WorldWideScience

Sample records for high redshift radio

  1. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  2. High-Redshift Radio Galaxies from Deep Fields

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High-Redshift Radio Galaxies from Deep Fields ... Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, ... Articles are also visible in Web of Science immediately.

  3. The cluster environments of powerful, high-redshift radio galaxies

    International Nuclear Information System (INIS)

    Yates, M.G.

    1989-01-01

    We present deep imaging of a sample of 25 powerful radio galaxies in the redshift range 0.15 gr ) about each source, a measure of the richness of environment. The powerful radio galaxies in this sample at z>0.3 occupy environments nearly as rich on average as Abell class 0 clusters of galaxies, about three times richer than the environments of the z<0.3 radio galaxies. This trend in cluster environment is consistent with that seen in radio-loud quasars over the same redshift range. Our previous work on the 3CR sample suggested that the fundamental parameter which correlates with the richness of environment might be the radio luminosity of the galaxy, rather than its redshift. Our direct imaging confirms that the most powerful radio galaxies do inhabit rich environments. (author)

  4. Radio polarization properties of quasars and active galaxies at high redshifts

    Science.gov (United States)

    Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.

    2018-04-01

    We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.

  5. Probing the bias of radio sources at high redshift

    CSIR Research Space (South Africa)

    Passmoor, S

    2012-11-01

    Full Text Available The relationship between the clustering of dark matter and that of luminous matter is often described using the bias parameter. Here, we provide a new method to probe the bias of intermediate-to-high-redshift radio continuum sources for which...

  6. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    Science.gov (United States)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  7. High Redshift Radio Galaxies at Low Redshift, and Some Other Issues

    Science.gov (United States)

    Antonucci, Robert

    Cygnus A is the only high redshift radio galaxy at low redshift, that is it's the only nearby object with radio power in the range of the high redshift 3C objects. It is clear now that this is somewhat misleading in that Cyg A is an overachiever in the radio, and that its actual bolometric luminosity is much more modest than this would indicate. (This point has been explored and generalized in Barthel and Arnaud 1996; also see Carilli and Barthel 1996 for a detailed review of Cyg A). But the energy content of the lobes is famously large. There is a whole history of attempts to show that Cygnus A fits the Unified Model, and our particular contribution was detecting an apparent broad MgII line with the HST (Antonucci, Kinney and Hurt 1994, which includes references to previous work). The spectral signal-to-noise ratio (SNR) was less than amazing; furthermore an unflagged dead diode took out ~12 Å from the line profile; and there was an uncertain ``noise" contribution from confusing narrow lines (gory details in Antonucci 1994). One of the referees of our paper - the favorable one - stated that ``only a mother could love that line." Thus we reobserved it with somewhat better SNR and with the bad diode flagged, and the old and new data are presented to the same scale in Figure 1. Most of the bins are within the combined 1 σ statistical errors, and the many statistically significant wiggles are almost all present in NGC1068 as well (Antonucci, Hurt and Miller 1994). The point is that the errors are believable, and that the continuum should be set low. I believe the MgII line is there and is broader than we thought originally. (A detailed discussion of the spectrum is in prep.) In the 1994 paper we also stated that the polarization in the UV (F320W FOC filter) is ~6 %, and perpendicular to the radio axis, indicating that there is a fairly large contribution from scattered light from a quasar in this region. This is consistent with the scenario of Jackson and Tadhunter

  8. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    International Nuclear Information System (INIS)

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-01-01

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 3 μ m /S 1.6 μ m versus S 5 μ m /S 3 μ m criterion, we identify 42 sources where the rest-frame 1.6 μm emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10 11 M sun , and remarkably constant within the range 1 3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z ∼ 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 μm hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  9. Evolution of radio quasars from redshift 0.6-3.7

    International Nuclear Information System (INIS)

    Neff, S.G.; Hutchings, J.B.

    1990-01-01

    This paper presents the results of VLA radio imaging of 58 radio-loud quasars with redshift 2.0 or higher, which fill the redshift-luminosity plane as evenly as possible. This work completes a survey of about 250 quasars covering redshifts from 0.6-3.7, which attempts to sample luminosity and look-back time in a uniform way. Within the constraints of possible selection effects it is found that the relative population of extended and unresolved sources changes with redshift in a way that suggests that radio quasars may live longer and spend more time as large triple sources in the present epoch than in the earlier universe. There appear to be few low-luminosity radio quasars at high redshift. Ejection of material appears to occur on one side at a time, with usually at least one reversal of direction in the source lifetime. The velocity of ejection appears to be mildly relativistic at high redshift, but of lower velocity in the present epoch. There is also evidence suggestive of changes in the IGM with cosmic time; however, the data presented do not show the minimum in density at z about 2 that has been suggested for cluster environments. 11 refs

  10. ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: SERVS IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, J.; Bizzocchi, L.; Grossi, M.; Messias, H.; Fernandes, C. A. C. [Observatorio Astronomico de Lisboa, Faculdade de Ciencias, Universidade de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Ibar, E.; Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Simpson, C. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Chapman, S.; Gonzalez-Solares, E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jarvis, M. J. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Rottgering, H. [Leiden Observatory, Leiden University, Oort Gebouw, P.O. Box 9513, 2300 RA Leiden (Netherlands); Norris, R. P. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Dunlop, J.; Best, P. [SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Pforr, J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Vaccari, M. [Department of Astronomy, University of Padova, vicolo Osservatorio 3, 35122 Padova (Italy); Seymour, N. [Mullard Space Science Laboratory, UCL, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Farrah, D. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Huang, J.-S., E-mail: jafonso@oal.ul.pt [Department of Astrophysics, Oxford University, Keble Road, Oxford OX1 3RH (United Kingdom); and others

    2011-12-20

    Ultra steep spectrum (USS) radio sources have been successfully used to select powerful radio sources at high redshifts (z {approx}> 2). Typically restricted to large-sky surveys and relatively bright radio flux densities, it has gradually become possible to extend the USS search to sub-mJy levels, thanks to the recent appearance of sensitive low-frequency radio facilities. Here a first detailed analysis of the nature of the faintest USS sources is presented. By using Giant Metrewave Radio Telescope and Very Large Array radio observations of the Lockman Hole at 610 MHz and 1.4 GHz, a sample of 58 USS sources, with 610 MHz integrated fluxes above 100 {mu}Jy, is assembled. Deep infrared data at 3.6 and 4.5 {mu}m from the Spitzer Extragalactic Representative Volume Survey (SERVS) are used to reliably identify counterparts for 48 (83%) of these sources, showing an average total magnitude of [3.6]{sub AB} = 19.8 mag. Spectroscopic redshifts for 14 USS sources, together with photometric redshift estimates, improved by the use of the deep SERVS data, for a further 19 objects, show redshifts ranging from z = 0.1 to z = 2.8, peaking at z {approx} 0.6 and tailing off at high redshifts. The remaining 25 USS sources, with no redshift estimate, include the faintest [3.6] magnitudes, with 10 sources undetected at 3.6 and 4.5 {mu}m (typically [3.6] {approx}> 22-23 mag from local measurements), which suggests the likely existence of higher redshifts among the sub-mJy USS population. The comparison with the Square Kilometre Array Design Studies Simulated Skies models indicates that Fanaroff-Riley type I radio sources and radio-quiet active galactic nuclei may constitute the bulk of the faintest USS population, and raises the possibility that the high efficiency of the USS technique for the selection of high-redshift sources remains even at the sub-mJy level.

  11. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  12. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    Science.gov (United States)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1poster, I will present the results of this study and compare our results to various results in the literature.

  13. FIRST Bent-Double Radio Sources: Tracers of High-Redshift Clusters

    International Nuclear Information System (INIS)

    Blanton, E. L.; Gregg, M. D.; Helfand, D. J.; Becker, R. H.; White, R. L.

    2000-01-01

    Bent-double radio sources can act as tracers for clusters of galaxies. We present imaging and spectroscopic observations of the environments surrounding 10 of these sources (most of them wide-angle tails [WATs]) selected from the VLA FIRST survey. Our results reveal a previously unknown cluster associated with eight of the radio sources with redshifts in the range 0.33< z<0.85; furthermore, we cannot rule out that the other two bent doubles may be associated with clusters at higher redshift. Richness measurements indicate that these clusters are typical of the majority of those found in the Abell catalog, with a range of Abell richness classes from 0 to 2. The line-of-sight velocity dispersions are very different from cluster to cluster, ranging from approximately 300 to 1100 km s-1. At the upper end of these intervals, we may be sampling some of the highest redshift massive clusters known. Alternatively, the large velocity dispersions measured in some of the clusters may indicate that they are merging systems with significant substructure, consistent with recent ideas concerning WAT formation (Burns et al.). (c) 2000 The American Astronomical Society

  14. Morphological Evolution in High-Redshift Radio Galaxies and the Formation of Giant Elliptical Galaxies

    International Nuclear Information System (INIS)

    Breugel, W.J. van; Stanford, S.A.; Spinrad, H.; Stern, D.; Graham, J.R.

    1998-01-01

    We present deep near-infrared images of high-redshift radio galaxies (HzRGs) obtained with the near-infrared camera (NIRC) on the Keck I telescope. In most cases, the near-IR data sample rest wavelengths that are free of contamination from strong emission lines and at λ rest > 4000 Angstrom, where older stellar populations, if present, might dominate the observed flux. At z > 3, the rest-frame optical morphologies generally have faint, large-scale (∼50 kpc) emission surrounding multiple, ∼10 kpc components. The brightest of these components are often aligned with the radio structures. These morphologies change dramatically at 2 rest ) ∼ -20 to -22] of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal radio-quiet star forming galaxies at z = 3 - 4. For objects where such data are available, our observations show that the line-free, near-IR colors of the z > 3 galaxies are very blue, consistent with models in which recent star formation dominates the observed light. Direct spectroscopic evidence for massive star formation in one of the z > 3 HzRGs exists (4C 41.17). Our results suggest that the z > 3 HzRGs evolve into much more massive systems than the radio-quiet galaxies and that they are qualitatively consistent with models in which massive galaxies form in hierarchical fashion through the merging of smaller star-forming systems. The presence of relatively luminous subcomponents along the radio axes of the z > 3 galaxies suggests a causal connection with the AGN. We compare the radio and near-IR sizes as a function of redshift and suggest that this parameter may be a measure of the degree to which the radio sources have induced star formation in the parent objects. We also discuss the Hubble diagram of radio galaxies, the possibility of a radio power dependence in the K-z relation, and its implications for radio galaxy formation. Finally, we present for the first time in published format basic radio and

  15. DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, Kathryn [Department of Statistics, Harvard University, Cambridge, MA 02138 (United States); Siemiginowska, Aneta; Kashyap, Vinay L.; Lee, N. P.; Harris, D. E.; Schwartz, D. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Stawarz, Łukasz [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków (Poland); Stein, Nathan [Department of Statistics, The Wharton School, University of Pennsylvania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340 (United States); Stampoulis, Vasileios; Dyk, David A. van [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 (United Kingdom); Wardle, J. F. C. [Department of Physics, MS 057, Brandeis University, Waltham, MA 02454 (United States); Donato, Davide [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Maraschi, Laura; Tavecchio, Fabrizio, E-mail: kathrynmckeough@g.harvard.edu [INAF Osservatorio Astronomico di Brera, via Brera 28, I-20124, Milano (Italy)

    2016-12-10

    We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z  ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 <  z  < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.

  16. On the redshift cut-off for flat-spectrum radio sources

    OpenAIRE

    Jarvis, Matt J.; Rawlings, Steve

    2000-01-01

    We use data from the Parkes Half-Jansky Flat-Spectrum (PHJFS) sample (Drinkwater et al. 1997) to constrain the cosmic evolution in the co-moving space density of radio sources in the top decade of the flat-spectrum radio luminosity function (RLF). A consistent picture for the high-redshift evolution is achieved using both simple parametric models, which are the first to allow for distributions in both radio luminosity and spectral index, and variants of the V / V_max test, some of which incor...

  17. Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting

    Science.gov (United States)

    Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.

    2018-01-01

    We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.

  18. Peculiar morphology of the high-redshift radio galaxies 3C 13 and 3C 256 in subarcsecond seeing

    International Nuclear Information System (INIS)

    Le Fevre, O.; Hammer, F.; Nottale, L.; Mazure, A.; Christian, C.

    1988-01-01

    High-spatial-resolution imaging is presented for two radio galaxies from the 3C catalog, 3C 13 and 3C 256 with redshifts of 1.351 and 1.819, respectively. The excellent image quality obtained at CFHT, 0.6-arcsec FWHM for 3C 13 and 0.7-arcsec FWHM for 3C 256 in the R band, over long integration times, made it possible to resolve these distant galaxies into complex structures. As suggested by Le Fevre et al. (1987) for another source (the gravitational lens candidate 3C 324) an interpretation in terms of gravitational amplification by foreground galaxies or clusters of galaxies is proposed. 3C 13 appears to be the most serious candidate, since a foreground galaxy, with an absolute luminosity M(R) = 23.3 and a redshift z = 0.477, is only 3.9 in from the extended radio galaxy. 18 references

  19. An Investigation of Blazars without Redshifts: Not a Missing Population at High Redshift

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Peiyuan; Urry, C. Megan [Yale Center for Astronomy and Astrophysics, Physics Department, New Haven, CT 06520 (United States)

    2017-06-01

    We investigate a sample of 622 blazars with measured fluxes at 12 wavebands across the radio-to-gamma-ray spectrum but without spectroscopic or photometric redshifts. This sample includes hundreds of sources with newly analyzed X-ray spectra reported here. From the synchrotron peak frequencies, estimated by fitting the broadband spectral energy distributions (SEDs), we find that the fraction of high-synchrotron-peaked blazars in these 622 sources is roughly the same as in larger samples of blazars that do have redshifts. We characterize the no-redshift blazars using their infrared colors, which lie in the distinct locus called the WISE blazar strip, then estimate their redshifts using a KNN regression based on the redshifts of the closest blazars in the WISE color–color plot. Finally, using randomly drawn values from plausible redshift distributions, we simulate the SEDs of these blazars and compare them to known blazar SEDs. Based on all these considerations, we conclude that blazars without redshift estimates are unlikely to be high-luminosity, high-synchrotron-peaked objects, which had been suggested in order to explain the “blazar sequence”—an observed trend of SED shape with luminosity—as a selection effect. Instead, the observed properties of no-redshift blazars are compatible with a causal connection between jet power and electron cooling, i.e., a true blazar sequence.

  20. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    Science.gov (United States)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  1. Redshifts of radio galaxies in Abell clusters of galaxies

    International Nuclear Information System (INIS)

    Owen, F.N.; White, R.A.; Thronson, H.A. Jr.

    1988-01-01

    The paper presents redshifts for 51 radio galaxies and companion systems which were obtained with the Steward 2.3-m and multiple mirror telescopes. The observations were performed over the course of six runs during 1980-1983. The sample includes eight multiple systems (or multiple nuclei) having internal velocity differences ranging from 150 to 2400 km/s. 17 references

  2. A redshift survey of very faint (B <= 22.5) field galaxies, radio sources, and quasars

    International Nuclear Information System (INIS)

    Koo, D.C.

    1983-01-01

    As part of a three year program to study the evolution of quasars, radio sources and galaxies, a 10 night redshift survey has been carried out. A few preliminary results are presented (a magnitude-redshift plot of 54 galaxies). (Auth.)

  3. High-redshift SDSS Quasars with Weak Emission Lines

    DEFF Research Database (Denmark)

    Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Brandt, W. N.

    2009-01-01

    We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a promine...

  4. The role of AGN feedback in galaxy evolution at high-redshift

    International Nuclear Information System (INIS)

    Collet, Cedric

    2014-01-01

    There is growing evidence that supermassive black holes may play a crucial role for galaxy evolution, in particular during the formation of massive galaxies at high redshift (z ≅ 2 - 3). Our work focuses on quantifying the effects of jets of radiogalaxies and of large bolometric luminosities of quasars on the interstellar gas in their host galaxies. To this end, we studied the kinematics of the ionized gas in 12 moderately powerful radio galaxies and 11 quasars (6 radio-loud and 5 radio-quiet) at high redshifts with rest-frame optical imaging spectroscopy obtained at the VLT with SINFONI. We searched for outflows and other signatures of feedback from the supermassive black holes in the centers of these galaxies to evaluate if the AGN may plausibly quench star formation. In our sample of moderately powerful radiogalaxies, we observe velocity dispersions nearly as large as those observed in the most powerful ones (with FWHM ≅ 1000 km/s), but the quantity of ionized gas is decreased by one order of magnitude (M-ion gas ≅ 10"8 - 10"9 M-sun) and velocity gradients tend to be less dramatic (Δv ≤ 400 km/s), when they are observed. In our sample of quasars, we had to carefully subtract the broad spectral component of emission lines to have access to its narrow, and spatially extended, component. We detect truly extended emission line regions in 4/6 sources of our radio-loud sub-sample and in 1/5 source of our radio-quiet sub-sample. We estimate that masses of ionized gas in these sources are smaller than in our sample of high-redshift radiogalaxies (with Mion gas ≅ 10"7 - 10"8 Msun) and kinematics tend to be more quiescent, akin to what is observed in local quasars. Finally, detailed observations of two outliers among our sample of high-redshift radiogalaxies revealed that one of them is closely surrounded by 14 companions galaxies, hence lying in an over density. We therefore interpret the presence and morphology of ionized gas around these galaxies as evidence

  5. Is there a maximum star formation rate in high-redshift galaxies? , , ,

    International Nuclear Information System (INIS)

    Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.; Owen, F. N.; Wang, W.-H.

    2014-01-01

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin 2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K – z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ☉ yr –1 to z ∼ 6. We find galaxies with SFRs up to ∼6000 M ☉ yr –1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ☉ yr –1 .

  6. The hyperluminous infrared quasar 3C 318 and its implications for interpreting sub-mm detections of high-redshift radio galaxies

    OpenAIRE

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep- spectrum radio source 3C 318 which shows it to be a quasar at redshift z=1.574 (the z=0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10^13 solar luminosity level above ...

  7. ATCA observations of the MACS-Planck Radio Halo Cluster Project. II. Radio observations of an intermediate redshift cluster sample

    Science.gov (United States)

    Martinez Aviles, G.; Johnston-Hollitt, M.; Ferrari, C.; Venturi, T.; Democles, J.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Arnaud, M.; Aghanim, N.; Brown, S.; Douspis, M.; Hurier, J.; Intema, H. T.; Langer, M.; Macario, G.; Pointecouteau, E.

    2018-04-01

    Aim. A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A94

  8. Exploratory X-ray monitoring of luminous radio-quiet quasars at high redshift: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Shemmer, Ohad; Stein, Matthew S. [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Paolillo, Maurizio [Dipartimento di Scienze Fisiche, Università Federico II di Napoli, via Cinthia 6, I-80126 Napoli (Italy); Kaspi, Shai [School of Physics and Astronomy and the Wise Observatory, Tel Aviv University, Tel Aviv 69978 (Israel); Vignali, Cristian [Dipartimento di Astronomia, Università degli studi di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Lira, Paulina [Departamento de Astronomia, Universidad de Chile, Camino del Observatorio 1515, Santiago (Chile); Gibson, Robert R., E-mail: ohad@unt.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-03-10

    We present initial results from an exploratory X-ray monitoring project of two groups of comparably luminous radio-quiet quasars (RQQs). The first consists of four sources at 4.10 ≤ z ≤ 4.35, monitored by Chandra, and the second is a comparison sample of three sources at 1.33 ≤ z ≤ 2.74, monitored by Swift. Together with archival X-ray data, the total rest-frame temporal baseline spans ∼2-4 yr and ∼5-13 yr for the first and second group, respectively. Six of these sources show significant X-ray variability over rest-frame timescales of ∼10{sup 2}-10{sup 3} days; three of these also show significant X-ray variability on rest-frame timescales of ∼1-10 days. The X-ray variability properties of our variable sources are similar to those exhibited by nearby and far less luminous active galactic nuclei (AGNs). While we do not directly detect a trend of increasing X-ray variability with redshift, we do confirm previous reports of luminous AGNs exhibiting X-ray variability above that expected from their luminosities, based on simplistic extrapolation from lower luminosity sources. This result may be attributed to luminous sources at the highest redshifts having relatively high accretion rates. Complementary UV-optical monitoring of our sources shows that variations in their optical-X-ray spectral energy distribution are dominated by the X-ray variations. We confirm previous reports of X-ray spectral variations in one of our sources, HS 1700+6416, but do not detect such variations in any of our other sources in spite of X-ray flux variations of up to a factor of ∼4. This project is designed to provide a basic assessment of the X-ray variability properties of RQQs at the highest accessible redshifts that will serve as a benchmark for more systematic monitoring of such sources with future X-ray missions.

  9. Bimodal star formation - constraints from galaxy colors at high redshift

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1. 38 references

  10. Companions of low-redshift radio-quiet quasars

    International Nuclear Information System (INIS)

    Yee, H.K.C.

    1987-01-01

    Using imaging data from a relatively complete subset of low-redshift radio-quiet quasars, the frequency of finding associated companion galaxies of the quasars is determined statistically. With an average completeness limit of M/sub r/ of about -19, it is found that about 40 percent of the quasars have at least one close physical companion within a projected distance of 100 kpc. The percentage of quasars with detected companions is consistent with all quasars in the sample having a companion of luminosity brighter than about -16.5 mag. It is estimated that the frequency of finding close companions to quasars is about six times higher than that expected for field galaxies. This frequency is similar to that found for lower-luminosity Seyfert galaxies. The properties of the companions appear to be uncorrelated with the level of activity in the quasars. This suggests that, for radio-quiet quasars, the companions act mainly as triggers of the activity and are probably not a strong determining factor of the detailed properties of the quasars. 28 references

  11. HIGH-REDSHIFT SDSS QUASARS WITH WEAK EMISSION LINES

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Jiang Linhua; Kim, J. Serena; Schmidt, Gary D.; Smith, Paul S.; Vestergaard, Marianne; Young, Jason E.; Brandt, W. N.; Shemmer, Ohad; Gibson, Robert R.; Schneider, Donald P.; Strauss, Michael A.; Shen Yue; Anderson, Scott F.; Carilli, Christopher L.; Richards, Gordon T.

    2009-01-01

    We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a prominent tail of the Lyα + N v equivalent width distribution, and we compare them to quasars with more typical emission-line properties and to low-redshift active galactic nuclei with weak/absent emission lines, namely BL Lac objects. We find that WLQs exhibit hot (T ∼ 1000 K) thermal dust emission and have rest-frame 0.1-5 μm spectral energy distributions that are quite similar to those of normal quasars. The variability, polarization, and radio properties of WLQs are also different from those of BL Lacs, making continuum boosting by a relativistic jet an unlikely physical interpretation. The most probable scenario for WLQs involves broad-line region properties that are physically distinct from those of normal quasars.

  12. Radio imaging of core-dominated high redshift quasars

    DEFF Research Database (Denmark)

    Barthel, Peter D.; Vestergaard, Marianne; Lonsdale, Colin J.

    1999-01-01

    VLA imaging at kiloparsec-scale resolution of sixteen core-dominated radio-loud QSOs is presented. Many objects appear to display variable radio emission and their radio morphologies are significantly smaller than those of steep-spectrum quasars, consistent with these objects being observed...

  13. Is There a Maximum Star Formation Rate in High-redshift Galaxies?

    Science.gov (United States)

    Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Owen, F. N.; Wang, W.-H.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.

    2014-03-01

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K - z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ⊙ yr-1 to z ~ 6. We find galaxies with SFRs up to ~6000 M ⊙ yr-1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ⊙ yr-1. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada, and (until 2013 March 31) the Netherlands Organisation for Scientific

  14. FIRST 'WINGED' AND X-SHAPED RADIO SOURCE CANDIDATES. II. NEW REDSHIFTS

    International Nuclear Information System (INIS)

    Cheung, C. C.; Healey, Stephen E.; Landt, Hermine; Jordan, Andres; Verdoes Kleijn, Gijs

    2009-01-01

    We report optical spectroscopic observations of X-shaped radio sources with the Hobby-Eberly Telescope and Multiple-Mirror Telescope, focused on the sample of candidates from the FIRST survey presented in a previous paper. A total of 27 redshifts were successfully obtained, 21 of which are new, including a newly identified candidate source of this type which is presented here. With these observations, the sample of candidates from the previous paper is over 50% spectroscopically identified. Two new broad emission-lined X-shaped radio sources are revealed, while no emission lines were detected in about one-third of the observed sources; a detailed study of the line properties is deferred to a future paper. Finally, to explore their relation to the Fanaroff-Riley division, the radio luminosities and host galaxy absolute magnitudes of a spectroscopically identified sample of 50 X-shaped radio galaxies are calculated to determine their placement in the Owen-Ledlow plane.

  15. Constraining the radio jet proper motion of the high-redshift quasar J2134-0419 at z = 4.3

    Science.gov (United States)

    Perger, Krisztina; Frey, Sándor; Gabányi, Krisztina É.; An, Tao; Britzen, Silke; Cao, Hong-Min; Cseh, Dávid; Dennett-Thorpe, Jane; Gurvits, Leonid I.; Hong, Xiao-Yu; Hook, Isobel M.; Paragi, Zsolt; Schilizzi, Richard T.; Yang, Jun; Zhang, Yingkang

    2018-06-01

    To date, PMN J2134-0419 (at a redshift z = 4.33) is the second most distant quasar known with a milliarcsecond-scale morphology permitting direct estimates of the jet proper motion. Based on two-epoch observations, we constrained its radio jet proper motion using the very long baseline interferometry (VLBI) technique. The observations were conducted with the European VLBI Network (EVN) at 5 GHz on 1999 November 26 and 2015 October 6. We imaged the central 10-pc scale radio jet emission and modelled its brightness distribution. By identifying a jet component at both epochs separated by 15.86 yr, a proper motion of μ = 0.035 ± 0.023 mas yr-1 is found. It corresponds to an apparent superluminal speed of βa = 4.1 ± 2.7 c. Relativistic beaming at both epochs suggests that the jet viewing angle with respect to the line of sight is smaller than 20°, with a minimum bulk Lorentz factor Γ = 4.3. The small value of the proper motion is in good agreement with the expectations from the cosmological interpretation of the redshift and the current cosmological model. Additionally we analysed archival Very Large Array observations of J2143-0419 and found indication of a bent jet extending to ˜30 kpc.

  16. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0

    Science.gov (United States)

    Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.

    2018-04-01

    This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

  17. QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES

    International Nuclear Information System (INIS)

    Smolčić, V.; Navarrete, F.; Bertoldi, F.; Aravena, M.; Sheth, K.; Ilbert, O.; Yun, M. S.; Salvato, M.; Finoguenov, A.; McCracken, H. J.; Diener, C.; Aretxaga, I.; Hughes, D.; Wilson, G.; Riechers, D. A.; Capak, P.; Scoville, N. Z.; Karim, A.; Schinnerer, E.

    2012-01-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F 1m > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, ∼10''-30'', resolution. All three sources—AzTEC/C1, Cosbo-3, and Cosbo-8—are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution (∼2'') mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z ∼> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 ± 1.2, 1.9 +0.9 –0.5 , and ∼4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of ∼> 1000 M ☉ yr –1 and IR luminosities of ∼10 13 L ☉ consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z ∼ 2 and today's passive galaxies.

  18. Clustering at high redshifts

    International Nuclear Information System (INIS)

    Shaver, P.A.

    1986-01-01

    Evidence for clustering of and with high-redshift QSOs is discussed. QSOs of different redshifts show no clustering, but QSOs of similar redshifts appear to be clustered on a scale comparable to that of galaxies at the present epoch. In addition, spectroscopic studies of close pairs of QSOs indicate that QSOs are surrounded by a relatively high density of absorbing matter, possibly clusters of galaxies

  19. Cosmological constraints with clustering-based redshifts

    Science.gov (United States)

    Kovetz, Ely D.; Raccanelli, Alvise; Rahman, Mubdi

    2017-07-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference data set with known redshifts. Applying this method to the existing Sloan Digital Sky Survey (SDSS) photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation of state and on local non-Gaussianity parameters. We explore several pertinent issues, including the trade-off between including more sources and minimizing the overlap between bins, the shot-noise limitations on binning and the predicted performance of the method at high redshifts, and most importantly pay special attention to possible degeneracies with the galaxy bias. Remarkably, we find that once this technique is implemented, constraints on dynamical dark energy from the SDSS imaging catalogue can be competitive with, or better than, those from the spectroscopic BOSS survey and even future planned experiments. Further, constraints on primordial non-Gaussianity from future large-sky radio-continuum surveys can outperform those from the Planck cosmic microwave background experiment and rival those from future spectroscopic galaxy surveys. The application of this method thus holds tremendous promise for cosmology.

  20. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  1. A high-redshift IRAS galaxy with huge luminosity - hidden quasar or protogalaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rowan-Robinson, M; Broadhurst, T [Queen Mary Coll., London (UK). School of Mathematical Sciences; Lawrence, A [Queen Mary Coll., London (UK). Dept. of Physics; McMahon, R G [Cambridge Univ. (UK). Inst. of Astronomy; Lonsdale, C J [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Oliver, S J; Taylor, A N [Queen Mary Coll., London (UK). School of Mathematical Sciences; Hacking, P B; Conrow, T [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Saunders, W [Oxford Univ. (UK). Dept. of Astrophysics; Ellis, R S [Durham Univ. (UK). Dept. of Physics; Efstathiou, G P [Oxford Univ. (UK). Dept. of Astrophysics; Condon, J J [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1991-06-27

    During a survey intended to measure redshifts for 1,400 galaxies identified with faint sources detected by the Infrared Astronomy Satellite, we found an emission-line galaxy at a redshift of 2.286, and with the enormous far-infrared luminosity of 3 x 10{sup 14} times that of the sun (L{sub sun}) The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-{alpha} emission. A self-absorbed synchrotron model for the infrared energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the infrared emission, as might a starburst embedded in 1-10 x 10{sup 9} M{sub sun} of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. In either case, this is a remarkable object, and the presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch. (author).

  2. ASSOCIATIONS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS WITH ACTIVE, LOW-REDSHIFT SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Burbidge, G.; Napier, W. M.

    2009-01-01

    Following the discovery in the 1960s of radio and optical QSOs it was found that some of them lie very close to low-redshift (z ≤ 0.01) spiral galaxies with separations of ∼<2 arcmin. These were discovered both serendipitously by many observers, and systematically by Arp. They are some of the brightest QSOs in radio and optical wavelengths and are very rare. We have carried out a new statistical analysis of most of those galaxy-QSO pairs and find that the configurations have high statistical significance. We show that gravitational microlensing due to stars or other dark objects in the halos of the galaxies apparently cannot account for the excess. Sampling or identification bias likewise seems unable to explain it. Following this up we selected all ∼4000 QSOs with g ≤ 18 from a catalog of confirmed QSOs in the Sloan Digital Sky Survey, and compared them with various subsets of galaxies from the RC 3 galaxy catalog. In contrast to the earlier results, no significant excess of such QSOs was found around these galaxies. Possible reasons for the discrepancy are discussed.

  3. Narrow CIV lambda 1549A Absorption Lines in Moderate-Redshift Quasars

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2002-01-01

    A large, high-quality spectral data base of well-selected, moderate-redshift radio-loud and radio-quiet quasars is used to characterize the incidence of narrow associated CIV lambda 1549 absorption, and how this may depend on some quasar properties, including radio-type. Preliminary results...

  4. Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars

    Science.gov (United States)

    McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.

    2014-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213

  5. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    International Nuclear Information System (INIS)

    Tendulkar, S. P.; Kaspi, V. M.; Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N.; Cordes, J. M.; Chatterjee, S.; Bower, G. C.; Law, C. J.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Lazio, T. J. W.; Marcote, B.; Paragi, Z.; McLaughlin, M. A.; Ransom, S. M.; Scholz, P.

    2017-01-01

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10"−"4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m_r_′ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M _* ∼ (4–7) × 10"7 M _⊙, assuming a mass-to-light ratio between 2 to 3 M _⊙ L _⊙ "−"1. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M _⊙ yr"−"1 and a substantial host dispersion measure (DM) depth ≲324 pc cm"−"3. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  6. The Evolution of the Stellar Hosts of Radio Galaxies

    International Nuclear Information System (INIS)

    Lacy, Mark; Bunker, Andrew J.; Ridgway, Susan E.

    2000-01-01

    We present new near-infrared images of z>0.8 radio galaxies from the flux-limited 7C-iii sample of radio sources for which we have recently obtained almost complete spectroscopic redshifts. The 7C objects have radio luminosities ≅20 times fainter than 3C radio galaxies at a given redshift. The absolute magnitudes of the underlying host galaxies and their scale sizes are only weakly dependent on radio luminosity. Radio galaxy hosts at z∼2 are significantly brighter than the hosts of radio-quiet quasars at similar redshifts and the recent model AGN hosts of Kauffmann and Haehnelt. There is no evidence for strong evolution in scale size, which shows a large scatter at all redshifts. The hosts brighten significantly with redshift, consistent with the passive evolution of a stellar population that formed at z(greater-or-similar sign)3. This scenario is consistent with studies of host galaxy morphology and submillimeter continuum emission, both of which show strong evolution at z(greater-or-similar sign)2.5. The lack of a strong ''redshift cutoff'' in the radio luminosity function to z>4 suggests that the formation epoch of the radio galaxy host population lasts (greater-or-similar sign)1 Gyr, from z(greater-or-similar sign)5 to z∼3. We suggest these facts are best explained by models in which the most massive galaxies and their associated AGN form early because of high baryon densities in the centers of their dark matter haloes. (c) 2000 The American Astronomical Society

  7. GRB 120521C at z ∼ 6 and the properties of high-redshift γ-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Laskar, Tanmoy; Berger, Edo; Zauderer, B. Ashley; Margutti, Raffaella; Fong, Wen-fai [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tanvir, Nial; Wiersema, Klaas [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Levan, Andrew [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Perley, Daniel [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Menten, Karl [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Hrudkova, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain)

    2014-01-20

    We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength data set, we derive a photometric redshift of z ≈ 6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglow. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of n ≲ 0.05 cm{sup –3}. The radio observations reveal the presence of a jet break at t {sub jet} ≈ 7 d, corresponding to a jet opening angle of θ{sub jet} ≈ 3°. The beaming-corrected γ-ray and kinetic energies are E {sub γ} ≈ E{sub K} ≈ 3 × 10{sup 50} erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z ≳ 6 with radio detections (GRBs 050904 and 090423). We find a jet break at t {sub jet} ≈ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that γ-ray bursts (GRBs) at z ≳ 6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z ≳ 6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z ∼ 8.

  8. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Curran, S. J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Whiting, M. T., E-mail: sjc@physics.usyd.edu.au [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  9. BROADBAND OBSERVATIONS OF HIGH REDSHIFT BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Stalin, C. S., E-mail: vpaliya@g.clemson.edu [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India)

    2016-07-01

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 ( z = 3.37), CGRaBS J0225+1846 ( z = 2.69), BZQ J1430+4205 ( z = 4.72), and 3FGL J1656.2−3303 ( z = 2.40) using quasi-simultaneous data from the Swift , Nuclear Spectroscopic Telescope Array ( NuSTAR ) and the Fermi -Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2−3303, none of the sources were known as γ -ray emitters, and our analysis of ∼7.5 yr of LAT data reveals the first time detection of statistically significant γ -ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical−UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ -ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity–jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.

  10. Photometric redshifts for the next generation of deep radio continuum surveys - II. Gaussian processes and hybrid estimates

    Science.gov (United States)

    Duncan, Kenneth J.; Jarvis, Matt J.; Brown, Michael J. I.; Röttgering, Huub J. A.

    2018-04-01

    Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared, X-ray and optically selected AGN - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGN are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ˜4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole co-evolution and for cosmological studies.

  11. Galaxy luminosity function: evolution at high redshift

    Science.gov (United States)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  12. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Tendulkar, S. P.; Kaspi, V. M. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Cordes, J. M.; Chatterjee, S. [Cornell Center for Astrophysics and Planetary Science and Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Bower, G. C. [Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A’ohoku Place, Hilo, HI 96720 (United States); Law, C. J. [Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA 94720 (United States); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Burke-Spolaor, S.; Butler, B. J.; Demorest, P. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Marcote, B.; Paragi, Z. [Joint Institute for VLBI ERIC, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); McLaughlin, M. A. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Scholz, P., E-mail: shriharsh@physics.mcgill.ca, E-mail: bassa@astron.nl [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); and others

    2017-01-10

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10{sup −4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m{sub r′} = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M {sub *} ∼ (4–7) × 10{sup 7} M {sub ⊙}, assuming a mass-to-light ratio between 2 to 3 M {sub ⊙} L {sub ⊙} {sup −1}. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M {sub ⊙} yr{sup −1} and a substantial host dispersion measure (DM) depth ≲324 pc cm{sup −3}. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  13. DISCOVERY OF RADIO AFTERGLOW FROM THE MOST DISTANT COSMIC EXPLOSION

    International Nuclear Information System (INIS)

    Chandra, Poonam; Frail, Dale A.; Fox, Derek; Kulkarni, Shrinivas; Harrsion, Fiona; Kasliwal, Mansi; Berger, Edo; Cenko, S. Bradley; Bock, Douglas C.-J.

    2010-01-01

    We report on the discovery of radio afterglow emission from the gamma-ray burst GRB 090423, which exploded at a redshift of 8.3, making it the object with the highest known redshift in the universe. By combining our radio measurements with existing X-ray and infrared observations, we estimate the kinetic energy of the afterglow, the geometry of the outflow, and the density of the circumburst medium. Our best-fit model suggests a quasi-spherical, high-energy explosion in a low, constant-density medium. GRB 090423 had a similar energy release to the other well-studied high redshift GRB 050904 (z = 6.26), but their circumburst densities differ by 2 orders of magnitude. We compare the properties of GRB 090423 with a sample of gamma-ray bursts (GRBs) at moderate redshifts. We find that the high energy and afterglow properties of GRB 090423 are not sufficiently different from other GRBs to suggest a different kind of progenitor, such as a Population III (Pop III) star. However, we argue that it is not clear that the afterglow properties alone can provide convincing identification of Pop III progenitors. We suggest that the millimeter and centimeter radio detections of GRB 090423 at early times contained emission from the reverse shock. If true, this may have important implications for the detection of high-redshift GRBs by the next generation of radio facilities.

  14. Mean and extreme radio properties of quasars and the origin of radio emission

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Rachael M.; Richards, Gordon T. [Department of Physics, Drexel University, Philadelphia, PA (United States)

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  15. The variance of dispersion measure of high-redshift transient objects as a probe of ionized bubble size during reionization

    Science.gov (United States)

    Yoshiura, Shintaro; Takahashi, Keitaro

    2018-01-01

    The dispersion measure (DM) of high-redshift (z ≳ 6) transient objects such as fast radio bursts can be a powerful tool to probe the intergalactic medium during the Epoch of Reionization. In this paper, we study the variance of the DMs of objects with the same redshift as a potential probe of the size distribution of ionized bubbles. We calculate the DM variance with a simple model with randomly distributed spherical bubbles. It is found that the DM variance reflects the characteristics of the probability distribution of the bubble size. We find that the variance can be measured precisely enough to obtain the information on the typical size with a few hundred sources at a single redshift.

  16. X-ray Counterparts of Infrared Faint Radio Sources

    Science.gov (United States)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2IFRS, but if confirmed, the increased AGN numbers at these redshifts will account for the unresolved part of the X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  17. X-RAY AND MULTIWAVELENGTH INSIGHTS INTO THE NATURE OF WEAK EMISSION-LINE QUASARS AT LOW REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92903 (United States); Hall, Patrick B. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON M3J 1P3 (Canada); Plotkin, Richard M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Shemmer, Ohad, E-mail: jfwu@astro.psu.edu [Department of Physics, University of North Texas, Denton, TX 76203 (United States)

    2012-03-01

    We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z = 0.4-2.5. Our sample was selected from the Plotkin et al. catalog of radio-quiet, weak-featured active galactic nuclei (AGNs). The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. Over half of the low-redshift WLQ candidates are X-ray weak by a factor of {approx}> 5, compared to a typical SDSS quasar with similar UV/optical luminosity. These X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811 (weak and blueshifted high-ionization lines, weak semiforbidden lines, and strong UV Fe emission); they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization 'shielding gas' covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. The mid-infrared-to-UV SEDs of most radio-quiet weak-featured AGNs without sensitive X-ray coverage (34 objects) are also consistent with those of typical SDSS quasars. However, one source in our

  18. X-RAY AND MULTIWAVELENGTH INSIGHTS INTO THE NATURE OF WEAK EMISSION-LINE QUASARS AT LOW REDSHIFT

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Anderson, Scott F.; Diamond-Stanic, Aleksandar M.; Hall, Patrick B.; Plotkin, Richard M.; Shemmer, Ohad

    2012-01-01

    We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z = 0.4-2.5. Our sample was selected from the Plotkin et al. catalog of radio-quiet, weak-featured active galactic nuclei (AGNs). The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. Over half of the low-redshift WLQ candidates are X-ray weak by a factor of ∼> 5, compared to a typical SDSS quasar with similar UV/optical luminosity. These X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811 (weak and blueshifted high-ionization lines, weak semiforbidden lines, and strong UV Fe emission); they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization 'shielding gas' covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. The mid-infrared-to-UV SEDs of most radio-quiet weak-featured AGNs without sensitive X-ray coverage (34 objects) are also consistent with those of typical SDSS quasars. However, one source in our X

  19. Highly Accreting Quasars at High Redshift

    Science.gov (United States)

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  20. Gamma-ray bursts at high redshift

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive

  1. Moderate resolution spectrophotometry of high redshift quasars

    Science.gov (United States)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  2. The Overdense Environments of WISE-Selected, Ultra-Luminous, High-Redshift AGN in the Submillimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Suzy F., E-mail: suzy.jones@chalmers.se [Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, Onsala (Sweden)

    2017-11-21

    The environments around WISE-selected hot dust obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and z = 1.7, respectively, were found to have overdensities of companion Submillimeter-selected sources. The overdensities were of ~2–3 and ~5–6, respectively, compared with blank field submm surveys. The space densities in both samples were found to be overdense compared to normal star-forming galaxies and Submillimeter galaxies (SMGs). All of the companion sources have consistent mid-IR colors and mid-IR to submm ratios to SMGs. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5 arcmin scale maps. WISE-selected AGNs appear to be good indicators of overdense areas of active galaxies at high redshift.

  3. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  4. TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    Daddi, E.; Elbaz, D.; Mancini, C.; Dannerbauer, H.; Stern, D.; Dickinson, M.; Pope, A.; Morrison, G.; Giavalisco, M.; Spinrad, H.

    2009-01-01

    We present the serendipitous discovery of molecular gas CO emission lines with the IRAM Plateau de Bure interferometer coincident with two luminous submillimeter galaxies (SMGs) in the Great Observatories Origins Deep Survey North (GOODS-N) field. The identification of the millimeter emission lines as CO[4-3] at z = 4.05 is based on the optical and near-IR photometric redshifts, radio-infrared photometric redshifts, and Keck+DEIMOS optical spectroscopy. These two galaxies include the brightest submillimeter source in the field (GN20; S 850μm = 20.3 mJy, z CO = 4.055 ± 0.001) and its companion (GN20.2; S 850μm = 9.9 mJy, z CO = 4.051 ± 0.003). These are among the most distant submillimeter-selected galaxies reliably identified through CO emission and also some of the most luminous known. GN20.2 has a possible additional counterpart and a luminous active galactic nucleus inside its primary counterpart revealed in the radio. Continuum emission of 0.3 mJy at 3.3 mm (0.65 mm in the rest frame) is detected at 5σ for GN20, the first dust continuum detection in an SMG at such long wavelength, unveiling a spectral energy distribution that is similar to local ultra luminous IR galaxies. In terms of CO to bolometric luminosities, stellar mass, and star formation rates (SFRs), these newly discovered z > 4 SMGs are similar to z ∼ 2-3 SMGs studied to date. These z ∼ 4 SMGs have much higher specific star formation rates than those of typical B-band dropout Lyman break galaxies at the same redshift. The stellar mass-SFR correlation for normal galaxies does not seem to evolve much further, between z ∼ 2 and z ∼ 4. A significant z = 4.05 spectroscopic redshift spike is observed in GOODS-N, and a strong spatial overdensity of B-band dropouts and IRAC selected z > 3.5 galaxies appears to be centered on the GN20 and GN20.2 galaxies. This suggests a protocluster structure with total mass ∼10 14 M sun . Using photometry at mid-IR (24 μm), submillimeter (850 μm), and

  5. Star Formation Rates in Lyman Break Galaxies: Radio Stacking of LBGs in the COSMOS Field and the Sub-μJy Radio Source Population

    Science.gov (United States)

    Carilli, C. L.; Lee, Nicholas; Capak, P.; Schinnerer, E.; Lee, K.-S.; McCraken, H.; Yun, M. S.; Scoville, N.; Smolčić, V.; Giavalisco, M.; Datta, A.; Taniguchi, Y.; Urry, C. Megan

    2008-12-01

    We present an analysis of the radio properties of large samples of Lyman break galaxies (LBGs) at z ~ 3, 4, and 5 from the COSMOS field. The median stacking analysis yields a statistical detection of the z ~ 3 LBGs (U-band dropouts), with a 1.4 GHz flux density of 0.90 +/- 0.21 μJy. The stacked emission is unresolved, with a size = 3 is smaller than at lower redshifts. Conversely, the radio luminosity for a given star formation rate may be systematically lower at very high redshift. Two possible causes for a suppressed radio luminosity are (1) increased inverse Compton cooling of the relativistic electron population due to scattering off the increasing CMB at high redshift or (2) cosmic-ray diffusion from systematically smaller galaxies. The radio detections of individual sources are consistent with a radio-loud AGN fraction of 0.3%. One source is identified as a very dusty, extreme starburst galaxy (a "submillimeter galaxy"). Based on observations in the COSMOS Legacy Survey including those taken on the HST, Keck, NRAO-VLA, Subaru, KPNO 4 m, CTIO 4 m, and CFHT 3.6 m. The Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  6. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Science.gov (United States)

    Richards, Gordon T.; Kratzer, R.

    2014-01-01

    We explore the evolution of the fraction of radio loud quasars and the mean radio properties of quasars. Although any quasar has only a ~10% chance of being radio loud and the average quasar has a radio luminosity of ~4x10^30 ergs/s/Hz, these properties are strong functions of not only luminosity, redshift, black hole mass, and accretion rate, but also the strength of the accretion disk wind (as characterized by CIV emission line properties). Quasars with higher optical luminosity and/or lower redshift have a higher than average probability of being radio loud, but their median radio luminosity (relative to optical) is much lower than average. We find that, while radio properties of quasars generally cannot be predicted from their optical properties, objects where one expects a strong radiation line driven wind (based on emission line features) have virtually no chance of being radio loud. The redder quasars are in the optical, the more radio flux (relative to optical) they have; this trend holds even for quasars that are not expected to be significantly dust reddened/extincted in the optical. Finally, we consider the radio properties of quasars in the framework of models which describe the radio loud extrema as being due to particularly high spin resulting from second generation mergers and in the context of star formation at lower levels of radio flux. This work was supported by NSF AAG grant 1108798.

  7. Stellar populations in distant radio galaxies

    International Nuclear Information System (INIS)

    Lilly, S.J.; Longair, M.S.

    1984-01-01

    A homogeneous data set of infrared observations of 83 3CR galaxies with redshifts 0< z<1.6, selected from a statistically complete sample of 90 radio sources, is used to study the colours and magnitudes of these galaxies as a function of their redshifts. New infrared observations are presented for 66 radio galaxies, in addition to new optical results obtained from a re-analysis of existing CCD images. It is shown that the infrared colours do not deviate from the predicted relations with redshift for a standard giant elliptical galaxy spectrum. The optical to infrared colours, however, show substantial deviations at high redshift. No galaxies have been found that are significantly redder than a passively evolving galaxy, and there is a significant scatter of colours bluewards from this model. The excess of ultraviolet light responsible for these colours is not concentrated at the nucleus, and is interpreted as resulting from bursts of star formation, throughout the galaxy. (author)

  8. Discovery and spectrophotometry of high-redshift quasars

    International Nuclear Information System (INIS)

    MacAlpine, G.M.; Feldman, F.R.

    1982-01-01

    We report on the discovery and spectrophotometry of 30 new high-redshift quasars, which were detected using the Curtis Schmidt technique. We also discuss new follow-up spectrophotometry for 23 quasar candidates from University of Michigan Lists I--IV. Our program sample contains eight quasars with z>3, at least five objects exhibiting broad absorption troughs, and a pair of quasars which are 1' apart on the sky and nearly identical in redshift, at z near 2.13. The redshift distribution for the majority of quasars in UM List IV suggests that most of the single-line quasar candidates in the UM List have low to moderate redshifts, with the reported line often being Mg II lambda2798 or C III] lambda1909. For 17 high-redshift quasars where lambda912 at the emission-line redshift could be examined, we did not find any definite Lyman limit cutoffs. Although three objects show a decline of the continuum within 100 A of lambda912, we do not believe them to be unambiguous examples for emission-line clouds situated in the line of sight. When our O I lambda1304 measurements are combined with the data of others to yield a composite spectrum, we obtain O I lambda1304/lambda8446 = 1.35. This suggests reddening with E/sub B/-Vroughly-equal0.23. Finally, our data exhibit a correlation between Lyα emission line velocity widths and redshift. The higher z quasars in the sample tend to have narrower lines, due, at least in part, to bias in the detection technique

  9. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    Science.gov (United States)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Bock, J.; hide

    2011-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric red-shifts using a sample of mm-selected sources as seen at 250, 350 and 500 micrometers by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth Tau = (nu/nu(0))beta where beta = +1.8 and nu(0) = c/100 micrometers. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |delta z|/(1+z) = 0.16 (less than |delta z| greater than = 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |delta z|/(1 + z) = 0.15 (less than |delta z| greater than = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z greater than 3 when compared to 850 micrometer selected samples.

  10. A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Hall, Patrick B.; Gibson, Robert R.; Schmidt, Sarah J.; Richards, Gordon T.; Shemmer, Ohad; Just, Dennis W.

    2011-01-01

    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z ∼ 2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of ∼13. These sources lack broad absorption lines and have blue UV/optical continua, supporting the hypothesis that they are intrinsically X-ray weak like PHL 1811 itself. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our sample of radio-quiet PHL 1811 analogs supports a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be ∼< 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties (e.g., C IV equivalent width and blueshift) for a sample combining our radio-quiet PHL 1811 analogs, PHL 1811 itself, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, the radio-quiet PHL 1811 analogs appear to be a subset (∼30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization 'shielding gas' covers most of the broad emission-line region (BELR), but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X-ray bright. X

  11. Luminosity function of high redshift quasars

    International Nuclear Information System (INIS)

    Vaucher, B.G.

    1982-01-01

    Data from ten different emission-line surveys are included in a study of the luminosity function of high redshift quasars. Five of the surveys are analyzed through microdensitometric techniques and the data for new quasars are given. The uncertainties in magnitudes, redshifts, and line equivalent widths are assessed and found to be +-0.3 mag. +-0.04 in z and approx. 30%, respectively. Criteria for selecting the redshift range 1.8 less than or equal to z - 1 Mpc - 1 for each of two cosmologies (q 0 = 1 and q 0 = 0). For either cosmology, the function exhibits a steep increase with magnitude at high luminosities and a gentler increase at intermediate luminosities. Data from the new surveys indicate a possible turnover at the faint end of the distribution. Total volume densities of quasars are computed for each of three extrapolations of the trend of the data to low luminosities. These densities are compared to those of active galaxies and field galaxies

  12. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    Science.gov (United States)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.; hide

    2012-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.

  13. Do Unification Models Explain the X-ray Properties of Radio Sources?

    NARCIS (Netherlands)

    Wilkes, Belinda J.; Kuraszkiewicz, J.; Haas, M.; Barthel, P.; Willner, S. P.; Leipski, C.; Worrall, D.; Birkinshaw, M.; Antonucci, R. R.; Ashby, M.; Chini, R.; Fazio, G. G.; Lawrence, C. R.; Ogle, P. M.; Schulz, B.

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (1 radio selected (and so relatively unbiased in orientation), 3CRR radio sources (21 quasars, 17 narrow line radio galaxies, NLRGs) support Unification models and lead to estimates of the covering

  14. A Fast Radio Burst Host Galaxy

    OpenAIRE

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.

    2016-01-01

    In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in...

  15. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    NARCIS (Netherlands)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-01-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence

  16. The Discovery of a High-Redshift Quasar without Emission Lines from Sloan Digital Sky Survey Commissioning Data.

    Science.gov (United States)

    Fan; Strauss; Gunn; Lupton; Carilli; Rupen; Schmidt; Moustakas; Davis; Annis; Bahcall; Brinkmann; Brunner; Csabai; Doi; Fukugita; Heckman; Hennessy; Hindsley; Ivezic; Knapp; Lamb; Munn; Pauls; Pier; Rockosi; Schneider; Szalay; Tucker; York

    1999-12-01

    We report observations of a luminous unresolved object at redshift z=4.62, with a featureless optical spectrum redward of the Lyalpha forest region, discovered from Sloan Digital Sky Survey commissioning data. The redshift is determined by the onset of the Lyalpha forest at lambda approximately 6800 Å and a Lyman limit system at lambda=5120 Å. A strong Lyalpha absorption system with weak metal absorption lines at z=4.58 is also identified in the spectrum. The object has a continuum absolute magnitude of -26.6 at 1450 Å in the rest frame (h0=0.5, q0=0.5) and therefore cannot be an ordinary galaxy. It shows no radio emission (the 3 sigma upper limit of its flux at 6 cm is 60 µJy), indicating a radio-to-optical flux ratio at least as small as that of the radio-weakest BL Lacertae objects known. It is also not linearly polarized to a 3 sigma upper limit of 4% in the observed I band. Therefore, it is either the most distant BL Lac object known to date, with very weak radio emission, or a new type of unbeamed quasar, whose broad emission line region is very weak or absent.

  17. High-redshift quasars in the Cold Dark Matter cosmogony

    International Nuclear Information System (INIS)

    Efstathiou, G.; Rees, M.J.

    1988-01-01

    The relationship between high-redshift quasars and the epoch of galaxy formation in the Cold Dark Matter (CDM) cosmogony is investigated. Luminous quasars could only form after galactic sized systems had collapsed. A constant comoving density of luminous quasars between z = 2 and z = 4 is compatible with the CDM model if quasars are short-lived and radiate at about the Eddington limit. However, according to the CDM model the abundance of high-luminosity quasars must decline exponentially at higher redshifts. Even if all protogalaxies form quasars, and about 1 per cent of the baryons within a protogalaxy collapse into a compact object, a steep fall in the density of quasars with L > 10 47 erg s -1 at redshifts z ≥ 5. The existence of a 'cut-off' in the quasar numbers at high redshift could therefore supply an important test of the CDM theory. (author)

  18. INTERSTELLAR SCINTILLATION AND THE RADIO COUNTERPART OF THE FAST RADIO BURST FRB 150418

    International Nuclear Information System (INIS)

    Akiyama, Kazunori; Johnson, Michael D.

    2016-01-01

    Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μ Jy to 100 μ Jy on timescales of ∼6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williams and Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T _b ≳ 10"9 K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.

  19. Giant Double Radio Source DA 240: Purveyor of Galaxies

    Science.gov (United States)

    Chen, Ru-Rong; Strom, Richard; Peng, Bo

    2018-05-01

    Galaxies of stars are building blocks of the baryonic universe. Their composition, structure, and kinematics have been well studied, but details of their origins remain sketchy. The collapse of gas clouds, induced by external forces whereby gravity overcomes internal pressure to form stars, is the likely starting point. Among the perturbing initiators of galaxy formation, radio source beams (jets) are quite effective. Typically, a beam may spawn one galaxy, though instances of several aligned with the radio axis are known. Recently, we found an impressive 14 companions in the lobes of the giant radio galaxy DA 240, which we argue formed as the result of jet instigation. This conclusion is bolstered by the fact that the galaxy groups display Z-shaped symmetry with respect to the radio axis. There is some evidence for star formation among the aligned companions. We also conclude that galaxy alignments at low redshift may derive from line-emitting gas observed in radio components of high-redshift galaxies.

  20. New solution to the problem of the tension between the high-redshift and low-redshift measurements of the Hubble constant

    Science.gov (United States)

    Bolejko, Krzysztof

    2018-01-01

    During my talk I will present results suggesting that the phenomenon of emerging spatial curvature could resolve the conflict between Planck's (high-redshift) and Riess et al. (low-redshift) measurements of the Hubble constant. The phenomenon of emerging spatial curvature is absent in the Standard Cosmological Model, which has a flat and fixed spatial curvature (small perturbations are considered in the Standard Cosmological Model but their global average vanishes, leading to spatial flatness at all times).In my talk I will show that with the nonlinear growth of cosmic structures the global average deviates from zero. As a result, the spatial curvature evolves from spatial flatness of the early universe to a negatively curved universe at the present day, with Omega_K ~ 0.1. Consequently, the present day expansion rate, as measured by the Hubble constant, is a few percent higher compared to the high-redshift constraints. This provides an explanation why there is a tension between high-redshift (Planck) and low-redshift (Riess et al.) measurements of the Hubble constant. In the presence of emerging spatial curvature these two measurements should in fact be different: high redshift measurements should be slightly lower than the Hubble constant inferred from the low-redshift data.The presentation will be based on the results described in arXiv:1707.01800 and arXiv:1708.09143 (which discuss the phenomenon of emerging spatial curvature) and on a paper that is still work in progress but is expected to be posted on arxiv by the AAS meeting (this paper uses mock low-redshift data to show that starting from the Planck's cosmological models (in the early universe) but with the emerging spatial curvature taken into account, the low-redshift Hubble constant should be 72.4 km/s/Mpc.

  1. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    Science.gov (United States)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at zcolor selection (dropout) diagrams of high-z galaxies. The selection condition for F336W dropouts successfully captures ≈ 80% of the targeted z 2.7 galaxies. However, for higher redshift selections (F435W, F606W, and F775W dropouts), the success rates decrease to ≈ 20-40%. We empirically redefine the selection boundaries to make an attempt to improve them to ≈ 60%. The revised boundaries allow bluer colors that capture Lyα emitters with high Lyα equivalent widths falling in the broadbands used for the color-color selection. Along with this paper, we release the redshift and line flux catalog. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).MUSE Ultra Deep Field redshift catalogs (Full Table A.1) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  2. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    International Nuclear Information System (INIS)

    Mancuso, C.; Lapi, A.; Shi, J.; Aversa, R.; Danese, L.; Gonzalez-Nuevo, J.

    2016-01-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10 10 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10 2 M ⊙ yr −1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr −1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  3. Variability of Extragalactic Objects in Relation to Redshift, Color ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    properties of the objects, viz., redshift, color indices, radio spectral index ... properties of different types of closely related objects are expected to throw light on the ...... z = 3.0, OVV objects are concentrated at the lower range of the scale, mostly at ..... from the practical point of view in the sense that redshifts can be predicted ...

  4. Detectability of Gravitational Waves from High-Redshift Binaries.

    Science.gov (United States)

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  5. Identifying high-redshift gamma-ray bursts with RATIR

    Energy Technology Data Exchange (ETDEWEB)

    Littlejohns, O. M.; Butler, N. R. [School of Earth and Space Exploration, Arizona State University, AZ 85287 (United States); Cucchiara, A. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 México, D. F. (Mexico); Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klein, C. R.; Fox, O. D.; Bloom, J. S. [Astronomy Department, University of California, Berkeley, CA 94720-7450 (United States); Prochaska, J. X.; Ramirez-Ruiz, E. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z {sub phot}, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z {sub phot} < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z {sub phot} in the ranges of 4 < z {sub phot} ≲ 8 and 9 < z {sub phot} < 10 and can robustly determine when z {sub phot} > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z {sub phot} < 4 when z {sub sim} > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  6. Identifying high-redshift gamma-ray bursts with RATIR

    International Nuclear Information System (INIS)

    Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H.; Klein, C. R.; Fox, O. D.; Bloom, J. S.; Prochaska, J. X.; Ramirez-Ruiz, E.

    2014-01-01

    We present a template-fitting algorithm for determining photometric redshifts, z phot , of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z phot < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z phot in the ranges of 4 < z phot ≲ 8 and 9 < z phot < 10 and can robustly determine when z phot > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z phot < 4 when z sim > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  7. Dust in High-Redshift Galaxies

    Science.gov (United States)

    Pettini, Max; King, David L.; Smith, Linda J.; Hunstead, Richard W.

    1997-03-01

    Measurements of Zn and Cr abundances in 18 damped Lyα systems (DLAs) at absorption redshifts zabs = 0.692-3.390 (but mostly between zabs ~= 2 and 3) show that metals and dust are much less abundant in high-redshift galaxies than in the Milky Way today. Typically, [Zn/H] ~= -1.2 as Zn tracks Fe closely in Galactic stars of all metallicities and is only lightly depleted onto interstellar grains, we conclude that the overall degree of metal enrichment of damped Lyα galaxies ~13.5 Gyr ago (H0 = 50 km s-1 Mpc-1, q0 = 0.05) was ~1/15 solar. Values of [Cr/Zn] span the range from ~=0 to account correctly, it is possible to misinterpret the clues to early nucleosynthesis provided by nonsolar element ratios.

  8. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  9. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Wen, Z. L.; Han, J. L.

    2011-01-01

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 ∼ + - m 3.6 μ m colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z f ≥ 2 and evolved passively. The g' - z' and B - m 3.6μm colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z f ∼ 2, indicating star formation in high-redshift BCGs.

  10. INTERSTELLAR SCINTILLATION AND THE RADIO COUNTERPART OF THE FAST RADIO BURST FRB 150418

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Kazunori [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Johnson, Michael D., E-mail: kazu@haystack.mit.edu [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-06-10

    Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μ Jy to 100 μ Jy on timescales of ∼6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williams and Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T {sub b} ≳ 10{sup 9} K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.

  11. Close companions to two high-redshift quasars

    Energy Technology Data Exchange (ETDEWEB)

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Strauss, Michael A. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Haiman, Zoltàn [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Jiang, Linhua [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Schneider, Donald P., E-mail: imcgreer@as.arizona.edu [Department of Astronomy and Astrophysics and the Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  12. The host galaxy of a fast radio burst

    OpenAIRE

    Keane, E. F.; Jencson, J.; Kasliwal, Mansi M.

    2016-01-01

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty i...

  13. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    Science.gov (United States)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  14. MULTIWAVELENGTH OBSERVATIONS OF RADIO-QUIET QUASARS WITH WEAK EMISSION LINES

    International Nuclear Information System (INIS)

    Plotkin, Richard M.; Anderson, Scott F.; MacLeod, Chelsea L.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Shemmer, Ohad

    2010-01-01

    We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z < 2.2. Half of these 26 objects are shown to be stars, galaxies, or absorbed quasars. We conclude that the other 13 objects are active galactic nuclei (AGNs) with abnormally weak emission features; 10 of those 13 are definitively radio quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGNs lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGNs appear to have intrinsically weak or absent broad emission line regions (BELRs), and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z < 2.2 radio-quiet BL Lac candidates already identified in the SDSS, but not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN BELRs.

  15. Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to z 3

    Science.gov (United States)

    Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong

    2017-09-01

    Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 RDE) or the Dvali-Gabadadze-Porrati (DGP) brane-world scenario. While no significant change in w with redshift is detected, there is still considerable room for evolution in w and the transition redshift at which w departing from -1 is located at z 2.0. Our results demonstrate that the method extensively investigated in our work on observational radio quasar data can be used to effectively derive cosmological information. Finally, we find the combination of high-redshift quasars and low-redshift clusters may provide an important source of angular diameter distances, considering the redshift coverage of these two astrophysical probes.

  16. The Far-Infrared Radio Correlation at High-z : Prospects for the SKA

    NARCIS (Netherlands)

    Murphy, Eric J.

    2009-01-01

    In this conference proceedings article I summarize the recent work of Murphy (2009) which presents physically motivated predictions for the evolution of the Far-Infrared--radio correlation as a function of redshift arising from variations in the cosmic-ray (CR) electron cooling time-scales as

  17. Selection and Physical Properties of High-redshift Galaxies

    Science.gov (United States)

    Fang, G. W.

    2014-09-01

    galaxies; and the clustering amplitude of OGs is a factor of ˜2 larger than DGs. In Chapter 3, we pick out 1609 star-forming galaxies (sgzKs: gzK=(z-K)_{AB}-1.4(g-z)_{AB}≥ 0.2) and 422 passively evolving galaxies (pgzKs: gzK2.7) at z˜2 in the AEGIS field (K_{AB} rate (SFR) and specific SFR (sSFR) of sgzKs increase with redshift at all masses, implying that star-forming galaxies were much more active on average in the past. Moreover, the sSFR of massive galaxies is lower at all redshifts, suggesting that the mass growth of low-mass galaxies is more attributed to the star formation while comparing with high-mass galaxies. From the HST WFC3/F160W imaging data, we find that gzKs not only have diffuse structures, but also have single-object morphologies, implying that there are morphological variety and different formation processes for these galaxies at z˜2. In addition, we also find ˜ 10% of 828 gzKs can be classified as AGNs. In Chapter 4, we present Spitzer/IRS spectra of a sample of 14 ULIRGs with 0.2 {mJy} 10^{11} M_{⊙} and 410 M_⊙\\cdot yr^{-1}< SFR <1022 M_⊙\\cdot yr^{-1}, respectively. Their rest-frame optical morphologies are very diversified including string-like, extended/diffused, and even early type spiral morphologies, implying that there are different formation processes for these galaxies. We also search for active galactic nucleus (AGN) signature in our sample using X-ray, radio, and mid-infrared (MIR) observations. EGS22, EGS25, EGS27, and EGS34 are detected in the X-ray imaging. The X-ray luminosities for EGS22 and EGS34 can be accounted for by their intensive star formation. EGS25 and EGS27 have higher L_{2-10 keV}, indicating that they harbor AGNs. About 14% to 29% of the sample show signatures of AGNs in X-ray, MIR or radio. Finally, the summary of the whole thesis and outlook are presented in Chapter 5.

  18. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.; Lapi, A.; Shi, J.; Aversa, R.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Gonzalez-Nuevo, J. [Departamento de Física, Universidad de Oviedo, C. Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10{sup 10} M {sub ⊙} at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10{sup 2} M {sub ⊙} yr{sup −1} in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M {sub ⊙} yr{sup −1} cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  19. A high deuterium abundance at redshift z = 0.7.

    Science.gov (United States)

    Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-07-17

    Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.

  20. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    Science.gov (United States)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  1. Observations of radio sources or 'What happened to radio stars?'

    International Nuclear Information System (INIS)

    Conway, R.G.

    1988-01-01

    A review is given of the early history of the interpretation of the radiation mechanisms following the discovery of the discrete radio sources, both galactic and extragalactic. The conflicting views which prevailed in the early fifties are discussed in some detail: some advocated thermal radiation from stars relatively close by, and others proposed the alternative that synchrotron radiation was responsible for the majority of the radio sources. Attention is drawn to the importance of high-resolution interferometry, whereby the structure of many of the sources could be obtained. Red-shift measurements and spectral distributions also played a part in determining distances and flux strengths at the sources. (U.K.)

  2. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ting; Stocke, John T.; Darling, Jeremy [Center for Astrophysics and Space Astronomy, UCB 389, University of Colorado, Boulder, CO 80309-0389 (United States); Momjian, Emmanuel [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Sharma, Soniya [Research School of Astronomy and Astrophysics, The Australian National University, Mt Stromlo Observatory, ACT 2611 (Australia); Kanekar, Nissim [National Centre for Radio Astrophysics, TIFR, Post Bag 3, Ganeshkhind, Pune 411 007 (India)

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  3. The Dispersion of Fast Radio Bursts from a Structured Intergalactic Medium at Redshifts z < 1.5

    Science.gov (United States)

    Shull, J. Michael; Danforth, Charles W.

    2018-01-01

    We analyze the sources of free electrons that produce the large dispersion measures, {DM}≈ 300{--}1600 (in units of cm‑3 pc), observed toward fast radio bursts (FRBs). Individual galaxies typically produce {DM}∼ 25{--}60 {{cm}}-3 {pc} from ionized gas in their disk, disk-halo interface, and circumgalactic medium. Toward an FRB source at redshift z, a homogeneous intergalactic medium (IGM) containing a fraction {f}{IGM} of cosmological baryons will produce {DM}=(935 {{cm}}-3 {pc}){f}{IGM} {h}70-1I(z), where I{(z)=(2/3{{{Ω }}}m)[\\{{{{Ω }}}m(1+z)}3+{{{Ω }}}{{Λ }}\\}{}1/2-1]. A structured IGM of photoionized Lyα absorbers in the cosmic web produces similar dispersion, modeled from the observed distribution, {f}b(N,z), of H I (Lyα-forest) absorbers in column density and redshift with ionization corrections and scaling relations from cosmological simulations. An analytic formula for DM(z) applied to observed FRB dispersions suggests that {z}{FRB}≈ 0.2{--}1.5 for an IGM containing a significant baryon fraction, {f}{IGM}=0.6+/- 0.1. Future surveys of the statistical distribution, DM(z), of FRBs identified with specific galaxies and redshifts can be used to calibrate the IGM baryon fraction and distribution of Lyα absorbers. Fluctuations in DM at the level ±10 cm‑3 pc will arise from filaments and voids in the cosmic web.

  4. The radio galaxy K-z relation to z ~ 4.5

    OpenAIRE

    Jarvis, Matt J.; Rawlings, Steve; Eales, Steve; Blundell, Katherine M.; Willott, Chris J.

    2001-01-01

    Using a new radio sample, 6C* designed to find radio galaxies at z > 4 along with the complete 3CRR and 6CE sample we extend the radio galaxy K-z relation to z~4.5. The 6C* K-z data significantly improve delineation of the K-z relation for radio galaxies at high redshift (z > 2). Accounting for non-stellar contamination, and for correlations between radio luminosity and estimates of stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity ...

  5. Close Companions to Two High-redshift Quasars

    Science.gov (United States)

    McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Bian, Fuyan; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i AB = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW0 ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ~ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ~4.5 mag fainter than the quasar (Y AB = 25) at a separation of 0.''9. The red i 775 - Y 105 color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #12184 and #12493. Observations were also made with the LBT and MMT.

  6. On the periodicity in the distribution of quasar redshifts

    International Nuclear Information System (INIS)

    Kjaergaard, P.

    1978-01-01

    The periodicity in the distribution of quasar redshifts is explained in terms of selection effects. Special attention is drawn to a selection effect caused by the redshift dependent influence of the strong emission lines on the limiting magnitude for detecting quasars. This is especially important since the number of quasars increases with a large factor per magnitude. The limiting magnitude effect applies both to spectroscopic and to UV-excess surveys. It is shown that the redshift distribution of quasars selected by a combination of UV-excess information and agreement between radio and optical position is intermediate between the redshift distribution of the two groups of quasars selected by one of the two criteria. It is also shown that the distribution of redshifts for UV-excess selected quasars is very similar to the variation of the ultrsviolet excess as a function of redshift. This evidence indicates that strong selection effects are in play. (Auth.)

  7. A comprehensive radio view of the extremely bright gamma-ray burst 130427A

    NARCIS (Netherlands)

    van der Horst, A.J.; Paragi, Z.; de Bruyn, A.G.; Granot, J.; Kouveliotou, C.; Wiersema, K.; Starling, R.L.C.; Curran, P.A.; Wijers, R.A.M.J.; Rowlinson, A.; Anderson, G.A.; Fender, R.P.; Yang, J.; Strom, R.G.

    2014-01-01

    GRB 130427A was extremely bright as a result of occurring at low redshift whilst the energetics were more typical of high-redshift gamma-ray bursts (GRBs). We collected well-sampled light curves at 1.4 and 4.8 GHz of GRB 130427A with the Westerbork Synthesis Radio Telescope (WSRT); and we obtained

  8. A comprehensive radio view of the extremely bright gamma-ray burst 130427A

    NARCIS (Netherlands)

    van der Horst, A. J.; Paragi, Z.; de Bruyn, A. G.; Granot, J.; Kouveliotou, C.; Wiersema, K.; Starling, R. L. C.; Curran, P. A.; Wijers, R. A. M. J.; Rowlinson, A.; Anderson, G. A.; Fender, R. P.; Yang, J.; Strom, R. G.

    GRB 130427A was extremely bright as a result of occurring at low redshift whilst the energetics were more typical of high-redshift gamma-ray bursts (GRBs). We collected well-sampled light curves at 1.4 and 4.8 GHz of GRB 130427A with the Westerbork Synthesis Radio Telescope (WSRT); and we obtained

  9. Radio structure in quasars

    International Nuclear Information System (INIS)

    Barthel, P.D.

    1984-01-01

    In this thesis, observational attention is given to the extended extragalactic radio sources associated with quasars. The isolated compact radio sources, often identified with quasars, are only included in the discussions. Three aspects of the radio structure in quasars and their cosmic evolution are considered: a study of the parsec scale morphology in quasar cores, in relation to the extended morphologies; an investigation of possible epoch dependent hotspot properties as well as a more detailed investigation of this fine scale structure; a VLA project was carried out to obtain morphological information on scales of 0.5 arcsec on high redshift quasars and to investigate possible epoch dependent morphological properties. MERLIN observations at 0.1 arcsec resolution to supplement the VLA data were initiated. (Auth.)

  10. LOW-POWER RADIO GALAXIES IN THE DISTANT UNIVERSE: A SEARCH FOR FR I AT 1 < z < 2 IN THE COSMOS FIELD

    International Nuclear Information System (INIS)

    Chiaberge, Marco; Tremblay, Grant; Macchetto, F. Duccio; Sparks, W. B.; Capetti, Alessandro; Tozzi, Paolo

    2009-01-01

    We present a search for FR I radio galaxies between 1 < z < 2 in the COSMOS field. In absence of spectroscopic redshift measurements, the selection method is based on multiple steps which make use of both radio and optical constraints. The basic assumptions are that (1) the break in radio power between low-power FR Is and the more powerful FR IIs does not change with redshift, and (2) that the photometric properties of the host galaxies of low-power radio galaxies in the distant universe are similar to those of FR IIs in the same redshift bin, as is the case for nearby radio galaxies. We describe the results of our search, which yields 37 low-power radio galaxy candidates that are possibly FR Is. We show that a large fraction of these low-luminosity radio galaxies display a compact radio morphology that does not correspond to the FR I morphological classification. Furthermore, our objects are apparently associated with galaxies that show clear signs of interactions, at odds with the typical behavior observed in low-z FR I hosts. The compact radio morphology might imply that we are observing intrinsically small and possibly young objects that will eventually evolve into the giant FR Is we observe in the local universe. One of the objects appears as pointlike in Hubble Space Telescope (HST) images. This might belong to a population of FR I-QSOs, which however would represent a tiny minority of the overall population of high-z FR Is. As for the local FR Is, a large fraction of our objects are likely to be associated with groups or clusters, making them 'beacons' for high-redshift clusters of galaxies. Our search for candidate high-z FR Is we present in this paper constitutes a pilot study for objects to be observed with future high-resolution and high-sensitivity instruments such as the EVLA and ALMA in the radio band, HST/WFC3 in the optical and IR, James Webb Space Telescope in the IR, as well as future generation X-ray satellites.

  11. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-01-01

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s –1 . Their high speeds allow them to travel ∼0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f esc , from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f esc as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f esc by factors of ≈1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  12. A faint galaxy redshift survey behind massive clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Brenda Louise [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  13. Radio variability of the blazar AO 0235 + 164

    International Nuclear Information System (INIS)

    O'dell, S.L.; Dennison, B.; Broderick, J.J.; Altschuler, D.R.; Condon, J.J.; Payne, H.E.; Mitchell, K.J.

    1988-01-01

    The high-redshift blazar A0 0235 + 164 exhibits flux-density variations which are primarily of the less common variety in which low-frequency flux-density variations track the high-frequency variations but are delayed and of smaller amplitude. Observational results based on five years of monitoring are presented which are correlated over at least a factor of 50 frequency range in the sense expected for an expanding synchrotron component: outbursts propagating toward lower frequencies with diminishing amplitudes. A simple, semiempirical jet model is developed which accounts reasonably well for the radio properties of the object. The predictions of the model are compared with observations, examining the radio flux-density histories, the radio spectral evolution, the radio structure, and evidence for relativistic bulk motion. 59 references

  14. High redshift quasars and high metallicities

    Science.gov (United States)

    Ferland, Gary J.

    1997-01-01

    A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.

  15. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    Science.gov (United States)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  16. Radio and optical observations of 0218+357 - The smallest Einstein ring?

    Science.gov (United States)

    O'Dea, Christopher P.; Baum, Stefi A.; Stanghellini, Carlo; Dey, Arjun; Van Breugel, Wil; Deustua, Susana; Smith, Eric P.

    1992-01-01

    VLA radio observations and optical imaging and spectroscopy of the Einstein radio ring 0218+357 are presented. The ring is detected at 22.4 GHz and shows a basically similar structure at 5, 15, and 22.4 GHz. The B component has varied and was about 15 percent brighter in the 8.4 GHz data than in the data of Patnaik et al. (1992). The ring is highly polarized. A weak jetlike feature extending out roughly 2 arcsec to the southeast of component A is detected at 6 cm. The source has amorphous radio structure extending out to about 11 arcsec from the core. For an adopted redshift of 0.68, the extended radio emission is very powerful. The optical spectrum is rather red and shows no strong features. A redshift of about 0.68 is obtained. The identification is a faint compact m(r) about 20 galaxy which extends to about 4.5 arcsec (about 27 kpc). As much as 50 percent of the total light may be due to a central AGN. The observed double core and ring may be produced by an off-center radio core with extended radio structure.

  17. POWERFUL ACTIVITY IN THE BRIGHT AGES. I. A VISIBLE/IR SURVEY OF HIGH REDSHIFT 3C RADIO GALAXIES AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, B.; Chiaberge, M.; Kotyla, J. P.; Sparks, W. B.; Macchetto, F. D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Tremblay, G. R. [Yale University, Department of Astronomy, 260 Whitney Avenue, New Haven, CT 06511 (United States); Stanghellini, C. [INAF—Istituto di Radioastronomia, Via P. Gobetti, 101 I-40129 Bologna (Italy); Baum, S.; O’Dea, C. P. [University of Manitoba, Dept of Physics and Astronomy, 66 Chancellors Circle, Winnipeg, MB R3T 2N2 (Canada); Capetti, A. [Osservatorio Astronomico de Torino, Corso Savona, I-10024 Moncalieri TO (Italy); Miley, G. K. [Universiteit Leiden, Rapenburg 70, 2311 EZ Leiden (Netherlands); Perlman, E. S. [Florida Institute of Technology, 150 W University Boulevard, Melbourne, FL 32901 (United States); Quillen, A. [Rochester Institute of Technology, School of Physics and Astronomy, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-07-01

    We present new rest-frame UV and visible observations of 22 high- z (1 < z < 2.5) 3C radio galaxies and QSOs obtained with the Hubble Space Telescope ’s Wide Field Camera 3 instrument. Using a custom data reduction strategy in order to assure the removal of cosmic rays, persistence signal, and other data artifacts, we have produced high-quality science-ready images of the targets and their local environments. We observe targets with regions of UV emission suggestive of active star formation. In addition, several targets exhibit highly distorted host galaxy morphologies in the rest frame visible images. Photometric analyses reveal that brighter QSOs generally tend to be redder than their dimmer counterparts. Using emission line fluxes from the literature, we estimate that emission line contamination is relatively small in the rest frame UV images for the QSOs. Using archival VLA data, we have also created radio map overlays for each of our targets, allowing for analysis of the optical and radio axes alignment.

  18. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    Science.gov (United States)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  19. INVERSE COMPTON X-RAY HALOS AROUND HIGH-z RADIO GALAXIES: A FEEDBACK MECHANISM POWERED BY FAR-INFRARED STARBURSTS OR THE COSMIC MICROWAVE BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blundell, Katherine M. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Lehmer, B. D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Alexander, D. M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-12-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z {approx} 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L {sub X} {approx} 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and sizes of {approx}60 kpc. Their morphologies are broadly similar to the {approx}60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z {approx} 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z {approx} 3.6 radio galaxies, which are {approx}4 Multiplication-Sign fainter in the far-infrared than those at z {approx} 3.8, also have {approx}4 Multiplication-Sign fainter X-ray IC emission. Including data for a further six z {approx}> 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes {approx}<100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on {approx}100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly{alpha} emission line

  20. A simulation-based analytic model of radio galaxies

    Science.gov (United States)

    Hardcastle, M. J.

    2018-04-01

    I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.

  1. A supernova origin for dust in a high-redshift quasar.

    Science.gov (United States)

    Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca

    2004-09-30

    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

  2. 2.2 micron image of 3C 368 at z = 1.13, a galaxy with aligned radio and stellar axes

    International Nuclear Information System (INIS)

    Chambers, K.C.; Miley, G.K.; Joyce, R.R.

    1988-01-01

    A K-band IR image of the z = 1.13 radio galaxy 3C 368, one of the brightest examples of the recently discovered phenomenon of alignment between the optical and radio axes of powerful distant radio galaxies, is presented. The observations show that the IR morphology is also elongated and aligned along the optical and radio axes, but is not coincident with the radio emission. Various mechanisms for producing the IR and optical flux and the resultant constraints on the origin of the alignment effect in high-redshift radio galaxies are discussed. The most likely explanation is that the emission is produced mainly by young stars formed by interaction of the radio source with the ISM. The IR flux is then interpreted as dominated by a population of red supergiants. Independent of the origin of the emission, the observed alignment implies that powerful radio galaxies at high redshifts are distant from giant ellipticals, even in the IR. Hence, attempts to derive a cosmological standard candle using studies which combine these two types of galaxies are likely to be invalid. 32 references

  3. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    Science.gov (United States)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  4. Polarimetry and Unification of Low-Redshift Radio Galaxies

    International Nuclear Information System (INIS)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-01-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or Pα.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise steeply

  5. Polarimetry and Unification of Low-Redshift Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-11-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or P{alpha}.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise

  6. A radio and optical study of Molonglo radio sources

    Science.gov (United States)

    Ishwara-Chandra, C. H.; Saikia, D. J.; McCarthy, P. J.; van Breugel, W. J. M.

    2001-05-01

    We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff-Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu-Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.

  7. The fate of high redshift massive compact galaxies in dense environments

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Tobias; /Zurich, ETH; Mayer, Lucio; /Zurich U.; Carollo, Marcella; /Zurich, ETH; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  8. The radio-X-ray relation as a star formation indicator: results from the Very Large Array-Extended Chandra Deep Field-South

    Science.gov (United States)

    Vattakunnel, S.; Tozzi, P.; Matteucci, F.; Padovani, P.; Miller, N.; Bonzini, M.; Mainieri, V.; Paolillo, M.; Vincoletto, L.; Brandt, W. N.; Luo, B.; Kellermann, K. I.; Xue, Y. Q.

    2012-03-01

    In order to trace the instantaneous star formation rate (SFR) at high redshift, and thus help in understanding the relation between the different emission mechanisms related to star formation, we combine the recent 4-Ms Chandra X-ray data and the deep Very Large Array radio data in the Extended Chandra Deep Field-South region. We find 268 sources detected both in the X-ray and radio bands. The availability of redshifts for ˜95 per cent of the sources in our sample allows us to derive reliable luminosity estimates and the intrinsic properties from X-ray analysis for the majority of the objects. With the aim of selecting sources powered by star formation in both bands, we adopt classification criteria based on X-ray and radio data, exploiting the X-ray spectral features and time variability, taking advantage of observations scattered across more than 10 years. We identify 43 objects consistent with being powered by star formation. We also add another 111 and 70 star-forming candidates detected only in the radio and X-ray bands, respectively. We find a clear linear correlation between radio and X-ray luminosity in star-forming galaxies over three orders of magnitude and up to z˜ 1.5. We also measure a significant scatter of the order of 0.4 dex, higher than that observed at low redshift, implying an intrinsic scatter component. The correlation is consistent with that measured locally, and no evolution with redshift is observed. Using a locally calibrated relation between the SFR and the radio luminosity, we investigate the LX(2-10 keV)-SFR relation at high redshift. The comparison of the SFR measured in our sample with some theoretical models for the Milky Way and M31, two typical spiral galaxies, indicates that, with current data, we can trace typical spirals only at z≤ 0.2, and strong starburst galaxies with SFRs as high as ˜100 M⊙ yr-1, up to z˜ 1.5.

  9. On the Number of Galaxies at High Redshift

    Directory of Open Access Journals (Sweden)

    Lorenzo Zaninetti

    2015-09-01

    Full Text Available The number of galaxies at a given flux as a function of the redshift, z, is derived when the z-distance relation is non-standard. In order to compare different models, the same formalism is also applied to the standard cosmology. The observed luminosity function for galaxies of the zCOSMOS catalog at different redshifts is modeled by a new luminosity function for galaxies, which is derived by the truncated beta probability density function. Three astronomical tests, which are the photometric maximum as a function of the redshift for a fixed flux, the mean value of the redshift for a fixed flux, and the luminosity function for galaxies as a function of the redshift, compare the theoretical values of the standard and non-standard model with the observed value. The tests are performed on the FORS Deep Field (FDF catalog up to redshift z = 1.5 and on the zCOSMOS catalog extending beyond z = 4. These three tests show minimal differences between the standard and the non-standard models.

  10. BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT z ∼ 3-4

    International Nuclear Information System (INIS)

    Hennawi, Joseph F.; Myers, Adam D.; Shen, Yue; Strauss, Michael A.; Djorgovski, S. G.; Glikman, Eilat; Mahabal, Ashish; Fan Xiaohui; Martin, Crystal L.; Richards, Gordon T.; Schneider, Donald P.; Shankar, Francesco

    2010-01-01

    The clustering of quasars on small scales yields fundamental constraints on models of quasar evolution and the buildup of supermassive black holes. This paper describes the first systematic survey to discover high-redshift binary quasars. Using color-selection and photometric redshift techniques, we searched 8142 deg 2 of Sloan Digital Sky Survey imaging data for binary quasar candidates, and confirmed them with follow-up spectroscopy. Our sample of 27 high-redshift binaries (24 of them new discoveries) at redshifts 2.9 perpendicular perpendicular 3.5. The completeness and efficiency of our well-defined selection algorithm are quantified using simulated photometry and we find that our sample is ∼50% complete. Our companion paper uses this knowledge to make the first measurement of the small-scale clustering (R -1 Mpc comoving) of high-redshift quasars. High-redshift binaries constitute exponentially rare coincidences of two extreme (M ∼> 10 9 M sun ) supermassive black holes. At z ∼ 4, there is about one close binary per 10 Gpc 3 , thus these could be the highest sigma peaks, the analogs of superclusters, in the early universe.

  11. The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

    Science.gov (United States)

    Whittam, I. H.; Riley, J. M.; Green, D. A.; Jarvis, M. J.; Vaccari, M.

    2015-11-01

    A complete, flux density limited sample of 96 faint (>0.5 mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including Spitzer Extragalactic Representative Volume Survey, Spitzer Wide-area Infrared Extragalactic survey, United Kingdom Infrared Telescope Infrared Deep Sky Survey and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric redshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and star-forming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below ˜1 mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the Square Kilometre Array Design Studies Simulated Skies; a population of low-redshift star-forming galaxies predicted by the simulation is not found in the observed sample.

  12. Sources of the Radio Background Considered

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; /KIPAC, Menlo Park /Stanford U.; Stawarz, L.; /KIPAC, Menlo Park /Stanford U. /Jagiellonian U., Astron. Observ.; Lawrence, A.; /Edinburgh U., Inst. Astron. /KIPAC, Menlo Park /Stanford U.; Petrosian, V.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2011-08-22

    We investigate possible origins of the extragalactic radio background reported by the ARCADE 2 collaboration. The surface brightness of the background is several times higher than that which would result from currently observed radio sources. We consider contributions to the background from diffuse synchrotron emission from clusters and the intergalactic medium, previously unrecognized flux from low surface brightness regions of radio sources, and faint point sources below the flux limit of existing surveys. By examining radio source counts available in the literature, we conclude that most of the radio background is produced by radio point sources that dominate at sub {mu}Jy fluxes. We show that a truly diffuse background produced by elections far from galaxies is ruled out because such energetic electrons would overproduce the observed X-ray/{gamma}-ray background through inverse Compton scattering of the other photon fields. Unrecognized flux from low surface brightness regions of extended radio sources, or moderate flux sources missed entirely by radio source count surveys, cannot explain the bulk of the observed background, but may contribute as much as 10%. We consider both radio supernovae and radio quiet quasars as candidate sources for the background, and show that both fail to produce it at the observed level because of insufficient number of objects and total flux, although radio quiet quasars contribute at the level of at least a few percent. We conclude that the most important population for production of the background is likely ordinary starforming galaxies above redshift 1 characterized by an evolving radio far-infrared correlation, which increases toward the radio loud with redshift.

  13. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); De Breuck, C.; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Holzapfel, W. L., E-mail: jspilker@as.arizona.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  14. ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Da Cunha, Elisabete; Groves, Brent; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Weiss, Axel [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Bertoldi, Frank [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Daddi, Emanuele; Sargent, Mark [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Elbaz, David; Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Riechers, Dominik [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Smail, Ian, E-mail: cunha@mpia.de [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2013-03-20

    Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

  15. An intrinsically asymmetric radio galaxy: 0500+630?

    Science.gov (United States)

    Saikia, D. J.; Thomasson, P.; Jackson, N.; Salter, C. J.; Junor, W.

    1996-10-01

    As part of a search for high-luminosity radio galaxies with one-sided structures, the radio galaxy 0500+630 has been imaged with both the VLA and MERLIN and its optical spectrum determined using the Isaac Newton Telescope on La Palma. The galaxy is found to have a redshift of 0.290+/-0.004. The radio observations show the source to be highly asymmetric, with an overall structure which cannot be understood easily by ascribing it either to orientation and relativistic beaming effects or to an asymmetric distribution of gas in the central region. A comparison of this source with objects of similar luminosity suggests that it is one of the best examples yet of a source with possibly an intrinsic asymmetry in either the collimation of its jets or the supply of energy from the central engine to opposite sides.

  16. High-Redshift galaxies light from the early universe

    CERN Document Server

    Appenzeller, Immo

    2008-01-01

    This book provides a comprehensive account of the scientific results on high-redshift galaxies accumulated during the past ten years. Apart from summarizing and critically discussing the wealth of observational data, the observational methods which made it possible to study these very distant and extremely faint objects are described in detail. Moreover, the technical feasibilities and physical limitations for existing and for future ground-based and space-based telescopes are discussed. Thus, apart from summarizing the knowledge accumulated so far, the book is designed as a tool for planning future observational and instrumental programs and projects. In view of the potential importance of the observational results of the high-redshift universe for basic physics the book is written for astronomers as well as for physicists without prior astronomical knowledge. For this purpose it contains introductory chapters describing the basic concepts and notations used in modern astronomy and a brief overview of the pr...

  17. THE XMM-NEWTON X-RAY SPECTRA OF THE MOST X-RAY LUMINOUS RADIO-QUIET ROSAT BRIGHT SURVEY-QSOs: A REFERENCE SAMPLE FOR THE INTERPRETATION OF HIGH-REDSHIFT QSO SPECTRA

    International Nuclear Information System (INIS)

    Krumpe, M.; Markowitz, A.; Lamer, G.; Corral, A.

    2010-01-01

    We present the broadband X-ray properties of four of the most X-ray luminous (L X ≥ 10 45 erg s -1 in the 0.5-2 keV band) radio-quiet QSOs found in the ROSAT Bright Survey. This uniform sample class, which explores the extreme end of the QSO luminosity function, exhibits surprisingly homogenous X-ray spectral properties: a soft excess with an extremely smooth shape containing no obvious discrete features, a hard power law above 2 keV, and a weak narrow/barely resolved Fe Kα fluorescence line for the three high signal-to-noise ratio (S/N) spectra. The soft excess can be well fitted with only a soft power law. No signatures of warm or cold intrinsic absorbers are found. The Fe Kα centroids and the line widths indicate emission from neutral Fe (E = 6.4 keV) originating from cold material from distances of only a few light days or further out. The well-constrained equivalent widths (EW) of the neutral Fe lines are higher than expected from the X-ray Baldwin effect which has been only poorly constrained at very high luminosities. Taking into account our individual EW measurements, we show that the X-ray Baldwin effect flattens above L X ∼ 10 44 erg s -1 (2-10 keV band) where an almost constant (EW) of ∼100 eV is found. We confirm the assumption of having very similar X-ray active galactic nucleus properties when interpreting stacked X-ray spectra. Our stacked spectrum serves as a superb reference for the interpretation of low S/N spectra of radio-quiet QSOs with similar luminosities at higher redshifts routinely detected by XMM-Newton and Chandra surveys.

  18. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); McGreer, Ian; Fan, Xiaohui [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Greiner, Jochen [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Price, Paul, E-mail: morganson@mpia.de [Princeton University Observatory, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2012-06-15

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i{sub P1} dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z{sub P1} magnitude of 19.4, a luminosity of 3.8 Multiplication-Sign 10{sup 47} erg s{sup -1}, and a black hole mass of 6.9 Multiplication-Sign 10{sup 9} M{sub Sun }. It is a broad absorption line quasar with a prominent Ly{beta} peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i{sub P1} dropout quasars and could potentially find more than 10 z{sub P1} dropout (z > 6.8) quasars.

  19. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    International Nuclear Information System (INIS)

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter; Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher; McGreer, Ian; Fan, Xiaohui; Greiner, Jochen; Price, Paul

    2012-01-01

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i P1 dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z P1 magnitude of 19.4, a luminosity of 3.8 × 10 47 erg s –1 , and a black hole mass of 6.9 × 10 9 M ☉ . It is a broad absorption line quasar with a prominent Lyβ peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i P1 dropout quasars and could potentially find more than 10 z P1 dropout (z > 6.8) quasars.

  20. The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    Science.gov (United States)

    Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.

    2017-01-01

    We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.

  1. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  2. VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)

    Science.gov (United States)

    McLure, R.; Pentericci, L.; Vandels Team

    2017-11-01

    This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0=3. In addition, VANDELS is targeting a substantial number of passive galaxies in the redshift interval 1.0filter, which covers the wavelength range 4800-10000Å at a dispersion of 2.5Å/pix and a spectral resolution of R~600. Each galaxy receives between a minimum of 20-hours and a maximum of 80-hours of on-source integration time. The fundamental aim of the survey is to provide the high signal-to-noise spectra necessary to measure key physical properties such as stellar population ages, metallicities and outflow velocities from detailed absorption-line studies. By targeting two extra-galactic survey fields with superb multi-wavelength imaging data, VANDELS is designed to produce a unique legacy dataset for exploring the physics underpinning high-redshift galaxy evolution. (2 data files).

  3. Spectroscopy of 10 γ -Ray BL Lac Objects at High Redshift

    Energy Technology Data Exchange (ETDEWEB)

    Paiano, Simona; Falomo, Renato [INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Landoni, Marco [INAF, Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (Italy); Treves, Aldo [Università degli Studi dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); Scarpa, Riccardo [Instituto de Astrofisica de Canarias, C/O Via Lactea, s/n E-38205 La Laguna, Tenerife (Spain)

    2017-08-01

    We present optical spectra with high signal-to-noise ratio of 10 BL Lac objects detected at GeV energies by the Fermi satellite (3FGL catalog), which previous observations suggested are at relatively high redshift. The new observations, obtained at the 10 m Gran Telescopio Canarias, allowed us to find the redshift for J0814.5+2943 ( z = 0.703), and we can set a spectroscopic lower limit for J0008.0+4713 ( z > 1.659) and J1107.7+0222 ( z > 1.0735) on the basis of Mg ii intervening absorption features. In addition we confirm the redshifts for J0505.5+0416 ( z = 0.423) and J1450+5200 ( z > 2.470). Finally we contradict the previous z estimates for five objects (J0049.7+0237, J0243.5+7119, J0802.0+1005, J1109.4+2411, and J2116.1+3339).

  4. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.; Lenc, E. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), Marsfield, NSW 2122 (Australia); Line, J. L. B.; Hancock, P. J.; Kapińska, A. D.; McKinley, B.; Procopio, P. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO) (Australia); Hurley-Walker, N.; Tingay, S. J.; Franzen, T. M. O.; Morgan, J. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Dwarakanath, K. S. [Raman Research Institute (RRI), Bangalore 560080 (India); For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia); Hindson, L.; Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Offringa, A. R., E-mail: joseph.callingham@sydney.edu.au [Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo (Netherlands); and others

    2017-02-20

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  5. A Search for Radio-loud Quasars within the Epoch of Reionization

    OpenAIRE

    Jarvis, Matt J.; Rawlings, Steve; Barrio, F. Eugenio; Hill, Gary J.; Bauer, Amanda; Croft, Steve

    2003-01-01

    The Universe became fully reionized, and observable optically, at a time corresponding to redshift z~6.5, so it is only by studying the HI and molecular absorption lines against higher-redshift, radio-loud sources that one can hope to make detailed studies of the earliest stages of galaxy formation. At present no targets for such studies are known. In these proceedings we describe a survey which is underway to find radio-loud quasars at z > 6.5.

  6. Millimeter Astronomy at High Redshift

    Science.gov (United States)

    Decarli, Roberto

    2017-11-01

    Our understanding of galaxy formation and evolution critically depends on our ability of exposing the properties of the gaseous content of galaxies throughout cosmic history: how much gas is there, in which phase (ionized, atomic, molecular?), in which physical conditions (temperature, density), how efficiently does it turn into stars? We are now entering an exciting era where these questions can be addressed via observations of various gas tracers, especially at mm and sub-mm wavelengths. I will review how to observe various gas phases at high redshift, and discuss lessons we have learned so far from campaigns aimed at characterizing the gas content in galaxies in various cosmic epochs.

  7. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    Science.gov (United States)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  8. Population III Stars and Remnants in High-redshift Galaxies

    Science.gov (United States)

    Xu, Hao; Wise, John H.; Norman, Michael L.

    2013-08-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 109 M ⊙ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ~ 107 M ⊙ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ~10-4 M ⊙ yr-1 Mpc-3 at redshift 15. The most massive starless halo has a mass of 7 × 107 M ⊙, which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 108 M ⊙, culminating in 50 remnants located in 109 M ⊙ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies.

  9. NuSTAR DETECTION OF THE BLAZAR B2 1023+25 AT REDSHIFT 5.3

    Energy Technology Data Exchange (ETDEWEB)

    Sbarrato, T. [Dipartimento di Scienza e Alta Tecnologia, Università dell' Insubria, Via Valleggio 11, I-22100 Como (Italy); Tagliaferri, G.; Ghisellini, G. [INAF-Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Perri, M.; Puccetti, S.; Giommi, P. [ASI-Science Data Center, via Galileo Galilei, I-00044 Frascati (Italy); Baloković, M.; Harrison, F. A.; Hovatta, T. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nardini, M. [Dipartimento di Fisica G. Occhialini, Università di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Boggs, S. E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Greiner, J.; Rau, A.; Schady, P.; Sudilovsky, V. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Madejski, G. M., E-mail: tullia.sbarrato@brera.inaf.it [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); and others

    2013-11-10

    B2 1023+25 is an extremely radio-loud quasar at z = 5.3 that was first identified as a likely high-redshift blazar candidate in the SDSS+FIRST quasar catalog. Here, we use the Nuclear Spectroscopic Telescope Array (NuSTAR) to investigate its non-thermal jet emission, whose high-energy component we detected in the hard X-ray energy band. The X-ray flux is ∼ 5.5 x 10{sup -14} erg cm{sup -2} s{sup -1} (5-10 keV) and the photon spectral index is Γ{sub X} ≅ 1.3-1.6. Modeling the full spectral energy distribution, we find that the jet is oriented close to the line of sight, with a viewing angle of ∼3°, and has significant Doppler boosting, with a large bulk Lorentz factor ∼13, which confirms the identification of B2 1023+25 as a blazar. B2 1023+25 is the first object at redshift larger than 5 detected by NuSTAR, demonstrating the ability of NuSTAR to investigate the early X-ray universe and to study extremely active supermassive black holes located at very high redshift.

  10. Science from the Avo 1ST Light: the High Redshift Universe

    Science.gov (United States)

    Walton, Nicholas A.

    The Astrophysical Virtual Observatory science working group defined a number of key science drivers for which the AVO should develop capabilities. At the AVO's Jan 2003 'First Light' event the AVO prototype data access and manipulation tool was demonstrated. In particular its use in enabling discovery in deep multi wavelength data sets was highlighted. In this presentation I will describe how the AVO demonstrator has enabled investigation into the high redshift universe and in particular its use in discovering rare populations of high redshift galaxies from deep Hubble and ground based imaging data obtained through the Great Observatories Origins Deep Survey (GOODS) programme.

  11. PREDICTIONS FOR ULTRA-DEEP RADIO COUNTS OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Claudia; Lapi, Andrea; De Zotti, Gianfranco; Bressan, Alessandro; Perrotta, Francesca; Danese, Luigi [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Cai, Zhen-Yi [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Negrello, Mattia; Bonato, Matteo, E-mail: cmancuso@sissa.it [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2015-09-01

    We have worked outty predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch-dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free–free) emission. The SFR functions were derived taking into account both the dust-obscured and the unobscured star formation, by combining far-infrared, ultraviolet, and Hα luminosity functions up to high redshifts. We have also revisited the South Pole Telescope counts of dusty galaxies at 95 GHz, performing a detailed analysis of the Spectral Energy Distributions. Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. We predict that a survey down to 0.25 μJy at 1.4 GHz will detect about 1200 strongly lensed galaxies per square degree, at redshifts of up to 10. For about 30% of them the SKA1-MID will detect at least 2 images. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys.

  12. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe

    International Nuclear Information System (INIS)

    Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.; Gunn, James E.; Lupton, Robert H.; Anderson, Scott F.; Voges, Wolfgang; Margon, Bruce; Annis, James; Bahcall, Neta A.

    2000-01-01

    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u ' g ' r ' i ' z ' ) imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from ∼250 deg2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of the sky. Our success rate in identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92, and 5.03). All the quasars have i * B 0 =0.5). Several of the quasars show unusual emission and absorption features in their spectra, including an object at z=4.62 without detectable emission lines, and a broad absorption line (BAL) quasar at z=4.92. (c) (c) 2000. The American Astronomical Society

  13. THE MICRO-ARCSECOND SCINTILLATION-INDUCED VARIABILITY (MASIV) SURVEY. III. OPTICAL IDENTIFICATIONS AND NEW REDSHIFTS

    Energy Technology Data Exchange (ETDEWEB)

    Pursimo, Tapio [Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma (Spain); Ojha, Roopesh [NVI Inc./U. S. Naval Observatory, 3450 Massachusetts Ave NW, Washington DC (United States); Jauncey, David L. [CSIRO Astronomy and Space Science and Mount Stromlo Observatory, Canberra ACT 0200 (Australia); Rickett, Barney J. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Dutka, Michael S. [The Catholic University of America, 620 Michigan Ave., N.E., Washington DC 20064 (United States); Koay, Jun Yi; Bignall, Hayley E.; Macquart, Jean-Pierre [ICRAR, Curtin University, Bentley, WA 6845 (Australia); Lovell, James E. J. [School of Mathematics and Physics, University of Tasmania, TAS 7001 (Australia); Kedziora-Chudczer, Lucyna, E-mail: tpursimo@not.iac.es [School of Physics and Astrophysics, UNSW, Sydney NSW 2052 (Australia)

    2013-04-10

    Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Micro-Arcsecond Scintillation-Induced Variability) survey of 443 flat spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.

  14. Constraining omega from X-ray properties of clusters of galaxies at high redshifts

    DEFF Research Database (Denmark)

    Sadat, R.; Blanchard, A.; Oukbir, J.

    1997-01-01

    Properties of high redshift clusters are a fundamental source of information for cosmology. It has been shown by Oukbir and Blanchard (1997) that the combined knowledge of the redshift distribution of X-ray clusters of galaxies and the luminosity-temperature correlation, L-X - T-X, provides a pow...

  15. Future Cosmological Constraints From Fast Radio Bursts

    Science.gov (United States)

    Walters, Anthony; Weltman, Amanda; Gaensler, B. M.; Ma, Yin-Zhe; Witzemann, Amadeus

    2018-03-01

    We consider the possible observation of fast radio bursts (FRBs) with planned future radio telescopes, and investigate how well the dispersions and redshifts of these signals might constrain cosmological parameters. We construct mock catalogs of FRB dispersion measure (DM) data and employ Markov Chain Monte Carlo analysis, with which we forecast and compare with existing constraints in the flat ΛCDM model, as well as some popular extensions that include dark energy equation of state and curvature parameters. We find that the scatter in DM observations caused by inhomogeneities in the intergalactic medium (IGM) poses a big challenge to the utility of FRBs as a cosmic probe. Only in the most optimistic case, with a high number of events and low IGM variance, do FRBs aid in improving current constraints. In particular, when FRBs are combined with CMB+BAO+SNe+H 0 data, we find the biggest improvement comes in the {{{Ω }}}{{b}}{h}2 constraint. Also, we find that the dark energy equation of state is poorly constrained, while the constraint on the curvature parameter, Ω k , shows some improvement when combined with current constraints. When FRBs are combined with future baryon acoustic oscillation (BAO) data from 21 cm Intensity Mapping, we find little improvement over the constraints from BAOs alone. However, the inclusion of FRBs introduces an additional parameter constraint, {{{Ω }}}{{b}}{h}2, which turns out to be comparable to existing constraints. This suggests that FRBs provide valuable information about the cosmological baryon density in the intermediate redshift universe, independent of high-redshift CMB data.

  16. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS

    International Nuclear Information System (INIS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Harker, Justin J.; Lai, Kamson; Coil, Alison L.; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan Renbin; Kassin, Susan A.; Konidaris, N. P.

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ∼ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M B = –20 at z ∼ 1 via ∼90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg 2 divided into four separate fields observed to a limiting apparent magnitude of R AB = 24.1. Objects with z ∼ 0.7 to be targeted ∼2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ∼ 1.45, where the [O II] 3727 Å doublet lies in the infrared. The DEIMOS 1200 line mm –1 grating used for the survey delivers high spectral resolution (R ∼ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate

  17. Probing black hole accretion in quasar pairs at high redshift

    Science.gov (United States)

    Vignali, C.; Piconcelli, E.; Perna, M.; Hennawi, J.; Gilli, R.; Comastri, A.; Zamorani, G.; Dotti, M.; Mathur, S.

    2018-06-01

    Models and observations suggest that luminous quasar activity is triggered by mergers, so it should preferentially occur in the most massive primordial dark matter haloes, where the frequency of mergers is expected to be the highest. Since the importance of galaxy mergers increases with redshift, we identify the high-redshift Universe as the ideal laboratory for studying dual AGN. Here, we present the X-ray properties of two systems of dual quasars at z = 3.0-3.3 selected from the SDSS DR6 at separations of 6-8 arcsec (43-65 kpc) and observed by Chandra for ≈65 ks each. Both members of each pair are detected with good photon statistics to allow us to constrain the column density, spectral slope and intrinsic X-ray luminosity. We also include a recently discovered dual quasar at z = 5 (separation of 21 arcsec, 136 kpc) for which XMM-Newton archival data allow us to detect the two components separately. Using optical spectra we derived bolometric luminosities, BH masses and Eddington ratios that were compared to those of luminous SDSS quasars in the same redshift ranges. We find that the brighter component of both quasar pairs at z ≈ 3.0-3.3 has high luminosities compared to the distribution of SDSS quasars at similar redshift, with J1622A having an order magnitude higher luminosity than the median. This source lies at the luminous end of the z ≈ 3.3 quasar luminosity function. While we cannot conclusively state that the unusually high luminosities of our sources are related to their having a close companion, for J1622A there is only a 3 per cent probability that it is by chance.

  18. Probing black hole accretion in quasar pairs at high redshift

    Science.gov (United States)

    Vignali, C.; Piconcelli, E.; Perna, M.; Hennawi, J.; Gilli, R.; Comastri, A.; Zamorani, G.; Dotti, M.; Mathur, S.

    2018-03-01

    Models and observations suggest that luminous quasar activity is triggered by mergers, so it should preferentially occur in the most massive primordial dark matter haloes, where the frequency of mergers is expected to be the highest. Since the importance of galaxy mergers increases with redshift, we identify the high-redshift Universe as the ideal laboratory for studying dual AGN. Here we present the X-ray properties of two systems of dual quasars at z=3.0-3.3 selected from the SDSS DR6 at separations of 6-8 arcsec (43-65 kpc) and observed by Chandra for ≈65 ks each. Both members of each pair are detected with good photon statistics to allow us to constrain the column density, spectral slope and intrinsic X-ray luminosity. We also include a recently discovered dual quasar at z=5 (separation of 21″, 136 kpc) for which XMM-Newton archival data allow us to detect the two components separately. Using optical spectra we derived bolometric luminosities, BH masses and Eddington ratios that were compared to those of luminous SDSS quasars in the same redshift ranges. We find that the brighter component of both quasar pairs at z ≈ 3.0-3.3 has high luminosities compared to the distribution of SDSS quasars at similar redshift, with J1622A having an order magnitude higher luminosity than the median. This source lies at the luminous end of the z ≈ 3.3 quasar luminosity function. While we cannot conclusively state that the unusually high luminosities of our sources are related to their having a close companion, for J1622A there is only a 3% probability that it is by chance.

  19. Dense magnetized plasma associated with a fast radio burst.

    Science.gov (United States)

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  20. Photometry of High-Redshift Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Haynie, Annastasia

    2018-01-01

    Out of more than 1100 well-identified Type Ia Supernovae, only roughly 10 of them are at z> 1.5. High redshift supernovae are hard to detect but this is made easier by taking advantage of the effects of gravitational lensing, which magnifies objects in the background field of massive galaxy clusters. Supernova Nebra (z= ~1.8), among others, was discovered during observations taken as part of the RELICS survey, which focused on fields of view that experience strong gravitational lensing effects. SN Nebra, which sits behind galaxy cluster Abell 1763, is magnified and therefore appears closer and easier to see than with HST alone. Studying high-redshift supernovae like SN Nebra is an important step towards creating cosmological models that accurately describe the behavior of dark energy in the early Universe. Recent efforts have been focused on improving photometry and the building and fitting of preliminary light curves.

  1. THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102–4915 'EL GORDO', A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87

    International Nuclear Information System (INIS)

    Menanteau, Felipe; Hughes, John P.; Baker, Andrew J.; Sifón, Cristóbal; González, Jorge; Infante, Leopoldo; Felipe Barrientos, L.; Hilton, Matt; Bond, John R.; Hajian, Amir; Nolta, Michael R.; Das, Sudeep; Devlin, Mark J.; Marsden, Danica; Dunkley, Joanna; Hincks, Adam D.; Kosowsky, Arthur; Marriage, Tobias A.; Moodley, Kavilan; Niemack, Michael D.

    2012-01-01

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102–4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102–4915 as the most significant SZ decrement in a sky survey area of 755 deg 2 . Our Very Large Telescope (VLT)/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, σ gal = 1321 ± 106 km s –1 . Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T X = 14.5 ± 0.1 keV and 0.5-2.0 keV band luminosity of L X = (2.19 ± 0.11) × 10 45 h –2 70 erg s –1 . We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y X , and integrated SZ distortion, we estimate a cluster mass of M 200a = (2.16 ± 0.32) × 10 15 h –1 70 M ☉ . We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102–4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6 ± 0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 ± 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102–4915 is possibly a high-redshift analog of the famous Bullet cluster. Such a massive cluster at this redshift is rare, although consistent

  2. POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Xu Hao; Norman, Michael L.; Wise, John H.

    2013-01-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 10 9 M ☉ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ∼ 10 7 M ☉ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H 2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ∼10 –4 M ☉ yr –1 Mpc –3 at redshift 15. The most massive starless halo has a mass of 7 × 10 7 M ☉ , which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 10 8 M ☉ , culminating in 50 remnants located in 10 9 M ☉ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies

  3. The visibility of high-redshift galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Davies, J.I.; Disney, M.J.

    1990-01-01

    The most visible galaxies - that is, those which have the largest apparent sizes and isophotal luminosities when seen at a given distance - are those with a particular observed surface brightness. Extending this argument to high-redshift galaxies, it is clear that this optimum surface brightness moves progressively to brighter intrinsic surface brightnesses, so as to counteract the effect of K-corrections and cosmological dimming. Thus the galaxies appearing in faint surveys will be from a population distinctly different from those 'normal' galaxies observed nearby. Galaxies in deep surveys are more likely to be spirals and to be of high surface brightness. This has very important implications for observational studies of galaxy evolution. (author)

  4. Predicting the High Redshift Galaxy Population for JWST

    Science.gov (United States)

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  5. RADIO-SELECTED QUASARS IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    McGreer, Ian D.; Helfand, David J.; White, Richard L.

    2009-01-01

    We have conducted a pilot survey for z > 3.5 quasars by combining the FIRST radio survey with the Sloan Digital Sky Survey (SDSS). While SDSS already targets FIRST sources for spectroscopy as quasar candidates, our survey includes fainter quasars and greatly improves the discovery rate by using strict astrometric criteria for matching the radio and optical positions. Our method allows for selection of high-redshift quasars with less color bias than with optical selection, as using radio selection essentially eliminates stellar contamination. We report the results of spectroscopy for 45 candidates, including 29 quasars in the range 0.37 3.5. We compare quasars selected using radio and optical criteria, and find that radio-selected quasars have a much higher fraction of moderately reddened objects. We derive a radio-loud quasar luminosity function at 3.5 < z < 4.0, and find that it is in good agreement with expectations from prior SDSS results.

  6. Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    Science.gov (United States)

    Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher

    2011-01-01

    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.

  7. Dark-Energy Equation-of-State parameter for high redshifts

    International Nuclear Information System (INIS)

    Montiel, Ariadna; Breton, Nora

    2011-01-01

    Since the elucidation of the nature of dark energy depends strongly on redshift observations, it is desirable to measure them over a wider range, but supernovae cannot be detected out past redshift 1.7. Gamma-ray-bursts (GRBs) offer means to extend the analysis to at least redshifts of > 6. The reason is that GRBs are visible across much larger distances than supernovae. GRBs are now known to have several light-curve and spectral properties from which the luminosity of the burst can be calculated, and it might GRBs become into standard candles. We have used data of 69 GRB to study the behavior of the parameter of the dark energy equation of state as a function of redshift.

  8. THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102-4915 'EL GORDO', A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87

    Energy Technology Data Exchange (ETDEWEB)

    Menanteau, Felipe; Hughes, John P.; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Sifon, Cristobal; Gonzalez, Jorge; Infante, Leopoldo; Felipe Barrientos, L. [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Bond, John R.; Hajian, Amir; Nolta, Michael R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Devlin, Mark J.; Marsden, Danica [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford, OX1 3RH (United Kingdom); Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Kosowsky, Arthur [Physics and Astronomy Department, University of Pittsburgh, 100 Allen Hall, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041 (South Africa); Niemack, Michael D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others

    2012-03-20

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant SZ decrement in a sky survey area of 755 deg{sup 2}. Our Very Large Telescope (VLT)/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, {sigma}{sub gal} = 1321 {+-} 106 km s{sup -1}. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T{sub X} = 14.5 {+-} 0.1 keV and 0.5-2.0 keV band luminosity of L{sub X} = (2.19 {+-} 0.11) Multiplication-Sign 10{sup 45} h{sup -2}{sub 70} erg s{sup -1}. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y{sub X}, and integrated SZ distortion, we estimate a cluster mass of M{sub 200a} = (2.16 {+-} 0.32) Multiplication-Sign 10{sup 15} h{sup -1}{sub 70} M{sub Sun }. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6 {+-} 0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 {+-} 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102-4915 is possibly a high-redshift

  9. Gamma-Ray Bursts: A Radio Perspective

    Directory of Open Access Journals (Sweden)

    Poonam Chandra

    2016-01-01

    Full Text Available Gamma-ray bursts (GRBs are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of Swift and Fermi has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission, and environments around the massive stars exploding as GRBs in the early Universe.

  10. RAPID, MACHINE-LEARNED RESOURCE ALLOCATION: APPLICATION TO HIGH-REDSHIFT GAMMA-RAY BURST FOLLOW-UP

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, A N; Richards, Joseph W; Butler, Nathaniel R; Bloom, Joshua S [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Long, James; Broderick, Tamara [Department of Statistics, University of California, Berkeley, CA 94720-3860 (United States)

    2012-02-20

    As the number of observed gamma-ray bursts (GRBs) continues to grow, follow-up resources need to be used more efficiently in order to maximize science output from limited telescope time. As such, it is becoming increasingly important to rapidly identify bursts of interest as soon as possible after the event, before the afterglows fade beyond detectability. Studying the most distant (highest redshift) events, for instance, remains a primary goal for many in the field. Here, we present our Random Forest Automated Triage Estimator for GRB redshifts (RATE GRB-z ) for rapid identification of high-redshift candidates using early-time metrics from the three telescopes onboard Swift. While the basic RATE methodology is generalizable to a number of resource allocation problems, here we demonstrate its utility for telescope-constrained follow-up efforts with the primary goal to identify and study high-z GRBs. For each new GRB, RATE GRB-z provides a recommendation-based on the available telescope time-of whether the event warrants additional follow-up resources. We train RATE GRB-z using a set consisting of 135 Swift bursts with known redshifts, only 18 of which are z > 4. Cross-validated performance metrics on these training data suggest that {approx}56% of high-z bursts can be captured from following up the top 20% of the ranked candidates, and {approx}84% of high-z bursts are identified after following up the top {approx}40% of candidates. We further use the method to rank 200 + Swift bursts with unknown redshifts according to their likelihood of being high-z.

  11. HST Grism Confirmation of 16 Structures at 1.4 < z < 2.8 from the Clusters Around Radio-Loud AGN (CARLA) Survey

    Science.gov (United States)

    Noirot, Gaël; Stern, Daniel; Mei, Simona; Wylezalek, Dominika; Cooke, Elizabeth A.; De Breuck, Carlos; Galametz, Audrey; Hatch, Nina A.; Vernet, Joël; Brodwin, Mark; Eisenhardt, Peter; Gonzalez, Anthony H.; Jarvis, Matt; Rettura, Alessandro; Seymour, Nick; Stanford, S. A.

    2018-05-01

    We report spectroscopic results from our 40-orbit Hubble Space Telescope slitless grism spectroscopy program observing the 20 densest Clusters Around Radio-Loud AGN (CARLA) candidate galaxy clusters at 1.4 targeting 420 distant radio-loud AGN. We report the spectroscopic confirmation of 16 distant structures at 1.4 targeted powerful high-redshift radio-loud AGN. We also report the serendipitous discovery and spectroscopic confirmation of seven additional structures at 0.87 targeted radio-loud AGN. We find that 1010–1011 M ⊙ member galaxies of our confirmed CARLA structures form significantly fewer stars than their field counterparts at all redshifts within 1.4 ≤ z ≤ 2. We also observe higher star-forming activity in the structure cores up to z = 2, finding similar trends as cluster surveys at slightly lower redshifts (1.0 strategy of obtaining just two grism orbits per field only obtains spectroscopic confirmation of emission line galaxies. Deeper spectroscopy will be required to study the population of evolved, massive galaxies in these (forming) clusters. Lacking multi-band coverage of the fields, we adopt a very conservative approach of calling all confirmations “structures,” although we note that a number of features are consistent with some of them being bona fide galaxy clusters. Together this survey represents a unique and large homogenous sample of spectroscopically confirmed structures at high redshifts, potentially more than doubling the census of confirmed, massive clusters at z > 1.4.

  12. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  13. Herschel-ATLAS: The Angular Correlation Function of Submillimetre Galaxies at High and Low Redshift

    Science.gov (United States)

    Maddox, S. J.; Dunne, L.; Rigby, E.; Eales, S.; Cooray, A.; Scott, D.; Peacock, J. A.; Negrello, M.; Smith, D. J. B.; Benford, D.; hide

    2010-01-01

    We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micrometer-selected sample we detect no significant clustering, consistent with the expectation that the 250 pm-selected sources are mostly normal galaxies at z high redshift galaxies at z approx. 2-3 we detect significant strong clustering, leading to an estimate of r(0) approx. 7-11/h Mpc. The slope of our clustering measurements is very steep. delta approx. 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.

  14. Radio Astronomy in Malaysia: Current Status and Outreach Activities

    Science.gov (United States)

    Hashim, N.; Abidin, Z. Z.; Ibrahim, U. F. S. U.; Umar, R.; Hassan, M. S. R.; Rosli, Z.; Hamidi, Z. S.; Ibrahim, Z. A.

    2011-12-01

    In this paper, we will present the current status of radio astronomical research and outreach in Malaysia. We will also present a short history of our research group, which is currently the only radio astronomical facility in Malaysia. Our group is called the Radio Cosmology Research Lab and was established in 2005 by Dr Zamri Zainal Abidin and Prof Dr Zainol Abidin Ibrahim. We will discuss the future plans for this group including our keen interest in being part of a more global network of radio astronomers. We are already an active member of the South-East Asia Astronomy Network (SEAAN) and aims to have a radio astronomical facility in order to join the Global Very Long Baseline Interferometer (VLBI) as well becoming a research hub for the future Square Kilometer Array (SKA) project. We will also present some of the scientific goals of our group including providing a platform for radio astronomers to be able to do observations of weak and high red-shifted radio objects such as galaxy clusters and supernovae.

  15. Superconducting cosmic string loops as sources for fast radio bursts

    Science.gov (United States)

    Cao, Xiao-Feng; Yu, Yun-Wei

    2018-01-01

    The cusp burst radiation of superconducting cosmic string (SCS) loops is thought to be a possible origin of observed fast radio bursts with the model-predicted radiation spectrum and the redshift- and energy-dependent event rate, we fit the observational redshift and energy distributions of 21 Parkes fast radio bursts and constrain the model parameters. It is found that the model can basically be consistent with the observations, if the current on the SCS loops has a present value of ˜1016μ179 /10 esu s-1 and evolves with redshift as an empirical power law ˜(1 +z )-1.3 , where μ17=μ /1017 g cm-1 is the string tension. This current evolution may provide a clue to probe the evolution of the cosmic magnetic fields and the gathering of the SCS loops to galaxy clusters.

  16. SDSS J013127.34–032100.1: A NEWLY DISCOVERED RADIO-LOUD QUASAR AT z = 5.18 WITH EXTREMELY HIGH LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei-Min; Bai, Jin-Ming; Zhang, Ju-jia; Wang, Fang; Wang, Jian-Guo; Fan, Yu-Feng; Chang, Liang; Wang, Chuan-Jun; Lun, Bao-Li [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wang, Feige; Wu, Xue-Bing; Yang, Jinyi; Ho, Luis C.; Zuo, Wenwen; Yang, Qian; Ai, Yanli [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Fan, Xiaohui [Steward Observatory, University of Arizona, Tucson, AZ 85721-0065 (United States); Brandt, William N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Wang, Ran [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); and others

    2014-11-10

    Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34–032100.1 (J0131–0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131–0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ∼100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L {sub bol} ∼ 1.1 × 10{sup 48} erg s{sup –1}, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131–0321 is estimated to be 2.7 × 10{sup 9} M {sub ☉}, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.

  17. Tunable filter imaging of high-redshift quasar fields

    NARCIS (Netherlands)

    Swinbank, J.; Baker, J.; Barr, J.; Hook, I.; Bland-Hawthorn, J.

    2012-01-01

    We have used the Taurus Tunable Filter to search for Lyα emitters in the fields of three high-redshift quasars: two at z∼ 2.2 (MRC B1256−243 and MRC B2158−206) and one at z∼ 4.5 (BR B0019−1522). Our observations had a field of view of around 35 arcmin2, and reached AB magnitudes of ∼21 (MRC

  18. Early Growth and Efficient Accretion of Massive Black Holes at High Redshift

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2003-01-01

    Black-hole masses of the highest redshift quasars (4 ~ 4 quasars are very massive (>~ 10^9 solar masses). It is argued that the mass estimates of the high-z quasars are not subject to larger uncertainties than those for nearby quasars. Specifically, the large masses are not overestimates and the ......Black-hole masses of the highest redshift quasars (4 ~ 4 quasars are very massive (>~ 10^9 solar masses). It is argued that the mass estimates of the high-z quasars are not subject to larger uncertainties than those for nearby quasars. Specifically, the large masses are not overestimates...... and the lack of similarly large black-hole masses in the nearby Universe does not rule out their existence at high-z. However, AGN host galaxies do not typically appear fully formed or evolved at these early epochs. This supports scenarios in which black holes build up mass very fast in a radiatively...... inefficient (or obscured) phase relative to the stars in their galaxies. Additionally, upper envelopes of black-hole mass of approximately 10^{10} solar masses and bolometric luminosity of ~ 10^{48} erg/s are observed at all redshifts....

  19. A large area search for radio-loud quasars within the epoch of reionization

    OpenAIRE

    Jarvis, Matt J.; Rawlings, Steve; Barrio, F. Eugenio; Hill, Gary J.; Bauer, Amanda; Croft, Steve

    2004-01-01

    The Universe became fully reionized, and observable optically, at a time corresponding to redshift z ~ 6.5, so it is only by studying the HI and molecular absorption lines against higher-redshift, radio-loud sources that one can hope to make detailed studies of the earliest stages of galaxy formation. At present no targets for such studies are known. In these proceedings we describe a survey which is underway to find radio-loud quasars at z > 6.5, and present broad-band SEDs of our most promi...

  20. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  1. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  2. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  3. Quasar Winds as Dust Factories at High Redshift

    OpenAIRE

    Elvis, Martin; Marengo, Massimo; Karovska, Margarita

    2003-01-01

    Winds from AGN and quasars will form large amounts of dust, as the cool gas in these winds passes through the (pressure, temperature) region where dust is formed in AGB stars. Conditions in the gas are benign to dust at these radii. As a result quasar winds may be a major source of dust at high redshifts, obviating a difficulty with current observations, and requiring far less dust to exist at early epochs.

  4. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  5. AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey

    Science.gov (United States)

    Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John

    2017-11-01

    Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).

  6. The Atacama Cosmology Telescope: ACT-CL J0102-4915 'EL GORDO', A Massive Merging Cluster at Redshift 0.87

    Science.gov (United States)

    Menanteau, Felipe; Hughes, John P.; Sifon, Cristobal; Hilton, Matt; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Baker, Andrew J.; Bond, John R.; Das, Sudeep; hide

    2012-01-01

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(sub gal) = 1321+/-106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(sub X) = 14.5+/-1.0 keV and 0.5-2.0 keV band luminosity of L(sub X) = (2.19+/-0.11)×10(sup 45) h(sup -2)(sub 70) erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(sub X), and integrated SZ distortion, we estimate a cluster mass of M(sub 200a) = (2.16+/-0.32)×1015 h(sup -1)(sub 70) solar mass. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6+/-0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22+/-6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift

  7. Ultra-compact structure in radio quasars as a cosmological probe: a revised study of the interaction between cosmic dark sectors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaogang; Biesiada, Marek; Cao, Shuo; Qi, Jingzhao; Zhu, Zong-Hong, E-mail: zhengxg2012@mail.bnu.edu.cn, E-mail: marek.biesiada@us.edu.pl, E-mail: caoshuo@bnu.edu.cn, E-mail: 11132016039@bnu.edu.cn, E-mail: zhuzh@bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-10-01

    A new compilation of 012 angular-size/redshift data for compact radio quasars from very-long-baseline interferometry (VLBI) surveys motivates us to revisit the interaction between dark energy and dark matter with these probes reaching high redshifts z ∼ 3.0. In this paper, we investigate observational constraints on different phenomenological interacting dark energy (IDE) models with the intermediate-luminosity radio quasars acting as individual standard rulers, combined with the newest BAO and CMB observation from Planck results acting as statistical rulers. The results obtained from the MCMC method and other statistical methods including figure of Merit and Information Criteria show that: (1) Compared with the current standard candle data and standard clock data, the intermediate-luminosity radio quasar standard rulers , probing much higher redshifts, could provide comparable constraints on different IDE scenarios. (2) The strong degeneracies between the interaction term and Hubble constant may contribute to alleviate the tension of H {sub 0} between the recent Planck and HST measurements. (3) Concerning the ranking of competing dark energy models, IDE with more free parameters are substantially penalized by the BIC criterion, which agrees very well with the previous results derived from other cosmological probes.

  8. Direct HST Dust Lane Detection in Powerful Narrow-Line Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Edgar A.; Aretxaga, Itziar [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Tadhunter, Clive N. [Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom); Lopez-Rodriguez, Enrique [NASA Ames Research Center, SOFIA Science Center, SOFIA/USRA, Mountain View, CA (United States); Department of Astronomy, University of Texas at Austin, Austin, TX (United States); McDonald Observatory, University of Texas at Austin, Austin, TX (United States); Packham, Chris, E-mail: e.ramirez@inaoep.mx [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); National Astronomical Observatory of Japan, Tokyo (Japan)

    2017-11-22

    We present the analysis of near-infrared Hubble Space Telescope imaging of 10 Fanaroff Riley II powerful radio galaxies at low redshift (0.03 < z < 0.11) optically classified as narrow-line radio galaxies. The photometric properties of the host galaxy are measured using galfit, and compared with those from the literature. Our high resolution near-infrared observations provide new and direct information on the central kpc-scale dust lanes in our sample that could be connected to the pc-scale torus structure. Moreover, analyzing the infrared spectrograph Spitzer spectra of our sample, we suggest properties of the dust size of the torus.

  9. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  10. Fast Radio Burst/Gamma-Ray Burst Cosmography

    Science.gov (United States)

    Gao, He; Li, Zhuo; Zhang, Bing

    2014-06-01

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM_{IGM} as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value \\lt {DM_IGM} (z)\\gt and luminosity distance (D L(z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate \\lt {DM_IGM} (z)\\gt using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  11. Fast radio burst/gamma-ray burst cosmography

    International Nuclear Information System (INIS)

    Gao, He; Zhang, Bing; Li, Zhuo

    2014-01-01

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM IGM as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value and luminosity distance (D L (z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  12. Fast radio burst/gamma-ray burst cosmography

    Energy Technology Data Exchange (ETDEWEB)

    Gao, He; Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States); Li, Zhuo, E-mail: gaohe@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: zhuo.li@pku.edu.cn [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China)

    2014-06-20

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM{sub IGM} as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value and luminosity distance (D {sub L}(z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  13. A PARAMETRIC STUDY OF POSSIBLE SOLUTIONS TO THE HIGH-REDSHIFT OVERPRODUCTION OF STARS IN MODELED DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    White, Catherine E. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Somerville, Rachel S. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-02-01

    Both numerical hydrodynamic and semi-analytic cosmological models of galaxy formation struggle to match observed star formation histories of galaxies in low-mass halos (M {sub H} ≲ 10{sup 11} M {sub ☉}), predicting more star formation at high redshift and less star formation at low redshift than observed. The fundamental problem is that galaxies' gas accretion and star formation rates are too closely coupled in the models: the accretion rate largely drives the star formation rate. Observations point to gas accretion rates that outpace star formation at high redshift, resulting in a buildup of gas and a delay in star formation until lower redshifts. We present three empirical adjustments of standard recipes in a semi-analytic model motivated by three physical scenarios that could cause this decoupling: (1) the mass-loading factors of outflows driven by stellar feedback may have a steeper dependence on halo mass at earlier times, (2) the efficiency of star formation may be lower in low-mass halos at high redshift, and (3) gas may not be able to accrete efficiently onto the disk in low-mass halos at high redshift. These new recipes, once tuned, better reproduce the evolution of f {sub *}≡ M {sub *}/M {sub H} as a function of halo mass as derived from abundance matching over redshifts z = 0 to 3, though they have different effects on cold gas fractions, star formation rates, and metallicities. Changes to gas accretion and stellar-driven winds are promising, while direct modification of the star formation timescale requires drastic measures that are not physically well motivated.

  14. Star formation and mass assembly in high redshift galaxies

    Science.gov (United States)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions: The analysis of the SFR density and the SSFR seems to support the downsizing scenario, according to which high mass galaxies

  15. Redshift

    CERN Document Server

    Clark, Stuart

    1997-01-01

    The light emitted by celestial objects can have its wavelength "stretched" in different ways before it is observed by astronomers. These stretching phenomena are collectively called "redshift". They influence virtually all aspects of astronomy and even underpin the "Big Bang" theory of the creation of the universe. This book details the types of redshift and explains their myriad of uses. It begins by introducing the nature of light and the problems involved in measuring its properties. After explaining the redshift phenomena and their uses, the book touches on the age and size of the universe; two subjects embroiled in controversy because of our current interpretation of the redshift. Less conventional theories are then expressed. As a by-product of the explanation of redshift, the book offers the reader a basic understanding of Einstein's theory of relativity. Mathematical treatments of the concepts introduced in the text are boxed off and should not detract from the book's readibility, but allow it to be u...

  16. EVIDENCE FOR MORPHOLOGY AND LUMINOSITY TRANSFORMATION OF GALAXIES AT HIGH REDSHIFTS

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom

    2009-01-01

    We study the galaxy morphology-luminosity-environmental relation and its redshift evolution using a spectroscopic sample of galaxies in the Great Observatories Origins Deep Survey. In the redshift range of 0.4 ≤ z ≤ 1.0, we detect conformity in morphology between neighboring galaxies. The realm of conformity is confined within the virialized region associated with each galaxy plus dark matter halo system. When a galaxy is located within the virial radius of its nearest neighbor galaxy, its morphology strongly depends on the neighbor's distance and morphology: the probability for a galaxy to be an early type (f E ) increases as it approaches an early-type neighbor, but decreases as it approaches a late-type neighbor. We find that f E evolves much faster in high-density regions than in low-density regions, and that the morphology-density relation becomes significantly weaker at z ∼ 1. This may be because the rate of galaxy-galaxy interactions is higher in high-density regions, and a series of interactions and mergers over the course of galaxy life eventually transform late types into early types. We find more isolated galaxies are more luminous, which supports luminosity transformation through mergers at these redshifts. Our results are consistent with those from nearby galaxies, and demonstrate that galaxy-galaxy interactions have been strongly affecting the galaxy evolution over a long period of time.

  17. High levels of absorption in orientation-unbiased, radio-selected 3CR Active Galaxies

    Science.gov (United States)

    Wilkes, Belinda J.; Haas, Martin; Barthel, Peter; Leipski, Christian; Kuraszkiewicz, Joanna; Worrall, Diana; Birkinshaw, Mark; Willner, Steven P.

    2014-08-01

    A critical problem in understanding active galaxies (AGN) is the separation of intrinsic physical differences from observed differences that are due to orientation. Obscuration of the active nucleus is anisotropic and strongly frequency dependent leading to complex selection effects for observations in most wavebands. These can only be quantified using a sample that is sufficiently unbiased to test orientation effects. Low-frequency radio emission is one way to select a close-to orientation-unbiased sample, albeit limited to the minority of AGN with strong radio emission.Recent Chandra, Spitzer and Herschel observations combined with multi-wavelength data for a complete sample of high-redshift (1half the sample is significantly obscured with ratios of unobscured: Compton thin (22 24.2) = 2.5:1.4:1 in these high-luminosity (log L(0.3-8keV) ~ 44-46) sources. These ratios are consistent with current expectations based on modelingthe Cosmic X-ray Background. A strong correlation with radio orientation constrains the geometry of the obscuring disk/torus to have a ~60 degree opening angle and ~12 degree Compton-thick cross-section. The deduced ~50% obscured fraction of the population contrasts with typical estimates of ~20% obscured in optically- and X-ray-selected high-luminosity samples. Once the primary nuclear emission is obscured, AGN X-ray spectra are frequently dominated by unobscured non-nuclear or scattered nuclear emission which cannot be distinguished from direct nuclear emission with a lower obscuration level unless high quality data is available. As a result, both the level of obscuration and the estimated instrinsic luminosities of highly-obscured AGN are likely to be significantly (*10-1000) underestimated for 25-50% of the population. This may explain the lower obscured fractions reported for optical and X-ray samples which have no independent measure of the AGN luminosity. Correcting AGN samples for these underestimated luminosities would result in

  18. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Balokovic, M. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Smolcic, V. [Argelander-Institut fuer Astronomie, Auf dem Hugel 71, D-53121 Bonn (Germany); Ivezic, Z. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Zamorani, G. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Schinnerer, E. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kelly, B. C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-11-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 {+-} 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  19. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    International Nuclear Information System (INIS)

    Baloković, M.; Smolčić, V.; Ivezić, Ž.; Zamorani, G.; Schinnerer, E.; Kelly, B. C.

    2012-01-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 ± 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  20. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  1. Estimate of an environmental magnetic field of fast radio bursts

    International Nuclear Information System (INIS)

    Lin, Wei-Li; Dai, Zi-Gao

    2016-01-01

    Fast radio bursts (FRBs) are a type of newly-discovered transient astronomical phenomenon. They have short durations, high dispersion measures and a high event rate. However, due to unknown distances and undetected electromagnetic counterparts at other wavebands, it is difficult to further investigate FRBs. Here we propose a method to study their environmental magnetic field using an indirect method. Starting with dispersion measures and rotation measures (RMs), we try to obtain the parallel magnetic field component B-bar ‖ which is the average value along the line of sight in the host galaxy. Because both RMs and redshifts are now unavailable, we demonstrate the dependence of B-bar ‖ on these two separate quantities. This result, if the RM and redshift of an FRB are measured, would be expected to provide a clue towards understanding an environmental magnetic field of an FRB. (paper)

  2. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-01-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ∼5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P ∼> 3 x 10 24 W Hz -1 ) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ∼30% of the sample and ∼60% of all AGNs, and outnumbering radio-loud AGNs at ∼< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  3. Measurements of Ω and Λ from 42 High-Redshift Supernovae

    International Nuclear Information System (INIS)

    Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.; Couch, W.J.

    1999-01-01

    We report measurements of the mass density, Ω M , and cosmological-constant energy density, Ω Λ , of the universe based on the analysis of 42 type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are fitted jointly with a set of supernovae from the Calacute an/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia light-curve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8Ω M -0.6Ω Λ ∼-0.2±0.1 in the region of interest (Ω M approx-lt 1.5). For a flat (Ω M +Ω Λ =1) cosmology we find Ω flat M =0.28 +0.09 -0.08 (1 σ statistical) +0.05 -0.04 (identified systematics). The data are strongly inconsistent with a Λ=0 flat cosmology, the simplest inflationary universe model. An open, Λ=0 cosmology also does not fit the data well: the data indicate that the cosmological constant is nonzero and positive, with a confidence of P(Λ>0)=99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t flat 0 =14.9 +1.4 -1.1 (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calacute an/Tololo sample and our high-redshift sample. Excluding those few supernovae that are outliers in color excess or fit residual does not significantly change the results. The conclusions are also robust whether or not a width-luminosity relation is used to standardize the supernova peak magnitudes. We discuss and constrain, where possible, hypothetical alternatives to a cosmological constant

  4. Mean Occupation Function of High-redshift Quasars from the Planck Cluster Catalog

    Science.gov (United States)

    Chakraborty, Priyanka; Chatterjee, Suchetana; Dutta, Alankar; Myers, Adam D.

    2018-06-01

    We characterize the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as z ∼ 1. Using the Planck Sunyaev-Zeldovich (SZ) catalog for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar data set, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of {log} =(2.11+/- 0.01) {log}(M)-(32.77+/- 0.11) can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as z ∼ 1.

  5. Gravitational-wave detection using redshifted 21-cm observations

    International Nuclear Information System (INIS)

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-01-01

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different μ dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  6. GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N.; Dickinson, M.; Kartaltepe, J. [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States); Elbaz, D.; Daddi, E.; Magdis, G.; Aussel, H.; Dannerbauer, H.; Dasyra, K.; Hwang, H. S. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CE-Saclay, F-91191, Gif-sur-Yvette (France); Morrison, G. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Giavalisco, M. [Astronomy Department, University of Massachusetts, Amherst, Amherst, MA 01003 (United States); Ivison, R. [UK Astronomy Technology Centre, Science and Technology Facilities Council, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Papovich, C. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77845 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Buat, V.; Burgarella, D. [Laboratoire d' Astrophysique de Marseille, OAMP, Universite Aix-Marseille, CNRS, 38 Rue Frederic Joliot-Curie, 13388 Marseille Cedex 13 (France); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Murphy, E. [Spitzer Science Center, MC 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, 28691 Madrid (Spain); and others

    2012-01-10

    We take advantage of the sensitivity and resolution of the Herschel Space Observatory at 100 and 160 {mu}m to directly image the thermal dust emission and investigate the infrared luminosities (L{sub IR}) and dust obscuration of typical star-forming (L*) galaxies at high redshift. Our sample consists of 146 UV-selected galaxies with spectroscopic redshifts 1.5 {<=} z{sub spec} < 2.6 in the GOODS-North field. Supplemented with deep Very Large Array and Spitzer imaging, we construct median stacks at the positions of these galaxies at 24, 100, and 160 {mu}m, and 1.4 GHz. The comparison between these stacked fluxes and a variety of dust templates and calibrations implies that typical star-forming galaxies with UV luminosities L{sub UV} {approx}> 10{sup 10} L{sub Sun} at z {approx} 2 are luminous infrared galaxies with a median L{sub IR} = (2.2 {+-} 0.3) Multiplication-Sign 10{sup 11} L{sub Sun }. Their median ratio of L{sub IR} to rest-frame 8 {mu}m luminosity (L{sub 8}) is L{sub IR}/L{sub 8} = 8.9 {+-} 1.3 and is Almost-Equal-To 80% larger than that found for most star-forming galaxies at z {approx}< 2. This apparent redshift evolution in the L{sub IR}/L{sub 8} ratio may be tied to the trend of larger infrared luminosity surface density for z {approx}> 2 galaxies relative to those at lower redshift. Typical galaxies at 1.5 {<=} z < 2.6 have a median dust obscuration L{sub IR}/L{sub UV} = 7.1 {+-} 1.1, which corresponds to a dust correction factor, required to recover the bolometric star formation rate (SFR) from the unobscured UV SFR, of 5.2 {+-} 0.6. This result is similar to that inferred from previous investigations of the UV, H{alpha}, 24 {mu}m, radio, and X-ray properties of the same galaxies studied here. Stacking in bins of UV slope ({beta}) implies that L* galaxies with redder spectral slopes are also dustier and that the correlation between {beta} and dustiness is similar to that found for local starburst galaxies. Hence, the rest-frame {approx_equal} 30 and

  7. H I absorption in nearby compact radio galaxies

    Science.gov (United States)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-05-01

    H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  8. IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Xue, Y. Q.; Rafferty, D. A.; Schneider, D. P.; Brusa, M.; Alexander, D. M.; Lehmer, B. D.; Bauer, F. E.; Comastri, A.; Koekemoer, A.; Mainieri, V.; Silverman, J. D.; Vignali, C.

    2010-01-01

    We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the ∼2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of ∼ 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for ∼10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of |Δz|/(1 + z) ∼ 1% and an outlier [with |

  9. Optical images of quasars and radio galaxies

    Science.gov (United States)

    Hutchings, J. B.; Johnson, I.; Pyke, R.

    1988-04-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions.

  10. The radio spectral energy distribution of infrared-faint radio sources

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi

  11. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar.

    Science.gov (United States)

    Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio; Prochaska, J Xavier; Hennawi, Joseph F; Madau, Piero

    2014-02-06

    Simulations of structure formation in the Universe predict that galaxies are embedded in a 'cosmic web', where most baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-α emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at redshift z ≈ 2.3. With a linear projected size of approximately 460 physical kiloparsecs, the Lyman-α emission surrounding the radio-quiet quasar UM 287 extends well beyond the virial radius of any plausible associated dark-matter halo and therefore traces intergalactic gas. The estimated cold gas mass of the filament from the observed emission-about 10(12.0 ± 0.5)/C(1/2) solar masses, where C is the gas clumping factor-is more than ten times larger than what is typically found in cosmological simulations, suggesting that a population of intergalactic gas clumps with subkiloparsec sizes may be missing in current numerical models.

  12. The SUrvey for Pulsars and Extragalactic Radio Bursts III: Polarization properties of FRBs 160102 & 151230

    Science.gov (United States)

    Caleb, M.; Keane, E. F.; van Straten, W.; Kramer, M.; Macquart, J. P.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Bhandari, S.; Burgay, M.; Farah, W.; Jameson, A.; Jankowski, F.; Johnston, S.; Petroff, E.; Possenti, A.; Stappers, B.; Tiburzi, C.; Krishnan, V. Venkatraman

    2018-05-01

    We report on the polarization properties of two fast radio bursts (FRBs): 151230 and 160102 discovered in the SUrvey for Pulsars and Extragalactic Radio Bursts (SUPERB) at the Parkes radio telescope. FRB 151230 is observed to be 6 ± 11% circularly polarized and 35 ± 13 % linearly polarized with a rotation measure (RM) consistent with zero. Conversely, FRB 160102 is observed to have a circular polarization fraction of 30 ± 11 %, linear polarization fraction of 84 ± 15 % for RM =-221(6) rad m-2 and the highest measured DM (2596.1 ± 0.3 pc cm-3) for an FRB to date. We examine possible progenitor models for FRB 160102 in extragalactic, non-cosmological and cosmological scenarios. After accounting for the Galactic foreground contribution, we estimate the intrinsic RM to be -256(9) rad m-2 in the low-redshift case and ˜-2.4 × 102 rad m-2 in the high-redshift case. We assess the relative likeliness of these scenarios and how each can be tested. We also place constraints on the scattering measure and study the impact of scattering on the signal's polarization position angle.

  13. Radio continuum processes in clusters of galaxies; Proceedings of the Workshop, Green Bank, WV, Aug. 4-8, 1986

    International Nuclear Information System (INIS)

    O'dea, C.P.; Uson, J.M.

    1986-01-01

    Recent observational and theoretical investigations of clusters of galaxies are examined in reviews and reports. Topics addressed include radio surveys of clusters, accretion flows, wide-angle-tail radio sources, the interaction of radio sources with the intracluster medium, diffuse emission in clusters, cluster dynamics, and the environment of powerful radio sources. Particular attention is given to a local perspective on galaxies in rich clusters, X-ray observations of clusters, VLA observations of distant clusters, the halo of Vir A at 327 MHz, Exosat observations of the Vir Cluster, accretion flows in elliptical galaxies, jet disruption in wide-angle-tail radio galaxies, beam trajectories in the intracluster medium, the Suniaev-Zel'dovich effect, dark matter in clusters, and the H I environment of high-redshift quasars

  14. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen; Zheng, Wei; Ford, Holland; Lemze, Doron; Moustakas, John; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L.; Postman, Marc; Bradley, Larry; Coe, Dan; Bartelmann, Matthias; Benítez, Narciso; Broadhurst, Tom; Donahue, Megan; Infante, Leopoldo

    2015-01-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y 105 ) and F125W (J 125 ), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete

  15. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Wei; Ford, Holland; Lemze, Doron [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Van der Wel, Arjen [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Frye, Brenda L. [Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden (Netherlands); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Broadhurst, Tom [Department of Theoretical Physics, University of Basque Country UPV/EHU E-Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Infante, Leopoldo, E-mail: hxx@mail.ustc.edu.cn [Departamento de Astronoía y Astrofísica, Pontificia Universidad Católica de Chile, V. Mackenna 4860 Santiago 22 (Chile); and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  16. Galaxy at a redshift of 3.215 - further studies of the PKS 1614+051 system

    International Nuclear Information System (INIS)

    Djorgovski, S.; Strauss, M.A.; Spinrad, H.; Mccarthy, P.; Perley, R.A.; California Univ., Berkeley; National Radio Astronomy Observatory, Charlottesville, VA)

    1987-01-01

    A narrow-emission-line companion of the quasar PKS 1614+051 was reported earlier as a probable galaxy at a redshift of 3.218, which would have made it by far the most distant galaxy known at the time. New radio and optical imaging, and optical and near-IR spectroscopy of the PKS 1614+051 system is reported here. It is argued that the data support and reinforce the original interpretation of the companion object as a mildly active galaxy, possibly a marginal Seyfert 2. The object has a detectable and marginally resolved optical continuum, but was not detected at radio wavelengths. The ionization state is low, and the emission lines are fairly narrow. The improved redshift for the companion, based on the Ly-alpha line alone, is 3.215 + or - 0.002. New Ly-alpha images show interesting morphology of extended emission-line gas, suggestive of a possible tidal interaction with the neighboring QSO. 24 references

  17. Optical images of quasars and radio galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, J.B.; Johnson, I.; Pyke, R.

    1988-04-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions. 12 references.

  18. Optical images of quasars and radio galaxies

    International Nuclear Information System (INIS)

    Hutchings, J.B.; Johnson, I.; Pyke, R.

    1988-01-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions. 12 references

  19. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brant E.; Stark, Dan P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ellis, Richard S. [Department of Astronomy, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Dunlop, James S.; McLure, Ross J.; McLeod, Derek, E-mail: brant@email.arizona.edu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom)

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  20. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    International Nuclear Information System (INIS)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-01-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program

  1. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    Science.gov (United States)

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  2. A blind green bank telescope millimeter-wave survey for redshifted molecular absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kanekar, N.; Gupta, A. [National Centre for Radio Astrophysics, TIFR, Ganeshkhind, Pune 411007 (India); Carilli, C. L. [National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801 (United States); Stocke, J. T. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Willett, K. W., E-mail: nkanekar@ncra.tifr.res.in [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2014-02-10

    We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has a total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.

  3. The Abundance of Low-Luminosity Lyα Emitters at High Redshift

    Science.gov (United States)

    Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad

    2004-05-01

    We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5account our varying intrinsic Lyα line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyα luminosity function to unprecedented limits of 1040 ergs s -1, corresponding to a star formation rate of 0.01 Msolar yr-1. Our cumulative z~=5 Lyα luminosity function is consistent with a power-law form n(>L)~L-1 over 1041-1042.5 ergs s-1. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Current problems in astrophysics needing space-based radio astronomy

    International Nuclear Information System (INIS)

    Norman, C.A.

    1987-01-01

    The potential value of space-based radio observatories and VLBI networks for studies of cosmology, AGN and starburst galaxies, the ISM and the intergalactic medium, and molecular clouds and star formation is discussed. Topics examined include distance estimates for masers in external galaxies, high-resolution 21-cm observations of distant-galaxy kinematics and morphology, searches for LF emission from the neutral ISM at redshifts higher than the QSO turnon, detection of changes in the distribution of dark matter surrounding galaxies at redshifts near 1, and observations of Galactic SNRs and filamentary structures near the Galactic center. Consideration is given to comparative studies of the ISM in the Galaxy, the Magellanic Clouds, and M 31; estimates of the molecular content of external galaxies; emssion-line studies of H 2 O masers; and kinematic investigations of bipolar flows and molecular disks. 19 references

  5. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  6. BL Lacertae Objects Beyond Redshift 1.3 - UV-to-NIR Photometry and Photometric Redshift for Fermi/LAT Blazars

    Science.gov (United States)

    Rau, A.; Schady, P.; Greiner, J.; Salvato, M.; Ajello, M.; Bottacini, E.; Gehrels, N.; Afonso, P. M. J.; Elliott, J.; Filgas, R.; hide

    2011-01-01

    Context. Observations of the gamma-ray sky with Fermi led to significant advances towards understanding blazars, the most extreme class of Active Galactic Nuclei. A large fraction of the population detected by Fermi is formed by BL Lacertae (BL Lac) objects, whose sample has always suffered from a severe redshift incompleteness due to the quasi-featureless optical spectra. Aims. Our goal is to provide a significant increase of the number of confirmed high-redshift BL Lac objects contained in the 2 LAC Fermi/LAT catalog. Methods. For 103 Fermi/LAT blazars, photometric redshifts using spectral energy distribution fitting have been obtained. The photometry includes 13 broad-band filters from the far ultraviolet to the near-IR observed with Swift/UVOT and the multi-channel imager GROND at the MPG/ESO 2.2m telescope. Data have been taken quasi-simultaneously and the remaining source-intrinsic variability has been corrected for. Results. We release the UV-to-near-IR 13-band photometry for all 103 sources and provide redshift constraints for 75 sources without previously known redshift. Out of those, eight have reliable photometric redshifts at z > or approx. 1.3, while for the other 67 sources we provide upper limits. Six of the former eight are BL Lac objects, which quadruples the sample of confirmed high-redshift BL Lac. This includes three sources with redshifts higher than the previous record for BL Lac, including CRATES J0402-2615, with the best-fit solution at z approx. = 1.9.

  7. Superluminous supernovae as standardizable candles and high-redshift distance probes

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Smartt, S. J., E-mail: c.inserra@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom)

    2014-12-01

    We investigate the use of type Ic superluminous supernovae (SLSN Ic) as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures, and bright rest-frame ultraviolet emission. We present a sample of 16 published SLSN, from redshifts 0.1 to 1.2, and calculate accurate K corrections to determine uniform magnitudes in 2 synthetic rest-frame filter bandpasses with central wavelengths at 400 nm and 520 nm. At 400 nm, we find an encouragingly low scatter in their uncorrected, raw mean magnitudes with M(400) = –21.86 ± 0.35 mag for the full sample of 16 objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. In a manner similar to the Phillips relation for type Ia SNe (SNe Ia), we define a ΔM {sub 20} decline relation. This correlates peak magnitude and decline over 20 days and can reduce the scatter in standardized peak magnitudes to ±0.22 mag. We further show that M(400) appears to have a strong color dependence. Redder objects are fainter and also become redder faster. Using this peak magnitudecolor evolution relation, a surprisingly low scatter of between ±0.08 mag and ±0.13 mag can be found in peak magnitudes, depending on sample selection. However, we caution that only 8 to 10 objects currently have enough data to test this peak magnitudecolor evolution relation. We conclude that SLSN Ic are promising distance indicators in the high-redshift universe in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems, how they may evolve with redshift, and the uncertain explosion physics are of some concern. The two major measurement uncertainties are the limited numbers of low-redshift, well-studied objects available to test these relationships and internal dust extinction in the host galaxies.

  8. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.; Prandoni, I. [INAF-IRA, Via P. Gobetti 101, I-40129 Bologna (Italy); Lapi, A.; Obi, I.; Perrotta, F.; Bressan, A.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo, C. Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2017-06-20

    We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statistics at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.

  9. RADIO SOURCE FEEDBACK IN GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Shabala, Stanislav; Alexander, Paul

    2009-01-01

    We present a galaxy evolution model which incorporates a physically motivated implementation of active galactic nucleus feedback. Intermittent jets inflate cocoons of radio plasma which then expand supersonically, shock heating the ambient gas. The model reproduces observed star formation histories to the highest redshifts for which reliable data exist, as well as the observed galaxy color bimodality. Intermittent radio source feedback also naturally provides a way of keeping the black hole and spheroid growth in step. We find possible evidence for a top-heavy initial mass function for z > 2, consistent with observations of element abundances, and submillimeter and Lyman break galaxy counts.

  10. MAGNIFICATION AS A PROBE OF DARK MATTER HALOS AT HIGH REDSHIFTS

    International Nuclear Information System (INIS)

    Van Waerbeke, L.; Ford, J.; Milkeraitis, M.; Hildebrandt, H.

    2010-01-01

    We propose a new approach for measuring the mass profile of dark matter halos by stacking the lensing magnification of distant background galaxies behind groups and clusters of galaxies. The main advantage of lensing magnification is that, unlike lensing shear, it relies on accurate photometric redshifts only and not on galaxy shapes, thus enabling the study of the dark matter distribution with unresolved source galaxies. We present a feasibility study, using a real population of z ≥ 2.5 Lyman break galaxies as source galaxies, and where, similar to galaxy-galaxy lensing, foreground lenses are stacked in order to increase the signal-to-noise ratio. We find that there is an interesting new observational window for gravitational lensing as a probe of dark matter halos at high redshift, which does not require a measurement of galaxy shapes.

  11. Superconducting cosmic strings as sources of cosmological fast radio bursts

    Science.gov (United States)

    Ye, Jiani; Wang, Kai; Cai, Yi-Fu

    2017-11-01

    In this paper we calculate the radio burst signals from three kinds of structures of superconducting cosmic strings. By taking into account the observational factors including scattering and relativistic effects, we derive the event rate of radio bursts as a function of redshift with the theoretical parameters Gμ and I of superconducting strings. Our analyses show that cusps and kinks may have noticeable contributions to the event rate and in most cases cusps would dominate the contribution, while the kink-kink collisions tend to have secondary effects. By fitting theoretical predictions with the normalized data of fast radio bursts, we for the first time constrain the parameter space of superconducting strings and report that the parameter space of Gμ ˜ [10^{-14}, 10^{-12}] and I ˜ [10^{-1}, 102] GeV fit the observation well although the statistic significance is low due to the lack of observational data. Moreover, we derive two types of best fittings, with one being dominated by cusps with a redshift z = 1.3, and the other dominated by kinks at the range of the maximal event rate.

  12. Radio-continuum emission from quasar host galaxies

    International Nuclear Information System (INIS)

    Condon, J. J.; Gower, A. C.; Hutchings, J. B.; Victoria Univ., Canada; Dominion Astrophysical Observatory, Victoria)

    1987-01-01

    Seven low-redshift quasars that are likely to be in spiral galaxies have been observed in a search for radio-continuum emission from the host galaxies of quasars. The properties of the individual quasars are listed, and 1.49 GHz contour maps of the seven quasar fields are presented. Map parameters and radio source parameters are given along with optical images of three of the objects. The results indicate that these quasars probably do reside in spiral galaxies. The radio luminosities, sizes, orientations, and u values all indicate that relativistic beaming alone cannot be used to explain the differences between the present sources and the far stronger radio sources seen in blazars or larger optically selected quasar samples. However, an apparent correlation between the radio luminosity and the ratio of the optical nuclear to host-galaxy luminosity is consistent with some beaming of nuclear radiation. 26 references

  13. RAiSE III: 3C radio AGN energetics and composition

    Science.gov (United States)

    Turner, Ross J.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-03-01

    Kinetic jet power estimates based exclusively on observed monochromatic radio luminosities are highly uncertain due to confounding variables and a lack of knowledge about some aspects of the physics of active galactic nuclei (AGNs). We propose a new methodology to calculate the jet powers of the largest, most powerful radio sources based on combinations of their size, lobe luminosity, and shape of their radio spectrum; this approach avoids the uncertainties encountered by previous relationships. The outputs of our model are calibrated using hydrodynamical simulations and tested against independent X-ray inverse-Compton measurements. The jet powers and lobe magnetic field strengths of radio sources are found to be recovered using solely the lobe luminosity and spectral curvature, enabling the intrinsic properties of unresolved high-redshift sources to be inferred. By contrast, the radio source ages cannot be estimated without knowledge of the lobe volumes. The monochromatic lobe luminosity alone is incapable of accurately estimating the jet power or source age without knowledge of the lobe magnetic field strength and size, respectively. We find that, on average, the lobes of the Third Cambridge Catalogue of Radio Sources (3C) have magnetic field strengths approximately a factor three lower than the equipartition value, inconsistent with equal energy in the particles and the fields at the 5σ level. The particle content of 3C radio lobes is discussed in the context of complementary observations; we do not find evidence favouring an energetically dominant proton population.

  14. The SPT+Herschel+ALMA+Spitzer Legacy Survey: The stellar content of high redshift strongly lensed systems

    Science.gov (United States)

    Vieira, Joaquin; Ashby, Matt; Carlstrom, John; Chapman, Scott; DeBreuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Phadke, Kedar; Marrone, Dan; Malkan, Matt; Reuter, Cassie; Rotermund, Kaja; Spilker, Justin; Weiss, Axel

    2018-05-01

    The South Pole Telescope (SPT) has systematically identified 90 high-redshift strongly gravitationally lensed submillimeter galaxies (SMGs) in a 2500 square-degree cosmological survey of the millimeter (mm) sky. These sources are selected by their extreme mm flux, which is largely independent of redshift and lensing configuration. We are undertaking a comprehensive and systematic followup campaign to use these "cosmic magnifying glasses" to study the infrared background in unprecedented detail, inform the condition of the interstellar medium in starburst galaxies at high redshift, and place limits on dark matter substructure. Here we ask for 115.4 hours of deep Spitzer/IRAC imaging to complete our survey of 90 systems to a uniform depth of 30min integrations at 3.6um and 60min at 4.5um. In our sample of 90 systems, 16 have already been fully observed, 30 have been partially observed, and 44 have not been observed at all. Our immediate goals are to: 1) constrain the specific star formation rates of the background high-redshift submillimeter galaxies by combining these Spitzer observations with our APEX, Herschel, and ALMA data, 2) robustly determine the stellar masses and mass-to-light ratios of all the foreground lensing galaxies in the sample by combining these observations with our VLT and Gemini data, the Dark Energy Survey, and ALMA; and 3) provide complete, deep, and uniform NIR coverage of our entire sample of lensed systems to characterize the environments of high redshift SMGs, maximize the discovery potential for additional spectacular and rare sources, and prepare for JWST. This program will provide the cornerstone data set for two PhD theses: Kedar Phadke at Illinois will lead the analysis of stellar masses for the background SMGs, and Kaja Rotermund at Dalhousie will lead the analysis of stellar masses for the foreground lenses.

  15. Identifications and Photometric Redshifts of the 2 Ms Chandra Deep Field-South Sources

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Xue, Y. Q.; Brusa, M.; Alexander, D. M.; Bauer, F. E.; Comastri, A.; Koekemoer, A.; Lehmer, B. D.; Mainieri, V.; Rafferty, D. A.; Schneider, D. P.; Silverman, J. D.; Vignali, C.

    2010-04-01

    We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the ≈2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of ≈ 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for ≈10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of |Δz|/(1 + z) ≈ 1% and an outlier [with |

  16. The contribution of unresolved radio-loud AGN to the extragalactic diffuse gamma-ray background

    DEFF Research Database (Denmark)

    Mucke, A.; Pohl, M.

    2000-01-01

    , and on the unification scheme of radio-loud AGN. According to this picture, blazars represent the beamed fraction of the Fanaroff-Riley radio galaxies (FR galaxies). The observed log N-log S distribution and redshift distribution of both FSRQs and BL Lacs constrain our model. Depending slightly on the evolutionary...

  17. First observation of a quasar with a redshift of 4

    International Nuclear Information System (INIS)

    Warren, S.J.; Hewett, P.C.; Irwin, M.J.; McMahon, R.G.; Bridgeland, M.T.; Bunclark, P.S.; Kibblewhite, E.J.

    1987-01-01

    The authors report the discovery of a quasar (0046-293) with a redshift z = 4.01 and another (0044-276) with a redshift z 3.42. The redshift of the former quasar is the highest yet detected and compares with the z = 3.80 of the previous most distant known quasar. The new quasars lie in the same field as three other known high-redshift quasars and were identified in a preliminary analysis of new multi-colour data derived from measurements of direct photographic plates taken with the United Kingdom Schmidt Telescope. The two new quasars are significantly fainter (msub(R) > 19) than previously known high-redshift quasars discovered by optical techniques, and demonstrate that the luminosity function of optically selected high-redshift quasars extends over at least two magnitudes. (author)

  18. Blue optical continuum associated with a radio knot in 3C346

    Science.gov (United States)

    Dey, Arjun; van Breugel, Wil J. M.

    1994-06-01

    We report the discovery of extremely luminous near-UV continuum emission associated with a bright radio knot in the radio galaxy 3C346 (zeta = 0.162). Photometric measurements from U and r' band images and longslit spectra show a spectral energy distribution that steepens at higher frequencies, with radio and optical spectral indices alphar = -0.37 +/- 0.02 and alphao = -1.8 +/- 0.2, respectively. Based on a comparison of the optical properties of this knot with other known cases of optical emission associated with radio structures, we conclude that the continuum emission is optical synchrotron radiation. Our observations are consistent with the suggestion that 3C346 is a foreshortened FR-II radio galaxy with its radio axis oriented close to the line of sight. The optical and radio emission from the knot appear to be associated with a hotspot (at the end of a jet) on the near side. Finally, our U and r' images of 3C346 provide a striking illustration that the optical morphologies of nearby radio galaxies also depend upon wavelength and that studies of these objects are relevant to the interpretation of the alignment effect seen in the high redshift radio galaxies.

  19. Photon Mass Limits from Fast Radio Bursts

    CERN Document Server

    Bonetti, Luca; Mavromatos, Nikolaos E.; Sakharov, Alexander S.; Sarkisyan-Grinbaum, Edward K.G.; Spallicci, Alessandro D.A.M.

    2016-06-10

    The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on $m_\\gamma$. The redshift of FRB 150418 has been measured to $\\sim 2$% and its dispersion measure (DM) is known to $\\sim 0.1$%, but the strength of the constraint on $m_\\gamma$ is limited by uncertainties in the modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that $m_\\gamma \\lesssim 1.7 \\times 10^{-14}$ eV c$^{-2}$ ($4.6 \\times 10^{-50}$ kg). In the future, the different redshift dependences of the plasma and photon mass contributions to DM can be used to improve the sensitivity to $m_\\gamma$ if more FRB redshifts are measured. For a fixed fractional uncertainty in the extra-galactic cont...

  20. CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Moster, Benjamin P.; Somerville, Rachel S.; Maulbetsch, Christian; Van den Bosch, Frank C.; Maccio, Andrea V.; Naab, Thorsten; Oser, Ludwig

    2010-01-01

    We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass function be reproduced. We find good agreement with constraints from galaxy-galaxy lensing and predictions of semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation, we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass are in excellent agreement with the observed clustering properties in the Sloan Digital Sky Survey at z = 0. We show that the clustering data do not provide additional strong constraints on the SHM function and conclude that our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function, which yields the average number of galaxies with stellar masses in the range m ± dm/2 that reside in a halo of mass M. We study the redshift dependence of the SHM relation and show that, for low-mass halos, the SHM ratio is lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias at high redshift. Our model predicts that not only are massive galaxies more biased than low-mass galaxies at all redshifts, but also the bias increases more rapidly with increasing redshift for massive galaxies than for low-mass ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass function, and the bias as a function of stellar mass and redshift.

  1. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    International Nuclear Information System (INIS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd =0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91 +0.24 -0.22 , which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  2. Identification and spectrophotometry of faint southern radio galaxies

    International Nuclear Information System (INIS)

    Spinrad, H.; Kron, R.G.; Hunstead, R.W.

    1980-01-01

    We have observed a mixed sample of southern radio sources, identified on the Palomar sky survey or on previous direct plates taken with medium-aperture reflectors. At CIO we obtained a few deep 4m photographs and SIT spectrophotometry for redshift and continuum-color measurement. Almost all our sources were faint galaxies; the largest redshift measured was for 3C 275, with z=0.480. The ultraviolet continuum of PKS 0400--643, a ''thermal'' galaxy with z=0.476, closely resembles that of 3C 295 and shows some color evolution in U--B compared to nearby giant ellipticals

  3. HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain; Powell, Leila C.; Duc, Pierre-Alain; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Contini, Thierry; Epinat, Benoit; Shapiro, Kristen L.

    2011-01-01

    Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the interstellar medium as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.

  4. Sky Mining - Application to Photomorphic Redshift Estimation

    Science.gov (United States)

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  5. The CTIO surveys for large redshift quasars

    International Nuclear Information System (INIS)

    Osmer, P.S.

    1978-01-01

    Lyman α emission in large redshift quasars is readily detectable on slitless spectrograms taken with an objective combination on the 4m telescope. This provides a new survey method, independent of color for finding radio-quiet quasars in large numbers. Surveys by Smith with the Curtis Schmidt and Hoag and Smith with the 4 m telescope, have produced more than 200 candidates with 1.5< z<3.5 and 16< m<21. Spectroscopic observations with the CTIO SIT vidicon system have been carried out for more than 50 of the candidates, with the result that the basic properties of the surveys are known. To date three 16th magnitude quasars with zapproximately2.2 and six quasars with 3.0< z<3.25 have been found. One of the most important uses of the surveys will be the determination of the surface and surface densities of large redshift quasars. A preliminary analysis of the data indicates that the space density of quasars is at least constant, if not increasing, over the interval 1.0< z<3.25. However, the Hoag-Smith sample has only one candidate with z<3.2.(Auth.)

  6. A young source of optical emission from distant radio galaxies.

    Science.gov (United States)

    Hammer, F; Fèvre, O Le; Angonin, M C

    1993-03-25

    DISTANT radio galaxies provide valuable insights into the properties of the young Universe-they are the only known extended optical sources at high redshift and might represent an early stage in the formation and evolution of galaxies in general. This extended optical emission often has very complex morphologies, but the origin of the light is still unclear. Here we report spectroscopic observations for several distant radio galaxies (0.75≤ z ≤ 1.1) in which the rest-frame spectra exhibit featureless continua between 2,500 Å and 5,000 Å. We see no evidence for the break in the spectrum at 4,000 Å expected for an old stellar population 1-3 , and suggest that young stars or scattered emissions from the active nuclei are responsible for most of the observed light. In either case, this implies that the source of the optical emission is com-parable in age to the associated radio source, namely 10 7 years or less.

  7. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. III. REDSHIFT DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsson, P.; Chapman, R.; Vreeswijk, P. M. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Milvang-Jensen, B. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Tanvir, N. R.; Starling, R. L. C. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Letawe, G. [Departement d' Astrophysique, Geophysique et Oceanographie, ULg, Allee du 6 aout, 17-Bat. B5c B-4000 Liege (Sart-Tilman) (Belgium)

    2012-06-10

    We present 10 new gamma-ray burst (GRB) redshifts and another five redshift limits based on host galaxy spectroscopy obtained as part of a large program conducted at the Very Large Telescope (VLT). The redshifts span the range 0.345 {<=} z {approx}< 2.54. Three of our measurements revise incorrect values from the literature. The homogeneous host sample researched here consists of 69 hosts that originally had a redshift completeness of 55% (with 38 out of 69 hosts having redshifts considered secure). Our project, including VLT/X-shooter observations reported elsewhere, increases this fraction to 77% (53/69), making the survey the most comprehensive in terms of redshift completeness of any sample to the full Swift depth, analyzed to date. We present the cumulative redshift distribution and derive a conservative, yet small, associated uncertainty. We constrain the fraction of Swift GRBs at high redshift to a maximum of 14% (5%) for z > 6 (z > 7). The mean redshift of the host sample is assessed to be (z) {approx}> 2.2, with the 10 new redshifts reducing it significantly. Using this more complete sample, we confirm previous findings that the GRB rate at high redshift (z {approx}> 3) appears to be in excess of predictions based on assumptions that it should follow conventional determinations of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. This suggests that either star formation at high redshifts has been significantly underestimated, for example, due to a dominant contribution from faint, undetected galaxies, or that GRB production is enhanced in the conditions of early star formation, beyond that usually ascribed to lower metallicity.

  8. THE DARK SIDE OF QSO FORMATION AT HIGH REDSHIFTS

    International Nuclear Information System (INIS)

    Romano-Diaz, Emilio; Shlosman, Isaac; Trenti, Michele; Hoffman, Yehuda

    2011-01-01

    Observed high-redshift QSOs, at z ∼ 6, may reside in massive dark matter (DM) halos of more than 10 12 M sun and are thus expected to be surrounded by overdense regions. In a series of 10 constrained simulations, we have tested the environment of such QSOs. The usage of constrained realizations has enabled us to address the issue of cosmic variance and to study the statistical properties of the QSO host halos. Comparing the computed overdensities with respect to the unconstrained simulations of regions empty of QSOs, assuming there is no bias between the DM and baryon distributions, and invoking an observationally constrained duty cycle for Lyman break galaxies, we have obtained the galaxy count number for the QSO environment. We find that a clear discrepancy exists between the computed and observed galaxy counts in the Kim et al. samples. Our simulations predict that on average eight z ∼ 6 galaxies per QSO field should have been observed, while Kim et al. detect on average four galaxies per QSO field compared to an average of three galaxies in a control sample (GOODS fields). While we cannot rule out a small number of statistics for the observed fields to high confidence, the discrepancy suggests that galaxy formation in the QSO neighborhood proceeds differently than in the field. We also find that QSO halos are the most massive of the simulated volume at z ∼ 6 but this is no longer true at z ∼ 3. This implies that QSO halos, even in a case where they are the most massive ones at high redshifts, do not evolve into the most massive galaxy clusters at z = 0.

  9. Observational constraints on the cosmological evolution of extragalactic radio sources

    International Nuclear Information System (INIS)

    Perryman, M.A.C.

    1979-11-01

    The thesis discusses statistical studies of the remote radio sources, taking into account the various parameters for such sources, based on data from the various Cambridge Catalogues. Some of the sources have optical counterparts which yield distances from their redshifts. Combining optical and radio observations, an attempt is made to investigate whether large-scale evolution of galaxies occurs as one looks backwards in time to early epochs. Special attention is paid to ensuring that the optical identifications of the selected radio sources are sound and that the selection procedures do not distort the inferences obtained. (U.K.)

  10. Contamination of Broad-Band Photometry by Nebular Emission in High Redshift Galaxies: Investigations with Keck's MOSFIRE Near-Infrared Spectrograph

    OpenAIRE

    Schenker, Matthew A.; Ellis, Richard S.; Konidaris, Nick P.; Stark, Daniel P.

    2013-01-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≃ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground...

  11. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    NARCIS (Netherlands)

    Tendulkar, S.P.; Bassa, C.G.; Cordes, J.M.; Bower, G.C.; Law, C.J.; Chatterjee, S.; Adams, E.A.K.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B.J.; Demorest, P.; Hessels, J.W.T.; Kaspi, V.M.; Lazio, T.J.W.; Maddox, N.; Marcote, B.; McLaughlin, M.A.; Paragi, Z.; Ransom, S.M.; Scholz, P.; Seymour, A.; Spitler, L.G.; van Langevelde, H.J.; Wharton, R.S.

    2017-01-01

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10‑4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find

  12. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cjpace@indiana.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  13. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    International Nuclear Information System (INIS)

    Pace, Cameron; Salim, Samir

    2014-01-01

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  14. The Origin of the Infrared Emission in Radio Galaxies : III. Analysis of 3CRR Objects

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Robinson, A.; Morganti, R.; Kharb, P.

    2010-01-01

    We present Spitzer photometric data for a complete sample of 19 low-redshift (z <0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid-to far-infrared (MFIR) emission from radio-loud active galactic nuclei (AGNs). Our results show a correlation between AGN

  15. Superconducting cosmic strings as sources of cosmological fast radio bursts

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jiani [University of Science and Technology of China, CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, Hefei, Anhui (China); Chinese Academy of Sciences, Shanghai Astronomical Observatory, Shanghai (China); Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States); University of Chinese Academy of Sciences, Beijing (China); Wang, Kai; Cai, Yi-Fu [University of Science and Technology of China, CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, Hefei, Anhui (China); University of Science and Technology of China, School of Astronomy and Space Science, Hefei, Anhui (China)

    2017-11-15

    In this paper we calculate the radio burst signals from three kinds of structures of superconducting cosmic strings. By taking into account the observational factors including scattering and relativistic effects, we derive the event rate of radio bursts as a function of redshift with the theoretical parameters Gμ and I of superconducting strings. Our analyses show that cusps and kinks may have noticeable contributions to the event rate and in most cases cusps would dominate the contribution, while the kink-kink collisions tend to have secondary effects. By fitting theoretical predictions with the normalized data of fast radio bursts, we for the first time constrain the parameter space of superconducting strings and report that the parameter space of Gμ ∝ [10{sup -14}, 10{sup -12}] and I ∝ [10{sup -1}, 10{sup 2}] GeV fit the observation well although the statistic significance is low due to the lack of observational data. Moreover, we derive two types of best fittings, with one being dominated by cusps with a redshift z = 1.3, and the other dominated by kinks at the range of the maximal event rate. (orig.)

  16. Fluctuations in radiation backgrounds at high redshift and the first stars

    Science.gov (United States)

    Holzbauer, Lauren Nicole

    The first stars to light up our universe are as yet unseen, but there have been many attempts to elucidate their properties. The characteristics of these stars (`Population/Pop III' stars) that we do know lie mostly within theory; they formed out of metal-free hydrogen and helium gas contained in dark matter minihalos at redshifts z 20-30. The extent to which Pop III star formation reached into later times is unknown. Current and near future instruments are incapable of resolving individual Pop III stars. Consequently, astronomers must devise creative means with which to indirectly predict and measure and their properties. In this thesis, we will investigate a few of those means. We use a new method to model fluctuations of the Lyman-Werner (LW) and Lyman-alpha radiation backgrounds at high redshift. At these early epochs the backgrounds are symptoms of a universe newly lit with its first stars. LW photons (11.5-13.6 eV) are of particular interest because they dissociate molecular hydrogen, the primary coolant in the first minihalos that is necessary for star formation. By using a variation of the `halo model', which describes the spatial distribution and clustering of halos, we can efficiently generate power spectra for these backgrounds. Spatial fluctuations in the LW and (indirectly) the Lyman-alpha BG can tell us about the transition from primordial star formation to a more metal-enriched mode that marks the beginning of the second generation of stars in our Universe. The Near Infrared Background (NIRB) has for some time been considered a potential tool with which to indirectly observe the first stars. Ultraviolet (UV) emission from these stars is redshifted into the NIR band, making the NIRB amenable for hunting Pop III stellar signatures. There have been several measurements of the NIRB and subsequent theoretical studies attempting to explain them in recent years. Though controversial, residual levels of the mean NIRB intensity and anisotropies have been

  17. Star formation at high redshift and the importance of dust obscuration

    DEFF Research Database (Denmark)

    Michalowski, Michal

    One of the aspects of the understanding of the Universe evolution is its star formation history. In order to gain a complete picture of the Universe evolution it is important to know when the stars we see today were formed. One of the method to study this problem is to use far-infrared and radio...... emission of galaxies. In this way it is possible to investigate the sites of star formation that are totally obscured by dust and therefore invisible at the optical wavelengths. It is because the energy absorbed by dust in the optical is re-emitted in the infrared, whereas radio emission is unaffected...... and/or radio, namely their enhanced submillimeter / radio emission combined with optical faintness and blue colors. I find that these four galaxies are young, highly star-forming, low-mass and dusty....

  18. Evolution of Extragalactic Radio Sources and Quasar/Galaxy Unification

    Science.gov (United States)

    Onah, C. I.; Ubachukwu, A. A.; Odo, F. C.; Onuchukwu, C. C.

    2018-04-01

    We use a large sample of radio sources to investigate the effects of evolution, luminosity selection and radio source orientation in explaining the apparent deviation of observed angular size - redshift (θ - z) relation of extragalactic radio sources (EGRSs) from the standard model. We have fitted the observed θ - z data with standard cosmological models based on a flat universe (Ω0 = 1). The size evolution of EGRSs has been described as luminosity, temporal and orientation-dependent in the form DP,z,Φ ≍ P±q(1 + z)-m sinΦ, with q=0.3, Φ=59°, m=-0.26 for radio galaxies and q=-0.5, Φ=33°, m=3.1 for radio quasars respectively. Critical points of luminosity, logPcrit=26.33 WHz-1 and logDc=2.51 kpc (316.23 kpc) of the present sample of radio sources were also observed. All the results were found to be consistent with the popular quasar/galaxy unification scheme.

  19. Constraining primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys

    Science.gov (United States)

    Karagiannis, Dionysios; Lazanu, Andrei; Liguori, Michele; Raccanelli, Alvise; Bartolo, Nicola; Verde, Licia

    2018-07-01

    We forecast constraints on primordial non-Gaussianity (PNG) and bias parameters from measurements of galaxy power spectrum and bispectrum in future radio continuum and optical surveys. In the galaxy bispectrum, we consider a comprehensive list of effects, including the bias expansion for non-Gaussian initial conditions up to second order, redshift space distortions, redshift uncertainties and theoretical errors. These effects are all combined in a single PNG forecast for the first time. Moreover, we improve the bispectrum modelling over previous forecasts, by accounting for trispectrum contributions. All effects have an impact on final predicted bounds, which varies with the type of survey. We find that the bispectrum can lead to improvements up to a factor ˜5 over bounds based on the power spectrum alone, leading to significantly better constraints for local-type PNG, with respect to current limits from Planck. Future radio and photometric surveys could obtain a measurement error of σ (f_{NL}^{loc}) ≈ 0.2. In the case of equilateral PNG, galaxy bispectrum can improve upon present bounds only if significant improvements in the redshift determinations of future, large volume, photometric or radio surveys could be achieved. For orthogonal non-Gaussianity, expected constraints are generally comparable to current ones.

  20. Constraining Primordial non-Gaussianity with Bispectrum and Power Spectum from Upcoming Optical and Radio Surveys

    Science.gov (United States)

    Karagiannis, Dionysios; Lazanu, Andrei; Liguori, Michele; Raccanelli, Alvise; Bartolo, Nicola; Verde, Licia

    2018-04-01

    We forecast constraints on primordial non-Gaussianity (PNG) and bias parameters from measurements of galaxy power spectrum and bispectrum in future radio continuum and optical surveys. In the galaxy bispectrum, we consider a comprehensive list of effects, including the bias expansion for non-Gaussian initial conditions up to second order, redshift space distortions, redshift uncertainties and theoretical errors. These effects are all combined in a single PNG forecast for the first time. Moreover, we improve the bispectrum modelling over previous forecasts, by accounting for trispectrum contributions. All effects have an impact on final predicted bounds, which varies with the type of survey. We find that the bispectrum can lead to improvements up to a factor ˜5 over bounds based on the power spectrum alone, leading to significantly better constraints for local-type PNG, with respect to current limits from Planck. Future radio and photometric surveys could obtain a measurement error of σ (f_{NL}^{loc}) ≈ 0.2. In the case of equilateral PNG, galaxy bispectrum can improve upon present bounds only if significant improvements in the redshift determinations of future, large volume, photometric or radio surveys could be achieved. For orthogonal non-Gaussianity, expected constraints are generally comparable to current ones.

  1. The effects of variability on the number-flux-density relationship for radio sources

    International Nuclear Information System (INIS)

    Schuch, N.J.

    1981-01-01

    It has been known for some time that the number-flux-density relationship for radio sources requires a population of sources whose properties evolve with cosmological epoch, at least in models where the redshifts are all taken to be cosmological. In particular, the surveys made at metre wavelengths show, for bright sources, a slope of the log N -log S curve which is steeper than the value -1.5 expected in a static, non-evolving Euclidean universe. Here, N is the number of radio sources brighter than flux density S. Expansion without evolution in conventional geometrical models predicts slopes flatter than -1.5. If the radio survey is carried out at higher frequencies (typically 2.7 or 5 GHz - 11 or 6 cm wavelength), the slope of the log N -log S curve is steeper than -1.5 but not so steep as the slopes found for the low-frequency surveys. Many of the sources found in high-frequency surveys have radio spectra with relatively higher flux-densities in the centimetre range; these sources are frequently variable at high frequencies, with time-scales from a month or two upwards. Some possible effects of the variations on the observed counts of radio sources are considered. (author)

  2. Galaxy correlations at high redshift and the environment of quasars

    International Nuclear Information System (INIS)

    Phillipps, Steven

    1986-01-01

    In close line-of-sight pairs of quasars absorption lines may be seen in the spectrum of the further quasar at a redshift corresponding to that of the nearer quasar. This is indicative of the presence of an intervening galaxy belonging to the same cluster as the (galaxy containing the) nearer quasar. The likelihood of this occurring is calculated in terms of the galaxy correlation function and it is found that present results already suggest that quasars at redshifts above one must be associated with rich clusters. (author)

  3. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    Science.gov (United States)

    Nakar, Ehud; Piran, Tsvi

    2011-09-28

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

  4. AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?

    International Nuclear Information System (INIS)

    Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi; Yin, Jun

    2015-01-01

    We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α ν12 (1000 ∼ 2000 Å) and α ν24 (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α ν ) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α ν12 and α ν24 show significant anti-correlations with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α ν − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ v ∼ 10 −5 h Mpc −1 at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed

  5. El Universo a alto redshift

    Science.gov (United States)

    Alonso, M. V.

    The Universe we see today is the result of structures and galaxies that have been evolving since earlier times. Looking the evolution of the galaxy population at z ˜ 1 has emphasized the important role played by high redshift data. This is the case of the morphology - density relationship, where the morphological type of galaxies in distant clusters has given us a clear vision of evolutionary processes, partly led by environmental effects. I review part of the data available at high redshifts that are fundamental today to check the validity of galaxy formation models in reproducing local and basic galaxy properties. Briefly, I will comment about high redshift studies, a still little explored portion of the Universe, and the current strategies that allow us the study. In this sense, the epoch of reionization is essential for understanding the formation of structures because it is the phase where the first protogalaxies were formed, creating stars and enriching the intergalactic medium. Because of the great distances involved in these studies, gamma-ray bursts, quasars and Lyman-α galaxies are the best tools to study these earlier times. FULL TEXT IN SPANISH

  6. Compact features in radio galaxies and quasars

    International Nuclear Information System (INIS)

    Purvis, A.

    1981-05-01

    The structure of compact features ('hotspots') in the outer lobes of classical double radio sources over a large flux density interval at 81.5 MHz is investigated in order to understand more fully the structural evolution of radio sources with both luminosity and redshift. The technique of interplanetary scintillations is used. An account is given of the development of a new telescope, the 3.6-hectare Array. A method for eliminating zero level and phase drifts from interferometric records and a method for analysing data scattered according to a skewed probability distribution are described. New observations of hotspots in complete samples of bright 3CR sources and 4C quasars having an intermediate flux density are then presented. The problems of interpreting scintillation data are then considered and three methods are suggested to reduce the difficulties imposed by the observational limitation known as 'blending', whereby the whole outer lobe may scintillate and distort the measured hotspot size. Finally, all the new observational data are assimilated and this leads to models for (a) the dependence of source structure on luminosity and (b) for the dependence of observed hotspot size on both luminosity and redshift. (author)

  7. Statistical studies of powerful extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, J T

    1981-01-01

    This dissertation is mainly about the use of efficient statistical tests to study the properties of powerful extragalactic radio sources. Most of the analysis is based on subsets of a sample of 166 bright (3CR) sources selected at 178 MHz. The first chapter is introductory and it is followed by three on the misalignment and symmetry of double radio sources. The properties of nuclear components in extragalactic sources are discussed in the next chapter, using statistical tests which make efficient use of upper limits, often the only available information on the flux density from the nuclear component. Multifrequency observations of four 3CR sources are presented in the next chapter. The penultimate chapter is about the analysis of correlations involving more than two variables. The Spearman partial rank correlation coefficient is shown to be the most powerful test available which is based on non-parametric statistics. It is therefore used to study the dependences of the properties of sources on their size at constant redshift, and the results are interpreted in terms of source evolution. Correlations of source properties with luminosity and redshift are then examined.

  8. Free-form analysis of the cosmological evolution of radio sources

    International Nuclear Information System (INIS)

    Robertson, J.G.

    1980-01-01

    This paper extends an iterative scheme for calculation of free-form evolution functions able to reconcile observed radio source counts with the standard General Relativistic cosmological models. It is assumed that the luminosity dependence of the evolution consists of a gradual turn-on of evolution above a certain luminosity. No particular functional form is assumed for the redshift dependence of the evolution (i.e. it is free-form). The extension concerns the use of the luminosity distribution to supply an effective luminosity function, thus overcoming a problem of consistency at the high-luminosity end of the luminosity function, where the evolution function has to be known. This method also guarantees that the correct average redshifts will be predicted where they are known observationally at high flux densities. The new iterative scheme has been applied to the source counts at 408 MHz from the Molonglo Cross telescope, using the Einstein-de Sitter cosmology and a recent determination of the luminosity distribution for sources of S 408 > 10 Jy. (author)

  9. MULTI-WAVELENGTH AFTERGLOWS OF FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Yi, Shuang-Xi; Gao, He; Zhang, Bing

    2014-01-01

    The physical origin of fast radio bursts (FRBs) is unknown. Detecting electromagnetic counterparts to FRBs in other wavelengths is essential to measure their distances and to determine their physical origin. Assuming that at least some of them are of cosmological origin, we calculate their afterglow light curves in multiple wavelengths (X-rays, optical, and radio) by assuming a range of total kinetic energies and redshifts. We focus on forward shock emission, but also consider the possibility that some of the FRBs might have bright reverse shock emission. In general, FRB afterglows are too faint to be detected by current detectors. Only if an FRB has a very low radiative efficiency in radio (hence, a very large kinetic energy), and when it is close enough to observe can its afterglow be detected in the optical and radio bands. We discuss observational strategies for detecting these faint afterglows using future telescopes such as Large Synoptic Survey Telescope and Expanded Very Large Array

  10. Automated cross-identifying radio to infrared surveys using the LRPY algorithm: a case study

    Science.gov (United States)

    Weston, S. D.; Seymour, N.; Gulyaev, S.; Norris, R. P.; Banfield, J.; Vaccari, M.; Hopkins, A. M.; Franzen, T. M. O.

    2018-02-01

    Cross-identifying complex radio sources with optical or infra red (IR) counterparts in surveys such as the Australia Telescope Large Area Survey (ATLAS) has traditionally been performed manually. However, with new surveys from the Australian Square Kilometre Array Pathfinder detecting many tens of millions of radio sources, such an approach is no longer feasible. This paper presents new software (LRPY - Likelihood Ratio in PYTHON) to automate the process of cross-identifying radio sources with catalogues at other wavelengths. LRPY implements the likelihood ratio (LR) technique with a modification to account for two galaxies contributing to a sole measured radio component. We demonstrate LRPY by applying it to ATLAS DR3 and a Spitzer-based multiwavelength fusion catalogue, identifying 3848 matched sources via our LR-based selection criteria. A subset of 1987 sources have flux density values for all IRAC bands which allow us to use criteria to distinguish between active galactic nuclei (AGNs) and star-forming galaxies (SFG). We find that 936 radio sources ( ≈ 47 per cent) meet both of the Lacy and Stern AGN selection criteria. Of the matched sources, 295 have spectroscopic redshifts and we examine the radio to IR flux ratio versus redshift, proposing an AGN selection criterion below the Elvis radio-loud AGN limit for this dataset. Taking the union of all three AGNs selection criteria we identify 956 as AGNs ( ≈ 48 per cent). From this dataset, we find a decreasing fraction of AGNs with lower radio flux densities consistent with other results in the literature.

  11. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  12. Q0000-398 is a high-redshift quasar with a large angular size

    International Nuclear Information System (INIS)

    Gearhart, M.R.; Pacht, E.

    1977-01-01

    A study is described, using the three-element interferrometer at the National Radio Astronomy Observatory, West Virginia, to investigate whether any quasars exist that might be radio sources. It was found that Q0000-398 appeared to be a quasar of high red shift and large angular size. The interferrometer was operated with a 300-1200-1500 m baseline configuration at 2695 MHz. The radio map for Q0000-398 is shown, and has two weak components separated by 134 +- 40 arc s. If these components are associated with the optical object this quasar has the largest known angular size for its red shift value. The results reported for Q0000-398 and other quasars having considerable angular extent demonstrate the importance of considering radio selection effects in the angular diameter-red shift relationship, and since any radio selection effects are removed when quasars are selected optically, more extensive mapping programs should be undertaken, looking particularly for large scale structure around optically selected high-z quasars. (U.K.)

  13. ZINGRS: Understanding Hot DOGs via the resolved radio continuum of W2246-0526

    Science.gov (United States)

    Hershey, Deborah; Ferkinhoff, Carl; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Brisbin, Drew; Lamarche, Cody; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.

    2018-06-01

    We present new high-resolution (~0.5”) radio-continuum images of the high-redshift galaxy W2246-0526 obtained with the Jansky Very Large Array. W2246 at z~4.6 is a hot dust obscured galaxy (Hot DOG) that have extreme luminosities, LIR > 1014 L⊙ produced by hot T~450 K dust. It hosts both an active galactic nucleus and significant star formation. Having observed the [OIII] 88 micron line from W2246 with our ZEUS spectrometer, the source is part of our ZEUS INvestigate Galaxy Reference Sample (ZINGRS). The radio images are initial observations from the ZINGRS Radio Survey where we observe the free-free and non-thermal emissions of high-z galaxies. Combining the radio emission with ALMA and ZEUS observations of the [CII] 158 micron, [OIII] 88 micron and [NII] 122 micron lines we probe the metallicity, age of stellar population, and ionization parameter. For W2246 we pay special attention to gradients of the stellar age and metallicity to determine the impact of the AGN on the host galaxy. Our work here is our initial analysis. When complete for all of ZINGRS ours findings will improve our understanding of early galaxies, including helping to explain Hot DOGs like W2246.

  14. PROSPECTS FOR THE DETECTION OF FAST RADIO BURSTS WITH THE MURCHISON WIDEFIELD ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Trott, Cathryn M.; Tingay, Steven J.; Wayth, Randall B., E-mail: cathryn.trott@curtin.edu.au [International Centre for Radio Astronomy Research, Curtin University, Bentley WA 6845 (Australia)

    2013-10-10

    Fast radio bursts (FRBs) are short timescale (<<1 s) astrophysical radio signals, presumed to be a signature of cataclysmic events of extragalactic origin. The discovery of six high-redshift events at ∼1400 MHz from the Parkes radio telescope suggests that FRBs may occur at a high rate across the sky. The Murchison Widefield Array (MWA) operates at low radio frequencies (80-300 MHz) and is expected to detect FRBs due to its large collecting area (∼2500 m{sup 2}) and wide field-of-view (FOV, ∼ 1000 deg{sup 2} at ν = 200 MHz). We compute the expected number of FRB detections for the MWA assuming a source population consistent with the reported detections. Our formalism properly accounts for the frequency-dependence of the antenna primary beam, the MWA system temperature, and unknown spectral index of the source population, for three modes of FRB detection: coherent; incoherent; and fast imaging. We find that the MWA's sensitivity and large FOV combine to provide the expectation of multiple detectable events per week in all modes, potentially making it an excellent high time resolution science instrument. Deviations of the expected number of detections from actual results will provide a strong constraint on the assumptions made for the underlying source population and intervening plasma distribution.

  15. Prospects for the Detection of Fast Radio Bursts with the Murchison Widefield Array

    Science.gov (United States)

    Trott, Cathryn M.; Tingay, Steven J.; Wayth, Randall B.

    2013-10-01

    Fast radio bursts (FRBs) are short timescale (Lt1 s) astrophysical radio signals, presumed to be a signature of cataclysmic events of extragalactic origin. The discovery of six high-redshift events at ~1400 MHz from the Parkes radio telescope suggests that FRBs may occur at a high rate across the sky. The Murchison Widefield Array (MWA) operates at low radio frequencies (80-300 MHz) and is expected to detect FRBs due to its large collecting area (~2500 m2) and wide field-of-view (FOV, ~ 1000 deg2 at ν = 200 MHz). We compute the expected number of FRB detections for the MWA assuming a source population consistent with the reported detections. Our formalism properly accounts for the frequency-dependence of the antenna primary beam, the MWA system temperature, and unknown spectral index of the source population, for three modes of FRB detection: coherent; incoherent; and fast imaging. We find that the MWA's sensitivity and large FOV combine to provide the expectation of multiple detectable events per week in all modes, potentially making it an excellent high time resolution science instrument. Deviations of the expected number of detections from actual results will provide a strong constraint on the assumptions made for the underlying source population and intervening plasma distribution.

  16. The [CII] 158 μm line emission in high-redshift galaxies

    Science.gov (United States)

    Lagache, G.; Cousin, M.; Chatzikos, M.

    2018-02-01

    Gas is a crucial component of galaxies, providing the fuel to form stars, and it is impossible to understand the evolution of galaxies without knowing their gas properties. The [CII] fine structure transition at 158 μm is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through metre wavelengths, almost unaffected by attenuation. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a star formation rate (SFR) indicator at z ≥ 4. In this paper, we have used a semi-analytical model of galaxy evolution (G.A.S.) combined with the photoionisation code CLOUDY to predict the [CII] luminosity of a large number of galaxies (25 000 at z ≃ 5) at 4 ≤ z ≤ 8. We assumed that the [CII]-line emission originates from photo-dominated regions. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We studied the L[CII ]-SFR and L[ CII ]-Zg relations and show that they do not strongly evolve with redshift from z = 4 and to z = 8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher SFRs but the correlations are very broad, with a scatter of about 0.5 and 0.8 dex for L[ CII ]-SFR and L[ CII ]-Zg, respectively. Our model reproduces the L[ CII ]-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local L[ CII ]-SFR relations. Accordingly, the local observed L[ CII ]-SFR relation does not apply at high-z (z ≳ 5), even when CMB effects are ignored. Our model naturally produces the [CII] deficit (i.e. the decrease of L[ CII ]/LIR with LIR), which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the

  17. Deep GMRT 150 MHz Observations of the DEEP2 Fields: Searching ...

    Indian Academy of Sciences (India)

    2National Centre for Radio Astrophysics, Post Bag No. 3, Ganeshkind, Pune 411 007, India. ∗ e-mail: susanta@prl.res.in. Abstract. High red-shift radio galaxies are best searched at low radio frequencies, due to its steep radio spectra. Here we present preliminary results from our programme to search for high red-shift radio ...

  18. THE SUB-mJy RADIO POPULATION OF THE E-CDFS: OPTICAL AND INFRARED COUNTERPART IDENTIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Bonzini, M.; Mainieri, V.; Padovani, P.; Rosati, P. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Kellermann, K. I. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Miller, N. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Tozzi, P.; Balestra, I. [INAF Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34131, Trieste (Italy); Vattakunnel, S. [Dipartimento di Fisica Universit di Trieste, piazzale Europa 1, I-34127 Trieste (Italy); Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Xue, Y. Q., E-mail: mbonzini@eso.org [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China)

    2012-11-15

    We study a sample of 883 sources detected in a deep Very Large Array survey at 1.4 GHz in the Extended Chandra Deep Field South. This paper focuses on the identification of their optical and infrared (IR) counterparts. We use a likelihood-ratio technique that is particularly useful when dealing with deep optical images to minimize the number of spurious associations. We find a reliable counterpart for 95% of our radio sources. Most of the counterparts (74%) are detected at optical wavelengths, but there is a significant fraction (21%) that are only detectable in the IR. Combining newly acquired optical spectra with data from the literature, we are able to assign a redshift to 81% of the identified radio sources (37% spectroscopic). We also investigate the X-ray properties of the radio sources using the Chandra 4 Ms and 250 ks observations. In particular, we use a stacking technique to derive the average properties of radio objects undetected in the Chandra images. The results of our analysis are collected in a new catalog containing the position of the optical/IR counterpart, the redshift information, and the X-ray fluxes. It is the deepest multi-wavelength catalog of radio sources, which will be used for future study of this galaxy population.

  19. Towards low-delay and high-throughput cognitive radio vehicular networks

    Directory of Open Access Journals (Sweden)

    Nada Elgaml

    2017-12-01

    Full Text Available Cognitive Radio Vehicular Ad-hoc Networks (CR-VANETs exploit cognitive radios to allow vehicles to access the unused channels in their radio environment. Thus, CR-VANETs do not only suffer the traditional CR problems, especially spectrum sensing, but also suffer new challenges due to the highly dynamic nature of VANETs. In this paper, we present a low-delay and high-throughput radio environment assessment scheme for CR-VANETs that can be easily incorporated with the IEEE 802.11p standard developed for VANETs. Simulation results show that the proposed scheme significantly reduces the time to get the radio environment map and increases the CR-VANET throughput.

  20. SHOCK BREAKOUT IN TYPE II PLATEAU SUPERNOVAE: PROSPECTS FOR HIGH-REDSHIFT SUPERNOVA SURVEYS

    International Nuclear Information System (INIS)

    Tominaga, N.; Morokuma, T.; Blinnikov, S. I.; Nomoto, K.; Baklanov, P.; Sorokina, E. I.

    2011-01-01

    Shock breakout is the brightest radiative phenomenon in a supernova (SN) but is difficult to be observed owing to the short duration and X-ray/ultraviolet (UV)-peaked spectra. After the first observation from the rising phase reported in 2008, its observability at high redshift is attracting enormous attention. We perform multigroup radiation hydrodynamics calculations of explosions for evolutionary presupernova models with various main-sequence masses M MS , metallicities Z, and explosion energies E. We present multicolor light curves of shock breakouts in Type II plateau SNe, being the most frequent core-collapse SNe, and predict apparent multicolor light curves of shock breakout at various redshifts z. We derive the observable SN rate and reachable redshift as functions of filter x and limiting magnitude m x,lim by taking into account an initial mass function, cosmic star formation history, intergalactic absorption, and host galaxy extinction. We propose a realistic survey strategy optimized for shock breakout. For example, the g'-band observable SN rate for m g',lim = 27.5 mag is 3.3 SNe deg -2 day -1 and half of them are located at z ≥ 1.2. It is clear that the shock breakout is a beneficial clue for probing high-z core-collapse SNe. We also establish ways to identify shock breakout and constrain SN properties from the observations of shock breakout, brightness, timescale, and color. We emphasize that the multicolor observations in blue optical bands with ∼hour intervals, preferably over ≥2 continuous nights, are essential to efficiently detect, identify, and interpret shock breakout.

  1. Active galactic nuclei cores in infrared-faint radio sources. Very long baseline interferometry observations using the Very Long Baseline Array

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.

    2015-06-01

    Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.

  2. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    International Nuclear Information System (INIS)

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Fiore, F.; Mainieri, V.; Capak, P.; Caputi, K.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ Δz/(1+z spec ) ∼0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg 2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  3. Spectroscopic and polarimetric study of radio-quiet weak emission line quasars

    Science.gov (United States)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna; Srianand, Raghunathan; Stalin, Chelliah Subramonian; Petitjean, Patrick

    2018-04-01

    A small subset of optically selected radio-quiet QSOs with weak or no emission lines may turn out to be the elusive radio-quiet BL Lac objects, or simply be radio-quiet QSOs with an infant/shielded broad line region (BLR). High polarisation (p > 3-4%), a hallmark of BL Lacs, can be used to test whether some optically selected ‘radio-quiet weak emission line QSOs’ (RQWLQs) show a fractional polarisation high enough to qualify as radio-quiet analogues of BL Lac objects. To check this possibility, we have made optical spectral and polarisation measurements of a sample of 19 RQWLQs. Out of these, only 9 sources show a non-significant proper motion (hence very likely extragalactic) and only two of them are found to have p > 1%. For these two RQWLQs, namely J142505.59+035336.2 and J154515.77+003235.2, we found the highest polarization to be 1.59±0.53%, which is again too low to classify them as (radio-quiet) BL Lacs, although one may recall that even genuine BL Lacs sometimes appear weakly polarised. We also present a statistical comparison of the optical spectral index, for a sample of 45 RQWLQs with redshift-luminosity matched control samples of 900 QSOs and an equivalent sample of 120 blazars, assembled from the literature. The spectral index distribution of RQWLQs is found to differ, at a high significance level, from that of blazars. This, too, is consistent with the common view that the mechanism of the central engine in RQWLQs, as a population, is close to that operating in normal QSOs and the primary difference between them is related to the BLR.

  4. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Capak, Peter [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel; Rhodes, Jason [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ilbert, Olivier [Aix Marseille Universite, CNRS, LAM (Laboratoire dAstrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Salvato, Mara [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Schmidt, Samuel [Department of Physics, University of California, Davis, CA 95616 (United States); Longo, Giuseppe [Department of Physics, University Federico II, via Cinthia 6, I-80126 Napoli (Italy); Paltani, Stephane; Coupon, Jean [Department of Astronomy, University of Geneva ch. dcogia 16, CH-1290 Versoix (Switzerland); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Universität Bonn, Auf dem H’´ugel 71, D-53121 Bonn (Germany); Speagle, Josh [Department of Astronomy, Harvard University, 60 Garden Street, MS 46, Cambridge, MA 02138 (United States); Kalinich, Adam [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Brescia, Massimo; Cavuoti, Stefano [Astronomical Observatory of Capodimonte—INAF, via Moiariello 16, I-80131, Napoli (Italy)

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  5. Requirements on the Redshift Accuracy for future Supernova and Number Count Surveys

    International Nuclear Information System (INIS)

    Huterer, Dragan; Kim, Alex; Broderick, Tamara

    2004-01-01

    We investigate the required redshift accuracy of type Ia supernova and cluster number-count surveys in order for the redshift uncertainties not to contribute appreciably to the dark energy parameter error budget. For the SNAP supernova experiment, we find that, without the assistance of ground-based measurements, individual supernova redshifts would need to be determined to about 0.002 or better, which is a challenging but feasible requirement for a low-resolution spectrograph. However, we find that accurate redshifts for z < 0.1 supernovae, obtained with ground-based experiments, are sufficient to immunize the results against even relatively large redshift errors at high z. For the future cluster number-count surveys such as the South Pole Telescope, Planck or DUET, we find that the purely statistical error in photometric redshift is less important, and that the irreducible, systematic bias in redshift drives the requirements. The redshift bias will have to be kept below 0.001-0.005 per redshift bin (which is determined by the filter set), depending on the sky coverage and details of the definition of the minimal mass of the survey. Furthermore, we find that X-ray surveys have a more stringent required redshift accuracy than Sunyaev-Zeldovich (SZ) effect surveys since they use a shorter lever arm in redshift; conversely, SZ surveys benefit from their high redshift reach only so long as some redshift information is available for distant (zgtrsim1) clusters

  6. Radio Selection of the Most Distant Galaxy Clusters

    Science.gov (United States)

    Daddi, E.; Jin, S.; Strazzullo, V.; Sargent, M. T.; Wang, T.; Ferrari, C.; Schinnerer, E.; Smolčić, V.; Calabró, A.; Coogan, R.; Delhaize, J.; Delvecchio, I.; Elbaz, D.; Gobat, R.; Gu, Q.; Liu, D.; Novak, M.; Valentino, F.

    2017-09-01

    We show that the most distant X-ray-detected cluster known to date, Cl J1001 at {z}{spec}=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10\\prime\\prime ) in deep 0\\buildrel{\\prime\\prime}\\over{.} 75 resolution VLA 3 GHz imaging, with {S}3{GHz}> 8 μ {Jy}. Of the six, an active galactic nucleus (AGN) likely affects the radio emission in two galaxies, while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2 deg2 field using radio-detected 3 GHz sources and looking for peaks in {{{Σ }}}5 density maps. Cl J1001 is the strongest overdensity by far with > 10σ , with a simple {z}{phot}> 1.5 preselection. A cruder photometric rejection of zsamples of the first generation of forming galaxy clusters. In these remarkable structures, widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z≳ 2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.

  7. Evolutionary tracks of extended radio sources

    International Nuclear Information System (INIS)

    Baldwin, J.E.

    1982-01-01

    We know almost nothing about the evolutionary tracks of extragalactic radio sources but those tracks are, however, strongly constrained by the distribution of sources in the radio luminosity, P, overall physical size, D, diagram. The P-D diagram for the 3CR 166 source sample of Jenkins et al. (1977) is presented with later additions. Most of the sources are identified and have known redshifts. Because of doubts about the completeness of the sample in this region, the author has made searches in the 6C 151MHz survey for sources with specific surface brightnesses. The numbers found to a limiting flux density of 1-2 Jy suggest that there is no serious underestimate of the numbers in 166 source sample. (Auth.)

  8. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    International Nuclear Information System (INIS)

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P; Stark, Daniel P

    2013-01-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy

  9. CONTINUUM OBSERVATIONS AT 350 MICRONS OF HIGH-REDSHIFT MOLECULAR EMISSION LINE GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Evans, Neal J.; Dunham, Michael M.; Vanden Bout, Paul A.

    2009-01-01

    We report observations of 15 high-redshift (z = 1 - 5) galaxies at 350 μm using the Caltech Submillimeter Observatory and Submillimeter High Angular Resolution Camera II array detector. Emission was detected from eight galaxies, for which far-infrared luminosities, star formation rates (SFRs), total dust masses, and minimum source size estimates are derived. These galaxies have SFRs and star formation efficiencies comparable to other high-redshift molecular emission line galaxies. The results are used to test the idea that star formation in these galaxies occurs in a large number of basic units, the units being similar to star-forming clumps in the Milky Way. The luminosity of these extreme galaxies can be reproduced in a simple model with (0.9-30)x10 6 dense clumps, each with a luminosity of 5 x 10 5 L sun , the mean value for such clumps in the Milky Way. Radiative transfer models of such clumps can provide reasonable matches to the overall spectral energy distributions (SEDs) of the galaxies. They indicate that the individual clumps are quite opaque in the far-infrared. Luminosity-to-mass ratios vary over two orders of magnitude, correlating strongly with the dust temperature derived from simple fits to the SED. The gas masses derived from the dust modeling are in remarkable agreement with those from CO luminosities, suggesting that the assumptions going into both calculations are reasonable.

  10. Why high-latitude clouds in our galaxy and the highly redshifted clouds observed in front of QSOs do not belong to the same parent population

    International Nuclear Information System (INIS)

    Wolfe, A.M.

    1983-01-01

    International Ultraviolet Explorer observations of high-latitude gas in our Galaxy reveal the presence of both C II and C IV absorption in the spectra of stars with z>2 kpc. On the other hand, C II is generally absent from unbiased samples of QSO redshift systems with C IV absorption. Comparison between the equivalent-width distributions of the QSO sample and of the galactic sample (which is suitably corrected for contamination by disk absorption) shows that a probability that the two samples are drawn from the same parent population is less than 1% for C II and less than 10% for C IV. Thus, contrary to prevailing opinion, it is highly unlikely that gaseous halos comprised of material with properties of the high-latitude gas are responsible for the bulk of known QSO redshift systems. However, gaseous halos with bimodal states of ionization, or in which the ionization state is a unique function of redshift, are compatible with QSO absorption statistics

  11. A Fast Radio Burst Occurs Every Second throughout the Observable Universe

    OpenAIRE

    Fialkov, Anastasia; Loeb, Abraham

    2017-01-01

    Recent multi-telescope observations of the repeating Fast Radio Burst FRB 121102 reveal a Gaussian-like spectral profile and associate the event with a dwarf metal-poor galaxy at a cosmological redshift of 0.19. Assuming that this event represents the entire FRB population, we make predictions for the expected number counts of FRBs observable by future radio telescopes between 50 MHz and 3.5 GHz. We vary our model assumptions to bracket the expected rate of FRBs, and find that it exceeds one ...

  12. THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS. II. THE SDSS SAMPLE

    International Nuclear Information System (INIS)

    Singal, J.; Petrosian, V.; Stawarz, Ł.; Lawrence, A.

    2013-01-01

    We determine the radio and optical luminosity evolutions and the true distribution of the radio-loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining Sloan Digital Sky Survey optical and Faint Images of the Radio Sky at Twenty cm (FIRST) radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio-loudness parameter R is found to be quite different from the observed one and is smooth with no evidence of a bimodality in radio loudness for log R ≥ –1. The results we find are in general agreement with the previous analysis of Singal et al., which used POSS-I optical and FIRST radio data.

  13. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  14. A model for superliminal radio sources

    International Nuclear Information System (INIS)

    Milgrom, M.; Bahcall, J.N.

    1977-01-01

    A geometrical model for superluminal radio sources is described. Six predictions that can be tested by observations are summarized. The results are in agreement with all the available observations. In this model, the Hubble constant is the only numerical parameter that is important in interpreting the observed rates of change of angular separations for small redshifts. The available observations imply that H 0 is less than 55 km/s/Mpc if the model is correct. (author)

  15. AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi; Yin, Jun, E-mail: ssy@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2015-04-01

    We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α{sub ν12} (1000 ∼ 2000 Å) and α{sub ν24} (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α{sub ν}) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α{sub ν12} and α{sub ν24} show significant anti-correlations with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α{sub ν} − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ{sub v} ∼ 10{sup −5}h Mpc{sup −1} at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed.

  16. Deep GMRT 150 MHz Observations of the DEEP2 Fields

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High red-shift radio galaxies are best searched at low radio frequencies, due to its steep radio spectra. Here we present preliminary results from our programme to search for high red-shift radio galaxies to ∼ 10 to 100 times fainter than the known population till date. We have extracted ultra-steep spectrum ...

  17. Pair-Matching of Radio-Loud and Radio-Quiet AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Kozieł-Wierzbowska, Dorota [Astronomical Observatory, Jagiellonian University, Krakow (Poland); Stasińska, Grażyna [LUTH, Observatoire de Paris, Centre National de la Recherche Scientifique, Université Paris Diderot, Meudon (France); Vale Asari, Natalia [Departamento de Física–CFM, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Sikora, Marek [Nicolaus Copernicus Astronomical Center, Warsaw (Poland); Goettems, Elisa [Departamento de Física–CFM, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Wójtowicz, Anna, E-mail: dorota.koziel@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Krakow (Poland)

    2017-11-07

    Active galactic nuclei (AGNs) are known to cover an extremely broad range of radio luminosities and the spread of their radio-loudness is very large at any value of the Eddington ratio. This implies very diverse jet production efficiencies which can result from the spread of the black hole spins and magnetic fluxes. Magnetic fluxes can be developed stochastically in the innermost zones of accretion discs, or can be advected to the central regions prior to the AGN phase. In the latter case there could be systematic differences between the properties of galaxies hosting radio-loud (RL) and radio-quiet (RQ) AGNs. In the former case the differences should be negligible for objects having the same Eddington ratio. To study the problem we decided to conduct a comparison study of host galaxy properties of RL and RQ AGNs. In this study we selected type II AGNs from SDSS spectroscopic catalogs. Our RL AGN sample consists of the AGNs appearing in the Best and Heckman (2012) catalog of radio galaxies. To compare RL and RQ galaxies that have the same AGN parameters we matched the galaxies in black hole mass, Eddington ratio and redshift. We compared several properties of the host galaxies in these two groups of objects like galaxy mass, color, concentration index, line widths, morphological type and interaction signatures. We found that in the studied group RL AGNs are preferentially hosted by elliptical galaxies while RQ ones are hosted by galaxies of later type. We also found that the fraction of interacting galaxies is the same in both groups of AGNs. These results suggest that the magnetic flux in RL AGNs is advected to the nucleus prior to the AGN phase.

  18. The radio-γ-ray connection in Fermi blazars

    Science.gov (United States)

    Ghirlanda, G.; Ghisellini, G.; Tavecchio, F.; Foschini, L.; Bonnoli, G.

    2011-05-01

    We study the correlation between the γ-ray flux (Fγ), averaged over the first 11 months of the Fermi survey and integrated above 100 MeV, and the radio flux density (Fr at 20 GHz) of Fermi sources associated with a radio counterpart in the 20-GHz Australia Telescope Compact Array (AT20G) survey. Considering the blazars detected in both bands, the correlation is highly significant and has the form Fγ∝F0.85±0.04r, similar to BL Lacertae objects and flat-spectrum radio quasars. However, only a small fraction (˜1/15) of the AT20G radio sources with flat radio spectra are detected by Fermi. To understand if this correlation is real, we examine the selection effects introduced by the flux limits of both the radio and the γ-ray surveys, and the importance of variability of the γ-ray flux. After accounting for these effects, we find that the radio-γ-ray flux correlation is real, but its slope is steeper than the observed one, that is, Fγ∝Fδr with δ in the range 1.25-1.5. The observed Fγ-Fr correlation and the fraction of radio sources detected by Fermi are reproduced assuming a long-term γ-ray flux variability, following a lognormal probability distribution with standard deviation σ≥ 0.5 (corresponding to Fγ varying by at least a factor of 3). Such a variability is compatible, even if not necessarily equal, with what is observed when comparing, for the sources in common, the EGRET and the Fermi γ-ray fluxes (even if the Fermi fluxes are averaged over ˜1 yr). Another indication of variability is the non-detection of 12 out of 66 EGRET blazars by Fermi, despite its higher sensitivity. We also study the strong linear correlation between the γ-ray and the radio luminosity of the 144 AT20G-Fermi associations with known redshift and show, through partial correlation analysis, that it is statistically robust. Two possible implications of these correlations are discussed: the contribution of blazars to the extragalactic γ-ray background and the prediction

  19. MILLIMETER OBSERVATIONS OF A SAMPLE OF HIGH-REDSHIFT OBSCURED QUASARS

    International Nuclear Information System (INIS)

    Martinez-Sansigre, Alejo; Karim, Alexander; Schinnerer, Eva

    2009-01-01

    We present observations at 1.2 mm with Max-Planck Millimetre Bolometer Array (MAMBO-II) of a sample of z ∼> 2 radio-intermediate obscured quasars, as well as CO observations of two sources with the Plateau de Bure Interferometer. The typical rms noise achieved by the MAMBO observations is 0.55 mJy beam -1 and five out of 21 sources (24%) are detected at a significance of ≥3σ. Stacking all sources leads to a statistical detection of (S 1.2mm ) = 0.96 ± 0.11 mJy and stacking only the non-detections also yields a statistical detection, with (S 1.2mm ) = 0.51 ± 0.13 mJy. At the typical redshift of the sample, z = 2, 1 mJy corresponds to a far-infrared luminosity L FIR ∼4 x 10 12 L sun . If the far-infrared luminosity is powered entirely by star formation, and not by active galactic nucleus heated dust, then the characteristic inferred star formation rate is ∼700 M sun yr -1 . This far-infrared luminosity implies a dust mass of M d ∼3 x 10 8 M sun , which is expected to be distributed on ∼kpc scales. We estimate that such large dust masses on kpc scales can plausibly cause the obscuration of the quasars. Combining our observations at 1.2 mm with mid- and far-infrared data, and additional observations for two objects at 350 μm using SHARC-II, we present dust spectral energy distributions (SEDs) for our sample and derive a mean SED for our sample. This mean SED is not well fitted by clumpy torus models, unless additional extinction and far-infrared re-emission due to cool dust are included. This additional extinction can be consistently achieved by the mass of cool dust responsible for the far-infrared emission, provided the bulk of the dust is within a radius ∼2-3 kpc. Comparison of our sample to other samples of z ∼ 2 quasars suggests that obscured quasars have, on average, higher far-infrared luminosities than unobscured quasars. There is a hint that the host galaxies of obscured quasars must have higher cool-dust masses and are therefore often

  20. Measuring size evolution of distant, faint galaxies in the radio regime

    Science.gov (United States)

    Lindroos, L.; Knudsen, K. K.; Stanley, F.; Muxlow, T. W. B.; Beswick, R. J.; Conway, J.; Radcliffe, J. F.; Wrigley, N.

    2018-05-01

    We measure the evolution of sizes for star-forming galaxies as seen in 1.4 GHz continuum radio for z = 0-3. The measurements are based on combined VLA+MERLIN data of the Hubble Deep Field, and using a uv-stacking algorithm combined with model fitting to estimate the average sizes of galaxies. A sample of ˜1000 star-forming galaxies is selected from optical and near-infrared catalogues, with stellar masses M⊙ ≈ 1010-1011 M⊙ and photometric redshifts 0-3. The median sizes are parametrized for stellar mass M* = 5 × 1010 M⊙ as R_e = A× {}(H(z)/H(1.5))^{α _z}. We find that the median radio sizes evolve towards larger sizes at later times with αz = -1.1 ± 0.6, and A (the median size at z ≈ 1.5) is found to be 0.26^'' ± 0.07^'' or 2.3±0.6 kpc. The measured radio sizes are typically a factor of 2 smaller than those measure in the optical, and are also smaller than the typical H α sizes in the literature. This indicates that star formation, as traced by the radio continuum, is typically concentrated towards the centre of galaxies, for the sampled redshift range. Furthermore, the discrepancy of measured sizes from different tracers of star formation, indicates the need for models of size evolution to adopt a multiwavelength approach in the measurement of the sizes star-forming regions.

  1. CALIBRATING PHOTOMETRIC REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS

    International Nuclear Information System (INIS)

    Schulz, A. E.

    2010-01-01

    The next generation of proposed galaxy surveys will increase the number of galaxies with photometric redshift identifications by two orders of magnitude, drastically expanding both the redshift range and detection threshold from the current state of the art. Obtaining spectra for a fair subsample of these new data could be cumbersome and expensive. However, adequate calibration of the true redshift distribution of galaxies is vital to tapping the potential of these surveys to illuminate the processes of galaxy evolution and to constrain the underlying cosmology and growth of structure. We examine here an alternative to direct spectroscopic follow-up: calibration of the redshift distribution of photometric galaxies via cross-correlation with an overlapping spectroscopic survey whose members trace the same density field. We review the theory, develop a pipeline to implement the method, apply it to mock data from N-body simulations, and examine the properties of this redshift distribution estimator. We demonstrate that the method is generally effective, but the estimator is weakened by two main factors. One is that the correlation function of the spectroscopic sample must be measured in many bins along the line of sight, which renders the measurement noisy and interferes with high-quality reconstruction of the photometric redshift distribution. Also, the method is not able to disentangle the photometric redshift distribution from redshift dependence in the bias of the photometric sample. We establish the impact of these factors using our mock catalogs. We conclude that it may still be necessary to spectroscopically follow up a fair subsample of the photometric survey data. Nonetheless, it is significant that the method has been successfully implemented on mock data, and with further refinement it may appreciably decrease the number of spectra that will be needed to calibrate future surveys.

  2. Highly red-shifted NIR emission from a novel anthracene conjugated polymer backbone containing Pt( ii ) porphyrins

    KAUST Repository

    Freeman, D. M. E.

    2015-11-30

    © The Royal Society of Chemistry 2016. We present the synthesis of a novel diphenylanthracene (DPA) based semiconducting polymer. The polymer is solubilised by alkoxy groups attached directly to a DPA monomer, meaning the choice of co-monomer is not limited to exclusively highly solubilising moieties. Interestingly, the polymer shows a red-shifted elecroluminescence maximum (510 nm) when compared to its photoluminescence maximum (450 nm) which we attribute to excimer formation. The novel polymer was utilised as a host for a covalently-linked platinum(ii) complexed porphyrin dopant. Emission from these polymers was observed in the NIR and again showed almost a 100 nm red shift from photoluminescence to electroluminescence. This work demonstrates that utilising highly aggregating host materials is an effective tool for inducing red-shifted emission in OLEDs.

  3. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  4. Direct comparison of observed magnitude-redshift relations in complete galaxy samples with systematic predictions of alternative redshift-distance laws

    International Nuclear Information System (INIS)

    Segal, I.E.

    1989-01-01

    The directly observed average apparent magnitude (or in one case, angular diameter) as a function of redshift in each of a number of large complete galaxy samples is compared with the predictions of hypothetical redshift-distance power laws, as a systematic statistical question. Due account is taken of observational flux limits by an entirely objective and reproducible optimal statistical procedure, and no assumptions are made regarding the distribution of the galaxies in space. The laws considered are of the form z varies as r p , where r denotes the distance, for p = 1, 2 and 3. The comparative fits of the various redshift-distance laws are similar in all the samples. Overall, the cubic law fits better than the linear law, but each shows substantial systematic deviations from observation. The quadratic law fits extremely well except at high redshifts in some of the samples, where no power law fits closely and the correlation of apparent magnitude with redshift is small or negative. In all cases, the luminosity function required for theoretical prediction was estimated from the sample by the non-parametric procedure ROBUST, whose intrinsic neutrality as programmed was checked by comprehensive computer simulations. (author)

  5. A peculiar distribution of radial velocities of faint radio-galaxies with 13.0<=msub(corr)<=15.5

    International Nuclear Information System (INIS)

    Karoji, H.; Nottale, L.; Vigier, J.-P.

    1976-01-01

    A sample of 41 radio-galaxies with 13.0<=msub(corr)<=15.5 has been analyzed to test the angular redshift anisotropy discovered on Sc I galaxies by Rubin, Rubin and Ford (1973). The sample does not present their anisotropy but contains an even more curious distribution of radial velocities which suggests that the Rubin-Ford effect results from an anomalous redshift of light when it travels through clusters of galaxies. (Auth.)

  6. The evolution of grain mantles and silicate dust growth at high redshift

    Science.gov (United States)

    Ceccarelli, Cecilia; Viti, Serena; Balucani, Nadia; Taquet, Vianney

    2018-05-01

    In dense molecular clouds, interstellar grains are covered by mantles of iced molecules. The formation of the grain mantles has two important consequences: it removes species from the gas phase and promotes the synthesis of new molecules on the grain surfaces. The composition of the mantle is a strong function of the environment that the cloud belongs to. Therefore, clouds in high-zeta galaxies, where conditions - like temperature, metallicity, and cosmic ray flux - are different from those in the Milky Way, will have different grain mantles. In the last years, several authors have suggested that silicate grains might grow by accretion of silicon-bearing species on smaller seeds. This would occur simultaneously with the formation of the iced mantles and be greatly affected by its composition as a function of time. In this work, we present a numerical study of the grain mantle formation in high-zeta galaxies, and we quantitatively address the possibility of silicate growth. We find that the mantle thickness decreases with increasing redshift, from about 120 to 20 layers for z varying from 0 to 8. Furthermore, the mantle composition is also a strong function of the cloud redshift, with the relative importance of CO, CO2, ammonia, methane, and methanol highly varying with z. Finally, being Si-bearing species always a very minor component of the mantle, the formation of silicates in molecular clouds is practically impossible.

  7. Highly red-shifted NIR emission from a novel anthracene conjugated polymer backbone containing Pt( ii ) porphyrins

    KAUST Repository

    Freeman, D. M. E.; Minotto, A.; Duffy, Warren; Fallon, K. J.; McCulloch, Iain; Cacialli, F.; Bronstein, H.

    2015-01-01

    -monomer is not limited to exclusively highly solubilising moieties. Interestingly, the polymer shows a red-shifted elecroluminescence maximum (510 nm) when compared to its photoluminescence maximum (450 nm) which we attribute to excimer formation. The novel polymer

  8. Getting started With Amazon Redshift

    CERN Document Server

    Bauer, Stefan

    2013-01-01

    Getting Started With Amazon Redshift is a step-by-step, practical guide to the world of Redshift. Learn to load, manage, and query data on Redshift.This book is for CIOs, enterprise architects, developers, and anyone else who needs to get familiar with RedShift. The CIO will gain an understanding of what their technical staff is working on; the technical implementation personnel will get an in-depth view of the technology, and what it will take to implement their own solutions.

  9. New complete sample of identified radio sources. Part 2. Statistical study

    International Nuclear Information System (INIS)

    Soltan, A.

    1978-01-01

    Complete sample of radio sources with known redshifts selected in Paper I is studied. Source counts in the sample and the luminosity - volume test show that both quasars and galaxies are subject to the evolution. Luminosity functions for different ranges of redshifts are obtained. Due to many uncertainties only simplified models of the evolution are tested. Exponential decline of the liminosity with time of all the bright sources is in a good agreement both with the luminosity- volume test and N(S) realtion in the entire range of observed flux densities. It is shown that sources in the sample are randomly distributed in scales greater than about 17 Mpc. (author)

  10. Calibrating photometric redshifts of luminous red galaxies

    International Nuclear Information System (INIS)

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; Bridges, Terry; Brinkmann, Jonathan

    2005-01-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06 for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.

  11. Radio reconstruction of the mass of ultra-high cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Dorosti, Qader [Institut fuer Kernphysik (IKP), KIT (Germany)

    2015-07-01

    Detection of ultra-high energy cosmic rays can reveal the processes of the most violent sources in the Universe, which yet has to be determined. Interaction of cosmic rays with the Earth's atmosphere results in cascades of secondary particles, i.e. air showers. Many of such particles are electrons and positrons. The induced electrons and positrons interact with the geomagnetic field and induce radio emissions. Detection of air showers along with the detection of induced radio emissions can furnish a precise measurement of the direction, energy and mass of ultra-high energy cosmic rays. The Auger Engineering Radio Array consists of 124 radio stations measuring radio emission from air showers, in order to reconstruct the energy, direction and mass of cosmic rays. In this contribution, we present a method which employs a reduced hyperbolic model to describe the shape of radio wave front. We have investigated that the parameters of the reduced hyperbolic model are sensitive to the mass of cosmic rays. The obtained results are presented in this talk.

  12. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High-Redshift Radio Galaxies from Deep Fields ... Deep GMRT 150 MHz Observations of the DEEP2 Fields: Searching for High Red-Shift Radio Galaxies Revisited ... Articles are also visible in Web of Science immediately.

  13. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE

    International Nuclear Information System (INIS)

    Matthews, Daniel J.; Newman, Jeffrey A.

    2010-01-01

    Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to ∼0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alone Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys that sample

  14. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  15. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-03-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  16. The parameter of the dark energy equation of state for high redshifts

    International Nuclear Information System (INIS)

    Montiel, Ariadna; Breton, Nora

    2011-01-01

    We study the behavior of the parameter w(z) of the dark-energy equation of state, P x = w(z)ρ x , as function of the redshift data from GRBs, to check its deviations from its most accepted value of -1. To this end we first find a reasonable calibration for the GRB in order to extract the luminosity distance d L as a function of the redshift. Then we proceed to calculate the Hubble function H(z) and w(z).

  17. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    International Nuclear Information System (INIS)

    An Tao; Baan, Willem A.

    2012-01-01

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  18. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    An Tao [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai (China); Baan, Willem A., E-mail: antao@shao.ac.cn, E-mail: baan@astron.nl [ASTRON, P.O. Box 2, 7990-AA Dwingeloo (Netherlands)

    2012-11-20

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  19. Machine-z: Rapid Machine-Learned Redshift Indicator for Swift Gamma-Ray Bursts

    Science.gov (United States)

    Ukwatta, T. N.; Wozniak, P. R.; Gehrels, N.

    2016-01-01

    Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce 'machine-z', a redshift prediction algorithm and a 'high-z' classifier for Swift GRBs based on machine learning. Our method relies exclusively on canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve approximately 100 per cent recall. The most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor.

  20. Radio and optical studies of high luminosity Iras galaxies

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Parker, Q.A.; Savage, A.; MacGillivray, H.T.; Leggett, S.K.; Clowes, R.G.; Unger, S.W.; Pedlar, A.; Heasley, J.N.; Menzies, J.W.

    1987-01-01

    Follow-up observations of a complete sample of 154 IRAS galaxies, optically identified down to B=21, indicate that between 3 and 9% of the sample are ultraluminous depending on the choice of H 0 . VLA observations at 20 cm of the complete sample indicate that 85% are detected above 1mJy and for the most part the radio emission is centrally concentrated. The tight linear relation between radio and infrared luminosities is valid at the highest luminosities. Of the 11 most luminous objects one is a quasar: it fits the radio infrared relation very well which suggests that the infrared and radio emission has the same origin as in the other IRAS galaxies, ie. it probably originates primarily in regions of star formation in the host galaxy. The other 10 very luminous galaxies are either close but resolved mergers or double galaxies, presumably interacting. Radio observations of the 10 original empty field sources in our sample with no optical counterpart (B ≤ 21) allow us to conclude that 4 of these are fainter galaxies just outside the IRAS error ellipse with high values of L IR /L B . One other object, with a radio source at the edge of the error ellipse but no optical counterpart brighter than B = 23, may prove to be a highly luminous galaxy with L IR /L B > ∼ 1250

  1. THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Strandet, M. L.; Weiss, A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69 D-53121 Bonn (Germany); Vieira, J. D.; Furstenau, R. M. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); De Breuck, C.; Béthermin, M.; Gullberg, B. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Everett, W. [Department of Astrophysical and Planetary Sciences and Department of Physics, University of Colorado, Boulder, CO 80309 (United States); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); and others

    2016-05-10

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H{sub 2}O and NH{sub 3}. We further present Atacama Pathfinder Experiment [C ii] and CO mid- J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high- z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.

  2. Stochastic Order Redshift Technique (SORT): a simple, efficient and robust method to improve cosmological redshift measurements

    Science.gov (United States)

    Tejos, Nicolas; Rodríguez-Puebla, Aldo; Primack, Joel R.

    2018-01-01

    We present a simple, efficient and robust approach to improve cosmological redshift measurements. The method is based on the presence of a reference sample for which a precise redshift number distribution (dN/dz) can be obtained for different pencil-beam-like sub-volumes within the original survey. For each sub-volume we then impose that: (i) the redshift number distribution of the uncertain redshift measurements matches the reference dN/dz corrected by their selection functions and (ii) the rank order in redshift of the original ensemble of uncertain measurements is preserved. The latter step is motivated by the fact that random variables drawn from Gaussian probability density functions (PDFs) of different means and arbitrarily large standard deviations satisfy stochastic ordering. We then repeat this simple algorithm for multiple arbitrary pencil-beam-like overlapping sub-volumes; in this manner, each uncertain measurement has multiple (non-independent) 'recovered' redshifts which can be used to estimate a new redshift PDF. We refer to this method as the Stochastic Order Redshift Technique (SORT). We have used a state-of-the-art N-body simulation to test the performance of SORT under simple assumptions and found that it can improve the quality of cosmological redshifts in a robust and efficient manner. Particularly, SORT redshifts (zsort) are able to recover the distinctive features of the so-called 'cosmic web' and can provide unbiased measurement of the two-point correlation function on scales ≳4 h-1Mpc. Given its simplicity, we envision that a method like SORT can be incorporated into more sophisticated algorithms aimed to exploit the full potential of large extragalactic photometric surveys.

  3. Comments on the Redshift Distribution of 44,200 SDSS Quasars: Evidence for Predicted Preferred Redshifts?

    OpenAIRE

    Bell, M. B.

    2004-01-01

    A Sloan Digital Sky Survey (SDSS) source sample containing 44,200 quasar redshifts is examined. Although arguments have been put forth to explain some of the structure observed in the redshift distribution, it is argued here that this structure may just as easily be explained by the presence of previously predicted preferred redshifts.

  4. Probing the intergalactic medium with fast radio bursts

    International Nuclear Information System (INIS)

    Zheng, Z.; Ofek, E. O.; Kulkarni, S. R.; Neill, J. D.; Juric, M.

    2014-01-01

    The recently discovered fast radio bursts (FRBs), presumably of extragalactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dispersion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the He II reionization and the IGM magnetic field. Finally, we calculate the microlensing effect from an isolated, extragalactic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.

  5. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    Science.gov (United States)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  6. Selecting ultra-faint dwarf candidate progenitors in cosmological N-body simulations at high redshifts

    Science.gov (United States)

    Safarzadeh, Mohammadtaher; Ji, Alexander P.; Dooley, Gregory A.; Frebel, Anna; Scannapieco, Evan; Gómez, Facundo A.; O'Shea, Brian W.

    2018-06-01

    The smallest satellites of the Milky Way ceased forming stars during the epoch of reionization and thus provide archaeological access to galaxy formation at z > 6. Numerical studies of these ultrafaint dwarf galaxies (UFDs) require expensive cosmological simulations with high mass resolution that are carried out down to z = 0. However, if we are able to statistically identify UFD host progenitors at high redshifts with relatively high probabilities, we can avoid this high computational cost. To find such candidates, we analyse the merger trees of Milky Way type haloes from the high-resolution Caterpillar suite of dark matter only simulations. Satellite UFD hosts at z = 0 are identified based on four different abundance matching (AM) techniques. All the haloes at high redshifts are traced forward in time in order to compute the probability of surviving as satellite UFDs today. Our results show that selecting potential UFD progenitors based solely on their mass at z = 12 (8) results in a 10 per cent (20 per cent) chance of obtaining a surviving UFD at z = 0 in three of the AM techniques we adopted. We find that the progenitors of surviving satellite UFDs have lower virial ratios (η), and are preferentially located at large distances from the main MW progenitor, while they show no correlation with concentration parameter. Haloes with favorable locations and virial ratios are ≈3 times more likely to survive as satellite UFD candidates at z = 0.

  7. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Stark, Daniel P, E-mail: schenker@astro.caltech.edu [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-11-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy.

  8. High Capacity Radio over Fiber Transmission Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio

    . This achievement has satisfied the requirements on transmission robustness and high capacity of next generation hybrid optical fibre-wireless networks. One important contribution of this thesis is the novel concept of photonic downconversion with free-running pulsed laser source for phase modulated Radio-over-Fiber......This thesis expands the state-of-the-art on the detection of high speed wireless signals using optics. Signal detection at speeds over 1 Gbps at carrier Radio Frequency (RF) ranging from 5 GHz to 100 GHz have been achieved by applying novel concepts on optical digital coherent receivers......-wave frequencies at carrier frequencies exceeding 60 GHz, using photonic baseband technologies. For signal generation, high spectral-efficient optical modulation technologies are used together with optical heterodyning. In the detection side, the mm-wave signal is modulated in the optical domain and received using...

  9. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P., E-mail: jsbridge@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  10. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    International Nuclear Information System (INIS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-01-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  11. Intervening O vi Quasar Absorption Systems at Low Redshift: A Significant Baryon Reservoir.

    Science.gov (United States)

    Tripp; Savage; Jenkins

    2000-05-01

    Far-UV echelle spectroscopy of the radio-quiet QSO H1821+643 (zem=0.297), obtained with the Space Telescope Imaging Spectrograph (STIS) at approximately 7 km s-1 resolution, reveals four definite O vi absorption-line systems and one probable O vi absorber at 0.15quasar in redshift; these are likely intervening systems unrelated to the background QSO. In the case of the strong O vi system at zabs=0.22497, multiple components are detected in Si iii and O vi as well as H i Lyman series lines, and the differing component velocity centroids and b-values firmly establish that this is a multiphase absorption system. A weak O vi absorber is detected at zabs=0.22637, i.e., offset by approximately 340 km s-1 from the zabs=0.22497 system. Lyalpha absorption is detected at zabs=0.22613, but no Lyalpha absorption is significantly detected at 0.22637. Other weak O vi absorbers at zabs=0.24531 and 0.26659 and the probable O vi system at 0.21326 have widely diverse O vi/H i column density ratios with N(O vi)/N(H i) ranging from high, dN&solm0;dz approximately 48, which implies with a high (90%) confidence that it is greater than 17 in the low-redshift intergalactic medium. We conservatively estimate that the cosmological mass density of the O vi systems is Omegab(Ovi&parr0; greater, similar0.0008 h-175. With an assumed metallicity of 1/10 solar and a conservative assumption that the fraction of oxygen in the O vi ionization stage is 0.2, we obtain Omegab(Ovi&parr0; greater, similar0.004 h-175. This is comparable to the combined cosmological mass density of stars and cool gas in galaxies and X-ray-emitting gas in galaxy clusters at low redshift.

  12. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    International Nuclear Information System (INIS)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter; Berta, Stefano; Popesso, Paola; McKee, Christopher F.; Pozzi, Francesca

    2013-01-01

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 ∼> z ∼> 0.3) and luminosities, finding an average accuracy in (1 + z phot )/(1 + z spec ) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 μm flux ∼> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L IR ∼> 10 12 L ☉ ), and 3% of the total SFRD at z ∼ 2

  13. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102

    Science.gov (United States)

    Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.

    2018-01-01

    Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.

  14. An intensity map of hydrogen 21-cm emission at redshift z approximately 0.8.

    Science.gov (United States)

    Chang, Tzu-Ching; Pen, Ue-Li; Bandura, Kevin; Peterson, Jeffrey B

    2010-07-22

    Observations of 21-cm radio emission by neutral hydrogen at redshifts z approximately 0.5 to approximately 2.5 are expected to provide a sensitive probe of cosmic dark energy. This is particularly true around the onset of acceleration at z approximately 1, where traditional optical cosmology becomes very difficult because of the infrared opacity of the atmosphere. Hitherto, 21-cm emission has been detected only to z = 0.24. More distant galaxies generally are too faint for individual detections but it is possible to measure the aggregate emission from many unresolved galaxies in the 'cosmic web'. Here we report a three-dimensional 21-cm intensity field at z = 0.53 to 1.12. We then co-add neutral-hydrogen (H i) emission from the volumes surrounding about 10,000 galaxies (from the DEEP2 optical galaxy redshift survey). We detect the aggregate 21-cm glow at a significance of approximately 4sigma.

  15. The Hubble series: convergence properties and redshift variables

    International Nuclear Information System (INIS)

    Cattoen, Celine; Visser, Matt

    2007-01-01

    In cosmography, cosmokinetics and cosmology, it is quite common to encounter physical quantities expanded as a Taylor series in the cosmological redshift z. Perhaps the most well-known exemplar of this phenomenon is the Hubble relation between distance and redshift. However, we now have considerable high-z data available; for instance, we have supernova data at least back to redshift z ∼ 1.75. This opens up the theoretical question as to whether or not the Hubble series (or more generally any series expansion based on the z-redshift) actually converges for large redshift. Based on a combination of mathematical and physical reasonings, we argue that the radius of convergence of any series expansion in z is less than or equal to 1, and that z-based expansions must break down for z > 1, corresponding to a universe less than half of its current size. Furthermore, we shall argue on theoretical grounds for the utility of an improved parametrization y = z/(1 + z). In terms of the y-redshift, we again argue that the radius of convergence of any series expansion in y is less than or equal to 1, so that y-based expansions are likely to be good all the way back to the big bang (y = 1), but that y-based expansions must break down for y < -1, now corresponding to a universe more than twice its current size

  16. High energy astrophysics in radio-astronomical form

    International Nuclear Information System (INIS)

    Laan, H. van der

    1980-01-01

    The application of high energy astrophysics in observational astronomy, and in particular in radioastronomy, is considered. The current situation of extragalactic HEA, as brought to light by radio-astronomical techniques, is sketched. (C.F.)

  17. Discovery of a probable galaxy with a redshift of 3.218

    International Nuclear Information System (INIS)

    Djorgovski, S.; Spinard, H.; McCarthy, P.; Strauss, M.A.

    1985-01-01

    We report the discovery of a narrow emission line object, probably a galaxy, with a redshift of 3.218. The object is a companion to the quasar PKS 1614+051, which is at a redshift of 3.209. This is the most distant non--QSO, non--gravitationally lensed object presently known by a large margin. Its properties are consistent with those expected of a high-redshift galaxy. This object has an age of only a few percent of the present age of the universe. The object was discovered with a novel technique, which promises to push studies of distant galaxies to redshifts as high as those of the most distant quasars known, and which may eventually lead to the discovery of primeval galaxies. This discovery opens the way for studies of galaxies beyond z = 3, which should prove invaluable for observational cosmology

  18. Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field

    Science.gov (United States)

    Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.

    2018-05-01

    We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.

  19. PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL

    International Nuclear Information System (INIS)

    Bovy, Jo; Hogg, David W.; Weaver, Benjamin A.; Myers, Adam D.; Hennawi, Joseph F.; McMahon, Richard G.; Schiminovich, David; Sheldon, Erin S.; Brinkmann, Jon; Schneider, Donald P.

    2012-01-01

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques—which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data—and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  20. Cosmological measurements with forthcoming radio continuum surveys

    CSIR Research Space (South Africa)

    Raccanelli, A

    2012-08-01

    Full Text Available is to measure the cosmo- logical parameters of particular current interest. Among the biggest challenges in cosmology is to determine whether the standard � cold dark matter (CDM) model and its general relativity (GR) con- text are correct, or whether we need a... as a function of redshift and the bias of different source populations as a function of red- shift. These are required in order to make predictions for cosmo- logical probes, such as the autocorrelation function and the cross- correlation of radio...

  1. The many flavours of photometric redshifts

    Science.gov (United States)

    Salvato, Mara; Ilbert, Olivier; Hoyle, Ben

    2018-06-01

    Since more than 70 years ago, the colours of galaxies derived from flux measurements at different wavelengths have been used to estimate their cosmological distances. Such distance measurements, called photometric redshifts, are necessary for many scientific projects, ranging from investigations of the formation and evolution of galaxies and active galactic nuclei to precision cosmology. The primary benefit of photometric redshifts is that distance estimates can be obtained relatively cheaply for all sources detected in photometric images. The drawback is that these cheap estimates have low precision compared with resource-expensive spectroscopic ones. The methodology for estimating redshifts has been through several revolutions in recent decades, triggered by increasingly stringent requirements on the photometric redshift accuracy. Here, we review the various techniques for obtaining photometric redshifts, from template-fitting to machine learning and hybrid schemes. We also describe state-of-the-art results on current extragalactic samples and explain how survey strategy choices affect redshift accuracy. We close with a description of the photometric redshift efforts planned for upcoming wide-field surveys, which will collect data on billions of galaxies, aiming to investigate, among other matters, the stellar mass assembly and the nature of dark energy.

  2. New observational constraints on f(T) cosmology from radio quasars

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jing-Zhao; Cao, Shuo; Zhu, Zong-Hong [Beijing Normal University, Department of Astronomy, Beijing (China); Biesiada, Marek; Zheng, Xiaogang [Beijing Normal University, Department of Astronomy, Beijing (China); University of Silesia, Department of Astrophysics and Cosmology, Institute of Physics, Katowice (Poland)

    2017-08-15

    Using a new recently compiled milliarcsecond compact radio data set of 120 intermediate-luminosity quasars in the redshift range 0.46 < z < 2.76, whose statistical linear sizes show negligible dependence on redshifts and intrinsic luminosity and thus represent standard rulers in cosmology, we constrain three viable and most popular f(T) gravity models, where T is the torsion scalar in teleparallel gravity. Our analysis reveals that constraining power of the quasars data (N = 120) is comparable to the Union2.1 SN Ia data (N = 580) for all three f(T) models. Together with other standard ruler probes such as cosmic microwave background and baryon acoustic oscillation distance measurements, the present value of the matter density parameter Ω{sub m} obtained by quasars is much larger than that derived from other observations. For one of the models considered (f{sub 1}CDM) a small but noticeable deviation from ΛCDM cosmology is present, while in the framework of f{sub 3}CDM the effective equation of state may cross the phantom divide line at lower redshifts. These results indicate that intermediate-luminosity quasars could provide an effective observational probe comparable to SN Ia at much higher redshifts, and f(T) gravity is a reasonable candidate for the modified gravity theory. (orig.)

  3. Discovery of Very High Energy Gamma Rays from PKS 1424+240 and Multiwavelength Constraints on its Redshift

    Energy Technology Data Exchange (ETDEWEB)

    Acciari, V.A.; /Harvard-Smithsonian Ctr. Astrophys.; Aliu, E.; /Delaware U., Bartol Inst.; Arlen, T.; /UCLA; Aune, T.; /UC, Santa Cruz; Bautista, M.; /McGill U.; Beilicke, M. /Washington U., St. Louis; Benbow, W.; /Harvard-Smithsonian Ctr. Astrophys.; Bottcher, M.; /Ohio U.; Boltuch, D.; /Delaware U., Bartol Inst.; Bradbury, S.M.; /Leeds U.; Buckley, J.H.; /Washington U., St. Louis; Bugaev, V.; /Washington U., St. Louis; Byrum, K.; /Argonne; Cannon, A.; /University Coll., Dublin; Cesarini, A.; /Natl. U. of Ireland, Galway; Chow, Y.C.; /UCLA; Ciupik, L.; /Roosevelt U., Chicago; Cogan, P.; /McGill U.; Cui, W.; /Purdue U.; Duke, C.; /Grinnell Coll.; Falcone, A.; /Penn State U. /Purdue U. /Utah U. /Roosevelt U., Chicago /Harvard-Smithsonian Ctr. Astrophys. /Purdue U. /Natl. U. of Ireland, Galway /Utah U. /University Coll., Dublin /McGill U. /Roosevelt U., Chicago /McGill U. /Delaware U., Bartol Inst. /Utah U. /Chicago U., EFI /Iowa State U. /Roosevelt U., Chicago /DePauw U. /Utah U. /Pittsburg State U. /Washington U., St. Louis /Iowa State U. /Natl. U. of Ireland, Galway /Utah U. /McGill U. /Washington U., St. Louis /McGill U. /McGill U. /Purdue U. /Anderson U. /Galway-Mayo Inst. of Tech. /Iowa State U. /UCLA; /more authors..

    2012-04-05

    We report the first detection of very-high-energy (VHE) gamma-ray emission above 140GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140GeV measured by VERITAS is well described by a power law with a photon index of 3.8 {+-}0.5{sub stat} {+-} 0.3{sub syst} and a flux normalization at 200 GeV of (5.1 {+-} 0.9{sub stat} {+-} 0.5{sub syst}) x 10{sup -11} TeV{sup -1} cm{sup -2} s{sup -1}, where stat and syst denote the statistical and systematical uncertainty, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high energy observations with the Fermi Large Area Telescope (LAT). Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution (SED) is well described by a one-zone synchrotron self-Compton (SSC) model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light (EBL) absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.

  4. DISCOVERY OF VERY HIGH ENERGY GAMMA RAYS FROM PKS 1424+240 AND MULTIWAVELENGTH CONSTRAINTS ON ITS REDSHIFT

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Chow, Y. C.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Boettcher, M.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2010-01-01

    We report the first detection of very high energy 83 Gamma-ray emission above 100 GeV. (VHE) gamma-ray emission above 140 GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140 GeV measured by VERITAS is well described by a power law with a photon index of 3.8 ± 0.5 stat ± 0.3 syst and a flux normalization at 200 GeV of (5.1 ± 0.9 stat ± 0.5 syst ) x 10 -11 TeV -1 cm -2 s -1 , where stat and syst denote the statistical and systematical uncertainties, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (from 2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high-energy observations with the Fermi Large Area Telescope. Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution is well described by a one-zone synchrotron self-Compton model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.

  5. A Fast Radio Burst Every Second?

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    far. [Fialkov Loeb 2017]The FRB luminosity functionFRBs may all have the same intrinsic brightness (like Type Ia supernovae, for instance). Alternatively, there may be many more faint and dim FRBs than bright ones (like the distribution of galaxy luminosities). Thisdifference affects the number of FRBs we could detect.The host galaxy populationAre FRBs most commonly hosted by low-mass galaxies like FRB 121102? Or do they occur in high-mass galaxies as well? This affects the number of FRBs we would expect to observe at different redshifts.Future HopeBy exploring a range of models that vary these three factors, Fialkov and Loeb find estimates for the rate of FRBs that would appear inthe 500 MHz3.5 GHz frequency band probed by observatories like Parkes, Arecibo, and the Australian Square Kilometre Array Pathfinder (ASKAP).Fialkov and Loeb find that, when we account for faint sources, one FRB may occur per second across the sky in this band. The authors show that future low-frequency radio telescopes with higher sensitivity, such as the Square Kilometre Array, should be able to detect many more of these sources, helping us to differentiate between the models and narrow down the properties of the bursts and their hosts. This, in turn, may finally reveal what causes these mysterious signals.CitationAnastasia Fialkov and Abraham Loeb 2017 ApJL 846 L27. doi:10.3847/2041-8213/aa8905

  6. One millimeter continuum observations of high redshift quasars

    International Nuclear Information System (INIS)

    Ennis, D.J.; Soifer, B.T.

    1981-01-01

    Upper limits to the one-millimeter continuum flux densities of the high redshift quasars B2 1225 + 31, Ton 490, and PHL 957 are presented. The upper limit to the power observed from these quasars at 1 mm is, on the average, one half of the observed power in the continuum at L-alpha. These observations are used to constrain the temperature of a hypothetical dust shell which reddens the quasar line and continuum emission by an extinction optical depth sufficient to account for the anomalously low L-alpha/H-alpha emission line ratio observed in each of these quasars. For the quasars studied, dust shell temperatures between 25 K and 50 to 95 K are prohibited by the present data. A dust shell at a temperature within this span reradiating all the power absorbed from the quasar ultraviolet continuum would produce a one-millimeter flux density greater than the measured upper limit. The average radius of the model dust shell cannot be between 70 kpc and 1 Mpc

  7. COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Wei; Zhang, Bing, E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2014-03-10

    If a small fraction of fast radio bursts (FRBs) are associated with gamma-ray bursts (GRBs), as recently suggested by Zhang, the combination of redshift measurements of GRBs and dispersion measure (DM) measurements of FRBs opens a new window to study cosmology. At z < 2 where the universe is essentially fully ionized, detections of FRB/GRB pairs can give an independent measurement of the intergalactic medium portion of the baryon mass fraction, Ω {sub b} f {sub IGM}, of the universe. If a good sample of FRB/GRB associations are discovered at higher redshifts, the free electron column density history can be mapped, which can be used to probe the reionization history of both hydrogen and helium in the universe. We apply our formulation to GRBs 101011A and 100704A that each might have an associated FRB, and constrained Ω {sub b} f {sub IGM} to be consistent with the value derived from other methods. The methodology developed here is also applicable, if the redshifts of FRBs not associated with GRBs can be measured by other means.

  8. COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS

    International Nuclear Information System (INIS)

    Deng, Wei; Zhang, Bing

    2014-01-01

    If a small fraction of fast radio bursts (FRBs) are associated with gamma-ray bursts (GRBs), as recently suggested by Zhang, the combination of redshift measurements of GRBs and dispersion measure (DM) measurements of FRBs opens a new window to study cosmology. At z < 2 where the universe is essentially fully ionized, detections of FRB/GRB pairs can give an independent measurement of the intergalactic medium portion of the baryon mass fraction, Ω b f IGM , of the universe. If a good sample of FRB/GRB associations are discovered at higher redshifts, the free electron column density history can be mapped, which can be used to probe the reionization history of both hydrogen and helium in the universe. We apply our formulation to GRBs 101011A and 100704A that each might have an associated FRB, and constrained Ω b f IGM to be consistent with the value derived from other methods. The methodology developed here is also applicable, if the redshifts of FRBs not associated with GRBs can be measured by other means

  9. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  10. COSMOLOGICAL CONCORDANCE OR CHEMICAL COINCIDENCE? DEUTERATED MOLECULAR HYDROGEN ABUNDANCES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Tumlinson, J.; Malec, A. L.; Murphy, M. T.; Carswell, R. F.; Jorgenson, R. A.; Buning, R.; Ubachs, W.; Milutinovic, N.; Ellison, S. L.; Prochaska, J. X.; Wolfe, A. M.

    2010-01-01

    We report two detections of deuterated molecular hydrogen (HD) in QSO absorption-line systems at z>2. Toward J2123-0500, we find N(HD) =13.84 ± 0.2 for a sub-Damped Lyman Alpha system (DLA) with metallicity ≅0.5Z sun and N(H 2 ) = 17.64 ± 0.15 at z = 2.0594. Toward FJ0812+32, we find N(HD) =15.38 ± 0.3 for a solar-metallicity DLA with N(H 2 ) = 19.88 ± 0.2 at z = 2.6265. These systems have ratios of HD to H 2 above that observed in dense clouds within the Milky Way disk and apparently consistent with a simple conversion from the cosmological ratio of D/H. These ratios are not readily explained by any available model of HD chemistry, and there are no obvious trends with metallicity or molecular content. Taken together, these two systems and the two published z>2 HD-bearing DLAs indicate that HD is either less effectively dissociated or more efficiently produced in high-redshift interstellar gas, even at low molecular fraction and/or solar metallicity. It is puzzling that such diverse systems should show such consistent HD/H 2 ratios. Without clear knowledge of all the aspects of HD chemistry that may help determine the ratio HD/H 2 , we conclude that these systems are potentially more revealing of gas chemistry than of D/H itself and that it is premature to use such systems to constrain D/H at high redshift.

  11. Morphology and astrometry of Infrared-Faint Radio Sources

    Science.gov (United States)

    Middelberg, Enno; Norris, Ray; Randall, Kate; Mao, Minnie; Hales, Christopher

    2008-10-01

    Infrared-Faint Radio Sources, or IFRS, are an unexpected class of object discovered in the Australia Telescope Large Area Survey, ATLAS. They are compact 1.4GHz radio sources with no visible counterparts in co-located (relatively shallow) Spitzer infrared and optical images. We have detected two of these objects with VLBI, indicating the presence of an AGN. These observations and our ATLAS data indicate that IFRS are extended on scales of arcseconds, and we wish to image their morphologies to obtain clues about their nature. These observations will also help us to select optical counterparts from very deep, and hence crowded, optical images which we have proposed. With these data in hand, we will be able to compare IFRS to known object types and to apply for spectroscopy to obtain their redshifts.

  12. The first VLBI image of an infrared-faint radio source

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.

    2008-11-01

    Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  13. LOWER BOUNDS ON PHOTOMETRIC REDSHIFT ERRORS FROM TYPE Ia SUPERNOVA TEMPLATES

    International Nuclear Information System (INIS)

    Asztalos, S.; Nikolaev, S.; De Vries, W.; Olivier, S.; Cook, K.; Wang, L.

    2010-01-01

    Cosmology with Type Ia supernova heretofore has required extensive spectroscopic follow-up to establish an accurate redshift. Though this resource-intensive approach is tolerable at the present discovery rate, the next generation of ground-based all-sky survey instruments will render it unsustainable. Photometry-based redshift determination may be a viable alternative, though the technique introduces non-negligible errors that ultimately degrade the ability to discriminate between competing cosmologies. We present a strictly template-based photometric redshift estimator and compute redshift reconstruction errors in the presence of statistical errors. Under highly degraded photometric conditions corresponding to a statistical error σ of 0.5, the residual redshift error is found to be 0.236 when assuming a nightly observing cadence and a single Large Synoptic Science Telescope (LSST) u-band filter. Utilizing all six LSST bandpass filters reduces the residual redshift error to 9.1 x 10 -3 . Assuming a more optimistic statistical error σ of 0.05, we derive residual redshift errors of 4.2 x 10 -4 , 5.2 x 10 -4 , 9.2 x 10 -4 , and 1.8 x 10 -3 for observations occuring nightly, every 5th, 20th and 45th night, respectively, in each of the six LSST bandpass filters. Adopting an observing cadence in which photometry is acquired with all six filters every 5th night and a realistic supernova distribution, binned redshift errors are combined with photometric errors with a σ of 0.17 and systematic errors with a σ∼ 0.003 to derive joint errors (σ w , σ w ' ) of (0.012, 0.066), respectively, in (w,w') with 68% confidence using Fisher matrix formalism. Though highly idealized in the present context, the methodology is nonetheless quite relevant for the next generation of ground-based all-sky surveys.

  14. Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars

    DEFF Research Database (Denmark)

    Ganguly, Rajib; Brotherton, Michael S.; Arav, Nahum

    2007-01-01

    We present low-resolution ultraviolet spectra of 14 low redshift (z zz 1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasar......, HE0441-2826, contains extremely weak emission lines and our spectrum is consistent with a simple power-law continuum. The quasar is radio-loud, but has a steep spectral index and a lobe-dominated morphology, which argues against it being a blazar. The unusual spectrum of this quasar resembles...... the spectra of the quasars PG1407+265, SDSSJ1136+0242, and PKS1004+13 for which several possible explanations have been entertained....

  15. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Atek, H.; Colbert, J.; Shim, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Siana, B.; Bridge, C. [Department of Astronomy, Caltech, Pasadena, CA 91125 (United States); Scarlata, C. [Department of Astronomy, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); McCarthy, P.; Dressler, A.; Hathi, N. P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Henry, A.; Martin, C. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bunker, A. J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Fosbury, R. A. E. [Space Telescope-European Coordinating Facility, Garching bei Muenchen (Germany)

    2011-12-20

    The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin{sup 2} area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 {+-} 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z {approx} 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies

  16. On the Redshift of TeV BL Lac Objects

    Energy Technology Data Exchange (ETDEWEB)

    Paiano, Simona; Falomo, Renato [INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5 I-35122 Padova (PD) (Italy); Landoni, Marco; Righi, Chiara [INAF, Osservatorio Astronomico di Brera, Via E. Bianchi 46 I-23807 Merate (Italy); Treves, Aldo [Università degli Studi dell’Insubria, Via Valleggio 11 I-22100 Como (Italy); Scarpa, Riccardo [Instituto de Astrofisica de Canarias, C/O Via Lactea, s/n E38205—La Laguna (Tenerife) (Spain)

    2017-03-10

    We report results of a spectroscopic campaign carried out at the 10 m Gran Telescopio Canarias for a sample of 22 BL Lac objects detected (or candidates) at TeV energies, aiming to determine or constrain their redshift. This is of fundamental importance for the interpretation of their emission models and for population studies and is also mandatory for studying the interaction of high-energy photons with the extragalactic background light using TeV sources. Optical spectra with high signal-to-noise ratios in the range 4250–10000 Å were obtained to search for faint emission or absorption lines from both the host galaxy and the nucleus. We determine a new redshift for PKS 1424+240 ( z = 0.604) and a tentative one for 1ES 0033+595 ( z = 0.467). We are able to set new spectroscopic redshift lower limits for three other sources on the basis of Mg ii and Ca ii intervening absorption features: BZB J1243+3627 ( z > 0.483), BZB J1540+8155 ( z > 0.672), and BZB 0J2323+4210 ( z > 0.267). We confirm previous redshift estimates for four blazars: S3 0218+357 ( z = 0.944), 1ES 1215+303 ( z = 0.129), W Comae ( z = 0.102), and MS 1221.8+2452 ( z = 0.218). For the remaining targets, in seven cases (S2 0109+22, 3C 66A, VER J0521+211, S4 0954+65, BZB J1120+4214, S3 1227+25, BZB J2323+4210), we do not validate the proposed redshift. Finally, for all sources of still-unknown redshift, we set a lower limit based on the minimum equivalent width of absorption features expected from the host galaxy.

  17. Radio emission of Abell Clusters in the GB region

    International Nuclear Information System (INIS)

    Michalec, A.

    1977-01-01

    In the GB survey region (Maslowski 1972) there are 102 Abell Clusters (Abell 1958) 31 of them coincide with the positions of Gb radio sources. The number of random coincidences was estimated from a Poisson distribution. For 19 cluster from this group, the observations at 2695 MHz were made with the same instrument. The clusters' redshifts were estimated. On the basis of this material, an analysis of the luminosity function for these cluster was carried out. (author)

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High-Redshift Radio Galaxies from Deep Fields ... (GMRT) to exploit this correlation at flux density levels about 100 times deeper ... Deep GMRT 150 MHz Observations of the DEEP2 Fields: Searching for High Red-Shift Radio Galaxies Revisited ... Articles are also visible in Web of Science immediately.

  19. On the moment of inertia and surface redshift of neutron star

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Using temperature, density and isospin dependent nuclear equation of state, the authors calculated the moment of inertia and surface redshift of neutron star by resolving Tolman-Oppenheimer-Volkoff equation. It is found that the moment of inertia and surface redshift strongly depend on the nuclear equation of state. The equation of state with high value of un-compressibility and symmetry energy strength coefficient provides a big moment of inertia, while effective mass of nucleon has almost no effect on moment of inertia. Meanwhile, the equation of state with high value of un-compressibility and effective mass of nucleon provides a big surface redshift, while the symmetry energy strength coefficient has almost no effect on surface redshift of neutron star. The relationship between moment of inertia and mass is also given. By comparing the calculated results with the one obtained semi-empirically from astronomy, the authors find that a softer equation of state can provide a more reasonable result

  20. Relics in galaxy clusters at high radio frequencies

    Science.gov (United States)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-04-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  1. LIMITS ON THE EVENT RATES OF FAST RADIO TRANSIENTS FROM THE V-FASTR EXPERIMENT

    International Nuclear Information System (INIS)

    Wayth, Randall B.; Tingay, Steven J.; Deller, Adam T.; Brisken, Walter F.; Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.

    2012-01-01

    We present the first results from the V-FASTR experiment, a commensal search for fast transient radio bursts using the Very Long Baseline Array (VLBA). V-FASTR is unique in that the widely spaced VLBA antennas provide a discriminant against non-astronomical signals and a mechanism for the localization and identification of events that is not possible with single dishes or short baseline interferometers. Thus, far V-FASTR has accumulated over 1300 hr of observation time with the VLBA, between 90 cm and 3 mm wavelength (327 MHz-86 GHz), providing the first limits on fast transient event rates at high radio frequencies (>1.4 GHz). V-FASTR has blindly detected bright individual pulses from seven known pulsars but has not detected any single-pulse events that would indicate high-redshift impulsive bursts of radio emission. At 1.4 GHz, V-FASTR puts limits on fast transient event rates comparable with the PALFA survey at the Arecibo telescope, but generally at lower sensitivities, and comparable to the 'fly's eye' survey at the Allen Telescope Array, but with less sky coverage. We also illustrate the likely performance of the Phase 1 SKA dish array for an incoherent fast transient search fashioned on V-FASTR.

  2. Spectroscopy of 125 QSO candidates and radio galaxies

    International Nuclear Information System (INIS)

    Wills, B.J.; Wills, D.

    1980-01-01

    Spectroscopic observations of 125 QSO candidates and radio galaxies are reported, many of which are optical identifications of radio sources in the deep survey in progress at the University of Texas Radio Astronomy Observatory (UTRAO). The remainder include optical identifications of sources in other radio surveys and radio-quiet objects selected by their ultraviolet continua or optical variability. Optical positions are given with O''.5 accuracy for 56 of the objects.Forty objects are confirmed as QSOs; redshifts are given for 38 of them and for 18 galaxies. There are also seven objects with apparently continuous spectra: some of them were already known or suspected to be BL Lacertae objects. Twenty-nine objects were found to be Galactic stars, and the results for the remaining 31 are inconclusive, although 12 of them are probable QSOs and six are probable stars.Our spectroscopy of a sample of 90 blue stellar objects found within 3'' of the UTRAO radio positions (including results from two earlier papers) shows that 81 (90%) are QSOs, with inconclusive results fo the other nine; none of the 90 is known to be a star. Even within 5'' of the UTRAO positions, 111 of 128 blue objects (87%) are QSOs, and only five (4%) are known or suspected to be stars. Among 21 red or neutral-color, apparently stellar objects within 3'' of the UTRAO positions, six are QSOs or compact galaxies, 13 are stars, and the results for two more are inconclusive

  3. Planck intermediate results XXXIX. The Planck list of high-redshift source candidates

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    2016-01-01

    on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151......The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based...... Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent...

  4. The effects of the small-scale DM power on the cosmological neutral hydrogen (HI) distribution at high redshifts

    International Nuclear Information System (INIS)

    Sarkar, Abir; Sethi, Shiv K.; Mondal, Rajesh; Bharadwaj, Somnath; Das, Subinoy; Marsh, David J.E.

    2016-01-01

    The particle nature of dark matter remains a mystery. In this paper, we consider two dark matter models—Late Forming Dark Matter (LFDM) and Ultra-Light Axion (ULA) models—where the matter power spectra show novel effects on small scales. The high redshift universe offers a powerful probe of their parameters. In particular, we study two cosmological observables: the neutral hydrogen (HI) redshifted 21-cm signal from the epoch of reionization, and the evolution of the collapsed fraction of HI in the redshift range 2 < z < 5. We model the theoretical predictions of the models using CDM-like N-body simulations with modified initial conditions, and generate reionization fields using an excursion set model. The N-body approximation is valid on the length and halo mass scales studied. We show that LFDM and ULA models predict an increase in the HI power spectrum from the epoch of reionization by a factor between 2–10 for a range of scales 0.1 < k < 4 Mpc −1 . Assuming a fiducial model where a neutral hydrogen fraction x-bar HI  = 0.5 must be achieved by z = 8, the reionization process allows us to put approximate bounds on the redshift of dark matter formation z f  > 4 × 10 5 (for LFDM) and the axion mass m a  > 2.6 × 10 −23  eV (for ULA). The comparison of the collapsed mass fraction inferred from damped Lyman-α observations to the theoretical predictions of our models lead to the weaker bounds: z f  > 2 × 10 5 and m a  > 10 −23  eV. These bounds are consistent with other constraints in the literature using different observables; we briefly discuss how these bounds compare with possible constraints from the observation of luminosity function of galaxies at high redshifts. In the case of ULAs, these constraints are also consistent with a solution to the cusp-core problem of CDM

  5. Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies

    Science.gov (United States)

    Graham, Melissa L.; Connolly, Andrew J.; Ivezić, Željko; Schmidt, Samuel J.; Jones, R. Lynne; Jurić, Mario; Daniel, Scott F.; Yoachim, Peter

    2018-01-01

    In this paper we present and characterize a nearest-neighbors color-matching photometric redshift estimator that features a direct relationship between the precision and accuracy of the input magnitudes and the output photometric redshifts. This aspect makes our estimator an ideal tool for evaluating the impact of changes to LSST survey parameters that affect the measurement errors of the photometry, which is the main motivation of our work (i.e., it is not intended to provide the “best” photometric redshifts for LSST data). We show how the photometric redshifts will improve with time over the 10 year LSST survey and confirm that the nominal distribution of visits per filter provides the most accurate photo-z results. The LSST survey strategy naturally produces observations over a range of airmass, which offers the opportunity of using an SED- and z-dependent atmospheric affect on the observed photometry as a color-independent redshift indicator. We show that measuring this airmass effect and including it as a prior has the potential to improve the photometric redshifts and can ameliorate extreme outliers, but that it will only be adequately measured for the brightest galaxies, which limits its overall impact on LSST photometric redshifts. We furthermore demonstrate how this airmass effect can induce a bias in the photo-z results, and caution against survey strategies that prioritize high-airmass observations for the purpose of improving this prior. Ultimately, we intend for this work to serve as a guide for the expectations and preparations of the LSST science community with regard to the minimum quality of photo-z as the survey progresses.

  6. Center for astrophysics redshift survey

    International Nuclear Information System (INIS)

    Davis, M.; Huchra, J.; Latham, D.

    1983-01-01

    Major advances in the art of redshift measurements have improved the obtainable accuracy to better than 30 km/s. It is now posible to obtain a redshift for almost any galaxy brighter than 15th magnitude on a 60-inch telescope in 60 minutes or less. These advances were utilized in an observation program initiated in the spring of 1978. This program represents a survey of radial velocities for all 2400 galaxies brighter than 14.5 at high galactic latitude in the northern hemisphere. The obtained data set has been employed as a basis for a derivation of a good measure of the local mean mass density. In addition, information was obtained concerning the overdensity and the dynamics of the local supercluster, and an analysis was conducted of the dynamics of groups and clusters of galaxies within the sample volume. 16 references

  7. Spacetimes admitting a universal redshift function

    International Nuclear Information System (INIS)

    Dautcourt, G.

    1987-01-01

    The conditions are given for a velocity congruence in a Riemannian spacetime admitting a universal redshift function R. This function allows to calculate in a simple way (as a quotient of R values taken at the emission and registration event) the redshift or blueshift connected with an emitter and observer both following the congruence. Spacetimes and congruences with an universal redshift function are shortly discussed. (author)

  8. GALEX FAR-ULTRAVIOLET COLOR SELECTION OF UV-BRIGHT HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Worseck, Gabor; Prochaska, J. Xavier

    2011-01-01

    We study the small population of high-redshift (z em >2.7) quasars detected by the Galaxy Evolution Explorer(GALEX), whose far-UV emission is not extinguished by intervening H I Lyman limit systems. These quasars are of particular importance to detect intergalactic He II absorption along their sight lines. We correlate almost all verified z em >2.7 quasars to the GALEX GR4 source catalog covering ∼ 25,000 deg 2 , yielding 304 sources detected at signal-to-noise ratio (S/N) >3. However, ∼50% of these are only detected in the GALEX NUV band, signaling the truncation of the FUV flux by low-redshift optically thick Lyman limit systems. We exploit the GALEX UV color m FUV - m NUV to cull the most promising targets for follow-up studies, with blue (red) GALEX colors indicating transparent (opaque) sight lines. Extensive Monte Carlo simulations indicate an He II detection rate of ∼60% for quasars with m FUV - m NUV ∼ em ∼ 3 to be most promising for Hubble Space Telescope follow-up, with an additional 114 quasars if we consider S/N >2 detections in the FUV. Combining the statistical properties of H I absorbers with the Sloan Digital Sky Survey (SDSS) quasar luminosity function, we predict a large all-sky population of ∼200 quasars with z em >2.7 and i ∼ 304 em ∼ em ∼ em ∼< 3.5 quasars have likely underestimated their space density by selecting intergalactic medium sight lines with an excess of strong H I absorbers.

  9. Automated reliability assessment for spectroscopic redshift measurements

    Science.gov (United States)

    Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2018-03-01

    Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for

  10. Early growth of typical high-redshift black holes seeded by direct collapse

    Science.gov (United States)

    Latif, Muhammad A.; Volonteri, Marta; Wise, John H.

    2018-06-01

    Understanding the growth of high-redshift massive black holes (MBHs) is a problem of great astrophysical interest. The most luminous quasars at z > 6 are frequently observed but they represent only the tip of the iceberg as the majority of the low-luminosity active galactic nuclei (AGN) population remains undetected. In this study, we perform a radiation hydrodynamics cosmological simulation to study the growth of `normal' black holes in the high-redshift universe. In our simulation, we model the formation of Pop III and Pop II stars along with their chemical, mechanical, and radiative feedback. We consider both UV and X-ray emission from an accreting BH to simulate its radiative feedback. The selected halo has a mass of 3 × 10^{10} M_{⊙} at z = 7.5 and we turn on radiative feedback from a MBH seed of 10^5 M_{⊙} along with in situ star formation at z = 12 when the halo mass reaches well above the atomic cooling limit. We find that the MBH accretes only about 2200 M_{⊙} during 320 Myr and the average mass accretion on to the MBH is a few times 10^{-6} M_{⊙} yr^{-1}. Our results suggest that the stunted growth of MBH is a consequence of supernovae in tandem with MBH feedback which drive large outflows and evacuate the gas from MBH vicinity. This may explain why a population of low-luminosity AGN has not been detected so-far at z > 6; the large contrast between the star formation rate and the MBH accretion rate may make then hard to detect even in upcoming deep surveys.

  11. Multipole analysis of redshift-space distortions around cosmic voids

    Science.gov (United States)

    Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15

  12. Multipole analysis of redshift-space distortions around cosmic voids

    Energy Technology Data Exchange (ETDEWEB)

    Hamaus, Nico; Weller, Jochen [Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians Universität, Scheinerstr. 1, D-81679 München (Germany); Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie, E-mail: hamaus@usm.lmu.de, E-mail: cousinou@cppm.in2p3.fr, E-mail: pisani@cppm.in2p3.fr, E-mail: maubert@cppm.in2p3.fr, E-mail: escoffier@cppm.in2p3.fr, E-mail: jochen.weller@usm.lmu.de [Aix Marseille Univ., CNRS/IN2P3, CPPM, 163 avenue de Luminy, F-13288, Marseille (France)

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.

  13. Multipole analysis of redshift-space distortions around cosmic voids

    International Nuclear Information System (INIS)

    Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie

    2017-01-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h −1 Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599 +0.134 −0.124 and β( z-bar =0.54)=0.457 +0.056 −0.054 , with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.

  14. THE ENVIRONMENTS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Kim, Soyoung; Stiavelli, Massimo; Trenti, M.; Pavlovsky, C. M.; Djorgovski, S. G.; Scarlata, C.; Stern, D.; Mahabal, A.; Thompson, D.; Panagia, N.; Dickinson, M.; Meylan, G.

    2009-01-01

    We present a sample of i 775 -dropout candidates identified in five Hubble Advanced Camera for Surveys (ACS) fields centered on Sloan Digital Sky Survey quasi-stellar objects (QSOs) at redshift z ∼ 6. Our fields are as deep as the GOODS ACS images, which are used as a reference field sample. We find them to be overdense in two fields, underdense in two fields, and as dense as the average density of GOODS in one field. The two excess fields show significantly different color distributions from that of GOODS at the 99% confidence level, strengthening the idea that the excess objects are indeed associated with the QSO. The distribution of i 775 -dropout counts in the five fields is broader than that derived from GOODS at the 80%-96% confidence level, depending on which selection criteria were adopted to identify i 775 -dropouts; its width cannot be explained by cosmic variance alone. Thus, QSOs seem to affect their environments in complex ways. We suggest the picture where the highest redshift QSOs are located in very massive overdensities and are therefore surrounded by an overdensity of lower mass halos. Radiative feedback by the QSO can in some cases prevent halos from becoming galaxies, thereby generating in extreme cases an underdensity of galaxies. The presence of both enhancement and suppression is compatible with the expected differences between lines of sight at the end of reionization as the presence of residual diffuse neutral hydrogen would provide young galaxies with shielding from the radiative effects of the QSO.

  15. Implications of fast radio bursts for superconducting cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yun-Wei [Institute of Astrophysics, Central China Normal University, 152 Luoyu Road, Wuhan 430079 (China); Cheng, Kwong-Sang [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Shiu, Gary; Tye, Henry, E-mail: yuyw@phy.ccnu.edu.cn, E-mail: hrspksc@hku.hk, E-mail: shiu@ust.hk, E-mail: iastye@ust.hk [Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

    2014-11-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch.

  16. Implications of fast radio bursts for superconducting cosmic strings

    International Nuclear Information System (INIS)

    Yu, Yun-Wei; Cheng, Kwong-Sang; Shiu, Gary; Tye, Henry

    2014-01-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch

  17. High-energy neutrinos from FR0 radio galaxies?

    Science.gov (United States)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  18. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    Energy Technology Data Exchange (ETDEWEB)

    Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Corsi, Alessandra [Department of Physics, The George Washington University, 725 21st Street, NW, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kasliwal, Mansi M. [Carnegie Institution for Science, Department of Terrestrial Magnetism, 5241 Broad Branch Road, Washington, DC 20008 (United States)

    2013-11-20

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  19. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, Shrinivas R.; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Kasliwal, Mansi M.

    2013-01-01

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  20. High-redshift Blazars through NuSTAR Eyes

    Energy Technology Data Exchange (ETDEWEB)

    Marcotulli, L.; Paliya, V. S.; Ajello, M.; Kaur, A.; Hartmann, D. H. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Gasparrini, D. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00133 Roma (Italy); Greiner, J.; Rau, A.; Schady, P. [Max Planck Institute für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Baloković, M. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Madejski, G., E-mail: lmarcot@g.clemson.edu, E-mail: vpaliya@g.clemson.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2017-04-20

    The most powerful sources among the blazar family are MeV blazars. Often detected at z > 2, they usually display high X- and γ -ray luminosities, larger-than-average jet powers, and black hole masses ≳10{sup 9} M {sub ☉}. In the present work, we perform a multiwavelength study of three high-redshift blazars: 3FGL J0325.5+2223 ( z = 2.06), 3FGL J0449.0+1121 ( z = 2.15), and 3FGL J0453.2−2808 ( z = 2.56), analyzing quasi-simultaneous data from GROND, Swift -UVOT and XRT, Nuclear Spectroscopic Telescope Array ( NuSTAR ), and Fermi -LAT. Our main focus is on the hard X-ray band recently unveiled by NuSTAR (3–79 keV) where these objects show a hard spectrum that enables us to constrain the inverse Compton (IC) peak and the jet power. We found that all three targets resemble the most powerful blazars, with the synchrotron peak located in the submillimeter range and the IC peak in the MeV range, and therefore belong to the MeV blazar class. Using a simple one-zone leptonic emission model to reproduce the spectral energy distributions, we conclude that a simple combination of synchrotron and accretion disk emission reproduces the infrared–optical spectra, while the X-ray to γ -ray part is well reproduced by the IC scattering of low-energy photons supplied by the broad-line region. The black hole masses for each of the three sources are calculated to be ≳4 × 10{sup 8} M {sub ☉}. The three studied sources have jet power at the level of, or beyond, the accretion luminosity.

  1. High-redshift Blazars through NuSTAR Eyes

    International Nuclear Information System (INIS)

    Marcotulli, L.; Paliya, V. S.; Ajello, M.; Kaur, A.; Hartmann, D. H.; Gasparrini, D.; Greiner, J.; Rau, A.; Schady, P.; Baloković, M.; Stern, D.; Madejski, G.

    2017-01-01

    The most powerful sources among the blazar family are MeV blazars. Often detected at z > 2, they usually display high X- and γ -ray luminosities, larger-than-average jet powers, and black hole masses ≳10 9 M ☉ . In the present work, we perform a multiwavelength study of three high-redshift blazars: 3FGL J0325.5+2223 ( z = 2.06), 3FGL J0449.0+1121 ( z = 2.15), and 3FGL J0453.2−2808 ( z = 2.56), analyzing quasi-simultaneous data from GROND, Swift -UVOT and XRT, Nuclear Spectroscopic Telescope Array ( NuSTAR ), and Fermi -LAT. Our main focus is on the hard X-ray band recently unveiled by NuSTAR (3–79 keV) where these objects show a hard spectrum that enables us to constrain the inverse Compton (IC) peak and the jet power. We found that all three targets resemble the most powerful blazars, with the synchrotron peak located in the submillimeter range and the IC peak in the MeV range, and therefore belong to the MeV blazar class. Using a simple one-zone leptonic emission model to reproduce the spectral energy distributions, we conclude that a simple combination of synchrotron and accretion disk emission reproduces the infrared–optical spectra, while the X-ray to γ -ray part is well reproduced by the IC scattering of low-energy photons supplied by the broad-line region. The black hole masses for each of the three sources are calculated to be ≳4 × 10 8 M ☉ . The three studied sources have jet power at the level of, or beyond, the accretion luminosity.

  2. The History and Evolution of Young and Distant Radio Sources

    Science.gov (United States)

    Collier, Jordan

    We study two classes of object to gain a better understanding of the evolution of Active Galactic Nuclei (AGN): Infrared-Faint Radio Sources (IFRSs) and Gigahertz Peaked Spectrum (GPS) / Compact Steep Spectrum (CSS) sources. IFRSs are a recently discovered rare class of object, which were found to be strong in the radio but undetectable in extremely sensitive infrared observations from the Spitzer Space Telescope, even in stacked images with sigma 3. Therefore, IFRSs may significantly increase the number of known high-redshift galaxies. However, their non-detections in the optical and infrared prevented confirmation of their nature. Previous studies of IFRSs focused on very sensitive observations of a few small regions of the sky, and the largest sample consisted of 55 IFRSs. However, we follow the strategy of combining radio data with IR and optical data for a large region of the sky. Using these data, we discover a population of >1300 brighter IFRSs which are, for the first time, reliably detected in the infrared and optical. We present the first spectroscopic redshifts of IFRSs and show that the brightest IFRSs are at z > 2. Furthermore, we rule out that IFRSs are Star Forming Galaxies, hotspots, lobes or misidentifications. We find the first X-ray counterparts of IFRSs, and increase the number of known polarised IFRSs five-fold. We present an analysis of their radio spectra and show that IFRSs consist of GPS, CSS and ultra-steep-spectrum sources. We follow up >50 of these using VLBI observations, and confirm the AGN status of IFRSs. GPS and CSS sources are compact radio sources with a convex radio spectrum. They are widely thought to represent young and evolving radio galaxies that have recently launched their jets. However, good evidence exists in individual cases that GPS and CSS sources are one of the following: 1) frustrated by interactions with dense gas and dust in their environment; 2) prematurely dying radio sources; 3) recurrent radio galaxies. Their

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Science.gov (United States)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 web site is http://www.vipers.inaf.it/

  4. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  5. H{sub 2}O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. S.; Liu, Z. W. [Center for Astrophysics, Guangzhou University, Guangzhou, 510006 (China); Henkel, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Wang, J. Z. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Coldwell, G. V., E-mail: jszhang@gzhu.edu.cn [FCEFyN-UNSJ-CONICET, San Juan (Argentina)

    2017-02-20

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H{sub 2}O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 ( z ∼ 0.0448), was detected four times during our observations, with a typical maser flux density of ∼30 mJy and a corresponding (very large) luminosity of ∼1135 L {sub ⊙}. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H{sub 2}O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H{sub 2}O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies.

  6. Physical conditions of the interstellar medium in high-redshift submillimetre bright galaxies

    Science.gov (United States)

    Yang, Chentao

    2017-12-01

    The discovery of a population of high- redshift dust-obscured submillimeter galaxies (SMGs) from ground-based submm cameras has revolutionised our understanding of galaxy evolution and star formation in extreme conditions. They are the strongest starbursts in the Universe approaching the Eddington limit and are believed to be the progenitors of the most massive galaxies today. However, theoretical models of galaxy evolution have even been challenged by a large number of detections of high-redshift SMGs. A very few among them are gravitationally lensed by an intervening galaxy. Recent wide-area extragalactic surveys have discovered hundreds of such strongly lensed SMGs, opening new exciting opportunities for observing the interstellar medium in these exceptional objects. We have thus carefully selected a sample of strongly gravitational lensed SMGs based on the submillimeter flux limit from the Herschel-ATLAS sample. Using IRAM telescopes, we have built a rich H2O-line-detected sample of 16 SMGs. We found a close-to-linear tight correlation between the H2O line and total infrared luminosity. This indicates the importance of far-IR pumping to the excitation of the H2O lines. Using a far-IR pumping model, we have derived the physical properties of the H2O gas and the dust. We showed that H2O lines trace a warm dense gas that may be closely related to the active star formation. Along with the H2O lines, several H2O+ lines have also been detected in three of our SMGs. We also find a tight correlation between the luminosity of the lines of H2O and H2O+ from local ULIRGs to high-redshift SMGs. The flux ratio between H2O+ and H2O suggests that cosmic rays from strong star forming activities are possibly driving the related oxygen chemistry. Another important common molecular gas tracer is the CO line. We have observed multiple transitions of the CO lines in each of our SMGs with IRAM 30m telescope. By analysing the CO line profile, we discovered a significant differential

  7. Galaxy Clustering in Early SDSS Redshift Data

    CERN Document Server

    Zehavi, I.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Anderson, Scott F.; Strauss, Michael A.; Annis, James; Bahcall, Neta A.; Bernardi, Mariangela; Briggs, John W.; Brinkmann, Jon; Burles, Scott; Carey, Larry; Castander, Francisco J.; Connolly, J.; Csabai, Istvan; Dalcanton, Julianne J.; Dodelson,Scott; Doi,Mamoru; Eisenstein, Daniel; Evans, Michael L.; Finkbeiner, Douglas P.; Friedman, Scott; Fukugita, Masataka; Gunn, James E.; Hennessy, Greg S.; Hindsley, Robert B.; Ivezic, Zeljko; Kent,Stephen; Knapp, Gillian R.; Kron, Richard; Kunszt, Peter; Lamb, Donald; French Leger, R.; Long, Daniel C.; Loveday, Jon.; Lupton, Robert H.; McKay, Timothy; Meiksin, Avery; Merrelli, Aronne; Munn, Jeffrey A.; Narayanan, Vijay; Newcomb, Matt; Nichol, Robert C.; Owen, Russell; Peoples, John; Pope, Adrian; Rockosi, Constance M.; Schlegel, David; Schneider, Donald P.; Scoccimarro, Roman; Sheth, Ravi K.; Siegmund, Walter; Smee, Stephen; Snir, Yehuda; Stebbins, Albert; Stoughton, Christopher; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istvan; Tegmark, Max; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Dan; Vogeley, Michael S.; Waddell,Patrick; Yanny, Brian; York, Donald G.; Zehavi, Idit; Blanton, Michael R.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Strauss, Michael A.

    2002-01-01

    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but narrow (2.5-5 degree) segments, covering 690 square degrees. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 Mpc/h. The two-dimensional correlation function \\xi(r_p,\\pi) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, \\xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03}, for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is \\sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5 Mpc/h. When we divide the...

  8. Merger Activity and Radio Emission Within A2061

    Science.gov (United States)

    Bailey, Avery; Sarazin, Craig L.; Clarke, Tracy E.; Chatzikos, Marios; Hogge, Taylor; Wik, Daniel R.; Rudnick, Lawrence; Farnsworth, Damon; Van Weeren, Reinout J.; Brown, Shea

    2015-01-01

    Abell 2061 is a galaxy cluster located in the Corona Borealis Supercluster that boasts radio and X-ray structures indicative of a merger. A2061 is located at a redshift z = .0784, contains two brightest cluster galaxies, and has another cluster (A2067) about 2.5 Mpc to the NE, falling towards it. Within A2061, there exists an elongated structure of soft X-ray emission extending to the NE of cluster's center (referred to as the 'Plume') along with a hard X-ray shock region (the 'Shock') located just NE of the cluster's center. Previous observations in the radio have indicated the presence of a extended, central radio halo/relic accompanying the cluster's main X-ray emission but with slight NE displacement and further NE extension. Also emitting in the radio, to the SW of A2061, is a radio relic. The X-ray structures of A2061 were previously examined in 2009 by a Chandra observation. Here we present the results of an August 2013 XMM-Newton observation of the cluster. This XMM-Newton observation, imaged by three detectors, covers a greater field of view with a longer exposure (48.6 ks) than the previous Chandra observation. We will present images and spectra of various regions of the cluster. In addition, we will discuss the dynamics of the cluster, the nature of the Plume, Shock and other features, and origin of the central diffuse radio halo/relic and SW radio relic. These X-ray observations will also be compared to a numerical simulation from the Simulation Library of Astrophysics cluster Mergers (SLAM).

  9. Spectral Index Properties of millijansky Radio Sources in ATLAS

    Science.gov (United States)

    Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.

    2012-01-01

    At the faintest radio flux densities (S1.4GHz 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.

  10. Associating Fast Radio Bursts with Extragalactic Radio Sources: General Methodology and a Search for a Counterpart to FRB 170107

    Science.gov (United States)

    Eftekhari, T.; Berger, E.; Williams, P. K. G.; Blanchard, P. K.

    2018-06-01

    The discovery of a repeating fast radio burst (FRB) has led to the first precise localization, an association with a dwarf galaxy, and the identification of a coincident persistent radio source. However, further localizations are required to determine the nature of FRBs, the sources powering them, and the possibility of multiple populations. Here we investigate the use of associated persistent radio sources to establish FRB counterparts, taking into account the localization area and the source flux density. Due to the lower areal number density of radio sources compared to faint optical sources, robust associations can be achieved for less precise localizations as compared to direct optical host galaxy associations. For generally larger localizations that preclude robust associations, the number of candidate hosts can be reduced based on the ratio of radio-to-optical brightness. We find that confident associations with sources having a flux density of ∼0.01–1 mJy, comparable to the luminosity of the persistent source associated with FRB 121102 over the redshift range z ≈ 0.1–1, require FRB localizations of ≲20″. We demonstrate that even in the absence of a robust association, constraints can be placed on the luminosity of an associated radio source as a function of localization and dispersion measure (DM). For DM ≈1000 pc cm‑3, an upper limit comparable to the luminosity of the FRB 121102 persistent source can be placed if the localization is ≲10″. We apply our analysis to the case of the ASKAP FRB 170107, using optical and radio observations of the localization region. We identify two candidate hosts based on a radio-to-optical brightness ratio of ≳100. We find that if one of these is indeed associated with FRB 170107, the resulting radio luminosity (1029‑ 4 × 1030 erg s‑1 Hz‑1, as constrained from the DM value) is comparable to the luminosity of the FRB 121102 persistent source.

  11. The coevolution of supermassive black holes and massive galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Celotti, A.; De Zotti, G.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Negrello, M. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2014-02-20

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L {sub Edd} ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  12. SU(2)CMB at high redshifts and the value of H0

    Science.gov (United States)

    Hahn, Steffen; Hofmann, Ralf

    2017-07-01

    We investigate a high-z cosmological model to compute the comoving sound horizon rs at baryon-velocity freeze-out towards the end of hydrogen recombination. This model assumes a replacement of the conventional cosmic microwave background (CMB) photon gas by deconfining SU(2) Yang-Mills thermodynamics, three flavours of massless neutrinos (Nν = 3) and a purely baryonic matter sector [no cold dark-matter (CDM)]. The according SU(2) temperature-redshift relation of the CMB is contrasted with recent measurements appealing to the thermal Sunyaev-Zel'dovich effect and CMB-photon absorption by molecular rotation bands or atomic hyperfine levels. Relying on a realistic simulation of the ionization history throughout recombination, we obtain z* = 1693.55 ± 6.98 and zdrag = 1812.66 ± 7.01. Due to considerable widths of the visibility functions in the solutions to the associated Boltzmann hierarchy and Euler equation, we conclude that z* and zdrag overestimate the redshifts for the respective photon and baryon-velocity freeze-out. Realistic decoupling values turn out to be zlf,* = 1554.89 ± 5.18 and zlf, drag = 1659.30 ± 5.48. With rs(zlf, drag) = (137.19 ± 0.45) Mpc and the essentially model independent extraction of rsH0 = constant from low-z data in Bernal, Verde & Riess, we obtain a good match with the value H0 = (73.24 ± 1.74) km s-1 Mpc-1 extracted in Riess et al. by appealing to Cepheid-calibrated Type Ia supernovae, new parallax measurements, stronger constraints on the Hubble flow and a refined computation of distance to NGC 4258 from maser data. We briefly comment on a possible interpolation of our high-z model, invoking percolated and unpercolated U(1) topological solitons of a Planck-scale axion field, to the phenomenologically successful low-z ΛCDM cosmology.

  13. Ultra-high-energy cosmic rays from radio galaxies

    Science.gov (United States)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  14. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-01

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  15. RADIO ACTIVE GALAXY NUCLEI IN GALAXY CLUSTERS: HEATING HOT ATMOSPHERES AND DRIVING SUPERMASSIVE BLACK HOLE GROWTH OVER COSMIC TIME

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.-J.; McNamara, B. R. [Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L 3G1 (Canada); Nulsen, P. E. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138-1516 (United States)

    2013-01-20

    We estimate the average radio active galactic nucleus (AGN, mechanical) power deposited into the hot atmospheres of galaxy clusters over more than three quarters of the age of the Universe. Our sample was drawn from eight major X-ray cluster surveys and includes 685 clusters in the redshift range 0.1 < z < 0.6 that overlap the area covered by the NRAO VLA Sky Survey (NVSS). The radio-AGN mechanical power was estimated from the radio luminosity of central NVSS sources, using the relation of Cavagnolo et al. that is based on mechanical powers determined from the enthalpies of X-ray cavities. We find only a weak correlation between radio luminosity and cluster X-ray luminosity, although the most powerful radio sources reside in luminous clusters. The average AGN mechanical power of 3 Multiplication-Sign 10{sup 44} erg s{sup -1} exceeds the X-ray luminosity of 44% of the clusters, indicating that the accumulation of radio-AGN energy is significant in these clusters. Integrating the AGN mechanical power to redshift z = 2.0, using simple models for its evolution and disregarding the hierarchical growth of clusters, we find that the AGN energy accumulated per particle in low luminosity X-ray clusters exceeds 1 keV per particle. This result represents a conservative lower limit to the accumulated thermal energy. The estimate is comparable to the level of energy needed to 'preheat' clusters, indicating that continual outbursts from radio-AGN are a significant source of gas energy in hot atmospheres. Assuming an average mass conversion efficiency of {eta} = 0.1, our result implies that the supermassive black holes that released this energy did so by accreting an average of {approx}10{sup 9} M {sub Sun} over time, which is comparable to the level of growth expected during the quasar era.

  16. The infrared medium-deep survey. II. How to trigger radio AGNs? Hints from their environments

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin [CEOU—Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Chapman, Scott [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Pak, Soojong [School of Space Research, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Edge, Alastair, E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics, University of Durham, South Road, Durham, DH1 3LE (United Kingdom)

    2014-12-10

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ∼25 deg{sup 2} and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (M{sub u} – M{sub r} ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  17. H2O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Science.gov (United States)

    Zhang, J. S.; Liu, Z. W.; Henkel, C.; Wang, J. Z.; Coldwell, G. V.

    2017-02-01

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H2O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 (z ˜ 0.0448), was detected four times during our observations, with a typical maser flux density of ˜30 mJy and a corresponding (very large) luminosity of ˜1135 L ⊙. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H2O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H2O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies. Based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.

  18. HIGH-REDSHIFT METALS. I. THE DECLINE OF C IV AT z > 5.3

    International Nuclear Information System (INIS)

    Becker, George D.; Rauch, Michael; Sargent, Wallace L. W.

    2009-01-01

    We present the results from our search for C IV absorption systems at redshifts z = 5.3-6.0. We have observed four z ∼ 6 QSOs with Keck/NIRSPEC in echelle mode. The data are the most sensitive yet taken to search for C IV at these redshifts, being 50% complete at column densities log N CIV ∼ 13.4(cm -2 ). We find no clear C IV systems in any of the four sight lines. Taking into account our completeness, this translates into a decline in the number density of C IV absorbers in the range 13.2 CIV < 15.0 of at least a factor ∼4.1 (95% confidence) from z ∼ 2-4.5, over which the number density is relatively constant. We use our lack of detections, along with results from previous studies, to set limits on the slope and normalization of the column density distribution at z = 5.3-6.0. The rapid evolution of C IV at these redshifts suggests that the decrease in the number density may largely be due to ionization effects, in which case many of the metals in the z ∼ 4.5 intergalactic medium (IGM) could already be in place at z ∼ 5.3, but in lower ionization states. The lack of weak systems in our data, combined with the presence of strong C IV absorbers along at least one other sight line, further suggests that there may be large-scale variations in the enrichment and/or ionization state of the z ∼ 6 IGM. Alternatively, the known C IV absorbers at these redshifts may not reside in the general IGM, but may be associated with rare, UV-bright star-forming galaxies.

  19. Evolution in linear sizes and the Faraday effects in radio sources

    International Nuclear Information System (INIS)

    Anene, G.; Ugwoke, A.C.

    2001-05-01

    It is still a matter of conjecture whether the observed depolarization in radio sources originate from an external Faraday screen lying in our line of sight, or is largely due to internal processes occurring within these sources. This paper argues for an external origin. By applying recent evidences from the evolution of linear sizes while allowing for selection effects, it is shown that the density parameters within radio sources do not depend on redshift, implying that the observed depolarizations is epoch independent and may therefore, be largely external in origin. We also show that the observed low correlation between λ 1/2 and linear size(D) cannot be improved much even when allowance is made for evolution in D. (author)

  20. Implications from the upper limit of radio afterglow emission of FRB 131104/Swift J0644.5-5111

    OpenAIRE

    Gao, He; Zhang, Bing

    2016-01-01

    A $\\gamma$-ray transient, Swift J0644.5-5111, has been claimed to be associated with FRB 131104. The $\\gamma$-ray energy output is estimated as $E_\\gamma \\approx 5\\times 10^{51}$\\,erg at the nominal $z\\approx 0.55$ redshift implied by the dispersion measure of FRB 131104. However, a long-term radio imaging follow-up observations only place an upper limit on the radio afterglow flux of Swift J0644.5-5111. Applying the external shock model, we make a detailed constraint on the afterglow paramet...

  1. J1649+2635: A Grand-Design Spiral with a Large Double-Lobed Radio Source

    Science.gov (United States)

    Mao, Minnie Y.; Owen, Frazer; Duffin, Ryan; Keel, Bill; Lacy, Mark; Momjian, Emmanuel; Morrison, Glenn; Mroczkowski, Tony; Neff, Susan; Norris, Ray P.; hide

    2014-01-01

    We report the discovery of a grand-design spiral galaxy associated with a double-lobed radio source. J1649+2635 (z = 0.0545) is a red spiral galaxy with a prominent bulge that it is associated with a L(1.4GHz) is approximately 10(exp24) W Hz(exp-1) double-lobed radio source that spans almost 100 kpc. J1649+2635 has a black hole mass of M(BH) is approximately 3-7 × 10(exp8) Solar mass and SFR is approximately 0.26 - 2.6 solar mass year(exp-1). The galaxy hosts a approximately 96 kpc diffuse optical halo, which is unprecedented for spiral galaxies. We find that J1649+2635 resides in an overdense environment with a mass of M(dyn) = 7.7(+7.9/-4.3) × 10(exp13) Solar mass, likely a galaxy group below the detection threshold of the ROSAT All-Sky Survey. We suggest one possible scenario for the association of double-lobed radio emission from J1649+2635 is that the source may be similar to a Seyfert galaxy, located in a denser-than-normal environment. The study of spiral galaxies that host large-scale radio emission is important because although rare in the local Universe, these sources may be more common at high-redshifts.

  2. Clustering of Star-forming Galaxies Near a Radio Galaxy at z=5.2

    Science.gov (United States)

    Overzier, Roderik A.; Miley, G. K.; Bouwens, R. J.; Cross, N. J. G.; Zirm, A. W.; Benítez, N.; Blakeslee, J. P.; Clampin, M.; Demarco, R.; Ford, H. C.; Hartig, G. F.; Illingworth, G. D.; Martel, A. R.; Röttgering, H. J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.; Bradley, L. D.; Broadhurst, T. J.; Coe, D.; Feldman, P. D.; Franx, M.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden, B.; Homeier, N.; Infante, L.; Kimble, R. A.; Krist, J. E.; Mei, S.; Menanteau, F.; Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2006-01-01

    We present HST ACS observations of the most distant radio galaxy known, TN J0924-2201 at z=5.2. This radio galaxy has six spectroscopically confirmed Lyα-emitting companion galaxies and appears to lie within an overdense region. The radio galaxy is marginally resolved in i775 and z850, showing continuum emission aligned with the radio axis, similar to what is observed for lower redshift radio galaxies. Both the half-light radius and the UV star formation rate are comparable to the typical values found for Lyman break galaxies at z~4-5. The Lyα emitters are sub-L* galaxies, with deduced star formation rates of 1-10 Msolar yr-1. One of the Lyα emitters is only detected in Lyα. Based on the star formation rate of ~3 Msolar yr-1 calculated from Lyα, the lack of continuum emission could be explained if the galaxy is younger than ~2 Myr and is producing its first stars. Observations in V606i775z850 were used to identify additional Lyman break galaxies associated with this structure. In addition to the radio galaxy, there are 22 V606 break (z~5) galaxies with z850dropouts extracted from GOODS and the UDF parallel fields. We find evidence for an overdensity to very high confidence (>99%), based on a counts-in-cells analysis applied to the control field. The excess suggests that the V606 break objects are associated with a forming cluster around the radio galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9291.

  3. Implications of multiple high-redshift galaxy clusters

    International Nuclear Information System (INIS)

    Hoyle, Ben; Jimenez, Raul; Verde, Licia

    2011-01-01

    To date, 14 high-redshift (z>1.0) galaxy clusters with mass measurements have been observed, spectroscopically confirmed, and are reported in the literature. These objects should be exceedingly rare in the standard Λ cold dark matter (ΛCDM) model. We conservatively approximate the selection functions of these clusters' parent surveys and quantify the tension between the abundances of massive clusters as predicted by the standard ΛCDM model and the observed ones. We alleviate the tension, considering non-Gaussian primordial perturbations of the local type, characterized by the parameter f NL , and derive constraints on f NL arising from the mere existence of these clusters. At the 95% confidence level, f NL >467, with cosmological parameters fixed to their most likely WMAP5 values, or f NL > or approx. 123 (at 95% confidence) if we marginalize over prior WMAP5 parameters. In combination with f NL constraints from cosmic microwave background and halo bias, this determination implies a scale dependence of f NL at ≅3σ. Given the assumptions made in the analysis, we expect any future improvements to the modeling of the non-Gaussian mass function, survey volumes, or selection functions to increase the significance of f NL >0 found here. In order to reconcile these massive, high-z clusters with f NL =0, their masses would need to be systematically lowered by 1.5σ, or the σ 8 parameter should be ∼3σ higher than cosmic microwave background (and large-scale structure) constraints. The existence of these objects is a puzzle: it either represents a challenge to the ΛCDM paradigm or it is an indication that the mass estimates of clusters are dramatically more uncertain than we think.

  4. The Luminosity Function of Fermi-Detected Flat-Spectrum Radio Quasars

    Science.gov (United States)

    2012-05-11

    extensively studied at radio (Dunlop & Peacock 1990; Wall et al. 2005), soft X-ray (Giommi & Padovani 1994; Rector et al. 2000; Wolter & Celotti 2001...FSRQs) evolve positively (i.e., there were more blazars in the past, Dunlop & Peacock 1990) up to a redshift cutoff which depends on luminosity (e.g...luminosity of 1048 erg s−1. The LDDE model provides a good fit to the LAT data and is able to reproduce the observed distribution in Figure 2. The log

  5. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    Science.gov (United States)

    Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.

    2018-06-01

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.

  6. High-Redshift QSOs in the SWIRE Survey and the z~3 QSO Luminosity Function

    Science.gov (United States)

    Siana, Brian; Polletta, Maria del Carmen; Smith, Harding E.; Lonsdale, Carol J.; Gonzalez-Solares, Eduardo; Farrah, Duncan; Babbedge, Tom S. R.; Rowan-Robinson, Michael; Surace, Jason; Shupe, David; Fang, Fan; Franceschini, Alberto; Oliver, Seb

    2008-03-01

    We use a simple optical/infrared (IR) photometric selection of high-redshift QSOs that identifies a Lyman break in the optical photometry and requires a red IR color to distinguish QSOs from common interlopers. The search yields 100 z ~ 3 (U-dropout) QSO candidates with 19 dropout) sample suffers from both unreliability and incompleteness but present seven previously unidentified QSOs at 3.50 University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    Science.gov (United States)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  8. Maximum gravitational redshift of white dwarfs

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, S.A.

    1976-01-01

    The stability of uniformly rotating, cold white dwarfs is examined in the framework of the Parametrized Post-Newtonian (PPN) formalism of Will and Nordtvedt. The maximum central density and gravitational redshift of a white dwarf are determined as functions of five of the nine PPN parameters (γ, β, zeta 2 , zeta 3 , and zeta 4 ), the total angular momentum J, and the composition of the star. General relativity predicts that the maximum redshifts is 571 km s -1 for nonrotating carbon and helium dwarfs, but is lower for stars composed of heavier nuclei. Uniform rotation can increase the maximum redshift to 647 km s -1 for carbon stars (the neutronization limit) and to 893 km s -1 for helium stars (the uniform rotation limit). The redshift distribution of a larger sample of white dwarfs may help determine the composition of their cores

  9. Redshift formulas and the Doppler–Fizeau effect

    International Nuclear Information System (INIS)

    Pérez, José-Philippe

    2016-01-01

    In this paper, we show that redshifts, which appear in some pedagogical examples, can be expressed in terms of the Doppler–Fizeau effect. For this purpose, we use, as suggested by Weyl, the worldline elements of two physical events: the emission and the reception of a monochromatic wave. The redshift in special relativity and its Galilean approximation are derived in a simpler way than is usually done. In general relativity, the cosmological redshift can be obtained with the general Weyl formula in three important cases of gravitational fields, even though the gravitational redshift, due to bodies running away from each other, cannot be reduced to a simple kinematic effect. (paper)

  10. The Environments of High-Redshift Quasi-Stellar Objects

    Science.gov (United States)

    Kim, Soyoung; Stiavelli, Massimo; Trenti, M.; Pavlovsky, C. M.; Djorgovski, S. G.; Scarlata, C.; Stern, D.; Mahabal, A.; Thompson, D.; Dickinson, M.; Panagia, N.; Meylan, G.

    2009-04-01

    We present a sample of i 775-dropout candidates identified in five Hubble Advanced Camera for Surveys (ACS) fields centered on Sloan Digital Sky Survey quasi-stellar objects (QSOs) at redshift z ~ 6. Our fields are as deep as the GOODS ACS images, which are used as a reference field sample. We find them to be overdense in two fields, underdense in two fields, and as dense as the average density of GOODS in one field. The two excess fields show significantly different color distributions from that of GOODS at the 99% confidence level, strengthening the idea that the excess objects are indeed associated with the QSO. The distribution of i 775-dropout counts in the five fields is broader than that derived from GOODS at the 80%-96% confidence level, depending on which selection criteria were adopted to identify i 775-dropouts; its width cannot be explained by cosmic variance alone. Thus, QSOs seem to affect their environments in complex ways. We suggest the picture where the highest redshift QSOs are located in very massive overdensities and are therefore surrounded by an overdensity of lower mass halos. Radiative feedback by the QSO can in some cases prevent halos from becoming galaxies, thereby generating in extreme cases an underdensity of galaxies. The presence of both enhancement and suppression is compatible with the expected differences between lines of sight at the end of reionization as the presence of residual diffuse neutral hydrogen would provide young galaxies with shielding from the radiative effects of the QSO. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities of Research in Astronomy, Inc., under NASA contract NAS5-26555.

  11. Radio emission from Supernovae and High Precision Astrometry

    Science.gov (United States)

    Perez-Torres, M. A.

    1999-11-01

    The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere

  12. High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation

    Science.gov (United States)

    Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan

    2016-07-01

    Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).

  13. Technologies for low radio frequency observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, D. L.

    2014-03-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts z > ~20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface. In addition, recent results from laboratory testing of low frequency receiver designs are presented. Finally, several concepts for space-based imaging interferometers utilizing deployable low frequency antennas are described. Some of these concepts involve large numbers of antennas and consequently a large digital cross-correlator will be needed. JPL has studied correlator architectures that greatly reduce the DC power required for this step, which can dominate the power consumption of real-time signal processing. Strengths and weaknesses of each mission concept are discussed in the context of the additional technology development required.

  14. Radio and television interference caused by corona discharges from high-voltage transmission lines

    International Nuclear Information System (INIS)

    Sarmadi, M.

    1996-01-01

    Increase in power utility loads in industrialized countries, as well as developing countries, demands a higher level of transmission line voltage. Radio interference (RI) problems have been determined to be a limiting factor in selecting the size of transmission line conductors. Transmission line noise is primarily caused by corona discharges in the immediate vicinity of the conductor. It has been observed that discharges occur during both half-cycles of the applied voltage, but positive corona is usually predominant at AM radio frequencies range with practical high-voltage and extra high-voltage transmission lines. The corona radio noise effect is highly dependent upon the presence of particles on the surface of the conductor and the increase of the electrical gradient beyond the breakdown value of the air. Therefore, corona radio noise varies significantly with the weather and atmospheric conditions and generally increases by 10 to 30 dB in foul weather

  15. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    Science.gov (United States)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  16. The redshift distribution of the TOUGH survey

    DEFF Research Database (Denmark)

    Jakobsson, P.; Hjorth, J.; Malesani, D.

    2013-01-01

    of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. This suggests that either star formation at high redshifts has been significantly underestimated, for example due to a dominant contribution from faint, undetected galaxies, or that GRB production...

  17. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    Science.gov (United States)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessey, Ryan; Joy, Marshall; Lamb, James; Leitch, Erik M.; Loh, Michael; hide

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three high redshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel'dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9 (sup +0.5)(sub -0.4) x 10(exp 14) solar mass for Cl J1415.1+3612, 3.4 (sup +0.6)(sub -0.5) x 10(exp 14) solar mass for Cl J1429.0+4241 and 7.2 (sup +1.3)(sub -0.9) x 10(exp 14) solar mass for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  18. High radio-isotope uptakes in patients with hypothyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Wing, J.; Kalk, W.J.; Ganda, C. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Medicine)

    1982-12-04

    Hypothyroidism is usually associated with a low radio-isotope uptake by the thyriod gland. We report 8 cases of Hashimoto's thyroiditis with clinical and biochemical hypothyroidism and with borderline high or overtly increased technetium-99m pertechnetate and/or iodine-131 uptakes.

  19. Gamma-Ray Bursts: Lighting Up the High-Redshift Universe

    Science.gov (United States)

    Toy, Vicki Louise

    overlapping NHI and redshift ranges, our GRB-DLA galaxies have much larger SFRs than the QSO-DLA host galaxy sample; this may suggest that the QSO-DLA and GRB-DLA galaxy populations are different. We also compare star formation efficiencies to the local Universe and simulations at z = 3. A large portion of this thesis has focused on the development of a new ground- based GRB afterglow follow-up instrument, the Rapid infrared IMAger-Spectrometer (RIMAS), that will target high-redshift GRB afterglows to study early galaxy envi- ronments. RIMAS covers 0.97-2.37 mum and can simultaneously observe two band-passes in any observing mode: photometry, low-resolution spectroscopy (R ˜ 30), or high-resolution spectroscopy (R ˜ 4000). In particular, this thesis focuses on RIMAS's three detectors: two science grade Teledyne HgCdTe Astronomy Wide Area Infrared Imager with 2K x 2K, Reference Pixels and Guide Mode (H2RG) and a slit-viewer Spitzer Legacy Indium-Antimonide (InSb) array. We describe the detector hardware and characterization in detail and discuss general infrared detector troubleshooting methods at both cryogenic and room temperatures. Several software packages have been developed for RIMAS throughout this thesis work. We introduce RIMAS's quick reduction pipeline that takes raw images from a single acquisition and returns a single result frame. We then present a generalized data reduction pipeline that we have tested on two currently operational photometers. We also describe our detailed and realistic RIMAS throughput models for all three observing modes as well as our online observer calculators with these throughput models. All of our data products are open source and are publicly available on Github repositories with detailed documentation.

  20. A MISMATCH IN THE ULTRAVIOLET SPECTRA BETWEEN LOW-REDSHIFT AND INTERMEDIATE-REDSHIFT TYPE Ia SUPERNOVAE AS A POSSIBLE SYSTEMATIC UNCERTAINTY FOR SUPERNOVA COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kessler, Richard; Frieman, Joshua A. [Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bassett, Bruce; Smith, Mathew [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Garnavich, Peter M. [Department of Physics, University of Notre Dame, 225 Nieuwland Science, Notre Dame, IN 46556-5670 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Konishi, Kohki [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Lampeitl, Hubert [Institute of Cosmology and Gravitation, University of Portsmouth, Mercantile House, Hampshire Terrace, Portsmouth PO1 2EG (United Kingdom); Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Sollerman, Jesper, E-mail: rfoley@cfa.harvard.edu [Oskar Klein Centre, Department of Astronomy, Stockholm University, 106 91 Stockholm (Sweden)

    2012-05-15

    We present Keck high-quality rest-frame ultraviolet (UV) through optical spectra of 21 Type Ia supernovae (SNe Ia) in the redshift range 0.11 {<=} z {<=} 0.37 and a mean redshift of 0.22 that were discovered during the Sloan Digital Sky Survey-II (SDSS-II) SN Survey. Using the broadband photometry of the SDSS survey, we are able to reconstruct the SN host-galaxy spectral energy distributions (SEDs), allowing for a correction for the host-galaxy contamination in the SN Ia spectra. Comparison of composite spectra constructed from a subsample of 17 high-quality spectra to those created from a low-redshift sample with otherwise similar properties shows that the Keck/SDSS SNe Ia have, on average, extremely similar rest-frame optical spectra but show a UV flux excess. This observation is confirmed by comparing synthesized broadband colors of the individual spectra, showing a difference in mean colors at the 2.4{sigma}-4.4{sigma} level for various UV colors. We further see a slight difference in the UV spectral shape between SNe with low-mass and high-mass host galaxies. Additionally, we detect a relationship between the flux ratio at 2770 and 2900 A and peak luminosity that differs from that observed at low redshift. We find that changing the UV SED of an SN Ia within the observed dispersion can change the inferred distance moduli by {approx}0.1 mag. This effect only occurs when the data probe the rest-frame UV. We suggest that this discrepancy could be due to differences in the host-galaxy population of the two SN samples or to small-sample statistics.

  1. Absorption by Spinning Dust: A Contaminant for High-redshift 21 cm Observations

    Science.gov (United States)

    Draine, B. T.; Miralda-Escudé, Jordi

    2018-05-01

    Spinning dust grains in front of the bright Galactic synchrotron background can produce a weak absorption signal that could affect measurements of high-redshift 21 cm absorption. At frequencies near 80 MHz where the Experiment to Detect the Global EoR Signature (EDGES) has reported 21 cm absorption at z≈ 17, absorption could be produced by interstellar nanoparticles with radii a≈ 50 \\mathringA in the cold interstellar medium (ISM), with rotational temperature T ≈ 50 K. Atmospheric aerosols could contribute additional absorption. The strength of the absorption depends on the abundance of such grains and on their dipole moments, which are uncertain. The breadth of the absorption spectrum of spinning dust limits its possible impact on measurement of a relatively narrow 21 cm absorption feature.

  2. The Segal chronogeometric redshift - a classical analysis

    International Nuclear Information System (INIS)

    Fairchild, E.E. Jr.; Washington Univ., St. Louis, Mo.

    1977-01-01

    An error is shown to exist in the Segal chronogeometric redshift theory. The redshift distance relation of z=tan 2 (d/2R) derived by Segal using quantum theory violates the classical correspondence limit. The corrected result derived using simple classical arguments is z=tan 2 (d/R). This result gives the same predictions for small redshift objects but differs for large redshift objects such as quasars. The difference is shown to be caused by inconsistencies in the quantum derivation. Correcting these makes the quantum result equal to the classical result as one would expect from the correspondence principle. The impact of the correction on the predictions of the theory is discussed. (orig.) [de

  3. The MASIV Survey - IV. Relationship between intra-day scintillation and intrinsic variability of radio AGNs

    Science.gov (United States)

    Koay, J. Y.; Macquart, J.-P.; Jauncey, D. L.; Pursimo, T.; Giroletti, M.; Bignall, H. E.; Lovell, J. E. J.; Rickett, B. J.; Kedziora-Chudczer, L.; Ojha, R.; Reynolds, C.

    2018-03-01

    We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected active galactic nuclei (AGNs) drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio Observatory blazar monitoring program. We discover that the strongest scintillators at 5 GHz (modulation index, m5 ≥ 0.02) all exhibit strong 15 GHz intrinsic variability (m15 ≥ 0.1). This relationship can be attributed mainly to the mutual dependence of intrinsic variability and ISS amplitudes on radio core compactness at ˜ 100 μas scales, and to a lesser extent, on their mutual dependences on source flux density, arcsec-scale core dominance and redshift. However, not all sources displaying strong intrinsic variations show high amplitude scintillation, since ISS is also strongly dependent on Galactic line-of-sight scattering properties. This observed relationship between intrinsic variability and ISS highlights the importance of optimizing the observing frequency, cadence, timespan and sky coverage of future radio variability surveys, such that these two effects can be better distinguished to study the underlying physics. For the full MASIV sample, we find that Fermi-detected gamma-ray loud sources exhibit significantly higher 5 GHz ISS amplitudes than gamma-ray quiet sources. This relationship is weaker than the known correlation between gamma-ray loudness and the 15 GHz variability amplitudes, most likely due to jet opacity effects.

  4. A Search for High-Energy Counterparts to Fast Radio Bursts

    Science.gov (United States)

    Cunningham, Virginia A.; Cenko, Bradley

    2018-01-01

    We report on a search for high-energy counterparts to Fast Radio Bursts (FRBs) with the Fermi Gamma-ray Burst Monitor (GBM), Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT). We find no significant associations for any of the 14 FRBs in our sample, but report upper limits to the high-energy fluence for each on timescales of ∼0.1, 1, 10, and 100 s. We report lower limits on the radio to high-energy fluence, fr / fγ, for timescales of ∼0.1 and 100 s. The non-detection of high-energy emission is expected if FRBs are analogous to the giant pulses seen from the Crab pulsar, but the observed radio fluences of FRBs are orders of magnitude larger than even the most extreme giant pulses would be at the implied cosmological distances. It has also been proposed that events similar to magnetar hyperflares produce FRBs; this might be a viable model, but our fr / fγ lower limits are in tension with the fr / fγ upper limit for the 2004 superburst of SGR 1806‑20, for 6 out of the 12 FRBs that we study. This demonstrates the utility of analyses of high-energy data for FRBs in tracking down the nature of these elusive sources.

  5. Gravitational redshift from a binary system

    Energy Technology Data Exchange (ETDEWEB)

    Steklain, Andre [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil)

    2011-07-01

    Full text: In this work we study the gravitational redshift of a binary system in general relativity. We employ a mixed metric obtained from the matching of a 1PN metric with two perturbed Schwarzschild metrics, based on previous works [Alvi, Phys. Rev. D, 61, 124013 (2000)]. This metric is well known, and has been considered for several applications [Steklain et al, Phys. Lett. A, 373, 188, (2009)]. We consider a massless observer in a timelike geodesic of this metric measuring the redshift of the system. The observer concentrates the redshift measurements in one of the massive bodies and is influenced by the mass of the second body. We find that there is a substantial contribution of the second mass in some cases. We compare with experimental data obtained for real binary systems of white dwarfs [Vennes et al, Astroph. J., L37 (1991)]. We also discuss these results for more massive systems, and make some predictions for very massive systems, like black holes, although it extrapolates the limit of the 1PN approximation used. Is well known that the major contribution of the observed redshift is from the universe expansion, but these results indicate that the influence of the gravitational redshift may be underestimated at some systems. (author)

  6. FROM NEARBY LOW LUMINOSITY AGN TO HIGH REDSHIFT ...

    Indian Academy of Sciences (India)

    44

    6Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Noida ... We present detailed science cases that a large fraction of the Indian AGN ..... kiloparsec-scale radio study of the MOJAVE6 blazar sample. Kharb et al.

  7. The Kolmogorov-Smirnov test for three redshift distributions of long gamma-ray bursts in the Swift Era

    International Nuclear Information System (INIS)

    Dong Yunming; Lu Tan

    2009-01-01

    We investigate redshift distributions of three long burst samples, with the first sample containing 131 long bursts with observed redshifts, the second including 220 long bursts with pseudo-redshifts calculated by the variability-luminosity relation, and the third including 1194 long bursts with pseudo-redshifts calculated by the lag-luminosity relation, respectively. In the redshift range 0-1 the Kolmogorov-Smirnov probability of the observed redshift distribution and that of the variability-luminosity relation is large. In the redshift ranges 1-2, 2-3, 3-6.3 and 0-37, the Kolmogorov-Smirnov probabilities of the redshift distribution from lag-luminosity relation and the observed redshift distribution are also large. For the GRBs, which appear both in the two pseudo-redshift burst samples, the KS probability of the pseudo-redshift distribution from the lag-luminosity relation and the observed reshift distribution is 0.447, which is very large. Based on these results, some conclusions are drawn: i) the V-L iso relation might be more believable than the τ-L iso relation in low redshift ranges and the τ-L iso relation might be more real than the V-Liso relation in high redshift ranges; ii) if we do not consider the redshift ranges, the τ-L iso relation might be more physical and intrinsical than the V-L i so relation. (research papers)

  8. A redshift determination of the host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y. [RIKEN, Saitama (Japan); Tokyo Institute of Technology, Tokyo (Japan). Department of Physics; Yoshida, A. [Aoyama Garkuin Univ., Kanagawa (Japan). Department of Physics; Yamada, T. [National Astronomical Observatory, Tokyo (Japan)] (and others)

    2005-07-15

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically {approx} 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 {+-} 0.4) x 10{sup 54} erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10{sup 51} ergs, their opening angle is calculated as {theta}{sub j} = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts.0.

  9. A redshift determination of the host galaxy

    International Nuclear Information System (INIS)

    Urata, Y.

    2005-01-01

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically ∼ 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 ± 0.4) x 10 54 erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10 51 ergs, their opening angle is calculated as θ j = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts

  10. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2016-06-06

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  11. Testing the accuracy of clustering redshifts with simulations

    Science.gov (United States)

    Scottez, V.; Benoit-Lévy, A.; Coupon, J.; Ilbert, O.; Mellier, Y.

    2018-03-01

    We explore the accuracy of clustering-based redshift inference within the MICE2 simulation. This method uses the spatial clustering of galaxies between a spectroscopic reference sample and an unknown sample. This study give an estimate of the reachable accuracy of this method. First, we discuss the requirements for the number objects in the two samples, confirming that this method does not require a representative spectroscopic sample for calibration. In the context of next generation of cosmological surveys, we estimated that the density of the Quasi Stellar Objects in BOSS allows us to reach 0.2 per cent accuracy in the mean redshift. Secondly, we estimate individual redshifts for galaxies in the densest regions of colour space ( ˜ 30 per cent of the galaxies) without using the photometric redshifts procedure. The advantage of this procedure is threefold. It allows: (i) the use of cluster-zs for any field in astronomy, (ii) the possibility to combine photo-zs and cluster-zs to get an improved redshift estimation, (iii) the use of cluster-z to define tomographic bins for weak lensing. Finally, we explore this last option and build five cluster-z selected tomographic bins from redshift 0.2 to 1. We found a bias on the mean redshift estimate of 0.002 per bin. We conclude that cluster-z could be used as a primary redshift estimator by next generation of cosmological surveys.

  12. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.; et al.

    2017-10-06

    We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy of $\\sim0.02$ and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from $\\texttt{COSMOS}$ 30-band photometry and find that our two very different methods produce consistent constraints.

  13. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    Science.gov (United States)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  14. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; der Linden, A. von; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2017-10-14

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).

  15. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Science.gov (United States)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2018-02-01

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  16. How to falsify the GR+ΛCDM model with galaxy redshift surveys

    International Nuclear Information System (INIS)

    Acquaviva, Viviana; Gawiser, Eric

    2010-01-01

    A wide range of models describing modifications to general relativity have been proposed, but no fundamental parameter set exists to describe them. Similarly, no fundamental theory exists for dark energy to parametrize its potential deviation from a cosmological constant. This motivates a model-independent search for deviations from the concordance GR+ΛCDM cosmological model in large galaxy redshift surveys. We describe two model-independent tests of the growth of cosmological structure, in the form of quantities that must equal one if GR+ΛCDM is correct. The first, ε, was introduced previously as a scale-independent consistency check between the expansion history and structure growth. The second, υ, is introduced here as a test of scale-dependence in the linear evolution of matter density perturbations. We show that the ongoing and near-future galaxy redshift surveys WiggleZ, BOSS, and HETDEX will constrain these quantities at the 5-10% level, representing a stringent test of concordance cosmology at different redshifts. When redshift space distortions are used to probe the growth of cosmological structure, galaxies at higher redshift with lower bias are found to be most powerful in detecting the presence of deviations from the GR+ΛCDM model. However, because many dark energy or modified gravity models predict consistency with GR+ΛCDM at high redshift, it is desirable to apply this approach to surveys covering a wide range of redshifts and spatial scales.

  17. Search for low-frequency diffuse radio emission around a shock in the massive galaxy cluster MACS J0744.9+3927

    Science.gov (United States)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.

    2018-05-01

    Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.

  18. Exploratory X-ray Monitoring of z>4 Radio-Quiet Quasars

    Science.gov (United States)

    Shemmer, Ohad

    2017-09-01

    We propose to extend our exploratory X-ray monitoring project of some of the most distant radio-quiet quasars by obtaining one snapshot observation per Cycle for each of four sources at z>4. Combining these observations with six available X-ray epochs per source will provide basic temporal information over rest-frame timescales of 3-5 yr. We are supporting this project with Swift monitoring of luminous radio-quiet quasars at z=1.3-2.7 to break the L-z degeneracy and test evolutionary scenarios of the central engine in active galactic nuclei. Our ultimate goal is to provide a basic assessment of the X-ray variability properties of luminous quasars at the highest accessible redshifts that will serve as the benchmark for X-ray variability studies of such sources with future X-ray missions.

  19. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

    International Nuclear Information System (INIS)

    Dahlen, Tomas; Ferguson, Henry C.; Mobasher, Bahram; Faber, Sandra M.; Barro, Guillermo; Guo, Yicheng; Finkelstein, Steven L.; Finlator, Kristian; Fontana, Adriano; Gruetzbauch, Ruth; Johnson, Seth; Pforr, Janine; Dickinson, Mark E.; Salvato, Mara; Wuyts, Stijn; Wiklind, Tommy; Acquaviva, Viviana; Huang, Jiasheng; Huang, Kuang-Han; Newman, Jeffrey A.

    2013-01-01

    We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from 11 participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs), and priors, are used to examine the properties of photometric redshifts applied to deep fields with broadband multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find that codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting, or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter; the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates

  20. The ionizing photon production efficiency of compact z similar to 0.3 Lyman continuum leakers and comparison with high-redshift galaxies

    Czech Academy of Sciences Publication Activity Database

    Schaerer, D.; Izotov, Y.I.; Verhamme, A.; Orlitová, Ivana; Thuan, T.X.; Worseck, G.; Guseva, N.G.

    2016-01-01

    Roč. 591, July (2016), L8/1-L8/4 ISSN 0004-6361 Institutional support: RVO:67985815 Keywords : galaxies * starburst * high-redshift Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  1. Measuring redshift-space distortions using photometric surveys

    OpenAIRE

    Ross, Ashley; Percival, Will; Crocce, M.; Cabre, A.; Gaztanaga, E.

    2011-01-01

    We outline how redshift-space distortions (RSD) can be measured from the angular correlation function w({\\theta}), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results from bins with top-hat galaxy selection in redshift, and bins based on the radial position of galaxy pair centres. This comparison can also be used to test the accuracy of the photometric redshifts. The presence of RSD will be clearly detectable ...

  2. Ultraviolet spectropolarimetry of high-redshift quasars with the Hubble Space Telescope

    Science.gov (United States)

    Impey, C. D.; Malkan, Matthew A.; Webb, Wayne; Petry, C. E.

    1995-01-01

    Ultraviolet spectropolarimetry of three bright high-redshift low-polarization quasars (LPQs) was obtained with the Faint Object Spectrograph of the Hubble Space Telescope (HST). Two of the quasars, PG 1634+706 and PG 2302+029, had polarizations p approximately = 0.5%-1.0% throughout the ultraviolet, and showed no significant variation of polarization amplitude or position angle with wavelength. PG 2302+029 was also marginally (2.4 sigma) circularly polarized in the optical continuum. For the highest redshift quasar, PG 1222+228 (Ton 1530), the polarization was measured down to rest wavelengths below 800 A. Although the continuum of PG 1222+228 was weakened by Lyman limit absorption from an intergalactic gas cloud, the polarization increased sharply from 1% to about 4.5%, a change of 4 sigma significance. This abrupt rise in polarization does not appear attributable to any known instrumental artifact. These UV polarizations were only slightly less than those previously observed for these same objects in the optical. The polarization spectra were flat with a typical slope of the polarized flux pF(sub nu) proportional to nu(exp -0.8 +/- 0.5). Unlike the case of several high luminosity Seyfert 1 nuclei studied previously, polarization caused by scattering from dust grains does not provide the best fit to the polarization spectra of these luminous quasars. These observed spectra are consistent with a wavelength-independent polarization proportional to the total nonstellar light or, possibly, to the contribution of the blue thermal component. The polarization spectra have insufficient signal-to-noise to locate the scatterers with respect to the continuum source and the much larger broad line region. A decrease in amplitude and rotation of the position angle of the polarization vector at the shortest wavelengths, which could result from general relativistic effects near a spinning black hole, was not observed. In fact, in PG 1222+228, the polarization was observed to

  3. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  4. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; et al.

    2016-11-11

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  5. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch' , Emeric [CEA, IRFU/SAp, F-91191 Gif-Sur-Yvette (France); Perret, Valentin; Amram, Philippe; Epinat, Benoit [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille), F-13388 Marseille (France); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, Debra M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Teyssier, Romain [Institute for Theoretical Physics, University of Zurich, CH-8057 Zurich (Switzerland)

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  6. POST-OUTBURST RADIO OBSERVATIONS OF THE HIGH MAGNETIC FIELD PULSAR PSR J1119-6127

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Walid A.; Pearlman, Aaron B.; Dobreva, Tatyana; Kocz, Jonathon; Prince, Thomas A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Horiuchi, Shinji [CSIRO Astronomy and Space Science, Canberra Deep Space Communications Complex, P.O. Box 1035, Tuggeranong, ACT 2901 (Australia); Lippuner, Jonas [TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-01-01

    We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S -band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X -band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected at S -band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior.

  7. Morpho-z: improving photometric redshifts with galaxy morphology

    Science.gov (United States)

    Soo, John Y. H.; Moraes, Bruno; Joachimi, Benjamin; Hartley, William; Lahav, Ofer; Charbonnier, Aldée; Makler, Martín; Pereira, Maria E. S.; Comparat, Johan; Erben, Thomas; Leauthaud, Alexie; Shan, Huanyuan; Van Waerbeke, Ludovic

    2018-04-01

    We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and outlier fraction of photometric redshifts when galaxy size, ellipticity, Sérsic index, and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full ugriz photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of grz photometry and morphological parameters almost fully recovers the metrics of 5-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution N(z) of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier fraction of 5.2 per cent. We further include a deep extension trained on morphology and single i-band CS82 photometry.

  8. Gravitational redshift and asymmetric redshift-space distortions for stacked clusters

    Science.gov (United States)

    Cai, Yan-Chuan; Kaiser, Nick; Cole, Shaun; Frenk, Carlos

    2017-06-01

    We derive the expression for the observed redshift in the weak field limit in the observer's past light cone, including all relativistic terms up to second order in velocity. We then apply it to compute the cluster-galaxy cross-correlation functions (CGCF) using N-body simulations. The CGCF is asymmetric along the line of sight owing to the presence of the small second-order terms such as the gravitational redshift (GRedshift). We identify two systematics in the modelling of the GRedshift signal in stacked clusters. First, it is affected by the morphology of dark matter haloes and the large-scale cosmic-web. The non-spherical distribution of galaxies around the central halo and the presence of neighbouring clusters systematically reduce the GRedshift signal. This bias is approximately 20 per cent for Mmin ≃ 1014 M⊙ h-1, and is more than 50 per cent for haloes with Mmin ≃ 2 × 1013 M⊙ h-1 at r > 4 Mpc h-1. Secondly, the best-fitting GRedshift profiles as well as the profiles of all other relativistic terms are found to be significantly different in velocity space compared to their real space versions. We find that the relativistic Doppler redshift effect, like other second-order effects, is subdominant to the GRedshift signal. We discuss some subtleties relating to these effects in velocity space. We also find that the S/N of the GRedshift signal increases with decreasing halo mass.

  9. Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Blakeslee, J. P.; Broadhurst, T. J.; Franx, M.

    2004-08-01

    We use the exceptional depth of the Ultra Deep Field (UDF) and UDF-parallel Advanced Camera for Surveys fields to study the sizes of high-redshift (z~2-6) galaxies and address long-standing questions about possible biases in the cosmic star formation rate due to surface brightness dimming. Contrasting B-, V-, and i-dropout samples culled from the deeper data with those obtained from the shallower Great Observatories Origins Deep Survey fields, we demonstrate that the shallower data are essentially complete at bright magnitudes to z~0.4", >~3 kpc) low surface brightness galaxies are rare. A simple comparison of the half-light radii of the Hubble Deep Field-North + Hubble Deep Field-South U-dropouts with B-, V-, and i-dropouts from the UDF shows that the sizes follow a (1+z)-1.05+/-0.21 scaling toward high redshift. A more rigorous measurement compares different scalings of our U-dropout sample with the mean profiles for a set of intermediate-magnitude (26.0dropouts from the UDF. The best fit is found with a (1+z)-0.94+0.19-0.25 size scaling (for fixed luminosity). This result is then verified by repeating this experiment with different size measures, low-redshift samples, and magnitude ranges. Very similar scalings are found for all comparisons. A robust measurement of size evolution is thereby demonstrated for galaxies from z~6 to 2.5 using data from the UDF. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  10. Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts

    Science.gov (United States)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team

    2017-06-01

    We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.

  11. Infrared-faint radio sources: a cosmological view. AGN number counts, the cosmic X-ray background and SMBH formation

    Science.gov (United States)

    Zinn, P.-C.; Middelberg, E.; Ibar, E.

    2011-07-01

    Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.

  12. Maximum Redshift of Gravitational Wave Merger Events

    Science.gov (United States)

    Koushiappas, Savvas M.; Loeb, Abraham

    2017-12-01

    Future generations of gravitational wave detectors will have the sensitivity to detect gravitational wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the observed event rate is greater than one event per year at redshifts z ≥40 , then the probability distribution of primordial density fluctuations must be significantly non-Gaussian or the events originate from primordial black holes. The nature of the excess events can be determined from the redshift distribution of the merger rate.

  13. Redshift measurement of Fermi blazars for the Cherenkov telescope array

    Science.gov (United States)

    Pita, S.; Goldoni, P.; Boisson, C.; Cotter, G.; Lefaucheur, J.; Lenain, J.-P.; Lindfors, E.; Williams, D. A.

    2017-01-01

    Blazars are active galactic nuclei, and the most numerous High Energy (HE) and Very High Energy (VHE) γ-ray emitters. Their optical emission is often dominated by non-thermal, and, in the case of BL Lacs, featureless continuum radiation. This makes the determination of their redshift extremely difficult. Indeed, as of today only about 50% of γ-ray blazars have a measured spectroscopic redshift. The knowledge of redshift is fundamental because it allows the precise modeling of the VHE emission and also of its interaction with the extragalactic background light (EBL). The beginning of the Cherenkov Telescope Array (CTA) operations in the near future will allow the detection of several hundreds of new blazars. Using the Fermi catalogue of sources above 50 GeV (2FHL), we performed simulations which indicate that a significant fraction of the 2FHL blazars detectable by CTA will not have a measured redshift. As a matter of fact, the organization of observing campaigns to measure the redshift of these blazars has been recognized as a necessary support for the AGN Key Science Project of CTA. We are planning such an observing campaign. In order to optimize our chances of success, we will perform preliminary deep imaging observations aimed at detecting or setting upper limits to the host galaxy. We will then take spectra of the candidates with the brightest host galaxies. Taking advantage of the recent success of an X-shooter GTO observing campaign, these observations will be different with respect to previous ones due to the use of higher resolution spectrographs and of 8 meter class telescopes. We are starting to submit proposals for these observations. In this paper we briefly describe how candidates are selected and the corresponding observation program.

  14. Redshift differences of galaxies in nearby groups

    Science.gov (United States)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  15. FeII/MgII Emission Line Ratio in High Redshift Quasars

    DEFF Research Database (Denmark)

    Dietrich, M.; Hamann, F.; Appenzeller, I.

    2003-01-01

    the evolution of the FeII/MgII ratio over a wider range in cosmic time, we measured this ratio for composite quasar spectra which cover a redshift range of 0 4 quasars must have started already at an epoch corresponding to z_f = 6 to 9, when the age of the universe was ~0.5 Gyr (H_o = 72 km/s/Mpc, Omega_M = 0...

  16. Very-high-energy gamma rays from a distant quasar: how transparent is the universe?

    Science.gov (United States)

    Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2008-06-27

    The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

  17. Gamma-ray Burst Formation Environment: Comparison of Redshift Distributions of GRB Afterglows

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2005-12-01

    Full Text Available Since gamma-ray bursts(GRBs have been first known to science societites in 1973, many scientists are involved in their studies. Observations of GRB afterglows provide us with much information on the environment in which the observed GRBs are born. Study of GRB afterglows deals with longer timescale emissions in lower energy bands (e.g., months or even up to years than prompt emissions in gamma-rays. Not all the bursts accompany afterglows in whole ranges of wavelengths. It has been suggested as a reason for that, for instance, that radio and/or X-ray afterglows are not recorded mainly due to lower sensitivity of detectors, and optical afterglows due to extinctions in intergalactic media or self-extinctions within a host galaxy itself. Based on the idea that these facts may also provide information on the GRB environment, we analyze statistical properties of GRB afterglows. We first select samples of the redshift-known GRBs according to the wavelength of afterglow they accompanied. We then compare their distributions as a function of redshift, using statistical methods. As a results, we find that the distribution of the GRBs with X-ray afterglows is consistent with that of the GRBs with optical afterglows. We, therefore, conclude that the lower detection rate of optical afterglows is not due to extinctions in intergalactic media.

  18. Molecular gas in dusty high-redshift galaxies

    Science.gov (United States)

    Sharon, Chelsea Electra

    2013-12-01

    We present high-resolution observations of carbon monoxide (CO) emission lines for three high-redshift galaxies in order to determine their molecular gas and star formation properties. These galaxies (SMM J14011+0252, SMM J00266+1708, and SDSS J0901+1814) have large infrared luminosities, which imply high dust enshrouded star formation rates and substantial molecular gas masses. We observed these sources using the Robert C. Byrd Green Bank Telescope, the Karl G. Jansky Very Large Array, the Plateau de Bure Interferometer, and the Submillimeter Array in order to obtain measurements of multiple CO spectral lines, allowing us to determine the physical conditions of the molecular gas. Our high resolution and multi-line CO mapping of SMM J00266+1708 reveals that it is a pair of merging galaxies, whose two components have different gas excitation conditions and different gas kinematics. For SMM J14011+0252 (J14011), we find a near-unity CO(3--2)/CO(1--0) intensity ratio, consistent with a single phase (i.e., a single temperature and density) of molecular gas and different from the average population value for dusty galaxies selected at submillimeter wavelengths. Our radiative transfer modeling (using the large velocity gradient approximation) indicates that converting the CO line luminosity to molecular gas mass requires a Galactic (disk-like) scale factor rather than the typical conversion factor assumed for starbursts. Despite this choice of conversion factor, J14011 falls in the same region of star formation rate surface density and gas mass surface density (the Schmidt-Kennicutt relation) as other starburst galaxies. SDSS J0901+1814 (J0901) was initially selected as a star-forming galaxy at ultraviolet wavelengths, but also has a large infrared luminosity. We use the magnification provided by the strong gravitational lensing affecting this system to examine the spatial variation of the CO excitation within J0901. We find that the CO(3--2)/CO(1--0) line ratio is

  19. A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B

    International Nuclear Information System (INIS)

    Cucchiara, A.; Fox, D. B.; Wu, X. F.; Toma, K.; Levan, A. J.; Tanvir, N. R.; Rowlinson, A.; Ukwatta, T. N.; Berger, E.; Kruehler, T.; Greiner, J.; Olivares, F. E.; Yoldas, A. Kuepcue; Amati, L.; Sakamoto, T.; Roth, K.; Stephens, A.; Fritz, Alexander; Fynbo, J. P. U.; Hjorth, J.

    2011-01-01

    Gamma-ray bursts (GRBs) serve as powerful probes of the early universe, with their luminous afterglows revealing the locations and physical properties of star-forming galaxies at the highest redshifts, and potentially locating first-generation (Population III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal-to-noise spectroscopy, or photometry. Here we present a photometric redshift of z ∼ 9.4 for the Swift detected GRB 090429B based on deep observations with Gemini-North, the Very Large Telescope, and the GRB Optical and Near-infrared Detector. Assuming a Small Magellanic Cloud dust law (which has been found in a majority of GRB sight lines), the 90% likelihood range for the redshift is 9.06 7. The non-detection of the host galaxy to deep limits (Y(AB) ∼ 28, which would correspond roughly to 0.001L* at z = 1) in our late-time optical and infrared observations with the Hubble Space Telescope strongly supports the extreme-redshift origin of GRB 090429B, since we would expect to have detected any low-z galaxy, even if it were highly dusty. Finally, the energetics of GRB 090429B are comparable to those of other GRBs and suggest that its progenitor is not greatly different from those of lower redshift bursts.

  20. Detecting signatures of cosmological recombination and reionization in the cosmic radio background

    Science.gov (United States)

    Subrahmanyan, Ravi; Shankar Narayana Rao, Udaya; Sathyanarayana Rao, Mayuri; Singh, Saurabh

    2015-08-01

    Evolution of the baryons during the Epochs of cosmological Recombination and Reionization has left traces in the cosmic radio background in the form of spectral distortions (Sunyaev & Chluba 2008 Astron. Nachrichten, 330, 657; Pritchard & Loeb 2012 Rep Prog Phys 75(8):086901). The spectral signature depends on the evolution in the ionization state in hydrogen and helium and on the spin temperature of hydrogen. These probe the physics of energy release beyond the last scattering surface at redshifts exceeding 1090 and the nature of the first sources and gas evolution down to redshift about 6. The spectral distortions are sensitive to the nature of the first stars, ultra-dwarf galaxies, accreting compact objects, and the evolving ambient radiation field: X-rays and UV from the first sources. Detection of the all-sky or global spectral distortions in the radio background is hence a probe of cosmological recombination and reionization.We present new spectral radiometers that we have purpose designed for precision measurements of spectral distortions at radio wavelengths. New antenna elements include frequency independent and electrically small fat-dipole (Raghunathan et al. 2013 IEEE TAP, 61, 3411) and monopole designs. Receiver configurations have been devised that are self-calibratable (Patra et al. 2013 Expt Astron, 36, 319) so that switching of signal paths and of calibration noise sources provide real time calibration for systematics and receiver noise. Observing strategies (Patra et al. arXiv:1412.7762) and analysis methods (Satyanarayana Rao et al. arXiv:1501.07191) have been evolved that are capable of discriminating between the cosmological signals and the substantially brighter foregrounds. We have also demonstrated the value of system designs that exploit advantages of interferometer detection (Mahesh et al. arXiv:1406.2585) of global spectral distortions.Finally we discuss how the Square Kilometer Array stations may be outfitted with precision spectral

  1. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  2. A Moderate Redshift Supernova Search Program

    Science.gov (United States)

    Adams, M. T.; Wheeler, J. C.; Ward, M.; Wren, W. R.; Schmidt, B. P.

    1995-12-01

    We report on a recently initiated supernova (SN) search program using the McDonald Observatory 0.76m telescope and Prime Focus Camera (PFC). This SN search program takes advantage of the PFC's 42.6 x 42.6 arcmin FOV to survey moderate redshift Abell clusters in single Kron-Cousins R-band images. Our scientific goal is to discover and provide quality BVRI photometric follow-up, to R \\ +21, for a significant SNe sample at 0.03 group (Perlmutter et al 1995, ApJ, 440, L41), and the High Redshift SN Search Team (Schmidt et al 1995, Aiguiblava NATO ASI Proceedings). The McDonald SN search program includes a sample of the Abell clusters used by Lauer and Postman (1994, ApJ, 425, 418) to analyze Local Group motion. SNe discovered in these clusters contribute to the resolution of the Local Group motion controversy. We present an overview of the McDonald Observatory supernova search program, and discuss recent results.

  3. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    International Nuclear Information System (INIS)

    Giroletti, M.; Massaro, F.; D’Abrusco, R.; Lico, R.; Burlon, D.

    2016-01-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg"2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α_l_o_w) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.

  4. A Subaru galaxy redshift survey: WFMOS survey

    International Nuclear Information System (INIS)

    Takada, M

    2008-01-01

    A planned galaxy redshift survey with the Subaru 8.2m telescope, the WFMOS survey, offers a unique opportunity for probing detailed properties of large-scale structure formation in the expanding universe by measuring clustering strength of galaxy distribution as a function of distance scale and redshift. In particular, the precise measurement of the galaxy power spectrum, combined with the cosmic microwave background experiments, allows us to obtain stringent constraints on or even determine absolute mass scales of the Big-Bang relic neutrinos as the neutrinos imprint characteristic scale- and redshift-dependent modifications onto the galaxy power spectrum shape. Here we describe the basic concept of how the galaxy clustering measurement can be used to explore the neutrino masses, with particular emphasis on advantages of the WFMOS survey over the existing low-redshift surveys such as SDSS

  5. Photometric redshift estimation via deep learning. Generalized and pre-classification-less, image based, fully probabilistic redshifts

    Science.gov (United States)

    D'Isanto, A.; Polsterer, K. L.

    2018-01-01

    Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods. Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now, the vast majority of applied redshift estimation methods have utilized photometric features. Aims: We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering pre-classification of objects and feature extraction obsolete. Methods: A modified version of a deep convolutional network was combined with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances on experiments with data from SDSS (DR9). Results: We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to results from the literature. Conclusions: The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously important for the next generation of surveys.

  6. EDGES and the Development of Absolute Calibration for Wideband Radio Receivers for 21cm Cosmology

    Science.gov (United States)

    Bowman, Judd D.

    2018-06-01

    The ultra-violet light emitted by early stars, when the universe was less than 400 million years old, alters the excitation state of the 21cm hyperfine line of primordial neutral hydrogen gas that surrounds the stars. This causes the gas to absorb photons from the cosmic microwave background (CMB). Later, energy deposited into the gas by the ultra-violet and X-ray emission from these early stars and their remnants heats the gas and eventually ionizes it. These effects produce spectral features in the CMB observable today at frequencies redshifted to below 200 MHz. The 21cm signal is approximately 10,000 times fainter the foreground synchrotron emission from the Milky Way, leading to the requirement that any instrument designed to observe it must have a knowable response at the 0.01% level. Typical radio receivers used in astronomical measurements are accurate at the 1-10% level. Over the last decade, our team has investigated new radio receiver designs and accurate calibration strategies in the laboratory and in ground-based instruments to achieve the 0.01% performance goal. Building on these efforts, we recently reported evidence for detection of the redshifted 21cm signal as a decrease in the sky-averaged radio intensity observed by the Experiment to Detect the Global EoR Signature (EDGES). We found a flattened absorption profile in the measured radio spectrum centered at a frequency of 78 MHz with full width at half maximum of 19 MHz and an amplitude of 0.5 K. The frequency of the profile is roughly consistent with astrophysical models of early star formation. However, the amplitude of the observed profile is more than a factor of two greater than the largest standard predictions and suggests that the gas was either significantly colder than expected or the background radiation temperature was hotter than expected.

  7. The psisub(IPS)-LAS relation for extragalactic radio sources

    International Nuclear Information System (INIS)

    Banhatti, D.G.

    1984-01-01

    Metre-wavelength interplanetary scintillation (IPS) observations give the overall angular sizes psi of scintillating compact structures in radio sources. From 326.5-MHz IPS data for a sample of faint (Ooty) radio sources, log psi versus log (largest angular size) is seen, on average, to have a slope 0.2, significantly less than one. A similar trend is seen from 81.5-MHz IPS data for a sample of strong, powerful (3CR) double sources, although the slope is 0.4 and the mean psi about four times larger. The difference in slopes is due mainly to the large spread in the redshifts of the 3CR sources compared to the expected narrow range for the Ooty sources, while the difference in mean psi values is due to the different methods of determining psi for the two samples, the different frequencies used for the IPS observations and the different mean LAS values. (author)

  8. GPU-Based High-performance Imaging for Mingantu Spectral RadioHeliograph

    Science.gov (United States)

    Mei, Ying; Wang, Feng; Wang, Wei; Chen, Linjie; Liu, Yingbo; Deng, Hui; Dai, Wei; Liu, Cuiyin; Yan, Yihua

    2018-01-01

    As a dedicated solar radio interferometer, the MingantU SpEctral RadioHeliograph (MUSER) generates massive observational data in the frequency range of 400 MHz-15 GHz. High-performance imaging forms a significantly important aspect of MUSER’s massive data processing requirements. In this study, we implement a practical high-performance imaging pipeline for MUSER data processing. At first, the specifications of the MUSER are introduced and its imaging requirements are analyzed. Referring to the most commonly used radio astronomy software such as CASA and MIRIAD, we then implement a high-performance imaging pipeline based on the Graphics Processing Unit technology with respect to the current operational status of the MUSER. A series of critical algorithms and their pseudo codes, i.e., detection of the solar disk and sky brightness, automatic centering of the solar disk and estimation of the number of iterations for clean algorithms, are proposed in detail. The preliminary experimental results indicate that the proposed imaging approach significantly increases the processing performance of MUSER and generates images with high-quality, which can meet the requirements of the MUSER data processing. Supported by the National Key Research and Development Program of China (2016YFE0100300), the Joint Research Fund in Astronomy (No. U1531132, U1631129, U1231205) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Nos. 11403009 and 11463003).

  9. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R. [INAF/IRA, via Gobetti 101, I-40129 Bologna (Italy); Ettori, S. [INAF/Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Pratt, G. W. [Laboratoire AIM, IRFU/Service dAstrophysique-CEA/DSM-CNRS-Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Dolag, K. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Markevitch, M. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the

  10. SPITZER 70/160 μm OBSERVATIONS OF HIGH-REDSHIFT ULIRGs AND HyLIRGs IN THE BOOeTES FIELD

    International Nuclear Information System (INIS)

    Tyler, Krystal D.; Floc'h, Emeric Le; Rieke, George H.; Papovich, Casey; Blaylock, Myra; Dey, Arjun; Jannuzi, Buell T.; Armus, Lee; Desai, Vandana; Brand, Kate; Borys, Colin; Dole, Herve; Brown, Michael J. I.; Higdon, Sarah J. U.; Higdon, James L.; Charmandaris, Vassilis; Ashby, Matthew L. N.; Smith, Howard A.

    2009-01-01

    We present new 70 and 160 μm observations of a sample of extremely red (R - [24] ∼> 15 mag), mid-infrared bright, high-redshift (1.7 ∼ bol ∼ 4 x 10 12 L sun to ∼3 x 10 13 L sun (ULIRGs/hyper-luminous IR galaxies (HyLIRGs)), representing the first robust constraints on L bol for this class of object.

  11. LOW-METALLICITY STAR FORMATION IN HIGH-REDSHIFT GALAXIES AT z ∼ 8

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Shioya, Y.; Trump, J. R.

    2010-01-01

    Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z ∼ 8, selected by the so-called dropout method or photometric redshift; e.g., Y 105 -dropouts (Y 105 - J 125 > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z ∼ 8 galaxy candidates. We focus on the strong emission-line galaxies at z ∼ 2 in this paper. Such galaxies may be selected as Y 105 -dropouts since the [O III] λ5007 emission line is redshifted into the J 125 band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z ∼ 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z ∼ 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z ∼ 5 x 10 -4 Z sun ) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

  12. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We have made observations of the associated HI absorption of a high redshift radio galaxy 0902+34 at = 3.395 with the Giant Meterwave Radio Telescope in the 323+1 MHz band. We find a narrow absorption line with a flux density of 11.5 mJy at a redshift of 3.397 consistent with that observed by Uson et al. (1991) ...

  13. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Finkelstein, K.; Finkelstein, Steven [University of Texas, Austin, TX 78712 (United States); Carilli, Chris [National Radio Astronomy Observatory, Socorro, NM (United States); Combes, Françoise [Observatoire de Paris, LERMA, CNRS, 61 Avenue de l’Observatoire, F-75014 Paris (France); Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole [Institut d’Astrophysique Spatiale, Centre Universitaire d’Orsay (France); Frye, Brenda [Steward Observatory, University of Arizona, Tucson, AZ (United States); Gerin, Maryvonne [LERMA,24 rue Lhomond, F-75231 Paris Cedex 05 (France); Rigby, Jane [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Shin, Min-Su [Oxford University, Oxford, OX1 3PA (United Kingdom); Spaans, Marco [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Papovich, Casey, E-mail: malhotra@asu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A and M University, College Station, TX 77843 (United States)

    2017-01-20

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10{sup 7} L {sub ⊙} to 3.7 × 10{sup 9} L {sub ⊙} (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  14. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    International Nuclear Information System (INIS)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan; Finkelstein, K.; Finkelstein, Steven; Carilli, Chris; Combes, Françoise; Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole; Frye, Brenda; Gerin, Maryvonne; Rigby, Jane; Shin, Min-Su; Spaans, Marco; Strauss, Michael A.; Papovich, Casey

    2017-01-01

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10 7 L ⊙ to 3.7 × 10 9 L ⊙ (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  15. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    Science.gov (United States)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The SED models, which include nebular emission shed new light on the properties of LBGs with numerous important implications. Appendix A is available in electronic form at http://www.aanda.org

  16. The redshift number density evolution of Mg II absorption systems

    International Nuclear Information System (INIS)

    Chen Zhi-Fu

    2013-01-01

    We make use of the recent large sample of 17 042 Mg II absorption systems from Quider et al. to analyze the evolution of the redshift number density. Regardless of the strength of the absorption line, we find that the evolution of the redshift number density can be clearly distinguished into three different phases. In the intermediate redshift epoch (0.6 ≲ z ≲ 1.6), the evolution of the redshift number density is consistent with the non-evolution curve, however, the non-evolution curve over-predicts the values of the redshift number density in the early (z ≲ 0.6) and late (z ≳ 1.6) epochs. Based on the invariant cross-section of the absorber, the lack of evolution in the redshift number density compared to the non-evolution curve implies the galaxy number density does not evolve during the middle epoch. The flat evolution of the redshift number density tends to correspond to a shallow evolution in the galaxy merger rate during the late epoch, and the steep decrease of the redshift number density might be ascribed to the small mass of halos during the early epoch.

  17. Redshift sensitivity of the Kaiser effect

    International Nuclear Information System (INIS)

    Simpson, Fergus

    2010-01-01

    We explore potential strategies for testing general relativity via the coherent motions of galaxies. Our position at z=0 provides the reference point for distance measures in cosmology. By contrast, the cosmic microwave background at z≅1100 acts as the point of reference for the growth of a large-scale structure. As a result, we find there is a lack of synergy between growth and distance measures. We show that, when measuring the gravitational growth index γ using redshift-space distortions, typically 80% of the signal corresponds to the local growth rate at the galaxy bin location, while the remaining fraction is determined by its behavior at higher redshifts. In order to clarify whether modified gravity may be responsible for the dark energy phenomenon, the aim is to search for a modification to the growth of structure. One might expect the magnitude of this deviation to be commensurate with the apparent dark energy density Ω Λ (z). This provides an incentive to study redshift-space distortions at as low a redshift as is practical. Specifically, we find the region around z=0.5 offers the optimal balance of available volume and signal strength.

  18. Spatial distribution of the gamma-ray bursts at very high redshift

    Science.gov (United States)

    Mészáros, Attila

    2018-05-01

    The author - with his collaborators - already in years 1995-96 have shown - purely from the analyses of the observations - that the gamma-ray bursts (GRBs) can be till redshift 20. Since that time several other statistical studies of the spatial distribution of GRBs were provided. Remarkable conclusions concerning the star-formation rate and the validity of the cosmological principle were obtained about the regions of the cosmic dawn. In this contribution these efforts are surveyed.

  19. CHANDRA OBSERVATIONS OF THE HIGH-MAGNETIC-FIELD RADIO PULSAR J1718-3718

    International Nuclear Information System (INIS)

    Zhu, W. W.; Kaspi, V. M.; Ng, C.-Y.; McLaughlin, M. A.; Pavlov, G. G.; Manchester, R. N.; Gaensler, B. M.; Woods, P. M.

    2011-01-01

    High-magnetic-field pulsars represent an important class of objects for studying the relationship between magnetars and radio pulsars. Here we report on four Chandra observations of the high-magnetic-field pulsar J1718-3718 (B = 7.4 x 10 13 G) taken in 2009 as well as a reanalysis of 2002 Chandra observations of the region. We also report an improved radio position for this pulsar based on ATCA observations. We detect X-ray pulsations at the pulsar's period in the 2009 data, with a pulsed fraction of 52% ± 13% in the 0.8-2.0 keV band. We find that the X-ray pulse is aligned with the radio pulse. The data from 2002 and 2009 show consistent spectra and fluxes: a merged overall spectrum is well fit by a blackbody of temperature 186 +19 -18 eV, slightly higher than predicted by standard cooling models; however, the best-fit neutron star atmosphere model is consistent with standard cooling. We find the bolometric luminosity L ∞ bb = 4 +5 -2 x 10 32 erg s -1 ∼0.3 E-dot for a distance of 4.5 kpc. We compile measurements of the temperatures of all X-ray-detected high-B pulsars as well as those of low-B radio pulsars and find evidence for the former being hotter on average than the latter.

  20. THE REDSHIFT DISTRIBUTION OF INTERVENING WEAK Mg II QUASAR ABSORBERS AND A CURIOUS DEPENDENCE ON QUASAR LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jessica L.; Churchill, Christopher W.; Nielsen, Nikole M.; Klimek, Elizabeth S. [New Mexico State University, Las Cruces, NM 88003 (United States); Murphy, Michael T. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 (Australia)

    2013-05-01

    We have identified 469 Mg II {lambda}{lambda}2796, 2803 doublet systems having W{sub r} {>=} 0.02 A in 252 Keck/High Resolution Echelle Spectrometer and UVES/Very Large Telescope quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak Mg II systems (0.02 A {<=}W{sub r} < 0.3 A), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z {approx} 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak Mg II absorbers seem to vanish above z {approx_equal} 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 10{sup 6}-10{sup 9} Mpc{sup -3} for spherical geometries and 10{sup 2}-10{sup 5} Mpc{sup -3} for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (W{sub r} {>=} 1.0 A) absorbers. For weak absorption, dN/dz toward bright quasars is {approx}25% higher than toward faint quasars (10{sigma} at low redshift, 0.4 {<=} z {<=} 1.4, and 4{sigma} at high redshift, 1.4 < z {<=} 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being {approx}20% higher than toward bright quasars (also 10{sigma} at low redshift and 4{sigma} at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.

  1. Redshift-space distortions from vector perturbations

    Science.gov (United States)

    Bonvin, Camille; Durrer, Ruth; Khosravi, Nima; Kunz, Martin; Sawicki, Ignacy

    2018-02-01

    We compute a general expression for the contribution of vector perturbations to the redshift space distortion of galaxy surveys. We show that they contribute to the same multipoles of the correlation function as scalar perturbations and should thus in principle be taken into account in data analysis. We derive constraints for next-generation surveys on the amplitude of two sources of vector perturbations, namely non-linear clustering and topological defects. While topological defects leave a very small imprint on redshift space distortions, we show that the multipoles of the correlation function are sensitive to vorticity induced by non-linear clustering. Therefore future redshift surveys such as DESI or the SKA should be capable of measuring such vector modes, especially with the hexadecapole which appears to be the most sensitive to the presence of vorticity.

  2. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  3. On the contribution of active galactic nuclei to the high-redshift metagalactic ionizing background

    Science.gov (United States)

    D'Aloisio, Anson; Upton Sanderbeck, Phoebe R.; McQuinn, Matthew; Trac, Hy; Shapiro, Paul R.

    2017-07-01

    Motivated by the claimed detection of a large population of faint active galactic nuclei (AGNs) at high redshift, recent studies have proposed models in which AGNs contribute significantly to the z > 4 H I ionizing background. In some models, AGNs are even the chief sources of reionization. If proved true, these models would make necessary a complete revision to the standard view that galaxies dominated the high-redshift ionizing background. It has been suggested that AGN-dominated models can better account for two recent observations that appear to be in conflict with the standard view: (1) large opacity variations in the z ˜ 5.5 H I Ly α forest, and (2) slow evolution in the mean opacity of the He II Ly α forest. Large spatial fluctuations in the ionizing background from the brightness and rarity of AGNs may account for the former, while the earlier onset of He II reionization in these models may account for the latter. Here we show that models in which AGN emissions source ≳50 per cent of the ionizing background generally provide a better fit to the observed H I Ly α forest opacity variations compared to standard galaxy-dominated models. However, we argue that these AGN-dominated models are in tension with constraints on the thermal history of the intergalactic medium (IGM). Under standard assumptions about the spectra of AGNs, we show that the earlier onset of He II reionization heats up the IGM well above recent temperature measurements. We further argue that the slower evolution of the mean opacity of the He II Ly α forest relative to simulations may reflect deficiencies in current simulations rather than favour AGN-dominated models as has been suggested.

  4. Ulysses radio and plasma wave observations at high southern heliographic latitudes.

    Science.gov (United States)

    Stone, R G; Macdowall, R J; Fainberg, J; Kaiser, M L; Desch, M D; Goldstein, M L; Hoang, S; Bougeret, J L; Harvey, C C; Manning, R; Steinberg, J L; Kellogg, P J; Lin, N; Goetz, K; Osherovich, V A; Reiner, M J; Canu, P; Cornilleau-Wehrlin, N; Lengyel-Frey, D; Thejappa, G

    1995-05-19

    Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.

  5. Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN

    Science.gov (United States)

    Pasetto, Alice; Carrasco-González, Carlos; O'Sullivan, Shane; Basu, Aritra; Bruni, Gabriele; Kraus, Alex; Curiel, Salvador; Mack, Karl-Heinz

    2018-06-01

    We present broadband polarimetric observations of a sample of high-Faraday-rotation-measure (high-RM) active galactic nuclei (AGN) using the Karl. G. Jansky Very Large Array (JVLA) telescope from 1 to 2 GHz, and 4 to 12 GHz. The sample (14 sources) consists of very compact sources (linear resolution smaller than ≈5 kpc) that are unpolarized at 1.4 GHz in the NRAO VLA Sky Survey (NVSS). Total intensity data have been modeled using a combination of synchrotron components, revealing complex structure in their radio spectra. Depolarization modeling, through the so-called qu-fitting (the modeling of the fractional quantities of the Stokes Q and U parameters), has been performed on the polarized data using an equation that attempts to simplify the process of fitting many different depolarization models. These models can be divided into two major categories: external depolarization (ED) and internal depolarization (ID) models. Understanding which of the two mechanisms is the most representative would help the qualitative understanding of the AGN jet environment and whether it is embedded in a dense external magneto-ionic medium or if it is the jet-wind that causes the high RM and strong depolarization. This could help to probe the jet magnetic field geometry (e.g., helical or otherwise). This new high-sensitivity data shows a complicated behavior in the total intensity and polarization radio spectrum of individual sources. We observed the presence of several synchrotron components and Faraday components in their total intensity and polarized spectra. For the majority of our targets (12 sources), the depolarization seems to be caused by a turbulent magnetic field. Thus, our main selection criteria (lack of polarization at 1.4 GHz in the NVSS) result in a sample of sources with very large RMs and depolarization due to turbulent magnetic fields local to the source. These broadband JVLA data reveal the complexity of the polarization properties of this class of radio sources

  6. High-redshift post-reionization cosmology with 21cm intensity mapping

    Science.gov (United States)

    Obuljen, Andrej; Castorina, Emanuele; Villaescusa-Navarro, Francisco; Viel, Matteo

    2018-05-01

    We investigate the possibility of performing cosmological studies in the redshift range 2.5place on the growth rate, the BAO distance scale parameters, the sum of the neutrino masses and the number of relativistic degrees of freedom at decoupling, N eff. We point out that quantities that depend on the amplitude of the 21cm power spectrum, like fσ8, are completely degenerate with ΩHI and bHI, and propose several strategies to independently constrain them through cross-correlations with other probes. Assuming 5% priors on ΩHI and bHI, kmax=0.2 h Mpc‑1 and the primary beam wedge, we find that a HIRAX extension can constrain, within bins of Δ z=0.1: 1) the value of fσ8 at simeq4%, 2) the value of DA and H at simeq1%. In combination with data from Euclid-like galaxy surveys and CMB S4, the sum of the neutrino masses can be constrained with an error equal to 23 meV (1σ), while Neff can be constrained within 0.02 (1σ). We derive similar constraints for the extensions of the other instruments. We study in detail the dependence of our results on the instrument, amplitude of the HI bias, the foreground wedge coverage, the nonlinear scale used in the analysis, uncertainties in the theoretical modeling and the priors on bHI and Ω HI. We conclude that 21cm intensity mapping surveys operating in this redshift range can provide extremely competitive constraints on key cosmological parameters.

  7. UV Continuum Slope and Dust Obscuration from z ~ 6 to z ~ 2: The Star Formation Rate Density at High Redshift

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Chary, R.-R.; Meurer, G. R.; Conselice, C. J.; Ford, H.; Giavalisco, M.; van Dokkum, P.

    2009-11-01

    We provide a systematic measurement of the rest-frame UV continuum slope β over a wide range in redshift (z ~ 2-6) and rest-frame UV luminosity (0.1 L* z = 3 to 2 L* z = 3) to improve estimates of the star formation rate (SFR) density at high redshift. We utilize the deep optical and infrared data (Advanced Camera for Surveys/NICMOS) over the Chandra Deep Field-South and Hubble Deep Field-North Great Observatories Origins Deep Survey fields, as well as the UDF for our primary UBVi "dropout" Lyman Break Galaxy sample. We also use strong lensing clusters to identify a population of very low luminosity, high-redshift dropout galaxies. We correct the observed distributions for both selection biases and photometric scatter. We find that the UV-continuum slope of the most luminous galaxies is substantially redder at z ~ 2-4 than it is at z ~ 5-6 (from ~-2.4 at z ~ 6 to ~-1.5 at z ~ 2). Lower luminosity galaxies are also found to be bluer than higher luminosity galaxies at z ~ 2.5 and z ~ 4. We do not find a large number of galaxies with β's as red as -1 in our dropout selections at z ~ 4, and particularly at z gsim 5, even though such sources could be readily selected from our data (and also from Balmer Break Galaxy searches at z ~ 4). This suggests that star-forming galaxies at z gsim 5 almost universally have very blue UV-continuum slopes, and that there are not likely to be a substantial number of dust-obscured galaxies at z gsim 5 that are missed in "dropout" searches. Using the same relation between UV-continuum slope and dust extinction as has been found to be appropriate at both z ~ 0 and z ~ 2, we estimate the average dust extinction of galaxies as a function of redshift and UV luminosity in a consistent way. As expected, we find that the estimated dust extinction increases substantially with cosmic time for the most UV luminous galaxies, but remains small (lsim2 times) at all times for lower luminosity galaxies. Because these same lower luminosity galaxies

  8. Measuring our Universe from Galaxy Redshift Surveys.

    Science.gov (United States)

    Lahav, Ofer; Suto, Yasushi

    2004-01-01

    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  9. SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cameronpace@suu.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2016-02-10

    The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infrared Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.

  10. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    Science.gov (United States)

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; Hopkins, Philip F.; Hayward, Christopher C.; Wetzel, Andrew; Faucher-Giguère, Claude-André; Kereš, Dušan; Garrison-Kimmel, Shea; Murray, Norman

    2018-03-01

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 105-6 M⊙ collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ˜420 Myr till the end of the simulation. Because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.

  11. Filters for mobile radio from high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Peterson, G.E.; Wong, E.; Alford, N.McN.

    1990-01-01

    Mobile radio frequencies lie between 30 MHz and 1,000 MHz. This frequency range is ideal for ceramic high T c superconductors. We have designed Chebyshev, Butterworth and interdigital filters that can employ high T c superconductors in the form of rods, tubes and helices. In general, the performance of these filters at milliwatt power levels is excellent. We will describe fabrication of the superconductors and filter design

  12. Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts

    Science.gov (United States)

    Fialkov, Anastasia; Loeb, Abraham

    2017-11-01

    Tidal disruption events (TDEs) of stars by single or binary supermassive black holes (SMBHs) brighten galactic nuclei and reveal a population of otherwise dormant black holes. Adopting event rates from the literature, we aim to establish general trends in the redshift evolution of the TDE number counts and their observable signals. We pay particular attention to (I) jetted TDEs whose luminosity is boosted by relativistic beaming and (II) TDEs around binary black holes. We show that the brightest (jetted) TDEs are expected to be produced by massive black hole binaries if the occupancy of intermediate mass black holes (IMBHs) in low-mass galaxies is high. The same binary population will also provide gravitational wave sources for the evolved Laser Interferometer Space Antenna. In addition, we find that the shape of the X-ray luminosity function of TDEs strongly depends on the occupancy of IMBHs and could be used to constrain scenarios of SMBH formation. Finally, we make predictions for the expected number of TDEs observed by future X-ray telescopes finding that a 50 times more sensitive instrument than the Burst Alert Telescope (BAT) on board the Swift satellite is expected to trigger ˜10 times more events than BAT, while 6-20 TDEs are expected in each deep field observed by a telescope 50 times more sensitive than the Chandra X-ray Observatory if the occupation fraction of IMBHs is high. Because of their long decay times, high-redshift TDEs can be mistaken for fixed point sources in deep field surveys and targeted observations of the same deep field with year-long intervals could reveal TDEs.

  13. The effect of morphological type on the spectral redshift of Perseus supercluster galaxies

    International Nuclear Information System (INIS)

    Giraud, Edmond

    1982-01-01

    The relation between the spectral redshift of galaxies belonging to the Perseus supercluster and their morphological type on the basis of the complete sample given by Gregory et coll. is studied. It is shown that in the central core the Sb and Scd galaxies have a very significant redshift excess and that the Sbc and Sc galaxies have the same highly significant excess as a complete (for m [fr

  14. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    Science.gov (United States)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

  15. Cognitive radio networks efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    PrefaceAcknowledgmentsAbout the AuthorsIntroductionCognitive Radio-Based NetworksOpportunistic Spectrum Access NetworksCognitive Radio Networks with Cooperative SensingCognitive Radio Networks for Cellular CommunicationsCognitive Radio Networks for High-Speed VehiclesCognitive Radio Networks for a Smart GridContent and OrganizationTransmission Slot Allocation in an Opportunistic Spectrum Access NetworkSingle-User Single-Channel System ModelProbabilistic Slot Allocation SchemeOptimal Probabilistic Slot AllocationBaseline PerformanceExponential DistributionHyper-Erlang DistributionPerformance An

  16. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    International Nuclear Information System (INIS)

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-01-01

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L IR > 10 11.5 L ☉ ). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L C II /L FIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L C II –L FIR relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L C II /L FIR ratio and the far-IR color L 60 /L 100 observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L C II /L FIR at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L C II /L FIR ratios, the moderate star formation efficiencies (L IR /L CO ′ or L IR /M H 2 ), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ∼ 0.3.

  17. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    International Nuclear Information System (INIS)

    Durret, F.; Adami, C.; Bertin, E.; Hao, J.; Márquez, I.

    2015-01-01

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less than 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.15< z<0.70, with estimated mean masses between 10"1"3 and a few 10"1"4 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.

  18. EXTREMELY STRONG CARBON-MONOXIDE EMISSION FROM THE CLOVERLEAF QUASAR AT A REDSHIFT OF 2.5

    NARCIS (Netherlands)

    BARVAINIS, R; TACCONI, L; ANTONUCCI, R; ALLOIN, D; COLEMAN, P

    1994-01-01

    GALAXIES at high redshift are very faint and difficult to study at optical and near-infrared wavelengths, but detection of far-infrared emission(1) and molecular gas(2,3) in a galaxy at redshift z approximate to 2.3 has suggested that their early evolution may be investigated by these means instead.

  19. PROBING FUNDAMENTAL CONSTANT EVOLUTION WITH REDSHIFTED CONJUGATE-SATELLITE OH LINES

    International Nuclear Information System (INIS)

    Kanekar, Nissim; Chengalur, Jayaram N.; Ghosh, Tapasi

    2010-01-01

    We report Westerbork Synthesis Radio Telescope and Arecibo Telescope observations of the redshifted satellite OH 18 cm lines at z ∼ 0.247 toward PKS 1413+135. The 'conjugate' nature of these lines, with one line in emission and the other in absorption, but with the same shape, implies that the lines arise in the same gas. The satellite OH 18 cm line frequencies also have different dependences on the fine structure constant α, the proton-electron mass ratio μ = m p /m e , and the proton gyromagnetic ratio g p . Comparisons between the satellite line redshifts in conjugate systems can hence be used to probe changes in α, μ, and g p , with few systematic effects. The technique yields the expected null result when applied to Cen.A, a nearby conjugate satellite system. For the z ∼ 0.247 system toward PKS 1413+135, we find, on combining results from the two telescopes, that (ΔG/G) = (-1.18 ± 0.46) x 10 -5 (weighted mean), where G = g p (μα 2 ) 1.85 ; this is tentative evidence (with 2.6 σ significance, or at 99.1% confidence) for a smaller value of α, μ, and/or g p at z ∼ 0.247, i.e., at a lookback time of ∼2.9 Gyr. If we assume that the dominant change is in α, this implies (Δα/α) = (-3.1 ± 1.2) x 10 -6 . We find no evidence that the observed offset might be produced by systematic effects, either due to observational or analysis procedures, or local conditions in the molecular cloud.

  20. Clustering redshifts: a new window through the Universe

    International Nuclear Information System (INIS)

    Scottez, Vivien L.

    2015-01-01

    The main goals of this thesis are to validate, consolidate and develop a new method to measure the redshift distribution of a sample of galaxies. Where current methods - spectroscopic and photometric redshifts - rely on the study of the spectral energy distribution of extragalactic sources, the approach presented here is based on the clustering properties of galaxies. Indeed clustering of galaxies caused by gravity gives them a particular spatial - and angular - distribution. In this clustering redshift approach, we use this particular property between a galaxies sample of unknown redshifts and a galaxies sample of reference to reconstruct the redshift distribution of the unknown population. Thus, possible systematics in this approach should be independent of those existing in other methods. This new method responds to a real need from the scientific community in the context of large dark imaging experiments such as the Euclid mission of the European Space Agency (ESA). After introducing the general scientific context and having highlighted the crucial role of distance measurements in astronomy, I present the statistical tools generally used to study the large scale structure of the Universe as well as their modification to infer redshift distributions. After validating this approach on a particular type of extragalactic objects, I generalized its application to all types of galaxies. Then, I explored the precision and some systematic effects by conducting an ideal case study. Thus, I performed a real case study. I also pushed further this analysis and found that the reference sample used in the measurement does not need to have the same limiting magnitude than the population of unknown redshift. This property is a great advantage for the use of this approach in the context of large imaging dark energy experiments like the Euclid space mission. Finally, I summarize my main results and present some of my future projects. (author)