WorldWideScience

Sample records for high resolution beam

  1. Tests of a High Resolution Beam Profile Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.

    2004-10-28

    High energy linear colliders require very small beams at the interaction point to produce high luminosities, and these beams must be measured and monitored. We have developed and tested a technique where the profile can be obtained from an extension of pinhole camera optics using thick, single sided collimators and slits. Very high resolutions (a few nm) should be possible. Gamma beams can be obtained from bremsstrahlung, Compton or beamstrahlung radiation. We describe tests of the technique using bremsstrahlung from an 800 MeV electron beam at Bates/MIT, Compton scattered photons from 47 GeV Final Focus Test Beam (FFTB) at SLAC, and other applications, such as linear colliders.

  2. Comparison of High Resolution Negative Electron Beam Resists

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Schøler, Mikkel; Shi, Peixiong

    2006-01-01

    Four high resolution negative electron beam resists are compared: TEBN-1 from Tokuyama Corp. Japan, ma-N 2401XP and mr-L 6000AXP from microresist technology GmbH Germany, and SU-8 2000 series from MicroChem Corp., USA. Narrow linewidth high density patterns are defined by 100 kV electron beam...

  3. A high resolution hand-held focused beam profiler

    Science.gov (United States)

    Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.

    2017-05-01

    The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.

  4. Construction of high resolution beam line for SHARAQ spectrometer at RIKEN RI Beam Factory

    Science.gov (United States)

    Yanagisawa, Yoshiyuki; Kubo, Toshiyuki; Kusaka, Kensuke; Ohtake, Masao; Yoshida, Koichi; Ohnishi, Tetsuya; Sasamoto, Yoshiko; Saito, Akito; Uesaka, Tomohiro; Shimoura, Susumu; Kawabata, Takahiro; Noji, Shumpei; Sakai, Hideyuki

    2009-10-01

    A high resolution beam line [1] has been constructed for the SHARAQ spectrometer [2] at RIKEN RI Beam Factory (RIBF), in order to achieve dispersion matching that allows high resolution measurement at the focal plane of the spectrometer. This beam line is formed by the existing BigRIPS separator [3] at RIBF and a newly constructed beam line that diverges from BigRIPS and leads to the target position of SHARAQ. The ion optics is so designed that it can be operated in the dispersion matching mode. The new part of the beam line consists of two 30-degree bend dipoles, three quadrupole singlets and three superconducting quadrupole triplets. Recently the beam line has been successfully commissioned together with the SHARAQ spectrometer. Overview of the beam line will be reported. [1] T. Kawabata et al.: Nucl. Instr. and Meth. B 266 (2008) 4201. [2] T. Uesaka et al.: Nucl. Instr. and Meth. B 266 (2008) 4218. [3] T. Kubo: Nucl. Instr. and Meth. B 204 (2003) 97.

  5. High resolution beam line for the Grand Raiden spectrometer

    CERN Document Server

    Wakasa, T; Fujita, Y; Berg, G P A; Fujimura, H; Fujita, H; Itoh, M; Kamiya, J; Kawabata, T; Nagayama, K; Noro, T; Sakaguchi, H; Shimbara, Y; Takeda, H; Tamura, K; Ueno, H; Uchida, M; Uraki, M; Yosoi, M

    2002-01-01

    We have designed and constructed a new beam line which can accomplish both lateral and angular dispersion matching with the Grand Raiden spectrometer. In dispersive mode, lateral and angular dispersions of the beam line are b sub 1 sub 6 =37.1 m and b sub 2 sub 6 =-20.0 rad, respectively, to satisfy matching conditions for Grand Raiden. In achromatic mode, the beam line satisfies the double achromatic condition of b sub 1 sub 6 =b sub 2 sub 6 =0. The magnifications of the beam line are (M sub x ,M sub y)=(-0.98,0.89) and (-1.00,-0.99) for dispersive and achromatic modes, respectively. In the commissioning experiments, we have succeeded to separate the first excited 2 sup + state of sup 1 sup 6 sup 8 Er with E sub x =79.8 keV clearly from the ground state in the (p,p') reaction. We achieved energy resolutions of DELTA E=13.0+-0.3 and 16.7+-0.3 keV in full width at half-maximum for 295 and 392 MeV protons, respectively. These energy resolutions agree with the resolving power of Grand Raiden for an object size o...

  6. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm

  7. High Resolution Beam Modeling and Optimization with IMPACT

    Science.gov (United States)

    Qiang, Ji

    2017-01-01

    The LCLS-II, a new BES x-ray FEL facility at SLAC, is being designed using the IMPACT simulation code which includes a full model for the electron beam transport with 3-D space charge effects as well as IntraBeam Scattering and Coherent Synchrotron Radiation. A 22 parameter optimization is being used to find injector and linac configurations that achieve the design specifications. The detailed physics models in IMPACT are being benchmarked against experiments at LCLS. This work was done in collaboration with SLAC LCLS-II design team and supported by the DOE under contract No. DE-AC02-05CH11231.

  8. Laser Beam Filtration for High Spatial Resolution MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Zavalin, Andre; Yang, Junhai; Caprioli, Richard

    2013-07-01

    We describe an easy and inexpensive way to provide a highly defined Gaussian shaped laser spot on target of 5 μm diameter for imaging mass spectrometry using a commercial MALDI TOF instrument that is designed to produce a 20 μm diameter laser beam on target at its lowest setting. A 25 μm pinhole filter on a swivel arm was installed in the laser beam optics outside the vacuum ion source chamber so it is easily flipped into or out of the beam as desired by the operator. The resulting ion images at 5 μm spatial resolution are sharp since the satellite secondary laser beam maxima have been removed by the filter. Ion images are shown to demonstrate the performance and are compared with the method of oversampling to achieve higher spatial resolution when only a larger laser beam spot on target is available.

  9. Longitudinal profile diagnostic scheme with subfemtosecond resolution for high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    G. Andonian

    2011-07-01

    Full Text Available High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond with exceptional temporal resolution (hundreds of attoseconds and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  10. Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam

    CERN Document Server

    Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

    2013-01-01

    The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

  11. Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging.

    Science.gov (United States)

    Sugiro, Francisca R; Li, Danhong; MacDonald, C A

    2004-12-01

    Monochromatic imaging can provide better contrast and resolution than conventional broadband radiography. In broadband systems, low energy photons do not contribute to the image, but are merely absorbed, while high energy photons produce scattering that degrades the image. By tuning to the optimal energy, one can eliminate undesirable lower and higher energies. Monochromatization is achieved by diffraction from a single crystal. A crystal oriented to diffract at a particular energy, in this case the characteristic line energy, diffracts only those photons within a narrow range of angles. The resultant beam from a divergent source is nearly parallel, but not very intense. To increase the intensity, collimation was performed with polycapillary x-ray optics, which can collect radiation from a divergent source and redirect it into a quasi parallel beam. Contrast and resolution measurements were performed with diffracting crystals with both high and low angular acceptance. Testing was first done at 8 keV with an intense copper rotating anode x-ray source, then 17.5 keV measurements were made with a low power molybdenum source. At 8 keV, subject contrast was a factor of five higher than for the polychromatic case. At 17.5 keV, monochromatic contrast was two times greater than the conventional polychromatic contrast. The subject contrasts measured at both energies were in good agreement with theory. An additional factor of two increase in contrast, for a total gain of four, is expected at 17.5 keV from the removal of scatter. Scatter might be simply removed using an air gap, which does not degrade resolution with a parallel beam.

  12. Implementation of a Gaussian Beam Laser and Aspheric Optics for High Spatial Resolution MALDI Imaging MS

    Science.gov (United States)

    Zavalin, Andre; Yang, Junhai; Haase, Andreas; Holle, Armin; Caprioli, Richard

    2014-06-01

    We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.

  13. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    Science.gov (United States)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  14. High Resolution Beam Orbit Measurement Electronics based on Compensated Diode Detectors

    CERN Document Server

    Gasior, M

    2010-01-01

    A high resolution beam position monitor (BPM) electronics based on diode peak detectors has been developed at CERN. The circuit processes the BPM electrode signals independently, converting the short beam pulses into slowly varying signals which can be digitized with high resolution ADCs operating in the kHz range or even measured with a DC voltmeter. For signals with peak amplitudes larger than some hundred mV the non-linear forward voltage of the diodes is compensated by a simple network using signals from two peak detectors, one with a single and the second with two diodes in series. This contribution presents results obtained with the first prototype in the laboratory and with the CERN-SPS beam. Ongoing development and possible future applications of the technique are also discussed.

  15. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  16. Development of a high-resolution cavity-beam position monitor

    Directory of Open Access Journals (Sweden)

    Yoichi Inoue

    2008-06-01

    Full Text Available We have developed a high-resolution cavity-beam position monitor (BPM to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ∼nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5  μm.

  17. High resolution acoustic measurement system and beam pattern reconstruction method for bat echolocation emissions.

    Science.gov (United States)

    Gaudette, Jason E; Kloepper, Laura N; Warnecke, Michaela; Simmons, James A

    2014-01-01

    Measurements of the transmit beam patterns emitted by echolocating bats have previously been limited to cross-sectional planes or averaged over multiple signals using sparse microphone arrays. To date, no high-resolution measurements of individual bat transmit beams have been reported in the literature. Recent studies indicate that bats may change the time-frequency structure of their calls depending on the task, and suggest that their beam patterns are more dynamic than previously thought. To investigate beam pattern dynamics in a variety of bat species, a high-density reconfigurable microphone array was designed and constructed using low-cost ultrasonic microphones and custom electronic circuitry. The planar array is 1.83 m wide by 1.42 m tall with microphones positioned on a 2.54 cm square grid. The system can capture up to 228 channels simultaneously at a 500 kHz sampling rate. Beam patterns are reconstructed in azimuth, elevation, and frequency for visualization and further analysis. Validation of the array measurement system and post-processing functions is shown by reconstructing the beam pattern of a transducer with a fixed circular aperture and comparing the result with a theoretical model. To demonstrate the system in use, transmit beam patterns of the big brown bat, Eptesicus fuscus, are shown.

  18. Design and performance of a high resolution, low latency stripline beam position monitor system

    Directory of Open Access Journals (Sweden)

    R. J. Apsimon

    2015-03-01

    Full Text Available A high-resolution, low-latency beam position monitor (BPM system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6±0.1  ns. A single-pass beam position resolution of 291±10  nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  19. HIGH-ENERGY X-RAY PINHOLE CAMERA FOR HIGH-RESOLUTION ELECTRON BEAM SIZE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Morgan, J.; Lee, S.H.; Shang, H.

    2017-03-25

    The Advanced Photon Source (APS) is developing a multi-bend achromat (MBA) lattice based storage ring as the next major upgrade, featuring a 20-fold reduction in emittance. Combining the reduction of beta functions, the electron beam sizes at bend magnet sources may be reduced to reach 5 – 10 µm for 10% vertical coupling. The x-ray pinhole camera currently used for beam size monitoring will not be adequate for the new task. By increasing the operating photon energy to 120 – 200 keV, the pinhole camera’s resolution is expected to reach below 4 µm. The peak height of the pinhole image will be used to monitor relative changes of the beam sizes and enable the feedback control of the emittance. We present the simulation and the design of a beam size monitor for the APS storage ring.

  20. High resolution study of the inclusive production of massive muon pairs by intense pion beams

    CERN Multimedia

    2002-01-01

    This experiment measures with high resolution and large acceptance the inclusive production of massive muon pairs with the intense pion beam (up to $10^{10} \\pi/$pulse) in the experimental hall ECN3. The experiment explores extended M$^{2}$/s, x and transverse momentum ranges. The study of the departures of the lepton-pair production cross- section from scaling constitutes a good test of QCD ideas; in the framework of the 'Drell-Yan' process, the experiment allows a detailed study of the pion parton distribution functions. The detector consists of a beam dump, a pulsed toroidal a magnet, MWPC's and scintillator hodoscopes. Its $\\sim 2$% mass resolution at 10 GeV is adequate for the substraction of resonances in the high-mass region.

  1. High resolution EUV spectroscopy of xenon ions with a compact electron beam ion trap

    Science.gov (United States)

    Ali, Safdar; Nakamura, Nobuyuki

    2017-09-01

    We performed high resolution extreme ultraviolet (EUV) spectroscopy measurements of highly charged xenon ions with a compact electron beam ion trap. The spectra were recorded with a flat-field grazing incidence spectrometer while varying the electron beam energy between 200 and 890 eV. We measured the wavelengths for several lines of Rh-like Xe9+ - Cd-like Xe6+ and Cu-like Xe25+- Se-like Xe20+ in the range of 150-200 Å with an uncertainty of 0.05 Å. Previously, most of these lines have been reported from EBITs with a wavelength uncertainty of 0.2 Å. Additionally, based on the electron beam energy dependence of the observed spectra we tentatively identified three new lines, which were reported as unidentified lines in the previous studies.

  2. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  3. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.

    Science.gov (United States)

    Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D

    2017-01-01

    Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

  4. Efficient creation of electron vortex beams for high resolution STEM imaging.

    Science.gov (United States)

    Béché, A; Juchtmans, R; Verbeeck, J

    2017-07-01

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    Science.gov (United States)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  6. Focused electron beam induced deposition of copper with high resolution and purity from aqueous solutions

    Science.gov (United States)

    Esfandiarpour, Samaneh; Boehme, Lindsay; Hastings, J. Todd

    2017-03-01

    Electron-beam induced deposition of high-purity copper nanostructures is desirable for nanoscale rapid prototyping, interconnection of chemically synthesized structures, and integrated circuit editing. However, metalorganic, gas-phase precursors for copper introduce high levels of carbon contamination. Here we demonstrate electron beam induced deposition of high-purity copper nanostructures from aqueous solutions of copper sulfate. The addition of sulfuric acid eliminates oxygen contamination from the deposit and produces a deposit with ˜95 at% copper. The addition of sodium dodecyl sulfate (SDS), Triton X-100, or polyethylene glycole (PEG) improves pattern resolution and controls deposit morphology but leads to slightly reduced purity. High resolution nested lines with a 100 nm pitch are obtained from CuSO4-H2SO4-SDS-H2O. Higher aspect ratios (˜1:1) with reduced line edge roughness and unintended deposition are obtained from CuSO4-H2SO4-PEG-H2O. Evidence for radiation-chemical deposition mechanisms was observed, including deposition efficiency as high as 1.4 primary electrons/Cu atom.

  7. Focused electron beam induced deposition of copper with high resolution and purity from aqueous solutions.

    Science.gov (United States)

    Esfandiarpour, Samaneh; Boehme, Lindsay; Hastings, J Todd

    2017-03-24

    Electron-beam induced deposition of high-purity copper nanostructures is desirable for nanoscale rapid prototyping, interconnection of chemically synthesized structures, and integrated circuit editing. However, metalorganic, gas-phase precursors for copper introduce high levels of carbon contamination. Here we demonstrate electron beam induced deposition of high-purity copper nanostructures from aqueous solutions of copper sulfate. The addition of sulfuric acid eliminates oxygen contamination from the deposit and produces a deposit with ∼95 at% copper. The addition of sodium dodecyl sulfate (SDS), Triton X-100, or polyethylene glycole (PEG) improves pattern resolution and controls deposit morphology but leads to slightly reduced purity. High resolution nested lines with a 100 nm pitch are obtained from CuSO4-H2SO4-SDS-H2O. Higher aspect ratios (∼1:1) with reduced line edge roughness and unintended deposition are obtained from CuSO4-H2SO4-PEG-H2O. Evidence for radiation-chemical deposition mechanisms was observed, including deposition efficiency as high as 1.4 primary electrons/Cu atom.

  8. High resolution laser beam induced current focusing for photoactive surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Lorenzo, C. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain)]. E-mail: concha.fernandez@uca.es; Poce-Fatou, J.A. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain); Alcantara, R. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain); Navas, J. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain); Martin, J. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain)

    2006-12-15

    The micro-characterization of several surface properties of the solar cells can be accomplished using high-resolution laser beam induced current images. For obtaining these images, a very precise laser beam focusing on the photoactive surface is required. For this purpose, a methodology for obtaining the best focalization associated to the maximum of a peak curve has been developed. In this paper, a data set, obtained from the inner photoconversion properties of the system, has been evaluated with three different numerical analysis techniques: (a) derivative (b) length and (c) Fourier Transform, in order to get the finest possible peak distribution. Then, an amount of 13 analytical peak curves using the Levenberg Marquardt algorithm to find the best curve that adjusts the data distribution have been analyzed.

  9. Helium beam shadowing for high spatial resolution patterning of antibodies on microstructured diagnostic surfaces

    Science.gov (United States)

    Cacao, Eliedonna; Sherlock, Tim; Nasrullah, Azeem; Kemper, Steven; Knoop, Jennifer; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E; Atmar, Robert L; Willson, Richard C

    2013-01-01

    Abstract We have developed a technique for the high-resolution, self-aligning, and high-throughput patterning of antibody binding functionality on surfaces by selectively changing the reactivity of protein-coated surfaces in specific regions of a workpiece with a beam of energetic helium particles. The exposed areas are passivated with bovine serum albumin (BSA) and no longer bind the antigen. We demonstrate that patterns can be formed (1) by using a stencil mask with etched openings that forms a patterned exposure, or (2) by using angled exposure to cast shadows of existing raised microstructures on the surface to form self-aligned patterns. We demonstrate the efficacy of this process through the patterning of anti-lysozyme, anti-Norwalk virus, and anti-Escherichia coli antibodies and the subsequent detection of each of their targets by the enzyme-mediated formation of colored or silver deposits, and also by binding of gold nanoparticles. The process allows for the patterning of three-dimensional structures by inclining the sample relative to the beam so that the shadowed regions remain unaltered. We demonstrate that the resolution of the patterning process is of the order of hundreds of nanometers, and that the approach is well-suited for high throughput patterning. PMID:24706125

  10. Creating High-Resolution Multiscale Maps of Human Tissue Using Multi-beam SEM.

    Directory of Open Access Journals (Sweden)

    André F Pereira

    2016-11-01

    Full Text Available Multi-beam scanning electron microscopy (mSEM enables high-throughput, nano-resolution imaging of macroscopic tissue samples, providing an unprecedented means for structure-function characterization of biological tissues and their cellular inhabitants, seamlessly across multiple length scales. Here we describe computational methods to reconstruct and navigate a multitude of high-resolution mSEM images of the human hip. We calculated cross-correlation shift vectors between overlapping images and used a mass-spring-damper model for optimal global registration. We utilized the Google Maps API to create an interactive map and provide open access to our reconstructed mSEM datasets to both the public and scientific communities via our website www.mechbio.org. The nano- to macro-scale map reveals the tissue's biological and material constituents. Living inhabitants of the hip bone (e.g. osteocytes are visible in their local extracellular matrix milieu (comprising collagen and mineral and embedded in bone's structural tissue architecture, i.e. the osteonal structures in which layers of mineralized tissue are organized in lamellae around a central blood vessel. Multi-beam SEM and our presented methodology enable an unprecedented, comprehensive understanding of health and disease from the molecular to organ length scale.

  11. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector

    Science.gov (United States)

    Jain, A.; Takemoto, H.; Silver, M. D.; Nagesh, S. V. S.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm x 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.

  12. Development of high resolution linear-cut beam position monitor for heavy-ion synchrotron of KHIMA project

    Science.gov (United States)

    Hwang, Ji-Gwang; Yang, Tae-Keun; Forck, Peter; Noh, Seon Yeong; Hahn, Garam; Choi, Minkyoo

    2017-04-01

    A beam position monitor with high precision and resolution is required to control the beam trajectory for matching to the injection orbit and acceleration in a heavy-ion synchrotron. It will be also used for measuring the beta function, tune, and chromaticity. Since the bunch length at heavy ion synchrotron is relatively long, a few meters, a boxlike device with plates of typically 20 cm length is used to enhance the signal strength and to get a precise linear dependence with respect to the beam displacement. Especially, the linear-cut beam position monitor is adopted to satisfy the position resolution of 100 μm and accuracy of 200 μm for a nominal beam intensity in the KHIMA synchrotron of ∼ 7 ×108 particles for the carbon beams and ∼ 2 ×1010 for the proton beams. In this paper, we show the electromagnetic design of the electrode and surroundings to satisfy the resolution of 100 μm, the criteria for mechanical aspect to satisfy the position accuracy of 200 μm, the measurement results by using wire test-bench, design and measurement of a high input impedance pre-amplifier, and the beam-test results with long (∼1.6 μs) electron beam in Pohang accelerator laboratory (PAL).

  13. High resolution 100 kV electron beam lithography in SU-8

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Jakobsen, S.; Schmidt, M.S.

    2006-01-01

    High resolution 100 kV electron beam lithography in thin layers of the negative resist SU-8 is demonstrated. Sub-30 nm lines with a pitch down to 300 nm are written in 100 nm thick SU-8. Two reactive ion etch processes are developed in order to transfer the SU-8 structures into a silicon substrate......, a Soft O-2-Plasma process to remove SU-8 residues on the silicon surface after development and a highly anisotropic SF6/O-2/CHF3 based process to transfer the pattern into a silicon substrate, with selectivity between silicon and SU-8 of approximately 2. 30 nm lines patterned in SU-8 are successfully...

  14. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  15. A High-Resolution Multi-Slit Phase Space Measurement Technique for Low-Emittance Beams

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J. C.T. [Fermilab; Piot, P. [Northern Illinois U.

    2012-07-25

    Precise measurement of transverse phase space of a high-brightness electron beamis of fundamental importance in modern accelerators and free-electron lasers. Often, the transverse phase space of a high-brightness, space-charge-dominated electron beam is measured using a multi-slit method. In this method, a transverse mask (slit/pepperpot) samples the beaminto a set of beamlets, which are then analyzed on to a screen downstream. The resolution in this method is limited by the type of screen used which is typically around 20 mum for a high-sensitivity Yttrium Aluminum Garnet screen. Accurate measurement of sub-micron transverse emittance using this method would require a long drift space between the multi-slit mask and observation screen. In this paper, we explore a variation of the technique that incorporates quadrupole magnets between the multi-slit mask and the screen. It is shown that this arrangement can improve the resolution of the transverse-phase-space measurement with in a short footprint.

  16. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Ruhrig, M.; Rührig, M.; Porthun, S.; Porthun, S.; Lodder, J.C.; Mc vitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  17. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    Science.gov (United States)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of MBIR where

  18. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  19. Two-beam-current method for e-beam writing gray-scale masks and its application to high-resolution microstructures.

    Science.gov (United States)

    Zhou, Zhou; Lee, Sing H

    2008-06-10

    A two-beam-current method is introduced for e-beam writing in the fabrication of gray-scale masks. Compared with the simpler single-current method, the two-beam-current method offers two important advantages: (a) it can achieve a much larger dynamic range for e-beam exposure; (b) the writing time for a gray-scale mask can be reduced when a large pattern is to be written. Here, the new method is first described in detail and its application to the fabrication of our new gray-scale mask is demonstrated. Then, the improved gray-scale masks were employed to fabricate large dynamic range, high-resolution micro-optical elements of less than a couple of micrometers depth, using deep ultraviolet lithography at 248 nm wavelength and an inductively coupled plasma reactive ion etching system.

  20. High-resolution etching of MoSi using electron beam patterned chemically amplified resist

    Science.gov (United States)

    Mueller, Mark; Komarov, Serguei; Baik, Ki-Ho

    2003-08-01

    High resolution etching of MoSi for photomask processing places new requirements on etching processes. As resist features are sized to 100 nm and below, it is first necessary to duplicate these features first into a chrome over-layer. After resist is stripped, this chrome over-layer is used for etching MoSi. Both chrome and MoSi etched profiles require near-vertical sidewalls, good CD (critical dimension) uniformity, good linearity, and CD mean-to-target (MTT). Additional requirements of etched MoSi include minimal roughness on exposed quartz, selectivity to chrome and quartz, phase angle target and phase angle uniformity, etch depth global uniformity, and etch depth uniformity as a function of feature size. An ETEC integrated process is used for the application of resist, patterning, and all subsequent processing. Chemically amplified resist is patterned with the 50 kV MEBES Quadra or MEBES eXara raster scan electron beam writer, allowing for patterning of small features with vertical resist profiles. Plates are etched in a Tetra photomask etch system for projecting resist images into chrome and MoSi. Etch processes have been developed specifically for etching small features in order to meet the requirements of 65 nm node lithography. An optimized etch process window is capable of patterning MoSi features below 100 nm sizes with near-vertical sidewall, 1 um. Excellent CD uniformity and CD etch loading performance are demonstrated. Micro-profilometry is employed to measure the MoSi etch depths of features of varying sizes, and to quantify the effect of loading on MoSi etch depth. SEM micrographs illustrate sidewall profiles resulting from small feature etching.

  1. Three-rooted premolar analyzed by high-resolution and cone beam CT.

    Science.gov (United States)

    Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli

    2013-07-01

    The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.

  2. Metal-carbonyl organometallic polymers, PFpP, as resists for high-resolution positive and negative electron beam lithography.

    Science.gov (United States)

    Zhang, J; Cao, K; Wang, X S; Cui, B

    2015-12-25

    Metal-containing resists for electron beam lithography (EBL) are attracting attention owing to their high dry etching resistance and possibility for directly patterning metal-containing nanostructures. The newly developed organometallic metal carbonyl polymers, PFpP, can function as EBL resists with strong etching resistance. One significant feature of the PFpP resist is its high resolution. Line arrays with line-widths as narrow as 17 nm have been created. The resist can also be used in positive tone.

  3. Analyzer of high-load electron beams with resolution in two energy components, space and time

    Directory of Open Access Journals (Sweden)

    Alexander V. Arkhipov

    2015-03-01

    Full Text Available The new apparatus is developed for experimental determination of electron energy and spatial distributions in dense medium-energy long-pulsed magnetically confined beams – typically, 10 A/cm2, 60 keV, 100 µs, 0.1 T. To provide most detailed and unambiguous information, direct electrostatic cut-off method is used for electron energy analysis. In combination with variation of the magnetic field in the analysis area, this method allows to determine both (axial and transverse components of electron energy. Test experiments confirmed ∼1% energy resolution being predicted from calculations, accounting for electrode shapes, space-charge effects and non-adiabatic energy transfer effects in varied magnetic field. Space and time resolution of the apparatus are determined by the input aperture size (∼1 mm and cut-off electric field pulse-length (∼5–10 µs respectively.

  4. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  5. Argon ion beam polishing: a preparation technique for evaluating the interface of osseointegrated implants with high resolution.

    Science.gov (United States)

    Grüner, Daniel; Fäldt, Jenny; Jansson, Kjell; Shen, Zhijian

    2011-01-01

    The objective of this study was to assess the use of ion beam polishing for preparing cross sections suitable for high-resolution scanning electron microscope (SEM) investigation of dental implants with a brittle porous oxide layer and of bone/implant interfaces. Thirteen Nobel Biocare TiUnite implants were placed in minipigs. After 4 weeks, the implant and surrounding bone were removed en bloc and the implant was cut axially into two halves. The cross section was then polished with an argon ion beam. Additionally, ion beam-polished cross sections were prepared from four as-received implants. Ion beam-polished surfaces were studied with a field emission SEM (FE-SEM). With FE-SEM, up to 1 mm along the interface of ion beam-polished implant surfaces can be studied with a resolution of a few nanometers. Filled and unfilled pores of the porous TiUnite coating can be distinguished, providing information on pore accessibility. Implant-bone interfaces can be analyzed using backscattered electron images, where titanium, the oxide layer, mineralized extracellular matrix, and osteocyte lacunae/resin/soft tissue can easily be distinguished as a result of atomic number contrast and the sharp boundaries between the different materials. Filled and unfilled pores can be distinguished. Characterization of local chemistry is possible with energy dispersive X-ray spectrometry, and bone growth into small pores (FE-SEM complements the established methods for the characterization of interfaces and bridges the wide gap in accessible length scale and resolution between the observations of mechanically polished interfaces by optical or scanning electron microscopes and the observation of focused ion beam-milled sections in a transmission electron microscope.

  6. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  7. High-resolution electron-beam-induced-current study of the defect structure in GaN epilayers

    CERN Document Server

    Shmidt, N M; Usikov, A S; Yakimov, E B; Zavarin, E E

    2002-01-01

    Electron-beam-induced-current (EBIC) investigations of GaN structures grown by metal-organic chemical vapour deposition on (0001) sapphire substrates have been carried out. It is shown that the widths of the EBIC profiles for individual extended defects can be as small as about 100 nm. This width is observed to decrease with decreasing diffusion length and/or with increasing electron beam energy. The high spatial resolution is explained by the small diffusion length in the samples under study. The diffusion length is small even in structures with dislocation densities of about 10 sup 8 cm sup - sup 3 and carrier mobilities of about 600 cm sup 2 V sup - sup 1 s sup - sup 1 at 300 K and 1800 cm sup 2 V sup - sup 1 s sup - sup 1 at 125 K.

  8. High-resolution direct-write patterning using focused ion beams

    NARCIS (Netherlands)

    Ocola, L.E.; Rue, C.; Maas, D.J.

    2014-01-01

    Over the last few years, significant improvements in sources, columns, detectors, control software, and accessories have enabled a wealth of new focused ion beam applications. In addition, modeling has provided many insights into ion-sample interactions and the resultant effects on the sample. With

  9. A comparative study of high-resolution cone beam computed tomography and charge-coupled device sensors for detecting caries.

    Science.gov (United States)

    Young, S M; Lee, J T; Hodges, R J; Chang, T-L; Elashoff, D A; White, S C

    2009-10-01

    Conventional radiographic imaging of teeth underestimates the presence of caries. The objective of this study was to compare the efficacy of high-resolution cone beam CT (CBCT) images and conventional charge-coupled device (CCD) images for detecting proximal and occlusal caries. Non-restored, extracted human permanent premolar and molar teeth were mounted and then imaged with a 3DX Accuitomo and a CCD. We selected 92 occlusal and 100 proximal surfaces for raters to score. Of these, 36 and 25, respectively, had lesions extending into dentin. Using a five-step confidence scale, eight practising dentists evaluated the images for the presence of caries in dentin using both modalities. Actual presence and extent of caries was established with microCT imaging. For proximal surface lesions extending into dentin, the average sensitivity score using 3DX images (0.61) was almost twice that of CCD images (0.33) and the difference was significant. The specificity values for both systems were high and not significantly different from each other. For occlusal surfaces, raters detected significantly more lesions in the enamel or dentin when using the 3DX images than when using CCD images. However, the raters also had significantly lower average specificity scores for the 3DX images compared with the CCD images for lesions at both depths. Practising dentists were able to improve their detection of proximal-surface caries extending into the dentin, but not occlusal caries, using 3DX high-resolution cone beam CT images compared with CCD images.

  10. High-resolution full-parallax computer-generated holographic stereogram created by e-beam technology

    Science.gov (United States)

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2017-06-01

    A high-resolution computer-generated stereogram for forming full-parallax three-dimensional (3-D) images is proposed. A full-parallax 3-D image is formed from 825 two-dimensional (2-D) projections and can be observed in a wide angular range. The stereogram is a reflective diffractive optical element (DOE) that consists of 50×50 μm2 hogels, where each hogel corresponds to one pixel of the 2-D frames. A phase-type kinoform is computed in every hogel by solving a nonlinear inverse problem. The DOE relief is fabricated using electron-beam technology with pixel size of 0.2×0.2 μm2. The effectiveness of the technology developed is illustrated by photographs and a video of a real DOE under monochromatic light and under white light. The new high-resolution full-parallax stereograms can be used for protecting bank notes, documents, and ID cards against counterfeit.

  11. 3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models

    Science.gov (United States)

    Jackson, Amiee; Ray, Lawrence A.; Dangi, Shusil; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2017-03-01

    With increasing resolution in image acquisition, the project explores capabilities of printing toward faithfully reflecting detail and features depicted in medical images. To improve safety and efficiency of orthopedic surgery and spatial conceptualization in training and education, this project focused on generating virtual models of orthopedic anatomy from clinical quality computed tomography (CT) image datasets and manufacturing life-size physical models of the anatomy using 3D printing tools. Beginning with raw micro CT data, several image segmentation techniques including thresholding, edge recognition, and region-growing algorithms available in packages such as ITK-SNAP, MITK, or Mimics, were utilized to separate bone from surrounding soft tissue. After converting the resulting data to a standard 3D printing format, stereolithography (STL), the STL file was edited using Meshlab, Netfabb, and Meshmixer. The editing process was necessary to ensure a fully connected surface (no loose elements), positive volume with manifold geometry (geometry possible in the 3D physical world), and a single, closed shell. The resulting surface was then imported into a "slicing" software to scale and orient for printing on a Flashforge Creator Pro. In printing, relationships between orientation, print bed volume, model quality, material use and cost, and print time were considered. We generated anatomical models of the hand, elbow, knee, ankle, and foot from both low-dose high-resolution cone-beam CT images acquired using the soon to be released scanner developed by Carestream, as well as scaled models of the skeletal anatomy of the arm and leg, together with life-size models of the hand and foot.

  12. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  13. Bed Topography of Store Glacier and Fjord, Greenland from High-Resolution Gravity Data and Multi-Beam Echo Sounding

    Science.gov (United States)

    An, L.; Rignot, E. J.; Muto, A.; Morlighem, M.; Kemp, C.

    2014-12-01

    Store Glacier is a major west Greenland outlet tidewater glacier draining an area of 30,000 square km into Uummannaq Fjord, and flowing at a speed of 4.8 km per year at its terminus. The bed topography of the glacier is poorly known and the fjord bathymetry was partially surveyed for the first time in August 2012. In this study, we present a new approach for the inference of the glacier bed topography, ice thickness and sea floor bathymetry using high-resolution airborne gravity data combined with other data. In August 2012, we acquired a 250 m spacing grid of free-air gravity data at a speed of 50 knots with accuracy at sub-milligal level much higher accuracy than NASA Operation IceBridge (OIB) gravity campaign with approximate 5.2 km resolution at 290 knots flying speed. In August 2012 and 2013, we used multi-beam echo sounding to survey the sea floor bathymetry in front of the glacier, extending to the calving face of the glacier. Inland, we combined radar-derived ice thickness with ice motion vectors to reconstruct the bed topography at a high resolution. Using a 3D inversion of the gravity data, we reconstruct seamless bed topography across the ice front boundary that matches interior data and sea floor bathymetry, and provides information about sediment thickness beneath and in front of the glacier. Comparison of the results with prior maps reveals vast differences. IBCAO3 bathymetry suggests an ice front grounded at sea level while the measured ice front is grounded 550 m below sea level. The seamless topography obtained across the grounding line reveals the presence of a previously unknown sill, which explains why the glacier has been so stable in the last 50 years. The results have important impacts on the interpretation of the glacier stability, and sensitivity to thermal forcing from the ocean and surface melt. This work was conducted at UCI under a contract with the Gordon and Betty More Foundation and with NASA.

  14. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  15. Evaluation of a high-resolution negative-acting electron-beam resist GMC for photomask manufacturing

    Science.gov (United States)

    Chen, Wen-Chih; Novembre, Anthony E.

    1991-03-01

    As mask and reticle designs continue to evolve in complexity and resolution requirements, maskmakers are investigating what advantages negative acting electron beam resists may have in meeting these requirements. One candidate is Poly (glycidyl methacrylate-co-3- chlorostyrene), GMC, which is an advanced negative resist used for the purpose of photomask fabrication. In this paper, a statistically designed experiment will be described in which GMC resist was evaluated for use on the MEBES system. Variables explored included exposure dosage, chrome etch time, resist descum and strip time. The effects of these variables on defect density, critical dimension (CD) size and uniformity will be presented.

  16. High-resolution gel dosimetry using flat-panel detector cone-beam computed tomography: preliminary study.

    Science.gov (United States)

    Huang, Kuo-Ming; Huang, Tzung-Chi; Tsai, Chia-Jung; Lu, Kun-Mu; Chen, Liang-Kuang; Wu, Tung-Hsin

    2010-01-01

    This study compares the dose response of irradiated polymer gel with acrylic and styrofoam housing while applying multi-detector CT (MDCT) and cone-beam CT (CBCT). The dose response for MDCT and CBCT, while using an acrylic phantom is 1.34 and 0.67 DeltaHU Gy(-1), respectively, and becomes 1.54 and 0.84 DeltaHU Gy(-1) while using styrofoam, suggesting styrofoam is the better housing material. While the dose response of MDCT is better than that of CBCT, CBCT is yet a promising 3D dosimetry technique, given its potentially better spatial resolution and sensitive dose interpretation capability. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Heavy ion and proton beams in high resolution imaging of a fungi spore specimen using STIM tomography

    Science.gov (United States)

    Formenti, P.; Breese, M. B. H.; Connell, S. H.; Doyle, B. P.; Drummond, M. L.; Machi, I. Z.; Maclear, R. D.; Schaaff, P.; Sellschop, J. P. F.; Bench, G.; Sideras-Haddad, E.; Antolak, A.; Morse, D.

    1997-07-01

    Scanning transmission ion microscopy (STIM) tomography as a 3-D imaging technique has been shown to have a range of applications. The energy of the transmitted ion is detected with nearly 100% efficiency as a function of position in the transverse plane. The parameters relating to transmitted ion energy loss in the sample are imaged with statistics given by the energy loss process rather than Poisson counting statistics. This enables very fast collection of a set of relatively noise-free 2-D images. Each image is collected after a small rotation of the sample, and a complete 3-D representation of the sample may be tomographically reconstructed. The small beam currents necessary mean that the technique is non-destructive. One of the fields where these non-destructive 3-D density structure maps are particularly useful is in the analysis of biological tissue. The variation of energy loss with projectile atomic number may be exploited to tune the energy loss contrast to the size and density of the sample (heavy ion STIM). This work develops this point, and applies it to the imaging of the microscopic structure of a 90 μm diameter mycorrhiza fungi spore. This specimen has been imaged non-destructively in 3-D using both a 36 MeV 12C beam and a 2.2 MeV proton beam, both with a spatial resolution of about 1 μm. The gain in contrast in the carbon median energy loss maps was dramatic as expected. The corresponding improvement in the tomogram was found to be visible but less dramatic. The tomographic sections as well as the median energy loss maps of the vesicular-arbuscular mycorrhiza fungi spore clearly show the internal structure. Wall morphology data has relevance to germination behaviour of the spores.

  18. Detection of Incomplete Root Fractures in Endodontically Treated Teeth Using Different High-resolution Cone-beam Computed Tomographic Imaging Protocols.

    Science.gov (United States)

    Wanderley, Victor Aquino; Neves, Frederico Sampaio; Nascimento, Monikelly Carmo Chagas; Monteiro, Gabriela Queiroz de Melo; Lobo, Natália Siqueira; Oliveira, Matheus Lima; Nascimento Neto, Joao Batista Sobrinho; Araujo, Luciane Farias

    2017-10-01

    The purpose of this study was to compare different high-resolution cone-beam computed tomographic (CBCT) imaging protocols in the diagnosis of incomplete root fractures of endodontically treated teeth. Twenty single-rooted human teeth were endodontically treated, and an incomplete root fracture was induced. The teeth were scanned with the CBCT unit PreXion 3D (Teracom, San Mateo, CA) operating at 2 different protocols: high resolution/standard (HI-STD) (19 seconds and 512 basis images) and high resolution/high density (HI-HI) (37 seconds and 1024 basis images). Three oral radiologists evaluated all images using multiplanar reconstructions. The diagnostic tests and the receiver operating characteristic (ROC) curve were calculated. The HI-STD and HI-HI protocols presented an accuracy of 0.90 and 0.93, respectively, and both protocols had a sensitivity of 0.97. The HI-HI protocol showed a higher positive predictive value and slightly higher areas under the ROC curve. Both high-resolution imaging protocols presented high accuracy in the detection of incomplete root fracture of endodontically teeth. Thus, the HI-STD protocol should be indicated this reduces the radiation dose. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Status of Beam Line Detectors for the BigRIPS Fragment Separator at RIKEN RI Beam Factory: Issues on High Rates and Resolution

    Science.gov (United States)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).

  20. Optical circular deflector with attosecond resolution for ultrashort electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-05-01

    Full Text Available A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode (TEM_{01^{*}} in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method and numerical results with reasonable parameters are both presented. It is shown that the temporal resolution can reach up to ∼100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.

  1. In-situ ER-doped GaN optical storage devices using high-resolution focused ion beam milling

    Science.gov (United States)

    Lee, Boon K.; Chi, Chih-Jen; Chyr, Irving; Lee, Dong-Seon; Beyette, Fred R.; Steckl, Andrew J.

    2002-04-01

    High-density GaN:Er optical storage devices were fabricated with focused ion beam (FIB) milling techniques. In-situ Er-doped GaN films (1 - 1.5 micrometers thick) were grown on Si substrates. To `write' a bit, the GaN:Er film was selectively milled with a 30-keV Ga+ FIB. Data retrieval is accomplished by upconversion emission at 535/556 nm upon 1-micrometers IR laser stimulation. Regions where the Er-doped GaN layer is completely removed (and do not emit) are defined as logic `0,' while regions that are not milled (and do emit) are defined as logic `1.' Data patterns with submicron bit size (or 100 Mb/cm2 density) have been fabricated by FIB milling. Data written by this approach has a theoretical storage capacity approaching 10 Gbits/cm2.

  2. Potential of 80-kV high-resolution cone-beam CT imaging combined with an optimized protocol for neurological surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, Seisaku; Hara, Takayuki [Toranomon Hospital, Department of Neurosurgery, Tokyo (Japan); Hamada, Yusuke [Toranomon Hospital, Department of Radiology, Tokyo (Japan); Matsumaru, Yuji [Toranomon Hospital, Department of Neuro-Endovascular Therapy, Tokyo (Japan)

    2014-11-05

    With the development of computed tomography (CT) and magnetic resonance imaging (MRI), the use of conventional X-ray angiography including digital subtraction angiography (DSA) for diagnosis has decreased, as it is an invasive technique with a risk of neurological complications. However, X-ray angiography imaging technologies have progressed markedly, along with the development of endovascular treatments. A newly developed angiography technique using cone-beam CT (CBCT) technology provides higher spatial resolution than conventional CT. Herein, we describe the potential of this technology for neurosurgical operations with reference to clinical cases. Two hundred twenty-five patients who received 80-kV high-resolution CBCT from July 2011 to June 2014 for preoperative examinations were included in this study. For pathognomonical cases, images were taken with suitable reconstruction modes and contrast protocols. Cases were compared with intraoperative findings or images from other modalities. We observed the following pathognomonical types: (1) imaging of the distal dural ring (DDR) and the surrounding structure for paraclinoid aneurysms, (2) imaging of thin blood vessels, and (3) imaging of both brain tumors and their surrounding anatomy. Our devised 80-kV high-resolution CBCT imaging system provided clear visualization of detailed anatomy when compared with other modalities in almost all cases. Only two cases provided poor visualization due to movement artifact. Eighty-kilovolt high-resolution CBCT has the potential to provide detailed anatomy for neurosurgical operations when utilizing suitable modes and contrast protocols. (orig.)

  3. Enhanced High Resolution RBS System

    Science.gov (United States)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  4. Modeling shift-variant X-ray focal spot blur for high-resolution flat-panel cone-beam CT

    CERN Document Server

    Tilley, Steven; Siewerdsen, Jeffrey H; Stayman, J Webster

    2016-01-01

    Flat-panel cone-beam CT (CBCT) has been applied clinically in a number of high-resolution applications. Increasing geometric magnification can potentially improve resolution, but also increases blur due to an extended x-ray focal-spot. We present a shift-variant focal-spot blur model and incorporate it into a model-based iterative-reconstruction algorithm. We apply this algorithm to simulation and CBCT test-bench data. In a trabecular bone simulation study, we find traditional reconstruction approaches without a blur model exhibit shift-variant resolution properties that depend greatly on the acquisition protocol (e.g. short vs. full scans) and the anode angles of the rays used to reconstruct a particular region. For physical CBCT experiments focal spot blur was characterized and a spatial resolution phantom was scanned and reconstructed. In both experiments image quality using the shift-variant model was significantly improved over approaches that modeled no blur or only a shift-invariant blur, suggesting a ...

  5. Radiation length imaging with high resolution telescopes

    OpenAIRE

    Stolzenberg, U.; Frey, A.; Schwenker, B; Wieduwilt, P.; Marinas, C; Lütticke, F.

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D imag...

  6. Technical Note: Skin thickness measurements using high-resolution flat-panel cone-beam dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Shi Linxi; Vedantham, Srinivasan; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); O' Connell, Avice M. [Department of Radiology, University of Rochester Medical Center, Rochester, New York 14642 (United States)

    2013-03-15

    Purpose: To determine the mean and range of location-averaged breast skin thickness using high-resolution dedicated breast CT for use in Monte Carlo-based estimation of normalized glandular dose coefficients. Methods: This study retrospectively analyzed image data from a clinical study investigating dedicated breast CT. An algorithm similar to that described by Huang et al.['The effect of skin thickness determined using breast CT on mammographic dosimetry,' Med. Phys. 35(4), 1199-1206 (2008)] was used to determine the skin thickness in 137 dedicated breast CT volumes from 136 women. The location-averaged mean breast skin thickness for each breast was estimated and the study population mean and range were determined. Pathology results were available for 132 women, and were used to investigate if the distribution of location-averaged mean breast skin thickness varied with pathology. The effect of surface fitting to account for breast curvature was also studied. Results: The study mean ({+-} interbreast SD) for breast skin thickness was 1.44 {+-} 0.25 mm (range: 0.87-2.34 mm), which was in excellent agreement with Huang et al. Based on pathology, pair-wise statistical analysis (Mann-Whitney test) indicated that at the 0.05 significance level, there were no significant difference in the location-averaged mean breast skin thickness distributions between the groups: benign vs malignant (p= 0.223), benign vs hyperplasia (p= 0.651), hyperplasia vs malignant (p= 0.229), and malignant vs nonmalignant (p= 0.172). Conclusions: Considering this study used a different clinical prototype system, and the study participants were from a different geographical location, the observed agreement between the two studies suggests that the choice of 1.45 mm thick skin layer comprising the epidermis and the dermis for breast dosimetry is appropriate. While some benign and malignant conditions could cause skin thickening, in this study cohort the location-averaged mean breast skin

  7. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  8. Focused ion beam (FIB) combined with high resolution scanning electron microscopy: a promising tool for 3D analysis of chromosome architecture.

    Science.gov (United States)

    Schroeder-Reiter, Elizabeth; Pérez-Willard, Fabián; Zeile, Ulrike; Wanner, Gerhard

    2009-02-01

    Focused ion beam (FIB) milling in combination with field emission scanning electron microscopy (FESEM) was applied to investigations of metaphase barley chromosomes, providing new insight into the chromatin packaging in the chromosome interior and 3D distribution of histone variants in the centromeric region. Whole mount chromosomes were sectioned with FIB with thicknesses in the range of 7-20nm, resulting in up to 2000 sections, which allow high resolution three-dimensional reconstruction. For the first time, it could be shown that the chromosome interior is characterized by a network of interconnected cavities, with openings to the chromosome surface. In combination with immunogold labeling, the centromere-correlated distribution of histone variants (phosphorylated histone H3, CENH3) could be investigated with FIB in three dimensions. Limitations of classical SEM analysis of whole mount chromosomes with back-scattered electrons requiring higher accelerating voltages, e.g. faint and blurred interior signals, could be overcome with FIB milling: from within the chromosome even very small labels in the range of 10nm could be precisely visualized. This allowed direct quantification of marker molecules in a three-dimensional context. Distribution of DNA in the chromosome interior could be directly analyzed after staining with a DNA-specific platinorganic compound Platinum Blue. Higher resolution visualization of DNA distribution could be performed by preparation of FIB lamellae with the in situ lift-out technique followed by investigation in dark field with a scanning transmission electron detector (STEM) at 30kV.

  9. High-resolution, high-throughput, positive-tone patterning of poly(ethylene glycol by helium beam exposure through stencil masks.

    Directory of Open Access Journals (Sweden)

    Eliedonna E Cacao

    Full Text Available In this work, a collimated helium beam was used to activate a thiol-poly(ethylene glycol (SH-PEG monolayer on gold to selectively capture proteins in the exposed regions. Protein patterns were formed at high throughput by exposing a stencil mask placed in proximity to the PEG-coated surface to a broad beam of helium particles, followed by incubation in a protein solution. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR spectra showed that SH-PEG molecules remain attached to gold after exposure to beam doses of 1.5-60 µC/cm(2 and incubation in PBS buffer for one hour, as evidenced by the presence of characteristic ether and methoxy peaks at 1120 cm(-1 and 2870 cm(-1, respectively. X-ray Photoelectron Spectroscopy (XPS spectra showed that increasing beam doses destroy ether (C-O bonds in PEG molecules as evidenced by the decrease in carbon C1s peak at 286.6 eV and increased alkyl (C-C signal at 284.6 eV. XPS spectra also demonstrated protein capture on beam-exposed PEG regions through the appearance of a nitrogen N1s peak at 400 eV and carbon C1s peak at 288 eV binding energies, while the unexposed PEG areas remained protein-free. The characteristic activities of avidin and horseradish peroxidase were preserved after attachment on beam-exposed regions. Protein patterns created using a 35 µm mesh mask were visualized by localized formation of insoluble diformazan precipitates by alkaline phosphatase conversion of its substrate bromochloroindoyl phosphate-nitroblue tetrazolium (BCIP-NBT and by avidin binding of biotinylated antibodies conjugated on 100 nm gold nanoparticles (AuNP. Patterns created using a mask with smaller 300 nm openings were detected by specific binding of 40 nm AuNP probes and by localized HRP-mediated deposition of silver nanoparticles. Corresponding BSA-passivated negative controls showed very few bound AuNP probes and little to no enzymatic formation of diformazan precipitates or silver

  10. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  11. Ion beam analysis with monolayer depth resolution

    Science.gov (United States)

    Carstanjen, H. D.

    1998-03-01

    The paper is concerned with the analysis of surfaces and near-surface layers with monolayer depth resolution by means of high resolution Rutherford backscattering (HRBS) and elastic recoil detection (HERDA) of ions with an energy of a few MeV, in combination with an electrostatic spectrometer. With this instrument, which has recently been set up at the 6 MV Pelletron accelerator of the Max-Planck-Institut für Metallforschung in Stuttgart, depth resolutions of 0.1 nm are obtained in HRBS and 0.3 nm in HERDA experiments. This paper gives a short outline of the design and performance of the spectrometer followed by various examples of applications. These comprise examples showing the analyzing power of the instrument, the analysis of an X-ray mirror by HRBS, the study of the initial oxidation of surfaces of aluminum single crystals by HERDA and recent results concerning charge exchange in ion backscattering.

  12. Achieving high-resolution soft-tissue imaging with cone-beam CT: a two-pronged approach for modulation of x-ray fluence and detector gain

    Science.gov (United States)

    Graham, S. A.; Siewerdsen, J. H.; Moseley, D. J.; Keller, H.; Shkumat, N. A.; Jaffray, D. A.

    2005-04-01

    Cone-beam computed tomography (CBCT) presents a highly promising and challenging advanced application of flat-panel detectors (FPDs). The great advantage of this adaptable technology is in the potential for sub-mm 3D spatial resolution in combination with soft-tissue detectability. While the former is achieved naturally by CBCT systems incorporating modern FPD designs (e.g., 200 - 400 um pixel pitch), the latter presents a significant challenge due to limitations in FPD dynamic range, large field of view, and elevated levels of x-ray scatter in typical CBCT configurations. We are investigating a two-pronged strategy to maximizing soft-tissue detectability in CBCT: 1) front-end solutions, including novel beam modulation designs (viz., spatially varying compensators) that alleviate detector dynamic range requirements, reduce x-ray scatter, and better distribute imaging dose in a manner suited to soft-tissue visualization throughout the field of view; and 2) back-end solutions, including implementation of an advanced FPD design (Varian PaxScan 4030CB) that features dual-gain and dynamic gain switching that effectively extends detector dynamic range to 18 bits. These strategies are explored quantitatively on CBCT imaging platforms developed in our laboratory, including a dedicated CBCT bench and a mobile isocentric C-arm (Siemens PowerMobil). Pre-clinical evaluation of improved soft-tissue visibility was carried out in phantom and patient imaging with the C-arm device. Incorporation of these strategies begin to reveal the full potential of CBCT for soft-tissue visualization, an essential step in realizing broad utility of this adaptable technology for diagnostic and image-guided procedures.

  13. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Brehler, M; Sisniega, A; Marinetto, E; Stayman, J; Siewerdsen, J; Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Zyazin, A; Peters, I [Teledyne DALSA, Eindhoven (Netherlands); Yorkston, J [Carestream Health, Inc, Penfield, NY (United States)

    2016-06-15

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection) using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high

  14. Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams

    Directory of Open Access Journals (Sweden)

    Vidya Ramanathan

    2010-10-01

    Full Text Available We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100  MeV was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense materials that are placed at a large distance from the source. We report radiographic imaging of steel with submillimeter resolution.

  15. Submillimeter-Resolution Radiography of Shielded Structures with Laser-Accelerated Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Vidya [University of Nebraska, Lincoln; Banerjee, Sudeep [University of Nebraska, Lincoln; Powell, Nathan [University of Nebraska, Lincoln; Cummingham, N. J. [University of Nebraska, Lincoln; Chandler-Smith, Nate [University of Nebraska, Lincoln; Zhao, Kun [University of Nebraska, Lincoln; Brown, Kevin [University of Nebraska, Lincoln; Umstadter, Donald [University of Nebraska, Lincoln; Clarke, Shaun [University of Michigan; Pozzi, Sara [University of Michigan; Beene, James R [ORNL; Vane, C Randy [ORNL; Schultz, David Robert [ORNL

    2010-10-01

    We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100 MeV) was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense materials that are placed at a large distance from the source. We report radiographic imaging of steel with submillimeter resolution.

  16. Comparison of high-resolution and standard zoom imaging modes in cone beam computed tomography for detection of longitudinal root fracture: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Taramsari, Mehran; Kajan, Zahra Dalili; Bashizadeh, Parinaz [Faculty of Dentistry, Guilan University of Medical Sciences, Rasht (Iran, Islamic Republic of); Salamat, Fatemeh [Vice Chancellor of Research and Technology, Guilan University of Medical Sciences, Rasht (Iran, Islamic Republic of)

    2013-09-15

    The purpose of this study was to compare the efficacy of two imaging modes in a cone beam computed tomography (CBCT) system in detecting root fracture in endodontically-treated teeth with fiber posts or screw posts by selecting two fields of view. In this study, 78 endodontically-treated single canal premolars were included. A post space was created in all of them. Then the teeth were randomly set in one of 6 artificial dental arches. In 39 of the 78 teeth set in the 6 dental arches, a root fracture was intentionally created. Next, a fiber post and a screw post were cemented into 26 teeth having equal the root fractures. High resolution (HiRes) and standard zoom images were provided by a CBCT device. Upon considering the reconstructed images, two observers in agreement with each other confirmed the presence or absence of root fracture. A McNemar test was used for comparing the results of the two modes. The frequency of making a correct diagnosis using the HiRes zoom imaging mode was 71.8% and in standard zoom was 59%. The overall sensitivity and specificity in diagnosing root fracture in the HiRes mode were 71.79% and 46.15% and in the standard zoom modes were 58.97% and 33.33%, respectively. There were no significant differences between the diagnostic values of the two imaging modes used in the diagnosis of root fracture or in the presence of root canal restorations. In both modes, the most true-positive results were reported in the post space group.

  17. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  18. Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams

    OpenAIRE

    Vidya Ramanathan; Sudeep Banerjee; Nathan Powers; Nathaniel Cunningham; Nathan A. Chandler-Smith; Kun Zhao; Kevin Brown; Donald Umstadter; Shaun Clarke; Sara Pozzi; James Beene; Vane, C R; David Schultz

    2010-01-01

    We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100  MeV) was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense ma...

  19. Energy resolution methods efficiency depending on beam source ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia. Home; Journals; Pramana – Journal of Physics; Volume 69; Issue 3. Energy resolution methods efficiency depending on beam source position of potassium clusters in time-of-flight mass spectrometer. Ş Şentürk F Demiray O Özsoy. Research Articles Volume 69 Issue 3 ...

  20. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  1. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Science.gov (United States)

    Zhang, X. H.; Yuan, Y. J.; Yin, X. J.; Qian, C.; Sun, L. T.; Du, H.; Li, Z. S.; Qiao, J.; Wang, K. D.; Zhao, H. W.; Xia, J. W.

    2017-06-01

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  2. Beam-target interaction and intrabeam scattering in the HESR ring. Emittance, momentum resolution and luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, F. [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik

    2006-02-15

    The beam-target interaction is studied with respect to the transverse and longitudinal emittance growth of the HESR antiproton beam. The transverse emittance growth caused by the small angle Coulomb scattering can be described analytically using the differential cross section of the Coulomb interaction. Similarly, the longitudinal emittance growth caused by the energy loss of the beam can be calculated using the differential cross section of the energy-loss distribution. It is shown that particles with energy losses near the maximum energy loss in a head-on collision with a target electron are lost due to momentum acceptance of the HESR ring. Taking a relative momentum acceptance of about 1 x 10{sup -3} into account yields an order of magnitude smaller growth rate of the mean square momentum deviation. The necessary cooling rates for the High Resolution mode and the High Luminosity mode are deduced assuming that the beam-target interaction is the dominant beam heating process. For comparison the effects of intrabeam scattering are estimated. For electron and stochastic cooling, analytic expressions are quoted in order to evaluate the momentum resolution and cooling rate. The potentialities of electron and stochastic cooling are discussed with respect to the achievable momentum resolution and beam-target overlap. Beam loss rates and average luminosities are evaluated taking the total hadronic cross section, the restricted momentum acceptance of the HESR ring, the large angle Coulomb scattering and the Touschek effect into account. (orig.)

  3. Development and operation of a Pr_{2}Fe_{14}B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line

    Directory of Open Access Journals (Sweden)

    C. Benabderrahmane

    2017-03-01

    Full Text Available Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE_{2}Fe_{14}B (Rare Earth based magnets at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr_{2}Fe_{14}B instead of Nd_{2}Fe_{14}B, which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K. We describe here the development of a full scale (2 m, 18 mm period Pr_{2}Fe_{14}B cryogenic permanent magnet undulator (U18. The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.

  4. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    Science.gov (United States)

    Brown, Jr., R. Malcolm; Barnes, Zack [Austin, TX; Sawatari, Chie [Shizuoka, JP; Kondo, Tetsuo [Kukuoka, JP

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  5. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  6. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  7. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Science.gov (United States)

    de Groote, R. P.; Lynch, K. M.; Wilkins, S. G.

    2017-11-01

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  8. Accelerators for high intensity beams

    CERN Document Server

    Chou, Weiren

    2014-01-01

    As particle accelerators strive forever increasing performance, high intensity particle beams become one of the critical demands requested across the board by a majority of accelerator users (proton, electron and ion) and for most applications. Much effort has been made by our community to pursue high intensity accelerator performance on a number of fronts. Recognizing its importance, we devote this volume to Accelerators for High Intensity Beams. High intensity accelerators have become a frontier and a network for innovation. They are responsible for many scientific discoveries and technological breakthroughs that have changed our way of life, often taken for granted. A wide range of topics is covered in the fourteen articles in this volume.

  9. SU-F-T-429: Craniospinal Irradiation by VMAT Technique: Impact of FFF Beam and High Resolution MLC On Plan Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T; Sarkar, B; Munshi, A; Mohanti, B [Fortis Memorial Research Institute, Gurgaon, Haryana (India)

    2016-06-15

    Purpose: Objective of this study was to evaluate the impact of using flattening filter free (FFF) beam with 0.5 cm multileaf collimator (MLC) leaves over conventional flattened beam with 1 cm leaf width MLC on the treatment plan quality in cranio-spinal irradiation (CSI). Methods: For five medulloblastoma cases (3 males and 2 females), who were previously treated by volumetric modulated arc therapy (VMAT) technique using conventional flattened beam shaped by 1 cm width MLC leaves, four test plans were generated and compared against the delivered plan. These retrospective plans consisted of four different combinations of flattened and FFF beams from Elekta’s Agility treatment head with 0.5 cm width MLC leaves. Sparing of organs at risks (OAR) in terms of dose to 5%, 50%, 75% and 90% volumes, mean and maximum dose were evaluated. Results: All plans satisfied the planning objective of covering 95% of PTV by at least 95% of prescription dose. Marginal variation of dose spillage was observed between different VMAT plans at very low dose range (1–5 Gy). Variation in dose statistics for PTVs and OARs were within 1% or 1 Gy. Amongst the five plans, the plan with flattened beam with 1 cm MLC had the highest number of MUs, 2.13 times higher than the plan with Agility MLC with FFF beam that had the least number of MUs. No statistically significant difference (p≥0.05) was observed between the reference plan and the retrospectively generated plans in terms of PTV coverage, cold spot, hot spot and organ at risk doses. Conclusion: In the treatment of CSI cases by VMAT technique, FFF beams and/or finer width MLC did not exhibit advantage over the flattened beams or wider MLC in terms of plan quality except for reduction in MUs.

  10. High resolution signal processing

    Science.gov (United States)

    Tufts, Donald W.

    1993-08-01

    Motivated by the goal of efficient, effective, high-speed integrated-circuit realization, we have discovered an algorithm for high speed Fourier analysis called the Arithmetic Fourier Transform (AFT). It is based on the number-theoretic method of Mobius inversion, a method that is well suited for integrated-circuit realization. The computation of the AFT can be carried out in parallel, pipelined channels, and the individual operations are very simple to execute and control. Except for a single scaling in each channel, all the operations are additions or subtractions. Thus, it can reduce the required power, volume, and cost. Also, analog switched-capacitor realizations of the AFT have been studied. We have also analyzed the performance of a broad and useful class of data adaptive signal estimation algorithms. This in turn has led to our proposed improvements in the methods. We have used perturbation analysis of the rank-reduced data matrix to calculate its statistical properties. The improvements made have been demonstrated by computer simulation as well as by comparison with the Cramer-Rao Bound.

  11. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes.

    Science.gov (United States)

    Klar, T A; Engel, E; Hell, S W

    2001-12-01

    We report on the generation of various hole-centered beams in the focal region of a lens and investigate their effectiveness to break the diffraction barrier in fluorescence microscopy by stimulated emission. Patterning of the phase of the stimulating beam across the entrance pupil of the objective lens produces point-spread-functions with twofold, fourfold, and circular symmetry, which narrow down the focal spot to 65-100 nm. Comparison with high-resolution confocal images exhibits a resolution much beyond the diffraction barrier. Particles that are only 65-nm apart are resolved with focused light.

  12. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.

    Science.gov (United States)

    Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L

    2016-12-16

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  13. Exploring the Spatial Resolution of the Photothermal Beam Deflection Technique in the Infrared Region

    CERN Document Server

    Seidel, Wolfgang

    2004-01-01

    In photothermal beam deflection spectroscopy (PTBD) generating and detection of thermal waves occur generally in the sub-millimeter length scale. Therefore, PTBD provides spatial information about the surface of the sample and permits imaging and/or microspectrometry. Recent results of PTBD experiments are presented with a high spatial resolution which is near the diffraction limit of the infrared pump beam (CLIO-FEL). We investigated germanium substrates showing restricted O+-doped regions with an infrared absorption line at a wavelength around 11.6 microns. The spatial resolution was obtained by strongly focusing the probe beam (i.e. a HeNe laser) on a sufficiently small spot. The strong divergence makes it necessary to refocus the probe beam in front of the position detector. The influence of the focusing elements on spatial resolution and signal-to-noise ratio is discussed. In future studies we expect an enhanced spatial resolution due to an extreme focusing of the probe beam leading to a highly sensitive...

  14. High Spatiotemporal Resolution Prostate MRI

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0341 TITLE: High Spatiotemporal Resolution Prostate MRI PRINCIPAL INVESTIGATOR: Stephen J. Riederer, Ph.D...Resolution Prostate MRI 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0341 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Stephen J. Riederer E-Mail...overall purpose of this project is to develop improved means using MRI for detecting prostate cancer with the potential for differentiating disease

  15. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  16. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF.

    Science.gov (United States)

    Men, Zhirong; Wang, Pengbo; Li, Chunsheng; Chen, Jie; Liu, Wei; Fang, Yue

    2017-07-25

    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated

  17. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  18. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  19. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  20. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  1. High energy high intensity coherent photon beam for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of ..pi../sup 0/ in the neutral beam, are converted to e/sup +/e/sup -/ pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator.

  2. Realization of matching conditions for high-resolution spectrometers

    CERN Document Server

    Fujita, H; Berg, G P A; Bacher, A D; Foster, C C; Hara, K; Hatanaka, K; Kawabata, T; Noro, T; Sakaguchi, H; Shimbara, Y; Shinada, T; Stephenson, E J; Ueno, H; Yosoi, M

    2002-01-01

    For precise measurements of nuclear-reaction spectra using a beam from an accelerator, a high-resolution magnetic spectrometer is a powerful tool. The full capability of a magnetic spectrometer, however, can be achieved only if the characteristics of the beam coming from the accelerator are matched to those required by the spectrometer by properly adjusting the beam line conditions. The matching methods, lateral dispersion matching, focus matching and also the kinematic correction compensate the spectrum line-broadening effects caused by the beam momentum spread and reaction kinematics. In addition, angular dispersion matching should be performed if good resolution of the scattering angle is important. Diagnostic methods developed to realize these matching conditions for the spectrometers K600 at IUCF and Grand Raiden at RCNP are presented.

  3. High-resolution multiphoton cryomicroscopy.

    Science.gov (United States)

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  5. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  6. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  7. Electron beam diagnostic for profiling high power beams

    Science.gov (United States)

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  8. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao; 10.1103/PhysRevSTAB.10.091001

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  9. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  10. High resolution resist-free lithography in the SEM

    NARCIS (Netherlands)

    Hari, S.

    2017-01-01

    Focussed Electron Beam Induced Processing is a high resolution direct-write nanopatterning technique. Its ability to fabricate sub-10 nm structures together with its versatility and ease of use, in that it is resist-free and implementable inside a Scanning Electron Microscope, make it attractive for

  11. Solar corona at high resolution

    Science.gov (United States)

    Golub, L.; Rosner, R.; Zombeck, M. V. Z.; Vaiana, G. S.

    1982-01-01

    The earth's surface is shielded from solar X rays almost completely by the atmosphere. It is, therefore, necessary to place X-ray detectors on rockets or orbiting satellites. Solar rays were detected for the first time in the late 1940's, using V-2 rockets. In 1960, the first true X-ray images of the sun were obtained with the aid of a simple pinhole camera. The spatial resolution of the X-ray images could be considerably improved by making use of reflective optics, operating at grazing incidence. Aspects of X-ray mirror developments are discussed along with the results obtained in coronal studies utilizing the new devices for the observation of solar X-ray emission. It is pointed out that the major achievements of the Skylab missions were due primarily to the unique opportunity to obtain data over an extended period of time. Attention is given to normal incidence X-ray optics, achievements possible by making use of high spatial resolution optics, and details of improved mirror design.

  12. Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    CERN Document Server

    Aharrouche, M; Di Ciaccio, L; El-Kacimi, M; Gaumer, O; Gouanère, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Tarrade, F; Wingerter-Seez, I; Zitoun, R; Lanni, F; Ma, H; Rajagopalan, S; Rescia, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Barberio, E; Gao, Y S; Lü, L; Stroynowski, R; Aleksa, Martin; Beck-Hansen, J; Carli, T; Efthymiopoulos, I; Fassnacht, P; Follin, F; Gianotti, F; Hervás, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Martin, P; Ohlsson-Malek, F; Saboumazrag, S; Leltchouk, M; Parsons, J A; Seman, M; Simion, S; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Tartarelli, F; Bourdarios, C; Fayard, L; Fournier, D; Graziani, G; Hassani, S; Iconomidou-Fayard, L; Kado, M; Lechowski, M; Lelas, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Camard, A; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, P; Ghazlane, H; Cherkaoui-El-Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindling, J; Lund-Jensen, B; Tayalati, Y

    2006-01-01

    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resoluti...

  13. Model-based approach for beam hardening correction and resolution measurements in microtomography

    Science.gov (United States)

    van de Casteele, Elke

    resolution of the muCT system is the main topic. The resolution of an imaging system describes the ability to distinguish adjacent objects in an image. It is often used as a quality measure. Two different concepts may be comprised by the term image resolution: high-contrast small-detail resolution, also called spatial resolution, for distinguishing adjacent objects of high contrast, and low-contrast large-detail resolution, or contrast resolution, for differentiating an object from its background. A resolution measure combining both aspects is found in the modulation transfer function (MTF), which is the magnitude of the Fourier transformed PSF of the imaging device. The MTF describes how much contrast at a specific spatial frequency is maintained by the imaging process. Two methods for determining the MTF are explained and tested. The effect of beam hardening, geometric magnification, and sample material on the resolution measurement is studied.

  14. Evaluation of Advanced Bionics high resolution mode.

    Science.gov (United States)

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  15. Crack Identification in CFRP Laminated Beams Using Multi-Resolution Modal Teager–Kaiser Energy under Noisy Environments

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2017-06-01

    Full Text Available Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates.

  16. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  17. VT Hydrography Dataset - High Resolution NHD

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  18. High Resolution, High Frame Rate Video Technology

    Science.gov (United States)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  19. High-resolution neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mikerov, V.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Zhitnik, I.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Ignat`ev, A.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Isakov, A.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Korneev, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Krutov, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Kuzin, S.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Oparin, S.N. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Pertsov, A.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Podolyak, E.R. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Sobel`man, I.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tindo, I.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tukarev, B.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation)

    1995-12-31

    A neutron tomography technique with a coordinate resolution of several tens of micrometers has been developed. Our results indicate that the technique resolves details with dimensions less than 100 {mu}m and measures a linear attenuation of less than {approx} 0.1 cm{sup -1}. Tomograms can be reconstructed using incomplete data. Limits on the resolution of the restored pattern are analyzed, and ways to improve the sensitivity of the technique are discussed. (orig.).

  20. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  1. Production of high intensity radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of {approximately}10{sup 39} cm{sup {minus}2} s{sup {minus}1}, which would yield radioactive beams in excess of 10{sup 11} s{sup {minus}1}. 9 refs., 3 figs., 7 tabs.

  2. High-order nonuniformly correlated beams

    Science.gov (United States)

    Wu, Dan; Wang, Fei; Cai, Yangjian

    2018-02-01

    We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.

  3. Fundamentals of high energy electron beam generation

    Science.gov (United States)

    Turman, B. N.; Mazarakis, M. G.; Neau, E. L.

    High energy electron beam accelerator technology has been developed over the past three decades in response to military and energy-related requirements for weapons simulators, directed-energy weapons, and inertially-confined fusion. These applications required high instantaneous power, large beam energy, high accelerated particle energy, and high current. These accelerators are generally referred to as 'pulsed power' devices, and are typified by accelerating potential of millions of volts (MV), beam current in thousands of amperes (KA), pulse duration of tens to hundreds of nanoseconds, kilojoules of beam energy, and instantaneous power of gigawatts to teffawatts (10(exp 9) to 10(exp 12) watts). Much of the early development work was directed toward single pulse machines, but recent work has extended these pulsed power devices to continuously repetitive applications. These relativistic beams penetrate deeply into materials, with stopping range on the order of a centimeter. Such high instantaneous power deposited in depth offers possibilities for new material fabrication and processing capabilities that can only now be explored. Fundamental techniques of pulse compression, high voltage requirements, beam generation and transport under space-charge-dominated conditions will be discussed in this paper.

  4. Development of a helium-beam diagnostic for the measurement of the electron density and temperature with high space and time resolution; Entwicklung einer Heliumstrahldiagnostik zur Messung der Elektronendichte und -temperatur mit hoher raeumlicher und zeitlicher Aufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, U.

    2006-11-15

    A cvoncept for the control of teh particle and energy removal is available with the Dynamic Ergodic Divertor (DED) at the TEXTOR tokamak and is studied there. In the framework of this thesis a new diagnostic fot the study of short-time events in the plasma boundary layer was developed and constructed. It allows spatially (2 mm) and timely (10 {mu}s) highly resolved measurements of the electron density n{sub e} and electron temperaturew T{sub e}. This occurs by spectroscopy on helium atoms injected into the plasma, for whose measured line intensities respectively intensity ratios by means of a collision-radiation model n{sub e} and T{sub e} can be determined. In order to fulfil the requirements for the measurement of the plasma fluctuations up to 100 kHz, an injection system was developed, which can produce a supersonic helium beam of high particle density (1.5.10{sup 18} m{sup -3}) and simulataneously low deivergence {+-}1 . Parallely for this an observation system consisting of many-channel photomultipliers (PMT) with high and a CCD camera with lower time resolution. The signals of the different MT channels are calibrated on the intensities of the comparable spatial channels of the CCD camera. The first spectroscopic measurement of T{sub e} fluctuations resulted for the characterizing parameters: velocity v{sub r}=(380{+-}60) m/s, correlation length L{sub r}{approx}(5{+-}1) mm, and lifetime {tau}{sub L}{approx}(10{+-}1.25) {mu}s. Under the influence of resonant disturbing magnetic fields by the DED because of the not negligible photon noise no quantitative fluctuation characteristics could be determined. Furthermore during the dynamic AC operation of the DED with rotating disturbing field (974 Hz) n{sub e} and T{sub e} could be spatially and timely resolved and showed because of dynamically co-moved plasma structures a strong modulation by a factor 3 respectively 2. Beside an expected pressure decreasement in the laminar flux tube a hitherto unknown increasement

  5. Spatial and temporal beam profile monitor with nanosecond resolution for CERN's Linac4 and Superconducting Proton Linac

    CERN Document Server

    Hori, M

    2008-01-01

    The Linac4, now being developed at CERN, will provide 160-MeV H- beams of high intensity . Before this beam can be injected into the CERN Proton Synchrotron Booster or future Superconducting Proton Linac for further acceleration, some sequences of 500-ps-long micro-bunches must be removed from it, using a beam chopper. These bunches, if left in the beam, would fall outside the longitudinal acceptance of the accelerators and make them radioactive. We developed a monitor to measure the time structure and spatial profile of this chopped beam, with respective resolutions and . Its large active area and dynamic range also allows investigations of beam halos. The ion beam first struck a carbon foil, and secondary electrons emerging from the foil were accelerated by a series of parallel grid electrodes. These electrons struck a phosphor screen, and the resulting image of the scintillation light was guided to a thermoelectrically cooled, charge-coupled device camera. The time resolution was attained by applying high-...

  6. Quantitative high dynamic range beam profiling for fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D. [Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  7. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  8. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  9. High-resolution structure of viruses from random diffraction snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2014-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and nanocrystalline objects.

  10. High Resolution Imaging with AEOS

    Energy Technology Data Exchange (ETDEWEB)

    Patience, J; Macintosh, B A; Max, C E

    2001-08-27

    The U. S. Air Force Advanced Electro-Optical System (AEOS) which includes a 941 actuator adaptive optics system on a 3.7m telescope has recently been made available for astronomical programs. Operating at a wavelength of 750 nm, the diffraction-limited angular resolution of the system is 0.04 inches; currently, the magnitude limit is V {approx} 7 mag. At the distances of nearby open clusters, diffraction-limited images should resolve companions with separations as small as 4-6 AU--comparable to the Sun-Jupiter distance. The ability to study such close separations is critical, since most companions are expected to have separations in the few AU to tens of AU range. With the exceptional angular resolution of the current AEOS setup, but restricted target magnitude range, we are conducting a companion search of a large, well-defined sample of bright early-type stars in nearby open clusters and in the field. Our data set will both characterize this relatively new adaptive optics system and answer questions in binary star formation and stellar X-ray activity. We will discuss our experience using AEOS, the data analysis involved, and our initial results.

  11. The Singapore high resolution single cell imaging facility

    Science.gov (United States)

    Watt, Frank; Chen, Xiao; Vera, Armin Baysic De; Udalagama, Chammika N. B.; Ren, M.; Kan, Jeroen A. van; Bettiol, Andrew A.

    2011-10-01

    The Centre for Ion Beam Applications, National University of Singapore has recently expanded from three state-of-the-art beam lines to five. Two new beam lines have been constructed: A second generation proton beam writing line, and a high resolution single cell imaging facility. Both systems feature high demagnification lens systems based on compact Oxford Microbeams OM52 lenses, coupled with reduced lens/image distances. The single cell imaging facility is designed around OM52 compact lenses capable of operating in a variety of high demagnification configurations including the spaced Oxford triplet and the double crossover Russian quadruplet. The new facility has design specifications aimed at spatial resolutions below 50 nm, with a variety of techniques including STIM, secondary electron and fluorescence imaging, and an in-built optical and fluorescence microscope for sample imaging, identification and positioning. Preliminary tests using the single space Oxford triplet configuration have indicated a beam spot size of 31 × 39 nm in the horizontal and vertical directions respectively, at beam currents of ∼10,000 protons per second. However, a weakness in the specifications of the electrostatic scanning system has been identified, and a more stable scanning system needs to be implemented before we can fully realize the optimum performance. A single whole fibroblast cell has been scanned using 1.5 MeV protons, and a median fit to the proton transmission energy loss data has shown that proton STIM gives excellent details of the cell structure despite the relatively poor contrast of proton STIM compared with alpha STIM.

  12. The Singapore high resolution single cell imaging facility

    Energy Technology Data Exchange (ETDEWEB)

    Watt, Frank, E-mail: phywattf@nus.edu.sg [Centre for Ion Beam Applications, Dept. of Physics, National University of Singapore, Science Drive 3, Singapore 117542 (Singapore); Chen, Xiao; Vera, Armin Baysic De; Udalagama, Chammika N.B.; Ren, M.; Kan, Jeroen A van; Bettiol, Andrew A [Centre for Ion Beam Applications, Dept. of Physics, National University of Singapore, Science Drive 3, Singapore 117542 (Singapore)

    2011-10-15

    The Centre for Ion Beam Applications, National University of Singapore has recently expanded from three state-of-the-art beam lines to five. Two new beam lines have been constructed: A second generation proton beam writing line, and a high resolution single cell imaging facility. Both systems feature high demagnification lens systems based on compact Oxford Microbeams OM52 lenses, coupled with reduced lens/image distances. The single cell imaging facility is designed around OM52 compact lenses capable of operating in a variety of high demagnification configurations including the spaced Oxford triplet and the double crossover Russian quadruplet. The new facility has design specifications aimed at spatial resolutions below 50 nm, with a variety of techniques including STIM, secondary electron and fluorescence imaging, and an in-built optical and fluorescence microscope for sample imaging, identification and positioning. Preliminary tests using the single space Oxford triplet configuration have indicated a beam spot size of 31 x 39 nm in the horizontal and vertical directions respectively, at beam currents of {approx}10,000 protons per second. However, a weakness in the specifications of the electrostatic scanning system has been identified, and a more stable scanning system needs to be implemented before we can fully realize the optimum performance. A single whole fibroblast cell has been scanned using 1.5 MeV protons, and a median fit to the proton transmission energy loss data has shown that proton STIM gives excellent details of the cell structure despite the relatively poor contrast of proton STIM compared with alpha STIM.

  13. Beam Dynamics Studies for CLIC Drive Beams and for Focusing Highly Chromatic Beams

    CERN Document Server

    Riche, A J

    1997-01-01

    The main linac 30 GHz RF source called drive beam consists in a succession of structures resonating at this frequency, loaded by convenient trains of high charge bunches for transfer of the energy (group velocity # 0) to the structures of the main linac. Maximum efficiency is obtained if one can focus the drive beam up to the point where particles with minimum energy reach energy zero. At this point, some particles still have their initial energy, then all the spectrum is represented. The challenge is to keep the beam envelope within the iris, with this chromaticity, with the misalignments of beam at entry, misalignments of structures and quadrupoles, and also with the transverse wake they create. Parameters, lay-out and results correspond to October 97 state of studies.

  14. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  15. Radiation length imaging with high-resolution telescopes

    Science.gov (United States)

    Stolzenberg, U.; Frey, A.; Schwenker, B.; Wieduwilt, P.; Marinas, C.; Lütticke, F.

    2017-02-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length X/X0 profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the X/X0 imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of X/X0 imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of 100 million tracks at 4 GeV has been collected, which is sufficient to resolve complex material profiles on the 30 μm scale.

  16. AGS RESONANT EXTRACTION WITH HIGH INTENSITY BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    AHRENS,L.; BROWN,K.; GLENN,J.W.; ROSER,T.; TSOUPAS,N.; VANASSELT,W.

    1999-03-29

    The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams.[1] Learning to extract and transport these higher intensity beams has required a process of careful modeling and experimentation. We have had to learn how to correct for various instabilities and how to better match extraction and the transport lines to the higher emittance beams being accelerated in the AGS. Techniques employed include ''RF'' methods to smooth out momentum distributions and fine structure. We will present results of detailed multi-particle tracking modeling studies which enabled us to develop a clear understanding of beam loss mechanisms in the transport and extraction process. We will report on our status, experiences, and the present understanding of the intensity limitations imposed by resonant extraction and transport to fixed target stations.

  17. Laser interactions with high brightness electron beams

    Science.gov (United States)

    Malton, Stephen P.

    The International Linear Collider will be a high-precision machine to study the next energy frontier in particle physics. At the TeV energy scale, the ILC is expected to deliver luminosities in excess of 1034 cni" 2s_1. In order to achieve this, beam conditions must be monitored throughout the machine. Measurment of the beam emittance is essential to ensuring that the high luminosity can be provided at the interaction point. At the de sign beam sizes in the ILC beam delivery system, the Laserwire provides a non-invasive real-time method of measuring the emittance by the method of inverse Compton scattering. The prototype Laserwire at the PETRA stor age ring has produced consistent results with measured beam sizes of below 100 /nn. The Energy Recovery Linac Prototype (ERLP) is a technology testbed for the 4th Generation Light Source (4GLS). Inverse Compton scattering can be used in the ERLP as a proof of concept for a proposed 4GLS upgrade, and to produce soft X-rays for condensed matter experiments. The design constraints for the main running mode of the ERLP differ from those required for inverse Compton scattering. Suitable modifications to the optical lattice have been developed under the constraint that no new magnetic structures may be introduced, and the resulting photon distributions are described.

  18. High-Resolution Data for a Low-Resolution World

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Brendan Williams [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  19. Measurement of high energy resolution inelastic proton scattering at and close to zero degrees

    NARCIS (Netherlands)

    Tamii, A.; Fujita, Y.; Matsubara, H.; Adachi, T.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.; Hashimoto, H.; Hatanaka, K.; Itahashi, T.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Ninomiya, S.; Perez-Cerdan, A. B.; Popescu, L.; Rubio, B.; Saito, T.; Sakaguchi, H.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Shimizu, Y.; Smit, F. D.; Tameshige, Y.; Yosoi, M.; Zenhiro, J.

    2009-01-01

    Measurements of inelastic proton scattering with high energy resolution at forward scattering angles including 0 degrees are described. High-resolution halo-free beams were accelerated by the cyclotron complex at the Research Center for Nuclear Physics. Instrumental background events were minimized

  20. High-resolution field shaping utilizing a masked multileaf collimator.

    Science.gov (United States)

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm

  1. Laser beam welding by high-speed beam deflection; Laserstrahlschweissen durch High-Speed-Strahlbewegung

    Energy Technology Data Exchange (ETDEWEB)

    Klotzbach, A.; Morgenthal, L.; Beyer, E. [Fraunhofer-Institut fuer Werkstoff- und Strahltechnik, Dresden (Germany)

    1999-04-01

    The beam deflection system developed at Fraunhofer IWS can be used for rapid moving of a high power laser beam over the workpiece surface. Therefore it is possible to scan even rather small paths with high speed. The system contents two galvanometer scanner with specially designed lightweight mirrors in combination with a beam focusing unit. (Fig. 1). The high-speed welding of contours with small diameter is favorably done with both focusing optics and workpiece fixed (Fig. 2,3). Thus all notorius problems of conventional handling systems, as limited velocity and accuracy resulting from the inertia of the moved focusing head or workpiece, vanish. (orig.)

  2. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  3. Multi-shaped-beam (MSB): an evolutionary approach for high throughput e-beam lithography

    Science.gov (United States)

    Slodowski, Matthias; Döring, Hans-Joachim; Stolberg, Ines A.; Dorl, Wolfgang

    2010-09-01

    The development of next-generation lithography (NGL) such as EUV, NIL and maskless lithography (ML2) are driven by the half pitch reduction and increasing integration density of integrated circuits down to the 22nm node and beyond. For electron beam direct write (EBDW) several revolutionary pixel based concepts have been under development since several years. By contrast an evolutionary and full package high throughput multi electron-beam approach called Multi Shaped Beam (MSB), which is based on proven Variable Shaped Beam (VSB) technology, will be presented in this paper. In the recent decade VSB has already been applied in EBDW for device learning, early prototyping and low volume fabrication in production environments for both silicon and compound semiconductor applications. Above all the high resolution and the high flexibility due to the avoidance of expensive masks for critical layers made it an attractive solution for advanced technology nodes down to 32nm half pitch. The limitation in throughput of VSB has been mitigated in a major extension of VSB by the qualification of the cell projection (CP) technology concurrently used with VSB. With CP more pixels in complex shapes can be projected in one shot, enabling a remarkable shot count reduction for repetitive pattern. The most advanced step to extend the mature VSB technology for higher throughput is its parallelization in one column applying MEMS based multi deflection arrays. With this Vistec MSB technology, multiple shaped beamlets are generated simultaneously, each controllable individually in shape size and beam on time. Compared to pixel based ML2 approaches the MSB technology enables the maskless, variable and parallel projection of a large number of pixels per beamlet times the number of beamlets. Basic concepts, exposure examples and performance results of each of the described throughput enhancement steps will be presented.

  4. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  5. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  6. Energy resolution methods efficiency depending on beam source ...

    Indian Academy of Sciences (India)

    Abstract. Energy resolution of the time-of-flight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better reso- lution for the parallel case while the turnaround time is more convenient for the perpen- dicular position. Hence the applicability of the methods used for ...

  7. High-resolution XAS/XES analyzing electronic structures of catalysts

    CERN Document Server

    Sa, Jacinto

    2014-01-01

    Photon-in-photon-out core level spectroscopy is an emerging approach to characterize the electronic structure of catalysts and enzymes, and it is either installed or planned for intense synchrotron beam lines and X-ray free electron lasers. This type of spectroscopy requires high-energy resolution spectroscopy not only for the incoming X-ray beam but also, in most applications, for the detection of the outgoing photons. Thus, the use of high-resolution X-ray crystal spectrometers whose resolving power ?E/E is typically about 10-4, is mandatory.High-Resolution XAS/XES: Analyzing Electronic Stru

  8. High resolution quantum metrology via quantum interpolation

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  9. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation

    Science.gov (United States)

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-03-01

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams -or “structured attosecond light springs”- with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging.

  10. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation.

    Science.gov (United States)

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-03-10

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams -or "structured attosecond light springs"- with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging.

  11. High resolution technology for FPD lithography tools

    Science.gov (United States)

    Yabu, Nobuhiko; Nagai, Yoshiyuki; Tomura, Satoshi; Yoshikawa, Tomohiro

    2013-06-01

    As the resolution of LCD panels adapted for Smartphone and Tablet PC rapidly becomes higher, the performance needed for lithography tools to produce them also becomes higher than ever. To respond to such needs, we have developed new lithography tools for mass production of high resolution LCD panels. We have executed various exposure tests to evaluate their performance. In this paper, we present the results of these tests. By employing higher NA projection optics, high resolution (2.0μm and under) has been achieved. We also present the effect of special illumination and the difference in profile between kinds of photoresist. Furthermore, we also refer what will be needed for masks and blanks in the next generation. To achieve even higher resolution, it is necessary for masks and blanks to have high flatness, low level of defects and small linewidth error.

  12. Analytical possibilities of highly focused ion beams in biomedical field

    Science.gov (United States)

    Ren, M. Q.; Ji, X.; Vajandar, S. K.; Mi, Z. H.; Hoi, A.; Walczyk, T.; van Kan, J. A.; Bettiol, A. A.; Watt, F.; Osipowicz, T.

    2017-09-01

    At the Centre for Ion Beam Applications (CIBA), a 3.5 MV HVEE Singletron™ accelerator serves to provide MeV ion beams (mostly protons or He+) to six state-of-the-art beam lines, four of which are equipped with Oxford triplet magnetic quadrupole lens systems. This facility is used for a wide range of research projects, many of which are in the field of biomedicine. Here we presented a discussion of currently ongoing biomedical work carried out using two beamlines: The Nuclear Microscopy (NM) beamline is mainly used for trace elemental quantitative mapping using a combination of Particle Induced X-ray Emission (PIXE), to measure the trace elemental concentration of inorganic elements, Rutherford Backscattering Spectrometry (RBS), to characterise the organic matrix, and Scanning Transmission Ion Microscopy (STIM) to provide information on the lateral areal density variations of the specimen. Typically, a 2.1 MeV proton beam, focused to 1-2 μm spot size with a current of 100 pA is used. The high resolution single cell imaging beamline is equipped with direct STIM to image the interior structure of single cells with proton and alpha particles of sub-50 nm beam spot sizes. Simultaneously, forward scattering transmission ion microscopy (FSTIM) is utilized to generate images with improved contrast of nanoparticles with higher atomic numbers, such as gold nanoparticles, and fluorescent nanoparticles can be imaged using Proton Induced Fluorescence (PIF). Lastly, in this facility, RBS has been included as an option if required to determine the depth distribution of nanoparticles in cells, albeit with reduced spatial resolution.

  13. Application of hydrogenation to low-temperature cleaning of the Si(001) surface in the processes of molecular-beam epitaxy: Investigation by scanning tunneling microscopy, reflected high-energy electron diffraction, and high resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arapkina, L. V.; Krylova, L. A.; Chizh, K. V.; Chapnin, V. A.; Uvarov, O. V.; Yuryev, V. A. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation)

    2012-07-01

    Structural properties of the clean Si(001) surface obtained as a result of low-temperature (470-650 Degree-Sign C) pre-growth annealings of silicon wafers in a molecular-beam epitaxy chamber have been investigated. To decrease the cleaning temperature, a silicon surface was hydrogenated in the process of a preliminary chemical treatment in HF and NH{sub 4}F aqueous solutions. It has been shown that smooth surfaces composed of wide terraces separated by monoatomic steps can be obtained by dehydrogenation at the temperatures Greater-Than-Or-Equivalent-To 600 Degree-Sign C, whereas clean surfaces obtained at the temperatures <600 Degree-Sign C are rough. It has been found that there exists a dependence of structural properties of clean surfaces on the temperature of hydrogen thermal desorption and the process of the preliminary chemical treatment. The frequency of detachment/attachment of Si dimers from/to the steps and effect of the Ehrlich-Schwoebel barrier on ad-dimer migration across steps have been found to be the most probable factors determining a degree of the resultant surface roughness.

  14. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Aleksandra [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland); AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Szmyt, Wojciech; Kapusta, Czeslaw [AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Utke, Ivo [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland)

    2014-12-15

    In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state. (orig.)

  15. Design and Characterisation of a Fast Architecture Providing Zero Suppressed Digital Output Integrated in a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector and the EUDET Beam Telescope

    CERN Document Server

    Hu-guo, C

    2008-01-01

    CMOS Monolithic Active Pixel Sensors (MAPS) have demonstrated their strong potential for tracking devices, particularly for flavour tagging. They are foreseen to equip several vertex detectors and beam telescopes. Most applications require high read-out speed, imposing sensors to feature digital output with integrated zero suppression. The most recent development of MAPS at IPHC and IRFU addressing this issue will be reviewed. An architecture will be presented, combining a pixel array, column-level discriminators and zero suppression circuits. Each pixel features a preamplifier and a correlated double sampling (CDS) micro-circuit reducing the temporal and fixed pattern noises. The sensor is fully programmable and can be monitored. It will equip experimental apparatus starting data taking in 2009/2010.

  16. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  17. Heterodyne high-spectral-resolution lidar.

    Science.gov (United States)

    Chouza, Fernando; Witschas, Benjamin; Reitebuch, Oliver

    2017-10-10

    In this work, a novel lidar technique to perform high-spectral-resolution measurements of the atmospheric backscatter is discussed and the first results are presented. The proposed method, which relies on a heterodyne detection receiver, allows us not only to separate the molecular and the aerosol component of the atmospheric backscatter, but also to investigate the spectral shape of the Rayleigh-Brillouin line. As in the case of the direct-detection high-spectral-resolution lidars, the separation of the different scattering processes would allow an independent system calibration and aerosol extinction measurements. The proposed retrieval technique was successfully tested on the Deutsches Zentrum für Luft- und Raumfahrt airborne Doppler wind lidar system with measurements conducted during different measurement campaigns and under different atmospheric conditions. In light of these results, further ideas for the implementation of a dedicated heterodyne high-spectral-resolution lidar are discussed.

  18. Segmented Beam Dump for Time Resolved Spectrometry on a High Current Electron Beam

    CERN Document Server

    Lefèvre, T; Bravin, E; Braun, H H

    2008-01-01

    In the CLIC Test Facility 3 (CTF3), the strong coupling between the beam and the accelerating cavities induces transient effects such that the head of the pulse is accelerated twice as much as the rest of the pulse. Three spectrometer lines are installed along the linac with the aim of measuring energy spread versus time with a 20ns resolution. A major difficulty is due to the high power carried by the beam which imposes extreme constraints of thermal and radiation resistances on the detector. This paper presents the design and the performances of a simple and easy-to-maintain device, called ‘segmented dump'. In this device, the particles are stopped inside metallic plates and the deposited charge is measured in the same way as in Faraday cups. Simulations were carried out with the Monte Carlo code ‘FLUKA' to evaluate the problems arising from the energy deposition and to find ways to prevent or reduce them. The detector resolution was optimized by an adequate choice of material and thickness of the...

  19. CSpace high-resolution volumetric 3D display

    Science.gov (United States)

    Refai, Hakki H.; Melnik, George; Willner, Mark

    2013-05-01

    We are currently in the process of developing a static-volume 3D display, CSpace® display, that has the capability to produce images of much larger size than any other static-volume display currently under development, with up to nearly 800 million voxel resolution. A key component in achieving the size and resolution of the display is the optical system that transfers the pixel data from a standard DMD projection unit to the voxel size required by the display with high contrast and minimal distortion. The current optical system is capable of such performance for only small image sizes, and thus new designs of the optical system must be developed. We report here on the design and testing of a new optical projection system with the intent of achieving performance close to that of a telecentric lens. Theoretical analysis with Zemax allowed selection of appropriate lens size, spacing, and focal length, and identified the need for tilting the assembly to produce the desired beam properties. Experimental analysis using the CSpace® prototype showed that the improved beam parameters allowed for higher resolution and brighter images than those previously achieved, though their remains room for further improvement of the design. Heating of the DMD and its housing components were also addressed to minimize heating effects on the optical system. A combination of a thermo-electric cooler and a small fan produced sufficient cooling to stabilize the temperature of the system to acceptable levels.

  20. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  1. Customized MFM probes with high lateral resolution

    Directory of Open Access Journals (Sweden)

    Óscar Iglesias-Freire

    2016-07-01

    Full Text Available Magnetic force microscopy (MFM is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm topographic (magnetic lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media by choosing tips mounted on hard (or soft cantilevers, a technology that is currently not available on the market.

  2. Numerical analysis of highly deformable elastoplastic beams

    Directory of Open Access Journals (Sweden)

    João Paulo Pascon

    Full Text Available AbstractThe objective of the present study is to develop a numerical formulation to predict the behavior of highly deformable elastoplastic thin beams. Following the Euler-Bernoulli bending, the axial and shear effects are neglected, and the nonlinear second-order differential equation regarding the angle of rotation is defined based on the specific moment-curvature relationship. Although the formulation can be used for general materials, three constitutive models are employed: linear-elastic, bilinear elastoplastic, and linear-elastic with Swift isotropic hardening. The resultant boundary value problem is solved by means of the fourth-order Runge-Kutta integration procedure and the one-parameter nonlinear shooting method. The performance of the present formulation is investigated via three numerical problems involving finite bending of slender beams composed of elastoplastic materials. For these problems, numerical solutions regarding rotations, displacements and strains for the loading, unloading and reloading phases are provided. Finally, it is shown that the present methodology can also be used to determine the post-buckling behavior of elastoplastic thin beams.

  3. Cellular resolution multiplexed FLIM tomography with dual-color Bessel beam

    OpenAIRE

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-01-01

    Fourier multiplexed FLIM (FmFLIM) tomography enables multiplexed 3D lifetime imaging of whole embryos. In our previous FmFLIM system, the spatial resolution was limited to 25 ?m because of the trade-off between the spatial resolution and the imaging depth. In order to achieve cellular resolution imaging of thick specimens, we built a tomography system with dual-color Bessel beam. In combination with FmFLIM, the Bessel FmFLIM tomography system can perform parallel 3D lifetime imaging on multip...

  4. Beam Diagnostics Instrumentation for the High Energy Beam Transport Line of I.P.H.I.

    CERN Document Server

    Ausset, P; Coacolo, J L; Lesrel, J; Maymon, J N; Olivier, A; Rouviere, N; Solal-Cohen, M; Vatrinet, L; Yaniche, J F

    2005-01-01

    I.P.H.I. is a High Intensity Proton Injector under construction at Saclay (C.N.R.S/ I.N.2P.3; C.E.A. / D.A.P.N.I.A and C.E.R.N. collaboration). An E.C.R. produces a 100 keV, 100 mA C.W. proton beam which will be accelerated at 3 MeV by a 4 vanes R.F.Q. operating at 352.2 MHz. Finally, a High Energy Beam Transport Line (H.E.B.T.) will deliver the beam to a beam stopper and will be equipped with appropriate beam diagnostics to carry intensity; centroïd beam transverse position, transverse beam profiles, beam energy and energy spread measurements for the commissioning of I.P.H.I. These beam diagnostics will operate under both pulsed and C.W. operation. Transverse beam profile measurements will be acquired under low and high duty factor pulsed beam operation using a slow wire scanner and a C.C.D. camera to image the beam-induced fluorescence. The beam instrumentation of the H.E.B.T. is reviewed and preliminary obtained transverse profile measurements at 100 keV are described.

  5. High resolution micro-pattern gas detectors for particle physics

    Science.gov (United States)

    Shekhtman, L.; Aulchenko, V.; Bobrovnikov, V.; Bondar, A.; Fedotovich, G.; Kudryavtsev, V.; Maltsev, T.; Nikolenko, D.; Rachek, I.; Zhilich, V.; Zhulanov, V.

    2017-07-01

    Micro-pattern gaseous detectors (MPGDs) allow operation at very high background particle flux with high efficiency and spatial resolution. This combination of parameters determines the main application of these detectors in particle physics experiments: precise tracking in the areas close to the beam and in the end-cap regions of general-purpose detectors. MPGDs of different configurations have been developed and are under development for several experiments in the Budker INP. The system of eight two-coordinate detectors based on a cascade of Gas Electron Multipliers (GEM) is working in the KEDR experiment at the VEPP-4M collider in the tagging system that detects electrons and positrons that lost their energy in two-photon interactions and left the equilibrium orbit due to a dedicated magnetic system. Another set of cascaded GEM detectors is developed for the almost-real Photon Tagging System (PTS) of the DEUTRON facility at the VEPP-3 storage ring. The PTS contains three very light detectors with very high spatial resolution (below 50 μm). Dedicated detectors based on cascaded GEMs are developed for the extracted electron beam facility at the VEPP-4M collider. These devices will allow precise particle tracking with minimal multiple scattering due to very low material content. An upgrade of the coordinate system of the CMD-3 detector at the VEPP-2000 collider is proposed on the basis of the resistive micro-WELL (μ-rWELL). A research activity on this subject has just started.

  6. Montecarlo simulation for a new high resolution elemental analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion

    1996-12-31

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  7. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  8. A compact high-resolution X-ray powder diffractometer.

    Science.gov (United States)

    Fewster, Paul F; Trout, David R D

    2013-12-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu K α 1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB 6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments.

  9. Qualitative interpretation of high resolution aeromagnetic (HRAM ...

    African Journals Online (AJOL)

    Qualitative interpretation of high resolution aeromagnetic (HRAM) data from some parts of offshore Niger delta, Nigeria. ... Open Access DOWNLOAD FULL TEXT ... The original raster map, obtained from the Nigeria Geological Survey Agency (NGSA) in half degree sheet, was subjected to qualitative data analysis using the ...

  10. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  11. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling

  12. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; van der Walle, P.; Offerhaus, Herman L.; van Hulst, N.F.

    2005-01-01

    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses from

  13. High resolution analysis of interphase chromosome domains

    NARCIS (Netherlands)

    Visser, A. E.; Jaunin, F.; Fakan, S.; Aten, J. A.

    2000-01-01

    Chromosome territories need to be well defined at high resolution before functional aspects of chromosome organization in interphase can be explored. To visualize chromosomes by electron microscopy (EM), the DNA of Chinese hamster fibroblasts was labeled in vivo with thymidine analogue BrdU. Labeled

  14. SHARAQ spectrometer for high-resolution studies for RI-induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michimasa, S., E-mail: mitimasa@cns.s.u-tokyo.ac.jp [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Takaki, M.; Sasamoto, Y. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Dozono, M. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nishi, T. [Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Ota, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Baba, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Baba, T. [Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Fujii, T.; Go, S.; Kawase, S.; Kikuchi, Y.; Kisamori, K.; Kobayashi, M.; Kubota, Y.; Lee, C.S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Matsubara, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Miki, K. [RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Miya, H. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); and others

    2013-12-15

    Highlights: • Report on recent achievement of the SHARAQ spectrometer. • Demonstration of two ion optics modes for high-resolution spectroscopy. • Discussion on measured transport matrix elements by comparison with designed values. • Demonstration of event-by-event momentum tagging by the achromatic transport. • Achievement of momentum resolution of 1/8100 by the dispersion-matching transport. -- Abstract: The SHARAQ spectrometer and High-Resolution Beamline, which began operation in March 2009, have been put into use for six experiments using charge exchange reactions with radioactive isotope beams. For experiments at SHARAQ, detector developments and ion optics studies continue to improve performance in high-resolution nuclear spectroscopy. We have introduced improved timing resolution with CVD diamond detectors, high count-rate beamline tracking detectors and development of multi-particle detection by cathode-readout drift chambers. Ion-optics studies for the high-resolution achromatic (HA) and dispersion-matching (DM) transport modes are also reported here. Momentum tagging in the HA mode demonstrated an improvement in spectroscopic resolution with respect to the momentum spread of the radioactive beam. For the DM transportation mode, a momentum resolution of 1/8100 (FWHM) was achieved by taking into account the positions and angles of the beam at the third focal plane of BigRIPS.

  15. A Portable, High Resolution, Surface Measurement Device

    Science.gov (United States)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  16. High-Resolution, Two-Wavelength Pyrometer

    Science.gov (United States)

    Bickler, Donald B.; Henry, Paul K.; Logiurato, D. Daniel

    1989-01-01

    Modified two-color pyrometer measures temperatures of objects with high spatial resolution. Image focused on hole 0.002 in. (0.05 mm) in diameter in brass sheet near end of bundle, causing image to be distributed so fibers covered by defocused radiation from target. Pinhole ensures radiation from only small part of target scene reaches detector, thus providing required spatial resolution. By spreading radiation over bundle, pinhole ensures entire active area of detectors utilized. Produces signal as quiet as conventional instruments but with only 1/64 input radiation.

  17. High resolution neutron diffractometer HRND at research reactor CMRR

    Science.gov (United States)

    Zhang, J.; Xia, Y.; Wang, Y.; Xie, C.; Sun, G.; Liu, L.; Pang, B.; Li, J.; Huang, C.; Liu, Y.; Gong, J.

    2018-01-01

    The high resolution neutron diffractometer HRND is located at the 20 MW China Mianyang Research Reactor (CMRR), which is a neutron powder diffractometer especially dedicated to crystal and magnetic structure studies for polycrystalline powder samples. A vertical focusing Ge (511) monochromator produce a monochromatic neutron beam with a wavelength of 1.885 Å at a fixed take-off angle of 120o. An array of 64 equidistant 3He filled proportional counters can acquire diffraction patterns with a large-scale diffraction angle range over 160o. As all the Soller slit collimators of HRND have a collimation angle of 10' and the monochromator has an average mosaicity of 0.359o, HRND obtains a best resolution of about 1.6\\textperthousand based on experiments, which makes the resolution of HRND can compete with the mainstream-level high resolution neutron powder diffractometers in the world. Equipped with a cryostat and a furnace, HRND allows structural characterization in an extremely broad temperature range. The details of the configuration and performance of the instrument are reported along with its specifications and performance assessments in the present paper.

  18. High Resolution Regional Climate Simulations over Alaska

    Science.gov (United States)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  19. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  20. Fermilab main injector: High intensity operation and beam loss control

    Directory of Open Access Journals (Sweden)

    Bruce C. Brown

    2013-07-01

    Full Text Available From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  1. High-resolution diffraction grating interferometric transducer of linear displacements

    Science.gov (United States)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  2. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  3. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  4. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  5. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  6. High-Resolution Broadband Spectral Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  7. High Resolution Spectra of HE Detonations

    Science.gov (United States)

    1980-07-07

    region. We shall assume for present purposes that the emissivity of the detonation products of a 50 to 100 lb HE explosion is also in the viciity of... speed . Incorporated in the emulsion layers are dye forming coup- lers which react simultaneously during I , developmentto produce a separate dye S...Best Available Cop 1~EV~ AFTAC-TR-80-24 HIGH RESOLUTION SPECTRA OF HE DETONATIONS HSS Inc 2 Alfred Circle Bedford, MA 01730 7 JULY 1980 AUG 4 9D

  8. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  9. High performance Si immersion gratings patterned with electron beam lithography

    Science.gov (United States)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error

  10. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  11. Cellular resolution multiplexed FLIM tomography with dual-color Bessel beam.

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed FLIM (FmFLIM) tomography enables multiplexed 3D lifetime imaging of whole embryos. In our previous FmFLIM system, the spatial resolution was limited to 25 μm because of the trade-off between the spatial resolution and the imaging depth. In order to achieve cellular resolution imaging of thick specimens, we built a tomography system with dual-color Bessel beam. In combination with FmFLIM, the Bessel FmFLIM tomography system can perform parallel 3D lifetime imaging on multiple excitation-emission channels at a cellular resolution of 2.8 μm. The image capability of the Bessel FmFLIM tomography system was demonstrated by 3D lifetime imaging of dual-labeled transgenic zebrafish embryos.

  12. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging.

    Science.gov (United States)

    Amitonova, Lyubov V; Descloux, Adrien; Petschulat, Joerg; Frosz, Michael H; Ahmed, Goran; Babic, Fehim; Jiang, Xin; Mosk, Allard P; Russell, Philip St J; Pinkse, Pepijn W H

    2016-02-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled resolution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze the beam waist and power in the focal spot on the fiber output using different types of fibers and different wavefront shaping approaches. We show that the complex wavefront shaping technique, together with a properly designed multimode photonic crystal fiber, enables us to create a tightly focused spot on the desired position on the fiber output facet with a subwavelength beam waist.

  13. Detection accuracy of proximal caries by phosphor plate and cone-beam computerized tomography images scanned with different resolutions.

    Science.gov (United States)

    Cheng, Jun-Ge; Zhang, Zhi-Ling; Wang, Xiao-Yan; Zhang, Zu-Yan; Ma, Xu-Chen; Li, Gang

    2012-08-01

    This study was carried out to assess whether the spatial resolution has an impact on the detection accuracy of proximal caries in flat panel CBCT (cone beam computerized tomography) images and if the detection accuracy can be improved by flat panel CBCT images scanned with high spatial resolution when compared to digital intraoral images. The CBCT test images of 45 non-restored human permanent teeth were respectively scanned with the ProMax 3D and the DCT Pro scanners at different resolutions. Digital images were obtained with a phosphor plate imaging system Digora Optime. Eight observers evaluated all the test images for carious lesion within the 90 proximal surfaces. With the histological examination serving as the reference standard, observer performances were evaluated by receiver operating characteristic (ROC) curves. The areas under the ROC curves were analyzed with two-way analysis of variance. No significant differences were found among the CBCT images and between CBCT and digital images when only proximal enamel caries was detected (p = 0.989). With respect to the detection of proximal dentinal caries, significant difference was found between CBCT and digital images (p proximal caries in flat panel CBCT images. The flat panel CBCT images scanned with high spatial resolution did not improve the detection accuracy of proximal enamel caries compared to digital intraoral images. CBCT images scanned with high spatial resolutions could not be used for proximal caries detection.

  14. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  15. High throughput defect detection with multiple parallel electron beams

    NARCIS (Netherlands)

    Himbergen, H.M.P. van; Nijkerk, M.D.; Jager, P.W.H. de; Hosman, T.C.; Kruit, P.

    2007-01-01

    A new concept for high throughput defect detection with multiple parallel electron beams is described. As many as 30 000 beams can be placed on a footprint of a in.2, each beam having its own microcolumn and detection system without cross-talk. Based on the International Technology Roadmap for

  16. High power electron and ion beam research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nation, J.A.; Sudan, R.N. (eds.)

    1977-01-01

    Topics covered in volume II include: collective accelerators; microwaves and unneutralized E-beams; technology of high-current E-beam accelerators and laser applications of charged-particle beams. Abstracts of twenty-nine papers from the conference were prepared for the data base in addition to six which appeared previously. (GHT)

  17. Test beam & time resolution analysis for UFSD and CVD diamond detectors

    CERN Document Server

    Scali, Stefano

    2017-01-01

    The ever-increasing luminosity in particle physics, aimed at seeking new phenomena, has led to the need for radiation-hard detectors with a remarkable time resolution. To reach the goal several tests and data analysis has been performed but further development is still required. During my internship I have participated to the test of new sensors. After an introduction to the theoretical framework this report describes the data taking procedure using SPS beam at the H8 site in Prevessin. The second part describes the data analysis and extrapolation of the time resolution for many boards.

  18. High Resolution Bathymetry Estimation Improvement with Single Image Super-Resolution Algorithm Super-Resolution Forests

    Science.gov (United States)

    2017-01-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate

  19. Development of New High Resolution Neutron Detector

    Science.gov (United States)

    Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.

    2017-09-01

    Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.

  20. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian

    2009-11-20

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55{+-}0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 {mu}m. The efficiency of the re-moderation process in this second stage was 24.5{+-}4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the

  1. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  2. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  3. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  4. Detailed mitochondrial phenotyping by high resolution metabolomics.

    Directory of Open Access Journals (Sweden)

    James R Roede

    Full Text Available Mitochondrial phenotype is complex and difficult to define at the level of individual cell types. Newer metabolic profiling methods provide information on dozens of metabolic pathways from a relatively small sample. This pilot study used "top-down" metabolic profiling to determine the spectrum of metabolites present in liver mitochondria. High resolution mass spectral analyses and multivariate statistical tests provided global metabolic information about mitochondria and showed that liver mitochondria possess a significant phenotype based on gender and genotype. The data also show that mitochondria contain a large number of unidentified chemicals.

  5. Novel high resolution tactile robotic fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    This paper describes a novel robotic fingertip based on piezoresistive rubber that can sense pressure tactile stimuli with a high spatial resolution over curved surfaces. The working principle is based on a three-layer sandwich structure (conductive electrodes on top and bottom and piezoresistive...... rubber in the middle). For the conductive layers we use ring patterns of silver epoxy and flex PCB electrode arrays. The proposed sensorised fingertip has 60 sensitive regions (taxels) arranged in 5 rings and 12 columns that have a smooth pressure to resistance characteristic. Using the sensor...

  6. High-Resolution Energy and Intensity Measurements with CVD Diamond at REX-ISOLDE

    CERN Document Server

    Griesmayer, E; Dobos, D; Wenander, F; Bergoz, J; Bayle, H; Frais-Kölbl, H; Leinweber, J; Aumeyr, T; CERN. Geneva. BE Department

    2009-01-01

    A novel beam instrumentation device for the HIE-REX (High In-tensity and Energy REX) upgrade has been developed and tested at the On-Line Isotope Mass Separator ISOLDE, located at the European Laboratory for Particle Physics (CERN). This device is based on CVD diamond detector technology and is used for measuring the beam intensity, particle counting and measuring the energy spectrum of the beam. An energy resolution of 0.6% was measured at a carbon ion energy of 22.8 MeV. This corresponds to an energy spread of ± 140 keV.

  7. High-resolution gamma imaging; Imagerie gamma haute resolution

    Energy Technology Data Exchange (ETDEWEB)

    Parmentier, M.; Pousse, A.; Tamba, N.; Chavanelle, J.; Bakkali, A.; Kastler, B. [Centre Hospitalier Universitaire, Lab. Imagerie et Ingenierie pour la Sante, Faculte de Medecine, 25 - Besancon (France)

    2004-01-01

    Gamma imaging involves two-dimensional images of the volume distribution of a radioactive tracer previously injected into the organ under functional exploration. Our Besancon laboratory developed a gamma imager with a spatial resolution three or four times higher than a classic device, which is very useful for functional explorations on small animal, as recently demonstrated by work on myocyte apoptosis and necrosis scintigraphy in the rat. We expect progress in this promising medical imaging technology to be driven by developments in scintillating crystals and position-sensitive photomultiplier tubes, and by medical demand in applications such as early detection of breast cancer. (authors)

  8. High Resolution Global View of Io

    Science.gov (United States)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  9. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  10. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  11. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  12. High resolution multimodal clinical ophthalmic imaging system.

    Science.gov (United States)

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  13. Coherent beam combiner for a high power laser

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  14. Recent beam-beam experience with multiple high current bunches in PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M.G.

    2000-02-07

    Operation with colliding beams at PEP-II has progressed remarkably well with over half the design specific luminosity and 5.2 x 10{sup 32}cm{sup {minus}2}s{sup {minus}1} in multiple bunches demonstrated during the last commissioning period before installation of the BABAR detector. Further luminosity increases are anticipated as the vertical beam size is reduced and beam currents are raised towards design values. At high currents interesting multibunch dynamics, which depend strongly on current distribution, have been observed during single-beam commissioning studies. Transverse beam instabilities nominally controlled using bunch-by-bunch feedback were observed to be significantly suppressed, in the absence of feedback, with beams in collision.

  15. The High-Intensity Hyperon Beam at CERN

    CERN Document Server

    Aleksandrov, Yu.A.; Dropmann, F.; Fournier, A.; Grafstrom, P.; Hubbard, E.; Paul, S.; Siebert, H.W.; Trombini, A.; Zavertyaev, M.

    1998-01-01

    A high-intensity hyperon beam was constructed at CERN to deliver S- to experiment WA89 at the Omega facility and operated from 1989 to 1994. The setup allowed rapid changeover between hyperon and conventional hadron beam configurations. The beam provided a S- flux of 1.4 x 105 per burst at mean momenta between 330 and 345 GeV/c produced by about 3 x 1010 protons of 450 GeV/c. At the experiment target the beam had a S-/p- ratio close to 0.4 and a size of 1.6 x 3.7 cm2. The beam particle trajectories and their momenta were measured with a scintillating fibre hodoscope in the beam channel and a silicon microstrip detector at the exit of the channel. A fast transition radiation detector was used to identify the pion component of the beam

  16. A high-resolution microchip optomechanical accelerometer

    Science.gov (United States)

    Krause, Alexander G.; Winger, Martin; Blasius, Tim D.; Lin, Qiang; Painter, Oskar

    2012-11-01

    The monitoring of acceleration is essential for a variety of applications ranging from inertial navigation to consumer electronics. Typical accelerometer operation involves the sensitive displacement measurement of a flexibly mounted test mass, which can be realized using capacitive, piezo-electric, tunnel-current or optical methods. Although optical detection provides superior displacement resolution, resilience to electromagnetic interference and long-range readout, current optical accelerometers either do not allow for chip-scale integration or utilize relatively bulky test mass sensors of low bandwidth. Here, we demonstrate an optomechanical accelerometer that makes use of ultrasensitive displacement readout using a photonic-crystal nanocavity monolithically integrated with a nanotethered test mass of high mechanical Q-factor. This device achieves an acceleration resolution of 10 µg Hz-1/2 with submilliwatt optical power, bandwidth greater than 20 kHz and a dynamic range of greater than 40 dB. Moreover, the nanogram test masses used here allow for strong optomechanical backaction, setting the stage for a new class of motional sensors.

  17. Fast diffusion imaging with high angular resolution.

    Science.gov (United States)

    Chao, Tzu-Cheng; Chiou, Jr-Yuan George; Maier, Stephan E; Madore, Bruno

    2017-02-01

    High angular resolution diffusion imaging (HARDI) is a well-established method to help reveal the architecture of nerve bundles, but long scan times and geometric distortions inherent to echo planar imaging (EPI) have limited its integration into clinical protocols. A fast imaging method is proposed here that combines accelerated multishot diffusion imaging (AMDI), multiplexed sensitivity encoding (MUSE), and crossing fiber angular resolution of intravoxel structure (CFARI) to reduce spatial distortions and reduce total scan time. A multishot EPI sequence was used to improve geometrical fidelity as compared to a single-shot EPI acquisition, and acceleration in both k-space and diffusion sampling enabled reductions in scan time. The method is regularized and self-navigated for motion correction. Seven volunteers were scanned in this study, including four with volumetric whole brain acquisitions. The average similarity of microstructural orientations between undersampled datasets and their fully sampled counterparts was above 85%, with scan times below 5 min for whole-brain acquisitions. Up to 2.7-fold scan time acceleration along with four-fold distortion reduction was achieved. The proposed imaging strategy can generate HARDI results with relatively good geometrical fidelity and low scan duration, which may help facilitate the transition of HARDI from a successful research tool to a practical clinical one. Magn Reson Med 77:696-706, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. CHIRON – A new high resolution spectrometer for CTIO

    Directory of Open Access Journals (Sweden)

    Marcy G.W.

    2011-07-01

    Full Text Available Small telescopes can play an important role in the search for exoplanets because they offer an opportunity for high cadence observations that are not possible with large aperture telescopes. However, there is a shortage of high resolution spectrometers for precision Doppler planet searches. We report on an innovative design for CHIRON, an inexpensive spectrometer that we are building for the 1.5-m telescope at CTIO in Chile. The resolution will be R >80.000, the spectral format spanning 410 to 880 nm. The total throughput of the telescope and spectrometer will be better than 12%, comparable with the efficiency of state-of-the-art spectrometers. The design is driven by the requirements for precision Doppler searches for exoplanets using an iodine cell. The optical layout is a classical echelle with 140 mm beam size. The bench-mounted spectrometer will be fibre-fed followed by an image slicer. An apochromatic refractor is used as the camera. Image quality and throughput of the design are excellent over the full spectral range. Extensive use of commercially available components and avoidance of complicated custom optics are key for quick and resource-efficient implementation.

  19. Morphology of Shatsky Rise oceanic plateau from high resolution bathymetry

    Science.gov (United States)

    Zhang, Jinchang; Sager, William W.; Durkin, William J.

    2017-06-01

    Newly collected, high resolution multi-beam sonar data are combined with previous bathymetry data to produce an improved bathymetric map of Shatsky Rise oceanic plateau. Bathymetry data show that two massifs within Shatsky Rise are immense central volcanoes with gentle flank slopes declining from a central summit. Tamu Massif is a slightly elongated, dome-like volcanic edifice; Ori Massif is square shaped and smaller in area. Several down-to-basin normal faults are observed on the western flank of the massifs but they do not parallel the magnetic lineations, indicating that these faults are probably not related to spreading ridge faulting. Moreover, the faults are observed only on one side of the massifs, which is contrary to expectations from a mechanism of differential subsidence around the massif center. Multi-beam data show many small secondary cones with different shapes and sizes that are widely-distributed on Shatsky Rise massifs, which imply small late-stage magma sources scattered across the surface of the volcanoes in the form of lava flows or explosive volcanism. Erosional channels occur on the flanks of Shatsky Rise volcanoes due to mass wasting and display evidence of down-slope sediment movement. These channels are likely formed by sediments spalling off the edges of summit sediment cap.

  20. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems

    NARCIS (Netherlands)

    Berkhout, W.E.R.; Verheij, H.G.C.; Syriopoulos, K.; Li, G.; Sanderink, G.C.H.; van der Stelt, P.F.

    2007-01-01

    Aims: The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard

  1. Development of a High Resolution Analyzing Magnet System for Heavy Molecular Ions

    Science.gov (United States)

    Ghazaly, Mohamed O. A. El; Dehnel, Morgan; Defrance, Pierre

    At the King Abdulaziz City for Science and Technology (KACST, Saudi Arabia), a versatile ion-beam injector was constructed to provide the electrostatic storage ring with the required high-quality ion beams. In order to remove the ambiguity over the ion mass due to the exclusive application of electric fields in the set-up, the injector is being equipped with a high resolution mass analyzing magnet. A high resolution Analyzing Magnet System has been designed to provide a singly-charged ion beam of kinetic energy up to 50 keV, mass up to 1500 Amu, and with the mass resolution fixed to Δm/m =1:1500. The system includes specific entrance and exit slits, designed to sustain the required mass resolution. Furthermore, specific focusing and shaping optics have been added upstream and downstream the system, in order to monitor and adapt the shape of the ion beam at the entrance and exit of the system, respectively. The present paper gives an overview on the design of this mass analyzing magnet system together with the upstream/downstream adapting optics.

  2. Thermal problems on high flux beam lines

    Science.gov (United States)

    Avery, Robert T.

    1984-05-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler beam line VI [1] now nearing operation will be able to provide up to ˜ 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 m from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2. Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2) and is comparable to that if welding torches. Clearly, cooling and configuration are of critical importance. Configurations for the first mask, the movable mask and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on the heating of crystals and mirrors is also presented. For the future, many additional intense wiggler/undulator beam lines are contemplated at several storage rings. The design of these beamlines would be enhanced by faster and more accurate computational techniques. LBL is developing a computer code which will be capable of giving photon power densities onto impinged surfaces for a wide range of source and beam line parameters. These include electron beam energy, current, emittance and orbit deviations; wiggler/undulator length, period and magnetic field; photon energy and angular distribution; reflection/absorption at intermediate impinged surfaces; defining apertures and focusing by mirrors. Three-dimensional computer programs for temperature, stress and strain have been available for some years, but "user friendly" versions are being sought. Other items to pursue are also suggested.

  3. Classification of High Spatial Resolution, Hyperspectral ...

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  4. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  5. High resolution color band pyrometer ratioing

    Science.gov (United States)

    Bickler, Donald B. (Inventor); Henry, Paul K. (Inventor); LoGiurato, D. Daniel (Inventor)

    1989-01-01

    The sensing head of a two-color band ratioing pyrometer of a known type using a fiber optic cable to couple radiation to dual detector photodiodes is improved to have high spatial resolution by focusing the radiation received through an objective lens (i.e., by focusing the image of a target area) onto an opaque sheet spaced in front of the input end of the fiber optic cable. A two-mil hole in that sheet then passes radiation to the input end of the cable. The detector has two channels, one for each color band, with an electronic-chopper stabilized current amplifier as the input stage followed by an electronic-chopper stabilized voltage amplifier.

  6. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný

    2007-01-01

    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  7. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  8. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  9. High-Resolution Transcriptome of Human Macrophages

    Science.gov (United States)

    Xue, Jia; Staratschek-Jox, Andrea; Vorholt, Daniela; Krebs, Wolfgang; Sommer, Daniel; Sander, Jil; Mertens, Christina; Nino-Castro, Andrea; Schmidt, Susanne V.; Schultze, Joachim L.

    2012-01-01

    Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq) of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like) and alternative (M2-like) polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7) as well as M2-associated (CD1a, CD1b, CD93, CD226) cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease. PMID:23029029

  10. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  11. High Current Beam Transport to SIS18

    CERN Document Server

    Richter, S; Dahl, L; Glatz, J; Groening, L; Yaramishev, S

    2004-01-01

    The optimized transversal and longitudinal matching of space charged dominated ion beams to SIS18 is essential for a loss free injection. This paper focuses on the beam dynamics in the transfer line (TK) from the post-stripper accelerator to the SIS18. Transverse beam emittance measurements at different positions along the TK were done. Especially, the different foil stripping modes were investigated. A longitudinal emittance measurement set-up was commissioned at the entry to the TK. It is used extensively to tune all the rebunchers along the UNILAC. An addition, a test bench is in use for measurements of longitudinal bunch profiles, which enables to monitor for the final debunching to SIS18. Multi particle simulations by means of PARMILA allow a detailed analysis of experimental results for different ion currents.

  12. Energy composition of high-energy neutral beams on the COMPASS tokamak

    Directory of Open Access Journals (Sweden)

    Mitosinkova Klara

    2016-12-01

    Full Text Available The COMPASS tokamak is equipped with two identical neutral beam injectors (NBI for additional plasma heating. They provide a beam of deuterium atoms with a power of up to ~(2 × 300 kW. We show that the neutral beam is not monoenergetic but contains several energy components. An accurate knowledge of the neutral beam power in each individual energy component is essential for a detailed description of the beam- -plasma interaction and better understanding of the NBI heating processes in the COMPASS tokamak. This paper describes the determination of individual energy components in the neutral beam from intensities of the Doppler-shifted Dα lines, which are measured by a high-resolution spectrometer viewing the neutral beam-line at the exit of NBI. Furthermore, the divergence of beamlets escaping single aperture of the last accelerating grid is deduced from the width of the Doppler-shifted lines. Recently, one of the NBI systems was modified by the removal of the Faraday copper shield from the ion source. The comparison of the beam composition and the beamlet divergence before and after this modification is also presented.

  13. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction.

    Science.gov (United States)

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H; Franz, Hermann

    2015-05-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1's efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation.

  14. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  15. A High-Efficiency and High-Resolution Straw Tube Tracker for the LHCb Experiment

    CERN Document Server

    Tuning, Niels

    2005-01-01

    The Outer Tracker detector for the LHCb experiment at CERN will provide accurate position information on the charged particles in B-decays. It is crucial to accurately and efficiently detect these particles, in the high-density particle environment of the LHC. For this, the Outer Tracker is being constructed, consisting of $\\sim$ 55,000 straw tubes, covering in total an area of 360 m$^2$ of double layers. At present, approximately 90% of the detector has been constructed and fully tested. In addition, a beam test has been performed at DESY, Hamburg, to validate the final read-out electronics, in terms of efficiency, position resolution, noise and cross talk.

  16. A diamond 14 MeV neutron energy spectrometer with high energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, Takehiro, E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shin-ichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Watanabe, Hideyuki [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292 (Japan)

    2016-02-15

    A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the {sup 12}C(n, α){sup 9}Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported.

  17. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  18. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  19. High intensity ion beams in rf undulator linac

    Directory of Open Access Journals (Sweden)

    E. S. Masunov

    2008-07-01

    Full Text Available The possibility of using a radio frequency undulator field to accelerate a high intensity ion beam in a linac is discussed. Such an accelerator can be realized using the periodical interdigital H-type resonator structure. The accelerating force is produced by an electric field which is a combination of two or more spatial harmonics, none of them being synchronous with the ion beam. The value of this force is proportional to the squared charge. The equations of motion in Hamiltonian form are derived by means of smooth approximation. The analysis of the 3D effective potential function allows finding the conditions of the beam focusing and acceleration. Two ways to increase ion beam intensity are considered: (i to enlarge beam cross section; (ii to neutralize the beam space charge by accelerating ions with opposite charge signs within the same bunch. The basic results are confirmed by a numerical simulation.

  20. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  1. High purity pion beam at TRIUMF

    Science.gov (United States)

    Aguilar-Arevalo, A.; Blecher, M.; Bryman, D. A.; Comfort, J.; Doornbos, J.; Doria, L.; Hussein, A.; Ito, N.; Kettell, S.; Kurchaninov, L.; Malbrunot, C.; Marshall, G. M.; Numao, T.; Poutissou, R.; Sher, A.; Walker, B.; Yamada, K.

    2009-10-01

    An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay π+→e+ν is also described.

  2. High Purity Pion Beam at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Kettell, S.; Kettell, S.; Aguilar-Arevalo, A.; Blecher, M.; Bryman, D.A.; Comfort, J.; Doornbos, J.; Doria, L.; Hussein, A.; Ito, N.; et al.

    2009-10-11

    An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay {pi}{sup +} {yields} e{sup +}{nu} is also described.

  3. High purity pion beam at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Blecher, M. [Physics Department, Virginia Tech., Blacksburg, VA 24061 (United States); Bryman, D.A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Comfort, J. [Arizona State University, Tempe, AZ 85287 (United States); Doornbos, J.; Doria, L. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Hussein, A. [University of Northern British Columbia, Prince George, BC, V2N 4Z9 (Canada); Ito, N. [Physics Department, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kettell, S. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Kurchaninov, L. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Malbrunot, C. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Marshall, G.M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Numao, T. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: toshio@triumf.ca; Poutissou, R.; Sher, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Walker, B. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yamada, K. [Physics Department, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2009-10-11

    An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay {pi}{sup +}{yields}e{sup +}{nu} is also described.

  4. Electron beam damage in high temperature polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Dayton Univ., OH (USA). Research Inst.); Adams, W.W. (Air Force Materials Lab., Wright-Patterson AFB, OH (USA))

    1990-01-01

    Electron microscopic studies of polymers are limited due to beam damage. Two concerns are the damage mechanism in a particular material, and the maximum dose for a material before damage effects are observed. From the knowledge of the dose required for damage to the polymer structure, optimum parameters for electron microscopy imaging can be determined. In the present study, electron beam damage of polymers has been quantified by monitoring changes in the diffraction intensity as a function of electron dose. The beam damage characteristics of the following polymers were studied: poly(p-phenylene benzobisthiazole) (PBZT); poly(p-phenylene benzobisoxazole) (PBO); poly(benzoxazole) (ABPBO); poly(benzimidazole) (ABPBI); poly(p-phenylene terephthalamide) (PPTA); and poly(aryl ether ether ketone) (PEEK). Previously published literature results on polyethylene (PE), polyoxymethylene (POM), nylon-6, poly(ethylene oxide) (PEO), PBZT, PPTA, PPX, iPS, poly(butylene terephthalate) (PBT), and poly(phenylene sulphide) (PPS) were reviewed. This study demonstrates the strong dependence of the electron beam resistivity of a polymer on its thermal stability/melt temperature. (author).

  5. High-energy, high-resolution x-ray imaging for metallic cultural heritages

    Directory of Open Access Journals (Sweden)

    Masato Hoshino

    2017-10-01

    Full Text Available An x-ray micro-imaging technique to visualize high-resolution structure of cultural heritages made of iron or copper has been developed. It utilizes high-energy x-rays from a bending magnet at the SPring-8 synchrotron radiation facility. A white x-ray beam was attenuated by 0.5 mm tungsten and 2.0 mm lead absorbers resulting in the peak energy of 200 keV. The tungsten absorber eliminated the photon energy peak below the absorption edge of lead. A sample was rotated over 180 degrees in 500 s and projection images were continuously collected with an exposure time of 500 ms by an sCMOS camera equipped with a scintillator. Tomographic reconstruction of an ancient sword containing of both copper and iron was successfully obtained at a voxel size of 14.8 μm. Beam hardening was found to cause 2.5 % differences in density in a reconstructed image of a homogeneous stainless-steel rod. Ring artefacts were reduced by continuously moving the absorbers. This work demonstrates feasibility of high-energy, high-resolution imaging at a synchrotron beamline which may be generally useful for inspecting metallic objects.

  6. High-energy, high-resolution x-ray imaging for metallic cultural heritages

    Science.gov (United States)

    Hoshino, Masato; Uesugi, Kentaro; Shikaku, Ryuji; Yagi, Naoto

    2017-10-01

    An x-ray micro-imaging technique to visualize high-resolution structure of cultural heritages made of iron or copper has been developed. It utilizes high-energy x-rays from a bending magnet at the SPring-8 synchrotron radiation facility. A white x-ray beam was attenuated by 0.5 mm tungsten and 2.0 mm lead absorbers resulting in the peak energy of 200 keV. The tungsten absorber eliminated the photon energy peak below the absorption edge of lead. A sample was rotated over 180 degrees in 500 s and projection images were continuously collected with an exposure time of 500 ms by an sCMOS camera equipped with a scintillator. Tomographic reconstruction of an ancient sword containing of both copper and iron was successfully obtained at a voxel size of 14.8 μm. Beam hardening was found to cause 2.5 % differences in density in a reconstructed image of a homogeneous stainless-steel rod. Ring artefacts were reduced by continuously moving the absorbers. This work demonstrates feasibility of high-energy, high-resolution imaging at a synchrotron beamline which may be generally useful for inspecting metallic objects.

  7. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  8. High resolution surface plasmon imaging of nanoparticles

    Science.gov (United States)

    Berguiga, Lotfi; Roland, Thibault; Fahys, Audrey; Elezgaray, Juan; Argoul, Françoise

    2010-05-01

    We report a technique of surface plasmon resonance imaging (SPRi) called SSPM (Scanning Surface Plasmon Microscopy) which pushes down the resolution limit to sub-micronic scales. To confirm the sensitivity and resolution of this non labeling microscopy we show images of gold and dielectric nanoparticules detected in air. The contrast mechanism is discussed versus the defocusing and versus the nature of the particules.

  9. Characterization of the New n_TOF Neutron Beam: Fluence, Profile and Resolution

    CERN Document Server

    Guerrero, C; Perkowski, J; Andriamonje, S; Carrapico, C; Moinul, M; Vannini, G; Quesada, J M; Harrisopulos, S; Milazzo, P M; Berthier, B; Lozano, M; Krticka, M; Domingo-Pardo, C; Nolte, R; Chiaveri, E; Jericha, E; Ferrari, A; Massimi, C; Giubrone, G; Avrigeanu, V; Martinez, T; Andrzejewski, J; Karadimos, D; Mengoni, A; Mendoza, E; Ganesan, S; Vlachoudis, V; Praena, J; Becares, V; Cortes, G; Variale, V; Quinones, J; Calvino, F; Kappeler, F; Gunsing, F; Gramegna, F; Colonna, N; Marrone, S; Pavlik, A; Berthoumieux, E; Paradela, C; Mastinu, P F; Vaz, P; Tassan-Got, L; Kadi, Y; Tarrio, D; Cano-Ott, D; Brugger, M; Wallner, A; Audouin, L; Fernandez-Ordonez, M; Sarmento, R; Becvar, F; Goncalves, I F; Martin-Fuertes, F; Cerutti, F; Pina, G; Mosconi, M; Tagliente, G; Duran, I; Ioannides, K; Weiss, C; Mirea, M; Gomez-Hornillos, M B; Vlastou, R; Calviani, M; Lederer, C; Gonzalez-Romero, E; Marganiec, J; Lebbos, E; Leeb, H; Heil, M; Dillmann, I; Tain, J L; Belloni, F

    2011-01-01

    After a halt of four years, the n\\_TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and efficient cooling. The first measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated fission chambers, the n\\_TOF Silicon Monitor, a MicroMegas detector with (10)B and (235)U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron fluence. The spatial profile of the beam has been studied with a specially designed ``X-Y{''} MicroMegas which provided a 2D image of the beam as a function of neutron energy. Both properties have been compared with simulations performed. with the FLUKA code. The characterization of the resolution function is based on results from simulations which have been verified by the study of narrow capture...

  10. The High Time Resolution Radio Sky

    Science.gov (United States)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  11. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.

    Science.gov (United States)

    Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H

    2017-01-01

    Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the  primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.

  12. High Spectral Resolution Lidar (HSRL) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-04-01

    High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angular field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.

  13. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  14. High spatial resolution probes for neurobiology applications

    Science.gov (United States)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  15. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  16. Beam Delivery Systems For High Power Lasers

    Science.gov (United States)

    Hohberg, G.

    1986-10-01

    For materials processing with lasers, beam delivery systems are necessary for directing the radiation from the laser head to the working point on the workpiece. The more new fields of application are assumed by the laser, the greater the need for beam delivery systems which have been appropriately designed to meet the requirements of the task to be performed. Depending on the task on hand the appropriate design may be a fixed pipe with a focussing lens at its end or a six-axis articulated arm. This paper will describe the design principles and their optical and mechanical properties. The discussion of the advantages and disadvantages may be of some help in choosing an adequate delivery system.

  17. High-resolution fast ion microscopy of single whole biological cells

    Science.gov (United States)

    Bettiol, Andrew A.; Mi, Zhaohong; Watt, Frank

    2016-12-01

    High-resolution microscopy techniques have become an essential tool in both biological and biomedical sciences, enabling the visualization of biological processes at cellular and subcellular levels. For many years, these imaging techniques utilized conventional optical microscopes including those with confocal facilities. However, the spatial resolutions achieved were largely limited to around 200 nm, as determined by the diffraction of light. To overcome this diffraction barrier, considerable scientific and technological effort has resulted in the development of super-resolution optical-based techniques, scanning probe microscopies, and also techniques utilizing charged particles (e.g., energetic electrons and ions) or high-energy photons (e.g., X-ray), which exhibit much shorter de Broglie wavelengths. Among the charged particle techniques, those utilizing mega-electron-volt (MeV) ion beams appear to have unique advantages primarily because MeV ions can penetrate through several microns of biological tissue (e.g., whole cells) with little deflection in their trajectories, and hence spatial resolutions are maintained while traversing the sample. Recently, we have witnessed the significant development of MeV ion beam focusing systems in reducing beam dimensions well below 100 nm, such that single whole cell imaging at 20 nm spatial resolutions is now possible. In this review, two super resolution imaging modalities that utilize MeV highly focused ion beams are discussed: Scanning Transmission Ion Microscopy (STIM), which images the areal density of cells and gives an insight into the cellular structure, and Proton/Helium-ion Induced Fluorescence Microcopy (P/HeIFM), which images the fluorescence emission of fluorescent markers and probes used as labels within the cells. This review hopes to demonstrate the potential of MeV ion microscopy, which is still in its infancy, and describe the simultaneous use of STIM and P/HeIFM as a new and powerful multifaceted

  18. Generation of High Quality Laser Accelerated Ion Beams

    OpenAIRE

    Esirkepov, T. Zh.; Bulanov, S. V.; Nishihara, K.; Tajima, T.; Pegoraro, F.; Khoroshkov, V. S.; Mima, K.; Daido, H.; Kato, Y.; Kitagawa, Y.; Nagai, K.; Sakabe, S.

    2002-01-01

    In order to achieve a high quality, i. e. monoergetic, intense ion beam, we propose the use of a double layer target. The first layer, at the target front, consists of high-Z atoms, while the second (rear) layer is a thin coating of low-Z atoms. The high quality proton beams from the double layer target, irradiated by an ultra-intense laser pulse, are demonstrated with three dimensional Particle-in-Cell simulations.

  19. High-resolution and wide range displacement measurement based on planar grating

    Science.gov (United States)

    Lin, Jie; Guan, Jian; Wen, Feng; Tan, Jiubin

    2017-12-01

    High/ultra-precision motion measurements for precision translation stages are highly desired in modern manufacturing systems and instruments. In this work, we introduce a wide range three-axis grating encoder with nanometric resolution, which can measure the x-, y- and z-axial translational motions of a stage simultaneously. The grating encoder is composed of a reflective-type planar scale grating with a period of 8 μm and an optical reading head. A planar reference grating, which is the same as the planar scale grating except the length and width, is employed in the optical reading head. The x- and y- directional ±1st order diffractive beams of the planar scale grating interfere with the corresponding diffractive beams of the planar reference grating, forming the measurement signals. The x- and y- directional ±1st order diffractive beams of the two planar gratings propagate against their original incident path, working as the autocollimatic diffractive beams. Therefore, the z-axial measurement range of the proposed grating encoder is greatly enhanced. The x- and y- axial measurement ranges depend on the size of the planar scale grating. To make the grating encoder more compact, a double grating beam-splitting (DGBS) unit and two diffractive optical elements (DOEs) are introduced. The experimental results indicate that the z-axial displacement resolution is as high as 4 nm with an electronic data division card of 80 segments developed by our lab.

  20. Design alternatives for beam halo monitors in high intensity accelerators

    CERN Document Server

    Braun, H; Corsini, R; Lefèvre, T; Schulte, Daniel; Tecker, F A; Welsch, C P

    2005-01-01

    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Optical transition radiation (OTR) provides an interesting opportunity for linear real-time measurements of the transverse beam profile with a resolution which has been so far at best in the some μm range. However, the dynamic range of standard OTR systems is typically limited and needs to be improved for its application for halo measurements. In this contribution, the existing OTR system as it is installed in the CLIC test facility (CTF3) is analyzed and the contribution of each component to the final image quality discussed. Finally, possible halo measurement techniques based on OTR are pres...

  1. Fundamental constants and high-resolution spectroscopy

    Science.gov (United States)

    Bonifacio, P.; Rahmani, H.; Whitmore, J. B.; Wendt, M.; Centurion, M.; Molaro, P.; Srianand, R.; Murphy, M. T.; Petitjean, P.; Agafonova, I. I.; D'Odorico, S.; Evans, T. M.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Reimers, D.; Vladilo, G.

    2014-01-01

    Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution ({R ≈ 60 000}) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα/α is obtained for the absorber at z_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3± 2.4_stat ± 1.0_sys ppm if Al II λ 1670 Å and three Fe II transitions are used, and +1.1 ± 2.6_stat ppm in a slightly different analysis with only Fe II transitions used. This is one of the tightest bounds on α-variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2-5.4)±1.7 ppm depending on dipole model used and this constraint of Δα/α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_abs ≈ 2.4018 damped Lyα system

  2. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  3. Single sensor processing to obtain high resolution color component signals

    Science.gov (United States)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  4. High resolution tomography of objects with access to a single side

    Energy Technology Data Exchange (ETDEWEB)

    Thoe, R.S.

    1993-03-24

    The author is developing a technique which will enable one to obtain high-contrast, high-spatial resolution, three-dimensional images in opaque objects. The only constraint will be the radiation source and detector(s) will be located on the same side of the object. The goal is to obtain images with a spatial resolution of {approximately}1 mm at depths of 10 mm and {approximately}3 mm at depths of 30 mm in materials of moderate density (brass, steel, etc.). The author`s technique uses a highly-collimated beam of monochromatic gamma rays and a slit collimated high-resolution, high-efficiency, coaxial germanium spectrometer. If the geometry is well known, the spectrum of Compton scattered radiation can be used to map out the density as a function of depth. By scanning the object in two dimensions, a full three-dimensional image of the electron density can be reconstructed. The resolution is dependent on the incident beam collimation and the energy resolution of the spectrometer. For his system, the author anticipates a resolution of about 1 mm{sup 3}. The apparatus, reconstruction algorithms and current data verifying his predictions are presented here. Also included are the details on how the system can be modified to increase the efficiency by over two orders of magnitude. This system will have several advantages over conventional transmission radiographic and tomographic systems: (1) It requires the use of a high specific intensity isotopic source of modest activity (< 100 mCi). (2) It requires only a single high-resolution spectrometer used in conjunction with an array of low-resolution detectors (all readily available). (3) It allows for the recording of three-dimensional images of object even though both detector and source are located on the same side of the object.

  5. Active beam integrator for high power coherent lasers

    Energy Technology Data Exchange (ETDEWEB)

    Laguarta, F.; Armengol, J.; Vega, F.; Lupon, N. [Univ. Politecnica de Catalunya, Terrassa (Spain). Dept. d`Optica i Optometria

    1996-12-31

    In laser materials processing applications it is often necessary to work with uniform intensity distributions. This goal is quite difficult to achieve when dealing with high power laser beams, and becomes critical for a successful application involving surface heat treatment of non-metallic materials. The authors have designed and tested a very simple beam shaper for transforming the initial intensity distribution of a CO{sub 2} laser beam mode into a more uniform intensity profile. The beam shaper is a two-faceted mirror for active integration of high power coherent laser beams. After reflection in the faceted mirror, a TEM00 or TEM01 CO{sub 2} laser beam is divided into two beamlets that overlap to give a more uniform intensity distribution. A sharp interference pattern due to the high spatial coherence of the incident beam appears. This interference pattern is actively integrated by a high-frequency longitudinal displacement of one of the facets. This provides a change in the relative phase of the two beamlets, and consequently the interference pattern vibrates and its contribution to the intensity distribution averages out. When sweeping this distribution over a sample, a uniform amount of energy is deposited at every point of its surface. It must be emphasized that unlike multifaceted mirrors, the two-facet integrator may provide uniform intensity profiles over any working distance. Finally, as in other integration devices an imaging system may be used to obtain a spot of the shape and the size desired for a particular application.

  6. Generation of runaway electron beams in high-pressure nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh

    2017-07-01

    In this paper the results of experimental studies of the amplitude-temporal characteristics of a runaway electron beam, as well as breakdown voltage in nitrogen are presented. The voltage pulses with the amplitude in incident wave ≈120 kV and the rise time of ≈0.3 ns was used. The supershort avalanche electron beam (SAEB) was detected by a collector behind the flat anode. The amplitude-time characteristics of the voltage and SAEB current were studied with subnanosecond time resolution. The maximum pressure at which a SAEB is detectable by collector was ∼1 MPa. This pressure increases with decreasing the voltage rise time. The waveforms of the discharge and runaway electron beam currents was synchronized with the voltage pulses. The mechanism of the runaway electron generation in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  7. High resolution CT findings of pseudoalveolar sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Eun; Park, Jun Gyun; Choe, Kyu Ok; Kim, Sang Jin [Yonsei University College of Medicine, Seoul (Korea, Republic of); Ryu, Young Hoon; Im, Jung Gi [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Soo [Sungkunkwan University College of Medicine, Seoul (Korea, Republic of); Song, Koun Sik [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Hyae Young [National Cancer Centar, Seoul (Korea, Republic of)

    2002-08-01

    To determine the specific high-resolution CT features of sarcoidosis in which the observed pattern is predominantly pseudoalveolar. We retrospectively reviewed the HRCT findings in 15 cases in which chest radiography demonstrated pseudoalveolar consolidation. In all 15, sarcoidosis was pathologically proven. The distribution and characterization of the following CT features was meticulously scrutinized: distribution and characterization of pseudoalveolar lesions, air-bronchograms, micronodules, thickening of bronchovascular bundles and interlobular septa, lung distortion, ground-glass opacities and combined hilar and mediastinal lymphadenopathy. Follow-up CT scans were available in three cases after corticosteroid administration. Between one and 12 (mean, 5.6) pseudoalveolar lesions appeared as dense homogeneous or inhomogeneous opacities 1-4.5 cm in diameter and with an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles, with mainly bilateral distribution (n=14, 93%). An air-bronchogram was observed in ten cases. Micronodules were observed at the periphery of the lesion or surrounding lung, which along with a thickened bronchovascular bundle was a consistent feature in all cases. Additional CT features included hilar and mediastinal lymphadenopathy (n=14, 93%), thickened interlobular septa (n=12, 80%), and ground-glass opacity (n=10, 67%). Lung distortion was noted in only one case (7%). After steroid administration pseudoalveolar lesions decreased in number and size in all three cases in which follow-up CT was available. The consistent HRCT features of pseudoalveolar sarcoidosis are bilateral multifocal dense homogenous or inhomogenous opacity and an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles. Micronodules are present at the periphery of the lesion or surrounding lung. The features are reversible administration.

  8. High time-resolution sprite observations

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; McHarg, G. G.

    2007-12-01

    Imaging sprites at 10,000 fps have revealed new details about their temporal development. TV observations show a highly structured central body with downward tendrils and upward branches. But rather than being leaders, as suggested by the long streaks in the TV recordings, tendrils and branches are actually formed by spatially compact streamer heads moving at velocities up to 0.3 c. In an individual sprite event the downward moving streamer heads start first forming the tendrils; later, and from a lower altitude and from existing luminous sprite structures, upward moving streamer heads may appear to form the branches. If there are no upward moving streamer heads the event would be classified as a C-sprite, otherwise it would be a carrot sprite. Following the streamer head activity we see afterglow in which little or no temporal and spatial activity is present. The streamer heads are very bright and they appear to be point sources, i.e. their spatial dimensions are less than our 100-200 m image resolution. Streamer head modeling indicates a scale size of ~25 m in which case the brightness would be in the range 1-100 GR. Other models predict volume emission rates leading to a streamer head spatial scale size in the 10 to 100 m range. Our observations conclusively show the downward and upward propagating streamer heads to be separated in time and space. This is in contrast to a number of models in which both down and up going streamer heads emanates from the origin of the process. We frequently see old sprites re-appear in response to new activity suggesting that sprite activity leaves some imprint on the background atmosphere. Given the very large brightness of the streamer heads it would not be surprising if sprite activity initiates chemical processes that could locally affect the composition of the atmosphere, but whether this affects the mesosphere on a larger scale remains uncertain.

  9. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  10. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  11. High energy density plasma science with an ultrarelativistic electron beam

    Science.gov (United States)

    Joshi, C.; Blue, B.; Clayton, C. E.; Dodd, E.; Huang, C.; Marsh, K. A.; Mori, W. B.; Wang, S.; Hogan, M. J.; O'Connell, C.; Siemann, R.; Watz, D.; Muggli, P.; Katsouleas, T.; Lee, S.

    2002-05-01

    An intense, high-energy electron or positron beam can have focused intensities rivaling those of today's most powerful laser beams. For example, the 5 ps (full-width, half-maximum), 50 GeV beam at the Stanford Linear Accelerator Center (SLAC) at 1 kA and focused to a 3 micron rms spot size gives intensities of >1020 W/cm-2 at a repetition rate of >10 Hz. Unlike a ps or fs laser pulse which interacts with the surface of a solid target, the particle beam can readily tunnel through tens of cm of steel. However, the same particle beam can be manipulated quite effectively by a plasma that is a million times less dense than air! This is because of the incredibly strong collective fields induced in the plasma by the Coulomb force of the beam. The collective fields in turn react back onto the beam leading to many clearly observable phenomena. The beam paraticles can be: (1) Deflected leading to focusing, defocusing, or even steering of the beam; (2) undulated causing the emission of spontaneous betatron x-ray radiation and; (3) accelerated or decelerated by the plasma fields. Using the 28.5 GeV electron beam from the SLAC linac a series of experiments have been carried out that demonstrate clearly many of the above mentioned effects. The results can be compared with theoretical predictions and with two-dimensional and three-dimensional, one-to-one, particle-in-cell code simulations. These phenomena may have practical applications in future technologies including optical elements in particle beam lines, synchrotron light sources, and ultrahigh gradient accelerators.

  12. MULTIPULSE - high resolution and high power in one TDEM system

    Science.gov (United States)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  13. High Resolution Sensor for Nuclear Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  14. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  15. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  16. The application of optical resolution enhancement technology and e-beam direct writing technology in microfabrication

    Science.gov (United States)

    Qiu, Yulin; Chen, Baoqin; Liu, Ming; Xu, Qiuxia; Xue, Lijun; Ren, Liming; Hu, Yong; Long, Shibing; Lu, Jing; Kang, Xiaohui; Li, Ling; Li, Jinru; Tang, Yueke

    2005-01-01

    The Micro-processing & Nano-technology Laboratory at the Institute of Microelectronics, Chinese Academy of Sciences (CAS), is equipped with a GCA 3600F PG&3696, a JBX 6AII & JBX 5000LS EB, and an ETEC MEBES 4700S EB. For a long time we have been engaged in the research and manufacture on Optical Resolution Enhancement Technology (RET) and E-Beam Direct Writing Technology. In this paper the following technologies will be described: PSM, OPC EBDW,EPC,Match & Mixed Lithography technology. Through the application of RET in optical lithography system, we completed the 0.2 um pattern with the g line and I line light source, which is the necessary preparation for 100nm node with 193nm light source. By means of match & mixed lithography and nanofabrication technology, 20nm-50nm gate CMOS transistor and 100nm gate HEMT are successfully developed.

  17. High-Voltage, High-Impedance Ion Beam Production

    Science.gov (United States)

    2009-06-01

    collaboration with Tim Renk and Victor Harper- Slaboszewicz of Sandia National Laboratories. Joint experiments on Mercury are planned for the future...Young, "Pinched-Beam Ion Diode Scaling on the Aurora Pulser," J. Appl. Phys. 53, 8543 (1982). [8] T. J. Renk , et al., "Generation of Ion Beams in

  18. Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths.

    Science.gov (United States)

    Yan, Changchun; Zhang, Dao Hua; Zhang, Yuan; Li, Dongdong; Fiddy, M A

    2010-07-05

    We report beam splitting in a metamaterial composed of a silver-alumina composite covered by a layer of chromium containing one slit. By simulating distributions of energy flow in the metamaterial for H-polarized waves, we find that the beam splitting occurs when the width of the slit is shorter than the wavelength, which is conducive to making a beam splitter in sub-wavelength photonic devices. We also find that the metamaterial possesses deep sub-wavelength resolution capabilities in the far field when there are two slits and the central silver layer is at least 36 nm in thickness, which has potential applications in superresolution imaging.

  19. Creating a collimated ultrasound beam in highly attenuating fluids.

    Science.gov (United States)

    Raeymaekers, Bart; Pantea, Cristian; Sinha, Dipen N

    2012-04-01

    We have devised a method, based on a parametric array concept, to create a low-frequency (300-500 kHz) collimated ultrasound beam in fluids highly attenuating to sound. This collimated beam serves as the basis for designing an ultrasound visualization system that can be used in the oil exploration industry for down-hole imaging in drilling fluids. We present the results of two different approaches to generating a collimated beam in three types of highly attenuating drilling mud. In the first approach, the drilling mud itself was used as a nonlinear mixing medium to create a parametric array. However, the short absorption length in mud limits the mixing length and, consequently, the resulting beam is weak and broad. In the second improved approach, the beam generation process was confined to a separate "frequency mixing tube" that contained an acoustically non-linear, low attenuation medium (e.g., water) that allowed establishing a usable parametric array in the mixing tube. A low-frequency collimated beam was thus created prior to its propagation into the drilling fluid. Using the latter technique, the penetration depth of the low frequency ultrasound beam in the drilling fluid was significantly extended. We also present measurements of acoustic nonlinearity in various types of drilling mud. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. High resolution, high speed, long working distance, large field of view confocal fluorescence microscope.

    Science.gov (United States)

    Pacheco, Shaun; Wang, Chengliang; Chawla, Monica K; Nguyen, Minhkhoi; Baggett, Brend K; Utzinger, Urs; Barnes, Carol A; Liang, Rongguang

    2017-10-17

    Confocal fluorescence microscopy is often used in brain imaging experiments, however conventional confocal microscopes are limited in their field of view, working distance, and speed for high resolution imaging. We report here the development of a novel high resolution, high speed, long working distance, and large field of view confocal fluorescence microscope (H2L2-CFM) with the capability of multi-region and multifocal imaging. To demonstrate the concept, a 0.5 numerical aperture (NA) confocal fluorescence microscope is prototyped with a 3 mm × 3 mm field of view and 12 mm working distance, an array of 9 beams is scanned over the field of view in 9 different regions to speed up the acquisition time by a factor of 9. We test this custom designed confocal fluorescence microscope for future use with brain clarification methods to image large volumes of the brain at subcellular resolution. This multi-region and multi-spot imaging method can be used in other imaging modalities, such as multiphoton microscopes, and the field of view can be extended well beyond 12 mm × 12 mm.

  1. High Efficiency Transverse D. C. Electron Beams.

    Science.gov (United States)

    1984-10-01

    current for Ing a diffraction grating of 280 groves per millimeter. This each enra sl teruin :s indicated onl the left oif the figure prov ided at...moaio niII.i ineacflint MeTw:iI 6003 I(- I1IJL3limmm I i-i Ii t ciM~ pdl )oi’l ii)iioikiixc)1 pWIIpn;jOB. ,)r CyllteC’rIcI 0IIIW 1lllrieCl;ie ll)CIINlyILC...yield ly shown in Fig. 2 where the electron-beam-created plasma is cathode materials had weak spectra. The first five materials visible. The cathode face

  2. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  3. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  4. Investigation on Beam Dynamics Design of High-Intensity RFQs

    CERN Document Server

    Zhang, C

    2004-01-01

    Recently various potential uses of high-intensity beams bring new opportunities as well as challenges to RFQ accelerator research because of the new problems arising from the strong space-charge effects. Unconventional concepts of beam dynamics design, which surround the choice of basic parameters and the optimization of main dynamics parameters’ variation along the machine, are illustrated by the designing Peking University (PKU) Deuteron RFQ. An efficient tool of LANL RFQ Design Codes for beam dynamics simulation and analysis, RFQBAT, is introduced. Some quality criterions are also presented for evaluating design results.

  5. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  6. Beam monitor system for high-energy beam transportation at HIMAC

    CERN Document Server

    Torikoshi, M; Takada, E; Kanai, T; Yamada, S; Ogawa, H; Okumura, K; Narita, K; Ueda, K; Mizobata, M

    1999-01-01

    Heavy-Ion Medical Accelerator in Chiba (HIMAC) provides ion beams for radiotherapy of cancers and for other basic researches. High-energy beam transport lines deliver the beams to three treatment rooms and two experiment rooms with the aid of 41 beam monitor units. Each monitor unit consists of a wire grid as a profile monitor, or a combined unit in which the wire grid and a parallel plate ionization chamber are united for an additional measurement of a beam intensity. They are operated in a mixed gas of 80% Ar and 20% CO sub 2. The gas gain of the wire grid achieves about 8000 at an applied voltage of -2700 V. Dynamic ranges of the wire gird and the parallel plate ionization chamber were measured to be 8x10 sup 5 and 1x10 sup 6 in test using ion beams, respectively. A control system of these monitor units offers easy operation, so that operators are almost free from miss-operations. The monitor units are interlocked with a system which protects patients from the undesired irradiation. Five wire grids are use...

  7. High-brightness ultra-cold metastable neon-beam

    CERN Document Server

    Shimizu, Fujio

    2015-01-01

    This paper presents detailed characteristics of an ultra-cold bright metastable neon atomic beam which we have been using for atom-interferometric applications. The basis of the device is an atomic beam released from a magneto-optical trap (MOT) which is operated with a high intensity trapping laser, high magnetic quadrupole field, and large laser detuining. Mainly due to the complex structure of three dimensional magnetic field and laser beams, a bright small spot of atoms is formed near the center of the quadrupole magnetic field under an appropriate operating condition. We obtained the minimum trap diameter of 50 micron meter, the atomic density nearly 10^{13}cm^{-3}, and the atomic temperature slightly less than the Doppler limited temperature of 200 micro-K. By releasing trapped atoms we obtained an bright cold atomic beam which is not far from the collision limited atomic density.

  8. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  9. Label-free cellular structure imaging with 82 nm lateral resolution using an electron-beam excitation-assisted optical microscope.

    Science.gov (United States)

    Fukuta, Masahiro; Masuda, Yuriko; Inami, Wataru; Kawata, Yoshimasa

    2016-07-25

    We present label-free and high spatial-resolution imaging for specific cellular structures using an electron-beam excitation-assisted optical microscope (EXA microscope). Images of the actin filament and mitochondria of stained HeLa cells, obtained by fluorescence and EXA microscopy, were compared to identify cellular structures. Based on these results, we demonstrated the feasibility of identifying label-free cellular structures at a spatial resolution of 82 nm. Using numerical analysis, we calculated the imaging depth region and determined the spot size of a cathodoluminescent (CL) light source to be 83 nm at the membrane surface.

  10. Quantum interpolation for high-resolution sensing.

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  11. High-resolution in-source laser spectroscopy in perpendicular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.

  12. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, T., E-mail: yamaguti@phy.saitama-u.ac.jp [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Suzaki, F. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Izumikawa, T. [RI Center, Niigata University, Niigata 951-8510 (Japan); Miyazawa, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Morimoto, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Suzuki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Tokanai, F. [Department of Physics, Yamagata University, Yamagata 990-8560 (Japan); Furuki, H.; Ichihashi, N.; Ichikawa, C. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Kuboki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Momota, S. [School of Environmental Science and Engineering, Kochi University of Technology, Kochi 782-8502 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Nagashima, M.; Nakamura, Y. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Nishikiori, R.; Niwa, T. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Ohtsubo, T. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); and others

    2013-12-15

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments.

  13. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    Science.gov (United States)

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  14. πSPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes.

    Science.gov (United States)

    Theer, Patrick; Dragneva, Denitsa; Knop, Michael

    2016-09-13

    Light-sheet fluorescence microscopy (LSFM), also termed single plane illumination microscopy (SPIM), enables live cell fluorescence imaging with optical sectioning capabilities superior to confocal microscopy and without any out-of-focus exposure of the specimen. However, the need of two objective lenses, one for light-sheet illumination and one for imaging, imposes geometrical constraints that require LSFM setups to be adapted to the specific needs of different types of specimen in order to obtain optimal imaging conditions. Here we demonstrate the use of an oblique light-sheet configuration adapted to provide the highest possible Gaussian beam enabled resolution in LSFM. The oblique light-sheet configuration furthermore enables LSFM imaging at the surface of a cover slip, without the need of specific sample mounting. In addition, the system is compatible with simultaneous high NA wide-field epi-fluorescence imaging of the specimen contained in a glass-bottom cell culture dish. This prevents cumbersome sample mounting and enables rapid screening of large areas of the specimen followed by high-resolution LSFM imaging of selected cells. We demonstrate the application of this microscope for in toto imaging of endocytosis in yeast, showing for the first time imaging of all endocytic events of a given cell over a period of >5 minutes with sub-second resolution.

  15. Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Adriana; et al.

    2017-05-01

    Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.

  16. High resolution, high bandwidth global shutter CMOS area scan sensors

    Science.gov (United States)

    Faramarzpour, Naser; Sonder, Matthias; Li, Binqiao

    2013-10-01

    Global shuttering, sometimes also known as electronic shuttering, enables the use of CMOS sensors in a vast range of applications. Teledyne DALSA Global shutter sensors are able to integrate light synchronously across millions of pixels with microsecond accuracy. Teledyne DALSA offers 5 transistor global shutter pixels in variety of resolutions, pitches and noise and full-well combinations. One of the recent generations of these pixels is implemented in 12 mega pixel area scan device at 6 um pitch and that images up to 70 frames per second with 58 dB dynamic range. These square pixels include microlens and optional color filters. These sensors also offer exposure control, anti-blooming and high dynamic range operation by introduction of a drain and a PPD reset gate to the pixel. The state of the art sense node design of Teledyne DALSA's 5T pixel offers exceptional shutter rejection ratio. The architecture is consistent with the requirements to use stitching to achieve very large area scan devices. Parallel or serial digital output is provided on these sensors using on-chip, column-wise analog to digital converters. Flexible ADC bit depth combined with windowing (adjustable region of interest, ROI) allows these sensors to run with variety of resolution/bandwidth combinations. The low power, state of the art LVDS I/O technology allows for overall power consumptions of less than 2W at full performance conditions.

  17. High resolution IVEM tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Sedat, J.W.; Agard, D.A. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  18. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  19. Visualizing sediment dynamics through repeated high-resolution multibeam mapping

    Science.gov (United States)

    de Vries, J. J.; Greinert, J.; Maierhofer, T.

    2013-12-01

    Multibeam mapping has become a common method for mapping the seafloor in shallow and great water depths with different spatial resolutions depending on the system platform (ship-based, AUV- or ROV-based), the beam angle of the system itself, the survey speed, and the distance to the seafloor. Significant advances in system accuracy, processing power and new software make multibeam mapping a powerful tool for studying sediment dynamics in 4D through repeated surveys that are ideally linked to additional studies on currents and sediment load in the water column. The Texelstroom channel, which is part of the Marsdiep between the city of Den Helder and the island of Texel (North Holland, the Netherlands), has been investigated in such a way for many years using water depth estimates from an ADCP installed on a ferry shuttling 24 times a day between the mainland and the island. Since 2009, repeated multibeam surveys have been undertaken up to three times per year as part of a student course, revealing sediment dynamics in much more detail than could be previously seen with the water depth estimates from the ferry-based ADCP. In the Texelstroom channel, the water depth ranges from a few meters to 45 meters. In the highly variable bathymetry, a series of large, bended sand waves exist mainly perpendicular to the direction of the main current. The shape of the sand waves changes from asymmetrical to symmetrical depending on the time of year, with more symmetrical shapes in spring and summer. Perpendicular to the large sand waves, smaller ripples develop during autumn. In addition to these changes in sand wave characteristics, sand wave crests sometimes migrate more than 30m in two months with an average movement of half a meter per day. The migration direction changes during the year resulting in a non-constant back-and-forth movement of the large sand waves. These intra-annual variations are characterized by changes in the slope of the sand waves, variations in the

  20. High energy gain electron beam acceleration by 100TW laser

    Energy Technology Data Exchange (ETDEWEB)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment

    2001-10-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10{sup -5} was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6{pi} mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  1. Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ximan [Univ. of California, Berkeley, CA (United States)

    2006-05-18

    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography

  2. First measurements with new high-resolution gadolinium-GEM neutron detectors

    CERN Document Server

    Pfeiffer, Dorothea; Birch, Jens; Etxegarai, Maddi; Hall-Wilton, Richard; Höglund, Carina; Hultman, Lars; Llamas-Jansa, Isabel; Oliveri, Eraldo; Oksanen, Esko; Robinson, Linda; Ropelewski, Leszek; Schmidt, Susann; Streli, Christina; Thuiner, Patrik

    2016-05-17

    European Spallation Source instruments like the macromolecular diffractometer, NMX, require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The {\\mu}TPC analysis, proven to improve the spatial resolution in the case of $^{10}$B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with an estimated efficiency of 10% at a wavelength of 2 {\\AA} and a position resolution better than 350 {\\mu}m.

  3. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator ... observed by high-resolution electron microscopy in both ..... 1988 Nucl. Instrum. Meth. B34 228. Kato N 1992 J. Acta Crystallogr. A48 834. Kaur B, Bhat M, Licci F, Kumar R, Kotru P N and Bamzai K K. 2004 Nucl. Instrum. Meth ...

  4. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  5. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  6. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  7. On the Design of High Resolution Imaging Systems

    Science.gov (United States)

    Eckardt, A.; Reulke, R.

    2017-05-01

    The design of high-resolution systems is always a consideration of many parameters. Technological parameter of the imaging system, e.g. diameter of the imaging system, mass and power, as well as storage and data transfer, have an direct impact on spacecraft size and design. The paper describes the essential design parameters for the description of high-resolution systems.

  8. Towards high resolution data assimilation and ensemble forecasting

    NARCIS (Netherlands)

    Stappers, R.J.J.

    2013-01-01

    Due the increase in computational power of supercomputers the grid resolution of high resolution numerical weather prediction models is now reaching the 1 km scale. As a result, mesoscale processes related to high impact weather (such as deep convection) can now explicitly be resolved by the models.

  9. A muon trigger upgrade with high transverse momentum resolution for the ATLAS detector at the High-Luminosity LHC

    CERN Document Server

    Horii, Y; The ATLAS collaboration

    2014-01-01

    The Level-1 trigger for muons in ATLAS is based on trigger chambers (RPCs, TGCs) with excellent time resolution which are able to identify muons coming from a particular beam crossing. It is proposed to use precision tracking chambers (MDTs) for improving the transverse momentum resolution at the Level-1 trigger for the phase II of the LHC, the so-called High-Luminosity LHC. We present the new trigger algorithm and the architecture of the electronics as well as a prototype test. We demonstrate the performance for a transverse momentum threshold of 20 GeV using experimental data.

  10. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.; Schmitt, Thierry

    2017-04-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is entering its 3rd phase with operational portals providing access to marine data for bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities, complemented by checkpoint projects, analysing the fitness for purpose of data provision. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs from 27 European data providers from 15 countries. For areas without coverage use has been made of the latest GEBCO DTM. The catalogue services and the generated EMODnet DTM have been published at the dedicated EMODnet Bathymetry portal which includes a versatile DTM viewing service that also supports downloading in various formats. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM) as part of the third phase of EMODnet. This new project will continue gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry

  11. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  12. Beam focusing characteristics and alloying element effects on high-intensity electron beam welding

    Science.gov (United States)

    Wei, P. S.; Chow, Y. T.

    1992-01-01

    Effects of focusing characteristics of the beam as well as concentrations of a volatile alloying element in the workpiece on the shape of the cavity produced by a high-energy beam are systematically and quantitatively investigated. The energy flux of the focused energy beam is independently specified by the convergence angle, the energy distribution parameter at the focal spot, and the focal spot location relative to the workpiece surface. Energy flux at any cross section of the beam is a Gaussian distribution. The geometry of the cavity is determined by satisfying interfacial energy and momentum balances. By accounting for beam focusing characteristics, the cavity surface temperatures, depths of penetration, and cavity shapes are found to agree with experimental data. The opening diameter and depth of the cavity depend primarily upon the energy distribution parameter at the workpiece surface for a surface-focused weld t increase in the content of the volatile alloying element zinc in aluminum exhibits a pronounced influence on the shape of the cavity.

  13. Molecular beam sampling system with very high beam-to-background ratio: The rotating skimmer concept

    Science.gov (United States)

    Benedikt, J.; Ellerweg, D.; von Keudell, A.

    2009-05-01

    A novel method of reducing the background pressure in a vacuum system used for sampling a molecular beam from a high pressure region is presented. A triple differential pumping stage is constructed with a chopper with rotating skimmer within the first pumping stage, which serves effectively as a valve separating periodically the vacuum system from the ambient environment. The mass spectrometry measurement of the species in the molecular beam show an excellent beam-to-background ratio of 14 and a detection limit below 1 ppm. The potential of this method for detection of low density reactive species in atmospheric pressure plasmas is demonstrated for the detection of oxygen atoms generated in an atmospheric pressure microplasma source.

  14. Behaviour of advanced materials impacted by high energy particle beams

    Science.gov (United States)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

    2013-07-01

    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  15. Variable-resolution cone-beam computerized tomography with enhancement filtration compared with intraoral photostimulable phosphor radiography in detection of transverse root fractures in an in vitro model.

    Science.gov (United States)

    Wenzel, Ann; Haiter-Neto, Fransisco; Frydenberg, Morten; Kirkevang, Lise-Lotte

    2009-12-01

    The aim of this study was to compare the diagnostic accuracy of an intraoral photostimulable storage phosphor (PSP) plate system and cone-beam computerized tomography scanning (CBCT) for detection of experimentally induced transverse root fractures and to evaluate differences between original images and images enhanced with high-pass filters. Sixty-nine extracted human teeth, 34 with root fractures and 35 without, were examined under standardized conditions using an intraoral PSP system (Digora Optime; Soredex). The images were saved in original 8-bit format and in a version sharpened with a high-pass filter. The teeth were examined with CBCT (i-Cat; Imaging Sciences) in 2 resolutions: 0.125 mm and 0.25 mm voxel size. Original images were saved together with images enhanced with 2 high-pass filters, sharpen and angio-sharpen. Six observers scored the presence of a root fracture in all modalities in random order. Sensitivity, specificity, and accuracy [(true positives + true negatives)/all scores] were calculated for each modality and each observer. Differences were estimated by analyzing the binary data, assuming additive effects of observer and modality in a generalized linear model. High-resolution original CBCT images had higher sensitivity (P < .05) than lower-resolution images and PSP images (0.125 mm resolution 87%, 0.25 mm resolution 72%, and PSP 74%). Angio-sharpen-filtered images for both CBCT resolutions had higher sensitivities (P < .02) than the original images (0.125 mm resolution: 95% vs. 87%; 0.25 mm resolution: 81% vs. 72%). There was no significant difference between the lower-resolution CBCT and PSP images. Only small differences in specificity were seen between modalities, and accuracy was higher for high-resolution CBCT than for the other modalities (P < .03). High-resolution i-Cat CBCT images resulted in an increase in sensitivity without jeopardizing specificity for detection of transverse root fractures compared with lower-resolution CBCT

  16. The high spectral resolution (scanning) lidar (HSRL)

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  17. Multi-focus beam shaping of high power multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei

    2017-08-01

    Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.

  18. A high-resolution vehicle emission inventory for China

    Science.gov (United States)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  19. Test beam studies of the light yield, time and coordinate resolutions of scintillator strips with WLS fibers and SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab, Batavia IL (United States); Evdokimov, Valery [Institute for High Energy Physics, Protvino (Russian Federation); Lukić, Strahinja; Ujić, Predrag [Vinča Institute, University of Belgrade (Serbia)

    2017-03-11

    Prototype scintilator+WLS strips with SiPM readout for large muon detection systems were tested in the muon beam of the Fermilab Test Beam Facility. Light yield of up to 137 photoelectrons per muon per strip has been observed , as well as time resolution of 330 ps and position resolution along the strip of 5.4 cm.

  20. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F.

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  1. BEAM SCRAPING FOR LHC INJECTION: HIGH LEVEL APPLICATION DEVELOPMENT

    CERN Document Server

    LETNES, P A

    2008-01-01

    The Large Hadron Collider (LHC) at CERN (European Organization for Nuclear Research) will be the world's most powerful accelerator when it is commissioned during 2008. To operate the LHC, injection of very high intensity beams from the Super Proton Synchrotron (SPS) pre-accelerator is required. With intensities of more than 3 _ 1013 p=cycle, it is essential that there is virtually no beam halo present. Such particles can hit the LHC beam pipe, and may cause magnet quenches due to heating. Fast scrapers have been installed in the SPS to measure and remove any halo before the beam is extracted towards the LHC. Fast scrapers have been chosen because there is too little time available for beam cleaning with large collimators. The scraper hardware has been in place in the SPS ring for several years. A low level computer for controlling the scrapers is also in place. A high level control application was, however, not written at the time. The development of the missing high level control application is the subject o...

  2. High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow

    Science.gov (United States)

    Xu, Muchen; Kim, Chang-Jin ``Cj''

    2015-11-01

    The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).

  3. A high-resolution x-ray spectrometer for a kaon mass measurement

    Science.gov (United States)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  4. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  5. Transfer-printing of single DNA molecule arrays on graphene for high resolution electron imaging and analysis

    Science.gov (United States)

    Cerf, Aline; Alava, Thomas; Barton, Robert A.; Craighead, Harold G.

    2011-01-01

    Graphene represents the ultimate substrate for high-resolution transmission electron microscopy, but the deposition of biological samples on this highly hydrophobic material has until now been a challenge. We present a reliable method for depositing ordered arrays of individual elongated DNA molecules on single-layer graphene substrates for high resolution electron beam imaging and electron energy loss spectroscopy analysis. This method is a necessary step towards the observation of single elongated DNA molecules with single base spatial resolution to directly read genetic and epigenetic information. PMID:21919532

  6. Transfer-printing of single DNA molecule arrays on graphene for high-resolution electron imaging and analysis.

    Science.gov (United States)

    Cerf, Aline; Alava, Thomas; Barton, Robert A; Craighead, Harold G

    2011-10-12

    Graphene represents the ultimate substrate for high-resolution transmission electron microscopy, but the deposition of biological samples on this highly hydrophobic material has until now been a challenge. We present a reliable method for depositing ordered arrays of individual elongated DNA molecules on single-layer graphene substrates for high-resolution electron beam imaging and electron energy loss spectroscopy analysis. This method is a necessary step toward the observation of single elongated DNA molecules with single base spatial resolution to directly read genetic and epigenetic information.

  7. Resolution study of higher-order-mode-based beam position diagnostics using custom-built electronics in strongly coupled 3.9-GHz multi-cavity accelerating module

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Baboi, N.; Jones, R.M.; Eddy, N.

    2012-11-01

    Beam-excited higher order modes (HOMs) can provide remote diagnostics information of the beam position and cavity misalignment. In this paper we report on recent studies on the resolution with specially selected series of modes with custom-built electronics. This constitutes the first report of measurements of these cavities in which we obtained a resolution of 20 micron in beam offset. Details of the setup of the electronics and HOM measurements are provided.

  8. High-resolution interference with programmable classical incoherent light.

    Science.gov (United States)

    Zhang, Er-Feng; Liu, Wei-Tao; Chen, Ping-Xing

    2015-07-01

    A scheme of high-resolution interference with classical incoherent light is proposed. In this scheme, the classical incoherent light is programmable in the amplitude distribution and wavefront, and with the programmable classical incoherent light we improve the resolution of the interference pattern by a factor of 2 compared with the scheme by Erkmen [J. Opt. Soc. Am. A29, 782 (2012)JOAOD60740-323210.1364/JOSAA.29.000782]. Compared with other schemes for observing interference patterns, only single-pixel detection is needed in our proposal. Moreover, the high-resolution interference pattern can be inverted to obtain an image with better resolution compared with that of the scheme proposed by Erkmen. Furthermore, this scheme of high-resolution interference is verified in detail by theoretical analysis and numerical simulations.

  9. Studies of X-ray burst reactions with radioactive ion beams from RESOLUT

    Science.gov (United States)

    Blackmon, J. C.; Wiedenhöver, I.; Belarge, J.; Kuvin, S. A.; Anastasiou, M.; Baby, L. T.; Baker, J.; Colbert, K.; Deibel, C. M.; de Lucio, O.; Gardiner, H. E.; Gay, D. L.; Good, E.; Höflich, P.; Hood, A. A. D.; Keely, N.; Lai, J.; Laminack, A.; Linhardt, L. E.; Lighthall, J.; Macon, K. T.; Need, E.; Quails, N.; Rasco, B. C.; Rijal, N.; Volya, A.

    2018-01-01

    Reactions on certain proton-rich, radioactive nuclei have been shown to have a significant influence on X-ray bursts. We provide an overview of two recent measurements of important X-ray burst reactions using in-flight radioactive ion beams from the RESOLUT facility at the J. D. Fox Superconducting Accelerator Laboratory at Florida State University. The 17F(d,n)18Ne reaction was measured, and Asymptotic Normalization Coefficients were extracted for bound states in 18Ne that determine the direct-capture cross section dominating the 17F(p,γ)18Ne reaction rate for T≲ 0.45 GK. Unbound resonant states were also studied, and the single-particle strength for the 4.523-MeV (3+) state was found to be consistent with previous results. The 19Ne(d,n)20Na proton transfer reaction was used to study resonances in the 19Ne(p,γ)20Na reaction. The most important 2.65-MeV state in 20Na was observed to decay by proton emission to both the ground and first-excited states in 19Ne, providing strong evidence for a 3+ spin assignment and indicating that proton capture on the thermally-populated first-excited state in 19Ne is an important contributor to the 19Ne(p,γ)20Na reaction rate.

  10. Studies of X-ray burst reactions with radioactive ion beams from RESOLUT

    Directory of Open Access Journals (Sweden)

    Blackmon J. C.

    2017-01-01

    Full Text Available Reactions on certain proton-rich, radioactive nuclei have been shown to have a significant influence on X-ray bursts. We provide an overview of two recent measurements of important X-ray burst reactions using in-flight radioactive ion beams from the RESOLUT facility at the J. D. Fox Superconducting Accelerator Laboratory at Florida State University. The 17F(d,n18Ne reaction was measured, and Asymptotic Normalization Coefficients were extracted for bound states in 18Ne that determine the direct-capture cross section dominating the 17F(p,γ18Ne reaction rate for T≲ 0.45 GK. Unbound resonant states were also studied, and the single-particle strength for the 4.523-MeV (3+ state was found to be consistent with previous results. The 19Ne(d,n20Na proton transfer reaction was used to study resonances in the 19Ne(p,γ20Na reaction. The most important 2.65-MeV state in 20Na was observed to decay by proton emission to both the ground and first-excited states in 19Ne, providing strong evidence for a 3+ spin assignment and indicating that proton capture on the thermally-populated first-excited state in 19Ne is an important contributor to the 19Ne(p,γ20Na reaction rate.

  11. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  12. Achieving High Resolution Timer Events in Virtualized Environment.

    Science.gov (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  13. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  14. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  15. A high-resolution electrostatic spectrometer for the investigation of near-surface layers in solids by high-resolution Rutherford backscattering with MeV ions

    Science.gov (United States)

    Enders, Th.; Rilli, M.; Carstanjen, H. D.

    1992-02-01

    The paper reports on a high-resolution electrostatic spectrometer for MeV ions and its use for investigating surfaces and near-surface layers of solids by high-resolution Rutherford backscattering spectroscopy (HRBS). The spectrometer has been set up at the 6 MV Pelletron accelerator of the Max-Planck-Institut für Metallforschung, Stuttgart, over the last few years and has recently been operated successfully. The instrument consists of a cylinder type, 100° electrostatic analyzer (radius: 700 mm, gap width: 20 mm) and a system of electrostatic quadrupole lenses which focus those ions emitted from the target parallel to the optical axis onto the entrance slit of the analyzer, thus minimizing kinematic errors in the energy resolution. A variable slit system allows one to choose between a maximum in energy resolution or in ion count rate. The analyzed ions are registered simultaneously with a position sensitive Si-surface barrier detector. The maximum ion energy to be analyzed is about 2 MeV for singly charged ions. The relative energy resolution of the instrument is better than 3 × 10 -4. The overall resolution as obtained in an actual HRBS measurement with 1 MeV 4He + ions amounts to 1.44 keV, thus providing a depth resolution of 0.88 nm at ion incidence of 22.5° to the surface normal or 0.17 nm for oblique incidence of the ion beam (10° to the normal) in Au. Besides the description of the spectrometer and its capabilities, this paper will give examples of various applications. They include studies of the oxidation of metal surfaces, of island formation on surfaces, and of electron capture processes of fast ions in the near surface region.

  16. High-Resolution Stamp Fabrication by Edge Lithography

    NARCIS (Netherlands)

    Zhao, Yiping

    2010-01-01

    The aim of the project was to create high resolution stamps for thermal nanoimprint applications. The creation of nanoridges with sub-100 nm resolutions was explored by means of edge lithography via top-down routes, i.e. in combination with micromachining technology. Edge lithography is an add-on

  17. Impact of high resolution land surface initialization in Indian summer ...

    Indian Academy of Sciences (India)

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climatemodel in recent years over Indian summer monsoon region is investigated. Two sets of regional climatemodel simulations are performed, one with a coarse resolution land surface initial conditions and secondone used a ...

  18. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  19. Multiple pulse electron beam converter design for high power radiography

    Science.gov (United States)

    Pincosy, P. A.; Back, N.; Bergstrom, P. M.; Chen, Yu-Jiuan; Poulsen, P.

    2001-06-01

    The typical response of the x-ray converter material to the passage of a high-powered relativistic electron beam is vaporization and rapid dispersal. The effect of this dispersal on subsequent pulses for multi-pulse radiography is the collective effects on the propagation of the electron beam through the expanding plasma and the reduced number of electron to photon interactions. Thus, for the dual-axis radiographic hydrodynamic test facility, the converter material must either be replaced or confined long enough to accommodate the entire pulse train. Typically the 1-mm-thick high Z and full density converter material is chosen to give peak dose and minimum radiographic spot. For repeated pulses we propose a modified converter, constructed of either low density, high Z material in the form of foam or of foils spaced over ten times the axial thickness of the standard 1 mm converter. The converter material is confined within a tube to impede outward motion in radius outside the beam interaction region. We report single-pulse experiments which measure the dose and spot size produced by the modified converter and compare them to similar measurements made by the standard converter. For multiple pulses over a microsecond time scale, we calculate the radial and axial hydrodynamic flow to study the material reflux into the converter volume and the resultant density decrease as the electron beam energy is deposited. Both the electron transport through the expanding low density plasma and beam in the higher density material are modeled. The x-ray source dose and spot size are calculated to evaluate the impact of the changing converter material density distribution on the radiographic spot size and dose. The results indicate that a multiple-pulse converter design for three or four high-power beam pulses is feasible.

  20. Velocity bunching of high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    S. G. Anderson

    2005-01-01

    Full Text Available Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly

  1. VELOCITY BUNCHING OF HIGH-BRIGHTNESS ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Musumeci, P; Rosenzweig, J B; Brown, W J; England, R J; Ferrario, M; Jacob, J S; Thompson, M C; Travish, G; Tremaine, A M; Yoder, R

    2004-10-15

    Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS) experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly in ICS experiments

  2. Head-On Beam-Beam Interactions in High-Energy Hadron Colliders. GPU-Powered Modelling of Nonlinear Effects

    CERN Document Server

    AUTHOR|(CDS)2160109; Støvneng, Jon Andreas

    2017-08-15

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strength of the beam-beam interactions will be higher after the upgrade to the High-Luminosity Large Hadron Collider, and also in the next generation of machines, as the Future Circular Hadron Collider. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and drives resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. For this thesis, a new code named CABIN (Cuda-Accelerated Beam-beam Interaction) has been developed to study the limitations caused by the impact of strong beam-beam interactions. In particular, the evolution of the beam emittance and beam intensity has been monitored to study the impact quantitatively...

  3. SU-E-T-244: High Spatial Resolution EBT2 Film Dosimetry.

    Science.gov (United States)

    Poppinga, D; Schoenfeld, A; Poppe, B; Chofor, N

    2012-06-01

    The purpose of this study was to measure depth dose curves and dose effects near high-Z interfaces with radiochromic EBT-2 films reaching a spatial resolution superior to conventional methods with no quality losses. The setup is made of two 12cm stacks of RW3, fixing an EBT2 film in a vertical position. To measure a depth dose curve, the setup was irradiated with a 15MV photon beam (Siemens Primus). Since the film is positioned parallel to the beam propagation, the depth dose curve is measured with only one film per depth. Additionally, a dental gold alloy probe was inserted in the RW3 stack at 6cm depth and the dose enhancement in front of the probe was measured with the method described above. Hereby, the bottom edge of the film touches the probe's surface.The irradiated films were digitized with a resolution of 72dpi using an Epson 10000XL flatbed scanner with a transparency unit and alignment frames. With this setup, the spatial resolution is only limited by the scanning resolution. In order to verify the new measurement method, comparisons of the measured depth dose curves with the conventional method of placing the film orthogonal to the beam propagation showed deviations of lesser than 3%.The comparison of the dental gold measurements with Monte Carlo simulations shows a systematic lower measured dose which is still within 5% consistency. However attention has to be paid in the experimental setup and film preparation. The introduced method shows significant advantages to conventional orthogonal EBT2 film positioning. It shows a very high spatial resolution and the area of interest is only limited by the film size. The method will be used in further studies, to investigate dose profiles and dose effects near interfaces and in inhomogeneities. © 2012 American Association of Physicists in Medicine.

  4. Resolution analysis of high-resolution marine seismic data acquired off Yeosu, Korea

    Science.gov (United States)

    Lee, Ho-Young; Kim, Wonsik; Koo, Nam-Hyung; Park, Keun-Pil; Yoo, Dong-Geun; Kang, Dong-Hyo; Kim, Young-Gun; Seo, Gab-Seok; Hwang, Kyu-Duk

    2014-05-01

    High-resolution marine seismic surveys have been conducted for the mineral exploration and engineering purpose survey. To improve the quality of high-resolution seismic data, small-scaled multi-channel seismic techniques are used. In this study, we designed high-resolution marine seismic survey using a small airgun and an 8-channel streamer cable and analyzed the resolution of the seismic data related to acquisition and processing parameters. The field survey was conducted off Yeosu, Korea where the stratified thin sedimentary layers are deposited. We used a 30 in3 airgun and an 8-channel streamer cable with a 5 m group interval. We shoot the airgun with a 5 m shot interval and recorded digital data with a 0.1 ms sample interval and 1 s record length. The offset between the source and the first channel was 20 m. We processed the acquired data with simple procedure such as gain recovery, deconvolution, digital filtering, CMP sorting, NMO correction, static correction and stacking. To understand the effect of the acquisition parameters on the vertical and horizontal resolution, we resampled the acquired data using various sample intervals and CMP intervals and produced seismic sections. The analysis results show that the detailed subsurface structures can be imaged with good resolution and continuity using acquisition parameters with a sample interval shorter than 0.2 ms and a CMP interval shorter than 2.5 m. A high-resolution marine 8-channel airgun seismic survey using appropriate acquisition and processing parameters can be effective in imaging marine subsurface structure with a high resolution. This study is a part of a National Research Laboratory (NRL) project and a part of an Energy Technology Innovation (ETI) Project of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry and Energy (MOTIE). The authors thank the officers and crew of the R/V Tamhae II for their efforts in the field survey.

  5. The Physics and Applications of High Brightness Beams: Working Group A Summary on High Brightness Beam Production

    Energy Technology Data Exchange (ETDEWEB)

    Schmerge, John

    2003-03-19

    Working group A was devoted to high brightness beam production and characterization. The presentations and discussions could be categorized as cathode physics, new photoinjector designs, computational modeling of high brightness beams, and new experimental methods and results. Several novel injector and cathode designs were presented. However, a standard 1.5 cell rf photoinjector is still the most common source for high brightness beams. New experimental results and techniques were presented and thoroughly discussed. The brightest beam produced in a rf photoinjector published at the time of the workshop is approximately 2 10{sup 14} A/(m-rad){sup 2} at Sumitomo Heavy Industries in Japan with 1 nC of charge, a 9 ps FWHM long laser pulse and a normalized transverse emittance of 1.2 pm. The emittance was achieved by utilizing a temporally flat laser pulse which decreased the emittance by an estimated factor of 2 from the beam produced with a Gaussian pulse shape with an identical pulse length.

  6. Johann Spectrometer for High Resolution X-ray Spectroscopy

    Science.gov (United States)

    Machek, Pavel; Welter, Edmund; Caliebe, Wolfgang; Brüggmann, Ulf; Dräger, Günter; Fröba, Michael

    2007-01-01

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 μm thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5×1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  7. Ultra-high resolution and high-brightness AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  8. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution.

    Science.gov (United States)

    Masoudi, Ali; Newson, Trevor P

    2017-01-15

    A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

  9. Ion beams in SEM : An experiment towards a high brightness low energy spread electron impact gas ion source

    NARCIS (Netherlands)

    Jun, D.S.; Kutchoukov, V.G.; Kruit, P.

    2011-01-01

    A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized

  10. High resolution and stability roll angle measurement method for precision linear displacement stages

    Science.gov (United States)

    Jin, Tao; Xia, Guizheng; Hou, Wenmei; Le, Yanfen; Han, Sen

    2017-02-01

    A method for high resolution roll angle measurement of linear displacement stages is developed theoretically and tested experimentally. The new optical configuration is based on a special differential plane mirror interferometer, a wedge prism assembly, and a wedge mirror assembly. The wedge prisms assembly is used as a roll angle sensor, which converts roll angle to the changes of optical path. The special interferometer, composed a polarization splitter plane, a half wave plate, a beam splitter, a retro-reflector and a quarter wave plate, is designed for high resolution measurement of the changes of the optical path. The interferometric beams are a completely common path for the adoption of the centrosymmetrical measurement structure, and the cross talk of the straightness, yaw, and pitch errors is avoided. The angle measurement resolution of the proposed method is 3.5 μrad in theoretical with a phase meter which has a resolution of 2 π /512 . The experimental result also shows the great stability and accuracy of the present roll angle measurement system.

  11. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    Science.gov (United States)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.; Kada, W.; Kohka, M.; Satoh, T.; Ohkubo, T.; Ishii, Y.; Takano, K.

    2013-07-01

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography.

  12. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction.

    Science.gov (United States)

    Thompson, S P; Parker, J E; Potter, J; Hill, T P; Birt, A; Cobb, T M; Yuan, F; Tang, C C

    2009-07-01

    The performance characteristics of a new synchrotron x-ray powder diffraction beamline (I11) at the Diamond Light Source are presented. Using an in-vacuum undulator for photon production and deploying simple x-ray optics centered around a double-crystal monochromator and a pair of harmonic rejection mirrors, a high brightness and low bandpass x-ray beam is delivered at the sample. To provide fast data collection, 45 Si(111) analyzing crystals and detectors are installed onto a large and high precision diffractometer. High resolution powder diffraction data from standard reference materials of Si, alpha-quartz, and LaB6 are used to characterize instrumental performance.

  13. High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H., E-mail: bdeng@trialphaenergy.com; Beall, M.; Schroeder, J.; Settles, G.; Feng, P.; Kinley, J. S.; Gota, H.; Thompson, M. C. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 10{sup 16} m{sup −2} at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.

  14. High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas.

    Science.gov (United States)

    Deng, B H; Beall, M; Schroeder, J; Settles, G; Feng, P; Kinley, J S; Gota, H; Thompson, M C

    2016-11-01

    A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 1016 m-2 at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.

  15. High resolution, monochromatic x-ray topography capability at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z. [CHESS, Cornell University, Ithaca, NY (United States); Jones, R. [Department of Physics, University of Connecticut, Storrs, CT (United States); Tarun, A.; Misra, D. S. [IIa Technologies (Singapore); Jupitz, S. [St. Mary’s College of Maryland, St. Mary’s City, MD (United States); Sagan, D. C. [CLASSE, Cornell University, Ithaca, NY (United States)

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  16. Improving the spatial resolution characteristics of dedicated cone-beam breast CT technology

    Science.gov (United States)

    Gazi, Peymon; Boone, John M.

    2014-03-01

    Prior studies have shown that breast CT (bCT) outperforms mammography in the visualization of mass lesions, yet underperforms in the detection of micro-calcifications. The Breast Tomography Project at UC Davis has successively developed and fabricated four dedicated breast CT scanners, the most recent code-named Doheny, that produce high resolution, fully tomographic images, and overcome the tissue superposition effects of mammography at equivalent radiation dose. Over 600 patients have been imaged thus far in an ongoing clinical trial. The Doheny prototype differs from prior bCT generations in its usage of a pulsed rather than continuous x-ray source and in its utilization of a CMOS flat-panel fluoroscopic detector rather than TFT. Spatial Resolution analysis performed on Doheny indicates that the MTF characteristics have been substantially improved.

  17. High efficiency solar cells for laser power beaming applications

    Science.gov (United States)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  18. Formation of high intensity ion beams with ballistic focusing

    Science.gov (United States)

    Koval, T. V.; Ryabchikov, A. I.; Shevelev, A. E.; Kim, An Tran My; Tarakanov, V. P.

    2017-11-01

    This investigation presents the results of experimental investigation and theoretical simulations of the influence of plasma and negative bias parameters on formation, transportation and focusing of high intensity ion beams of titanium and nitrogen (with an ion current density up to 1 A/cm2 and pulsed power density up to 2.6 kW/cm2). It was shown that the conditions of space charge neutralization of the focusing beam have a significant influence on the distribution and magnitude of the ion current at the collector.

  19. Measurement of high Q RF cavity impedance with beam

    CERN Document Server

    Limborg, C

    1998-01-01

    An inexpensive method to measure, with beam, the Rs and Q of narrow-band high order resonances in RF cavities was developed on SPEAR. The two main results of this study are: (1) an improved operational stability of SPEAR; and (2) the decision to keep the present cavities for the proposed SPEAR upgrade. SPEAR3 will be run initially at 200 mA, twice the present current. Just beyond the current threshold, and before step loss, there is a regime in which the beam performs large amplitude, low frequency oscillations. Detailed measurements were performed to characterize the frequency, amplitude, growth and damping time of these relaxation oscillations.

  20. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  1. Microbunched electron cooling for high-energy hadron beams.

    Science.gov (United States)

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  2. Hybrid Young interferometer for high resolution measurement of dynamic speckle using high birefringence liquid crystal

    Science.gov (United States)

    Bennis, N.; Holdynski, Z.; Merta, I.; Marc, P.; Kula, P.; Mazur, R.; Piecek, W.; Jaroszewicz, L. R.

    2015-08-01

    It is well known that the Young interference experiment is the fundamental setup to combine two beams and to construct the phase modulated light. Moreover, homodyne phase demodulator is based on signal decoding in back Fourier focal plane using bicell photodetector (B-PD). On the above base, we propose a novel experimental approach to the signals demodulation by using the optical interferometer which operates in homodyne mode, combined with liquid crystal spatial light modulators operating both phase as speckle modulator. Dynamic phase changes between the two beams can be controlled by monopixel liquid crystals cell placed in one branch of the interferometer. A phase modulation effect in a signal arm of interferometer is observed as a dynamic shift of the speckle pattern. Simple arithmetic combination of signals from B-PD placed in speckle pattern plane is only one necessary numerical manipulation to obtain exactly phase difference. Concept of signals demodulation in the Fourier focal plane can be only used for exactly defined geometrical (B-PD as well as Young interferometer) and physical parameters (polarization, wavelength). We optimize the setup geometry to obtain extremely high measurement resolution. In this paper we focus on the principles of operation of each part of the system as well as discussion their requirement in order to increase the signal to noise ratio.

  3. A 3 GHz photoelectron gun for high beam intensity

    CERN Document Server

    Bossart, Rudolf; Dehler, M; Godot, J C

    1996-01-01

    For the Compact Linear Collider Test Facility (CTF) at CERN a new rf gun with a laser driven photocathode is under construction. The new rf gun will replace the present 11/2 cell gun and will consist of 21/2 cells accelerating the beam to a momentum of 7.0 MeV/c with an electric field strength of 100 MV/m. The strong space-charge forces at low beam energy caused by the high charge density of the electron bunches are contained by radial and longitudinal rf focusing in the gun. The rf gun under construction has been optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating rf structure and an intermediate solenoid magnet correcting the beam divergence of the 21/2 cell gun. The beam loading of the rf gun, by a train of 48 bunches with 21 nC charge each, causes a strong energy decay accompanied by an increase of the flight time for the bunches with lower energy. These effects can be corrected by slightly shifting the acceleration frequency of the gun. The experimental results...

  4. OTR studies for the high charge CTF3 beam

    CERN Document Server

    Bravin, Enrico; Vermare, C

    2003-01-01

    The CTF3 (CLIC Test Facility 3) will produce 1.56µs long intense electron pulses. The unbunched 5.4A beam of the injector will have a transverse beam size ~1mm. After the buncher the current is reduced to 3.5A and the transverse size varies between a few hundred micrometers and one millimetre along the length of the linac. Calculations indicate that these beam parameters will impose an unbearable thermal load for the intercepting screens currently in use (scintillators and aluminium OTR foils). Graphite and SiC have been investigated as possible alternative materials for the OTR radiators. The possibility of replacing scintillating screens with OTR targets at the low energies of the injector has also been considered. A possible limitation in the use of such high temperature radiators has been identified; ions released from the heated target could focus further the beam with the risk of damaging the target itself and/or blowing up the beam. This would also affect the emittance measurement and would hinder any...

  5. Space charge templates for high-current beam modeling

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  6. Improvement of spatial resolution properties of image intensifier-TV digital systems with a multiple-narrow-slit beam imaging technique.

    Science.gov (United States)

    Kume, Y; Doi, K

    1988-01-01

    Multiple-slit beam imaging technique with an image intensifier (II)-TV digital system has been developed to remove scatter and veiling glare while high x-ray beam utilization is maintained. Although the contrast and signal-to-noise ratio (SNR) are improved with this technique, the overall image quality obtainable with an II-TV digital system is still limited due to low spatial resolution, which is mainly caused by the large pixel size, i.e., by the small matrix size used. In order to overcome the limitation of the pixel size, we have developed a new method of improving the resolution properties of the II-TV digital system by use of a multiple-slit assembly (MSA) having a narrow slit width. When the slit width of the MSA is narrower than the pixel size of the II-TV digital system, two signals from a given slit due to different MSA placements may be detected by the same pixel in different image frames, and the detected signals of the slit images are mapped to a large matrix. In this way, the spatial resolution in the direction perpendicular to the slit openings can be improved along with the increased contrast and SNR as the scatter and veiling glare can be removed. Experimental results are presented, and the effect of an anisotropic resolution property on the overall image quality is discussed.

  7. High-Performance Beam Simulator for the LANSCE Linac

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaoying [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory; Baily, Scott A. [Los Alamos National Laboratory

    2012-05-14

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  8. High luminosity liquid-argon calorimeter test beam

    Energy Technology Data Exchange (ETDEWEB)

    Novgorodova, Olga; Straessner, Arno [TU Dresden, IKTP (Germany)

    2016-07-01

    In the future HL-LHC the luminosity will increase by factor of 5-7 with respect to the original LHC design. The HiLum collaboration studied the impact on small-sized modules of the ATLAS electromagnetic, hadronic, and forward calorimeters also instrumented by various intensity and position detectors. The intensity of beam varied over a wide range (10{sup 6} to 10{sup 12} p/s) and beyond the maximum expected at HL-LHC for these calorimeters. Results from the last test beam campaign in 2013 on the signal shape analysis from the calorimeter modules are compared with MC simulations. The correlation between high-voltage return currents of the electromagnetic calorimeter and beam intensity is used to estimate critical parameters and compared with predictions.

  9. High resolution shadow mask patterning in deep holes and its application to an electrical wafer feed-through

    NARCIS (Netherlands)

    Burger, G.J.; Burger, G.J.; Smulders, E.J.T.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Fluitman, J.H.J.; Imai, S.

    1995-01-01

    This paper presents a technique to pattern materials in deep holes and/or on non-planar substrate surfaces. A rather old technique, E-beam evaporation of metals through a shadow mask, is used [1]. The realisation of high resolution shadow masks using micromachining techniques is described. Further,

  10. Proposal to assemble a high resolution-electron sensitive-energy flow calorimeter in the NEULAND spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A ..gamma.. catcher and a liquid scintillation calorimeter module in a simple configuration that is well suited to the investigation of several different neutrino induced processes are described. The variety of neutrino beams now available at Fermilab and synchrotron intensity and energy together with the high resolution calorimeter allow a multiplicity of experiments to be carried out with a single detector configuration.

  11. High Resolution, Range/Range-Rate Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Visidyne proposes to develop a design for a small, lightweight, high resolution, in x, y, and z Doppler imager to assist in the guidance, navigation and control...

  12. Hurricane Satellite (HURSAT) from Advanced Very High Resolution Radiometer (AVHRR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Huricane Satellite (HURSAT)-Advanced Very High Resolution Radiometer (AVHRR) is used to extend the HURSAT data set such that appling the Objective Dvorak technique...

  13. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  14. A Forward-Looking High-Resolution GPR System

    National Research Council Canada - National Science Library

    Kositsky, Joel; Milanfar, Peyman

    1999-01-01

    A high-resolution ground penetrating radar (GPR) system was designed to help define the optimal radar parameters needed for the efficient standoff detection of buried and surface-laid antitank mines...

  15. High Resolution Orthoimagery = Orthorectified Metro Areas: 2000 - Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a...

  16. Topological Data Analysis of High-Resolution Temporal Rainfall

    Science.gov (United States)

    Carsteanu, Alin Andrei; Fernández Méndez, Félix; Vásquez Aguilar, Raciel

    2017-04-01

    This study applies topological data analysis (TDA) to the state space representations of high-resolution temporal rainfall intensity data from Iowa City (IIHR, U of Iowa). Using a sufficient embedding dimension, topological properties of the underlying manifold are depicted.

  17. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  18. A feasibility study of damage detection in beams using high-speed camera (Conference Presentation)

    Science.gov (United States)

    Wan, Chao; Yuan, Fuh-Gwo

    2017-04-01

    In this paper a method for damage detection in beam structures using high-speed camera is presented. Traditional methods of damage detection in structures typically involve contact (i.e., piezoelectric sensor or accelerometer) or non-contact sensors (i.e., laser vibrometer) which can be costly and time consuming to inspect an entire structure. With the popularity of the digital camera and the development of computer vision technology, video cameras offer a viable capability of measurement including higher spatial resolution, remote sensing and low-cost. In the study, a damage detection method based on the high-speed camera was proposed. The system setup comprises a high-speed camera and a line-laser which can capture the out-of-plane displacement of a cantilever beam. The cantilever beam with an artificial crack was excited and the vibration process was recorded by the camera. A methodology called motion magnification, which can amplify subtle motions in a video is used for modal identification of the beam. A finite element model was used for validation of the proposed method. Suggestions for applications of this methodology and challenges in future work will be discussed.

  19. High-Resolution Structure of Viruses from Random Snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2013-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and reconstruct the three-dimensional structure of the object. Existing approaches are limited in reconstruction resolution to at best 1/30th of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to 1/100th of the object diameter, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic resolution. Combined with the previously demonstrated capability to operate at ultralow signal, our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and...

  20. Introduction to analytical techniques of beam-target interactions and resolutions; Introduction aux techniques d`analyse interactions rayonnement-matiere et resolutions

    Energy Technology Data Exchange (ETDEWEB)

    Ruste, J.

    1995-08-01

    For several years, new analysis and observation techniques have been developed, which have considerably improved material research. Almost all these techniques are based on the interaction of a beam of `primary particles` (electrons, photons, ions, particles, etc) with target. Correct and appropriate use of these techniques requires a good knowledge of these interactions and their consequences (emissions of `secondary particles`, modifications of the primary beam and target, etc). The first part of this report deals with the radiation/material interactions according to the nature of the radiation and its energy. The nature and consequences of the interaction of an electromagnetic wave, a beam of electrons, ions and neutrons are examined over an extended range of energy from MeV to MeV. Certain notions such as the analysis area, spatial resolutions or limits of detection can also be defined. In the second part, some of the most important and widespread techniques of analysis and observation are compared in terms of properties and performance. In particular, there is a brief principle of the technique, nature of the data obtained, spatial resolution, and the limits of detection with today`s methods permit. (author). 5 refs., 23 figs., 9 tabs.

  1. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  2. High-order harmonic generation via multicolor beam superposition

    Science.gov (United States)

    Sarikhani, S.; Batebi, S.

    2017-09-01

    In this article, femtosecond pulses, especially designed by multicolor beam superposition are used for high-order harmonic generation. To achieve this purpose, the spectral difference between the beams, and their width are taken to be small values, i.e., less than 1 nm. Applying a Gaussian distribution to the beam intensities leads to a more distinct pulses. Also, it is seen that these pulses have an intrinsic linear chirp. By changing the width of the Gaussian distributions, we can have several pulses with different bandwidths and hence various pulse duration. Thus, the study of these broadband pulse influences, in contrast with monochromatic pulses, on the atomic or molecular targets was achievable. So, we studied numerically the effect of these femtosecond pulses on behavior of the high-order harmonics generated after interaction between the pulse and the atomic hydrogen. For this study, we adjusted the beam intensities so that the produced pulse intensity be in the over-barrier ionization region. This makes the power spectrum of high-order harmonics more extensive. Cutoff frequency of the power spectrum along with the first harmonic intensity and its shift from the incident pulse are investigated. Additionally, maximum ionization probability with respect to the pulse bandwidth was also studied.

  3. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    OpenAIRE

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is...

  4. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  5. Pulsed Supersonic Beams from High Pressure Source: Simulation Results and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    U. Even

    2014-01-01

    Full Text Available Pulsed beams, originating from a high pressure, fast acting valve equipped with a shaped nozzle, can now be generated at high repetition rates and with moderate vacuum pumping speeds. The high intensity beams are discussed, together with the skimmer requirements that must be met in order to propagate the skimmed beams in a high-vacuum environment without significant disruption of the beam or substantial increases in beam temperature.

  6. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    NETWORKS are everywhere. From the smallest confines of the cells within our bodies to the webs of social relations across the globe. Networks are not static, they constantly change, adapt, and evolve to suit new conditions. In order to understand the fundamental laws that govern networks we need...... the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...

  7. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    Science.gov (United States)

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  8. High frame-rate multichannel beam-scanning microscopy based on Lissajous trajectories.

    Science.gov (United States)

    Sullivan, Shane Z; Muir, Ryan D; Newman, Justin A; Carlsen, Mark S; Sreehari, Suhas; Doerge, Chris; Begue, Nathan J; Everly, R Michael; Bouman, Charles A; Simpson, Garth J

    2014-10-06

    A simple beam-scanning optical design based on Lissajous trajectory imaging is described for achieving up to kHz frame-rate optical imaging on multiple simultaneous data acquisition channels. In brief, two fast-scan resonant mirrors direct the optical beam on a circuitous trajectory through the field of view, with the trajectory repeat-time given by the least common multiplier of the mirror periods. Dicing the raw time-domain data into sub-trajectories combined with model-based image reconstruction (MBIR) 3D in-painting algorithms allows for effective frame-rates much higher than the repeat time of the Lissajous trajectory. Since sub-trajectory and full-trajectory imaging are simply different methods of analyzing the same data, both high-frame rate images with relatively low resolution and low frame rate images with high resolution are simultaneously acquired. The optical hardware required to perform Lissajous imaging represents only a minor modification to established beam-scanning hardware, combined with additional control and data acquisition electronics. Preliminary studies based on laser transmittance imaging and polarization-dependent second harmonic generation microscopy support the viability of the approach both for detection of subtle changes in large signals and for trace-light detection of transient fluctuations.

  9. Efficient generation of high beam-quality attosecond pulse with polarization-gating Bessel-Gauss beam from highly-ionized media.

    Science.gov (United States)

    Li, Yang; Zhang, Qingbin; Hong, Weiyi; Wang, Shaoyi; Wang, Zhe; Lu, Peixiang

    2012-07-02

    Single attosecond pulse generation with polarization gating Bessel-Gauss beam in relatively strongly-ionized media is investigated. The results show that Bessel-Gauss beam has the ability to suppress the spatial plasma dispersion effects caused by high density of free electrons, thus the laser field can maintain its spatial profile through highly-ionized medium. This indicates the use of Bessel-Gauss beam has advantages over Gaussian beam in high harmonic generation under high ionization conditions. In our scheme, significant improvement of spatiotemporal properties of harmonics is achieved and an isolated attosecond pulse with high beam quality is filtered out using polarization gating.

  10. Positioning systems for high-resolution tissue imaging

    Science.gov (United States)

    Haylock, Thomas M.; Cenko, Andrew T.; Chifman, Lev M.; Christensen, Peter B.; Kazemzadeh, Farnoud; Hajian, Arsen R.; Hendrikse, Jan; Meade, Jeff T.

    2011-03-01

    Tissue handling systems position ex-vivo samples to a required accuracy that depends on the features to be imaged. For example, to resolve cellular structure, micron pixel spacing is needed. 3D tissue scanning at cellular resolution allows for more complete histology to be obtained and more accurate diagnosis to be made. However, accurate positioning of a light beam on the sample is a significant challenge, especially when fine spacing between scan steps is desired or large, inconsistently shaped samples need to be imaged. Optical coherence tomography (OCT) is an application where accurate positioning systems are required to reap the full benefit of the technology. By simultaneously manipulating the light beam position and sample location, a 3D image is reconstructed from a series of depth profiles produced. To automate image acquisition, a fully integrated and synchronised system is necessary. A tissue handling and light delivery system for free-space optical devices is described. Performance characteristics such as resolution, uncertainty, and repeatability are evaluated for novel hardware configurations of OCT. Typical scanning patterns with associated synchronisation requirements are discussed.

  11. Do high-resolution convection-permitting experiments on Europe need to be driven by high resolution global runs?

    Science.gov (United States)

    Berthou, Segolene; Chan, Steven; Kendon, Elizabeth; Roberts, Malcolm; Lee, Robert; Vanniere, Benoit

    2017-04-01

    Challenges of getting appropriate climate-change scenarios over Europe both come from having a good representation of the synoptic systems reaching Europe and having a good-enough representation of local and orographic processes in Europe. Therefore we perform both the evaluation of the driving global model and its dynamical downscaling with a 2.2km regional model on the present day period, in the perspective of using this configuration in a future climate scenario. 20-year long atmosphere-only simulations with the Unified Model of the Met Office were run at different global resolutions (130km, 60km and 25km) and the highest resolution was chosen to give the boundaries of a European-wide convection permitting simulation with a 2.2km resolution. The synoptic situation of the different global resolutions are comparable in terms of latitudinal distribution of the jets and weather regimes but there is consistent improvement in the frequency of storms reaching Europe at 25km resolution. High resolution global runs therefore mainly show added value in the high-frequency synoptic drivers. Compared to high resolution precipitation datasets, the 25km resolution is showing good representation of winter precipitation distribution, although with too many days of moderate precipitation in Western Europe. It shows a dry bias in summer, consistent with a mean jet too north.

  12. High-resolution tracking in a GEM-emulsion detector

    Science.gov (United States)

    Alexandrov, A.; Bencivenni, G.; Bertani, M.; Buonaura, A.; Capoccia, C.; Cibinetto, G.; De Lellis, G.; De Lucia, E.; Di Crescenzo, A.; Domenici, D.; Farinelli, R.; Felici, G.; Kitagawa, N.; Komatsu, M.; Morello, G.; Morishima, K.; Poli Lener, M.; Tioukov, V.

    2017-09-01

    SHiP (Search for Hidden Particles) is a beam dump experiment proposed at the CERN SPS aiming at the observation of long-lived particles very weakly coupled with ordinary matter mostly produced in the decay of charmed hadrons. The beam dump facility of SHiP is also a copious factory of neutrinos of all three kinds and therefore a dedicated neutrino detector is foreseen in the SHiP apparatus. The neutrino detector exploits the Emulsion Cloud Chamber technique with a modular structure, alternating walls of target units and planes of electronic detectors providing the time stamp to the event. GEM detectors are one of the possible choices for this task. This paper reports the results of the first exposure to a muon beam at CERN of a new hybrid chamber, obtained by coupling a GEM chamber and an emulsion detector. Thanks to a position accuracy of the emulsion detector of the order of the micrometer, the position resolution of the GEM chamber as a function of the particle inclination was evaluated in two configurations, with and without the magnetic field. It ranges from a minimum of 54 μm for normal incident tracks up to (320±40) μm for incoming tracks with θ = 45o and magnetic field strength of 1 T.

  13. Adaptive RF Transient Reduction for HIGH Intensity Beams with Gaps

    CERN Document Server

    Tückmantel, Joachim

    2006-01-01

    When a high-intensity beam with bunch-trains and gaps passes a cavity with a high-gain vector feedback enforcing a constant voltage, large transients appear, stressing the RF high power hardware and increasing the trip rate. By modulating the cavity voltage with a varying periodic waveform (set-function), the RF power can be made constant while still preserving the high feedback gain. The average cavity voltage is conserved but bunches have to settle at slightly shifted positions. A method is derived to obtain this set-function in practice while making no assumptions or measurements of the beam or RF parameters. Adiabatic iterations are made including the whole machine as an analog computing device, using all parameters as they are. A computer simulation shows the success of the method.

  14. High-resolution simulations of turbidity currents

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Ouillon, Raphael; Meiburg, Eckart

    2017-12-01

    We employ direct numerical simulations of the three-dimensional Navier-Stokes equations, based on a continuum formulation for the sediment concentration, to investigate the physics of turbidity currents in complex situations, such as when they interact with seafloor topography, submarine engineering infrastructure and stratified ambients. In order to obtain a more accurate representation of the dynamics of erosion and resuspension, we have furthermore developed a grain-resolving simulation approach for representing the flow in the high-concentration region near and within the sediment bed. In these simulations, the Navier-Stokes flow around each particle and within the pore spaces of the sediment bed is resolved by means of an immersed boundary method, with the particle-particle interactions being taken into account via a detailed collision model. [Figure not available: see fulltext.

  15. O-space with high resolution readouts outperforms radial imaging.

    Science.gov (United States)

    Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi

    2017-04-01

    While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. High resolution time-of-flight (TOF) detector for particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Merlin; Lehmann, Albert; Pfaffinger, Markus; Uhlig, Fred [Physikalisches Institut, Universitaet Erlangen-Nuernberg (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    Several prototype tests were performed with the PANDA DIRC detectors at the CERN T9 beam line. A mixed hadron beam with pions, kaons and protons was used at momenta from 2 to 10 GeV/c. For these tests a good particle identification was mandatory. We report about a high resolution TOF detector built especially for this purpose. It consists of two stations each consisting of a Cherenkov radiator read out by a Microchannel-Plate Photomultiplier (MCP-PMT) and a Scintillating Tile (SciTil) counter read out by silicon photomultipliers (SiPMs). With a flight path of 29 m a pion/kaon separation up to 5 GeV/c and a pion/proton separation up to 10 GeV/c was obtained. From the TOF resolutions of different counter combinations the time resolution (sigma) of the individual MCP-PMTs and SciTils was determined. The best counter reached a time resolution of 50 ps.

  17. Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates.

    Science.gov (United States)

    Sarkar, Sankha S; Solak, Harun H; David, Christian; van der Veen, J Friso

    2014-01-27

    Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm.

  18. A muon trigger upgrade with high transverse momentum resolution for the ATLAS detector at the High-Luminosity LHC

    CERN Document Server

    Horii, Yasuyuki; The ATLAS collaboration

    2015-01-01

    The Level-1 trigger for muons of the ATLAS experiment is based on trigger chambers with excellent time resolution which identifies muons coming from a particular beam crossing. To cope with a stringent constraint on the trigger rates expected at the phase II of the LHC, the socalled High-Luminosity LHC, it is proposed to include precision tracking chambers in the Level-1 muon trigger for improving the transverse momentum resolution. The rate of a single muon trigger with a transverse momentum threshold of 20 GeV is estimated to reduce to about half in an entire pseudorapidity region by introducing the proposed upgrade. An architecture of the electronics includes an additional priority readout chain, which is independent of the standard and asynchronous readout. A demonstrator of the frontend electronics has been developed and an initial test based on cosmic muons shows a resolution of position measurements consistent with a simulation.

  19. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  20. The High Flux Beam Reactor at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, S.M.

    1994-12-31

    Brookhaven National Laboratory`s High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want `more`. In the mid-50`s the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments.

  1. Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    Science.gov (United States)

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.

    1997-01-01

    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.

  2. Vertical perturbation of high energy proton beams in the AGOR cyclotron

    NARCIS (Netherlands)

    Roobol, LP; Brandenburg, S; Post, H; Marti, F

    2001-01-01

    Using a layered target on the radial probe, we have measured the vertical beam current distribution for several high energy proton beams ranging from 150 to 190 MeV. In particular, this allows us to measure the vertical centring of the beam. The 150 MeV beam with high transmission (83 %) through the

  3. Calibration of a high resolution grating soft x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Magee, E. W.; Dunn, J.; Brown, G. V.; Cone, K. V.; Park, J.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.; Beiersdorfer, P.

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10–50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  4. Coherent beam combining architectures for high power tapered laser arrays

    Science.gov (United States)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  5. Bent silicon strip crystals for high-energy charged particle beam collimation

    Science.gov (United States)

    Germogli, G.; Mazzolari, A.; Guidi, V.; Romagnoni, M.

    2017-07-01

    For applications in high energy particles accelerators, such as the crystal-assisted beam collimation, several strip crystals exploiting anticlastic curvature were produced in the last decade at the Sensor and Semiconductor Laboratory (SSL) of Ferrara by means of revisited techniques for silicon micromachining, such as photolitography and wet etching. Those techniques were recently enhanced by introducing a further treatment called Magnetorheological Finishing (MRF), which allowed to fabricate crystals with ultraflat surface and miscut very close to zero. The technology of the mechanical devices used to hold and bend crystals has been also improved by employing a titanium alloy to realize the holders. Characterization method were also improved: the usage of a high resolution X-rays diffractometer was introduced to directly measure crystal bending and torsion. Accuracy of the diffractometer was furtherly enhanced with an autocollimator, which found an important application in miscut characterization. A new infrared light interferometer was used to map the thickness of the starting swafers with sub-micrometric precision, as well as to measure the length along the beam of the strips. Crystals were characterized at the H8 external lines of CERN-SPS with various hundreds-GeV ion beams, which gave results in agreement with the precharacterization performed at SSL. One strip was selected among the crystals to be installed in the LHC beam pipe during the Long Shutdown 1 in 2014. These crystals were very recently tested in a crystal-assisted collimation experiment with a 6.5 TeV proton beam, resulting in the first observation of channeling at this record energy, being also the first observation of channeling of the beam circulating in the LHC.

  6. Freeze and Thaw States Detection in High Latitude Inundated Areas Using High Resolution ALOS PALSAR Observations

    Science.gov (United States)

    Azarderakhsh, M.; McDonald, K. C.; Prakash, S.

    2016-12-01

    Inundated surfaces in Northern latitudes experience freeze and thaw (FT) cycles seasonally. These surfaces are among the important sources of positive carbon and methane (CH4) feedback to the atmosphere as well as their crucial role in biogeochemical transitions, hydrology and prediction of boreal-arctic ecosystem. Wetlands, in particular, are the regions that contribute mostly as a CH4 source. In the past, remote sensing observations from satellites have shown a great potential capability in detecting freeze and thaw states of the surfaces especially in remote areas. Active and passive microwave observations are shown to be more sensitive to the change of surface state and are more promissing than other observations because they are less affected by the atmosphere. Active microwave measurements such as the Advanced Land Observing Satellite Phased Array L-Band SAR (ALOS PALSAR) can provide a viable higher resolution estimates of the inundated surfaces and their states than those from passive microwave brightness temperatures with coarser and higher temporal observations. Therefore, the link between active and passive estimates may potentially enhance our understanding with the advantages of higher spatial and temporal predictions. In this study, we utilize PALSAR ScanSAR mode data with more frequent temporal coverage of up to 40 days along with the static map dervied from Fine Beam Data to study the timing of the inundation for wetland classes as well as their FT states using data from year 2007 to 2010 period. A pixel-based and object oriented-based classification methods to derive freeze/thaw maps is applied. The dynamic inundation maps then are developed at 100 m resolution. JERS and PALSAR Fine Beam mode based static wetlands map and Landsat Based land cover data (NLCD) are used to train and assess the classification at high resolution along with other ancillary data sets. The developed thresholds are employed for the FT detection. Comparison of the results

  7. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Jakubek, Jan [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Granja, Carlos [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic)]. E-mail: carlos.granja@utef.cvut.cz; Dammer, Jiri [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Hanus, Robert [Institute of Organic Chemistry and Biochemistry, Academy of Sciences, CZ-166 10 Prague 6 (Czech Republic); Holy, Tomas [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Pospisil, Stanislav [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Tykva, Richard [Institute of Organic Chemistry and Biochemistry, Academy of Sciences, CZ-166 10 Prague 6 (Czech Republic); Uher, Josef [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Vykydal, Zdenek [Institute of Experimental and Applied Physis, Czech Technical Universtiy in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic)

    2007-02-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences.

  8. High-Precision Resonant Cavity Beam Position, Emittance and Third-Moment Monitors

    CERN Document Server

    Barov, Nikolai; Miller, Roger H; Nantista, Christopher D; Weidemann, A W

    2005-01-01

    Linear colliders and FEL facilities need fast, nondestructive beam position and profile monitors to facilitate machine tune-up, and for use with feedback control. FAR-TECH, Inc. is developing a resonant cavity diagnostic to simultaneously measure the dipole, quadrupole and sextupole moments of the beam distribution. Measurements of dipole and quadrupole moments at multiple locations yield information about beam orbit and emittance. The sextupole moment can reveal information about beam asymmetry which is useful in diagnosing beam tail deflections caused by short range dipole wakefields. In addition to the resonance enhancement of a single-cell cavity, use of a multi-cell standign-wave structure further enhances signal strength and improves the resolution of the device. An estimated rms beam size resolution is sub micro-meters and beam position is sub nano-meter.

  9. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  10. High resolution amplified pixel sensor architectures for large area digital mammography tomosynthesis

    Science.gov (United States)

    Taghibakhsh, Farhad; Karim, Karim S.

    2008-03-01

    Amplified Pixel Sensor (APS) architectures using two transistors per pixel are introduced in this research for digital mammography tomosynthesis that requires high resolution and low noise imaging capability. The fewer number of on-pixel elements and reduced pixel complexity result in a smaller pixel pitch and higher gain, which makes the two-transistor (2T) APS architectures promising for high resolution, low noise and high speed digital imaging including medical imaging modalities such as tomosynthesis and cone beam computed tomography. Measured results from in-house fabricated test arrays using amorphous silicon (a-Si) thin film transistor (TFTs) are presented as well as driving schemes for minimizing the threshold voltage metastability problem and increasing frame rate. The results indicate that a pixel input referred noise value of down to 220 electrons is achievable with a 50μm pixel pitch a-Si 2T APS.

  11. High-resolution neutron microtomography with noiseless neutron counting detector

    Science.gov (United States)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Feller, W. B.; Lehmann, E.; Butler, L. G.; Dawson, M.

    2011-10-01

    The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency (˜70% for cold neutrons), spatial resolutions ranging from 15 to 55 μm and a temporal resolution of ˜1 μs—combined with the virtual absence of readout noise—make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual ˜400 μm grains in an organic powder encapsulated in a ˜700 μm thick metal casing.

  12. Dual camera system for acquisition of high resolution images

    Science.gov (United States)

    Papon, Jeremie A.; Broussard, Randy P.; Ives, Robert W.

    2007-02-01

    Video surveillance is ubiquitous in modern society, but surveillance cameras are severely limited in utility by their low resolution. With this in mind, we have developed a system that can autonomously take high resolution still frame images of moving objects. In order to do this, we combine a low resolution video camera and a high resolution still frame camera mounted on a pan/tilt mount. In order to determine what should be photographed (objects of interest), we employ a hierarchical method which first separates foreground from background using a temporal-based median filtering technique. We then use a feed-forward neural network classifier on the foreground regions to determine whether the regions contain the objects of interest. This is done over several frames, and a motion vector is deduced for the object. The pan/tilt mount then focuses the high resolution camera on the next predicted location of the object, and an image is acquired. All components are controlled through a single MATLAB graphical user interface (GUI). The final system we present will be able to detect multiple moving objects simultaneously, track them, and acquire high resolution images of them. Results will demonstrate performance tracking and imaging varying numbers of objects moving at different speeds.

  13. High depth resolution SIMS analysis using metal cluster complex ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, M; Kinno, T; Koike, M; Tanaka, H; Takeno, S [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Fujiwara, Y; Kondou, K; Teranishi, Y; Nonaka, H; Fujimoto, T; Kurokawa, A; Ichimura, S [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki-ken 305-8568 (Japan)], E-mail: mitsuhiro.tomita@toshiba.co.jp

    2008-03-15

    SIMS depth profiles were measured using metal cluster complex ions of Ir{sub 4}(CO){sub 7}{sup +} as a primary ion beam in order to obtain high depth resolution. Depth resolution was evaluated as a function of primary ion species, energy and incident angle using a multiple boron delta-doped silicon sample. The depth resolution obtained using cluster ion bombardment was considerably better than that obtained by oxygen ion bombardment under the same bombardment condition due to reduction of atomic mixing in the depth. The best depth resolution was 0.9 nm under the bombardment condition of 5 keV, 45 deg. with oxygen flooding, which approaches the value measured with state of the art SIMS analyses. However, depth resolution was not improved by decreasing the cluster ion energy (less than 5 keV), even though the roughness of the sputtered surface was suppressed. The limit of depth resolution improvement may be caused by a carbon cover-layer that prevents the formation of surface oxide that buffers atomic mixing. To overcome this issue, it will be necessary to eliminate carbon from the cluster ion.

  14. A Procedure for High Resolution Satellite Imagery Quality Assessment

    Directory of Open Access Journals (Sweden)

    Mattia Crespi

    2009-05-01

    Full Text Available Data products generated from High Resolution Satellite Imagery (HRSI are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF. This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites.

  15. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems.

    Science.gov (United States)

    Berkhout, W E R; Verheij, J G C; Syriopoulos, K; Li, G; Sanderink, G C H; van der Stelt, P F

    2007-05-01

    The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard resolution dimensions, and vice versa. 90 extracted human premolars were mounted in groups of 5 in plaster blocks, containing 4 test teeth and 1 non-test tooth. Two blocks at a time were placed in a jig to simulate a bitewing radiograph. Radiographs were taken using four digital systems (Planmeca Dixi 2; Gendex Visualix HDI; Dürr Vistascan; Digora Optime), each at two resolution settings. Next, the teeth were sectioned and a total of 65 surfaces were incorporated in the study. Additionally, the bicubic interpolation method was applied to reduce the high-resolution original images and to enlarge the standard resolution images. The original, reduced and enlarged images were randomly shown to five observers in two random sessions. The observers were asked to assess caries depth on a 4-point scale. The observers' scores were compared with the results from a histological examination. Data were analysed using the statistical theory for multivariate discrete data. Cohen's kappa was used to determine the agreement with the gold standard. None of the comparisons between the spatial resolution settings, or the comparisons between increased or reduced image size and the original image sizes, showed significant differences in the probability of caries detection (chi2=26.59, df=26, P approximately 0.50). The four digital systems used in this study differ significantly in the probability of caries detection (chi2=41.55, df=24, PCaries diagnosis does not improve when using high-resolution settings compared with the standard settings. The use of bicubic convolution interpolation for zooming has no detectable effect on caries diagnosis and therefore is recommended to use when enlarging or reducing

  16. Ocular Imaging Combining Ultrahigh Resolution and High Speed OCT

    Science.gov (United States)

    Schmoll, Tilman; Leitgeb, Rainer A.

    The impact of ultrahigh-resolution and ultrahigh-speed OCT technique on corneal and retinal imaging is shown. The capabilities of advanced OCT system for imaging of the cornea and the thickness determination of the tear film, corneal epithelium, and Bowman's layer over a wide field of view are demonstrated. The high transverse and axial resolution of OCT system allowing one to image individual nerve fiber bundles, the parafoveal capillary network, and individual cone photoreceptors is described.

  17. High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire

    Directory of Open Access Journals (Sweden)

    Nathan Torbick

    2012-06-01

    Full Text Available Monitoring high latitude wetlands is required to understand feedbacks between terrestrial carbon pools and climate change. Hydrological variability is a key factor driving biogeochemical processes in these ecosystems and effective assessment tools are critical for accurate characterization of surface hydrology, soil moisture, and water table fluctuations. Operational satellite platforms provide opportunities to systematically monitor hydrological variability in high latitude wetlands. The objective of this research application was to integrate high temporal frequency Synthetic Aperture Radar (SAR and high spatial resolution Light Detection and Ranging (LiDAR observations to assess hydroperiod at a mire in northern Sweden. Geostatistical and polarimetric (PLR techniques were applied to determine spatial structure of the wetland and imagery at respective scales (0.5 m to 25 m. Variogram, spatial regression, and decomposition approaches characterized the sensitivity of the two platforms (SAR and LiDAR to wetland hydrogeomorphology, scattering mechanisms, and data interrelationships. A Classification and Regression Tree (CART, based on random forest, fused multi-mode (fine-beam single, dual, quad pol Phased Array L-band Synthetic Aperture Radar (PALSAR and LiDAR-derived elevation to effectively map hydroperiod attributes at the Swedish mire across an aggregated warm season (May–September, 2006–2010. Image derived estimates of water and peat moisture were sensitive (R2 = 0.86 to field measurements of water table depth (cm. Peat areas that are underlain by permafrost were observed as areas with fluctuating soil moisture and water table changes.

  18. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  19. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  20. High electron beam dosimetry using ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lueza M, F.; Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin N, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Garcia H, M. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-10-15

    This paper reports the experimental results of studying the thermoluminescent (Tl) properties of ZrO{sub 2} powder embedded in polytetrafluorethylene (PTFE) exposed to high energy electron beam from linear accelerators (Linac). Structural and morphological characteristics were also reported. Irradiations were conducted using high energy electrons beams in the range from 2 to 18 MeV. Pellets of ZrO{sub 2}+PTFE were produced using polycrystalline powder grown by the precipitation method. These pellets presented a Tl glow curve exhibiting an intense glow peak centered at around 235 C. Tl response as a function of high electron absorbed dose was linear in the range from 2 to 30 Gy. Repeatability determined by exposing a set of pellets repeatedly to the same electron absorbed dose was 0.5%. Fading along 30 days was about 50%. Then, results obtained in this study suggest than ZrO{sub 2}+PTFE pellets could be used for high energy electron beam dosimetry provided fading correction is accounted for. (Author)

  1. Isotopic germanium targets for high beam current applications at GAMMASPHERE.

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. P.; Lauritsen, T.

    2000-11-29

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce {sup 152}Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the {sup 80}Se on {sup 76}Ge reaction rather than the standard {sup 48}Ca on {sup 108}Pd reaction. Because the recoil velocity of the {sup 152}Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the {sup 76}Ge target stacks were mounted on a rotating target wheel. A description of the {sup 76}Ge target stack preparation will be presented and the target performance described.

  2. Highly porous nanoberyllium for X-ray beam speckle suppression

    Energy Technology Data Exchange (ETDEWEB)

    Goikhman, Alexander, E-mail: agoikhman@ymail.com; Lyatun, Ivan; Ershov, Petr [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Snigireva, Irina [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Wojda, Pawel [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Gdańsk University of Technology, 11/12 G. Narutowicza, Gdańsk 80-233 (Poland); Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor [A. A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Rogova str. 5a, Moscow 123098 (Russian Federation); Snigirev, Anatoly [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2015-04-09

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy.

  3. Scintillation screen materials for beam profile measurements of high energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Renuka

    2016-06-22

    For the application as a transverse ion beam diagnostics device, various scintillation screen materials were analysed. The properties of the materials such as light output, image reproduction and radiation stability were investigated with the ion beams extracted from heavy ion synchrotron SIS-18. The ion species (C, Ne, Ar, Ta and U) were chosen to cover the large range of elements in the periodic table. The ions were accelerated to the kinetic energies of 200 MeV/u and 300 MeV/u extracted with 300 ms pulse duration and applied to the screens. The particle intensity of the ion beam was varied from 10{sup 4} to 10{sup 9} particles per pulse. The screens were irradiated with typically 40 beam pulses and the scintillation light was captured using a CCD camera followed by characterization of the beam spot. The radiation hardness of the screens was estimated with high intensity Uranium ion irradiation. In the study, a linear light output for 5 orders of magnitude of particle intensities was observed from sensitive scintillators and ceramic screens such as Al{sub 2}O{sub 3}:Cr and Al{sub 2}O{sub 3}. The highest light output was recorded by CsI:Tl and the lowest one by Herasil. At higher beam intensity saturation of light output was noticed from Y and Mg doped ZrO{sub 2} screens. The light output from the screen depends not only on the particle intensity but also on the ion species used for irradiation. The light yield (i.e. the light intensity normalised to the energy deposition in the material by the ion) is calculated from the experimental data for each ion beam setting. It is shown that the light yield for light ions is about a factor 2 larger than the one of heavy ions. The image widths recorded exhibit a dependence on the screens material and differences up to 50 % were registered. On radiation stability analysis with high particle intensity of Uranium ions of about 6 x 10{sup 8} ppp, a stable performance in light output and image reproduction was documented from Al

  4. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  5. Lynx: A High-Resolution Synthetic Aperture Radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  6. Overview of laserwire beam profile and emittance measurements for high power proton accelerators

    CERN Document Server

    Gibson, S M; Bosco, A; Gabor, C; Pozimski, J; Savage, P; Hofmann, T

    2013-01-01

    Laserwires were originally developed to measure micron-sized electron beams via Compton scattering, where traditional wire scanners are at the limit of their resolution. Laserwires have since been applied to larger beamsize, high power H$^-$ ion beams, where the non-invasive method can probe beam densities that would damage traditional diagnostics. While photo-detachment of H$^-$ ions is now routine to measure beam profiles, extending the technique to transverse and longitudinal emittance measurements is a key aim of the laserwire emittance scanner under construction at the Front End Test Stand (FETS) at the RAL. A pulsed, 30 kHz, 8kW peak power laser is fibrecoupled to motorized collimating optics, which controls the position and thickness of the laserwire delivered to the H- interaction chamber. The laserwire slices out a beamlet of neutralized particles, which propagate to a downstream scintillator and camera. The emittance is reconstructed from 2D images as the laserwire position is scanned. Results from ...

  7. A Beam Interlock System for CERN High Energy Accelerators

    CERN Document Server

    Todd, Benjamin; Schmidt, R

    2006-01-01

    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero...

  8. Two color multichannel heterodyne interferometer set up for high spatial resolution electron density profile measurements in TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Pedreira, P.; Criado, A. R.; Acedo, P. [Department of Electronics Technology, Universidad Carlos III de Madrid, Leganes, Madrid 28911 (Spain); Esteban, L.; Sanchez, M.; Sanchez, J. [Laboratorio Nacional de Fusion por ConfinamientoMagnetico-CIEMAT, Madrid 28040 (Spain)

    2010-10-15

    A high spatial resolution two color [CO{sub 2}, {lambda}=10.6 {mu}m/Nd:YAG (Nd:YAG denotes neodymium-doped yttrium aluminum garnet), and {lambda}=1.064 {mu}m] expanded-beam multichannel heterodyne interferometer has been installed on the TJ-II stellarator. Careful design of the optical system has allowed complete control on the evolution of both Gaussian beams along the interferometer, as well as the evaluation and optimization of the spatial resolution to be expected in the measurements. Five CO{sub 2} (measurement) channels and three Nd:YAG (vibration compensation) channels have been used to illuminate the plasma with a probe beam of 100 mm size. An optimum interpolation method has been applied to recover both interferometric phasefronts prior to mechanical vibration subtraction. The first results of the installed diagnostic are presented in this paper.

  9. Simulation of Head-on Beam-Beam Limitations in Future High Energy Colliders

    CERN Document Server

    Buffat, Xavier; Florio, Adrien; Pieloni, Tatiana; Tambasco, Claudia

    2016-01-01

    The Future Circular Hadron Collider (FCC-hh) project calls for studies in a new regime of beam-beam interactions. While the emittance damping due to synchrotron radiation is still slower than in past or existing lepton colliders, it is significantly larger than in other hadron colliders. The slow reduction of the emittance is profitable for higher luminosity in term of transverse beam size at the interaction points and also to mitigate long-range beam-beam effects, potentially allowing for a reduction of the crossing angle between the beams during the operation. In such conditions, the strength of head-on beam-beam interactions increases, potentially limiting the beam brightness. 4D weak-strong and strong-strong simulations are performed in order to assess these limitations.

  10. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.

    Science.gov (United States)

    Gallien, Sebastien; Domon, Bruno

    2014-08-01

    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  11. High-Resolution Broadband Spectroscopy Using an Externally Dispersed Interferometer

    Science.gov (United States)

    Erskine, David J.; Edelstein, Jerry; Feuerstein, W. Michael; Welsh, Barry

    2003-08-01

    An externally dispersed interferometer (EDI) is a series combination of a fixed delay interferometer and an external grating spectrograph. We describe how the EDI can boost the effective resolving power of an echelle or linear grating spectrograph by a factor of 2-3 or more over the spectrograph's full bandwidth. The interferometer produces spectral fringes over the entire spectrograph's bandwidth. The fringes heterodyne with spectral features to provide a low spatial frequency moiré pattern. The heterodyning is numerically reversed to recover highly detailed spectral information unattainable by the spectrograph alone. We demonstrate resolution boosting for stellar and solar measurements of two-dimensional echelle and linear grating spectra. An effective spectral resolution of ~100,000 has been obtained from the ~50,000 resolution Lick Observatory two-dimensional echelle spectrograph, and that of ~50,000 from an ~20,000 resolution linear grating spectrograph.

  12. Achieving High Resolution Timer Events in Virtualized Environment.

    Directory of Open Access Journals (Sweden)

    Blazej Adamczyk

    Full Text Available Virtual Machine Monitors (VMM have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service. Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  13. Propagation and power flow of high-order three-Airy beams

    Science.gov (United States)

    Liang, Yi; Chen, Yingkang; Wan, Lingyu

    2017-12-01

    We demonstrate experimentally propagation and evolution of high-order three-Airy beams in this letter. Our results show clearly that, a high-order three-Airy beam tends to evolve into a Laguerre-Gaussian-like beam, in consistence with previous prediction. Moreover, by analyzing the internal transverse power flow of three-Airy beams during propagation, we found that, as the order of three-Airy beams goes higher, the initial beam intensity distributes more in the "side lobes", and it takes longer propagation for the beams to reach a maximum peak intensity and then transform into patterns of corresponding Laguerre-Gaussian-like modes.

  14. Adaptive optics high resolution spectroscopy: present status and future direction

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  15. The theory and practice of high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Joy, D.C. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  16. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J

    2002-01-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  17. A versatile computer-controlled high-resolution LBIC system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.; Fernandez-Lorenzo, C.; Poce-Fatou, J.A.; Alcantara, R. [Facultad de Ciencias, Cadiz (Spain). Dpto. de Quimica Fisica

    2004-07-01

    This paper presents the design of versatile equipment for obtaining laser-beam-induced current (LBIC) images which allows the study of large surfaces as well as conversion areas of a few micrometers. The modular optomechanical design enables the user to modify the size of the irradiation spot by simply changing the microscope objective used as focal lens, albeit within the limits set by the wavelength. The use of an appropriate calculation algorithm makes it possible to rely on a computerized system to adjust the distance at which the focusing lens must be placed with respect to the sample plane. The possibility of working at micrometer resolution allows one to obtain very significant information for the study of irregularities, manufacturing defects, impurities, grain boundaries, dislocations, recombination centers, etc. in photovoltaic wafers. (author)

  18. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  19. High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared

    Science.gov (United States)

    Aadhi, A.; Samanta, G. K.

    2018-01-01

    We report on experimental demonstration of high power, ultrafast, high repetition rate (RR) vortex beam source tunable in the near-IR wavelength range. Based on single-pass optical parametric generation of Yb-fiber laser of vortex order l p = 1 in a 50 mm long MgO doped periodically poled LiNbO3 crystal, the source produces signal beam in vortex profile of order l s = 1 across 1433–1553 nm. Additionally, the source produces broadband idler radiation tunable across 3379–4132 nm in the Gaussian beam profile. We observed that the vortex profile of the pump beam is always transferred to the signal beam due to the highest overlapping integral among the interacting beams and the idler maintains a Gaussian spatial profile owing to the conservation of orbital angular momentum in optical parametric processes. For a pump power of 4.72 W, the signal and idler beams have a maximum power of 1.7 W at 1509 nm and 0.48 W at 3625 nm respectively. The signal vortex beam has output pulses of width ∼637 fs at a RR of 78 MHz. The signal (idler) has a spectral width of 4.3 nm (129.5 nm) and a passive peak-to-peak power fluctuation better than 3% (1.1%) over 30 min, respectively.

  20. High power, higher order ultrafast hollow Gaussian beams

    Science.gov (United States)

    Apurv Chaitanya, N.; Amrit Chaitanya, Banerji, J.; Samanta, G. K.

    2017-05-01

    We report on linear and nonlinear generation of ultrafast hollow Gaussian beams (HGBs). Using only two spiral phase plates (SPPs) having phase variation corresponding to vortex orders, l = 1 and 2, and an experimental scheme, we have generated high power, ultrafast HGBs of orders up to 3 at 1064 nm. Based on single-pass, frequency doubling of the HGBs in a 5 mm long, MgO doped, periodically poled LiNbO3 (MgO:PPLN) crystal, we have produced HGBs of average output power in excess of 250 mW at 532 nm and order as high as 6. Experimentally, we verified that the frequency doubled HGBs have orders twice those of the pump HGBs. Like the Gaussian beams, the HGBs of all orders have an optimum focusing condition for the highest conversion efficiency. On the contrary to previous reports, we observed that the propagation of the vortex beam of order, l, through a SPP corresponding to the vortex order of, -l, results in HGBs of the same order, | l | .

  1. A High Spatial Resolution CT Scanner for Small Animal Imaging

    Science.gov (United States)

    Cicalini, E.; Baldazzi, G.; Belcari, N.; Del Guerra, A.; Gombia, M.; Motta, A.; Panetta, D.

    2006-01-01

    We have built a micro-CT system that will be integrated with a small animal PET scanner. The components are: an X-ray source with a peak voltage of up to 60 kV, a power of 10 W and a focal spot size of 30 μm; a CCD coupled to CsI(Tl) scintillator, subdivided into 128×3072 square pixels, each with a size of 48 μm; stepping motors for the sample roto-translation; a PCI acquisition board; electronic boards to control and read-out the CCD. A program in Lab VIEW controls the data acquisition. Reconstruction algorithms have been implemented for fan-beam and cone-beam configurations. Images of a bar pattern have been acquired to evaluate the detector performance: the CTF curve has been extracted from the data, obtaining a value of 10 % at 5 lp/mm and about 3 % at 10 lp/mm. Tomographic acquisitions have been performed with a test phantom consisting of a Plexiglas cylinder, 3 cm in diameter, with holes ranging from 3 mm down to 0.6 mm in diameter, filled with different materials. The contrast resolution has been extracted from the reconstructed images: a value of 6 % (in water) for a cubic voxel size of 80 μm has been obtained.

  2. Crystals channel high-energy beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    Bent crystals can be used to deflect particle beams, as suggested by E. Tsyganov in 1976. Experimental demonstrations have been carried out for four decades in various laboratories worldwide. In recent tests, a bent crystal inserted into the LHC beam halo successfully channelled and deflected 6.5 TeV protons into an absorber, with reduced secondary irradiation.    Quasimosaic crystal for the LHC (developed by PNPI). Bent crystal technology was introduced at CERN and further developed for the LHC by the UA9 Collaboration. For about ten years, experts from CERN, INFN (Italy), Imperial College (UK), LAL (France), and PNPI, IHEP and JINR (Russia) have been investigating the advantages of using bent crystals in the collimation systems of high-energy hadron colliders. A bent crystal replacing the primary collimator can deflect the incoming halo deeply inside the secondary collimators, improving their absorption efficiency. “The bent crystals we have just tested at the world-record en...

  3. Fast damping in mismatched high intensity beam transportation

    Directory of Open Access Journals (Sweden)

    V. Variale

    2001-08-01

    Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  4. Beam collimation and control in the LHC high energy injectors

    CERN Document Server

    Catalan-Lasheras, N

    2006-01-01

    The design and construction of new injectors will allow to boost the luminosity of the LHC. Two consecutive machines capable to inject into the LHC ring at 1 TeV are being considered. Based only on the expected performance of the injectors, the beam loss handling in these high intensity machines will be a challenge and the introduction of collimation systems seems necessary. The need to reduce the beam losses and allow an efficient collimation system has to be implemented from the beginning of the design. The energy ramping in stages requires different approaches for removing the proton halo. Some studies are still necessary to define the hardware. The study performed in this paper as well as the conclusions will only slightly differ when applied to another scenario.

  5. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  6. Theoretical Problems in High Resolution Solar Physics, 2

    Science.gov (United States)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  7. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  8. A fast high-spatial-resolution Raman distributed temperature sensor

    Science.gov (United States)

    Chen, Y.; Hartog, A. H.; Marsh, R. J.; Hilton, I. M.; Hadley, M. R.; Ross, P. A.

    2014-05-01

    Conventional high-spatial-resolution Raman distributed temperature sensing (DTS) systems are based on photoncounting techniques, which result in slow measurements over short sensing fibers. We describe an alternative approach that uses a high-power, short-pulse-width laser and provides fast measurements over fibers longer than 1 km. We demonstrate measurements with 1-s update times over fiber lengths greater than 1 km with better than 0.4-m spatial resolution. We introduce a figure of merit for DTS and we show a substantial improvement (x 100) over earlier results.

  9. High-Resolution CT Imaging of Single Breast Cancer Microcalcifications In Vivo

    Science.gov (United States)

    Inoue, Kazumasa; Liu, Fangbing; Hoppin, Jack; Lunsford, Elaine P.; Lackas, Christian; Hesterman, Jacob; Lenkinski, Robert E.; Fujii, Hirofumi; Frangioni, John V.

    2010-01-01

    Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested, a voxel-driven “fast” cone beam algorithm (FCBA) and a detector-driven “exact” cone beam algorithm (ECBA). By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 µm full-width at half maximum (FWHM). At an optimal detector sampling frequency, ECBA provided a 28 µm (21%) FWHM improvement in resolution over FCBA. In vitro, we were able to image a single 300 µm by 100 µm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo “gold standard” for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification. PMID:21504703

  10. High-Resolution Computed Tomography of Single Breast Cancer Microcalcifications in Vivo

    Directory of Open Access Journals (Sweden)

    Kazumasa Inoue

    2011-07-01

    Full Text Available Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested: a voxel-driven “fast” cone beam algorithm (FCBA and a detector-driven “exact” cone beam algorithm (ECBA. By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 μm full width at half-maximum (FWHM. At an optimal detector sampling frequency, the ECBA provided a 28 μm (21% FWHM improvement in resolution over the FCBA. In vitro, we were able to image a single 300 μm X 100 μm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo “gold standard” for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification.

  11. High-resolution computed tomography of single breast cancer microcalcifications in vivo.

    Science.gov (United States)

    Inoue, Kazumasa; Liu, Fangbing; Hoppin, Jack; Lunsford, Elaine P; Lackas, Christian; Hesterman, Jacob; Lenkinski, Robert E; Fujii, Hirofumi; Frangioni, John V

    2011-08-01

    Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested: a voxel-driven "fast" cone beam algorithm (FCBA) and a detector-driven "exact" cone beam algorithm (ECBA). By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 μm full width at half-maximum (FWHM). At an optimal detector sampling frequency, the ECBA provided a 28 μm (21%) FWHM improvement in resolution over the FCBA. In vitro, we were able to image a single 300 μm × 100 μm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo "gold standard" for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification.

  12. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  13. Sharpening high resolution information in single particle electron cryomicroscopy.

    Science.gov (United States)

    Fernández, J J; Luque, D; Castón, J R; Carrascosa, J L

    2008-10-01

    Advances in single particle electron cryomicroscopy have made possible to elucidate routinely the structure of biological specimens at subnanometer resolution. At this resolution, secondary structure elements are discernable by their signature. However, identification and interpretation of high resolution structural features are hindered by the contrast loss caused by experimental and computational factors. This contrast loss is traditionally modeled by a Gaussian decay of structure factors with a temperature factor, or B-factor. Standard restoration procedures usually sharpen the experimental maps either by applying a Gaussian function with an inverse ad hoc B-factor, or according to the amplitude decay of a reference structure. EM-BFACTOR is a program that has been designed to widely facilitate the use of the novel method for objective B-factor determination and contrast restoration introduced by Rosenthal and Henderson [Rosenthal, P.B., Henderson, R., 2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745]. The program has been developed to interact with the most common packages for single particle electron cryomicroscopy. This sharpening method has been further investigated via EM-BFACTOR, concluding that it helps to unravel the high resolution molecular features concealed in experimental density maps, thereby making them better suited for interpretation. Therefore, the method may facilitate the analysis of experimental data in high resolution single particle electron cryomicroscopy.

  14. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Voronov, Dmitry L.; Cambie, Rossana; Ahn, Minseung; Anderson, Erik H.; Chang, Chih-Hao; Gullikson, Eric M.; Heilmann, Ralf K.; Salmassi, Farhad; Schattenburg, Mark L.; Yashchuk, Valeriy V.; Padmore, Howard A.

    2009-09-16

    We describe a revolutionary new approach to high spectral resolution soft x-ray optics. Conventionally in the soft x-ray energy range, high spectral resolution is obtained by use of a relatively low line density grating operated in 1st order with small slits. This severely limits throughput. This limitation can be removed by use of a grating either in very high order, or with very high line density, if one can maintain high diffraction efficiency. We have developed a new technology for achieving both of these goals which should allow high throughput spectroscopy, at resolving powers of up to 106 at 1 keV. Such optics should provide a revolutionary advance for high resolution lifetime free spectroscopy, such as RIXS, and for pulse compression of chirped beams. We report recent developmental fabrication and characterization of a prototype grating optimized for 14.2 nm EUV light. The prototype grating with a 200 nm period of the blazed grating substrate coated with 20 Mo/Si bilayers with a period of 7.1 nm demonstrates good dispersion in the third order (effective groove density of 15,000 lines per mm) with a diffraction efficiency of more than 33percent.

  15. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    Science.gov (United States)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  16. Structural information, resolution, and noise in high-resolution atomic force microscopy topographs.

    Science.gov (United States)

    Fechner, Peter; Boudier, Thomas; Mangenot, Stéphanie; Jaroslawski, Szymon; Sturgis, James N; Scheuring, Simon

    2009-05-06

    AFM has developed into a powerful tool in structural biology, providing topographs of proteins under close-to-native conditions and featuring an outstanding signal/noise ratio. However, the imaging mechanism exhibits particularities: fast and slow scan axis represent two independent image acquisition axes. Additionally, unknown tip geometry and tip-sample interaction render the contrast transfer function nondefinable. Hence, the interpretation of AFM topographs remained difficult. How can noise and distortions present in AFM images be quantified? How does the number of molecule topographs merged influence the structural information provided by averages? What is the resolution of topographs? Here, we find that in high-resolution AFM topographs, many molecule images are only slightly disturbed by noise, distortions, and tip-sample interactions. To identify these high-quality particles, we propose a selection criterion based on the internal symmetry of the imaged protein. We introduce a novel feature-based resolution analysis and show that AFM topographs of different proteins contain structural information beginning at different resolution thresholds: 10 A (AqpZ), 12 A (AQP0), 13 A (AQP2), and 20 A (light-harvesting-complex-2). Importantly, we highlight that the best single-molecule images are more accurate molecular representations than ensemble averages, because averaging downsizes the z-dimension and "blurs" structural details.

  17. On the use of CCD area detectors for high-resolution specular X-ray reflectivity.

    Science.gov (United States)

    Fenter, P; Catalano, J G; Park, C; Zhang, Z

    2006-07-01

    The use and application of charge coupled device (CCD) area detectors for high-resolution specular X-ray reflectivity is discussed. Direct comparison of high-resolution specular X-ray reflectivity data measured with CCD area detectors and traditional X-ray scintillator ('point') detectors demonstrates that the use of CCD detectors leads to a substantial (approximately 30-fold) reduction in data acquisition rates because of the elimination of the need to scan the sample to distinguish signal from background. The angular resolution with a CCD detector is also improved by a factor of approximately 3. The ability to probe the large dynamic range inherent to high-resolution X-ray reflectivity data in the specular reflection geometry was demonstrated with measurements of the orthoclase (001)- and alpha-Al2O3 (012)-water interfaces, with measured reflectivity signals varying by a factor of approximately 10(6) without the use of any beam attenuators. Statistical errors in the reflectivity signal are also derived and directly compared with the repeatability of the measurements.

  18. The AMS02 Cherenkov imager prototype In-beam tests with high-energy ions

    CERN Document Server

    Buénerd, Michel

    2005-01-01

    A prototype of the AMS Cherenkov imager has been tested at CERN with 20 and per nucleon ion obtained by fragmentation of a primary beam of Pb and In ions, respectively. Data have been collected with single low-intensity beam settings, over the range of nuclear charges 2beam conditions and using different radiators. The charge Z and velocity β resolution of the prototype have been measured and the aerogel material properties investigated.

  19. Spectral domain optical coherence tomography - Ultra-high speed, ultra-high resolution ophthalmic imaging

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Pierce, M. C.; Nassif, N. A.; Park, B. H.; Yun, S. H.; White, B.; Bouma, B. E.; Tearney, G. J.; de Boer, J.F.

    2005-01-01

    Objective: To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution. Methods: Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical

  20. Future spaceborne ocean missions using high sensitivity multiple-beam radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Søbjærg, Sten Schmidl; Kristensen, Steen Savstrup

    2014-01-01

    Design considerations concerning a scanning as well as a push-broom microwave radiometer system are presented. Strict requirements to spatial and radiometric resolution leads to a multiple-beam scanner achieving good sensitivity through integration over many beams, or to a push-broom system where...

  1. Laser Beam Welding with High-Frequency Beam Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers

    Science.gov (United States)

    Kraetzsch, Mathias; Standfuss, Jens; Klotzbach, Annett; Kaspar, Joerg; Brenner, Berndt; Beyer, Eckhard

    Brilliant laser beam sources in connection with a high frequent beam oscillation make it now possible to join metallic material combinations, which have been conventionally non-laser weldable up to now. It concerns especially such combinations like Al- Cu, where brittle intermetallic phases occur. Extreme small weld seam with high aspect ratio leads to very short meld pool life time. These allow an extensive reduction of the heat input. On the other side the melting behavior at metallic mixed joint, seam geometry, meld pool turbulence and solidification behavior can be influenced by a high frequent time-, position- and powercontrolled laser beam oscillation.

  2. Generating High-Temporal and Spatial Resolution TIR Image Data

    Science.gov (United States)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  3. GENERATING HIGH-TEMPORAL AND SPATIAL RESOLUTION TIR IMAGE DATA

    Directory of Open Access Journals (Sweden)

    M. Herrero-Huerta

    2017-09-01

    Full Text Available Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere collected by MODIS daily 1-km and Landsat – TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  4. Design method for automotive high-beam LED optics

    Science.gov (United States)

    Byzov, Egor V.; Moiseev, Mikhail A.; Doskolovich, Leonid L.; Kazanskiy, Nikolay L.

    2015-09-01

    New analytical method for the calculation of the LED secondary optics for automotive high-beam lamps is presented. Automotive headlamps should illuminate the road and the curb at the distance of 100-150 meters and create a bright, flat, relatively powerful light beam. To generate intensity distribution of this kind we propose to use TIR optical element (collimator working on the total internal reflection principle) with array of microlenses (optical corrector) on the upper surface. TIR part of the optical element enables reflection of the side rays to the front direction and provides a collimated beam which incidents on the microrelief. Microrelief, in its turn, dissipates the light flux in horizontal direction to meet the requirements of the Regulations 112, 113 and to provide well-illuminated area across the road in the far field. As an example, we computed and simulated the optical element with the diameter of 33 millimeters and the height of 22 millimeters. Simulation data shows that three illuminating modules including Cree XP-G2 LED and lens allow generating an appropriate intensity distribution for the class D of UNECE Regulations.

  5. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' AccelerateurLineaire (LAL), Universite Paris SudOrsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Kovalenko, A.D.; Taratin, A.M. [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2017-03-11

    The extraction of the SPS beam of 270 GeV/c protons assisted by a bent crystal was studied by simulation. Two methods for delivering the SPS beam onto a crystal were considered: transverse diffusion and orbit bump of the beam. It was shown that the main condition for high efficient beam extraction with a bent crystal, which is a small divergence of the incident beam, can be fulfilled. Extraction efficiency up to 99% can be reached for both methods of the beam delivering. The irradiation of the electrostatic septum wires during the beam extraction can be considerably reduced.

  6. Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution

    Science.gov (United States)

    Haindl, R.; Trasischker, W.; Baumann, B.; Pircher, M.; Hitzenberger, C. K.

    2015-12-01

    An improved three-beam Doppler optical coherence tomography system was developed. It utilizes a custom-made three-facet prism telescope to improve the transversal resolution at the sample. Furthermore, a two-axis gimbal-less MEMS mirror is used to minimize off-pivot beam movement at the pupil of the eye, enabling circular scanning for in vivo retinal measurements. We demonstrate the system's abilities for in vitro circular scanning to measure absolute flow and to reconstruct the full velocity vector on a bifurcation flow phantom. Moreover, in vivo retinal measurements using circular scanning around vessel bifurcations of healthy human volunteers were performed. Measurements of the absolute mean flow and its orientation are in good agreement with the expected values for in vitro measurements. For in vivo measurements, the in- and outflow of blood for retinal vessel bifurcations show an excellent agreement, demonstrating the reliability of the technique.

  7. Generating high-temporal and spatial resolution tir image data

    NARCIS (Netherlands)

    Herrero Huerta, M.; Lagüela, S.; Alfieri, S.M.; Menenti, M.; Lichti, D.; Weng, Q

    2017-01-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single

  8. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  9. Input variable selection for interpolating high-resolution climate ...

    African Journals Online (AJOL)

    2010-10-20

    Oct 20, 2010 ... Accurate climate surfaces are vital for applications relating to groundwater recharge modelling, evapotranspiration estima- ... with distance to oceans and elevation to generate 8 sets of high-resolution (i.e. 3 arc second) climate surfaces of the Western .... ANUSPLIN, developed by the Australian National.

  10. High resolution numerical weather prediction over the Indian ...

    Indian Academy of Sciences (India)

    In this study, the Florida State University Global Spectral Model (FSUGSM), in association with a high-resolution nested regional spectral model (FSUNRSM), is used for short-range weather forecasts over the Indian domain. Three-day forecasts for each day of August 1998 were performed using different versions of the ...

  11. Track prediction of very severe cyclone 'Nargis' using high resolution ...

    Indian Academy of Sciences (India)

    In the present study, a detailed diagnostic analysis of the system 'Nargis' is carried out initially to investigate the features associated with this unusual movement and subsequently the real time forecast of VSCS 'Nargis' using high resolution advanced version weather research forecasting (WRF) model is presented.

  12. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  13. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  14. High-resolution seismic imaging of the Sohagpur Gondwana basin ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 6 ... In this study, we illustrate how Gondwana tectonics affected the Sohagpur Gondwana basin that occurs at the junction of the Mahanadi and Son–Narmada rift systems in the central India, through a high-resolution seismic reflection study along six ...

  15. Bombs at High Resolution. I. Morphological Evidence for Photospheric Reconnection

    NARCIS (Netherlands)

    Watanabe, H.; Vissers, G.; Kitai, R.; Rouppe van der Voort, L.H.M.; Rutten, R.J.|info:eu-repo/dai/nl/074143662

    2011-01-01

    High-resolution imaging-spectroscopy movies of solar active region NOAA 10998 obtained with the Crisp Imaging Spectropolarimeter at the Swedish 1-m Solar Telescope show very bright, rapidly flickering, flame-like features that appear intermittently in the wings of the Balmer Hα line in a region with

  16. Calibration of a High Resolution Airborne 3-D SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Grinder-Pedersen, Jan; Madsen, S.N.

    1997-01-01

    The potential of across-track interferometric (XTI) synthetic aperture radar (SAR) for producing high resolution 3D imagery has been demonstrated by several airborne systems including EMISAR, the dual frequency, polarimetric, and interferometric SAR developed at the Dept. of Electromagnetic Systems...

  17. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  18. High Resolution Digital Imaging of Paintings: The Vasari Project.

    Science.gov (United States)

    Martinez, Kirk

    1991-01-01

    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  19. Amplification of real-time high resolution melting analysis PCR ...

    African Journals Online (AJOL)

    In this study, we assessed the usefulness of eight common primers amplifying the respective genes in real-time high resolution melting analysis PCR (real-time HRMA PCR) in terms of time, cost and sensitivity with respect to PCR-SSCP method. We found that case sample can easily be differentiated from control sample by ...

  20. High resolution spectroscopy of the disk chromosphere. I - Observing procedures.

    Science.gov (United States)

    Beckers, J. M.; Mauter, H. A.; Mann, G. R.; Brown, D. R.

    1972-01-01

    Review of some of the main features of a high resolution spectroscopy program aimed at the precise photometric observation of chromospheric fine structures using the Sacramento Peak vacuum telescope. The observing procedures are described, and a sample of the first observational results is presented.

  1. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  2. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  3. High resolution EPR applications to metalloenzymes and metals in medicine

    CERN Document Server

    Berliner, Lawrence

    2009-01-01

    EPR spectroscopy has an important role in the geometric structural characterization of the redox cofactors in metalloproteins and their electronic structure, as this is crucial for their reactivity. This title covers high-resolution EPR methods, iron proteins, nickel and copper enzymes, and metals in medicine.

  4. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    Research Centre, Mumbai 400 085, India. *Corresponding author. E-mail: siruguri@csr.ernet.in. Abstract. In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel ...

  5. High resolution reflection seismic mapping of shallow coal seams

    CSIR Research Space (South Africa)

    Mngadi, SB

    2013-10-01

    Full Text Available Subsidence and collapse of unmapped shallow coal mine workings poses a risk to the public and hampers the development of valuable property. A high-resolution reflection seismic survey was conducted to determine whether it is possible to map...

  6. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...

  7. Interpretation of high resolution aeromagnetic data over southern ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 2 ... High resolution airborne magnetic data of parts of the southern Benue Trough were digitally processed and analyzed in order to estimate the depth of magnetic sources and to map the distribution and orientation of subsurface structural features.

  8. Application of high-resolution melting for variant scanning in ...

    African Journals Online (AJOL)

    High-resolution melting (HRM) analysis is a rapid and sensitive method for single nucleotide polymorphism (SNP) analysis. In this study, a novel HRM assay was carried out to detect SNPs in the chloroplast gene atpB which encodes the beta subunit of the ATP synthase and atpB upstream intergenic region.

  9. A high-resolution record of Greenland mass balance

    NARCIS (Netherlands)

    McMillan, Malcolm; Leeson, Amber; Shepherd, Andrew; Briggs, Kate; Armitage, Thomas; Hogg, Anna; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Noël, B.P.Y.|info:eu-repo/dai/nl/370612345; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Ligtenberg, S.R.M.|info:eu-repo/dai/nl/32821177X; Horwath, M.; Groh, Andreas; Muir, A.; Gilbert, Lin

    2016-01-01

    We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with

  10. Systematic high-resolution assessment of global hydropower potential

    NARCIS (Netherlands)

    Hoes, Olivier A C; Meijer, Lourens J J; Van Der Ent, Ruud J.; Van De Giesen, Nick C.

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution

  11. Very high resolution satellite data: New challenges in image analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    Early years of coming century will see a large number of satellites with very high spatial resolution reaching beyond 1 m in the visible range of electromagnetic spectrum. Such images will come very close to giving a ground-based view of a terrain...

  12. pattern of interstitial lung disease as seen by high resolution

    African Journals Online (AJOL)

    2012-09-01

    Sep 1, 2012 ... Background: Diffuse lung diseases constitute a major cause of morbidity and mortality worldwide. High Resolution Computed Tomography (HRCT) is the recommended imaging technique in the diagnosis, assessment and followup of these diseases. Objectives: To describe the pattern of HRCT findings in ...

  13. FMC cameras, high resolution films and very large scale mapping

    Science.gov (United States)

    Tachibana, Kikuo; Hasegawa, Hiroyuki

    1988-06-01

    Very large scale mapping (1/250) was experimented on the basis of FMC camera, high resolution film and total station surveying. The future attractive combination of precision photogrammetry and personal computer assisted terrestrial surveying was investigated from the point of view of accuracy, time effectiveness and total procedures control.

  14. Signal Processing for High Resolution FMCW SAR and Moving Target

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    The combination of Frequency Modulated ContinuousWave (FMCW) technology and Synthetic Aperture Radar (SAR) leads to lightweight, cost-effective imaging sensors of high resolution. In FMCW SAR applications the conventional stop-and-go approximation used in pulse radar algorithms cannot be considered

  15. Plant respirometer enables high resolution of oxygen consumption rates

    Science.gov (United States)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  16. Sparse deconvolution of high-density super-resolution images

    NARCIS (Netherlands)

    S. Hugelier (Siewert); J.J. de Rooi (Johan); R. Bernex (Romain); S. Duwé (Sam); O. Devos (Olivier); M. Sliwa (Michel); P. Dedecker (Peter); P.H.C. Eilers (Paul); C. Ruckebusch (Cyril)

    2016-01-01

    textabstractIn wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms

  17. A Multiband-Instability-Monitor for High-Frequency Intra-Bunch Beam Diagnostics

    CERN Document Server

    Steinhagen, R J; Lucas, T G

    2013-01-01

    The maximum beam particle intensity and minimum emittance that can be injected, accelerated and stored in high-brightness lepton as well as high-energy hadron accelerators is fundamentally limited by self-amplifying beam instabilities, intrinsic to unavoidable imperfections in accelerators. Traditionally, intra-bunch or head-tail particle motion has been measured using fast digitizers, with even using state-of-the-art technology being limited in their effective intra-bunch position resolution to few tens of um in the multi-GHz regime. To improve on the present signal processing, a multiband-instability-monitor (MIM) prototype system has been designed, constructed and tested at the CERN Super- Proton-Synchrotron (SPS) and Large Hadron Collider (LHC). The system splits the signal into multiple equallyspaced narrowfrequency bands that are processed and analysed in parallel. Working with narrow-band signals permits the use of much higher resolution analogue-to-digitalconverters that can be used to resolve nm-scal...

  18. Invited article: High resolution digital camera for infrared reflectography.

    Science.gov (United States)

    Falco, Charles M

    2009-07-01

    This paper describes the characteristics of a high resolution infrared (IR) imaging system operating over the wavelength range of 830-1100 nm, based on a modified 8 Mpixels commercial digital camera, with which nonspecialists can obtain IR reflectograms of works of art in situ in a museum environment. The relevant imaging properties of sensitivity, resolution, noise, and contrast are characterized and the capabilities of this system are illustrated with an example that has revealed important new information about the working practices of a 16th century artist.

  19. Multi-resolution statistical image reconstruction for mitigation of truncation effects: application to cone-beam CT of the head

    Science.gov (United States)

    Dang, Hao; Webster Stayman, J.; Sisniega, Alejandro; Zbijewski, Wojciech; Xu, Jennifer; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.

    2017-01-01

    A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.

  20. Topography improvements in MEMS DMs for high-contrast, high-resolution imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop and demonstrate an innovative microfabrication process to substantially improve the surface quality achievable in high-resolution...