurations occur at different Raman shifts, above and below the zone-centre phonon energy respectively. These shifts are used to determine the scattering processes involved, and how they differ between InP and GaAs. The lineshapes obtained in multiple-phonon scattering are found to depend strongly on the excitation energy used, providing evidence for the presence of intermediate resonances. The measured spectra are used to provide information about the phonon dispersion of InP, whose dispersion it is difficult to measure in any other way, and the first evidence is found for an upward dispersion of the LO mode. Raman lineshapes are measured for InP in a magnetic field. The field alters the electronic bandstructure, leading to a series of strong resonances in the Raman efficiency due to interband magneto-optical transitions between Landau levels. This allows multiphonon processes up to sixth-order to be investigated. (author)

  9. Phonon spectrum of single-crystalline FeSe probed by high-resolution electron energy-loss spectroscopy

    Science.gov (United States)

    Zakeri, Khalil; Engelhardt, Tobias; Le Tacon, Matthieu; Wolf, Thomas

    2018-06-01

    Utilizing high-resolution electron energy-loss spectroscopy (HREELS) we measure the phonon frequencies of β-FeSe(001), cleaved under ultra-high vacuum conditions. At the zone center (Γ bar-point) three prominent loss features are observed at loss energies of about ≃ 20.5 and 25.6 and 40 meV. Based on the scattering selection rules we assign the observed loss features to the A1g, B1g, and A2u phonon modes of β-FeSe(001). The experimentally measured phonon frequencies do not agree with the results of density functional based calculations in which a nonmagnetic, a checkerboard or a strip antiferromagnetic order is assumed for β-FeSe(001). Our measurements suggest that, similar to the other Fe-based materials, magnetism has a profound impact on the lattice dynamics of β-FeSe(001).

  10. A Forward-Looking High-Resolution GPR System

    National Research Council Canada - National Science Library

    Kositsky, Joel; Milanfar, Peyman

    1999-01-01

    A high-resolution ground penetrating radar (GPR) system was designed to help define the optimal radar parameters needed for the efficient standoff detection of buried and surface-laid antitank mines...

  11. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  12. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  13. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    Full text: In May 1997, the IAEA Board of Governors adopted the Additional Safeguards Protocol to improve its ability to detect the undeclared production of fissile material. This new strengthened safeguards system has opened the door for the IAEA to use of all types of information, including the potential use of commercial satellite imagery. We have therefore been investigating the feasibility of strengthening IAEA safeguards using commercial satellite imagery. Based on our analysis on a number of one-meter resolution IKONOS satellite images of military nuclear production facilities at nuclear states including Russia, China, India, Pakistan and Israel, we found that the new high-resolution commercial satellite imagery would play a new and valuable role in strengthening IAEA safeguards. Since 1999, images with a resolution of one meter have been available commercially from Space Imaging's IKONOS satellite. One-meter images from other companies are expected to enter the market soon. Although still an order of magnitude less capable than military imaging satellites, the capabilities of these new high-resolution commercial satellites are good enough to detect and identify the major visible characteristics of nuclear production facilities and sites. Unlike the classified spy satellite photos limited to few countries, the commercial satellite imagery is commercially available to anyone who wants to purchase it. Therefore, the new commercial satellite open a new chance that each state, international organizations, and non-governmental groups could use the commercial images to play a more proactive role in monitoring the nuclear activities in related countries and verifying the compliance of non-proliferation agreements. This could help galvanize support for intensified efforts to slow the pace of nuclear proliferation. To produce fissile materials (plutonium and highly enriched uranium) for weapons, a country would operate dedicated plutonium-production reactors and the

  14. Processing method for high resolution monochromator

    International Nuclear Information System (INIS)

    Kiriyama, Koji; Mitsui, Takaya

    2006-12-01

    A processing method for high resolution monochromator (HRM) has been developed at Japanese Atomic Energy Agency/Quantum Beam Science Directorate/Synchrotron Radiation Research unit at SPring-8. For manufacturing a HRM, a sophisticated slicing machine and X-ray diffractometer have been installed for shaping a crystal ingot and orienting precisely the surface of a crystal ingot, respectively. The specification of the slicing machine is following; Maximum size of a diamond blade is φ 350mm in diameter, φ 38.1mm in the spindle diameter, and 2mm in thickness. A large crystal such as an ingot with 100mm in diameter, 200mm in length can be cut. Thin crystal samples such as a wafer can be also cut using by another sample holder. Working distance of a main shaft with the direction perpendicular to working table in the machine is 350mm at maximum. Smallest resolution of the main shaft with directions of front-and-back and top-and-bottom are 0.001mm read by a digital encoder. 2mm/min can set for cutting samples in the forward direction. For orienting crystal faces relative to the blade direction adjustment, a one-circle goniometer and 2-circle segment are equipped on the working table in the machine. A rotation and a tilt of the stage can be done by manual operation. Digital encoder in a turn stage is furnished and has angle resolution of less than 0.01 degrees. In addition, a hand drill as a supporting device for detailed processing of crystal is prepared. Then, an ideal crystal face can be cut from crystal samples within an accuracy of about 0.01 degrees. By installation of these devices, a high energy resolution monochromator crystal for inelastic x-ray scattering and a beam collimator are got in hand and are expected to be used for nanotechnology studies. (author)

  15. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18 μm standard CMOS process

    International Nuclear Information System (INIS)

    Feng Peng; Zhang Qi; Wu Nanjian

    2011-01-01

    This paper presents a passive EPC Gen-2 UHF RFID tag chip with a dual-resolution temperature sensor. The chip tag integrates a temperature sensor, an RF/analog front-end circuit, an NVM memory and a digital baseband in a standard CMOS process. The sensor with a low power sigma—delta (ΣΔ) ADC is designed to operate in low and high resolution modes. It can not only achieve the target accuracy but also reduce the power consumption and the sensing time. A CMOS-only RF rectifier and a single-poly non-volatile memory (NVM) are designed to realize a low cost tag chip. The 192-bit-NVM tag chip with an area of 1 mm 2 is implemented in a 0.18-μm standard CMOS process. The sensitivity of the tag is −10.7 dBm/−8.4 dBm when the sensor is disabled/enabled. It achieves a maximum reading/sensing distance of 4 m/3.1 m at 2 W EIRP. The inaccuracy of the sensor is −0.6 °C/0.5 °C (−1.0 °C/1.2 °C) in the operating range from 5 to 15 °C in high resolution mode (−30 to 50 °C in low resolution mode). The resolution of the sensor achieves 0.02 °C (0.18 °C) in high (low) resolution mode. (semiconductor integrated circuits)

  16. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  17. New high-sensitivity, milliarcsecond resolution results from routine observations of lunar occultations at the ESO VLT

    Science.gov (United States)

    Richichi, A.; Fors, O.; Chen, W.-P.; Mason, E.

    2010-11-01

    Context. Lunar occultations (LO) are a very efficient and powerful technique that achieves the best combination of high angular resolution and sensitivity possible today at near-infrared wavelengths. Given that the events are fixed in time, that the sources are occulted randomly, and that the telescope use is minimal, the technique is very well suited for service mode observations. Aims: We have established a program of routine LO observations at the VLT observatory, especially designed to take advantage of short breaks available in-between other programs. We have used the ISAAC instrument in burst mode, capable of producing continuous read-outs at millisecond rates on a suitable subwindow. Given the random nature of the source selection, our aim has been primarily the investigation of a large number of stellar sources at the highest angular resolution in order to detect new binaries. Serendipitous results such as resolved sources and detection of circumstellar components were also anticipated. Methods: We have recorded the signal from background stars for a few seconds, around the predicted time of occultation by the Moon's dark limb. At millisecond time resolution, a characteristic diffraction pattern can be observed. Patterns for two or more sources superimpose linearly, and this property is used for the detection of binary stars. The detailed analysis of the diffraction fringes can be used to measure specific properties such as the stellar angular size and the presence of extended light sources such as a circumstellar shell. Results: We present a list of 191 stars for which LO data could be recorded and analyzed. Results include the detection of 16 binary and 2 triple stars, all but one of which were previously unknown. The projected angular separations are as small as 4 milliarcsec and magnitude differences as high as Δ K = 5.8 mag. Additionally we derive accurate angular diameters for 2 stars and resolve circumstellar emission around another one, also all

  18. Refinement procedure for the image alignment in high-resolution electron tomography.

    Science.gov (United States)

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Towards high resolution polarisation analysis using double polarisation and ellipsoidal analysers

    CERN Document Server

    Martin-Y-Marero, D

    2002-01-01

    Classical polarisation analysis methods lack the combination of high resolution and high count rate necessary to cope with the demand of modern condensed-matter experiments. In this work, we present a method to achieve high resolution polarisation analysis based on a double polarisation system. Coupling this method with an ellipsoidal wavelength analyser, a high count rate can be achieved whilst delivering a resolution of around 10 mu eV. This method is ideally suited to pulsed sources, although it can be adapted to continuous sources as well. (orig.)

  20. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  1. Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing

    Directory of Open Access Journals (Sweden)

    Lank Simon M

    2012-08-01

    Full Text Available Abstract Background High-resolution HLA genotyping is a critical diagnostic and research assay. Current methods rarely achieve unambiguous high-resolution typing without making population-specific frequency inferences due to a lack of locus coverage and difficulty in exon-phase matching. Achieving high-resolution typing is also becoming more challenging with traditional methods as the database of known HLA alleles increases. Results We designed a cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci. We present a novel Galaxy server-based analysis workflow for determining genotype. During assay validation, we performed two GS Junior sequencing runs to determine the accuracy of the HLA class I amplicons and DRB amplicon at different levels of multiplexing. When 116 amplicons were multiplexed, we unambiguously resolved 99%of class I alleles to four- or six-digit resolution, as well as 100% unambiguous DRB calls. The second experiment, with 271 multiplexed amplicons, missed some alleles, but generated high-resolution, concordant typing for 93% of class I alleles, and 96% for DRB1 alleles. In a third, preliminary experiment we attempted to sequence novel amplicons for other class II loci with mixed success. Conclusions The presented assay is higher-throughput and higher-resolution than existing HLA genotyping methods, and suitable for allele discovery or large cohort sampling. The validated class I and DRB primers successfully generated unambiguously high-resolution genotypes, while further work is needed to validate additional class II genotyping amplicons.

  2. Transistor reset preamplifier for high-rate high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Landis, D.A.; Cork, C.P.; Madden, N.W.; Goulding, F.S.

    1981-10-01

    Pulsed transistor reset of high resolution charge sensitive preamplifiers used in cooled semiconductor spectrometers can sometimes have an advantage over pulsed light reset systems. Several versions of transistor reset spectrometers using both silicon and germanium detectors have been built. This paper discusses the advantages of the transistor reset system and illustrates several configurations of the packages used for the FET and reset transistor. It also describes the preamplifer circuit and shows the performance of the spectrometer at high rates

  3. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  4. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  5. Biomarker Discovery Using New Metabolomics Software for Automated Processing of High Resolution LC-MS Data

    Science.gov (United States)

    Hnatyshyn, S.; Reily, M.; Shipkova, P.; McClure, T.; Sanders, M.; Peake, D.

    2011-01-01

    Robust biomarkers of target engagement and efficacy are required in different stages of drug discovery. Liquid chromatography coupled to high resolution mass spectrometry provides sensitivity, accuracy and wide dynamic range required for identification of endogenous metabolites in biological matrices. LCMS is widely-used tool for biomarker identification and validation. Typical high resolution LCMS profiles from biological samples may contain greater than a million mass spectral peaks corresponding to several thousand endogenous metabolites. Reduction of the total number of peaks, component identification and statistical comparison across sample groups remains to be a difficult and time consuming challenge. Blood samples from four groups of rats (male vs. female, fully satiated and food deprived) were analyzed using high resolution accurate mass (HRAM) LCMS. All samples were separated using a 15 minute reversed-phase C18 LC gradient and analyzed in both positive and negative ion modes. Data was acquired using 15K resolution and 5ppm mass measurement accuracy. The entire data set was analyzed using software developed in collaboration between Bristol Meyers Squibb and Thermo Fisher Scientific to determine the metabolic effects of food deprivation on rats. Metabolomic LC-MS data files are extraordinarily complex and appropriate reduction of the number of spectral peaks via identification of related peaks and background removal is essential. A single component such as hippuric acid generates more than 20 related peaks including isotopic clusters, adducts and dimers. Plasma and urine may contain 500-1500 unique quantifiable metabolites. Noise filtering approaches including blank subtraction were used to reduce the number of irrelevant peaks. By grouping related signals such as isotopic peaks and alkali adducts, data processing was greatly simplified by reducing the total number of components by 10-fold. The software processes 48 samples in under 60minutes. Principle

  6. High temperature L- and H-mode confinement in JET

    International Nuclear Information System (INIS)

    Balet, B.; Boyd, D.A.; Campbell, D.J.

    1990-01-01

    The energy confinement properties of low density, high ion temperature L- and H-mode plasmas are investigated. For L-mode plasmas it is shown that, although the global confinement is independent of density, the energy confinement in the central region is significantly better at low densities than at higher densities. The improved confinement appears to be associated with the steepness of the density gradient. For the H-mode phase, although the confinement at the edge is dramatically improved, which is once again associated with the steep density gradient in the edge region, the central confinement properties are essentially the same as for the standard L-mode. The results are compared in a qualitative manner with the predictions of the ion temperature gradient instability theory and appear to be in disagreement with some aspects of this theory. (author). 13 refs, 15 figs

  7. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  8. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  9. A Constructive Replication of the Lawrence and Lorsch Conflict Resolution Methodology.

    Science.gov (United States)

    Fry, Louis W.; And Others

    1980-01-01

    A replication of Lawrence and Lorsch's (1967) findings of three modes of conflict resolution did not yield a clear factor structure. The validity of the scale for purposes of measuring conflict resolution modes is seriously questioned as is what is taught in the area of conflict resolution. (Author)

  10. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  11. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    Science.gov (United States)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  12. Magnetohydrodynamic waves driven by p-modes

    International Nuclear Information System (INIS)

    Khomenko, Elena; Santamaria, Irantzu Calvo

    2013-01-01

    Waves are observed at all layers of the solar atmosphere and the magnetic field plays a key role in their propagation. While deep down in the atmosphere the p-modes are almost entirely of acoustic nature, in the upper layers magnetic forces are dominating, leading to a large variety of new wave modes. Significant advances have been made recently in our understanding of the physics of waves interaction with magnetic structures, with the help of analytical theories, numerical simulations, as well as high-resolution observations. In this contribution, we review recent observational findings and current theoretical ideas in the field, with an emphasis on the following questions: (i) Peculiarities of the observed wave propagation in network, plage and facular regions; (ii) Role of the mode transformation and observational evidences of this process: (iii) Coupling of the photosphere, chromosphere, and above by means of waves propagating in magnetic structures.

  13. The cyclopropene radical cation: Rovibrational level structure at low energies from high-resolution photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vasilatou, K.; Michaud, J. M.; Baykusheva, D.; Grassi, G.; Merkt, F. [Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zurich (Switzerland)

    2014-08-14

    The cyclopropene radical cation (c-C{sub 3}H{sub 4}{sup +}) is an important but poorly characterized three-membered-ring hydrocarbon. We report on a measurement of the high-resolution photoelectron and photoionization spectra of cyclopropene and several deuterated isotopomers, from which we have determined the rovibrational energy level structure of the X{sup ~+} {sup 2}B{sub 2} ground electronic state of c-C{sub 3}H{sub 4}{sup +} at low energies for the first time. The synthesis of the partially deuterated isotopomers always resulted in mixtures of several isotopomers, differing in their number of D atoms and in the location of these atoms, so that the photoelectron spectra of deuterated samples are superpositions of the spectra of several isotopomers. The rotationally resolved spectra indicate a C{sub 2v}-symmetric R{sub 0} structure for the ground electronic state of c-C{sub 3}H{sub 4}{sup +}. Two vibrational modes of c-C{sub 3}H{sub 4}{sup +} are found to have vibrational wave numbers below 300 cm{sup −1}, which is surprising for such a small cyclic hydrocarbon. The analysis of the isotopic shifts of the vibrational levels enabled the assignment of the lowest-frequency mode (fundamental wave number of ≈110 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to the CH{sub 2} torsional mode (ν{sub 8}{sup +}, A{sub 2} symmetry) and of the second-lowest-frequency mode (≈210 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to a mode combining a CH out-of-plane with a CH{sub 2} rocking motion (ν{sub 15}{sup +}, B{sub 2} symmetry). The potential energy along the CH{sub 2} torsional coordinate is flat near the equilibrium structure and leads to a pronounced anharmonicity.

  14. Essential elements of the high density H-mode on W7-AS

    International Nuclear Information System (INIS)

    McCormick, K.; Burhenn, R.; Grigull, P.

    2003-01-01

    The High Density H-Mode (HDH), discovered during the run-in phase of W7-AS divertor operation/1-3/, rapidly became the workhorse of the divertor program, combining optimal core behavior along with edge parameters necessary for successful operation of an Island Divertor. Its unique properties of high energy confinement along with low impurity retention and radiation localized at the edge under ELM-free steady-state conditions at high densities (to 4 x 10 20 m -3 ) and heating powers (to 1.7 MWm -3 ) make the HDH H-mode ideal for a reactor scenario, given it can be extended to higher temperatures in a larger machine. Hence, considerable effort has been invested to understand the nature of the HDH-mode in order to be able to extrapolate to next generation devices. To this end the present paper reports on experiments where two globally-similar ELM-free H-modes are compared: the classic quiescent H-mode H* where both impurity and density control are a severe problem and the HDH-mode with its contrasting steady-state behavior. Through modeling of the temporal behavior of laser-ablated aluminum spectral lines, as well as that of background impurities, it is concluded that a principle difference between the two H-modes is that of enhanced impurity diffusion in the edge gradient region of the HDH-mode. However, no direct indicators of enhanced diffusion have yet been identified. (orig.)

  15. Evaluation of a High-Resolution Regional Reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  16. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus

    2014-01-01

    High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...... mode exploited in plasmonic waveguides with extreme light confinement is a very important factor that should be taken into account in the design of nanoplasmonic circuits and devices....

  17. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  18. High resolution radar satellite imagery analysis for safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Christian; Eineder, Michael [German Aerospace Center, Remote Sensing Technology Institute, Department of SAR Signal Processing, Wessling, (Germany); Rezniczek, Arnold [UBA GmbH, Herzogenrath, (Germany); Niemeyer, Irmgard [Forschungszentrum Juelich, Institue of Energy and Climate Research, IEK-6: Nuclear Waste Management and Reactor Safety, Juelich, (Germany)

    2011-12-15

    For monitoring nuclear sites, the use of Synthetic Aperture Radar (SAR) imagery shows essential promises. Unlike optical remote sensing instruments, radar sensors operate under almost all weather conditions and independently of the sunlight, i.e. time of the day. Such technical specifications are required both for continuous and for ad-hoc, timed surveillance tasks. With Cosmo-Skymed, TerraSARX and Radarsat-2, high-resolution SAR imagery with a spatial resolution up to 1m has recently become available. Our work therefore aims to investigate the potential of high-resolution TerraSAR data for nuclear monitoring. This paper focuses on exploiting amplitude of a single acquisition, assessing amplitude changes and phase differences between two acquisitions, and PS-InSAR processing of an image stack.

  19. Effects of display resolution and size on primary diagnosis of chest images using a high-resolution electronic work station

    International Nuclear Information System (INIS)

    Fuhrman, C.R.; Cooperstein, L.A.; Herron, J.; Good, W.F.; Good, B.; Gur, D.; Maitz, G.; Tabor, E.; Hoy, R.J.

    1987-01-01

    To evaluate the acceptability of electronically displayed planar images, the authors have a high-resolution work station. This system utilizes a high-resolution film digitizer (100-micro resolution) interfaced to a mainframe computer and two high-resolution (2,048 X 2,048) display devices (Azuray). In a clinically simulated multiobserver blind study (19 cases and five observers) a prodetermined series of reading sessions is stored on magnetic disk and is transferred to the displays while the preceding set of images is being reviewed. Images can be linearly processed on the fly into 2,000 X 2,000 full resolution, 1,000 X 1,000 minified display, or 1,000 X 1,000 interpolated for full-size display. Results of the study indicate that radiologists accept but do not like significant minification (more than X2), and they rate 2,000 X 2,000 images as having better diagnostic quality than 1,000 X 1,000 images

  20. High resolution RGB color line scan camera

    Science.gov (United States)

    Lynch, Theodore E.; Huettig, Fred

    1998-04-01

    A color line scan camera family which is available with either 6000, 8000 or 10000 pixels/color channel, utilizes off-the-shelf lenses, interfaces with currently available frame grabbers, includes on-board pixel by pixel offset correction, and is configurable and controllable via RS232 serial port for computer controlled or stand alone operation is described in this paper. This line scan camera is based on an available 8000 element monochrome line scan camera designed by AOA for OEM use. The new color version includes improvements such as better packaging and additional user features which make the camera easier to use. The heart of the camera is a tri-linear CCD sensor with on-chip color balancing for maximum accuracy and pinned photodiodes for low lag response. Each color channel is digitized to 12 bits and all three channels are multiplexed together so that the resulting camera output video is either a 12 or 8 bit data stream at a rate of up to 24Megpixels/sec. Conversion from 12 to 8 bit, or user-defined gamma, is accomplished by on board user-defined video look up tables. The camera has two user-selectable operating modes; lows speed, high sensitivity mode or high speed, reduced sensitivity mode. The intended uses of the camera include industrial inspection, digital archiving, document scanning, and graphic arts applications.

  1. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  2. Microstructurally Based Prediction of High Strain Failure Modes in Crystalline Solids

    Science.gov (United States)

    2016-07-05

    interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, (8 2015): 0. doi: 10.1557/jmr...rupture • Comparison and validation with experimental observations/ measurements • New dislocation-density crystalline plasticity that accounts for...relationships between coherent interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, Vol. 30

  3. Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-11-01

    We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.

  4. Analysis strategies for high-resolution UHF-fMRI data.

    Science.gov (United States)

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  6. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    International Nuclear Information System (INIS)

    Sztrókay, A; Schlossbauer, T; Bamberg, F; Reiser, M F; Coan, P; Diemoz, P C; Brun, E; Bravin, A; Mayr, D

    2012-01-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm 2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation. (paper)

  7. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    Science.gov (United States)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  8. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  9. Ring artifact correction for high-resolution micro CT

    International Nuclear Information System (INIS)

    Kyriakou, Yiannis; Prell, Daniel; Kalender, Willi A

    2009-01-01

    In high-resolution micro CT using flat detectors (FD), imperfect or defect detector elements may cause concentric-ring artifacts due to their continuous over- or underestimation of attenuation values, which often disturb image quality. We here present a dedicated image-based ring artifact correction method for high-resolution micro CT, based on median filtering of the reconstructed image and working on a transformed version of the reconstructed images in polar coordinates. This post-processing method reduced ring artifacts in the reconstructed images and improved image quality for phantom and in in vivo scans. Noise and artifacts were reduced both in transversal and in multi-planar reformations along the longitudinal axis. (note)

  10. Theoretical analysis of mode instability in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2013-01-01

    We present a simple theoretical model of transverse mode instability in high-power rare-earth doped fiber amplifiers. The model shows that efficient power transfer between the fundamental and higher-order modes of the fiber can be induced by a nonlinear interaction mediated through the thermo......-optic effect, leading to transverse mode instability. The temporal and spectral characteristics of the instability dynamics are investigated, and it is shown that the instability can be seeded by both quantum noise and signal intensity noise, while pure phase noise of the signal does not induce instability...

  11. A high-switching-frequency flyback converter in resonant mode

    NARCIS (Netherlands)

    Li, Jianting; van Horck, Frank B.M.; Daniel, Bobby J.; Bergveld, Henk Jan

    2017-01-01

    The demand of miniaturization of power systems has accelerated the research on high-switching-frequency power converters. A flyback converter in resonant mode that features low switching losses, less transformer losses, and low switching noise at high switching frequency is investigated in this

  12. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X

  13. Catastrophic optical bulk degradation in high-power single- and multi-mode InGaAs-AlGaAs strained QW lasers: part II

    Science.gov (United States)

    Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary

    2018-03-01

    High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor

  14. Digital approach to high-resolution pulse processing for semiconductor detectors

    International Nuclear Information System (INIS)

    Georgiev, A.; Buchner, A.; Gast, W.; Lieder, R.M.

    1992-01-01

    A new design philosophy for processing signals produced by high resolution, large volume semiconductor detectors is described. These detectors, to be used in the next generation of spectrometer arrays for nuclear research (i.e. EUROBALL, etc.), present a set of problems like resolution degradation due to charge trapping and ballistic defect effects, low resolution at a high count rate, poor long term stability, etc. To solve these problems, a new design approach has been developed, including reconstruction of the event charge, providing a pure triangular residual function, and suppressing low frequency noise. 5 refs., 4 figs

  15. Digital approach to high-resolution pulse processing for semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, A [Sofia Univ. (Bulgaria); Buchner, A [Forschungszentrum Rossendorf (Germany); Gast, W; Lieder, R M [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Stein, J [Target System Electronic GmbH, Solingen, (Germany)

    1992-08-01

    A new design philosophy for processing signals produced by high resolution, large volume semiconductor detectors is described. These detectors, to be used in the next generation of spectrometer arrays for nuclear research (i.e. EUROBALL, etc.), present a set of problems like resolution degradation due to charge trapping and ballistic defect effects, low resolution at a high count rate, poor long term stability, etc. To solve these problems, a new design approach has been developed, including reconstruction of the event charge, providing a pure triangular residual function, and suppressing low frequency noise. 5 refs., 4 figs.

  16. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    Science.gov (United States)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS

  17. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Lægsgaard, Jesper

    2014-01-01

    We present a coupled-mode model of transverse mode instability in high-power fiber amplifiers, which takes the effect of gain saturation into account. The model provides simple semi-analytical formulas for the mode instability threshold, which are valid also for highly saturated amplifiers...

  18. ARCHAEOLOGICAL SURVEYS ON THE GERMAN NORTH SEA COAST USING HIGH-RESOLUTION SYNTHETIC APERTURE RADAR DATA

    Directory of Open Access Journals (Sweden)

    M. Gade

    2017-11-01

    Full Text Available We show that high-resolution space-borne Synthetic Aperture Radar (SAR imagery with pixel sizes well below 1 m2 can be used to complement archaeological surveys in areas that are difficult to access. After major storm surges in the 14th and 17th centuries, vast areas on the German North Sea coast were lost to the sea. Areas of former settlements and historical land use were buried under sediments for centuries, but when the surface layer is driven away under the permanent action of wind, currents, and waves, they appear again on the Wadden Sea surface. However, the frequent flooding and erosion of the intertidal flats make any archaeological monitoring a difficult task, so that remote sensing techniques appear to be an efficient and cost-effective instrument for any archaeological surveillance of that area. Space-borne SAR images clearly show remnants of farmhouse foundations and of former systems of ditches, dating back to the 14th and to the 16th/17th centuries. In particular, the very high-resolution acquisition (staring spotlight mode of the German TerraSAR/ TanDEM-X satellites allows for the detection of various kinds of residuals of historical land use with high precision. In addition, we also investigate the capability of SARs working at lower microwave frequencies (on Radarsat-2 to complement our archaeological survey of historical cultural traces, some of which have been unknown so far.

  19. Statistical dynamic image reconstruction in state-of-the-art high-resolution PET

    International Nuclear Information System (INIS)

    Rahmim, Arman; Cheng, J-C; Blinder, Stephan; Camborde, Maurie-Laure; Sossi, Vesna

    2005-01-01

    Modern high-resolution PET is now more than ever in need of scrutiny into the nature and limitations of the imaging modality itself as well as image reconstruction techniques. In this work, we have reviewed, analysed and addressed the following three considerations within the particular context of state-of-the-art dynamic PET imaging: (i) the typical average numbers of events per line-of-response (LOR) are now (much) less than unity (ii) due to the physical and biological decay of the activity distribution, one requires robust and efficient reconstruction algorithms applicable to a wide range of statistics and (iii) the computational considerations in dynamic imaging are much enhanced (i.e., more frames to be stored and reconstructed). Within the framework of statistical image reconstruction, we have argued theoretically and shown experimentally that the sinogram non-negativity constraint (when using the delayed-coincidence and/or scatter-subtraction techniques) is especially expected to result in an overestimation bias. Subsequently, two schemes are considered: (a) subtraction techniques in which an image non-negativity constraint has been imposed and (b) implementation of random and scatter estimates inside the reconstruction algorithms, thus enabling direct processing of Poisson-distributed prompts. Both techniques are able to remove the aforementioned bias, while the latter, being better conditioned theoretically, is able to exhibit superior noise characteristics. We have also elaborated upon and verified the applicability of the accelerated list-mode image reconstruction method as a powerful solution for accurate, robust and efficient dynamic reconstructions of high-resolution data (as well as a number of additional benefits in the context of state-of-the-art PET)

  20. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  1. How Photonic Crystals Can Improve the Timing Resolution of Scintillators

    CERN Document Server

    Lecoq, P; Knapitsch, A

    2013-01-01

    Photonic crystals (PhCs) and quantum optics phenomena open interesting perspectives to enhance the light extraction from scintillating me dia with high refractive indices as demonstrated by our previous work. By doing so, they also in fl uence the timing resolution of scintillators by improving the photostatistics. The present cont ribution will demonstrate that they are actually doing much more. Indeed, photonic crystals, if properly designed, allow the extr action of fast light propagation modes in the crystal with higher efficiency, therefore contributing to increasing the density of photons in the early phase of the light pulse. This is of particular interest to tag events at future high-energy physics colliders, such as CLIC, with a bunch-crossing rate of 2 GHz, as well as for a new generation of time-of-flight positron emission tomographs (TOFPET) aiming at a coincidence timing resolution of 100 ps FWHM. At this level of precision, good control of the light propagation modes is crucial if we consid...

  2. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    International Nuclear Information System (INIS)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, S; Commichau, V; Dorner, D; Gendotti, A; Grimm, O; Gunten, H von; Hildebrand, D; Horisberger, U; Kraehenbuehl, T; Kranich, D; Lorenz, E; Lustermann, W; Backes, M; Neise, D; Bretz, T; Mannheim, K

    2009-01-01

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  3. The development of high resolution silicon x-ray microcalorimeters

    Science.gov (United States)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  4. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  5. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes

    International Nuclear Information System (INIS)

    Yang Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-01-01

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is ∼2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach

  6. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  7. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    Science.gov (United States)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  8. A new omni-directional multi-camera system for high resolution surveillance

    Science.gov (United States)

    Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2014-05-01

    Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.

  9. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, D.; Schmitt, T.

    2017-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the

  10. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    Science.gov (United States)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  11. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  12. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  13. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    International Nuclear Information System (INIS)

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  14. Design and simulation of double annular illumination mode for microlithography

    Science.gov (United States)

    Song, Qiang; Zhu, Jing; Yang, Baoxi; Liu, Lei; Wang, Jun; Huang, Huijie

    2013-08-01

    Methods of generating various illumination patterns remain as an attractive and important micro-optics research area for the development of resolution enhancement in advanced lithography system. In the current illumination system of lithography machine, off-axis illumination is widely used as an effective approach to enhance the resolution and increase the depth of focus (DOF). This paper proposes a novel illumination mode generation unit, which transform conventional mode to double annular shaped radial polarized (DARP) mode for improving the resolution of micro-lithography. Through LightToolsTM software simulation, double annular shaped mode is obtained from the proposed generation unit. The mathematical expressions of the radius variation of inner and outer rings are deduced. The impacts of conventional and dual concentric annular illumination pattern on critical dimension uniformity were simulated on an isolated line, square hole and corner. Lithography performance was compared between DARP illumination mode and corresponding single annular modes under critical dimension of 45nm. As a result, DARP illumination mode can improve the uniformity of aerial image at 45nm node through pitch varied in 300-500 nm to a certain extent.

  15. Comparison of online and offline based merging methods for high resolution rainfall intensities

    Science.gov (United States)

    Shehu, Bora; Haberlandt, Uwe

    2016-04-01

    Accurate rainfall intensities with high spatial and temporal resolution are crucial for urban flow prediction. Commonly, raw or bias corrected radar fields are used for forecasting, while different merging products are employed for simulation. The merging products are proven to be adequate for rainfall intensities estimation, however their application in forecasting is limited as they are developed for offline mode. This study aims at adapting and refining the offline merging techniques for the online implementation, and at comparing the performance of these methods for high resolution rainfall data. Radar bias correction based on mean fields and quantile mapping are analyzed individually and also are implemented in conditional merging. Special attention is given to the impact of different spatial and temporal filters on the predictive skill of all methods. Raw radar data and kriging interpolation of station data are considered as a reference to check the benefit of the merged products. The methods are applied for several extreme events in the time period 2006-2012 caused by different meteorological conditions, and their performance is evaluated by split sampling. The study area is located within the 112 km radius of Hannover radar in Lower Saxony, Germany and the data set constitutes of 80 recording stations in 5 min time steps. The results of this study reveal how the performance of the methods is affected by the adjustment of radar data, choice of merging method and selected event. Merging techniques can be used to improve the performance of online rainfall estimation, which gives way to the application of merging products in forecasting.

  16. Resistive internal kink modes in a tokamak with high-pressure plasma

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhajlovskij, A.B.; Tatarinov, E.G.

    1988-01-01

    Theory of resistive internal kink modes in a tokamak with high-pressure plasma is developed. Equation for Fourie-image of disturbed displacment in a resistive layer ie derived with regard to effects of the fourth order by plasma pressure within the framework of single-liquid approach. In its structure this equation coincides with a similar equation for resistive balloon modes and has an exact solution expressed by degenerated hypergeometric function. A general dispersion equation for resistive kink modes is derived with regard to the effects indicated. It is shown that plasma pressure finiteness leads to the reduction of reconnection and tyring-mode increments

  17. High-resolution fiber-optic microendoscopy for in situ cellular imaging.

    Science.gov (United States)

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-11

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.

  18. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  19. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    Science.gov (United States)

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.

    2015-11-01

    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  20. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  1. Study on a high resolution positron emission tomography scanner for brain study

    International Nuclear Information System (INIS)

    Nohara, N.; Tomitani, T.; Yamamoto, M.; Murayama, H.; Tanaka, E.

    1990-01-01

    The spatial resolution of positron emission tomography (PET) scanners is usually limited by the finite size of crystals such as bismuth germanate (BGO). To attain high resolution as well as high sensitivity, it is essential to use a large number of small BGO crystals arranged in close-packing on circular rings. In developing high resolution PET scanners, however, there are two physical factors limiting the spatial resolution. One is the finite range of positrons before annihilation and the other the deviation from 180 degrees of annihilation photons. The effect of the factors on the spatial resolution has been evaluated for positron-emitting sources as a function of detector ring radius. A high resolution PET scanner has been developed for brain study, aiming to have spatial resolutions as high as less than 4-mm FWHM in tomographic plane and less than 6-mm FWHM in axial direction at the detector ring center. For the goal of the high resolutions a multi-segment type of photomultiplier tubes has been specially designed and developed, which allows one tube to be directly coupled by four BGO crystals. The scanner consists of five detector rings of 47-cm in diameter, using all 1200 BGO crystals each measuring 5 mm x 12 mm x 30 mm. The scanner provides simultaneous 9 images by combination of in-plane and cross-plane, offering a 24-cm dia. x7.4-cm field-of-view. Physical performance of the scanner was investigated. At the ring center, the spatial resolution in the tomographic plane was measured to be 3.5-mm FWHM. The axial resolution was measured to be 5.7-mm FWHM for in-plane and 5.3-mm FWHM for cross-plane. Sensitivity for a 20-cm dia. uniform source was measured to be 9.5 kcps/μCi/ml for in-plane and 15.3 kcps/μCi/ml for cross-plane. (J.P.N.)

  2. Global-Mode Analysis of Full-Disk Data from the Michelson Doppler Imager and the Helioseismic and Magnetic Imager

    Science.gov (United States)

    Larson, Timothy P.; Schou, Jesper

    2018-02-01

    Building upon our previous work, in which we analyzed smoothed and subsampled velocity data from the Michelson Doppler Imager (MDI), we extend our analysis to unsmoothed, full-resolution MDI data. We also present results from the Helioseismic and Magnetic Imager (HMI), in both full resolution and processed to be a proxy for the low-resolution MDI data. We find that the systematic errors that we saw previously, namely peaks in both the high-latitude rotation rate and the normalized residuals of odd a-coefficients, are almost entirely absent in the two full-resolution analyses. Furthermore, we find that both systematic errors seem to depend almost entirely on how the input images are apodized, rather than on resolution or smoothing. Using the full-resolution HMI data, we confirm our previous findings regarding the effect of using asymmetric profiles on mode parameters, and also find that they occasionally result in more stable fits. We also confirm our previous findings regarding discrepancies between 360-day and 72-day analyses. We further investigate a six-month period previously seen in f-mode frequency shifts using the low-resolution datasets, this time accounting for solar-cycle dependence using magnetic-field data. Both HMI and MDI saw prominent six-month signals in the frequency shifts, but we were surprised to discover that the strongest signal at that frequency occurred in the mode coverage for the low-resolution proxy. Finally, a comparison of mode parameters from HMI and MDI shows that the frequencies and a-coefficients agree closely, encouraging the concatenation of the two datasets.

  3. High spatial resolution measurement of depth-of-interaction of a PET LSO crystal

    International Nuclear Information System (INIS)

    Simon, A.; Kalinka, G.; Novak, D.; Sipos, A.; Vegh, J.; Molnar, J.

    2004-01-01

    Complete text of publication follows. A new type of experimental technique to investigate the depth-of-interaction (DOI) dependence in small scintillator elements designed for high-resolution animal PET [1] has been introduced at our institute, recently. A lutetium oxyorthosilicate (LSO) crystal (2x2x10 mm 3 ) was irradiated with a highly focused 2 MeV He + beam at the ATOMKI nuclear microprobe laboratory. Pulse height spectra from a photomultiplier (PMT) attached to one end of the LSO crystal were collected in list mode. Sequential scans of 1000x1000 μm 2 areas along the 10 mm long crystal were made to get high lateral resolution images of pulse height spectra at different distances from the window of the PMT. A mean pulse height algorithm was applied to each pixel to generate two dimensional intensity images and the corresponding spectra of 100 μmx1 mm areas. Representative pulse height spectra are shown in Fig. 1 for different distances between the position of irradiation and the PMT. The mean value of the pulse height spectrum describing the position of the full energy peak is a way to measure DOI effects. It is seen that the closer the DOI to the PMT-end of the crystal the higher the energy of the peak. The centre of the detected peak varies about 30 % along the lateral side of the crystal. This effect is due to the increasing number of reflections with associated loss of light when the distance between the DOI position and the light collecting PMT grows. Further these results, no difference in the light intensity was found depending on which position across (perpendicular to the length of) the crystal was irradiated with the microbeam. The obtained results of the overall DOI dependence confirm previous measurements on LSO crystals with similar geometry and wrapping but based on collimated gamma-ray irradiation. Since the present experimental setup allows obtaining data with several orders of magnitude better spatial resolution (from μm up to mm) than with

  4. Beam-transport system for high-resolution heavy-ion spectroscopy

    International Nuclear Information System (INIS)

    Roussel, P.; Kashy, E.

    1980-01-01

    A method is given to adjust a beam-transport system to the requirements of high-energy resolution heavy-ion spectroscopy. The results of a test experiment performed on a MP tandem with a 12 C beam are shown. A drastic improvement in energy resolution is obtained for a kinematical factor K=1/p dp/dtheta=0.12 [fr

  5. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  6. Very high-resolution regional climate simulations over Scandinavia-present climate

    DEFF Research Database (Denmark)

    Christensen, Ole B.; Christensen, Jens H.; Machenhauer, Bennert

    1998-01-01

    realistically simulated. It is found in particular that in mountainous regions the high-resolution simulation shows improvements in the simulation of hydrologically relevant fields such as runoff and snow cover. Also, the distribution of precipitation on different intensity classes is most realistically...... on a high-density station network for the Scandinavian countries compiled for the present study. The simulated runoff is compared with observed data from Sweden extracted from a Swedish climatological atlas. These runoff data indicate that the precipitation analyses are underestimating the true...... simulated in the high-resolution simulation. It does, however, inherit certain large-scale systematic errors from the driving GCM. In many cases these errors increase with increasing resolution. Model verification of near-surface temperature and precipitation is made using a new gridded climatology based...

  7. ROLE OF HIGH RESOLUTION ULTRASONOGRAPHY IN THE EVALUATION OF POSTERIOR SEGMENT LESIONS OF THE EYE

    Directory of Open Access Journals (Sweden)

    Rashmi Nagaraju

    2015-01-01

    Full Text Available BACKGRO UND: The superficial location of the eye, its cystic composition, and the advent of high - frequency ultrasound make sonography ideal for imaging the eye. Ultrasonography is a simple, readily available, non - invasive, non - ionizing, highly accurate, real time and cost effective modality . OBJECTIVES: 1 To evaluate the accuracy of high resolution B - mode ultrasonography in the diagnosis of posterior segment lesions of eye as compared to ophthalmoscopic examination particularly in cases of opaque conducting media . 2 To evaluate sonographic appearances of various posterior segment lesions of the eye . MATERIALS AND METHODS: 1 A prospective study was carried out on 62 cases with suspected posterior segment lesions of eye. All patients clinically suspected to have p osterior segment lesions in the presence of opaque conducting media were included in the study. Cases suspected to have isolated anterior segmental and extra ocular lesions were excluded. 2 HRUS was performed with Philips IU22 using high frequency probe ( 5 to 17 MHz utilizing contact method. 3 Sonological diagnosis was made based on sonographic features such as location, morphology, echo pattern, color Doppler characteristics, kinetics of the lesion with eye movements and acoustic characteristics of the lesion. 4 Subsequent clinical, lab investigations, surgical and histopathological examinations were carried out as applicable and final diagnosis was made which was correlated with the sonological diagnosis. Sonological diagnosis was also compared with op hthalmoscopic diagnosis. STATISTICAL ANALYSES: The validities and diagnostic accuracies of high resolution ultrasound and ophthalmoscopic examinations were calculated and compared. RESULTS AND CONCLUSIONS: 1 Ultrasound was the initial imaging modality opt ed in most of the cases as it was readily available, simple and cost effective modality. It establishes the diagnosis in significant number of cases superseding the accuracy

  8. Digital signal processors for cryogenic high-resolution x-ray detector readout

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Bechstein, Sylke; Hennig, Wolfgang; Momayezi, Michael

    2003-01-01

    We are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer online filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. We discuss DSP performance with our 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy. (author)

  9. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  10. High resolution and simultaneous monitoring of airborne radionuclides

    International Nuclear Information System (INIS)

    Abe, T.; Yamaguchi, Y.; Muguntha Manikandan, N.; Komura, K.

    2005-01-01

    By using 11 extremely low background Ge detectors at Ogoya Underground Laboratory, it became possible to investigate temporal variations of airborne 212 Pb (T 1/2 =10.6 h) along with 210 Pb and 7 Be with order of magnitude higher time resolution. Then, we have measured airborne nuclides at three monitoring points, (1) roof of our laboratory (LLRL; 40 m ASL), (2) Shinshiku Plateau (640 m ASL) located about 8 km from LLRL as a comparison of vertical distribution, and (3) Hegura Island (10 m ASL) at about 50 km from Wajima located north of Noto Peninsula facing on the Sea of Japan (about 180 km to the north-northeast of LLRL), to investigate influence of Asian continent. Airborne nuclides were collected by high volume air samplers at intervals of a few hours at either two or three points simultaneously. In the same manner, high resolution monitoring was carried out also at the time of passage of typhoon and cold front. In this study, we observed drastic temporal variations of airborne radionuclides and correlations of multiple monitoring points. The results indicate that high resolution and simultaneous monitoring is very useful to understand dynamic state of variations of airborne nuclides due to short and long-term air-mass movement. (author)

  11. Robust-mode analysis of hydrodynamic flows

    Science.gov (United States)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  12. High-resolution multimodal clinical multiphoton tomography of skin

    Science.gov (United States)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  13. Prospectively Electrocardiogram-Gated High-Pitch Spiral Acquisition Mode Dual-Source CT Coronary Angiography in Patients with High Heart Rates: Comparison with Retrospective Electrocardiogram-Gated Spiral Acquisition Mode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai; Ma, Rui; Wang, Li Jun [Dept. of Radiology, Baotou Central Hospital, Baotou (China); Li, Li Gang; Chen, Jiu Hong [CT BM Clinic Marketing, Siemens Healthcare, Beijing (China)

    2012-11-15

    To assess the image quality and effective radiation dose of prospectively electrocardiogram (ECG)-gated high-pitch spiral acquisition mode (flash mode) of dual-source CT (DSCT) coronary angiography (CTCA) in patients with high heart rates (HRs) as compared with retrospectively ECG-gated spiral acquisition mode. Two hundred and sixty-eight consecutive patients (132 female, mean age: 55 {+-} 11 years) with mean HR > 65 beats per minute (bpm) were prospectively included in this study. The patients were divided into two groups. Collection was performed in group A CTCA using flash mode setting at 20-30% of the R-R interval, and retrospectively ECG-gated spiral acquisition mode in group B. The image noise, contrast-to-noise ratio (CNR), image quality scores, effective radiation dose and influencing factors on image quality between the two groups were assessed. There were no significant differences in image quality scores and proportions of non-diagnostic coronary artery segments between two groups (image quality scores: 1.064 {+-} 0.306 [group A] vs. 1.084 {+-} 0.327 [group B], p = 0.063; proportion of non-diagnostic coronary artery segments: segment-based analysis 1.52% (group A) vs. 1.74% (group B), p = 0.345; patient-based analysis 7.5% (group A) vs. 6.7% (group B), p = 0.812). The estimated radiation dose was 1.0 {+-} 0.16 mSv in group A and 7.1 {+-} 1.05 mSv in group B (p = 0.001). In conclusion, in patients with HRs > 65 bpm without cardiac arrhythmia, the prospectively high-pitch spiral-acquisition mode with image-acquired timing set at 20-30% of the R-R interval provides a similar image quality and low rate of non-diagnostic coronary segments to the retrospectively ECG-gated low-pitch spiral acquisition mode, with significant reduction of radiation exposure.

  14. Prospectively Electrocardiogram-Gated High-Pitch Spiral Acquisition Mode Dual-Source CT Coronary Angiography in Patients with High Heart Rates: Comparison with Retrospective Electrocardiogram-Gated Spiral Acquisition Mode

    International Nuclear Information System (INIS)

    Sun, Kai; Ma, Rui; Wang, Li Jun; Li, Li Gang; Chen, Jiu Hong

    2012-01-01

    To assess the image quality and effective radiation dose of prospectively electrocardiogram (ECG)-gated high-pitch spiral acquisition mode (flash mode) of dual-source CT (DSCT) coronary angiography (CTCA) in patients with high heart rates (HRs) as compared with retrospectively ECG-gated spiral acquisition mode. Two hundred and sixty-eight consecutive patients (132 female, mean age: 55 ± 11 years) with mean HR > 65 beats per minute (bpm) were prospectively included in this study. The patients were divided into two groups. Collection was performed in group A CTCA using flash mode setting at 20-30% of the R-R interval, and retrospectively ECG-gated spiral acquisition mode in group B. The image noise, contrast-to-noise ratio (CNR), image quality scores, effective radiation dose and influencing factors on image quality between the two groups were assessed. There were no significant differences in image quality scores and proportions of non-diagnostic coronary artery segments between two groups (image quality scores: 1.064 ± 0.306 [group A] vs. 1.084 ± 0.327 [group B], p = 0.063; proportion of non-diagnostic coronary artery segments: segment-based analysis 1.52% (group A) vs. 1.74% (group B), p = 0.345; patient-based analysis 7.5% (group A) vs. 6.7% (group B), p = 0.812). The estimated radiation dose was 1.0 ± 0.16 mSv in group A and 7.1 ± 1.05 mSv in group B (p = 0.001). In conclusion, in patients with HRs > 65 bpm without cardiac arrhythmia, the prospectively high-pitch spiral-acquisition mode with image-acquired timing set at 20-30% of the R-R interval provides a similar image quality and low rate of non-diagnostic coronary segments to the retrospectively ECG-gated low-pitch spiral acquisition mode, with significant reduction of radiation exposure.

  15. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  16. A multi-channel high-resolution time recorder system

    International Nuclear Information System (INIS)

    Zhang Lingyun; Yang Xiaojun; Song Kezhu; Wang Yanfang

    2004-01-01

    This paper introduces a multi-channel and high-speed time recorder system, which was originally designed to work in the experiments of quantum cryptography research. The novelty of the system is that all the hardware logic is performed by only one FPGA. The system can achieve several desirable features, such as simplicity, high resolution and high processing speed. (authors)

  17. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander

    2015-01-01

    The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone...... microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase...

  18. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  19. Quantifying and containing the curse of high resolution coronal imaging

    Directory of Open Access Journals (Sweden)

    V. Delouille

    2008-10-01

    Full Text Available Future missions such as Solar Orbiter (SO, InterHelioprobe, or Solar Probe aim at approaching the Sun closer than ever before, with on board some high resolution imagers (HRI having a subsecond cadence and a pixel area of about (80 km2 at the Sun during perihelion. In order to guarantee their scientific success, it is necessary to evaluate if the photon counts available at these resolution and cadence will provide a sufficient signal-to-noise ratio (SNR. For example, if the inhomogeneities in the Quiet Sun emission prevail at higher resolution, one may hope to locally have more photon counts than in the case of a uniform source. It is relevant to quantify how inhomogeneous the quiet corona will be for a pixel pitch that is about 20 times smaller than in the case of SoHO/EIT, and 5 times smaller than TRACE. We perform a first step in this direction by analyzing and characterizing the spatial intermittency of Quiet Sun images thanks to a multifractal analysis. We identify the parameters that specify the scale-invariance behavior. This identification allows next to select a family of multifractal processes, namely the Compound Poisson Cascades, that can synthesize artificial images having some of the scale-invariance properties observed on the recorded images. The prevalence of self-similarity in Quiet Sun coronal images makes it relevant to study the ratio between the SNR present at SoHO/EIT images and in coarsened images. SoHO/EIT images thus play the role of "high resolution" images, whereas the "low-resolution" coarsened images are rebinned so as to simulate a smaller angular resolution and/or a larger distance to the Sun. For a fixed difference in angular resolution and in Spacecraft-Sun distance, we determine the proportion of pixels having a SNR preserved at high resolution given a particular increase in effective area. If scale-invariance continues to prevail at smaller scales, the conclusion reached with SoHO/EIT images can be transposed

  20. A High-resolution Reanalysis for the European CORDEX Region

    Science.gov (United States)

    Bentzien, Sabrina; Bollmeyer, Christoph; Crewell, Susanne; Friederichs, Petra; Hense, Andreas; Keller, Jan; Keune, Jessica; Kneifel, Stefan; Ohlwein, Christian; Pscheidt, Ieda; Redl, Stephanie; Steinke, Sandra

    2014-05-01

    A High-resolution Reanalysis for the European CORDEX Region Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on the regional reanalysis for Europe with a domain matching the CORDEX-EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). The COSMO reanalysis system comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-interim data. The reanalysis data set currently covers 6 years (2007-2012). The evaluation of the reanalyses is done using independent observations with special emphasis on precipitation and high-impact weather situations. The development and evaluation of the COSMO-based reanalysis for the CORDEX-Euro domain can be seen as a preparation for joint European activities on the development of an ensemble system of regional reanalyses for Europe.

  1. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  2. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  3. Simulation study for high resolution alpha particle spectrometry with mesh type collimator

    International Nuclear Information System (INIS)

    Park, Seunghoon; Kwak, Sungwoo; Kang, Hanbyeol; Shin, Jungki; Park, Iljin

    2014-01-01

    An alpha particle spectrometry with a mesh type collimator plays a crucial role in identifying specific radionuclide in a radioactive source collected from the atmosphere or environment. The energy resolution is degraded without collimation because particles with a high angle have a longer path to travel in the air. Therefore, collision with the background increases. The collimator can cut out particles which traveling at a high angle. As a result, an energy distribution with high resolution can be obtained. Therefore, the mesh type collimator is simulated for high resolution alpha particle spectrometry. In conclusion, the collimator can improve resolution. With collimator, the collimator is a role of cutting out particles with a high angle, so, low energy tail and broadened energy distribution can be reduced. The mesh diameter is found out as an important factor to control resolution and counting efficiency. Therefore, a target particle, for example, 235 U, can be distinguished by a detector with a collimator under a mixture of various nuclides, for example: 232 U, 238 U, and 232 Th

  4. Structural changes of Bi1.8Sr2(Ca1-xYx)Cu2.2Oz ceramics with yttrium content studied by electron diffraction and high-resolution electron microscopy

    Science.gov (United States)

    Onozuka, Takashi; Iwabuchi, Yoshihiro; Fukase, Tetsuo; Sato, Hiroshi; Mitchell, Terence E.

    1991-06-01

    The mode of the incommensurate modulation in the b direction of the Bi1.8Sr2(Ca1-xYx)Cu2.2Oz (0.05high-resolution lattice imaging. The change of period of the long-period structure with x is found to be basically due to the mixing ratio of domains of two modulation periods with b=4.5b0 and 5b0 or 4.5b0 and 4b0, thus creating periods of b=4.75b0-4.0b0. The fundamental orthorhombic lattice has dimensions of a~=b~=b0 (0.54 nm) and c~=c0 (3.1 nm). The change of the mixing mode from one to the other mentioned above occurs just in the yttrium concentration range, 0.45modes of the domains are directly recorded as a contrast modulation with half periods, 4.5b0/2 and 5b0/2 or 4.5b0/2 and 4b0/2 in high-resolution lattice images. These images are reproduced well by a multislice computer-simulation technique.

  5. Low-resolution ship detection from high-altitude aerial images

    Science.gov (United States)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  6. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  7. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  8. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Wiese, Stefanie

    2016-01-01

    -glucosidase inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy (HR-bioassay/HPLC–HRMS–SPE–NMR). The results showed Ascophyllum nodosum and Fucus vesicolosus to be rich in antioxidants, equaling...... as fatty acids – with oleic acid, linoleic acid and eicosapentaenoic acid being the most potent with IC50 values of 0.069, 0.075 and 0.10 mM, respectively, and showing a mixed-type inhibition mode....

  9. Novel techniques in VUV high-resolution spectroscopy

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Salumbides, E.J.; Eikema, K.S.E.; de Oliveira, N.; Nahon, L.

    2014-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies.

  10. Duchenne muscular dystrophy: High-resolution melting curve ...

    African Journals Online (AJOL)

    Duchenne muscular dystrophy: High-resolution melting curve analysis as an affordable diagnostic mutation scanning tool in a South African cohort. ... Genetic screening for D/BMD in South Africa currently includes multiple ligase-dependent probe amplification (MLPA) for exonic deletions and duplications and linkage ...

  11. High-Resolution 3 T MR Microscopy Imaging of Arterial Walls

    International Nuclear Information System (INIS)

    Sailer, Johannes; Rand, Thomas; Berg, Andreas; Sulzbacher, Irene; Peloschek, P.; Hoelzenbein, Thomas; Lammer, Johannes

    2006-01-01

    Purpose. To achieve a high spatial resolution in MR imaging that allows for clear visualization of anatomy and even histology and documentation of plaque morphology in in vitro samples from patients with advanced atherosclerosis. A further objective of our study was to evaluate whether T2-weighted high-resolution MR imaging can provide accurate classification of atherosclerotic plaque according to a modified American Heart Association classification. Methods. T2-weighted images of arteries were obtained in 13 in vitro specimens using a 3 T MR unit (Medspec 300 Avance/Bruker, Ettlingen, Germany) combined with a dedicated MR microscopy system. Measurement parameters were: T2-weighted sequences with TR 3.5 sec, TE 15-120 msec; field of view (FOV) 1.4 x 1.4; NEX 8; matrix 192; and slice thickness 600 μm. MR measurements were compared with corresponding histologic sections. Results. We achieved excellent spatial and contrast resolution in all specimens. We found high agreement between MR images and histology with regard to the morphology and extent of intimal proliferations in all but 2 specimens. We could differentiate fibrous caps and calcifications from lipid plaque components based on differences in signal intensity in order to differentiate hard and soft atheromatous plaques. Hard plaques with predominantly intimal calcifications were found in 7 specimens, and soft plaques with a cholesterol/lipid content in 5 cases. In all specimens, hemorrhage or thrombus formation, and fibrotic and hyalinized tissue could be detected on both MR imaging and histopathology. Conclusion. High-resolution, high-field MR imaging of arterial walls demonstrates the morphologic features, volume, and extent of intimal proliferations with high spatial and contrast resolution in in vitro specimens and can differentiate hard and soft plaques

  12. Mediterranean Thermohaline Response to Large-Scale Winter Atmospheric Forcing in a High-Resolution Ocean Model Simulation

    Science.gov (United States)

    Cusinato, Eleonora; Zanchettin, Davide; Sannino, Gianmaria; Rubino, Angelo

    2018-04-01

    Large-scale circulation anomalies over the North Atlantic and Euro-Mediterranean regions described by dominant climate modes, such as the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic/Western Russian (EAWR) and the Mediterranean Oscillation Index (MOI), significantly affect interannual-to-decadal climatic and hydroclimatic variability in the Euro-Mediterranean region. However, whereas previous studies assessed the impact of such climate modes on air-sea heat and freshwater fluxes in the Mediterranean Sea, the propagation of these atmospheric forcing signals from the surface toward the interior and the abyss of the Mediterranean Sea remains unexplored. Here, we use a high-resolution ocean model simulation covering the 1979-2013 period to investigate spatial patterns and time scales of the Mediterranean thermohaline response to winter forcing from NAO, EA, EAWR and MOI. We find that these modes significantly imprint on the thermohaline properties in key areas of the Mediterranean Sea through a variety of mechanisms. Typically, density anomalies induced by all modes remain confined in the upper 600 m depth and remain significant for up to 18-24 months. One of the clearest propagation signals refers to the EA in the Adriatic and northern Ionian seas: There, negative EA anomalies are associated to an extensive positive density response, with anomalies that sink to the bottom of the South Adriatic Pit within a 2-year time. Other strong responses are the thermally driven responses to the EA in the Gulf of Lions and to the EAWR in the Aegean Sea. MOI and EAWR forcing of thermohaline properties in the Eastern Mediterranean sub-basins seems to be determined by reinforcement processes linked to the persistency of these modes in multiannual anomalous states. Our study also suggests that NAO, EA, EAWR and MOI could critically interfere with internal, deep and abyssal ocean dynamics and variability in the Mediterranean Sea.

  13. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    Science.gov (United States)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  14. Toward high-resolution NMR spectroscopy of microscopic liquid samples

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying; Reardon, Patrick N.; Renslow, Ryan S.; Khbeis, Michael; Irish, Duane; Mueller, Karl T.

    2017-01-01

    A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed, as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.

  15. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  16. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    Directory of Open Access Journals (Sweden)

    Linyi Li

    2017-01-01

    Full Text Available In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.

  17. Variational data assimilation system with nesting model for high resolution ocean circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Yoichi; Igarashi, Hiromichi; Hiyoshi, Yoshimasa; Sasaki, Yuji; Wakamatsu, Tsuyoshi; Awaji, Toshiyuki [Center for Earth Information Science and Technology, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-Ku, Yokohama 236-0001 (Japan); In, Teiji [Japan Marine Science Foundation, 4-24, Minato-cho, Mutsu, Aomori, 035-0064 (Japan); Nakada, Satoshi [Graduate School of Maritime Science, Kobe University, 5-1-1, Fukae-minamimachi, Higashinada-Ku, Kobe, 658-0022 (Japan); Nishina, Kei, E-mail: ishikaway@jamstec.go.jp [Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-Ku, Kyoto, 606-8502 (Japan)

    2015-10-15

    To obtain the high-resolution analysis fields for ocean circulation, a new incremental approach is developed using a four-dimensional variational data assimilation system with nesting models. The results show that there are substantial biases when using a classical method combined with data assimilation and downscaling, caused by different dynamics resulting from the different resolutions of the models used within the nesting models. However, a remarkable reduction in biases of the low-resolution model relative to the high-resolution model was observed using our new approach in narrow strait regions, such as the Tsushima and Tsugaru straits, where the difference in the dynamics represented by the high- and low-resolution models is substantial. In addition, error reductions are demonstrated in the downstream region of these narrow channels associated with the propagation of information through the model dynamics. (paper)

  18. Real-time database for high resolution neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian T.; Rother, Oliver M.; Wimmer-Schweingruber, Robert F.; Heber, Bernd [IEAP, Christian-Albrechts-Universitaet zu Kiel (Germany)

    2008-07-01

    The worldwide network of standardised neutron monitors is, after 50 years, still the state-of-the-art instrumentation to measure spectral variations of the primary cosmic ray component. These measurements are an ideal complement to space based cosmic ray measurements. Data from the approximately 50 IGY and NM64 neutron monitors is stored locally but also available through data collections sites like the World Data Center (WDC) or the IZMIRAN ftp server. The data from the WDC is in a standard format, but only hourly values are available. IZMIRAN collects the data in the best available time resolution, but the data arrives on the ftp server only hours, sometimes days, after the measurements. Also, the high time-resolution measurements of the different stations do not have a common format, a conversion routine for each station is needed before they can be used for scientific analysis. Supported by the 7th framework program of the European Commission, we are setting up a real-time database where high resolution cosmic ray measurements will be stored and accessible immediately after the measurement. Stations that do not have 1-minute resolution measurements will be upgraded to 1-minute or better resolution with an affordable standard registration system, that will submit the measurements to the database via the internet in real-time.

  19. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  20. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.