WorldWideScience

Sample records for high resolution fluorescence

  1. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  2. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  3. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    Science.gov (United States)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  4. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  5. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  6. Toward robust high resolution fluorescence tomography: a hybrid row-action edge preserving regularization

    Science.gov (United States)

    Behrooz, Ali; Zhou, Hao-Min; Eftekhar, Ali A.; Adibi, Ali

    2011-02-01

    Depth-resolved localization and quantification of fluorescence distribution in tissue, called Fluorescence Molecular Tomography (FMT), is highly ill-conditioned as depth information should be extracted from limited number of surface measurements. Inverse solvers resort to regularization algorithms that penalize Euclidean norm of the solution to overcome ill-posedness. While these regularization algorithms offer good accuracy, their smoothing effects result in continuous distributions which lack high-frequency edge-type features of the actual fluorescence distribution and hence limit the resolution offered by FMT. We propose an algorithm that penalizes the total variation (TV) norm of the solution to preserve sharp transitions and high-frequency components in the reconstructed fluorescence map while overcoming ill-posedness. The hybrid algorithm is composed of two levels: 1) An Algebraic Reconstruction Technique (ART), performed on FMT data for fast recovery of a smooth solution that serves as an initial guess for the iterative TV regularization, 2) A time marching TV regularization algorithm, inspired by the Rudin-Osher-Fatemi TV image restoration, performed on the initial guess to further enhance the resolution and accuracy of the reconstruction. The performance of the proposed method in resolving fluorescent tubes inserted in a liquid tissue phantom imaged by a non-contact CW trans-illumination FMT system is studied and compared to conventional regularization schemes. It is observed that the proposed method performs better in resolving fluorescence inclusions at higher depths.

  7. Example-Based Super-Resolution Fluorescence Microscopy.

    Science.gov (United States)

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  8. Super-resolution fluorescence microscopy by stepwise optical saturation

    Science.gov (United States)

    Zhang, Yide; Nallathamby, Prakash D.; Vigil, Genevieve D.; Khan, Aamir A.; Mason, Devon E.; Boerckel, Joel D.; Roeder, Ryan K.; Howard, Scott S.

    2018-01-01

    Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a M-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples. PMID:29675306

  9. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  10. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    Science.gov (United States)

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  11. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  12. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  13. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  14. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  15. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  16. High-resolution imaging of redox signaling in live cells through an oxidation-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Maulucci, Giuseppe; Labate, Valentina; Mele, Marina

    2008-01-01

    We present the application of a redox-sensitive mutant of the yellow fluorescent protein (rxYFP) to image, with elevated sensitivity and high temporal and spatial resolution, oxidative responses of eukaryotic cells to pathophysiological stimuli. The method presented, based on the ratiometric...... quantitation of the distribution of fluorescence by confocal microscopy, allows us to draw real-time "redox maps" of adherent cells and to score subtle changes in the intracellular redox state, such as those induced by overexpression of redox-active proteins. This strategy for in vivo imaging of redox...

  17. High resolution measurements of solar induced chlorophyll fluorescence in the Fraunhofer oxigen bands

    Science.gov (United States)

    Mazzoni, M.; Agati, G.; Cecchi, G.; Toci, G.; Mazzinghi, P.

    2017-11-01

    Spectra of solar radiance reflected by leaves close to the Fraunhofer bands show the net contribution of chlorophyll fluorescence emission which adds to the reflected solar spectra. In a laboratory experiment, a low stray light, high resolution, 0.85 m double monochromator was used to filter radiation living leaves still attached to the plant in correspondence of the 687 nm and 760 nm O2 absorption bands. Reference spectra from a non fluorescent white reference were also acquired. Acquisition was performed by a Microchannel plate (MCP) intensified diode array with 512 elements. A fit of the spectral data outside the absorption lines allowed to retrieve the spectral base-line as a function of wavelength for the reference panel and the leaf. Reflectance functions were determined extending the Plascyck equation system to all the resolved lines of the oxygen absorption bands and using the base-lines for the continuum values. Fluorescence was deduced from the same equation system, using both the measured leaf and reference radiance spectra and the leaf reflectance fitting function.

  18. Combined Confocal and Wide-Field High-Resolution Cytometry of Fluorescent In Situ Hybridization-Stained Cells

    Czech Academy of Sciences Publication Activity Database

    Kozubek, Michal; Kozubek, Stanislav; Lukášová, Emilie; Bártová, Eva; Skalníková, M.; Matula, Pa.; Matula, Pe.; Jirsová, Pavla; Cafourková, Alena; Koutná, Irena

    2001-01-01

    Roč. 45, č. 1 (2001), s. 1-12 ISSN 0196-4763 R&D Projects: GA MŠk VS97031; GA ČR GA202/99/P008; GA AV ČR IBS5004010 Institutional research plan: CEZ:AV0Z5004920 Keywords : high-resolution cytometry * fluorescence in situ hybridization * interphase nuclei Subject RIV: BO - Biophysics Impact factor: 2.220, year: 2001

  19. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    Science.gov (United States)

    Bullen, A; Patel, S S; Saggau, P

    1997-07-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.

  20. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  1. Novel Insight for Organic Matter Sourcing: Interest of Time Resolved Fluorescence to Qualify and Quantify PAH Content of Solid Matrix at High Resolution

    Science.gov (United States)

    Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.

    2017-12-01

    OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of

  2. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X

  3. Solid-immersion fluorescence microscopy with increased emission and super resolution

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Z. L.; Porter, J. M. [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States); Liau, A. A.; Chen, J. J. [Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salmon, W. C. [Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sheu, S. S. [Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States)

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15 nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  4. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid.

    Science.gov (United States)

    Anumula, K R; Dhume, S T

    1998-07-01

    Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods

  5. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  6. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  7. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  8. Three-dimensional super-resolution imaging for fluorescence emission difference microscopy

    Energy Technology Data Exchange (ETDEWEB)

    You, Shangting; Kuang, Cuifang, E-mail: cfkuang@zju.edu.cn; Li, Shuai; Liu, Xu; Ding, Zhihua [State key laboratory of modern optical instrumentations, Zhejiang University, Hangzhou 310027 (China)

    2015-08-15

    We propose a method theoretically to break the diffraction limit and to improve the resolution in all three dimensions for fluorescence emission difference microscopy. We produce two kinds of hollow focal spot by phase modulation. By incoherent superposition, these two kinds of focal spot yield a 3D hollow focal spot. The optimal proportion of these two kinds of spot is given in the paper. By employing 3D hollow focal spot, super-resolution image can be yielded by means of fluorescence emission difference microscopy, with resolution enhanced both laterally and axially. According to computation result, size of point spread function of three-dimensional super-resolution imaging is reduced by about 40% in all three spatial directions with respect to confocal imaging.

  9. High-resolution multimodal clinical multiphoton tomography of skin

    Science.gov (United States)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  10. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    International Nuclear Information System (INIS)

    Schorb, Martin; Briggs, John A.G.

    2014-01-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision

  11. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schorb, Martin [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Briggs, John A.G., E-mail: john.briggs@embl.de [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany)

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision.

  12. Studying atomic-resolution by X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Gao Hongyi; Chen Jianwen; Xie Honglan; Zhu Huafeng; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented

  13. Optical scanner system for high resolution measurement of lubricant distributions on metal strips based on laser induced fluorescence

    Science.gov (United States)

    Holz, Philipp; Lutz, Christian; Brandenburg, Albrecht

    2017-06-01

    We present a new optical setup, which uses scanning mirrors in combination with laser induced fluorescence to monitor the spatial distribution of lubricant on metal sheets. Current trends in metal processing industry require forming procedures with increasing deformations. Thus a welldefined amount of lubricant is necessary to prevent the material from rupture, to reduce the wearing of the manufacturing tool as well as to prevent problems in post-deforming procedures. Therefore spatial resolved analysis of the thickness of lubricant layers is required. Current systems capture the lubricant distribution by moving sensor heads over the object along a linear axis. However the spatial resolution of these systems is insufficient at high strip speeds, e.g. at press plants. The presented technology uses fast rotating scanner mirrors to deflect a laser beam on the surface. This 405 nm laser light excites the autofluorescence of the investigated lubricants. A coaxial optic collects the fluorescence signal which is then spectrally filtered and recorded using a photomultiplier. From the acquired signal a two dimensional image is reconstructed in real time. This paper presents the sensor setup as well as its characterization. For the calibration of the system reference targets were prepared using an ink jet printer. The presented technology for the first time allows a spatial resolution in the millimetre range at production speed. The presented test system analyses an area of 300 x 300 mm² at a spatial resolution of 1.1 mm in less than 20 seconds. Despite this high speed of the measurement the limit of detection of the system described in this paper is better than 0.05 g/m² for the certified lubricant BAM K-009.

  14. High-resolution methods for fluorescence retrieval from space

    NARCIS (Netherlands)

    Mazzoni, M.; Falorni, P.; Verhoef, W.

    2010-01-01

    The retrieval from space of a very weak fluorescence signal was studied in the O2A and O2B oxygen atmospheric absorption bands. The accuracy of the method was tested for the retrieval of the chlorophyll fluorescence and reflectance terms contributing to the sensor signal. The radiance at the top of

  15. Numerical simulation study for atomic-resolution x-ray fluorescence holography

    International Nuclear Information System (INIS)

    Xie Honglan; Gao Hongyi; Chen Jianwen; Xiong Shisheng; Xu Zhizhan; Wang Junyue; Zhu Peiping; Xian Dingchang

    2003-01-01

    Based on the principle of x-ray fluorescence holography, an iron single crystal model of a body-centred cubic lattice is numerically simulated. From the fluorescence hologram produced numerically, the Fe atomic images were reconstructed. The atomic images of the (001), (100), (010) crystallographic planes were consistent with the corresponding atomic positions of the model. The result indicates that one can obtain internal structure images of single crystals at atomic-resolution by using x-ray fluorescence holography

  16. High-resolution fluorescence imaging for red and far-red SIF retrieval at leaf and canopy scales

    Science.gov (United States)

    Albert, L.; Alonso, L.; Cushman, K.; Kellner, J. R.

    2017-12-01

    New commercial-off-the-shelf imaging spectrometers promise the combination of high spatial and spectral resolution needed to retrieve solar induced fluorescence (SIF) at multiple wavelengths for individual plants and even individual leaves from low-altitude airborne or ground-based platforms. Data from these instruments could provide insight into the status of the photosynthetic apparatus at scales of space and time not observable from high-altitude and space-based platforms, and could support calibration and validation activities of current and forthcoming space missions to quantify SIF (OCO-2, OCO-3, FLEX, and GEOCARB). High-spectral resolution enables SIF retrieval from regions of strong telluric absorption by molecular oxygen, and also within numerous solar Fraunhofer lines in atmospheric windows not obscured by oxygen or water absorptions. Here we evaluate algorithms for SIF retrieval using a commercial-off-the-shelf diffraction-grating imaging spectrometer with a spectral sampling interval of 0.05 nm and a FWHM 650 or 700 nm. These filters enable a direct measurement of SIF emission > 650 or 700 nm that serves as a benchmark against which retrievals from reflectance spectra can be evaluated. We repeated this comparison between leaf-level SIF emission spectra and retrieved SIF emission spectra for leaves treated with drought stress and an herbicide (DCMU) that inhibits electron transfer from QA to QB of PSII.

  17. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  18. Inflammation Modulates Murine Venous Thrombosis Resolution In Vivo: Assessment by Multimodal Fluorescence Molecular Imaging

    Science.gov (United States)

    Ripplinger, Crystal M.; Kessinger, Chase W.; Li, Chunqiang; Kim, Jin Won; McCarthy, Jason R.; Weissleder, Ralph; Henke, Peter K.; Lin, Charles P.; Jaffer, Farouc A.

    2012-01-01

    Objective Assessment of thrombus inflammation in vivo could provide new insights into deep vein thrombosis (DVT) resolution. Here we develop and evaluate two integrated fluorescence molecular-structural imaging strategies to quantify DVT-related inflammation and architecture, and to assess the effect of thrombus inflammation on subsequent DVT resolution in vivo. Methods and Results Murine DVT were created with topical 5% FeCl3 application to thigh or jugular veins (n=35). On day 3, mice received macrophage and matrix metalloproteinase (MMP) activity fluorescence imaging agents. On day 4, integrated assessment of DVT inflammation and architecture was performed using confocal fluorescence intravital microscopy (IVM). Day 4 analyses showed robust relationships among in vivo thrombus macrophages, MMP activity, and FITC-dextran deposition (r>0.70, pthrombus inflammation at day 4 predicted the magnitude of DVT resolution at day 6 (pthrombus resolution. PMID:22995524

  19. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  20. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    Science.gov (United States)

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  1. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    Directory of Open Access Journals (Sweden)

    Coralie Fouquet

    Full Text Available Resolution, high signal intensity and elevated signal to noise ratio (SNR are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF, a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  2. HIV taken by STORM: Super-resolution fluorescence microscopy of a viral infection

    Directory of Open Access Journals (Sweden)

    Pereira Cândida F

    2012-05-01

    Full Text Available Abstract Background The visualization of viral proteins has been hindered by the resolution limit of conventional fluorescent microscopes, as the dimension of any single fluorescent signal is often greater than most virion particles. Super-resolution microscopy has the potential to unveil the distribution of proteins at the resolution approaching electron microscopy without relying on morphological features of existing characteristics of the biological specimen that are needed in EM. Results Using direct stochastic optical reconstruction microscopy (dSTORM to achieve a lateral resolution of 15–20 nm, we quantified the 2-D molecular distribution of the major structural proteins of the infectious human immunodeficiency virus type 1 (HIV-1 before and after infection of lymphoid cells. We determined that the HIV-1 matrix and capsid proteins undergo restructuring soon after HIV-1 infection. Conclusions This study provides the proof-of-concept for the use of dSTORM to visualize the changes in the molecular distribution of viral proteins during an infection.

  3. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    Science.gov (United States)

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  4. High-resolution and high sensitivity mesoscopic fluorescence tomography based on de-scanning EMCCD: System design and thick tissue imaging applications

    Science.gov (United States)

    Ozturk, Mehmet Saadeddin

    Optical microscopy has been one of the essential tools for biological studies for decades, however, its application areas was limited to superficial investigation due to strong scattering in live tissues. Even though advanced techniques such as confocal or multiphoton methods have been recently developed to penetrate beyond a few hundreds of microns deep in tissues, they still cannot perform in the mesoscopic regime (millimeter scale) without using destructive sample preparation protocols such as clearing techniques. They provide rich cellular information; however, they cannot be readily employed to investigate the biological processes at larger scales. Herein, we will present our effort to establish a novel imaging approach that can quantify molecular expression in intact tissues, well beyond the current microscopy depth limits. Mesoscopic Fluorescence Molecular Tomography (MFMT) is an emerging imaging modality that offers unique potential for the non-invasive molecular assessment of thick in-vitro and in-vivo live tissues. This novel imaging modality is based on an optical inverse problem that allows for retrieval of the quantitative spatial distribution of fluorescent tagged bio-markers at millimeter depth. MFMT is well-suited for in-vivo subsurface tissue imaging and thick bio-printed specimens due to its high sensitivity and fast acquisition times, as well as relatively large fields of view. Herein, we will first demonstrate the potential of this technique using our first generation MFMT system applied to multiplexed reporter gene imaging (in-vitro) and determination of Photodynamic Therapy (PDT) agent bio-distribution in a mouse model (in-vivo). Second, we will present the design rationale, in silico benchmarking, and experimental validation of a second generation MFMT (2GMFMT) system. We will demonstrate the gain in resolution and sensitivity achieved due to the de-scanned dense detector configuration implemented. The potential of this novel platform will be

  5. High speed fluorescence imaging with compressed ultrafast photography

    Science.gov (United States)

    Thompson, J. V.; Mason, J. D.; Beier, H. T.; Bixler, J. N.

    2017-02-01

    Fluorescent lifetime imaging is an optical technique that facilitates imaging molecular interactions and cellular functions. Because the excited lifetime of a fluorophore is sensitive to its local microenvironment,1, 2 measurement of fluorescent lifetimes can be used to accurately detect regional changes in temperature, pH, and ion concentration. However, typical state of the art fluorescent lifetime methods are severely limited when it comes to acquisition time (on the order of seconds to minutes) and video rate imaging. Here we show that compressed ultrafast photography (CUP) can be used in conjunction with fluorescent lifetime imaging to overcome these acquisition rate limitations. Frame rates up to one hundred billion frames per second have been demonstrated with compressed ultrafast photography using a streak camera.3 These rates are achieved by encoding time in the spatial direction with a pseudo-random binary pattern. The time domain information is then reconstructed using a compressed sensing algorithm, resulting in a cube of data (x,y,t) for each readout image. Thus, application of compressed ultrafast photography will allow us to acquire an entire fluorescent lifetime image with a single laser pulse. Using a streak camera with a high-speed CMOS camera, acquisition rates of 100 frames per second can be achieved, which will significantly enhance our ability to quantitatively measure complex biological events with high spatial and temporal resolution. In particular, we will demonstrate the ability of this technique to do single-shot fluorescent lifetime imaging of cells and microspheres.

  6. High resolution FISH on super-stretched flow-sorted plant chromosomes.

    NARCIS (Netherlands)

    Valárik, M.; Bartos, J.; Kovarova, P.; Kubalakova, M.; Jong, de J.H.S.G.M.; Dolezel, J.

    2004-01-01

    A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for

  7. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer L.; Kim, Hanseong [Arizona State University, Tempe, AZ 85287-1604 (United States); Markwardt, Michele L. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Chen, Liqing; Fromme, Raimund [Arizona State University, Tempe, AZ 85287-1604 (United States); Rizzo, Mark A. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Wachter, Rebekka M., E-mail: rwachter@asu.edu [Arizona State University, Tempe, AZ 85287-1604 (United States)

    2013-05-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.

  8. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    International Nuclear Information System (INIS)

    Watkins, Jennifer L.; Kim, Hanseong; Markwardt, Michele L.; Chen, Liqing; Fromme, Raimund; Rizzo, Mark A.; Wachter, Rebekka M.

    2013-01-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed

  9. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  10. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-01-01

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  11. A high-resolution non-contact fluorescence-based temperature sensor for neonatal care

    International Nuclear Information System (INIS)

    Lam, H T; Kostov, Y; Tolosa, L; Rao, G; Falk, S

    2012-01-01

    To date, thermistors are used to continuously monitor the body temperature of newborn babies in the neonatal intensive care unit. The thermistor probe is attached to the body with a strong adhesive tape to ensure that the probe stays in place. However, these strong adhesives are shown to increase microbial growth and cause serious skin injuries via epidermal stripping. The latter compromises the skin's ability to serve as a protective barrier leading to increase in water loss and further microbial infections. In this paper, a new approach is introduced that eliminates the need for an adhesive. Instead, two kinds of fluorophores are entrapped in a skin-friendly chitosan gel that can be easily wiped on and off of the skin, and has antimicrobial properties as well. A CCD camera is used to detect the temperature-dependent fluorescence of the fluorophore, tris(1,10-phenthroline)ruthenium(II) while 8-aminopyrene-1,3,6-trisulfonic acid serves as the reference. This temperature sensor was found to have a resolution of at least 0.13 °C. (paper)

  12. Chemical state analysis of oxide thin films using a high resolution double crystal X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Masuda, Hirohisa; Morinaga, Kenji; Ohta, Yoshio.

    1995-01-01

    The chemical state analysis of r.f.-sputtered amorphous oxide thin films was determined by a high resolution X-ray fluorescence spectrometer with double crystals. The polymerization degree of silicate anions in the silicate film was as same as a target (α-Quartz). The oxygen coordination number of Al 3+ ions in the aluminate film was different from a target (α-Al 2 O 3 ), and it was a mixture of 4 and 6 in a spinel-like structure. In CaO-SiO 2 and CaO-Al 2 O 3 films, when the film thickness is thin at the beginning of sputtering, the composition of films are in the shortage of CaO. But when the film thickness become thicker, the composition of films become as same as the target. From the results above, the chemical state of films and their variations with film thickness can be clarified by using the apparatus. (author)

  13. Fluorescence-type Monochromatic X-ray Beam-position Monitor with High-spatial Resolution for the NSLS-II Beamlines

    International Nuclear Information System (INIS)

    Yoon, Phil S.; Siddons, D. Peter

    2010-01-01

    We developed a fluorescence-type monochromatic X-ray beam-position monitor (X-BPM) with high-spatial resolution for end-station experiments at the initial project beamlines of the NSLS-II. We designed a ring array of multi-segmented Si PIN-junction photodiodes to use as a position sensor. Further, we integrated a low-noise charge-preamplification HERMES4 ASIC chip into an electronic readout system for photon-counting application. A series of precision measurements to characterize electronically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise from the detector system is sufficiently low to meet our stringent requirements. Using a Gaussian beam, we parametrically modeled the optimum working distance to ensure the detector's best performance. Based upon the results from the parametric modeling, prototypes of the next versions of the X-BPM are being developed. In this paper, we describe the methodology for developing the new compact monochromatic X-ray BPM, including its instrumentation, detector modeling, and future plan.

  14. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.; Kubo, S.; Nakagawa, M.; Vacha, M.; Habuchi, Satoshi

    2013-01-01

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can

  15. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography).

    Science.gov (United States)

    Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary

    2015-02-07

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.

  16. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  17. Quantitative high dynamic range beam profiling for fluorescence microscopy

    International Nuclear Information System (INIS)

    Mitchell, T. J.; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-01-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences

  18. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    Science.gov (United States)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  19. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  20. Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off-On-Off Cycles for Multicolor Patterning and Super-Resolution.

    Science.gov (United States)

    Jung, Sungwook; Park, Joonhyuck; Bang, Jiwon; Kim, Jae-Yeol; Kim, Cheolhee; Jeon, Yongmoon; Lee, Seung Hwan; Jin, Ho; Choi, Sukyung; Kim, Bomi; Lee, Woo Jin; Pack, Chan-Gi; Lee, Jong-Bong; Lee, Nam Ki; Kim, Sungjee

    2017-06-07

    Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

  1. Localization-based super-resolution imaging of cellular structures.

    Science.gov (United States)

    Kanchanawong, Pakorn; Waterman, Clare M

    2013-01-01

    Fluorescence microscopy allows direct visualization of fluorescently tagged proteins within cells. However, the spatial resolution of conventional fluorescence microscopes is limited by diffraction to ~250 nm, prompting the development of super-resolution microscopy which offers resolution approaching the scale of single proteins, i.e., ~20 nm. Here, we describe protocols for single molecule localization-based super-resolution imaging, using focal adhesion proteins as an example and employing either photoswitchable fluorophores or photoactivatable fluorescent proteins. These protocols should also be easily adaptable to imaging a broad array of macromolecular assemblies in cells whose components can be fluorescently tagged and assemble into high density structures.

  2. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.

    Science.gov (United States)

    Hsiao, Wesley Wei-Wen; Hui, Yuen Yung; Tsai, Pei-Chang; Chang, Huan-Cheng

    2016-03-15

    Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen-vacancy (NV(-)) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV(-) has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV(-) center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV(-) fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the "brightest" member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV(-) center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the ms = 0 and

  3. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  4. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.

    2013-10-22

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns. 2013 Author(s).

  5. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    Directory of Open Access Journals (Sweden)

    Yu Yabiku

    2013-10-01

    Full Text Available We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns.

  6. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

    Directory of Open Access Journals (Sweden)

    J. Joiner

    2013-10-01

    Full Text Available Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2. The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT. GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0

  7. TU-G-207-03: High Spatial Resolution and High Sensitivity X-Ray Fluorescence Imaging

    International Nuclear Information System (INIS)

    Xing, L.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  8. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    Science.gov (United States)

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  9. Ion beam induced fluorescence imaging in biological systems

    International Nuclear Information System (INIS)

    Bettiol, Andrew A.; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-belle; Tao, Ye; Watt, Frank

    2015-01-01

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (<100 nm), a sensitive detection system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique

  10. Developing a New Biophysical Tool to Combine Magneto-Optical Tweezers with Super-Resolution Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Zhaokun Zhou

    2015-06-01

    Full Text Available We present a novel experimental setup in which magnetic and optical tweezers are combined for torque and force transduction onto single filamentous molecules in a transverse configuration to allow simultaneous mechanical measurement and manipulation. Previously we have developed a super-resolution imaging module which, in conjunction with advanced imaging techniques such as Blinking assisted Localisation Microscopy (BaLM, achieves localisation precision of single fluorescent dye molecules bound to DNA of ~30 nm along the contour of the molecule; our work here describes developments in producing a system which combines tweezing and super-resolution fluorescence imaging. The instrument also features an acousto-optic deflector that temporally divides the laser beam to form multiple traps for high throughput statistics collection. Our motivation for developing the new tool is to enable direct observation of detailed molecular topological transformation and protein binding event localisation in a stretching/twisting mechanical assay that previously could hitherto only be deduced indirectly from the end-to-end length variation of DNA. Our approach is simple and robust enough for reproduction in the lab without the requirement of precise hardware engineering, yet is capable of unveiling the elastic and dynamic properties of filamentous molecules that have been hidden using traditional tools.

  11. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    Science.gov (United States)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  12. High yield fabrication of fluorescent nanodiamonds

    International Nuclear Information System (INIS)

    Boudou, Jean-Paul; Curmi, Patrick A; Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Aubert, Pascal; Sennour, Mohamed; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  13. High yield fabrication of fluorescent nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Boudou, Jean-Paul; Curmi, Patrick A [Structure and Activity of Normal and Pathological Biomolecules-INSERM/UEVE U829, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf [3.Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Aubert, Pascal [Nanometric Media Laboratory, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Sennour, Mohamed; Thorel, Alain [Centre des Materiaux, Mines Paris, ParisTech, BP 87, F-91000 Evry (France); Gaffet, Eric [Nanomaterials Research Group-UMR 5060, CNRS, UTBM, Site de Sevenans, F-90010 Belfort (France)], E-mail: jpb.cnrs@free.fr, E-mail: pcurmi@univ-evry.fr, E-mail: f.jelezko@physik.uni-stuttgart.de

    2009-06-10

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  14. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    International Nuclear Information System (INIS)

    Yoon, S; Dewhirst, M; Oldham, M; Boss, M; Birer, S

    2016-01-01

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm 3 ) ex vivo tissue samples at a resolution of 12.9µm 3 per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10, 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied

  15. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe

    Directory of Open Access Journals (Sweden)

    Dominika Żurek-Biesiada

    2016-06-01

    Full Text Available Single Molecule Localization Microscopy (SMLM is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015 [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

  16. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    Science.gov (United States)

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  17. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    Science.gov (United States)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  18. In situ high-resolution thermal microscopy on integrated circuits.

    Science.gov (United States)

    Zhuo, Guan-Yu; Su, Hai-Ching; Wang, Hsien-Yi; Chan, Ming-Che

    2017-09-04

    The miniaturization of metal tracks in integrated circuits (ICs) can cause abnormal heat dissipation, resulting in electrostatic discharge, overvoltage breakdown, and other unwanted issues. Unfortunately, locating areas of abnormal heat dissipation is limited either by the spatial resolution or imaging acquisition speed of current thermal analytical techniques. A rapid, non-contact approach to the thermal imaging of ICs with sub-μm resolution could help to alleviate this issue. In this work, based on the intensity of the temperature-dependent two-photon fluorescence (TPF) of Rhodamine 6G (R6G) material, we developed a novel fast and non-invasive thermal microscopy with a sub-μm resolution. Its application to the location of hotspots that may evolve into thermally induced defects in ICs was also demonstrated. To the best of our knowledge, this is the first study to present high-resolution 2D thermal microscopic images of ICs, showing the generation, propagation, and distribution of heat during its operation. According to the demonstrated results, this scheme has considerable potential for future in situ hotspot analysis during the optimization stage of IC development.

  19. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  20. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp

    Energy Technology Data Exchange (ETDEWEB)

    Thambiraj, S. [Nano-Bio Materials and Sensors Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu (India); Ravi Shankaran, D., E-mail: dravishankaran@hotmail.com [Nano-Bio Materials and Sensors Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu (India); National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu (India)

    2016-12-30

    Graphical abstract: Schematic representation of CQDs from sugarcane bagasse carbon. - Highlights: • CQDs were synthesised from sugarcane bagasse waste with top down approaches. • Synthesis method is green, simple and efficient process. • CQDs possess high quantum yield, good stability and highly fluorescent in nature. • The morphological and topographical study of CQDs was done by HR-TEM and AFM and was observed that the average size is 4.1 ± 0.17 nm and surface thickness is 5 nm. - Abstract: Carbon quantum dots (CQDs) have great potential due to its advantageous characteristics of highly fluorescent nature and good stability. In this study, we aimed to develop a simple and efficient method for the green synthesis of fluorescent CQDs from sugarcane bagasse, a renewable and sustainable resource. The process involves the top down approach of chemical oxidation followed by exfoliation of sugarcane carbon. The synthesized CQDs was characterized by UV–vis absorption spectroscopy, Spectrofluorophotometry, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photon spectroscopy (XPS), Atomic force microscopy (AFM) and High-resolution transmission electron microscopy (HR-TEM). The synthesized CQDs possess stable fluorescent properties, good bio-compatibility and high quantum yield. The CQDs are highly crystalline with longitudinal dimensions of 4.1 ± 0.17 nm with an average roughness of around 5 nm. The XRD and TEM analysis indicates that the synthesized CQDs possess face centred cubic crystal structure. The results suggest that the proposed CQDs could be utilized for bio-sensor, bio-imaging and drug delivery applications.

  1. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  2. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    Science.gov (United States)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  3. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope.

    Science.gov (United States)

    Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne

    2017-02-15

    In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    International Nuclear Information System (INIS)

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C. Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-01-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm

  5. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, Pascale [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Kaufmann, Rainer [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Siebert, C. Alistair; Hagen, Christoph [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wodrich, Harald [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux SEGALEN, 146 rue Leo Seignat, 33076 Bordeaux (France); Grünewald, Kay, E-mail: kay@strubi.ox.ac.uk [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm.

  6. Extracting Fluorescent Reporter Time Courses of Cell Lineages from High-Throughput Microscopy at Low Temporal Resolution

    Science.gov (United States)

    Downey, Mike J.; Jeziorska, Danuta M.; Ott, Sascha; Tamai, T. Katherine; Koentges, Georgy; Vance, Keith W.; Bretschneider, Till

    2011-01-01

    The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and a global parameter search is performed to determine the weighting of individual features. Our algorithm has been optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell cycle markers, our framework can be easily adapted to different cell

  7. Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution.

    Directory of Open Access Journals (Sweden)

    Mike J Downey

    Full Text Available The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and a global parameter search is performed to determine the weighting of individual features. Our algorithm has been optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell cycle markers, our framework can be easily adapted

  8. Super-resolution fluorescence imaging of membrane nanoscale architectures of hematopoietic stem cell homing and migration molecules

    KAUST Repository

    AbuZineh, Karmen

    2017-01-01

    Recent development of super-resolution (SR) fluorescence microscopy techniques has provided a new tool for direct visualization of subcellular structures and their dynamics in cells. The homing of Hematopoietic stem/progenitor cells (HSPCs) to bone

  9. High-resolution fiber-optic microendoscopy for in situ cellular imaging.

    Science.gov (United States)

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-11

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.

  10. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  11. Enhancement of fluorescence confocal scanning microscopy lateral resolution by use of structured illumination

    International Nuclear Information System (INIS)

    Kim, Taejoong; Gweon, DaeGab; Lee, Jun-Hee

    2009-01-01

    Confocal microscopy is an optical imaging technique used to reconstruct three-dimensional images without physical sectioning. As with other optical microscopes, the lateral resolution of the confocal microscope cannot surpass the diffraction limit. This paper presents a novel imaging system, structured illumination confocal scanning microscopy (SICSM), that uses structured illumination to improve the lateral resolution of the confocal microscope. The SICSM can easily be implemented by introducing a structured illumination generating optics to conventional line-scanning fluorescence confocal microscopy. In this paper, we report our analysis of the lateral and axial resolutions of the SICSM by use of mathematical imaging theory. Numerical simulation results show that the lateral resolution of the SICSM is 1.43-fold better than that of the confocal microscope. In the axial direction, however, the resolution of the SICSM is ∼15% poorer than that of the confocal microscope. This deterioration arises because of a decrease in the axial cut-off frequency caused by the process of generating structured illumination. We propose the use of imaging conditions under which a compromise between the axial and lateral resolutions is chosen. Finally, we show simulated images of diversely shaped test objects to demonstrate the lateral and axial resolution performance of the SICSM

  12. Iodine imaging in thyroid by fluorescent X-ray CT with 0.05 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Yashiro, T.; Zeniya, T.; Wu, J.; Hasegawa, Y.; Thet Thet Lwin; Hyodo, K.; Yuasa, T.; Dilmanian, F.A.; Akatsuka, T.; Itai, Y

    2001-07-21

    Fluorescent X-ray computed tomography (FXCT) at a 0.05 mm in-plane spatial resolution and 0.05 mm slice thickness depicted the cross sectional distribution of endogenous iodine within thyroid. The distribution obtained from the FXCT image correlated closely to that obtained from the pathological pictures.

  13. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca; Moore, Katie L.; Paterson, David J.; De Jonge, Martin Daly; Howard, Daryl Lloyd; Stangoulis, James Constantine R; Tester, Mark A.; Lombi, E.; Johnson, Alexander A T

    2014-01-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  14. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca

    2014-03-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  15. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    International Nuclear Information System (INIS)

    Casadio, Francesca; Rose, Volker

    2013-01-01

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity. (orig.)

  16. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Francesca [The Art Institute of Chicago, Chicago, IL (United States); Rose, Volker [Argonne National Laboratory, Advanced Photon Source and Center for Nanoscale Materials, Argonne, IL (United States)

    2013-04-15

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity. (orig.)

  17. Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review

    International Nuclear Information System (INIS)

    Sednev, Maksim V; Belov, Vladimir N; Hell, Stefan W

    2015-01-01

    The review deals with commercially available organic dyes possessing large Stokes shifts and their applications as fluorescent labels in optical microscopy based on stimulated emission depletion (STED). STED microscopy breaks Abbe’s diffraction barrier and provides optical resolution beyond the diffraction limit. STED microscopy is non-invasive and requires photostable fluorescent markers attached to biomolecules or other objects of interest. Up to now, in most biology-related STED experiments, bright and photoresistant dyes with small Stokes shifts of 20–40 nm were used. The rapid progress in STED microscopy showed that organic fluorophores possessing large Stokes shifts are indispensable in multi-color super-resolution techniques. The ultimate result of the imaging relies on the optimal combination of a dye, the bio-conjugation procedure and the performance of the optical microscope. Modern bioconjugation methods, basics of STED microscopy, as well as structures and spectral properties of the presently available fluorescent markers are reviewed and discussed. In particular, the spectral properties of the commercial dyes are tabulated and correlated with the available depletion wavelengths found in STED microscopes produced by LEICA Microsytems, Abberior Instruments and Picoquant GmbH. (topical review)

  18. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of small animal organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and sub-cellular details could be readily visualised in vivo at high

  19. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  20. Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.

    Science.gov (United States)

    Koo, Bon Ung; Kang, YooNa; Moon, SangJun; Lee, Won Gu

    2015-11-07

    Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.

  1. Scanning fluorescence detector for high-throughput DNA genotyping

    Science.gov (United States)

    Rusch, Terry L.; Petsinger, Jeremy; Christensen, Carl; Vaske, David A.; Brumley, Robert L., Jr.; Luckey, John A.; Weber, James L.

    1996-04-01

    A new scanning fluorescence detector (SCAFUD) was developed for high-throughput genotyping of short tandem repeat polymorphisms (STRPs). Fluorescent dyes are incorporated into relatively short DNA fragments via polymerase chain reaction (PCR) and are separated by electrophoresis in short, wide polyacrylamide gels (144 lanes with well to read distances of 14 cm). Excitation light from an argon laser with primary lines at 488 and 514 nm is introduced into the gel through a fiber optic cable, dichroic mirror, and 40X microscope objective. Emitted fluorescent light is collected confocally through a second fiber. The confocal head is translated across the bottom of the gel at 0.5 Hz. The detection unit utilizes dichroic mirrors and band pass filters to direct light with 10 - 20 nm bandwidths to four photomultiplier tubes (PMTs). PMT signals are independently amplified with variable gain and then sampled at a rate of 2500 points per scan using a computer based A/D board. LabView software (National Instruments) is used for instrument operation. Currently, three fluorescent dyes (Fam, Hex and Rox) are simultaneously detected with peak detection wavelengths of 543, 567, and 613 nm, respectively. The detection limit for fluorescein-labeled primers is about 100 attomoles. Planned SCAFUD upgrades include rearrangement of laser head geometry, use of additional excitation lasers for simultaneous detection of more dyes, and the use of detector arrays instead of individual PMTs. Extensive software has been written for automatic analysis of SCAFUD images. The software enables background subtraction, band identification, multiple- dye signal resolution, lane finding, band sizing and allele calling. Whole genome screens are currently underway to search for loci influencing such complex diseases as diabetes, asthma, and hypertension. Seven production SCAFUDs are currently in operation. Genotyping output for the coming year is projected to be about one million total genotypes (DNA

  2. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.

    Science.gov (United States)

    Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E

    2017-12-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.

  3. A superconducting detector endstation for high-resolution energy-dispersive SR-XRF

    CERN Document Server

    Friedrich, S; Drury, O B; Cunningham, M F; Berg, M L; Ullom, J N; Loshak, A; Funk, T; Cramer, S P; Batteux, J D; See, E; Frank, M; Labov, S E

    2001-01-01

    We have built a two-stage adiabatic demagnetization refrigerator (ADR) to operate cryogenic high-resolution X-ray detectors in synchrotron-based fluorescence applications. The detector is held at the end of a 40 cm cold finger that extends into a UHV sample chamber. The ADR attains a base temperature below 100 mK with about 20 h hold time below 400 mK, and does not require pumping on the liquid He bath. We will discuss cryostat design and performance.

  4. A superconducting detector endstation for high-resolution energy-dispersive SR-XRF

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. E-mail: friedrich1@llnl.gov; Niedermayr, T.; Drury, O.; Cunningham, M.F.; Berg, M.L. van den; Ullom, J.N.; Loshak, A.; Funk, T.; Cramer, S.P.; Batteux, J.D.; See, E.; Frank, M.; Labov, S.E

    2001-07-21

    We have built a two-stage adiabatic demagnetization refrigerator (ADR) to operate cryogenic high-resolution X-ray detectors in synchrotron-based fluorescence applications. The detector is held at the end of a 40 cm cold finger that extends into a UHV sample chamber. The ADR attains a base temperature below 100 mK with about 20 h hold time below 400 mK, and does not require pumping on the liquid He bath. We will discuss cryostat design and performance.

  5. A superconducting detector endstation for high-resolution energy-dispersive SR-XRF

    International Nuclear Information System (INIS)

    Friedrich, S.; Niedermayr, T.; Drury, O.; Cunningham, M.F.; Berg, M.L. van den; Ullom, J.N.; Loshak, A.; Funk, T.; Cramer, S.P.; Batteux, J.D.; See, E.; Frank, M.; Labov, S.E.

    2001-01-01

    We have built a two-stage adiabatic demagnetization refrigerator (ADR) to operate cryogenic high-resolution X-ray detectors in synchrotron-based fluorescence applications. The detector is held at the end of a 40 cm cold finger that extends into a UHV sample chamber. The ADR attains a base temperature below 100 mK with about 20 h hold time below 400 mK, and does not require pumping on the liquid He bath. We will discuss cryostat design and performance

  6. A superconducting detector endstation for high-resolution energy-dispersive SR-XRF

    International Nuclear Information System (INIS)

    Friedrich, S.; Drury, O.; Niedermayr, T.; Cunningham, M.F.; Van den Berg, M.L.; Ullom, J.N.; Loshak, A.; Cramer, S.P.; Batteux, J.D.; See, E.; Frank, M.; Labov, S.E.

    2000-01-01

    We have built a two-stage adiabatic demagnetization refrigerator (ADR) to operate cryogenic high-resolution x-ray detectors in synchrotron-based fluorescence applications. The detector is held at the end of a 40 cm cold finger that extends into a UHV sample chamber. The ADR attains a base temperature below 100 mK with about 24 hours hold time below 400 mK, and does not require pumping on the liquid He bath. We will discuss cryostat design and performance

  7. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  8. Problems of fluorescent imaging and its solution using nanofluorophores. Part I: Advantages of fluorescent nanoparticles over conventional organic fluorophores

    International Nuclear Information System (INIS)

    Zhelev, Z.; Hadjidekov, G.; Zlateva, G.; Spasov, L.; Bakalova, R.

    2011-01-01

    The application of fluorescence in deep-tissue imaging is rapidly expanding in fast several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecules in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With development of novel bright fluorophores based on nano-technologies and fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. This review outlines the current status and future trends of fluorescent nanoparticles - quantum dots (QDs), as a new generation of fluorophores in experimental and pre-clinical fluorescent imaging diagnostic. Part 1 focuses on the advantages of quantum dots over conventional organic fluorophores and defines the major requirements to the 'perfect' fluorophore for fluorescent deep-tissue imaging diagnostic. The analysis is based on the limitations of fluorescent imaging in vivo and overcome by using quantum dots

  9. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    Science.gov (United States)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  10. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  11. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta

    2017-10-17

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  12. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-01-01

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  13. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity.

    Science.gov (United States)

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-10-23

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  14. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  15. High Resolution Melting Analysis for fast and cheap polymorphism screening of marine populations

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Anne-Leila Meistertzheim, Isabelle Calves, Sébastien Artigaud, Carolyn S. Friedman, Christine Paillard, Jean Laroche & Claude Ferec ### Abstract This protocol permits the mutation scanning of PCR products by high-resolution DNA melting analysis requiring the inclusion of a saturating intercalating dye in the PCR mix without labelled probe. During a scanning process, fluorescent melting curves of PCR amplicons are analyzed. Mutations modifying melting curve shapes, are allowed...

  16. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  17. Reconstitution radicicol containing apolipoprotein B lipoparticle and tracing its cell uptake process by super resolution fluorescent microscopy.

    Science.gov (United States)

    Lin, Chung Ching; Lin, Po-Yen; Chang, Chia-Ching

    Apolipoprotein B (apoB) is the only protein of LDL. LDL delivers cholesterol, triacylglycerides and lipids to the target cells. Reconstitute apoB lipoparticle (rABL) will be an idea drug delivery vehicle for hydrophobic and amphiphilic materials delivery. It is challenged to renature ApoB into its functional state from denatured state. By using modified bile salt and radicicol (Rad) added over-critical refolding process, apoB can be restored into its native like state. The intrinsic fluorescence of apoB increased during the refolding process. Moreover, radicicol (Rad) molecules have been encapsulated into reconstitute rABL (Rad@rABL). To investigate the cell uptake mechanism of Rad@rABL, a super resolution ground state depletion (GSD) microscopy is used in this research. Fluorescence labeled Rad@rABL can be traced within the tumor cell. Key words: LDL, radicicol, protein refolding, super resolution microscopy.

  18. Application of multivariate curve resolution for the study of folding processes of DNA monitored by fluorescence resonance energy transfer

    International Nuclear Information System (INIS)

    Kumar, Praveen; Kanchan, Kajal; Gargallo, Raimundo; Chowdhury, Shantanu

    2005-01-01

    The study described in the present article used fluorescence resonance energy transfer (FRET) to monitor the folding of a 31-mer cytosine-rich DNA segment, from the promoter region of the human c-myc oncogene. Spectroscopic FRET data recorded during experiments carried out in different experimental conditions were individually and simultaneously analyzed by multivariate curve resolution. The simultaneous analysis of several data matrices allowed the resolution of the system, removing most of the ambiguities related to factor analysis. From the results obtained, we report the evidence of the formation of two ordered conformations in acidic and neutral pH values, in addition to the disordered structure found at high temperatures. These ordered conformations could be related to cytosine-tetraplex structures showing different degrees of protonation in cytosine bases

  19. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  20. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Hui Su

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  1. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Heimann, P.A.; Mossessian, D. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  2. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  3. Visualizing the interior architecture of focal adhesions with high-resolution traction maps.

    Science.gov (United States)

    Morimatsu, Masatoshi; Mekhdjian, Armen H; Chang, Alice C; Tan, Steven J; Dunn, Alexander R

    2015-04-08

    Focal adhesions (FAs) are micron-sized protein assemblies that coordinate cell adhesion, migration, and mechanotransduction. How the many proteins within FAs are organized into force sensing and transmitting structures is poorly understood. We combined fluorescent molecular tension sensors with super-resolution light microscopy to visualize traction forces within FAs with <100 nm spatial resolution. We find that αvβ3 integrin selectively localizes to high force regions. Paxillin, which is not generally considered to play a direct role in force transmission, shows a higher degree of spatial correlation with force than vinculin, talin, or α-actinin, proteins with hypothesized roles as force transducers. These observations suggest that αvβ3 integrin and paxillin may play important roles in mechanotransduction.

  4. Lenses and effective spatial resolution in macroscopic optical mapping

    International Nuclear Information System (INIS)

    Bien, Harold; Parikh, Puja; Entcheva, Emilia

    2007-01-01

    Optical mapping of excitation dynamically tracks electrical waves travelling through cardiac or brain tissue by the use of fluorescent dyes. There are several characteristics that set optical mapping apart from other imaging modalities: dynamically changing signals requiring short exposure times, dim fluorescence demanding sensitive sensors and wide fields of view (low magnification) resulting in poor optical performance. These conditions necessitate the use of optics with good light gathering ability, i.e. lenses having high numerical aperture. Previous optical mapping studies often used sensor resolution to estimate the minimum spatial feature resolvable, assuming perfect optics and infinite contrast. We examine here the influence of finite contrast and real optics on the effective spatial resolution in optical mapping under broad-field illumination for both lateral (in-plane) resolution and axial (depth) resolution of collected fluorescence signals

  5. Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu; Fang, Chia-Yi; Chang, Huan-Cheng

    2014-03-17

    Multi-color, high spatial resolution imaging of fluorescent nanodiamonds (FNDs) in living HeLa cells has been performed with a direct electron-beam excitation-assisted fluorescence (D-EXA) microscope. In this technique, fluorescent materials are directly excited with a focused electron beam and the resulting cathodoluminescence (CL) is detected with nanoscale resolution. Green- and red-light-emitting FNDs were employed for two-color imaging, which were observed simultaneously in the cells with high spatial resolution. This technique could be applied generally for multi-color immunostaining to reveal various cell functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.

    Directory of Open Access Journals (Sweden)

    Baoshan Guo

    Full Text Available The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate high-throughput, high-accuracy, single-cell screening of E. gracilis with fluorescence-assisted optofluidic time-stretch microscopy-a method that combines the strengths of microfluidic cell focusing, optical time-stretch microscopy, and fluorescence detection used in conventional flow cytometry. Specifically, our fluorescence-assisted optofluidic time-stretch microscope consists of an optical time-stretch microscope and a fluorescence analyzer on top of a hydrodynamically focusing microfluidic device and can detect fluorescence from every E. gracilis cell in a population and simultaneously obtain its image with a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary and nitrogen-deficient (lipid-accumulated E. gracilis cells with a low false positive rate of 1.0%. This method holds promise for evaluating cultivation techniques and selective breeding for microalgae-based biofuel production.

  7. Deployment of a Fully-Automated Green Fluorescent Protein Imaging System in a High Arctic Autonomous Greenhouse

    Directory of Open Access Journals (Sweden)

    Alain Berinstain

    2013-03-01

    Full Text Available Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated.

  8. Deployment of a Fully-Automated Green Fluorescent Protein Imaging System in a High Arctic Autonomous Greenhouse

    Science.gov (United States)

    Abboud, Talal; Bamsey, Matthew; Paul, Anna-Lisa; Graham, Thomas; Braham, Stephen; Noumeir, Rita; Berinstain, Alain; Ferl, Robert

    2013-01-01

    Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated. PMID:23486220

  9. Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters

    International Nuclear Information System (INIS)

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz

    2015-01-01

    We report on the synthesis of carbon dots (C-dots) by thermal carbonization of a mixture of ethyleneglycol bis-(2-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA) and tris(hydroxymethyl)aminomethane (Tris). The resulting C-dots were characterized by X-ray diffraction, proton and carbon nuclear magnetic resonance, FTIR and fluorescence spectroscopy, and high-resolution TEM. The data reveal that the C-dots are mainly capped with hydroxy and carbonyl groups and are highly fluorescent with an emission peak that shifts from 427 to 438 nm if the excitation wavelength is increased from 310 to 360–370 nm. Fluorescence is quenched by 4-nitrophenol (4-NP), and this effect was exploited to design a simple and rapid protocol for the determination of 4-NP. The detection limit is 28 nM and the linear range extends from 0.1 to 50 μM. The method was successfully applied to the determination of 4-NP in spiked river and sea waters. (author)

  10. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    Science.gov (United States)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  11. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.

  12. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    Science.gov (United States)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  13. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  14. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix

    DEFF Research Database (Denmark)

    Mayorca-Guiliani, Alejandro E.; Madsen, Chris D.; Cox, Thomas R.

    2017-01-01

    The extracellular matrix (ECM) is a master regulator of cellular phenotype and behavior. It has a crucial role in both normal tissue homeostasis and disease pathology. Here we present a fast and efficient approach to enhance the study of ECM composition and structure. Termed in situ...... decellularization of tissues (ISDoT), it allows whole organs to be decellularized, leaving native ECM architecture intact. These three-dimensional decellularized tissues can be studied using high-resolution fluorescence and second harmonic imaging, and can be used for quantitative proteomic interrogation of the ECM....... Our method is superior to other methods tested in its ability to preserve the structural integrity of the ECM, facilitate high-resolution imaging and quantitatively detect ECM proteins. In particular, we performed high-resolution sub-micron imaging of matrix topography in normal tissue and over...

  15. Riboflavin enhanced fluorescence of highly reduced graphene oxide

    Science.gov (United States)

    Iliut, Maria; Gabudean, Ana-Maria; Leordean, Cosmin; Simon, Timea; Teodorescu, Cristian-Mihail; Astilean, Simion

    2013-10-01

    The improvement of graphene derivates' fluorescence properties is a challenging topic and very few ways were reported up to now. In this Letter we propose an easy method to enhance the fluorescence of highly reduced graphene oxide (rGO) through non-covalent binding to a molecular fluorophore, namely the riboflavin (Rb). While the fluorescence of Rb is quenched, the Rb - decorated rGO exhibits strong blue fluorescence and significantly increased fluorescence lifetime, as compared to its pristine form. The data reported here represent a promising start towards tailoring the optical properties of rGOs, having utmost importance in optical applications.

  16. Fluorescence lifetime based bioassays

    Science.gov (United States)

    Meyer-Almes, Franz-Josef

    2017-12-01

    Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.

  17. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  18. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ji Hyun [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 μm) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 μm was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial

  19. A high-resolution multimode digital microscope system.

    Science.gov (United States)

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  20. Efficient high-resolution X-ray emission spectrometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Unterumsberger, Rainer

    2015-01-01

    The aim of the present work is to get access to high-resolution X-Ray Emission Spectrometry (XES) at nanoscaled materials, consisting of light elements and transition metals, by the increase of the sensitivity of a Wavelength-Dispersive Spectrometer (WDS) in the soft X-Ray range. The increase of the sensitivity was achieved by a refocusing of the incident radiation. With the increased sensitivity of the WDS, it was possible to determine the chemical species of different, nominal 100 nm thin titanium oxides. The combination of the refocusing optic and calibrated spectrometer enabled the detection and deconvolution of the L-fluorescence radiation of these nanoscaled titanium oxides. Due to the calibration of the spectrometer, a reliable determination of the transition probabilities of the titanium La- and Ll-fluorescence lines as a function of the chemical state is possible. To the best of my knowledge, the determination of the transition probabilities as a function of the chemical state in the soft X-Ray range has not been investigated yet. The quality of the refocusing was characterized using different diagnostic tools. Vertical full width at half maximum (FWHM) values of the focused beam between 10 μm to 20 μm and horizontal FWHM values between 12 μm and 25 μm could be achieved over an energy range of 180 eV to 1310 eV. Using calibrated photodiodes, it was possible to determine the absolute transmission of the used single bounce monocapillary as well as to monitor the absolute photon flux. By means of the refocusing, it was possible to increase the photon flux by a factor of 4.9 experimentally. The increase of the photon flux enables the analysis of nanoscaled materials with the used spectrometer. This could be shown based on the determination of the lower limit of detection of boron Ka and titanium La. In both cases, the lower limit of detection of 0.4 nm equivalent layer thickness was achieved (about 1.10 -7 g/cm 2 to 2.10 -7 g/cm 2 or 3.10 15 atoms/cm 2 to

  1. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    Science.gov (United States)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  2. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  3. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  4. High-level fluorescence labeling of gram-positive pathogens.

    Directory of Open Access Journals (Sweden)

    Simone Aymanns

    Full Text Available Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  5. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Oskinova, L. M.; Hamann, W.-R. [Institute for Physics and Astronomy, University Potsdam, 14476 Potsdam (Germany); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52245 (United States); Huenemoerder, D. P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37663 (United States); Pollock, A. M. T., E-mail: lida@astro.physik.uni-potsdam.de [European Space Agency XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 78, Villanueva de la Canada, 28691 Madrid (Spain)

    2012-03-10

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  6. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  7. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  8. Detection of monohydroxylated polycyclic aromatic hydrocarbons in urine and particulate matter using LC separations coupled with integrated SPE and fluorescence detection or coupled with high-resolution time-of-flight mass spectrometry.

    Science.gov (United States)

    Lintelmann, Jutta; Wu, Xiao; Kuhn, Evelyn; Ritter, Sebastian; Schmidt, Claudia; Zimmermann, Ralf

    2018-05-01

    A high-performance liquid chromatographic (HPLC) method with integrated solid-phase extraction for the determination of 1-hydroxypyrene and 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid-phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core-shell column using a methanol gradient. For quantification, time-programmed fluorescence detection was used. Matrix-dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC-fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra-high-performance liquid chromatography pentafluorophenyl core-shell column and coupled to a high-resolution time-of-flight mass spectrometer (HR-TOF-MS). The resulting method was used to demonstrate the applicability of LC-HR-TOF-MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter. Copyright © 2018 John Wiley & Sons, Ltd.

  9. High-resolution photoluminescence electro-modulation microscopy by scanning lock-in

    Science.gov (United States)

    Koopman, W.; Muccini, M.; Toffanin, S.

    2018-04-01

    Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved.

  10. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    OpenAIRE

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2012-01-01

    Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distributio...

  11. mKikGR, a monomeric photoswitchable fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Satoshi Habuchi

    Full Text Available The recent demonstration and utilization of fluorescent proteins whose fluorescence can be switched on and off has greatly expanded the toolkit of molecular and cell biology. These photoswitchable proteins have facilitated the characterization of specifically tagged molecular species in the cell and have enabled fluorescence imaging of intracellular structures with a resolution far below the classical diffraction limit of light. Applications are limited, however, by the fast photobleaching, slow photoswitching, and oligomerization typical for photoswitchable proteins currently available. Here, we report the molecular cloning and spectroscopic characterization of mKikGR, a monomeric version of the previously reported KikGR that displays high photostability and switching rates. Furthermore, we present single-molecule imaging experiments that demonstrate that individual mKikGR proteins can be localized with a precision of better than 10 nanometers, suggesting their suitability for super-resolution imaging.

  12. Fluorescence Endoscopy in vivo based on Fiber-bundle Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zufiria, B.; Gomez-Garcia, P.; Stamatakis, K.; Vaquero, J.J.; Fresno, M.; Desco, M.; Ripoll, J.; Arranz, A.

    2016-07-01

    High-resolution imaging techniques have become important for the determination of the cellular organization that is coupled to organ function. In many cases the organ can be viewed without the need of ionizing radiation techniques in an easier way. This is the case of the gastrointestinal tract, an organ that can be directly accessed with endoscopy avoiding any invasive procedure. Here we describe the design, assembly and testing of a fluorescence high-resolution endoscope intended for the study of the cellular organization of the colon in an experimental mouse model of colon carcinoma. Access to the colon of the mouse took place using a fiber-optic bundle that redirects the light coming from a LED to produce fluorescence and detect it back through the fiber bundle. Results from in vivo and ex-vivo test using our fluorescence fiber bundle endoscope show altered tissue structure and destruction of the intestinal crypts in tumor-bearing areas compared with healthy tissue. (Author)

  13. Highly fluorescent and superparamagnetic nanosystem for biomedical applications

    Science.gov (United States)

    Cabrera, Mariana P.; E Cabral Filho, Paulo; Silva, Camila M. C. M.; Oliveira, Rita M.; Geraldes, Carlos F. G. C.; Castro, M. Margarida C. A.; Costa, Benilde F. O.; Henriques, Marta S. C.; Paixão, José A.; Carvalho, Luiz B., Jr.; Santos, Beate S.; Hallwass, Fernando; Fontes, Adriana; Pereira, Giovannia A. L.

    2017-07-01

    This work reports on highly fluorescent and superparamagnetic bimodal nanoparticles (BNPs) obtained by a simple and efficient method as probes for fluorescence analysis and/or contrast agents for MRI. These promising BNPs with small dimensions (ca. 17 nm) consist of superparamagnetic iron oxide nanoparticles (SPIONs) covalently bound with CdTe quantum dots (ca. 3 nm). The chemical structure of the magnetic part of BNPs is predominantly magnetite, with minor goethite and maghemite contributions, as shown by Mössbauer spectroscopy, which is compatible with the x-ray diffraction data. Their size evaluation by different techniques showed that the SPION derivatization process, in order to produce the BNPs, does not lead to a large size increase. The BNPs saturation magnetization, when corrected for the organic content of the sample, is ca. 68 emu g-1, which is only slightly reduced relative to the bare nanoparticles. This indicates that the SPION surface functionalization does not change considerably the magnetic properties. The BNP aqueous suspensions presented stability, high fluorescence, high relaxivity ratio (r 2/r 1 equal to 25) and labeled efficiently HeLa cells as can be seen by fluorescence analysis. These BNP properties point to their applications as fluorescent probes as well as negative T 2-weighted MRI contrast agents. Moreover, their potential magnetic response could also be used for fast bioseparation applications.

  14. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  15. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    Science.gov (United States)

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  16. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    International Nuclear Information System (INIS)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok

    2016-01-01

    Graphical abstract: The green synthesis of highly fluorescent N-CDs was achieved using the extract of unripe P. mume fruit as a carbon precursor by a one-pot simple hydrothermal-carbonization method. The resulting N-CDs were used as a staining agent for the fluorescence imaging of MDA-MB-231 cells. Display Omitted - Highlights: • The green synthesis of highly fluorescent N-CDs using the extract of unripe P. mume. • The N-CDs were synthesized by one-pot hydrothermal-carbonization method. • This method of synthesis is a simple, cost effective and eco-friendly route. • N-CDs will be a good alternative for fluorescent dyes and SQDs for bio-applications. - Abstract: Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV–vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  17. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    Energy Technology Data Exchange (ETDEWEB)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@gmail.com [Department of Chemistry, Gandhigram Rural Institute-Deemed University, Gandhigram 624 302, Tamilnadu (India); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of)

    2016-10-30

    Graphical abstract: The green synthesis of highly fluorescent N-CDs was achieved using the extract of unripe P. mume fruit as a carbon precursor by a one-pot simple hydrothermal-carbonization method. The resulting N-CDs were used as a staining agent for the fluorescence imaging of MDA-MB-231 cells. Display Omitted - Highlights: • The green synthesis of highly fluorescent N-CDs using the extract of unripe P. mume. • The N-CDs were synthesized by one-pot hydrothermal-carbonization method. • This method of synthesis is a simple, cost effective and eco-friendly route. • N-CDs will be a good alternative for fluorescent dyes and SQDs for bio-applications. - Abstract: Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV–vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  18. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Dragan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The purposes of our research were: (1) To characterize subunits of highly fluorescent protein R-Phycoerythrin (R-PE) and check their suitability for single-molecule detection (SMD) and cell imaging, (2) To extend the use of R-PE subunits through design of similar proteins that will be used as probes for microscopy and spectral imaging in a single cell, and (3) To demonstrate a high-throughput spectral imaging method that will rival spectral flow cytometry in the analysis of individual cells. We first demonstrated that R-PE subunits have spectroscopic and structural characteristics that make them suitable for SMD. Subunits were isolated from R-PE by high-performance liquid chromatography (HPLC) and detected as single molecules by total internal reflection fluorescence microscopy (TIRFM). In addition, R-PE subunits and their enzymatic digests were characterized by several separation and detection methods including HPLC, capillary electrophoresis, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and HPLC-electrospray ionization mass spectrometry (ESI-MS). Favorable absorption and fluorescence of the R-PE subunits and digest peptides originate from phycoerythrobilin (PEB) and phycourobilin (PUB) chromophores that are covalently attached to cysteine residues. High absorption coefficients and strong fluorescence (even under denaturing conditions), broad excitation and emission fluorescence spectra in the visible region of electromagnetic spectrum, and relatively low molecular weights make these molecules suitable for use as fluorescence labels of biomolecules and cells. We further designed fluorescent proteins both in vitro and in vivo (in Escherichia coli) based on the highly specific attachment of PEB chromophore to genetically expressed apo-subunits of R-PE. In one example, apo-alpha and apo-beta R-PE subunits were cloned from red algae Polisiphonia boldii (P. boldii), and expressed in E. coli. Although expressed apo-subunits formed inclusion

  19. X-ray fluorescence hologram data collection with a cooled avalanche photodiode

    CERN Document Server

    Hayashi, K; Matsubara, E I; Kishimoto, S; Mori, T; Tanaka, M

    2002-01-01

    A high counting rate X-ray detector with an appropriate energy resolution is desired for high quality X-ray fluorescence hologram measurements because a holographic pattern is detected as extremely small intensity variations of X-ray fluorescence on a large intensity background. A cooled avalanche photodiode (APD), which has about 10% energy resolution and is designed for a high counting rate, fits the above requirements. Reconstructed atomic images from experimental holograms using the APD system provide us a clear view of the first and second neighbor atoms around an emitter. The present result proved that a combination of this APD system and a synchrotron X-ray source enables us to measure a high quality hologram for a reasonable measurement time.

  20. Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2013-09-01

    Full Text Available A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC. The fluorescence of lysozyme-imprinted polymer (Lys-MIP was quenched more strongly by Lys than that of nonimprinted polymer (NIP, which indicated that the Lys-MIP could recognize Lys. The resulted imprinted material has the ability to selectively sense a target protein, and an imprinting factor of 3.34 was achieved. The Lys-MIP also showed selective detection for Lys among other proteins such as cytochrome C (Cyt C, hemoglobin (HB and bovine serum albumin (BSA due to the imprinted sites in the Lys-MIP. This approach combines the high selectivity of surface molecular imprinting technology and fluorescence, and converts binding events into detectable signals by monitoring fluorescence spectra. Therefore, it will have further applications for Lys sensing.

  1. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. © 2015 SETAC.

  2. Submicron, soft x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    La Fontaine, B.; MacDowell, A.A.; Tan, Z.; White, D.L.; Taylor, G.N.; Wood, O.R. II; Bjorkholm, J.E.; Tennant, D.M.; Hulbert, S.L.

    1995-01-01

    Submicron fluorescence imaging of soft x-ray aerial images, using a high resolution fluorescent crystal is reported. Features as small as 0.1 μm were observed using a commercially available single-crystal phosphor, STI-F10G (Star Tech Instruments Inc. P. O. Box 2536, Danbury, CT 06813-2536), excited with 139 A light. Its quantum efficiency was estimated to be 5--10 times that of sodium salicylate and to be constant over a broad spectral range from 30 to 400 A. A comparison with a terbium-activated yttrium orthosilicate fluorescent crystal is also presented. Several applications, such as the characterization of the aerial images produced by deep ultraviolet or extreme ultraviolet lithographic exposure tools, are envisaged

  3. Parallel scan hyperspectral fluorescence imaging system and biomedical application for microarrays

    International Nuclear Information System (INIS)

    Liu Zhiyi; Ma Suihua; Liu Le; Guo Jihua; He Yonghong; Ji Yanhong

    2011-01-01

    Microarray research offers great potential for analysis of gene expression profile and leads to greatly improved experimental throughput. A number of instruments have been reported for microarray detection, such as chemiluminescence, surface plasmon resonance, and fluorescence markers. Fluorescence imaging is popular for the readout of microarrays. In this paper we develop a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. Coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. The mechanism of quasi-confocal imaging provides a high signal-to-noise ratio, and parallel scan makes this approach a high throughput technique for microarray analysis. This system is improved with a specifically designed spectrometer which can offer a spectral resolution of 0.2 nm, and operates with spatial resolutions ranging from 2 to 30 μm . Finally, the application of the system is demonstrated by reading out microarrays for identification of bacteria.

  4. Design, manufacturing and alignment of a fluorescence imaging spectrometer based on refractive optics and a transmission grating

    Science.gov (United States)

    Lousberg, G. P.; Lemagne, F.; Gloesener, P.; Flebus, C.; Rougelot, S.; Coatantiec, C.; Harnisch, B.

    2017-11-01

    In the framework of the Fluorescence Explorer (FLEX) phase A/B1 study, an elegant breadboard (EBB) of an imaging spectrometer is designed, manufactured and aligned by AMOS, with Airbus Defence&Space as the prime Contractor of the study. The FLEX mission is one of the two candidates of the 8th Earth Explorer mission. The main constituting instrument of the FLEX mission is an imaging spectrometer observing vegetation fluorescence and reflectance with a high- and a low-resolution channels in the 500 nm -780 nm band. As part of the system feasibility study of the mission, a breadboard of the high-resolution channel of the instrument is designed and manufactured with a high representativeness of a future flight concept. The high-resolution channel is referred to as FIMAS (Fluorescence IMAging Spectrometer). The main purpose of the EBB is to demonstrate (1) the manufacturability of the instrument and (2) the compliance of the optical performances with respect to the science requirements (including spatial and spectral resolution and stray-light).

  5. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  6. Capillary gel electrophoresis for rapid, high resolution DNA sequencing.

    OpenAIRE

    Swerdlow, H; Gesteland, R

    1990-01-01

    Capillary gel electrophoresis has been demonstrated for the separation and detection of DNA sequencing samples. Enzymatic dideoxy nucleotide chain termination was employed, using fluorescently tagged oligonucleotide primers and laser based on-column detection (limit of detection is 6,000 molecules per peak). Capillary gel separations were shown to be three times faster, with better resolution (2.4 x), and higher separation efficiency (5.4 x) than a conventional automated slab gel DNA sequenci...

  7. High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings

    Science.gov (United States)

    Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.

    2018-01-01

    Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.

  8. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host.

    Directory of Open Access Journals (Sweden)

    Tara J Moriarty

    2008-06-01

    Full Text Available Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood-brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP. Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.

  9. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  10. Comparison of quantitative myocardial perfusion imaging CT to fluorescent microsphere-based flow from high-resolution cryo-images

    Science.gov (United States)

    Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.

  11. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Nan Guo

    2014-10-01

    Full Text Available Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art.

  12. Fluorescent microthermographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.L.

    1993-09-01

    In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

  13. Review: two-photon scanning systems for clinical high resolution in vivo tissue imaging

    Science.gov (United States)

    König, K.; Müller, J.; Höfer, M.; Müller, C.; Weinigel, M.; Bückle, R.; Elsner, P.; Kaatz, M.; Messerschmidt, B.

    2008-02-01

    The femtosecond laser multiphoton tomograph DermaInspect as well as high NA two-photon GRIN microendoscopes for in vivo tomography of human skin have been used to detect malignant melanoma as well as to study the diffusion and intradermal accumulation of topically applied cosmetical and pharmaceutical components. So far, more than 500 patients and volunteers in Europe, Australia, and Asia have been investigated with this unique tomograph. Near infrared 80 MHz picojoule femtosecond laser pulses were employed to excite endogenous fluorophores such as NAD(P)H, flavoproteins, melanin, and elastin as well as fluorescent components of a variety of ointments via a twophoton excitation process. In addition, collagen has been imaged by second harmonic generation. Using a two-PMT detection system, the ratio of elastin to collagen was determined during optical sectioning. A high submicron spatial resolution and 50 picosecond temporal resolution was achieved using galvoscan mirrors and piezodriven focusing optics as well as a time-correlated single photon counting module with a fast microchannel plate detector and fast photomultipliers. Individual intratissue cells, mitochondria, melanosomes, and the morphology of the nuclei as well as extracellular matrix elements could be clearly visualized due to molecular imaging and the calculation of fluorescence lifetime images. Nanoparticles and intratissue drugs have been detected non-invasively, in situ and over a period of up to 3 months. In addition, hydration effects and UV effects were studied by monitoring modifications of cellular morphology and autofluorescence. The system was used to observe the diffusion through the stratum corneum and the accumulation and release of functionalized nanoparticles along hair shafts and epidermal ridges. The DermaInspect been also employed to gain information on skin age and wound healing in patients with ulcers. Novel developments include a galvo/piezo-scan driven flexible articulated arm as

  14. Highly selective detection of p-nitrophenol using fluorescence assay based on boron, nitrogen co-doped carbon dots.

    Science.gov (United States)

    Xiao, Na; Liu, Shi Gang; Mo, Shi; Li, Na; Ju, Yan Jun; Ling, Yu; Li, Nian Bing; Luo, Hong Qun

    2018-07-01

    p-Nitrophenol (p-NP) contaminants seriously endanger environmental and living beings health, hence to establish a sensitive and selective method is of great importance for the determination of p-NP. In this work, boron and nitrogen co-doped carbon dots (B,N-CDs) were synthesized by one-step hydrothermal method using 3-aminophenylboronic acid as the sole precursor. The product was characterized through high-resolution transmission electron microscopy, fluorescence spectroscopy, UV-visible absorption spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Without any functionalized modification, B,N-CDs can be directly applied as a 'turn-off' fluorescent probe for rapid, highly selective, and sensitive detection of p-NP. The fluorescent sensor based on the B,N-CDs exhibited a broad linear response to the concentration of p-NP in the range of 0.5 - 60 μM and 60 - 200 μM, respectively, and provided a detection limit of 0.2 μM. It was found that only the absorption spectrum of p-NP has a wide overlap with the fluorescence excitation and emission spectra of B,N-CDs compared to those of other representative analogues. The response mechanism was due to the inner filter effect and the formation of dynamic covalent B-O bonds between B,N-CDs and p-NP, which endowed the sensing platform with the rapid response and high selectivity to p-NP. Finally, the sensor showed the practicability of p-NP determination in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  16. Cytotoxicity Test Based on Human Cells Labeled with Fluorescent Proteins: Fluorimetry, Photography, and Scanning for High-Throughput Assay.

    Science.gov (United States)

    Kalinina, Marina A; Skvortsov, Dmitry A; Rubtsova, Maria P; Komarova, Ekaterina S; Dontsova, Olga A

    2018-06-01

    High- and medium-throughput assays are now routine methods for drug screening and toxicology investigations on mammalian cells. However, a simple and cost-effective analysis of cytotoxicity that can be carried out with commonly used laboratory equipment is still required. The developed cytotoxicity assays are based on human cell lines stably expressing eGFP, tdTomato, mCherry, or Katushka2S fluorescent proteins. Red fluorescent proteins exhibit a higher signal-to-noise ratio, due to less interference by medium autofluorescence, in comparison to green fluorescent protein. Measurements have been performed on a fluorescence scanner, a plate fluorimeter, and a camera photodocumentation system. For a 96-well plate assay, the sensitivity per well and the measurement duration were 250 cells and 15 min for the scanner, 500 cells and 2 min for the plate fluorimeter, and 1000 cells and less than 1 min for the camera detection. These sensitivities are similar to commonly used MTT (tetrazolium dye) assays. The used scanner and the camera had not been previously applied for cytotoxicity evaluation. An image processing scheme for the high-resolution scanner is proposed that significantly diminishes the number of control wells, even for a library containing fluorescent substances. The suggested cytotoxicity assay has been verified by measurements of the cytotoxicity of several well-known cytotoxic drugs and further applied to test a set of novel bacteriotoxic compounds in a medium-throughput format. The fluorescent signal of living cells is detected without disturbing them and adding any reagents, thus allowing to investigate time-dependent cytotoxicity effects on the same sample of cells. A fast, simple and cost-effective assay is suggested for cytotoxicity evaluation based on mammalian cells expressing fluorescent proteins and commonly used laboratory equipment.

  17. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  18. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  19. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli.

    Science.gov (United States)

    van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I

    2010-11-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.

  20. Spectrally resolved pressure dependence measurements of air fluorescence emission with AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.; Klages, H.

    2008-01-01

    The knowledge of the fluorescence emission as a function of atmospheric parameters is essential for the detection of extensive air showers with the fluorescence technique. In this paper, we summarize AIRFLY published measurements of the pressure dependence of the fluorescence yield. The spectral distribution of the fluorescent light between 280 and 429 nm has been measured with high resolution. Relative intensities of 34 spectral lines have been determined. The pressure dependence of 25 lines was measured in terms of quenching reference pressures p λ ' in air. This set of AIRFLY measurements yields the most comprehensive parametrization of the pressure dependence of the fluorescent spectrum.

  1. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  2. Resolution Enhancement of Multilook Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Galbraith, Amy E. [Univ. of Arizona, Tucson, AZ (United States)

    2004-07-01

    This dissertation studies the feasibility of enhancing the spatial resolution of multi-look remotely-sensed imagery using an iterative resolution enhancement algorithm known as Projection Onto Convex Sets (POCS). A multi-angle satellite image modeling tool is implemented, and simulated multi-look imagery is formed to test the resolution enhancement algorithm. Experiments are done to determine the optimal con guration and number of multi-angle low-resolution images needed for a quantitative improvement in the spatial resolution of the high-resolution estimate. The important topic of aliasing is examined in the context of the POCS resolution enhancement algorithm performance. In addition, the extension of the method to multispectral sensor images is discussed and an example is shown using multispectral confocal fluorescence imaging microscope data. Finally, the remote sensing issues of atmospheric path radiance and directional reflectance variations are explored to determine their effect on the resolution enhancement performance.

  3. Enhanced simulator software for image validation and interpretation for multimodal localization super-resolution fluorescence microscopy

    Science.gov (United States)

    Erdélyi, Miklós; Sinkó, József; Gajdos, Tamás.; Novák, Tibor

    2017-02-01

    Optical super-resolution techniques such as single molecule localization have become one of the most dynamically developed areas in optical microscopy. These techniques routinely provide images of fixed cells or tissues with sub-diffraction spatial resolution, and can even be applied for live cell imaging under appropriate circumstances. Localization techniques are based on the precise fitting of the point spread functions (PSF) to the measured images of stochastically excited, identical fluorescent molecules. These techniques require controlling the rate between the on, off and the bleached states, keeping the number of active fluorescent molecules at an optimum value, so their diffraction limited images can be detected separately both spatially and temporally. Because of the numerous (and sometimes unknown) parameters, the imaging system can only be handled stochastically. For example, the rotation of the dye molecules obscures the polarization dependent PSF shape, and only an averaged distribution - typically estimated by a Gaussian function - is observed. TestSTORM software was developed to generate image stacks for traditional localization microscopes, where localization meant the precise determination of the spatial position of the molecules. However, additional optical properties (polarization, spectra, etc.) of the emitted photons can be used for further monitoring the chemical and physical properties (viscosity, pH, etc.) of the local environment. The image stack generating program was upgraded by several new features, such as: multicolour, polarization dependent PSF, built-in 3D visualization, structured background. These features make the program an ideal tool for optimizing the imaging and sample preparation conditions.

  4. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  5. Ultra-High Resolution Optical Coherence Tomography Imaging of Unilateral Drusen in a 31 Year Old Woman.

    Science.gov (United States)

    de Carlo, Talisa E; Adhi, Mehreen; Lu, Chen D; Duker, Jay S; Fujimoto, James G; Waheed, Nadia K

    We report a case of widespread unilateral drusen in a healthy 31 year old Caucasian woman using multi-modal imaging including ultra-high resolution optical coherence tomography (UHR-OCT). Dilated fundus exam showed multiple drusen-like lesions in the posterior pole without heme or fluid. Fundus auto fluorescence demonstrated hyperautofluorescent at the deposits. Fluorescein angiography revealed mild hyperfluorescence and staining of the lesions. Spectral-domain optical coherence tomography (SD-OCT) OS showed accumulations in the temporal macula at Bruch's membrane. UHR-OCT provided improved axial resolution compared to the standard 5 μm on the commercial SD-OCT and confirmed the presence of deposits in Bruch's membrane, consistent with drusen. The retinal layers were draped over the excrescences but did not show any disruption.

  6. HIGH SPATIAL-RESOLUTION IMAGING OF TE INCLUSIONS IN CZT MATERIAL

    International Nuclear Information System (INIS)

    CAMARDA, G.S.; BOLOTNIKOV, A.E.; CARINI, G.A.; CUI, Y.; KOHMAN, K.T.; LI, L.; JAMES, R.B.

    2006-01-01

    We present new results from our studies of defects in current single-crystal CdZnTe material. Our previous measurements, carried out on thin (∼1 mm) and long (>12 mm) CZT detectors, indicated that small (1-20 (micro)m) Te inclusions can significantly degrade the device's energy resolution and detection efficiency. We are conducting detailed studies of the effects of Te inclusions by employing different characterization techniques with better spatial resolution, such as quantitative fluorescence mapping, X-ray micro-diffraction, and TEM. Also, IR microscopy and gamma-mapping with pulse-shape analysis with higher spatial resolution generated more accurate results in the areas surrounding the micro-defects (Te inclusions). Our results reveal how the performance of CdZnTe detectors is influenced by Te inclusions, such as their spatial distribution, concentration, and size. We also discuss a model of charge transport through areas populated with Te inclusions

  7. High resolution measurement of light in terrestrial ecosystems using photodegrading dyes.

    Directory of Open Access Journals (Sweden)

    Javier Roales

    Full Text Available Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem.

  8. Current limitations in super-resolution fluorescence microscopy for biological specimens: How deep can we go from the cover glass?

    Science.gov (United States)

    Okada, Yasushi

    2017-04-01

    Diffraction limit of resolution has been one of the biggest limitations in the optical microscopy. Super-resolution fluorescence microscopy has enabled us to break this limit. However, for the observations of real biological specimens, especially for the imaging of tissues or whole body, the target structures of interest are often embedded deep inside the specimen. Here, we would present our results to extend the target of the super-resolution microscopy deeper into the cells. Confocal microscope optics work effectively to minimize the effect by the aberrations by the cellular components, but at the expense of the signal intensities. Spherical aberrations by the refractive index mismatch between the cellular environment and the immersion liquid can be much larger, but can be reduced by adjusting the correction collar at the objective lens.

  9. High-contrast fluorescence imaging based on the polarization dependence of the fluorescence enhancement using an optical interference mirror slide.

    Science.gov (United States)

    Yasuda, Mitsuru; Akimoto, Takuo

    2015-01-01

    High-contrast fluorescence imaging using an optical interference mirror (OIM) slide that enhances the fluorescence from a fluorophore located on top of the OIM surface is reported. To enhance the fluorescence and reduce the background light of the OIM, transverse-electric-polarized excitation light was used as incident light, and the transverse-magnetic-polarized fluorescence signal was detected. As a result, an approximate 100-fold improvement in the signal-to-noise ratio was achieved through a 13-fold enhancement of the fluorescence signal and an 8-fold reduction of the background light.

  10. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  11. Preparation and Characterization of Highly Fluorescent, Glutathione-coated Near Infrared Quantum Dots for in Vivo Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Yoshichika Yoshioka

    2008-10-01

    Full Text Available Fluorescent probes that emit in the near-infrared (NIR, 700-1,300 nm region are suitable as optical contrast agents for in vivo fluorescence imaging because of low scattering and absorption of the NIR light in tissues. Recently, NIR quantum dots (QDs have become a new class of fluorescent materials that can be used for in vivo imaging. Compared with traditional organic fluorescent dyes, QDs have several unique advantages such as size- and composition-tunable emission, high brightness, narrow emission bands, large Stokes shifts, and high resistance to photobleaching. In this paper, we report a facile method for the preparation of highly fluorescent, water-soluble glutathione (GSH-coated NIR QDs for in vivo imaging. GSH-coated NIR QDs (GSH-QDs were prepared by surface modification of hydrophobic CdSeTe/CdS (core/shell QDs. The hydrophobic surface of the CdSeTe/CdS QDs was exchanged with GSH in tetrahydrofuran-water. The resulting GSH-QDs were monodisperse particles and stable in PBS (phosphate buffered saline, pH = 7.4. The GSH-QDs (800 nm emission were highly fluorescent in aqueous solutions (quantum yield = 22% in PBS buffer, and their hydrodynamic diameter was less than 10 nm, which is comparable to the size of proteins. The cellular uptake and viability for the GSH-QDs were examined using HeLa and HEK 293 cells. When the cells were incubated with aqueous solutions of the GSH-QDs (10 nM, the QDs were taken into the cells and distributed in the perinuclear region of both cells. After 12 hrs incubation of 4 nM of GSH-QDs, the viabilities of HeLa and HEK 293 cells were ca. 80 and 50%, respectively. As a biomedical utility of the GSH-QDs, in vivo NIRfluorescence imaging of a lymph node in a mouse is presented.

  12. Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime

    Science.gov (United States)

    Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie

    2017-09-01

    Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.

  13. Rotationally cooled laser induced fluorescence determination of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Warren, J.A.; Hayes, J.M.; Small, G.J.

    1982-01-01

    In recent years the development of new highly selective and sensitive methods for the characterization and determination of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in complex mixtures has received considerable attention. High selectivity is associated here with the ability to distinguish between substitutional isomers of PAHs. Attainment of this selectivity with capillary column-gas chromatography-mass spectrometry for complex mixtures is very difficult and time-consuming. Alternative approaches are, therefore, required. Given that the majority of PAHs fluoresce with reasonable quantum yields and that high sensitivities are afforded by fluorescence detection, the possibility of developing high-resolution fluorescence based techniques is attractive. This is all the more so if the technique's selectivity does not rely on physical separation, e.g., chromatography. In this paper discussion is limited to such techniques

  14. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  15. Microcystin Detection Characteristics of Fluorescence Immunochromatography and High Performance Liquid Chromatography

    International Nuclear Information System (INIS)

    Pyo, Dong Jin; Park, Geun Young; Choi, Jong Chon; Oh, Chang Suk

    2005-01-01

    Different detection characteristics of fluorescence immunochromatography method and high performance liquid chromatography (HPLC) method for the analysis of cyanobacterial toxins were studied. In particular, low and high limits of detection, detection time and reproducibility and detectable microcystin species were compared when fluorescence immunochromatography method and high performance liquid chromatography method were applied for the detection of microcystin (MC), a cyclic peptide toxin of the freshwater cyanobacterium Microcystis aeruginosa. A Fluorescence immunochromatography assay system has the unique advantages of short detection time and low detection limit, and high performance liquid chromatography detection method has the strong advantage of individual quantifications of several species of microcystins

  16. Broadband high-resolution two-photon spectroscopy with laser frequency combs

    OpenAIRE

    Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie

    2013-01-01

    Two-photon excitation spectroscopy with broad spectral span is demonstrated at Doppler-limited resolution. We describe first Fourier transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum is revealed by a...

  17. Resonance Fluorescence from an Artificial Atom in Squeezed Vacuum

    Directory of Open Access Journals (Sweden)

    D. M. Toyli

    2016-07-01

    Full Text Available We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.

  18. In vivo quantification of fluorescent molecular markers in real-time by ratio Imaging for diagnostic screening and image-guided surgery

    NARCIS (Netherlands)

    Bogaards, A.; Sterenborg, H. J. C. M.; Trachtenberg, J.; Wilson, B. C.; Lilge, L.

    2007-01-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (similar to >= 30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and

  19. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA

    Science.gov (United States)

    Lin, Chenxiang; Jungmann, Ralf; Leifer, Andrew M.; Li, Chao; Levner, Daniel; Church, George M.; Shih, William M.; Yin, Peng

    2012-10-01

    The identification and differentiation of a large number of distinct molecular species with high temporal and spatial resolution is a major challenge in biomedical science. Fluorescence microscopy is a powerful tool, but its multiplexing ability is limited by the number of spectrally distinguishable fluorophores. Here, we used (deoxy)ribonucleic acid (DNA)-origami technology to construct submicrometre nanorods that act as fluorescent barcodes. We demonstrate that spatial control over the positioning of fluorophores on the surface of a stiff DNA nanorod can produce 216 distinct barcodes that can be decoded unambiguously using epifluorescence or total internal reflection fluorescence microscopy. Barcodes with higher spatial information density were demonstrated via the construction of super-resolution barcodes with features spaced by ˜40 nm. One species of the barcodes was used to tag yeast surface receptors, which suggests their potential applications as in situ imaging probes for diverse biomolecular and cellular entities in their native environments.

  20. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  1. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Science.gov (United States)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  2. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  3. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.

    Science.gov (United States)

    Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina

    2008-12-01

    The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.

  4. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  5. Full genotyping of a highly polymorphic human gene trait by time-resolved fluorescence resonance energy transfer.

    Directory of Open Access Journals (Sweden)

    Edoardo Totè

    Full Text Available The ability of detecting the subtle variations occurring, among different individuals, within specific DNA sequences encompassed in highly polymorphic genes discloses new applications in genomics and diagnostics. DQB1 is a gene of the HLA-II DQ locus of the Human Leukocyte Antigens (HLA system. The polymorphisms of the trait of the DQB1 gene including codons 52-57 modulate the susceptibility to a number of severe pathologies. Moreover, the donor-receiver tissue compatibility in bone marrow transplantations is routinely assessed through crossed genotyping of DQB and DQA. For the above reasons, the development of rapid, reliable and cost-effective typing technologies of DQB1 in general, and more specifically of the codons 52-57, is a relevant although challenging task. Quantitative assessment of the fluorescence resonance energy transfer (FRET efficiency between chromophores labelling the opposite ends of gene-specific oligonucleotide probes has proven to be a powerful tool to type DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, i.e. time-correlated single-photon counting, which allows working on very diluted template specimens and in the presence of fluorescent contaminants. Here we present a full in-vitro characterization of the fluorescence responses of two probes when hybridized to oligonucleotide mixtures mimicking all the possible genotypes of the codons 52-57 trait of DQB1 (8 homozygous and 28 heterozygous. We show that each genotype can be effectively tagged by the combination of the fluorescence decay constants extrapolated from the data obtained with such probes.

  6. Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research

    Directory of Open Access Journals (Sweden)

    Florian Stuker

    2011-04-01

    Full Text Available Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT, which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT or Magnetic Resonance Imaging (MRI will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue’s optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular

  7. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay.

    Science.gov (United States)

    De Cecco, Marco; Jeyapalan, Jessie; Zhao, Xiaoai; Tamamori-Adachi, Mimi; Sedivy, John M

    2011-10-01

    Replicative cellular senescence was discovered some 50 years ago. The phenotypes of senescent cells have been investigated extensively in cell culture, and found to affect essentially all aspects of cellular physiology. The relevance of cellular senescence in the context of age-associated pathologies as well as normal aging is a topic of active and ongoing interest. Considerable effort has been devoted to biomarker discovery to enable the microscopic detection of single senescent cells in tissues. One characteristic of senescent cells documented very early in cell culture studies was an increase in cell size and total protein content, but whether this occurs in vivo is not known. A limiting factor for studies of protein content and localization has been the lack of suitable fluorescence microscopy tools. We have developed an easy and flexible method, based on the merocyanine dye known as NanoOrange, to visualize and quantitatively measure total protein levels by high resolution fluorescence microscopy. NanoOrange staining can be combined with antibody-based immunofluorescence, thus providing both specific target and total protein information in the same specimen. These methods are optimally combined with automated image analysis platforms for high throughput analysis. We document here increasing protein content and density in nuclei of senescent human and mouse fibroblasts in vitro, and in liver nuclei of aged mice in vivo. Additionally, in aged liver nuclei NanoOrange revealed protein-dense foci that colocalize with centromeric heterochromatin.

  8. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    Science.gov (United States)

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-12-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

  9. Fluorescent foci quantitation for high-throughput analysis

    Directory of Open Access Journals (Sweden)

    Elena Ledesma-Fernández

    2015-06-01

    Full Text Available A number of cellular proteins localize to discrete foci within cells, for example DNA repair proteins, microtubule organizing centers, P bodies or kinetochores. It is often possible to measure the fluorescence emission from tagged proteins within these foci as a surrogate for the concentration of that specific protein. We wished to develop tools that would allow quantitation of fluorescence foci intensities in high-throughput studies. As proof of principle we have examined the kinetochore, a large multi-subunit complex that is critical for the accurate segregation of chromosomes during cell division. Kinetochore perturbations lead to aneuploidy, which is a hallmark of cancer cells. Hence, understanding kinetochore homeostasis and regulation are important for a global understanding of cell division and genome integrity. The 16 budding yeast kinetochores colocalize within the nucleus to form a single focus. Here we have created a set of freely-available tools to allow high-throughput quantitation of kinetochore foci fluorescence. We use this ‘FociQuant’ tool to compare methods of kinetochore quantitation and we show proof of principle that FociQuant can be used to identify changes in kinetochore protein levels in a mutant that affects kinetochore function. This analysis can be applied to any protein that forms discrete foci in cells.

  10. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  11. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research

    Science.gov (United States)

    Ilić, Nataša; Pilarczyk, Götz; Lee, Jin-Ho; Logeswaran, Abiramy; Borroni, Aurora Paola; Krufczik, Matthias; Theda, Franziska; Waltrich, Nadine; Bestvater, Felix; Hildenbrand, Georg; Cremer, Christoph; Blank, Michael

    2017-01-01

    Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine. PMID:28956810

  12. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research

    Directory of Open Access Journals (Sweden)

    Michael Hausmann

    2017-09-01

    Full Text Available Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2 in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine.

  13. Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens

    Science.gov (United States)

    Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.

    2018-02-01

    Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.

  14. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  15. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  16. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    International Nuclear Information System (INIS)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P.A.; Schmid, Adrien W.

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  17. A 3D imaging system integrating photoacoustic and fluorescence orthogonal projections for anatomical, functional and molecular assessment of rodent models

    Science.gov (United States)

    Brecht, Hans P.; Ivanov, Vassili; Dumani, Diego S.; Emelianov, Stanislav Y.; Anastasio, Mark A.; Ermilov, Sergey A.

    2018-03-01

    We have developed a preclinical 3D imaging instrument integrating photoacoustic tomography and fluorescence (PAFT) addressing known deficiencies in sensitivity and spatial resolution of the individual imaging components. PAFT is designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct registration of the two imaging modalities. Orthogonal photoacoustic projections are utilized to reconstruct large (21 cm3 ) volumes showing vascularized anatomical structures and regions of induced optical contrast with spatial resolution exceeding 100 µm. The major advantage of orthogonal fluorescence projections is significant reduction of background noise associated with transmitted or backscattered photons. The fluorescence imaging component of PAFT is used to boost detection sensitivity by providing low-resolution spatial constraint for the fluorescent biomarkers. PAFT performance characteristics were assessed by imaging optical and fluorescent contrast agents in tissue mimicking phantoms and in vivo. The proposed PAFT technology will enable functional and molecular volumetric imaging using fluorescent biomarkers, nanoparticles, and other photosensitive constructs mapped with high fidelity over robust anatomical structures, such as skin, central and peripheral vasculature, and internal organs.

  18. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  19. Automated detection of fluorescent cells in in-resin fluorescence sections for integrated light and electron microscopy.

    Science.gov (United States)

    Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M

    2018-04-26

    Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  20. Applications of optical fiber to the remote fluorescence analysis

    International Nuclear Information System (INIS)

    Shin, Jang Soo; Kim, Duck Hueon; Lee, Soo Ho

    1992-12-01

    The laser fluorometer developed in 1987 has been used in real circumstances for trace uranium analysis. And, we have been trying to improve the instrument to be able to apply in analytical circumstances of remote measurement using optical fiber. The N 2 laser beam and the resulting fluorescence light could be successfully transmitted through a quartz-made optical fiber. The wavelength resolution and the fluorescence decay time resolution induced by pulsed N 2 laser were used to the uranium fluorescence analyses. The fluorescence of uranium in nitric acid medium was measured successfully using the system. The fluorescence signal was analysed using simplex method which is useful to deconvolute the mixed signals. An analytical method using thermal lens effect was developed. The method will be a complementary one for the fluorescence measurement. (Author)

  1. Preparation of wholemount mouse intestine for high-resolution three-dimensional imaging using two-photon microscopy.

    Science.gov (United States)

    Appleton, P L; Quyn, A J; Swift, S; Näthke, I

    2009-05-01

    Visualizing overall tissue architecture in three dimensions is fundamental for validating and integrating biochemical, cell biological and visual data from less complex systems such as cultured cells. Here, we describe a method to generate high-resolution three-dimensional image data of intact mouse gut tissue. Regions of highest interest lie between 50 and 200 mum within this tissue. The quality and usefulness of three-dimensional image data of tissue with such depth is limited owing to problems associated with scattered light, photobleaching and spherical aberration. Furthermore, the highest-quality oil-immersion lenses are designed to work at a maximum distance of image at high-resolution deep within tissue. We show that manipulating the refractive index of the mounting media and decreasing sample opacity greatly improves image quality such that the limiting factor for a standard, inverted multi-photon microscope is determined by the working distance of the objective as opposed to detectable fluorescence. This method negates the need for mechanical sectioning of tissue and enables the routine generation of high-quality, quantitative image data that can significantly advance our understanding of tissue architecture and physiology.

  2. Cryo-imaging of fluorescently labeled single cells in a mouse

    Science.gov (United States)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  3. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  4. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    Science.gov (United States)

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  5. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  6. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  7. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    Science.gov (United States)

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  8. High-resolution imaging of cellular processes across textured surfaces using an indexed-matched elastomer.

    Science.gov (United States)

    Ravasio, Andrea; Vaishnavi, Sree; Ladoux, Benoit; Viasnoff, Virgile

    2015-03-01

    Understanding and controlling how cells interact with the microenvironment has emerged as a prominent field in bioengineering, stem cell research and in the development of the next generation of in vitro assays as well as organs on a chip. Changing the local rheology or the nanotextured surface of substrates has proved an efficient approach to improve cell lineage differentiation, to control cell migration properties and to understand environmental sensing processes. However, introducing substrate surface textures often alters the ability to image cells with high precision, compromising our understanding of molecular mechanisms at stake in environmental sensing. In this paper, we demonstrate how nano/microstructured surfaces can be molded from an elastomeric material with a refractive index matched to the cell culture medium. Once made biocompatible, contrast imaging (differential interference contrast, phase contrast) and high-resolution fluorescence imaging of subcellular structures can be implemented through the textured surface using an inverted microscope. Simultaneous traction force measurements by micropost deflection were also performed, demonstrating the potential of our approach to study cell-environment interactions, sensing processes and cellular force generation with unprecedented resolution. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  10. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  11. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  12. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  13. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    Science.gov (United States)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-12-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.

  14. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  15. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses.

    Science.gov (United States)

    Gawlak, M; Górkiewicz, T; Gorlewicz, A; Konopacki, F A; Kaczmarek, L; Wilczynski, G M

    2009-01-12

    Synaptic plasticity involves remodeling of extracellular matrix. This is mediated, in part, by enzymes of the matrix metalloproteinase (MMP) family, in particular by gelatinase MMP-9. Accordingly, there is a need of developing methods to visualize gelatinolytic activity at the level of individual synapses, especially in the context of neurotransmitters receptors. Here we present a high-resolution fluorescent in situ zymography (ISZ), performed in thin sections of the alcohol-fixed and polyester wax-embedded brain tissue of the rat (Rattus norvegicus), which is superior to the current ISZ protocols. The method allows visualization of structural details up to the resolution-limit of light microscopy, in conjunction with immunofluorescent labeling. We used this technique to visualize and quantify gelatinolytic activity at the synapses in control and seizure-affected rat brain. In particular, we demonstrated, for the first time, frequent colocalization of gelatinase(s) with synaptic N-methyl-D-aspartic acid (NMDA)- and AMPA-type glutamate receptors. We believe that our method represents a valuable tool to study extracellular proteolytic processes at the synapses, it could be used, as well, to investigate proteinase involvement in a range of physiological and pathological phenomena in the nervous system.

  16. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  17. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology

    Science.gov (United States)

    Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2017-04-01

    Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.

  18. Measurement of the spectrum of electric-field fluctuations in a plasma by laser-fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Hildebrandt, J.; Kunze, H.

    1980-01-01

    Laser-fluorescence spectroscopy has been applied to measure the spectrum of electric wave fields with high temporal resolution in a pulsed hollow-cathode discharge. A low-frequency and a high-frequency component can be identified

  19. Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.

  20. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W. Jr. [Univ. of California, San Francisco, CA (United States)]|[Univ. of California, Davis, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States); Rothman, S.S. [Univ. of California, San Francisco, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  1. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    Science.gov (United States)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  2. Resolution improvement by nonconfocal theta microscopy.

    Science.gov (United States)

    Lindek, S; Stelzer, E H

    1999-11-01

    We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.

  3. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  4. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  5. Saturated virtual fluorescence emission difference microscopy based on detector array

    Science.gov (United States)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  6. Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer

    International Nuclear Information System (INIS)

    Bueltzingsloewen, Christoph von; McEvoy, Aisling K.; McDonagh, Colette; MacCraith, Brian D.

    2003-01-01

    An optical sensor for the measurement of high levels of carbon dioxide in gas phase has been developed. It is based on fluorescence resonance energy transfer (FRET) between a long-lifetime ruthenium polypyridyl complex and the pH-active disazo dye Sudan III. The donor luminophore and the acceptor dye are both immobilised in a hydrophobic silica sol-gel/ethyl cellulose hybrid matrix material. Tetraoctylammonium hydroxide (TOA-OH) is used as an internal buffering system. Fluorescence lifetime is measured in the frequency domain, using low-cost phase modulation measurement technology. The use of Sudan III as an acceptor dye has enabled the sensor to have a dynamic range up to 100% carbon dioxide. The sensor displays 11.2 deg. phase shift between the limit of detection (LOD) of 0.06 and 100% CO 2 with a resolution of better than 2%. The encapsulation in the silica/polymer hybrid material has provided the sensor with good mechanical and chemical stability. The effect of molecular oxygen, humidity and temperature on the sensor performance was studied in detail

  7. Characterization of LiF-based soft X-ray imaging detectors by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Bonfigli, F; Gaudio, P; Lupelli, I; Nichelatti, E; Richetta, M; Vincenti, M A; Montereali, R M

    2010-01-01

    X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.

  8. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  9. Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea

    Science.gov (United States)

    Marrec, Pierre; Grégori, Gérald; Doglioli, Andrea M.; Dugenne, Mathilde; Della Penna, Alice; Bhairy, Nagib; Cariou, Thierry; Hélias Nunige, Sandra; Lahbib, Soumaya; Rougier, Gilles; Wagener, Thibaut; Thyssen, Melilotus

    2018-03-01

    abundant in cold core waters, while Synechococcus dominated in warm boundary waters. Nanoeukaryotes were the main contributors ( > 50 %) in terms of pigment content (red fluorescence) and biomass. Biological observations based on the mean cell's red fluorescence recorded by AFCM combined with physical properties of surface waters suggest a distinct origin for two warm boundary waters. Finally, the application of a matrix growth population model based on high-frequency AFCM measurements in warm boundary surface waters provides estimates of in situ growth rate and apparent net primary production for Prochlorococcus (μ = 0.21 d-1, NPP = 0.11 mg C m-3 d-1) and Synechococcus (μ = 0.72 d-1, NPP = 2.68 mg C m-3 d-1), which corroborate their opposite surface distribution pattern. The innovative adaptive strategy applied during OSCAHR with a combination of several multidisciplinary and complementary approaches involving high-resolution in situ observations and sampling, remote-sensing and model simulations provided a deeper understanding of the marine biogeochemical dynamics through the first trophic levels.

  10. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  11. Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalez-Dugo

    2015-10-01

    Full Text Available There is a growing need for developing high-throughput tools for crop phenotyping that would increase the rate of genetic improvement. In most cases, the indicators used for this purpose are related with canopy structure (often acquired with RGB cameras and multispectral sensors allowing the calculation of NDVI, but using approaches related with the crop physiology are rare. High-resolution hyperspectral remote sensing imagery provides optical indices related to physiological condition through the quantification of photosynthetic pigment and chlorophyll fluorescence emission. This study demonstrates the use of narrow-band indicators of stress as a potential tool for phenotyping under rainfed conditions using two airborne datasets acquired over a wheat experiment with 150 plots comprising two species and 50 varieties (bread and durum wheat. The flights were performed at the early stem elongation stage and during the milking stage. Physiological measurements made at the time of flights demonstrated that the second flight was made during the terminal stress, known to largely determine final yield under rainfed conditions. The hyperspectral imagery enabled the extraction of thermal, radiance, and reflectance spectra from 260 spectral bands from each plot for the calculation of indices related to photosynthetic pigment absorption in the visible and red-edge regions, the quantification of chlorophyll fluorescence emission, as well as structural indices related to canopy structure. Under the conditions of this study, the structural indices (i.e., NDVI did not show a good performance at predicting yield, probably because of the large effects of terminal water stress. Thermal indices, indices related to chlorophyll fluorescence (calculated using the FLD method, and carotenoids pigment indices (PRI and CAR demonstrated to be better suited for screening complex traits such as crop yield. The study concludes that the indicators derived from high-resolution

  12. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications.

    Science.gov (United States)

    Sotoma, Shingo; Hsieh, Feng-Jen; Chen, Yen-Wei; Tsai, Pei-Chang; Chang, Huan-Cheng

    2018-01-23

    Highly stable lipid-encapsulated fluorescent nanodiamonds (FNDs) are produced by photo-crosslinking of diacetylene-containing lipids physically attached to the FND surface. Not only is this coating method simple and fast, but also it gives the FND-lipid hybrids favorable properties for bioapplications. The hybrids are useful as fluorescent biolabels as well as fiducial markers for correlative light and electron microscopy.

  13. Highly selective ratiometric fluorescent detection of Fe{sup 3+} with a polyphenyl derivative

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhan-Xian, E-mail: lizx@zzu.edu.cn [The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhou, Wan; Zhang, Li-Feng; Yuan, Rui-Li; Liu, Xing-Jiang; Wei, Liu-He [The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Yu, Ming-Ming, E-mail: yumm@zzu.edu.cn [The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2013-04-15

    Compared with other fluorescent probes, ratiometric fluorescence responses are more attractive because the ratio between the two emission intensities can be used to measure the analyte concentration and provide a built-in correction for environmental effects. A highly selective and sensitive ratiometric fluorescent probe for Fe{sup 3+} was synthesized, which exhibits an enhanced fluorescence with a large red-shift in emission from 361 to 455 nm upon addition of Fe{sup 3+}. The red-shift of the emission peak can be ascribed to the reformed orbital, and the increase of emission intensity may be ascribed to the inhibition of the rotation of C–C bonds between each two aromatic rings. -- Graphical abstract: A highly selective and sensitive ratiometric fluorescent probe for Fe{sup 3+} was synthesized, which exhibits an enhanced fluorescence with a large red-shift in emission from 361 to 455 nm upon addition of Fe{sup 3+}. Highlights: ► A ratiometric fluorescent probe for Fe{sup 3+} was synthesized. ► The probe exhibits an enhanced fluorescence with a red-shift upon addition of Fe{sup 3+}. ► Inhibition of the rotation of C–C bonds was possible detection mechanism for Fe{sup 3+}.

  14. An optical imaging chamber for viewing living plant cells and tissues at high resolution for extended periods.

    Science.gov (United States)

    Calder, Grant; Hindle, Chris; Chan, Jordi; Shaw, Peter

    2015-01-01

    Recent developments in both microscopy and fluorescent protein technologies have made live imaging a powerful tool for the study of plant cells. However, the complications of keeping plant material alive during a long duration experiment while maintaining maximum resolution has limited the use of these methods. Here, we describe an imaging chamber designed to overcome these limitations, which is flexible enough to support a range of sizes of plant materials. We were able use confocal microscopy to follow growth and development of plant cells and tissues over several days. The chamber design is based on a perfusion system, so that the addition of drugs and other experimental treatments are also possible. In this article we present a design of imaging chamber that makes it possible to image plant material with high resolution for extended periods of time.

  15. A novel portable fluorescence detection system for microfluidic card

    International Nuclear Information System (INIS)

    Shen, B; Xie, Y; Irawan, R

    2008-01-01

    Fluorescence based sensors are widely used in the field of biochemistry and medicine due to their high sensitivity and accuracy. But the cost and time required for each sample to be tested is high. If the diagnostic tools could be miniaturized, made simple to use and much less expensive, and readily available at the point of need such as emergency diagnosis, millions of people would be benefited from it. In this paper, we design a prototype of portable fluorescence detection system based on Fluorescence Filter Block and DAQ card which can emulate signal collection and processing functionalities. After the introduction of system structure and functional modules, we use a resolution approximation method to investigate the system performance. The evaluation shows that our prototype system has the sensitivity of 0.01 mMol/L (333.306 μg/mL) which meets most of the medical requirements.

  16. Resolution enhancement of low-quality videos using a high-resolution frame

    Science.gov (United States)

    Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.

  17. Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities

    Science.gov (United States)

    A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...

  18. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces. Abaxial surfaces also produced higher reflectances, in general, in the 400-800 nm spectrum.

  19. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  20. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    International Nuclear Information System (INIS)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-01-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 − 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail. (topical review)

  1. Use of intrinsic fluorescent signals for characterizing tissue metabolic states in health and disease

    Science.gov (United States)

    Chance, Britton

    1996-04-01

    The large content of mitochondria in metabolizing cells, coupled with intrinsic NADH and flavoprotein signals makes these signals ideal for characterizing tissue metabolic states in health and disease. The first few millimeters of tissue are reached by the fluorescence excitation in the exposed surfaces of the cervix, bladder, rectum and esophagus, etc. Thus, extensive use has been made of fluorescent signals by a large number of investigators for tumor diagnosis from an empirical standpoint where the fluorescent signals are generally diminished in precancerous and cancerous tissue. This article reviews the biochemical basis for the fluorescent signals and points to a 'gold standard' for fluorescent signal examination involving freeze trapping and low temperature two- or three-dimensional high resolution fluorescence spectroscopy.

  2. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  3. Controllable synthesis and characterization of highly fluorescent silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Junlin [Nanjing Normal University, School of Chemistry and Materials Science (China); An Xueqing, E-mail: anxueqin@ecust.edu.cn [East China University of Science and Technology, School of Chemistry and Molecular Engineering (China); Zhu Yinyan [Nanjing Normal University, School of Chemistry and Materials Science (China)

    2012-12-15

    Highly fluorescent silver nanoparticles (AgFNPs) have been prepared by microemulsion method and the sizes of AgFNPs were controlled by altering the molar ratio ({omega}) of water-to-surfactant in the water-in-oil microemulsion. The results were shown that the AgFNPs sizes increased with incremental molar ratio ({omega}) of water-to-surfactant. The AgFNPs have been characterized by transmission electron microscopy, dynamic light scattering, fluorescence and absorption spectroscopy, and fluorescence lifetime study. Study of the spectral characteristics was shown that the absorbance of AgFNPs increased significantly with the {omega}, and linear relationship between absorbance and the size of AgFNPs was observed. The increase of AgFNPs size caused a red shift of maximum absorption wavelength in the UV-Vis spectra, and the relationship between maximum absorption wavelength and AgFNPs size appeared linear dependence. The maximum fluorescence emission wavelength did not shift with the change of particles size, but the emission intensity increases with the {omega}. The results were shown that the other factors to affect the fluorescence properties of AgFNPs were the surface properties and microstructure, except the AgFNPs size. These surface properties depend upon the stabilizing agent, reactant concentration, and solvents and so on.

  4. Special issue on high-resolution optical imaging

    Science.gov (United States)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  5. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  6. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  7. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changhua; Mao, Mao [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Yuan, Hang [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Shen, Huaibin [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Wu, Feng; Ma, Lan, E-mail: malan@sz.tsinghua.edu.cn [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Li, Lin Song, E-mail: lsli@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China)

    2013-09-15

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 Degree-Sign C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  8. Quantitative optical fluorescence microprobe measurements of stresses around indentations in Al2O3 and Al2O3/SiC nanocomposites: The influence of depth resolution and specimen translucency

    International Nuclear Information System (INIS)

    Guo Sheng; Todd, R.I.

    2011-01-01

    Residual stresses around 1 kg Vickers indentations in Al 2 O 3 and Al 2 O 3 /SiC nanocomposites were measured using high-resolution Cr 3+ fluorescence microscopy. Experiments and modelling showed that the use of non-confocal microscopes can lead to significant underestimation of the surface stress in Al 2 O 3 because of the sampling of subsurface regions where the stresses are lower. The nanocomposites were less sensitive to the depth resolution of the microscope because their strong absorption limited the depth from which fluorescent radiation was collected. The use of confocal microscope settings allowed accurate measurements to be made and the indentation stresses were found to be very similar in Al 2 O 3 and the Al 2 O 3 /SiC nanocomposites. The stresses measured were significantly different from the predictions of the Yoffe model for indentation stresses. This was because of indentation cracking, which is not accounted for in the model. Cracking was also considered to be important in determining the plastic zone size in ceramics, which is much smaller relative to the indentation size than in metals.

  9. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  10. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  11. DAF-fluorescence without NO: elicitor treated tobacco cells produce fluorescing DAF-derivatives not related to DAF-2 triazol.

    Science.gov (United States)

    Rümer, Stefan; Krischke, Markus; Fekete, Agnes; Mueller, Martin J; Kaiser, Werner M

    2012-08-15

    Diaminofluorescein-dyes (DAFs) are widely used for visualizing NO· production in biological systems. Here it was examined whether DAF-fluorescence could be evoked by other means than nitrosation. Tobacco (Nicotiana tabacum) suspension cells treated with the fungal elicitor cryptogein released compound(s) which gave a fluorescence increase in the cell-free filtrate after addition of DAF-2 or DAF-FM or DAR-4M. DAF-reactive compounds were relatively stable and identified as reaction products of H(2)O(2) plus apoplastic peroxidase (PO). CPTIO prevented formation of these products. Horseradish-peroxidase (HR-PO) plus H(2)O(2) also generated DAF-fluorescence in vitro. Using RP-HPLC with fluorescence detection, DAF derivatives were further analyzed. In filtrates from cryptogein-treated cells, fluorescence originated from two novel DAF-derivatives also obtained in vitro with DAF-2+HR-PO+H(2)O(2). DAF-2T was only detected when an NO donor (DEA-NO) was present. Using high resolution mass spectrometry, the two above-described novel DAF-reaction products were tentatively identified as dimers. In cells preloaded with DAF-2 DA and incubated with or without cryptogein, DAF-fluorescence originated from a complex pattern of multiple products different from those obtained in vitro. One specific peak was responsive to exogenous H(2)O(2), and another, minor peak eluted at or close to DAF-2T. Thus, in contrast to the prevailing opinion, DAF-2 can be enzymatically converted into a variety of highly fluorescing derivatives, both inside and outside cells, of which none (outside) or only a minor part (inside) appeared NO· dependent. Accordingly, DAF-fluorescence and its prevention by cPTIO do not necessarily indicate NO· production. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Dual-channel (green and red) fluorescence microendoscope with subcellular resolution

    Science.gov (United States)

    de Paula D'Almeida, Camila; Fortunato, Thereza Cury; Teixeira Rosa, Ramon Gabriel; Romano, Renan Arnon; Moriyama, Lilian Tan; Pratavieira, Sebastião.

    2018-02-01

    Usually, tissue images at cellular level need biopsies to be done. Considering this, diagnostic devices, such as microendoscopes, have been developed with the purpose of do not be invasive. This study goal is the development of a dual-channel microendoscope, using two fluorescent labels: proflavine and protoporphyrin IX (PpIX), both approved by Food and Drug Administration. This system, with the potential to perform a microscopic diagnosis and to monitor a photodynamic therapy (PDT) session, uses a halogen lamp and an image fiber bundle to perform subcellular image. Proflavine fluorescence indicates the nuclei of the cell, which is the reference for PpIX localization on image tissue. Preliminary results indicate the efficacy of this optical technique to detect abnormal tissues and to improve the PDT dosimetry. This was the first time, up to our knowledge, that PpIX fluorescence was microscopically observed in vivo, in real time, combined to other fluorescent marker (Proflavine), which allowed to simultaneously observe the spatial localization of the PpIX in the mucosal tissue. We believe this system is very promising tool to monitor PDT in mucosa as it happens. Further experiments have to be performed in order to validate the system for PDT monitoring.

  13. Laser induced fluorescence spectroscopy for FTU

    International Nuclear Information System (INIS)

    Hughes, T.P.

    1995-07-01

    Laser induced fluorescence spectroscopy (LIFS) is based on the absorption of a short pulse of tuned laser light by a group of atoms and the observation of the resulting fluorescence radiation from the excited state. Because the excitation is resonant it is very efficient, and the fluorescence can be many times brighter than the normal spontaneous emission, so low number densities of the selected atoms can be detected and measured. Good spatial resolution can be achieved by using a narrow laser beam. If the laser is sufficiently monochromatic, and it can be tuned over the absorption line profile of the selected atoms, information can also be obtained about the velocities of the atoms from the Doppler effect which can broaden and shift the line. In this report two topics are examined in detail. The first is the effect of high laser irradiance, which can cause 'power broadening' of the apparent absorption line profile. The second is the effect of the high magnetic field in FTU. Detailed calculations are given for LIFS of neutral iron and molybdenum atoms, including the Zeeman effect, and the implementation of LIFS for these atoms on FTU is discussed

  14. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  15. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  16. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  17. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  18. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  19. High resolution X-ray emission spectroscopy: An advanced tool for actinide research

    Science.gov (United States)

    Vitova, T.; Brendebach, B.; Dardenne, K.; Denecke, M. A.; Lebid, A.; Löble, M.; Rothe, J.; Batuk, O. N.; Hormes, J.; Liu, D.; Breher, F.; Geckeis, H.

    2010-03-01

    High resolution X-ray emission spectroscopy (HRXES) is becoming increasingly important for our understanding of electronic and coordination structures. The combination of such information with development of quantum theoretical tools will advance our capability for predicting reactivity and physical behavior especially of 5f elements. HRXES can be used to remove lifetime broadening by registering the partial fluorescence yield emitted by the sample (i.e., recording a windowed signal from the energy dispersed fluorescence emission while varying incident photon energy), thereby yielding highly resolved X-ray absorption fine structure (XAFS) spectra. Such spectra often display resonant features not observed in conventional XAFS. The spectrometer set-up can also be used for a wide range of other experiments, for example, resonant inelastic X-ray scattering (RIXS), where bulk electron configuration information in solids, liquids and gases is obtained. Valence-selective XAFS studies, where the local structure of a selected element's valence state present in a mixture of valence states can be obtained, as well as site-selective XAFS studies, where the coordination structure of a metal bound to selected elements can be differentiated from that of all the other ligating atoms. A HRXES spectrometer has been constructed and is presently being commissioned for use at the INE-Beamline for actinide research at the synchrotron source ANKA at FZK. We present the spectrometer's compact, modular design, optimized for attaining a wide range of energies, and first test measurement results. Examples from HRXES studies of lanthanides, actinides counter parts, are also shown.

  20. Multiplex and high-throughput DNA detection using surface plasmon mediated fluorescence

    Science.gov (United States)

    Mei, Zhong

    The overall objective of this research project was to develop a user-friendly and sensitive biosensor for nucleic acid aptamers with multiplexing and high-throughput capability. The sensing was based on the fluorescence signals emitted by the fluorophores coupling with plamonic nanoparticle (gold nanorod) deposited on a patterned substrate. Gold nanorods (GNRs) were synthesized using a binary mixture of hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) in seed mediated growth method. Polytetrafluoroethylene (PTFE) printed glass slides were selectively coated with a gold thin-film to define hydrophilic areas for GNR deposition. Due to the wettablity contrast, GNR solution dropped on the slide was induced to assemble exclusively in the hydrophilic spots. By controlling temperature and humidity of the evaporation process, vertically-standing GNR arrays were achieved on the pattered slide. Fluorescence was conjugated to GNR surface via DNA double strand with tunable length. Theoretical simulation predicted a flat layer ( 30 nm thick) of uniform "hot spots" presented on the GNR tips, which could modify the nearby fluorescence. Experimentally, the vertical GNR arrays yielded metallic enhanced fluorescence (MEF) effect, which was dependent on the spectrum overlap and GNR-fluorophore distance. Specifically, the maximum enhancement of Quasar 670 and Alexa 750 was observed when it was coupled with GNR664 (plasmonic wavelength 664 nm) and GNR778 respectively at a distance of 16 nm, while the carboxyfluorescein (FAM) was at maximal intensity when attached to gold nanosphere520. This offers an opportunity for multiplexed DNA sensing. Based on this, we developed a novel GNR mediated fluorescence biosensor for DNA detection. Fluorescence labeled haipin-DNA probes were introduced to designated spots of GNR array with the matching LSPR wavelengths on the substrate. The fluorescence was quenched originally because of Forster resonance energy transfer (FRET) effect

  1. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  2. A highly sensitive fluorescent probe based on BODIPY for Hg2+ in aqueous solution

    Directory of Open Access Journals (Sweden)

    ZHAO Junwei

    2016-12-01

    Full Text Available A highly sensitive fluorescent probe based on BODIPY and hydrazine for Hg2+ was designed and synthesized.This probe could detect mercury ions in aqueous solutions within 5 min.With the increase of Hg2+ mole concentration,an obvious red shift of UV-Vis absorption wavelength was observed and the fluorescence intensity significantly enhanced.It was found that the fluorescence intensity of an aqueous solution containing 0.1 μmol/L Hg2+ is much stronger than that of blank solution,which indicats that the fluorescent probe has high sensitivity.In addition,other metal ions could not cause the change of fluorescent spectra,which means this probe has good selectivity,as well.

  3. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    Science.gov (United States)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  4. High-resolution melting analysis for prenatal diagnosis of beta-thalassemia in northern Thailand.

    Science.gov (United States)

    Charoenkwan, Pimlak; Sirichotiyakul, Supatra; Phusua, Arunee; Suanta, Sudjai; Fanhchaksai, Kanda; Sae-Tung, Rattika; Sanguansermsri, Torpong

    2017-12-01

    High-resolution melting (HRM) analysis is a rapid mutation analysis which assesses the pattern of reduction of fluorescence signal after subjecting the amplified PCR product with saturated fluorescence dye to an increasing temperature. We used HRM analysis for prenatal diagnosis of beta-thalassemia disease in northern Thailand. Five PCR-HRM protocols were used to detect point mutations in five different segments of the beta-globin gene, and one protocol to detect the 3.4 kb beta-globin deletion. We sought to characterize the mutations in carriers and to enable prenatal diagnosis in 126 couples at risk of having a fetus with beta-thalassemia disease. The protocols identified 18 common mutations causing beta-thalassemia, including the rare codon 132 (A-T) mutation. Each mutation showed a specific HRM pattern and all results were in concordance with those from direct DNA sequencing or gap-PCR methods. In cases of beta-thalassemia disease resulting from homozygosity for a mutation or compound heterozygosity for two mutations on the same amplified segment, the HRM patterns were different to those of a single mutation and were specific for each combination. HRM analysis is a simple and useful method for mutation identification in beta-thalassemia carriers and prenatal diagnosis of beta-thalassemia in northern Thailand.

  5. Multi-color fluorescent DNA analysis in an integrated optofluidic lab on a chip

    OpenAIRE

    Dongre, C.

    2010-01-01

    Abstract: Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. Furthermore by employing tiny lab-on-a-chip device, integrated DNA sequencing and genetic diagnostics have become feasible. We present the combination of capillary electrophoresis with laser-induced fluorescence for optofluidic integration toward an on-chip bio-analysis tool. Integrated optical fluorescence excitation allows for a high spatial resolution (12 μm) ...

  6. X-ray microtome by fluorescence tomography

    CERN Document Server

    Simionovici, A S; Guenzler, F; Schrör, C; Snigirev, A; Snigireva, I; Tümmler, J; Weitkamp, T

    2001-01-01

    The X-ray fluorescence microtomography method is presented, which is capable of virtually slicing samples to obtain cross-sections of their inner structure. High precision experimental results of fluo-tomography in 'pencil-beam' geometry with up to 1.2 mu m resolution are described. Image reconstructions are based on either a simplified algebraic reconstruction method (ART) or the filtered back-projection method (FBP). Phantoms of inhomogeneous test objects as well as biological samples are successfully analyzed.

  7. High-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip supports for AFP detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaoqun [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Yan, Huan; Yang, Jiumin [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Wu, Yudong; Zhang, Jian; Yao, Yingyi [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Ping [Bioscience (Tianjin) Diagnostic Technology CO., LTD, Tianjin, 300300 (China); Wang, Huiquan [Department of Biomedical Engineering, School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Hu, Zhidong, E-mail: huzhidong27@163.com [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Chang, Jin, E-mail: jinchang@tju.edu.cn [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-10-05

    Fluorescence-encoded magnetic microbeads (FEMMs), with the fluorescence encoding ability of quantum dots (QDs) and magnetic enrichment and separation functions of Fe{sub 3}O{sub 4} nanoparticles, have been widely used for multiple biomolecular detection as microfluidic protein chip supports. However, the preparation of FEMMs with long-term fluorescent encoding and immunodetection stability is still a challenge. In this work, we designed a novel high-temperature chemical swelling strategy. The QDs and Fe{sub 3}O{sub 4} nanoparticles were effectively packaged into microbeads via the thermal motion of the polymer chains and the hydrophobic interaction between the nanoparticles and microbeads. The FEMMs obtained a highly uniform fluorescent property and long-term encoding and immunodetection stability and could be quickly magnetically separated and enriched. Then, the QD-encoded magnetic microbeads were applied to alpha fetoprotein (AFP) detection via sandwich immunoreaction. The properties of the encoded microspheres were characterized using a self-designed detecting apparatus, and the target molecular concentration in the sample was also quantified. The results suggested that the high-performance FEMMs have great potential in the field of biomolecular detection. - Graphical abstract: We designed a novel strategy to prepare a kind of high-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip support with long-time fluorescent encoding and immunodetection stability for AFP detection. - Highlights: • A novel strategy combined the high temperature with chemical swelling technology is designed. • Based on hydrophobic interaction and polymer thermal motion, QDs and Fe{sub 3}O{sub 4} were effectively packaged into microbeads. • The fluorescence-encoded magnetic microbeads show long-term fluorescent encoding and immunodetection stability.

  8. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  9. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  10. Fluorescence X-ray microscopy on hydrated tributyltin-clay mineral suspensions

    Science.gov (United States)

    Neuhäusler, U.; Schmidt, C.; Hoch, M.; Susini, J.

    2003-03-01

    Using the scanning transmission X-ray microscope at ID21 beamline of the ESRF in fluorescence mode, we mapped tin at a bulk concentration of 1000 μg(Sn)/ml within hydrated tributyltin (TBT)-clay mineral (Kaolinite) dispersion with sub-300 nm spatial resolution. Using the L absorption edges of tin at 3929, 4156 and 4465 eV fluorescence radiation was excited in tin atoms with incident photon energies of 4 and 4.5 keV. When using 4 keV radiation, only tin fluorescence is excited. For 4.5 keV X rays, both the fluorescence of tin and calcium (which is present in the solid phase) can be measured. Methodologically, we were interested in assessing and proving the possibilities and limitations of fluorescence mapping using the L absorption edges of tin, where the fluorescence yield is significantly lower compared to other elements with their K edges in the same energy range. Scientifically, organotin-clay mineral interactions are of environmental concern because this factor influences significantly the distribution of toxic TBT in the aquatic System. On one hand, the half-life of TBT deposited to the sediment phase increases, and consequently the time of its bioavailability. On the other hand, the adsorption process is reversible, which means that contaminated sediments can act as a source of pollution. The adsorption and desorption effects can be studied directly with high spatial resolution and brought into connection to the surface properties of the clay mineral under study as well as to other experimental parameters, like pH or salinity.

  11. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  12. Fluorescent layers for characterization of sectioning microscopy with coverslipuncorrected and water immersion objectives

    KAUST Repository

    Antonini, Andrea; Liberale, Carlo; Fellin, Tommaso

    2014-01-01

    We describe a new method to generate thin (thickness > 200 nm) and ultrathin (thickness < 200 nm) fluorescent layers to be used for microscope optical characterization. These layers are obtained by ultramicrotomy sectioning of fluorescent acrylic slides. This technique generates sub-resolution sheets with high fluorescence emission and uniform thickness, permitting to determine the z-response of different optical sectioning systems. Compared to the state of the art, the here proposed technique allows shorter and easier manufacturing procedure. Moreover, these fluorescent layers can be employed without protective coverslips, allowing the use of the Sectioned Imaging Property (SIP)-chart characterization method with coverslip-uncorrected objectives, water immersion objectives and micro-endoscopes. © 2014 Optical Society of America.

  13. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  15. vuv fluorescence from selective high-order multiphoton excitation of N2

    International Nuclear Information System (INIS)

    Coffee, Ryan N.; Gibson, George N.

    2004-01-01

    Recent fluorescence studies suggest that ultrashort pulse laser excitation may be highly selective. Selective high-intensity laser excitation holds important consequences for the physics of multiphoton processes. To establish the extent of this selectivity, we performed a detailed comparative study of the vacuum ultraviolet fluorescence resulting from the interaction of N 2 and Ar with high-intensity infrared ultrashort laser pulses. Both N 2 and Ar reveal two classes of transitions, inner-valence ns ' l ' . From their pressure dependence, we associate each transition with either plasma or direct laser excitation. Furthermore, we qualitatively confirm such associations with the time dependence of the fluorescence signal. Remarkably, only N 2 presents evidence of direct laser excitation. This direct excitation produces ionic nitrogen fragments with inner-valence (2s) holes, two unidentified transitions, and one molecular transition, the N 2 + :X 2 Σ g + 2 Σ u + . We discuss these results in the light of a recently proposed model for multiphoton excitation

  16. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  17. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  18. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  19. Exploration in vivo by X-ray fluorescence (thyroid-brain)

    International Nuclear Information System (INIS)

    Delcroix, V.; Allemand, R.; Laval, M.; Dipaola, M.; Tubiana, M.

    1975-01-01

    X-ray fluorescence methods of medical exploration avoid the use of radioactive tracers and hence reduce the total dose received by the patient. In addition the collimation to the excitation source and detector respectively produces a tomographic effect which improves the spatial resolution of the system and even allows organs to be charted. The physical principles involved in X-ray fluorescence are outlined, with emphasis on the fact that the only elements useful for such applications are those of high enough atomic number to emit a fluorescence radiation of energy sufficient to pass through the tissues. The apparatus used, the excitation sources (radioactive source or X-ray tube), the detector and the measurement equipment are described. The experimental results obtained are given in two fields: measurement of blood flow in the tissues; thyroid imagery [fr

  20. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  1. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    Science.gov (United States)

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.

  2. Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    P. Marrec

    2018-03-01

    - and nano-eukaryotes were more abundant in cold core waters, while Synechococcus dominated in warm boundary waters. Nanoeukaryotes were the main contributors ( > 50 % in terms of pigment content (red fluorescence and biomass. Biological observations based on the mean cell's red fluorescence recorded by AFCM combined with physical properties of surface waters suggest a distinct origin for two warm boundary waters. Finally, the application of a matrix growth population model based on high-frequency AFCM measurements in warm boundary surface waters provides estimates of in situ growth rate and apparent net primary production for Prochlorococcus (μ = 0.21 d−1, NPP  = 0.11 mg C m−3 d−1 and Synechococcus (μ = 0.72 d−1, NPP  = 2.68 mg C m−3 d−1, which corroborate their opposite surface distribution pattern. The innovative adaptive strategy applied during OSCAHR with a combination of several multidisciplinary and complementary approaches involving high-resolution in situ observations and sampling, remote-sensing and model simulations provided a deeper understanding of the marine biogeochemical dynamics through the first trophic levels.

  3. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  4. ‘‘Blind'' mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis

    DEFF Research Database (Denmark)

    Studer, Bruno; Jensen, Louise Bach; Fiil, Alice

    2009-01-01

    High resolution melting curve analysis (HRM) measures dissociation of double stranded DNA of a PCR product amplified in the presence of a saturating fluorescence dye. Recently, HRM proved successful to genotype DNA sequence polymorphisms such as SSRs and SNPs based on the shape of the melting...... curves. In this study, HRM was used for simultaneous screening and genotyping of genic DNA sequence polymorphisms identified in the Lolium perenne F2 mapping population VrnA. Melting profiles of PCR products amplified from previously published gene loci and from a novel gene putatively involved...

  5. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging.

    Science.gov (United States)

    Liu, Yanlan; Ai, Kelong; Yuan, Qinghai; Lu, Lehui

    2011-02-01

    We report here the development of Gd-doped ZnO quantum dots (QDs) as dual modal fluorescence and magnetic resonance imaging nanoprobes. They are fabricated in a simple, versatile and environmentally friendly method, not only decreasing the difficulty and complexity, but also avoiding the increase of particle's size brought about by silica coating procedure in the synthesis of nanoprobes reported previously. These nanoprobes, with exceptionally small size and enhanced fluorescence resulting from the Gd doping, can label successfully the HeLa cells in short time and present no evidence of toxicity or adverse affect on cell growth even at the concentration up to 1 mm. These results show that such nanoprobes have low toxicity, especially in comparison with the traditional PEGylated CdSe/ZnS or CdSe/CdS QDs. In MRI studies, they exert strong positive contrast effect with a large longitudinal relaxivity (r(1)) of water proton of 16 mm(-1) s(-1). Their capability of imaging HeLa cells with MRI implies that they have great potential as MRI contrast agents. Combining the high sensitivity of fluorescence imaging with high spatial resolution of MRI, We expect that the as-prepared Gd-doped Zno QDs can provide a better reliability of the collected data and find promising applications in biological, medical and other fields. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  7. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  8. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  9. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  10. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  11. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  12. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, G., E-mail: gilgueng.hwang@lpn.cnrs.fr; Decanini, D.; Leroy, L.; Haghiri-Gosnet, A. M. [Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, Marcoussis 91460 (France)

    2016-03-15

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  13. Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics.

    Science.gov (United States)

    Easley, Christopher J; Rocheleau, Jonathan V; Head, W Steven; Piston, David W

    2009-11-01

    We assayed glucose-stimulated insulin secretion (GSIS) from live, murine islets of Langerhans in microfluidic devices by the downstream formation of aqueous droplets. Zinc ions, which are cosecreted with insulin from beta-cells, were quantitatively measured from single islets with high temporal resolution using a fluorescent indicator, FluoZin-3. Real-time storage of secretions into droplets (volume of 0.470 +/- 0.009 nL) effectively preserves the temporal chemical information, allowing reconstruction of the secretory time record. The use of passive flow control within the device removes the need for syringe pumps, requiring only a single hand-held syringe. Under stimulatory glucose levels (11 mM), bursts of zinc as high as approximately 800 fg islet(-1) min(-1) were measured. Treatment with diazoxide effectively blocked zinc secretion, as expected. High temporal resolution reveals two major classes of oscillations in secreted zinc, with predominate periods at approximately 20-40 s and approximately 5-10 min. The more rapid oscillation periods match closely with those of intraislet calcium oscillations, while the slower oscillations are consistent with insulin pulses typically measured in bulk islet experiments or in the bloodstream. This droplet sampling technique should be widely applicable to time-resolved cellular secretion measurements, either in real-time or for postprocessing.

  14. ESIPT-Based Photoactivatable Fluorescent Probe for Ratiometric Spatiotemporal Bioimaging

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2016-10-01

    Full Text Available Photoactivatable fluorophores have become an important technique for the high spatiotemporal resolution of biological imaging. Here, we developed a novel photoactivatable probe (PHBT, which is based on 2-(2-hydroxyphenylbenzothiazole (HBT, a small organic fluorophore known for its classic luminescence mechanism through excited-state intramolecular proton transfer (ESIPT with the keto form and the enol form. After photocleavage, PHBT released a ratiometric fluorophore HBT, which showed dual emission bands with more than 73-fold fluorescence enhancement at 512 nm in buffer and more than 69-fold enhancement at 452 nm in bovine serum. The probe displayed a high ratiometric imaging resolution and is believed to have a wide application in biological imaging.

  15. Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion

    Science.gov (United States)

    Manjunath, Rangasamy; Kannan, Palaninathan

    2018-05-01

    A new rhodamine-based colorimetric and fluorescent turn-on chemosensor (L) has been designed and synthesized for selective and sensitive detection of Al3+ ion. The sensing behavior toward metal ion was investigated by UV/Vis and fluorescence spectroscopy. Upon addition of Al3+ ion to solution of L provided a visual color change as well as significantly fluorescent enhancement, while other metal ions including Na+, Mg2+, K+, Mn2+, Fe3+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+ and Hg2+ ions fails to generate a distinct color and spectral changes, the distinct color change and rapid switch-on fluorescence also provide naked eye detection for Al3+ ion. The mechanism involved equilibrium between non-fluorescent spirocyclic form and highly fluorescent ring open form process was utilized and 1:2 stoichiometry for L-Al3+ complex formed with an association constant of 1.42 × 103 M-1. Moreover, chemosensor L was applied for living cell imaging and confirmed that can be used as a fluorescent probe for monitoring Al3+ ion in living cells.

  16. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  17. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    Science.gov (United States)

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  18. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  19. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  20. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  1. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  2. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  3. Highly sensitive C-reactive protein (CRP) assay using metal-enhanced fluorescence (MEF)

    International Nuclear Information System (INIS)

    Zhang, Yi; Keegan, Gemma L.; Stranik, Ondrej; Brennan-Fournet, Margaret E.; McDonagh, Colette

    2015-01-01

    Fluorescence has been extensively employed in the area of diagnostic immunoassays. A significant enhancement of fluorescence can be achieved when noble metal nanoparticles are placed in close proximity to fluorophores. This effect, referred to as metal-enhanced fluorescence (MEF), has the potential to produce immunoassays with a high sensitivity and a low limit of detection (LOD). In this study, we investigate the fluorescence enhancement effect of two different nanoparticle systems, large spherical silver nanoparticles (AgNPs) and gold edge-coated triangular silver nanoplates, and both systems were evaluated for MEF. The extinction properties and electric field enhancement of both systems were modeled, and the optimum system, spherical AgNPs, was used in a sandwich immunoassay for human C-reactive protein with a red fluorescent dye label. A significant enhancement in the fluorescence was observed, which corresponded to an LOD improvement of ∼19-fold compared to a control assay without AgNPs

  4. Highly sensitive C-reactive protein (CRP) assay using metal-enhanced fluorescence (MEF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Keegan, Gemma L., E-mail: gemmakeegan@gmail.com [Dublin City University, School of Physical Sciences, Biomedical Diagnostics Institute (Ireland); Stranik, Ondrej [Leibniz Institute of Photonic Technology, Department of NanoBiophotonics (Germany); Brennan-Fournet, Margaret E. [CMP-EMSE, MOC, Department of Bioelectronics, Ecole Nationale Superieure des Mines (France); McDonagh, Colette [Dublin City University, School of Physical Sciences, Biomedical Diagnostics Institute (Ireland)

    2015-07-15

    Fluorescence has been extensively employed in the area of diagnostic immunoassays. A significant enhancement of fluorescence can be achieved when noble metal nanoparticles are placed in close proximity to fluorophores. This effect, referred to as metal-enhanced fluorescence (MEF), has the potential to produce immunoassays with a high sensitivity and a low limit of detection (LOD). In this study, we investigate the fluorescence enhancement effect of two different nanoparticle systems, large spherical silver nanoparticles (AgNPs) and gold edge-coated triangular silver nanoplates, and both systems were evaluated for MEF. The extinction properties and electric field enhancement of both systems were modeled, and the optimum system, spherical AgNPs, was used in a sandwich immunoassay for human C-reactive protein with a red fluorescent dye label. A significant enhancement in the fluorescence was observed, which corresponded to an LOD improvement of ∼19-fold compared to a control assay without AgNPs.

  5. A high-throughput direct fluorescence resonance energy transfer-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence lifetime measurements.

    Science.gov (United States)

    Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté

    2015-12-15

    Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Highly selective detection of glutathione using a NIP/Cu2+ complex fluorescent probe

    International Nuclear Information System (INIS)

    Liang Wenrui; Zhao Zhi; Zhang Yang; Wang Qiusheng; Zhao Xin; Ouyang Jie

    2012-01-01

    A novel fluorescent compound, 4-(trimethyl ammonium chloride)acetamide-2-(1H-naphtho[2,3-d]imidazol-2-yl)phenol (TMACA-NIP), was synthesized and used as a fluorescent probe for detecting glutathione reduced (GSH). The new NIP-based probe exhibited high fluorescence in water, which was quenched during the presence of copper (II) due to the complexation between TMACA-NIP and Cu 2+ . But after adding GSH into the TMACA-NIP and Cu 2+ system, the fluorescence of TMACA-NIP was recovered because the binding force between GSH and Cu 2+ is stronger than that between TMACA-NIP and Cu 2+ , which destroys the equilibrium between NIP and copper (II) ions and releases the fluorescence probe of TMACA-NIP. This three-component competing system of NIP/Cu 2+ /GSH can be used to detect GSH simply and rapidly. - Highlights: ► A novel fluorescence probe was developed to detect GSH that operates in aqueous solution. ► TMACA-NIP was synthesized and employed as “read-out” units of NIP/Cu 2+ /GSH. ► NIP-based probe shows high selectivity over other sulfhydryl compounds.

  7. Towards high-resolution positron emission tomography for small volumes

    International Nuclear Information System (INIS)

    McKee, B.T.A.

    1982-01-01

    Some arguments are made regarding the medical usefulness of high spatial resolution in positron imaging, even if limited to small imaged volumes. Then the intrinsic limitations to spatial resolution in positron imaging are discussed. The project to build a small-volume, high resolution animal research prototype (SHARP) positron imaging system is described. The components of the system, particularly the detectors, are presented and brief mention is made of data acquisition and image reconstruction methods. Finally, some preliminary imaging results are presented; a pair of isolated point sources and 18 F in the bones of a rabbit. Although the detector system is not fully completed, these first results indicate that the goals of high sensitivity and high resolution (4 mm) have been realized. (Auth.)

  8. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  9. Identification of weak autoionizing resonances observed through fluorescence from the satellite states of Ar+

    International Nuclear Information System (INIS)

    McLaughlin, K.W.; Yenen, O.; Samson, J.A.R.

    1997-01-01

    Photoionization accompanied by excitation of the residual ionic state violates an independent electron model since, according to QED, photons interact only with individual electrons. By allowing measurements at a threshold event with high resolution, the observation of the fluorescence from the decay of these excited states (satellite states) is a sensitive method in the study of electron-electron interactions, providing complementary information to photoelectron spectroscopy. In the measurements reported here, an atomic beam of argon has been photoionized with 34 to 39 eV synchrotron radiation at beamline 9.0.1 of the Advanced Light Source. This energy range encompasses the 3p 4 [ 3 P] 4p 4 P, 2 P, and 2 D as well as the [ 1 D]4p 2 F satellite states of Ar + . By observing the fine-structure resolved fluorescence from these satellite states, new Rydberg series and extensions of previously known series have been resolved with an energy resolution of 3 meV. With the high photon flux available from the high resolution monochromator of beamline 9.0.1, even the weakly excited [ 3 P] 4p ( 2 S) ns,d autoionizing structure has been observed for the first time

  10. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  11. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  12. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    International Nuclear Information System (INIS)

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C.; Rosa, M. I. de la

    2014-01-01

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  13. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  14. A high-resolution regional reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  15. Near-intrinsic energy resolution for 30–662 keV gamma rays in a high pressure xenon electroluminescent TPC

    International Nuclear Information System (INIS)

    Álvarez, V.; Borges, F.I.G.M.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Dafni, T.; Dias, T.H.V.T.; Díaz, J.

    2013-01-01

    We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 136 Xe neutrino-less double beta decay (0νββ) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of ∼1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and ∼5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7–20 better than that of the current leading 0νββ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT–DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0νββ search

  16. Deep brain two-photon NIR fluorescence imaging for study of Alzheimer's disease

    Science.gov (United States)

    Chen, Congping; Liang, Zhuoyi; Zhou, Biao; Ip, Nancy Y.; Qu, Jianan Y.

    2018-02-01

    Amyloid depositions in the brain represent the characteristic hallmarks of Alzheimer's disease (AD) pathology. The abnormal accumulation of extracellular amyloid-beta (Aβ) and resulting toxic amyloid plaques are considered to be responsible for the clinical deficits including cognitive decline and memory loss. In vivo two-photon fluorescence imaging of amyloid plaques in live AD mouse model through a chronic imaging window (thinned skull or craniotomy) provides a mean to greatly facilitate the study of the pathological mechanism of AD owing to its high spatial resolution and long-term continuous monitoring. However, the imaging depth for amyloid plaques is largely limited to upper cortical layers due to the short-wavelength fluorescence emission of commonly used amyloid probes. In this work, we reported that CRANAD-3, a near-infrared (NIR) probe for amyloid species with excitation wavelength at 900 nm and emission wavelength around 650 nm, has great advantages over conventionally used probes and is well suited for twophoton deep imaging of amyloid plaques in AD mouse brain. Compared with a commonly used MeO-X04 probe, the imaging depth of CRANAD-3 is largely extended for open skull cranial window. Furthermore, by using two-photon excited fluorescence spectroscopic imaging, we characterized the intrinsic fluorescence of the "aging pigment" lipofuscin in vivo, which has distinct spectra from CRANAD-3 labeled plaques. This study reveals the unique potential of NIR probes for in vivo, high-resolution and deep imaging of brain amyloid in Alzheimer's disease.

  17. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  18. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  19. Refractive Index Sensing of Green Fluorescent Proteins in Living Cells Using Fluorescence Lifetime Imaging Microscopy

    Science.gov (United States)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002

  20. An atlas of high-resolution IRAS maps on nearby galaxies

    Science.gov (United States)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  1. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  2. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  3. High-resolution MRI in detecting subareolar breast abscess.

    Science.gov (United States)

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  4. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  5. Size effects in the quantum yield of Cd Te quantum dots for optimum fluorescence bioimaging

    International Nuclear Information System (INIS)

    Jacinto, C.; Rocha, U.S.; Maestro, L.M.; Garcia-Sole, J.; Jaque, D.

    2011-01-01

    Full text: Semiconductor nano-crystals, usually referred as Quantum Dots (QDs) are nowadays regarded as one of the building-blocks in modern photonics. They constitute bright and photostable fluorescence sources whose emission and absorption properties can be adequately tailored through their size. Recent advances on the controlled modification of their surface has made possible the development of water soluble QDs, without causing any deterioration in their fluorescence properties. This has made them excellent optical selective markers to be used in fluorescence bio-imaging experiments. The suitability of colloidal QDs for bio-imaging is pushed forward by their large two-photon absorption cross section so that their visible luminescence (associated to the recombination of electro-hole pairs) can be also efficiently excited under infrared excitation (two-photon excitation). This, in turns, allows for large penetration depths in tissues, minimization of auto-fluorescence and achievement of superior spatial imaging resolution. In addition, recent works have demonstrated the ability of QDs to act as nano-thermometers based on the thermal sensitivity of their fluorescence bands. Based on all these outstanding properties, QDs have been successfully used to mark individual receptors in cell membranes, to intracellular temperature measurements and to label living embryos at different stages. Most of the QD based bio-images reported up to now were obtained by using whether CdSe or CdTe QDs since both are currently commercial available with a high degree of quality. They show similar fluorescence properties and optical performance when used in bio-imaging. Nevertheless, CdTe-QDs have very recently attracted much attention since the hyper-thermal sensitivity of their fluorescence bands was discovered. Based on this, it has been postulated that intracellular thermal sensing with resolutions as large as 0.25 deg C can be achieved based on CdTe-QDs, three times better than

  6. Recent applications of gas chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    Science.gov (United States)

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  8. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    Science.gov (United States)

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  9. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    Science.gov (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  10. Nanosecond fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs

  11. Quantitative comparison of X-ray fluorescence microtomography setups: Standard and confocal collimator apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Chukalina, M. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: marina@ipmt-hpm.ac.ru; Simionovici, A. [Laboratoire de Geophysique Interne et Tectonophysique, University of Grenoble, BP 53, 38041, Grenoble (France)], E-mail: alexandre.simionovici@ujf-grenoble.fr; Zaitsev, S. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: zaitsev@ipmt-hpm.ac.ru; Vanegas, C.J. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: vanegas@ipmt-hpm.ac.ru

    2007-07-15

    Recently, there has been a renewed interest for fluorescence spectroscopy, as provided by modern setups which allow 2D and 3D imaging of elemental distributions. Two directions are currently under development: the SR-based fluorescence tomography in polar scanning geometry, provided by the new generation of X-ray microprobes and the confocal scanning geometry, which can be fielded in both SR and laboratory environments. The new probes bring forth a new age in fluorescence spectrometry: high resolution, high intensity and high sensitivity which allow 3D elemental mapping of volumes. The major task now is the development of these complex tools into fully quantitative probes, reproducible and straightforward for general use. In this work we analyze two X-ray fluorescence microtomography techniques: an apparatus tomography using a confocal collimator for the data collection and a standard first generation Computed Tomography (CT) in the parallel scanning scheme. We calculate the deposited dose (amount of energy deposited and distributed in the sample during the data collection time) and find the conditions for the choice of the tomography scheme.

  12. Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2017-06-01

    Full Text Available The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectronics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs via a one-pot reaction of citric acid with ethylenediamine at 150 °C under ambient air pressure. The resultant FCDs possess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluorescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes. Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.

  13. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  14. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  15. Hyper-resolution urban flood modeling using high-resolution radar precipitation and LiDAR data

    Science.gov (United States)

    Noh, S. J.; Lee, S.; Lee, J.; Seo, D. J.

    2016-12-01

    Floods occur most frequently among all natural hazards, often causing widespread economic damage and loss of human lives. In particular, urban flooding is becoming increasingly costly and difficult to manage with a greater concentration of population and assets in urban centers. Despite of known benefits for accurate representation of small scale features and flow interaction among different flow domains, which have significant impact on flood propagation, high-resolution modeling has not been fully utilized due to expensive computation and various uncertainties from model structure, input and parameters. In this study, we assess the potential of hyper-resolution hydrologic-hydraulic modeling using high-resolution radar precipitation and LiDAR data for improved urban flood prediction and hazard mapping. We describe a hyper-resolution 1D-2D coupled urban flood model for pipe and surface flows and evaluate the accuracy of the street-level inundation information produced. For detailed geometric representation of urban areas and for computational efficiency, we use 1 m-resolution topographical data, processed from LiDAR measurements, in conjunction with adaptive mesh refinement. For street-level simulation in large urban areas at grid sizes of 1 to 10 m, a hybrid parallel computing scheme using MPI and openMP is also implemented in a high-performance computing system. The modeling approach developed is applied for the Johnson Creek Catchment ( 40 km2), which makes up the Arlington Urban Hydroinformatics Testbed. In addition, discussion will be given on availability of hyper-resolution simulation archive for improved real-time flood mapping.

  16. New method of measuring the K-shell fluorescence yield of As

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K; Sahota, H S

    1984-02-01

    A new method for the determination of the K-shell fluorescence yield from the analysis of sum peaks observed with a high-resolution intrinsic Ge semiconductor detector in the decay of /sup 75/Se is described. The value found is ..omega..sub(K)(As)=0.574(18), which is in agreement with the fitted value of previous authors.

  17. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  18. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  19. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  20. Determination of Cinchona alkaloids and Vitamin B6 by high-performance liquid chromatography with fluorescence detection

    International Nuclear Information System (INIS)

    Gatti, R.; Gioia, M.G.; Cavrini, V.

    2004-01-01

    A simple and specific method has been developed for the simultaneous determination of the four major Cinchona alkaloids and their dihydroderivatives and pyridoxine hydrochloride (Vitamin B 6 ) by high-performance liquid chromatography (HPLC) with fluorescence detection (λ em =420 nm with λ ex =330 nm). The chromatographic separation was performed on a Phenomenex Prodigy ODS column (5 μm, 250 mmx3.2 mm i.d.), recommended for basic compounds, under isocratic reversed-phase conditions. The method allowed a good peak shape and an effective resolution of the tested compounds. The extraction of alkaloids from the Cinchona succirubra bark was carried out in mild and fast conditions (ambient temperature, 20 min) by ultrasonication. The procedure showed to be advantageous respect to a reference method, which involved Soxhlet extraction. The results were compared statistically by means of the Student's t-test and the variance ratio F-test; no significant difference was found. The method was reproducible (relative standard deviations in the range of 1.0-5.0% for the different alkaloids) and gave quantitative recovery of alkaloids added to bark samples (97.8-105%). For additional informations a photoreactor was arranged between the analytical column and the detector and the online post-column photochemical conversion (irradiation=254 nm) was investigated. Vitamin B 6 was shown to be highly photosensitive, giving significantly different fluorescence spectra with and without UV irradiation. The proposed method was successfully applied to the quality control of Cinchona bark, liquid extract and cosmetics

  1. Application of high resolution X-ray emission spectroscopy on the study of Cr ion adsorption by activated carbon

    International Nuclear Information System (INIS)

    Espinoza-Quinones, Fernando R.; Modenes, Aparecido N.; Camera, Adriana S.; Stutz, Guillermo; Tirao, German; Palacio, Soraya M.; Kroumov, Alexander D.; Oliveira, Ana P.; Alflen, Vanessa L.

    2010-01-01

    In this work granular activated carbon has been chosen as an absorbent in order to investigate the Cr(VI) reduced by adsorption experiments. Several batch chromium-sorption experiments were carried out using 0.25 g of granular activated carbon in 50 mL aqueous solution containing approximately 70 and 140 mg L -1 of Cr(VI) and Cr(III), respectively. Cr-Kβ fluorescence spectra of Cr adsorbed in a carbon matrix and Cr reference materials were measured using a high-resolution Johann-type spectrometer. Based on evidence from the Cr-Kb satellite lines, the Cr(VI) reduction process has actually happened during metal adsorption by the activated carbon.

  2. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    Science.gov (United States)

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-05-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS applications.

  3. Foliar Reflectance and Fluorescence Responses for Plants Under Nitrogen Stress Determined with Active and Passive Systems

    Science.gov (United States)

    Middleton, E. M.; McMurtrey, J. E.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; Chappelle, E. W.

    2003-01-01

    Vegetation productivity is driven by nitrogen (N) availability in soils. Both excessive and low soil N induce physiological changes in plant foliage. In 2001, we examined the use of spectral fluorescence and reflectance measurements to discriminate among plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of optimal N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight daily). Three types of steady state laser-induced fluorescence measurements were made on adaxial and abaxial surfaces: 1) fluorescence images in four 10 nm bands (blue, green, red, far-red) resulting from broad irradiance excitation; 2) emission spectra (5 nm resolution) produced by excitation at single wavelengths (280,380 or 360, and 532 nm); and 3) excitation spectra (2 nm resolution), with emission wavelengths fixed at wavelengths centered on selected solar Fraunhofer lines (532,607,677 and 745 nm). Two complementary sets of high resolution (less than 2 nm) optical spectra were acquired for both adaxial and abaxial leaf surfaces: 1) optical properties (350-2500 nm) for reflectance, transmittance, and absorptance; and 2) reflectance spectra (500-1000 nm) acquired with and without a short pass filter at 665 nm to determine the fluorescence contribution to apparent reflectance in the 650-750 spectrum, especially at the 685 and 740 nm chlorophyll fluorescence (ChIF) peaks. The strongest relationships between foliar chemistry and optical properties were demonstrated for C/N content and two optical parameters associated with the red edge inflection point. Select optical properties and ChIF parameters were highly correlated for both species. A significant contribution of ChIF to apparent reflectance was observed, averaging 10-25% at 685 nm and 2 - 6% at 740 nm over all N treatments. Discrimination of N treatment

  4. Simultaneous correlative scanning electron and high-NA fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Nalan Liv

    Full Text Available Correlative light and electron microscopy (CLEM is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.

  5. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  6. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  7. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Li, Shunbo; Wen, Weijia, E-mail: phwen@ust.hk [Department of Physics, KAUST-HKUST Joint Micro/Nanofluidic Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Cao, Wenbin [Nano Science and Technology Program, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2016-02-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.

  8. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    International Nuclear Information System (INIS)

    Wang, Yu; Li, Shunbo; Wen, Weijia; Cao, Wenbin

    2016-01-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF 4 :Yb 3+ , Er 3+ upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited

  9. High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon

    International Nuclear Information System (INIS)

    Tani, Hidenori; Akimitsu, Nobuyoshi; Fujita, Osamu; Matsuda, Yasuyoshi; Miyata, Ryo; Tsuneda, Satoshi; Igarashi, Masayuki; Sekiguchi, Yuji; Noda, Naohiro

    2009-01-01

    We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5'-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3'-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.

  10. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview.

    Science.gov (United States)

    Deliolanis, Nikolaos C; Ale, Angelique; Morscher, Stefan; Burton, Neal C; Schaefer, Karin; Radrich, Karin; Razansky, Daniel; Ntziachristos, Vasilis

    2014-10-01

    A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.

  11. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  12. High resolution CT of the chest

    Energy Technology Data Exchange (ETDEWEB)

    Barneveld Binkhuysen, F H [Eemland Hospital (Netherlands), Dept. of Radiology

    1996-12-31

    Compared to conventional CT high resolution CT (HRCT) shows several extra anatomical structures which might effect both diagnosis and therapy. The extra anatomical structures were discussed briefly in this article. (18 refs.).

  13. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    Science.gov (United States)

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  14. A novel dansyl-based fluorescent probe for highly selective detection of ferric ions.

    Science.gov (United States)

    Yang, Min; Sun, Mingtai; Zhang, Zhongping; Wang, Suhua

    2013-02-15

    A novel dansyl-based fluorescent probe was synthesized and characterized. It exhibits high selectivity and sensitivity towards Fe(3+) ion. This fluorescent probe is photostable, water soluble and pH insensitive. The limit of detection is found to be 0.62 μM. These properties make it a good fluorescent probe for Fe(3+) ion detection in both chemical and biological systems. Spike recovery test confirms its practical application in tap water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  16. High-Resolution MRI in Rectal Cancer

    International Nuclear Information System (INIS)

    Dieguez, Adriana

    2010-01-01

    High-resolution MRI is the best method of assessing the relation of the rectal tumor with the potential circumferential resection margin (CRM). Therefore it is currently considered the method of choice for local staging of rectal cancer. The primary surgery of rectal cancer is total mesorectal excision (TME), which plane of dissection is formed by the mesorectal fascia surrounding mesorectal fat and rectum. This fascia will determine the circumferential margin of resection. At the same time, high resolution MRI allows adequate pre-operative identification of important prognostic risk factors, improving the selection and indication of therapy for each patient. This information includes, besides the circumferential margin of resection, tumor and lymph node staging, extramural vascular invasion and the description of lower rectal tumors. All these should be described in detail in the report, being part of the discussion in the multidisciplinary team, the place where the decisions involving the patient with rectal cancer will take place. The aim of this study is to provide the information necessary to understand the use of high resolution MRI in the identification of prognostic risk factors in rectal cancer. The technical requirements and standardized report for this study will be describe, as well as the anatomical landmarks of importance for the total mesorectal excision (TME), as we have said is the surgery of choice for rectal cancer. (authors) [es

  17. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  18. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    Science.gov (United States)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  19. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    Science.gov (United States)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  20. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    Science.gov (United States)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  1. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  2. Detectors for high resolution dynamic pet

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography

  3. Validating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Tardif, Pier-Luc; Bertrand, Marie-Jeanne; Abran, Maxime; Castonguay, Alexandre; Lefebvre, Joël; Stähli, Barbara E; Merlet, Nolwenn; Mihalache-Avram, Teodora; Geoffroy, Pascale; Mecteau, Mélanie; Busseuil, David; Ni, Feng; Abulrob, Abedelnasser; Rhéaume, Éric; L'Allier, Philippe; Tardif, Jean-Claude; Lesage, Frédéric

    2016-12-15

    Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system enabling automated volumetric histology imaging of excised aortas that can spatially correlate results with combined IVUS/NIRF imaging of lipid-rich atheroma in cholesterol-fed rabbits. Pullbacks in the rabbit aortas were performed with a dual modality IVUS/NIRF catheter developed by our group. Ex vivo three-dimensional (3D) histology was performed combining optical coherence tomography (OCT) and confocal fluorescence microscopy, providing high-resolution anatomical and molecular information, respectively, to validate in vivo findings. The microscope was combined with a serial slicer allowing for the imaging of the whole vessel automatically. Colocalization of in vivo and ex vivo results is demonstrated. Slices can then be recovered to be tested in conventional histology.

  4. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  5. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  6. High-resolution melt-curve analysis of random-amplified-polymorphic-DNA markers, for the characterisation of pathogenic Leptospira

    DEFF Research Database (Denmark)

    Tulsiani, Suhella; Craig, S B; Graham, G C

    2010-01-01

    A new test for pathogenic Leptospira isolates, based on RAPD-PCR and high-resolution melt (HRM) analysis (which measures the melting temperature of amplicons in real time, using a fluorescent DNA-binding dye), has recently been developed. A characteristic profile of the amplicons can be used...... typed against 13 previously published RAPD primers, using a real-time cycler (the Corbett Life Science RotorGene 6000) and the optimised reagents from a commercial kit (Quantace SensiMix). RAPD-HRM at specific temperatures generated defining amplicon melt profiles for each of the tested serovars....... These profiles were evaluated as difference-curve graphs generated using the RotorGene software package, with a cut-off of at least 8 'U' (plus or minus). The results demonstrated that RAPD-HRM can be used to measure serovar diversity and establish identity, with a high degree of stability. The characterisation...

  7. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  8. Containerless high temperature property measurements by atomic fluorescence

    Science.gov (United States)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  9. High resolution tsunami inversion for 2010 Chile earthquake

    Directory of Open Access Journals (Sweden)

    T.-R. Wu

    2011-12-01

    Full Text Available We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  10. High resolution tsunami inversion for 2010 Chile earthquake

    Science.gov (United States)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  11. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  12. Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Basiruddin, SK; Swain, Sarat K., E-mail: swainsk2@yahoo.co.in

    2016-01-01

    Reduced graphene has emerged as promising tools for detection based application of biomolecules as it has high surface area with strong fluorescence quenching property. We have used the concept of fluorescent quenching property of reduced graphene oxide to the fluorescent probes which are close vicinity of its surface. In present work, we have synthesized fluorescent based nano-sensor consist of phenylboronic acid functionalized reduced graphene oxide (rGO–PBA) and di-ol modified fluorescent probe for detection of biologically important glucose molecules. This fluorescent graphene based nano-probe has been characterized by high resolution transmission electron microscope (HRTEM), Atomic force microscope (AFM), UV–visible, Photo-luminescence (PL) and Fourier transformed infrared (FT-IR) spectroscopy. Finally, using this PBA functionalized reduced GO based nano-sensor, we were able to detect glucose molecule in the range of 2 mg/mL to 75 mg/mL in aqueous solution of pH 7.4. - Highlights: • Easy and simple synthesis of PBA functionalized reduced GO based nano probe. • PBA functionalized reduced GO graphene based nano-probes are characterized. • PBA functionalized reduced GO nano probe is used to detect glucose molecules. • It is very cost-effective and enzyme-free detection of glucose in solution.

  13. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  14. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  15. Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography.

    Science.gov (United States)

    Leblond, Frederic; Tichauer, Kenneth M; Pogue, Brian W

    2010-11-29

    The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions.

  16. High resolution SETI: Experiences and prospects

    Science.gov (United States)

    Horowitz, Paul; Clubok, Ken

    Megachannel spectroscopy with sub-Hertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrowband radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile receiver with an FFT-based 8 megachannel digital spectrum analyzer, on-line signal recognition, and multithreshold archiving. We are using it to conduct a meridian transit search of the northern sky at the Harvard-Smithsonian 26-m antenna, with a second identical system scheduled to begin observations in Argentina this month. Successive 400 kHz spectra, at 0.05 Hz resolution, are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable frequencies (such as λ21 cm), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame. This search has rejected interference admirably, but is greatly limited both in total frequency coverage and sensitivity to signals other than carriers. We summarize five years of high resolution SETI at Harvard, in the context of answering the questions "How useful is narrowband SETI, how serious are its limitations, what can be done to circumvent them, and in what direction should SETI evolve?" Increasingly powerful signal processing hardware, combined with ever-higher memory densities, are particularly relevant, permitting the construction of compact and affordable gigachannel spectrum analyzers covering hundreds of megahertz of instantaneous bandwidth.

  17. The high-resolution regional reanalysis COSMO-REA6

    Science.gov (United States)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  18. Correlated Fluorescence-Atomic Force Microscopy Studies of the Clathrin Mediated Endocytosis in SKMEL Cells

    Science.gov (United States)

    Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam

    Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.

  19. Application of super-resolution optical microscopy in biology

    International Nuclear Information System (INIS)

    Mao Xiuhai; Du Jiancong; Huang Qing; Fan Chunhai; Deng Suhui

    2013-01-01

    Background: A noninvasive, real-time far-field optical microscopy is needed to study the dynamic function inside cells and proteins. However, the resolution limit of traditional optical microscope is about 200 nm due to the diffraction limit of light. So, it's hard to directly observe the subcellular structures. Over the past several years of microscopy development, the diffraction limit of fluorescence microscopy has been overcome and its resolution limit is about tens of nanometers. Methods: To overcome the diffraction limit of light, many super-resolution fluoresce microscopes, including stimulated emission of depletion microscopy (STED), photoactivation localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), have been developed. Conclusions: These methods have been applied in cell biology, microbiology and neurobiology, and the technology of super-resolution provides a new insight into the life science. (authors)

  20. SRS station 16.3: high-resolution applications

    CERN Document Server

    Murphy, B M; Golshan, M; Moore, M; Reid, J; Kowalski, G

    2001-01-01

    Station 16.3 is a high-resolution X-ray diffraction beamline at Daresbury Laboratory Synchrotron Radiation Source. The data presented demonstrate the high-resolution available on the station utilising the recently commissioned four-reflection Si 1 1 1 monochromator and three-reflection Si 1 1 1 analyser. For comparison, a reciprocal space map of the two-bounce Si 1 1 1 monochromator and two-bounce analyser is also shown. Operation of the station is illustrated with examples for silicon, and for diamond. Lattice parameter variations were measured with accuracies in the part per million range and lattice tilts at the arc second level (DuMond, Phys. Rev. 52 (1937) 872).

  1. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  2. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Super-resolution from single photon emission: toward biological application

    Science.gov (United States)

    Moreva, E.; Traina, P.; Forneris, J.; Ditalia Tchernij, S.; Guarina, L.; Franchino, C.; Picollo, F.; Ruo Berchera, I.; Brida, G.; Degiovanni, I. P.; Carabelli, V.; Olivero, P.; Genovese, M.

    2017-08-01

    Properties of quantum light represent a tool for overcoming limits of classical optics. Several experiments have demonstrated this advantage ranging from quantum enhanced imaging to quantum illumination. In this work, experimental demonstration of quantum-enhanced resolution in confocal fluorescence microscopy will be presented. This is achieved by exploiting the non-classical photon statistics of fluorescence emission of single nitrogen-vacancy (NV) color centers in diamond. By developing a general model of super-resolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers. Finally, possible applications of NV-based fluorescent nanodiamonds in biosensing and future developments will be presented.

  4. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  5. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    International Nuclear Information System (INIS)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-01

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 (micro)m or smaller will lead to an image resolution of 500 (micro)m when using 18F- or 64Cu-labeled radiotracers, giving a factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.

  6. Super-resolution fluorescence imaging of membrane nanoscale architectures of hematopoietic stem cell homing and migration molecules

    KAUST Repository

    AbuZineh, Karmen

    2017-12-01

    Recent development of super-resolution (SR) fluorescence microscopy techniques has provided a new tool for direct visualization of subcellular structures and their dynamics in cells. The homing of Hematopoietic stem/progenitor cells (HSPCs) to bone marrow is a multistep process that is initiated by tethering of HSPCs to endothelium and mediated by spatiotemporally organised ligand-receptor interactions of selectins expressed on endothelial cells to their ligands expressed on HSPCs which occurs against the shear stress exerted by blood flow. Although molecules and biological processes involved in this multi-step cellular interaction have been studied extensively, molecular mechanisms of the homing, in particular the nanoscale spatiotemporal behaviour of ligand-receptor interactions and their role in the cellular interaction, remain elusive. Using our new method of microfluidics-based super-resolution fluorescence imaging platform we can now characterize the correlation between both nanoscale ligand-receptor interactions and tethering/rolling of cells under external shear stress. We found that cell rolling on E-selectin caused significant reorganization of the nanoscale clustering behavior of CD44 and CD43, from a patchy clusters of ~ 200 nm in size to an elongated network-like structures where for PSGL-1 the clustering size did not change significantly as it was 85 nm and after cell rolling the PSGL-1 aggregated to one side or even exhibited an increase in the footprint. Furthermore, I have established the use of 3D SR images that indicated that the patchy clusters of CD44 localize to protruding structures of the cell surface. On the other hand, a significant amount of the network-like elongated CD44 clusters observed after the rolling were located in the close proximity to the E-selectin surface. The effect of the nanoscale reorganization of the clusters on the HSPC rolling over selectins is still an open question at this stage. Nevertheless, my results further

  7. Achieving High Resolution Timer Events in Virtualized Environment.

    Science.gov (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  8. Identification of weak autoionizing resonances observed through fluorescence from the satellite states of Ar{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, K.W.; Yenen, O.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    Photoionization accompanied by excitation of the residual ionic state violates an independent electron model since, according to QED, photons interact only with individual electrons. By allowing measurements at a threshold event with high resolution, the observation of the fluorescence from the decay of these excited states (satellite states) is a sensitive method in the study of electron-electron interactions, providing complementary information to photoelectron spectroscopy. In the measurements reported here, an atomic beam of argon has been photoionized with 34 to 39 eV synchrotron radiation at beamline 9.0.1 of the Advanced Light Source. This energy range encompasses the 3p{sup 4} [{sup 3}P] 4p {sup 4}P, {sup 2}P, and {sup 2}D as well as the [{sup 1}D]4p {sup 2}F satellite states of Ar{sup +}. By observing the fine-structure resolved fluorescence from these satellite states, new Rydberg series and extensions of previously known series have been resolved with an energy resolution of 3 meV. With the high photon flux available from the high resolution monochromator of beamline 9.0.1, even the weakly excited [{sup 3}P] 4p ({sup 2}S) ns,d autoionizing structure has been observed for the first time.

  9. Volumetric fluorescence retinal imaging in vivo over a 30-degree field of view by oblique scanning laser ophthalmoscopy (oSLO).

    Science.gov (United States)

    Zhang, Lei; Song, Weiye; Shao, Di; Zhang, Sui; Desai, Manishi; Ness, Steven; Roy, Sayon; Yi, Ji

    2018-01-01

    While fluorescent contrast is widely used in ophthalmology, three-dimensional (3D) fluorescence retinal imaging over a large field of view (FOV) has been challenging. In this paper, we describe a novel oblique scanning laser ophthalmoscopy (oSLO) technique that provides 3D volumetric fluorescence retinal imaging with only one raster scan. The technique utilizes scanned oblique illumination and angled detection to obtain fluorescent cross-sectional images, analogous to optical coherence tomography (OCT) line scans (or B-scans). By breaking the coaxial optical alignment used in conventional retinal imaging modalities, depth resolution is drastically improved. To demonstrate the capability of oSLO, we have performed in vivo volumetric fluorescein angiography (FA) of the rat retina with ~25μm depth resolution and over a 30° FOV. Using depth segmentation, oSLO can obtain high contrast images of the microvasculature down to single capillaries in 3D. The multi-modal nature of oSLO also allows for seamless combination with simultaneous OCT angiography.

  10. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  11. Efficient processing of fluorescence images using directional multiscale representations.

    Science.gov (United States)

    Labate, D; Laezza, F; Negi, P; Ozcan, B; Papadakis, M

    2014-01-01

    Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data.

  12. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes.

    Science.gov (United States)

    Hennig, Simon; van de Linde, Sebastian; Lummer, Martina; Simonis, Matthias; Huser, Thomas; Sauer, Markus

    2015-02-11

    Labeling internal structures within living cells with standard fluorescent probes is a challenging problem. Here, we introduce a novel intracellular staining method that enables us to carefully control the labeling process and provides instant access to the inner structures of living cells. Using a hollow glass capillary with a diameter of <100 nm, we deliver functionalized fluorescent probes directly into the cells by (di)electrophoretic forces. The label density can be adjusted and traced directly during the staining process by fluorescence microscopy. We demonstrate the potential of this technique by delivering and imaging a range of commercially available cell-permeable and nonpermeable fluorescent probes to cells.

  13. Modern, PC based, high resolution portable EDXRF analyzer offers laboratory performance for field, in-situ analysis of environmental contaminants

    International Nuclear Information System (INIS)

    Piorek, Stanislaw

    1994-01-01

    The introduction of a new, high resolution, portable probe that has improved the sensitivity of the conventional field portable X-ray fluorescence (FPXRF) by up to an order of magnitude had been reported earlier [S. Piorek and J.R. Pasmore, Proc. 2nd Int. Symp. on Field Screening Methods for Hazardous Wastes and Toxic Chemicals, Las Vegas, 1991, p. 737]. A high resolution Si(Li) detector probe operates connected to a multichannel X-ray analyzer (2048 channels) which is housed in a portable, battery powered industrial computer. An improved energy resolution of the detector allows the implementation of more sophisticated data treatment methods to convert the measured intensities into mass concentrations of the analytes. A backscatter with a fundamental parameters approach (BFP) is one of the best methods, specifically for metallic contaminants in soil. A program has been written based on the BFP method for use with the new probe. The new software/probe combination enables one to quickly assess levels of contaminants on the site without the need of analyzed samples for instrument calibration. The performance of the EDXRF system in application to analysis of metals in contaminated soil is discussed in this paper. Also discussed is the extension of this method in the analysis of other types of environmental samples such as air particulates collected on filter paper. ((orig.))

  14. High accuracy FIONA-AFM hybrid imaging

    International Nuclear Information System (INIS)

    Fronczek, D.N.; Quammen, C.; Wang, H.; Kisker, C.; Superfine, R.; Taylor, R.; Erie, D.A.; Tessmer, I.

    2011-01-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8 nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10 nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes. -- Research highlights: → Integration of fluorescent signals in AFM topography with high (<10 nm) accuracy. → Investigation of limitations and quantitative analysis of fluorescence-AFM image registration using quantum dots. → Fluorescence center tracking and display as localization probability distributions in AFM topography (FIONA-AFM). → Application of FIONA-AFM to a biological sample containing damaged DNA and the DNA repair proteins UvrA and UvrB conjugated to quantum dots.

  15. High resolution manometry findings in patients with esophageal epiphrenic diverticula.

    Science.gov (United States)

    Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G

    2011-12-01

    The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.

  16. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  17. High-resolution flood modeling of urban areas using MSN_Flood

    Directory of Open Access Journals (Sweden)

    Michael Hartnett

    2017-07-01

    Full Text Available Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme, MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region. Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.

  18. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  19. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    Energy Technology Data Exchange (ETDEWEB)

    Malinouski, M.; Kehr, S.; Finney, L.; Vogt, S.; Carlson, B.A.; Seravalli, J.; Jin, R.; Handy, D.E.; Park, T.J.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N. (Harvard-Med)

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.

  20. A portable fluorescence microscopic imaging system for cholecystectomy

    Science.gov (United States)

    Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald

    2016-03-01

    In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.

  1. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  2. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  3. High-resolution investigations of edge effects in neutron imaging

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Kuehne, G.; Frei, G.; Manke, I.

    2009-01-01

    Edge enhancement is the main effect measured by the so-called inline or propagation-based neutron phase contrast imaging method. The effect has originally been explained by diffraction, and high spatial coherence has been claimed to be a necessary precondition. However, edge enhancement has also been found in conventional imaging with high resolution. In such cases the effects can produce artefacts and hinder quantification. In this letter the edge effects at cylindrical shaped samples and long straight edges have been studied in detail. The enhancement can be explained by refraction and total reflection. Using high-resolution imaging, where spatial resolutions better than 50 μm could be achieved, refraction and total reflection peaks - similar to diffraction patterns - could be separated and distinguished.

  4. High-Resolution Adaptive Optics Test-Bed for Vision Science

    International Nuclear Information System (INIS)

    Wilks, S.C.; Thomspon, C.A.; Olivier, S.S.; Bauman, B.J.; Barnes, T.; Werner, J.S.

    2001-01-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed

  5. Ultra-high resolution AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  6. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    Science.gov (United States)

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  7. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    Directory of Open Access Journals (Sweden)

    Tianzhu Yi

    2017-11-01

    Full Text Available This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR data processing. Several nonlinear chirp scaling (NLCS algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC. However, the azimuth depth of focusing (ADOF is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS algorithm that is proposed in this paper uses the method of series reverse (MSR to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  8. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties

    Science.gov (United States)

    Zhao, Zhao; Gonsior, Michael; Luek, Jenna; Timko, Stephen; Ianiri, Hope; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Fang, Xiaoting; Zeng, Qinglu; Jiao, Nianzhi; Chen, Feng

    2017-05-01

    Marine chromophoric dissolved organic matter (CDOM) and its related fluorescent components (FDOM), which are widely distributed but highly photobleached in the surface ocean, are critical in regulating light attenuation in the ocean. However, the origins of marine FDOM are still under investigation. Here we show that cultured picocyanobacteria, Synechococcus and Prochlorococcus, release FDOM that closely match the typical fluorescent signals found in oceanic environments. Picocyanobacterial FDOM also shows comparable apparent fluorescent quantum yields and undergoes similar photo-degradation behaviour when compared with deep-ocean FDOM, further strengthening the similarity between them. Ultrahigh-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy reveal abundant nitrogen-containing compounds in Synechococcus DOM, which may originate from degradation products of the fluorescent phycobilin pigments. Given the importance of picocyanobacteria in the global carbon cycle, our results indicate that picocyanobacteria are likely to be important sources of marine autochthonous FDOM, which may accumulate in the deep ocean.

  9. Resolution doubling in 3D-STORM imaging through improved buffers.

    Science.gov (United States)

    Olivier, Nicolas; Keller, Debora; Gönczy, Pierre; Manley, Suliana

    2013-01-01

    Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.

  10. Resolution doubling in 3D-STORM imaging through improved buffers.

    Directory of Open Access Journals (Sweden)

    Nicolas Olivier

    Full Text Available Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.

  11. Toward quantitative fluorescence microscopy with DNA origami nanorulers.

    Science.gov (United States)

    Beater, Susanne; Raab, Mario; Tinnefeld, Philip

    2014-01-01

    The dynamic development of fluorescence microscopy has created a large number of new techniques, many of which are able to overcome the diffraction limit. This chapter describes the use of DNA origami nanostructures as scaffold for quantifying microscope properties such as sensitivity and resolution. The DNA origami technique enables placing of a defined number of fluorescent dyes in programmed geometries. We present a variety of DNA origami nanorulers that include nanorulers with defined labeling density and defined distances between marks. The chapter summarizes the advantages such as practically free choice of dyes and labeling density and presents examples of nanorulers in use. New triangular DNA origami nanorulers that do not require photoinduced switching by imaging transient binding to DNA nanostructures are also reported. Finally, we simulate fluorescence images of DNA origami nanorulers and reveal that the optimal DNA nanoruler for a specific application has an intermark distance that is roughly 1.3-fold the expected optical resolution. © 2014 Elsevier Inc. All rights reserved.

  12. Fluorescence image excited by a scanning UV-LED light

    Science.gov (United States)

    Tsai, Hsin-Yi; Chen, Yi-Ju; Huang, Kuo-Cheng

    2013-03-01

    An optical scanning system using UV-LED light to induced fluorescence technology can enhance a fluorescence image significantly in a short period. It has several advantages such as lower power consumption, no scattering effect in skins, and multilayer images can be obtained to analyze skin disease. From the experiment results, the light intensity increases with increase spot size and decrease scanning speed, but the image resolution is oppositely. Moreover, the system could be widely used in clinical diagnosis and photodynamic therapy for skin disease because even the irradiated time of fluorescence substance is short but it will provide accurately positioning of fluorescence object.

  13. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  14. Refinement procedure for the image alignment in high-resolution electron tomography

    International Nuclear Information System (INIS)

    Houben, L.; Bar Sadan, M.

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. -- Highlights: → Alignment procedure for electron tomography based on iterative tomogram contrast optimisation. → Marker-free, independent of object, little user interaction. → Accuracy competitive with fiducial marker methods and suited for high-resolution tomography.

  15. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  16. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the single molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).

  17. Using Adobe Acrobat to create high-resolution line art images.

    Science.gov (United States)

    Woo, Hyoun Sik; Lee, Jeong Min

    2009-08-01

    The purpose of this article is to introduce a method for using Adobe Acrobat to make high-resolution and high-quality line art images. High-resolution and high-quality line art images for radiology journal submission can be generated using Adobe Acrobat as a steppingstone, and the customized PDF conversion settings can be used for converting hybrid images, including both bitmap and vector components.

  18. Changes in the fluorescence of the Caribbean coral Montastraea faveolata during heat-induced bleaching

    Science.gov (United States)

    Zawada, David G.; Jaffe, J.S.

    2003-01-01

    In order to evaluate the response of commonly occurring green and orange fluorescent host-based pigments, a thermal stress experiment was performed on specimens of the Caribbean coral Montastraea faveolata. Seven paired samples were collected from a small oceanic reef near Lee Stocking Island in the Bahamas. Seven of the fourteen corals were subjected to elevated temperatures for 28 d, followed by a recovery period lasting 53 d. Throughout the experiment, high-resolution (~400 µm pixel-1) multispectral images of induced fluorescence were recorded at wavelengths corresponding to the green and orange host pigments, plus chlorophyll. These images revealed that the fluorescence of both host pigments was concentrated at polyp centers and declined by 70–90% in regions between polyps. Chlorophyll fluorescence, however, was distributed almost uniformly across the entire coral surface, but with decreases of 10–30% around polyp centers. A normalized difference ratio between the green and orange pigments (GO ratio) was developed to facilitate comparison with chlorophyll fluorescence as a bleaching indicator. Analysis showed a high correspondence between a sustained GO ratio of less than zero and the death of corals. Finally, this ratio was resistant to contamination from other sources of chlorophyll fluorescence, such as filamentous algae.

  19. Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest.

    Science.gov (United States)

    Colombo, Roberto; Celesti, Marco; Bianchi, Remo; Campbell, Petya K E; Cogliati, Sergio; Cook, Bruce D; Corp, Lawrence A; Damm, Alexander; Domec, Jean-Christophe; Guanter, Luis; Julitta, Tommaso; Middleton, Elizabeth M; Noormets, Asko; Panigada, Cinzia; Pinto, Francisco; Rascher, Uwe; Rossini, Micol; Schickling, Anke

    2018-02-20

    Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic

  20. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  1. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  2. Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy

    Science.gov (United States)

    Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony

    2013-04-01

    controlled by the composition and content of various foliar pigments (chlorophylls, xanthophylls, etc.). Additionally, the high spectral resolution reflectance together with the narrow bandwidth allows retrieving the steady state chlorophyll fluorescence, which indicates the actual moss photosynthetic activity. A first airborne imaging spectroscopy acquisition with the mini-Hyperspec sensor on-board a low-flying remote-controlled multi-rotor helicopter (known as micro Unmanned Aerial Systems - UAS) will be performed during the summer 2013. The aim of the UAS observations is to generate high spatial resolution maps of actual physiological state of several moss beds located within the Australian Antarctic Territory. The regular airborne monitoring is expected to reveal spatio-temporal changes in the Antarctic moss ecosystems, indicating the impact of the global climate change in Antarctica.

  3. High-resolution esophageal pressure topography for esophageal motility disorders

    OpenAIRE

    Hashem Fakhre Yaseri; Gholamreza Hamsi; Tayeb Ramim

    2016-01-01

    Background: High-resolution manometer (HRM) of the esophagus has become the main diagnostic test in the evaluation of esophageal motility disorders. The development of high-resolution manometry catheters and software displays of manometry recordings in color-coded pressure plots have changed the diagnostic assessment of esophageal disease. The first step of the Chicago classification described abnormal esophagogastric junction deglutitive relaxation. The latest classification system, proposed...

  4. Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, Vincenzo

    2016-01-01

    The use of liquid chromatography high-resolution mass spectrometry (LC-HRMS) and direct analysis real-time high-resolution mass spectrometry (DART-HRMS) defines a new scenario in the analysis of thermal-induced toxicants, such as acrylamide. Several factors contribute to the definition of the

  5. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  6. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  7. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  8. Design and test of a high resolution plastic scintillating fiber detector with intensified CCD readout

    International Nuclear Information System (INIS)

    Rebourgeard, P.

    1991-01-01

    We present the design of a particle detector involving a coherent array of 100 000 plastic scintillating microfibers, with an individual core diameter around 50 micrometers, and an intensified bidimensional CCD array. We investigate both theoretically and experimentally the use of polystyrene based scintillators in optical multimodal fibers. The isotropic excitation of modes and the characteristics of energy transfers between the polystyrene matrix and the added fluorescent dyes are of particular interest. An experimental approach is proposed and applied to the development of a new binary scintillator. In order to study the transmission of the signal from the interaction area to the output face, we specify the loss factors, the resolution and the signal to noise ratio within the fiber array. The low light level at the output face of the detector leads us to use image intensifiers in photon counting mode. This requires a detailed analysis of resolutions, gain, noise and detectivity concepts. We propose to describe these strongly correlated notions by the moment generation formalism. Thus, a previous modelisation of the photoelectronic devices allows us to evaluate the performance of the readout chain. A complete detector has been assembled and tested on a high energy hadron beam; the measurements are in good agreement with the modelisation [fr

  9. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    Science.gov (United States)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  10. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  11. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  12. High-resolution CT of the lungs: Anatomic-pathologic correlation

    International Nuclear Information System (INIS)

    Stein, M.G.; Webb, W.R.; Finkbeiner, W.; Gamsu, G.

    1986-01-01

    The interpretation of thin-section (1.5-mm), high-resolution CT scans of the lungs has been limited by lack of direct radiologic and pathologic correlation. The author scanned fresh inflated isolated lungs from ten healthy and five diseased subjects using thin-section, high-resolution techniques. The lungs were then fixed by inflation with endobronchial Formalin. Gough sections (1 mm thick) were obtained at the same levels as the CT scans. In healthy subjects, secondary lobules were identified by the presence of visible interlobular septa and central arterioles. In some patients with disease, septal thickening was visible. In patients with honeycombing cystic areas of destroyed lung were seen, along with areas of fibrosis. Emphysema was well evaluated. Thin-section, high-resolution CT can define lung architecture and may resolve mild changes of the interstitium

  13. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  15. Science with High Spatial Resolution Far-Infrared Data

    Science.gov (United States)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  16. Fluorescence Imaging of Underexpanded Jets and Comparison with CFD

    Science.gov (United States)

    Wilkes, Jennifer A.; Glass, Christopher E.; Danehy, Paul M.; Nowak, Robert J.

    2006-01-01

    An experimental study of underexpanded and highly underexpanded axisymmetric nitrogen free jets seeded with 0.5% nitric oxide (NO) and issuing from a sonic orifice was conducted at NASA Langley Research Center. Reynolds numbers based on nozzle exit conditions ranged from 770 to 35,700, and nozzle exit-to-ambient jet pressure ratios ranged from 2 to 35. These flows were non-intrusively visualized with a spatial resolution of approximately 0.14 mm x 0.14 mm x 1 mm thick and a temporal resolution of 1 s using planar laser-induced fluorescence (PLIF) of NO, with the laser tuned to the strongly-fluorescing UV absorption bands of the Q1 band head near 226.256 nm. Three laminar cases were selected for comparison with computational fluid dynamics (CFD). The cases were run using GASP (General Aerodynamic Simulation Program) Version 4. Comparisons of the fundamental wavelength of the jet flow showed good agreement between CFD and experiment for all three test cases, while comparisons of Mach disk location and Mach disk diameter showed good agreement at lower jet pressure ratios, with a tendency to slightly underpredict these parameters with increasing jet pressure ratio.

  17. Textural Segmentation of High-Resolution Sidescan Sonar Images

    National Research Council Canada - National Science Library

    Kalcic, Maria; Bibee, Dale

    1995-01-01

    .... The high resolution of the 455 kHz sonar imagery also provides much information about the surficial bottom sediments, however their acoustic scattering properties are not well understood at high frequencies...

  18. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

    Science.gov (United States)

    Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H

    2017-09-05

    Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

  19. High-resolution computed tomography findings in pulmonary Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rosana Souza [Universidade Federal do Rio de Janeiro (HUCFF/UFRJ), RJ (Brazil). Hospital Universitario Clementino Fraga Filho. Unit of Radiology; Capone, Domenico; Ferreira Neto, Armando Leao [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2011-07-15

    Objective: The present study was aimed at characterizing main lung changes observed in pulmonary Langerhans cell histiocytosis by means of high-resolution computed tomography. Materials and Methods: High-resolution computed tomography findings in eight patients with proven disease diagnosed by open lung biopsy, immunohistochemistry studies and/or extrapulmonary manifestations were retrospectively evaluated. Results: Small rounded, thin-walled cystic lesions were observed in the lung of all the patients. Nodules with predominantly peripheral distribution over the lung parenchyma were observed in 75% of the patients. The lesions were diffusely distributed, predominantly in the upper and middle lung fields in all of the cases, but involvement of costophrenic angles was observed in 25% of the patients. Conclusion: Comparative analysis of high-resolution computed tomography and chest radiography findings demonstrated that thinwalled cysts and small nodules cannot be satisfactorily evaluated by conventional radiography. Because of its capacity to detect and characterize lung cysts and nodules, high-resolution computed tomography increases the probability of diagnosing pulmonary Langerhans cell histiocytosis. (author)

  20. Multiphoton-Excited Fluorescence of Silicon-Vacancy Color Centers in Diamond

    Science.gov (United States)

    Higbie, J. M.; Perreault, J. D.; Acosta, V. M.; Belthangady, C.; Lebel, P.; Kim, M. H.; Nguyen, K.; Demas, V.; Bajaj, V.; Santori, C.

    2017-05-01

    Silicon-vacancy color centers in nanodiamonds are promising as fluorescent labels for biological applications, with a narrow, nonbleaching emission line at 738 nm. Two-photon excitation of this fluorescence offers the possibility of low-background detection at significant tissue depth with high three-dimensional spatial resolution. We measure the two-photon fluorescence cross section of a negatively charged silicon vacancy (Si -V- ) in ion-implanted bulk diamond to be 0.74 (19 )×10-50 cm4 s /photon at an excitation wavelength of 1040 nm. Compared to the diamond nitrogen-vacancy center, the expected detection threshold of a two-photon excited Si -V center is more than an order of magnitude lower, largely due to its much narrower linewidth. We also present measurements of two- and three-photon excitation spectra, finding an increase in the two-photon cross section with decreasing wavelength, and we discuss the physical interpretation of the spectra in the context of existing models of the Si -V energy-level structure.

  1. A Forward-Looking High-Resolution GPR System

    National Research Council Canada - National Science Library

    Kositsky, Joel; Milanfar, Peyman

    1999-01-01

    A high-resolution ground penetrating radar (GPR) system was designed to help define the optimal radar parameters needed for the efficient standoff detection of buried and surface-laid antitank mines...

  2. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  3. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  4. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    Full text: In May 1997, the IAEA Board of Governors adopted the Additional Safeguards Protocol to improve its ability to detect the undeclared production of fissile material. This new strengthened safeguards system has opened the door for the IAEA to use of all types of information, including the potential use of commercial satellite imagery. We have therefore been investigating the feasibility of strengthening IAEA safeguards using commercial satellite imagery. Based on our analysis on a number of one-meter resolution IKONOS satellite images of military nuclear production facilities at nuclear states including Russia, China, India, Pakistan and Israel, we found that the new high-resolution commercial satellite imagery would play a new and valuable role in strengthening IAEA safeguards. Since 1999, images with a resolution of one meter have been available commercially from Space Imaging's IKONOS satellite. One-meter images from other companies are expected to enter the market soon. Although still an order of magnitude less capable than military imaging satellites, the capabilities of these new high-resolution commercial satellites are good enough to detect and identify the major visible characteristics of nuclear production facilities and sites. Unlike the classified spy satellite photos limited to few countries, the commercial satellite imagery is commercially available to anyone who wants to purchase it. Therefore, the new commercial satellite open a new chance that each state, international organizations, and non-governmental groups could use the commercial images to play a more proactive role in monitoring the nuclear activities in related countries and verifying the compliance of non-proliferation agreements. This could help galvanize support for intensified efforts to slow the pace of nuclear proliferation. To produce fissile materials (plutonium and highly enriched uranium) for weapons, a country would operate dedicated plutonium-production reactors and the

  5. Processing method for high resolution monochromator

    International Nuclear Information System (INIS)

    Kiriyama, Koji; Mitsui, Takaya

    2006-12-01

    A processing method for high resolution monochromator (HRM) has been developed at Japanese Atomic Energy Agency/Quantum Beam Science Directorate/Synchrotron Radiation Research unit at SPring-8. For manufacturing a HRM, a sophisticated slicing machine and X-ray diffractometer have been installed for shaping a crystal ingot and orienting precisely the surface of a crystal ingot, respectively. The specification of the slicing machine is following; Maximum size of a diamond blade is φ 350mm in diameter, φ 38.1mm in the spindle diameter, and 2mm in thickness. A large crystal such as an ingot with 100mm in diameter, 200mm in length can be cut. Thin crystal samples such as a wafer can be also cut using by another sample holder. Working distance of a main shaft with the direction perpendicular to working table in the machine is 350mm at maximum. Smallest resolution of the main shaft with directions of front-and-back and top-and-bottom are 0.001mm read by a digital encoder. 2mm/min can set for cutting samples in the forward direction. For orienting crystal faces relative to the blade direction adjustment, a one-circle goniometer and 2-circle segment are equipped on the working table in the machine. A rotation and a tilt of the stage can be done by manual operation. Digital encoder in a turn stage is furnished and has angle resolution of less than 0.01 degrees. In addition, a hand drill as a supporting device for detailed processing of crystal is prepared. Then, an ideal crystal face can be cut from crystal samples within an accuracy of about 0.01 degrees. By installation of these devices, a high energy resolution monochromator crystal for inelastic x-ray scattering and a beam collimator are got in hand and are expected to be used for nanotechnology studies. (author)

  6. Lateral resolution testing of a novel developed confocal microscopic imaging system

    Science.gov (United States)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  7. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  8. A Low-Cost, High-Performance System for Fluorescence Lateral Flow Assays

    Directory of Open Access Journals (Sweden)

    Linda G. Lee

    2013-10-01

    Full Text Available We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA as the analyte. Fluorescence provided linear data over a range of 0.4–4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16–4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting.

  9. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zeniya, T.; Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T

    2001-07-21

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  10. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Science.gov (United States)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  11. Aberrations and adaptive optics in super-resolution microscopy

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  12. Refinement procedure for the image alignment in high-resolution electron tomography.

    Science.gov (United States)

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Scanning SRXF analysis and isotopes of uranium series from bottom sediments of Siberian lakes for high-resolution climate reconstructions

    International Nuclear Information System (INIS)

    Goldberg, E.L.; Grachev, M.A.; Chebykin, E.P.; Phedorin, M.A.; Kalugin, I.A.; Khlystov, O.M.; Zolotarev, K.V.

    2005-01-01

    High-resolution scanning X-ray Fluorescence Analysis with Synchrotron Radiation (SRXFA) was applied to investigate the downcore distribution of elements in Lake Baikal and Lake Teletskoye. Physical modeling of river runoff taking into account the chemistry of U series isotopes and their concentrations in sediments allowed a decade-scale reconstruction of Holocene (0-11 ky) river input to Lake Baikal. Holocene moisture peaks in East Siberia are synchronous with abrupt spells in the Atlantic. The multi-element data from Lake Teletskoye were used to predict the function of geochemical response to climate change in plainland Altai and to reconstruct the trends of annual (winter) air temperatures and atmospheric precipitation for the past 500 years

  14. Towards high resolution polarisation analysis using double polarisation and ellipsoidal analysers

    CERN Document Server

    Martin-Y-Marero, D

    2002-01-01

    Classical polarisation analysis methods lack the combination of high resolution and high count rate necessary to cope with the demand of modern condensed-matter experiments. In this work, we present a method to achieve high resolution polarisation analysis based on a double polarisation system. Coupling this method with an ellipsoidal wavelength analyser, a high count rate can be achieved whilst delivering a resolution of around 10 mu eV. This method is ideally suited to pulsed sources, although it can be adapted to continuous sources as well. (orig.)

  15. Highly fluorescent benzofuran derivatives of the GFP chromophore

    DEFF Research Database (Denmark)

    Christensen, Mikkel Andreas; Jennum, Karsten Stein; Abrahamsen, Peter Bæch

    2012-01-01

    Intramolecular cyclization reactions of Green Fluorescent Protein chromophores (GFPc) containing an arylethynyl ortho-substituent at the phenol ring provide new aryl-substituted benzofuran derivatives of the GFPc. Some of these heteroaromatic compounds exhibit significantly enhanced fluorescence...

  16. Smart phone based bacterial detection using bio functionalized fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Rajendran, Vinoth Kumar; Bakthavathsalam, Padmavathy; Ali, Baquir Mohammed Jaffar

    2014-01-01

    We are describing immunochromatographic test strips with smart phone-based fluorescence readout. They are intended for use in the detection of the foodborne bacterial pathogens Salmonella spp. and Escherichia coli O157. Silica nanoparticles (SiNPs) were doped with FITC and Ru(bpy), conjugated to the respective antibodies, and then used in a conventional lateral flow immunoassay (LFIA). Fluorescence was recorded by inserting the nitrocellulose strip into a smart phone-based fluorimeter consisting of a light weight (40 g) optical module containing an LED light source, a fluorescence filter set and a lens attached to the integrated camera of the cell phone in order to acquire high-resolution fluorescence images. The images were analysed by exploiting the quick image processing application of the cell phone and enable the detection of pathogens within few minutes. This LFIA is capable of detecting pathogens in concentrations as low as 10 5 cfu mL −1 directly from test samples without pre-enrichment. The detection is one order of magnitude better compared to gold nanoparticle-based LFIAs under similar condition. The successful combination of fluorescent nanoparticle-based pathogen detection by LFIAs with a smart phone-based detection platform has resulted in a portable device with improved diagnosis features and having potential application in diagnostics and environmental monitoring. (author)

  17. Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing

    Directory of Open Access Journals (Sweden)

    Lank Simon M

    2012-08-01

    Full Text Available Abstract Background High-resolution HLA genotyping is a critical diagnostic and research assay. Current methods rarely achieve unambiguous high-resolution typing without making population-specific frequency inferences due to a lack of locus coverage and difficulty in exon-phase matching. Achieving high-resolution typing is also becoming more challenging with traditional methods as the database of known HLA alleles increases. Results We designed a cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci. We present a novel Galaxy server-based analysis workflow for determining genotype. During assay validation, we performed two GS Junior sequencing runs to determine the accuracy of the HLA class I amplicons and DRB amplicon at different levels of multiplexing. When 116 amplicons were multiplexed, we unambiguously resolved 99%of class I alleles to four- or six-digit resolution, as well as 100% unambiguous DRB calls. The second experiment, with 271 multiplexed amplicons, missed some alleles, but generated high-resolution, concordant typing for 93% of class I alleles, and 96% for DRB1 alleles. In a third, preliminary experiment we attempted to sequence novel amplicons for other class II loci with mixed success. Conclusions The presented assay is higher-throughput and higher-resolution than existing HLA genotyping methods, and suitable for allele discovery or large cohort sampling. The validated class I and DRB primers successfully generated unambiguously high-resolution genotypes, while further work is needed to validate additional class II genotyping amplicons.

  18. Transistor reset preamplifier for high-rate high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Landis, D.A.; Cork, C.P.; Madden, N.W.; Goulding, F.S.

    1981-10-01

    Pulsed transistor reset of high resolution charge sensitive preamplifiers used in cooled semiconductor spectrometers can sometimes have an advantage over pulsed light reset systems. Several versions of transistor reset spectrometers using both silicon and germanium detectors have been built. This paper discusses the advantages of the transistor reset system and illustrates several configurations of the packages used for the FET and reset transistor. It also describes the preamplifer circuit and shows the performance of the spectrometer at high rates

  19. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  20. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  1. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  2. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  3. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  4. Reusable Xerogel Containing Quantum Dots with High Fluorescence Retention

    Directory of Open Access Journals (Sweden)

    Xiang-Yong Liang

    2018-03-01

    Full Text Available Although various analytical methods have been established based on quantum dots (QDs, most were conducted in solution, which is inadequate for storage/transportation and rapid analysis. Moreover, the potential environmental problems caused by abandoned QDs cannot be ignored. In this paper, a reusable xerogel containing CdTe with strong emission is established by introducing host–guest interactions between QDs and polymer matrix. This xerogel shows high QDs loading capacity without decrease or redshift in fluorescence (the maximum of loading is 50 wt % of the final xerogel, which benefits from the steric hindrance of β-cyclodextrin (βCD molecules. Host–guest interactions immobilize QDs firmly, resulting in the excellent fluorescence retention of the xerogel. The good detecting performance and reusability mean this xerogel could be employed as a versatile analysis platform (for quantitative and qualitative analyses. In addition, the xerogel can be self-healed by the aid of water.

  5. Fast optically sectioned fluorescence HiLo endomicroscopy

    Science.gov (United States)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  6. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    Science.gov (United States)

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  7. The multi-resolution capability of Tchebichef moments and its applications to the analysis of fluorescence excitation-emission spectra

    Science.gov (United States)

    Li, Bao Qiong; Wang, Xue; Li Xu, Min; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2018-01-01

    Fluorescence spectroscopy with an excitation-emission matrix (EEM) is a fast and inexpensive technique and has been applied to the detection of a very wide range of analytes. However, serious scattering and overlapping signals hinder the applications of EEM spectra. In this contribution, the multi-resolution capability of Tchebichef moments was investigated in depth and applied to the analysis of two EEM data sets (data set 1 consisted of valine-tyrosine-valine, tryptophan-glycine and phenylalanine, and data set 2 included vitamin B1, vitamin B2 and vitamin B6) for the first time. By means of the Tchebichef moments with different orders, the different information in the EEM spectra can be represented. It is owing to this multi-resolution capability that the overlapping problem was solved, and the information of chemicals and scatterings were separated. The obtained results demonstrated that the Tchebichef moment method is very effective, which provides a promising tool for the analysis of EEM spectra. It is expected that the applications of Tchebichef moment method could be developed and extended in complex systems such as biological fluids, food, environment and others to deal with the practical problems (overlapped peaks, unknown interferences, baseline drifts, and so on) with other spectra.

  8. Development of 2D laser-induced fluorescence (LIF) system in high-density helicon plasma

    International Nuclear Information System (INIS)

    Teshigahara, Naoto; Shinohara, Shunjiro; Kuwahara, Daisuke; Watanabe, Masaki; Yamagata, Yukihiko

    2014-01-01

    Lifetimes of most electric propulsion devices are limited owing to electrode erosion and contamination by plasmas. To overcome this problem, a Helicon Electrodeless Advanced Thruster (HEAT) was proposed by our research team. This scheme employs a high-density (∼10 13 cm -3 ) helicon plasma accelerated by the Lorentz force, which is produced by various acceleration methods. For feasibility of this method, a Laser-Induced Fluorescence (LIF) system was developed. The LIF is a powerful tool for plasma diagnostics because it is a non-invasive method that allows high spatial resolution. Using the LIF, it is possible to deduce velocity distribution functions of different particles (ions, atoms, and molecules). In this paper, we report the details of our novel 2D LIF system as well as some preliminary experimental results. Argon ion velocity distributions at different axial and radial locations were obtained using the novel 2D system. Ion velocity was greatest (∼ 2.8 km/s) at z = -24 cm among all the points measured along the z-axis. Velocity values were approximately 2.7 and 3.2 km/s for radial positions of r = 0 and 3 cm, respectively. Ion temperature values were approximately 0.56 and 0.61 eV at r = 0 and 3 cm, respectively. (author)

  9. Simulation of Far-Field Superresolution Fluorescence Imaging with Two-Color One-Photon Excitation of Reversible Photoactivatable Protein

    International Nuclear Information System (INIS)

    Wang Chen; Qiao Ling-Ling; Mao Zheng-Le

    2011-01-01

    We propose to achieve far-field super-resolution imaging by using offset two-color one-photon (2C1P) excitation of reversible photoactivatable fluorescence proteins. Due to the distinctive photoswitching performance of the proteins, such as dronpa, the fluorescence emission will only come from the overlapped region of activation beam and excitation beam. The analysis solution of rate equation shows that the resolution of offset 2C1P microscope is 'engineered' by laser power of excitation and activation beams and the power ratio between them. Superior lateral and transverse resolution is theoretically demonstrated compared with conventional fluorescence scanning microscopy. (fundamental areas of phenomenology(including applications))

  10. Development of a high-resolution cavity-beam position monitor

    Directory of Open Access Journals (Sweden)

    Yoichi Inoue

    2008-06-01

    Full Text Available We have developed a high-resolution cavity-beam position monitor (BPM to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ∼nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5  μm.

  11. Development of a high-resolution cavity-beam position monitor

    Science.gov (United States)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  12. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    Science.gov (United States)

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  13. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  14. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    Science.gov (United States)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  15. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.

    Science.gov (United States)

    Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao

    2017-09-15

    In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R 2 =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of a new light collection and detection system optimized for ion beam induced fluorescence microscopy

    International Nuclear Information System (INIS)

    Vanga, Sudheer Kumar; Mi, Zhaohong; Koh, Long Cheng; Tao, Ye; Bettiol, Andrew A.; Watt, Frank

    2015-01-01

    Ion beam induced fluorescence microscopy is a new imaging technique which has the potential to achieve sub-50 nm spatial resolution fluorescence images. Currently the resolution of the technique has been limited to around 150 nm mainly because of inefficient collection and detection of emitted photons from the sample. To overcome this limitation, a new light collection system based on a custom made parabolic mirror is employed to enhance the fluorescence collection. The custom made mirror is designed so as to obtain both structural (scanning transmission ion microscopy) and ion beam induced fluorescence imaging simultaneously. The design and characterization of the parabolic mirror is discussed in detail

  17. A new method for high-resolution characterization of hydraulic conductivity

    Science.gov (United States)

    Liu, Gaisheng; Butler, J.J.; Bohling, Geoffrey C.; Reboulet, Ed; Knobbe, Steve; Hyndman, D.W.

    2009-01-01

    A new probe has been developed for high-resolution characterization of hydraulic conductivity (K) in shallow unconsolidated formations. The probe was recently applied at the Macrodispersion Experiment (MADE) site in Mississippi where K was rapidly characterized at a resolution as fine as 0.015 m, which has not previously been possible. Eleven profiles were obtained with K varying up to 7 orders of magnitude in individual profiles. Currently, high-resolution (0.015-m) profiling has an upper K limit of 10 m/d; lower-resolution (???0.4-m) mode is used in more permeable zones pending modifications. The probe presents a new means to help address unresolved issues of solute transport in heterogeneous systems. Copyright 2009 by the American Geophysical Union.

  18. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  19. Experimental design and quality assurance: in situ fluorescence instrumentation

    Science.gov (United States)

    Conmy, Robyn N.; Del Castillo, Carlos E.; Downing, Bryan D.; Chen, Robert F.

    2014-01-01

    Both instrument design and capabilities of fluorescence spectroscopy have greatly advanced over the last several decades. Advancements include solid-state excitation sources, integration of fiber optic technology, highly sensitive multichannel detectors, rapid-scan monochromators, sensitive spectral correction techniques, and improve data manipulation software (Christian et al., 1981, Lochmuller and Saavedra, 1986; Cabniss and Shuman, 1987; Lakowicz, 2006; Hudson et al., 2007). The cumulative effect of these improvements have pushed the limits and expanded the application of fluorescence techniques to numerous scientific research fields. One of the more powerful advancements is the ability to obtain in situ fluorescence measurements of natural waters (Moore, 1994). The development of submersible fluorescence instruments has been made possible by component miniaturization and power reduction including advances in light sources technologies (light-emitting diodes, xenon lamps, ultraviolet [UV] lasers) and the compatible integration of new optical instruments with various sampling platforms (Twardowski et at., 2005 and references therein). The development of robust field sensors skirt the need for cumbersome and or time-consuming filtration techniques, the potential artifacts associated with sample storage, and coarse sampling designs by increasing spatiotemporal resolution (Chen, 1999; Robinson and Glenn, 1999). The ability to obtain rapid, high-quality, highly sensitive measurements over steep gradients has revolutionized investigations of dissolved organic matter (DOM) optical properties, thereby enabling researchers to address novel biogeochemical questions regarding colored or chromophoric DOM (CDOM). This chapter is dedicated to the origin, design, calibration, and use of in situ field fluorometers. It will serve as a review of considerations to be accounted for during the operation of fluorescence field sensors and call attention to areas of concern when making

  20. Evaluation of a High-Resolution Regional Reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.