WorldWideScience

Sample records for high quality acoustical

  1. Acoustic Quality Levels of Mosques in Batu Pahat

    Science.gov (United States)

    Azizah Adnan, Nor; Nafida Raja Shahminan, Raja; Khair Ibrahim, Fawazul; Tami, Hannifah; Yusuff, M. Rizal M.; Murniwaty Samsudin, Emedya; Ismail, Isham

    2018-04-01

    Every Friday, Muslims has been required to perform a special prayer known as the Friday prayers which involve the delivery of a brief lecture (Khutbah). Speech intelligibility in oral communications presented by the preacher affected all the congregation and determined the level of acoustic quality in the interior of the mosque. Therefore, this study intended to assess the level of acoustic quality of three public mosques in Batu Pahat. Good acoustic quality is essential in contributing towards appreciation in prayers and increasing khusyu’ during the worship, which is closely related to the speech intelligibility corresponding to the actual function of the mosque according to Islam. Acoustic parameters measured includes noise criteria (NC), reverberation time (RT) and speech transmission index (STI), and was performed using the sound level meter and sound measurement instruments. This test is carried out through the physical observation with the consideration of space and volume design as a factor affecting acoustic parameters. Results from all 3 mosques as the showed that the acoustic quality level inside these buildings are slightly poor which is at below 0.45 coefficients based on the standard. Among the factors that influencing the low acoustical quality are location, building materials, installation of sound absorption material and the number of occupants inside the mosque. As conclusion, the acoustic quality level of a mosque is highly depends on physical factors of the mosque such as the architectural design and space volume besides other factors as been identified by this study.

  2. Office layout affecting privacy, interaction, and acoustic quality in LEED-certified buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young S. [School of Planning, Design, and Construction, Michigan State University, East Lansing, MI 48823 (United States)

    2010-07-15

    The study investigated differences in worker satisfaction and perceived job performance regarding privacy, interaction, and acoustic quality issues in personal workspaces between five office types in LEED-certified buildings. It finds that people in high cubicles showed significantly lower satisfaction and job performance in relation to visual privacy and interaction with co-workers than both enclosed private and enclosed shared office types. They also showed significantly lower satisfaction with noise level and sound privacy and lower job performance perceived by acoustic quality than enclosed private, enclosed shared, and bullpen types. The bullpen type, open-plan office without partitions, presented significantly higher satisfaction with noise level and higher performance perceived by acoustic quality than both high and low cubicles. Considering the bullpen type also showed higher satisfaction with sound privacy than the high cubicle type, high partitions don't seem to contribute to creating workspaces where people can have a secure conversation. The bullpen type didn't show any difference from the enclosed shared type in all privacy, interaction, and acoustic quality questions, indicating it may be a good option for a small office space instead of the enclosed shared type. (author)

  3. Acoustic comfort in high-school classrooms for students and teachers

    NARCIS (Netherlands)

    G.E. Puglisi; L.C. Cantor Cutiva (Lady Catherine); L. Pavese; A. Castellana; M. Bona; S. Fasolis; V. Lorenzatti; A. Carullo; A. Burdor; F. Bronuzzi; A. Astolfi

    2015-01-01

    textabstractThis work focuses on the evaluation of acoustical quality in high-school classrooms through in-field measurements and self-reports. Two school buildings that differ in location and typology, were considered. In-field measurements included sound insulation, room acoustics and

  4. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  5. Is reverberation time adequate for testing the acoustical quality of unroofed auditoriums?

    DEFF Research Database (Denmark)

    Paini, Dario; Gade, Anders Christian; Rindel, Jens Holger

    2006-01-01

    30) and other acoustical parameters normally used to test the acoustical quality of closed auditoria, such as concert halls, theatres, opera houses, are suitable and sufficient for testing the acoustical quality of open performance spaces. Simulations as well as measurements were carried out to study...

  6. KB-WOT Quality assurance acoustics: overview and protocols 2008 version

    NARCIS (Netherlands)

    Ybema, M.S.

    2009-01-01

    The quality of IMARES' acoustic surveys proved quite unstable in recent years despite extra effort in this field to bring this instability down. The amount of involved scientists in acoustics has been small compared to demersal survey work. Therefore scientific standards of acoustic surveys are

  7. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  8. Evaluation of room acoustic qualities and defects by use of auralization

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2004-01-01

    Auralizations generated by room acoustic computer modeling programs may be used as a tool for evaluation of acoustic qualities and defects, some of which are not easily detected by objective measures. Examples include reverberance, flutter echoes, perceived room size and distance, apparent source...... that the modeling of source directivity and the late room reflections (the reverberation tail) need careful consideration in order to achieve reliable and realistic sounding results. However, when implemented in the software the application for practical use can be simple and quick....... width, listener envelopment, and sound propagation in coupled rooms. In order to reach a sufficiently high level of realism in auralizations for such room acoustic applications it is necessary that all parts of the simulation chain are modeled with sufficient accuracy. In particular it is found...

  9. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong

    2015-01-21

    We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.

  10. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1998-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the difficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  11. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1999-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings.......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the dif-ficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  12. Azimuthally acoustic logging tool to evaluate cementing quality

    International Nuclear Information System (INIS)

    Lu, Junqiang; Ju, Xiaodong; Qiao, Wenxiao; Men, Baiyong; Wang, Ruijia; Wu, Jinping

    2014-01-01

    An azimuthally sensitive acoustic bond tool (AABT) uses a phased arc array transmitter that can provide directionally focused radiation. The acoustic sonde consists of a phased arc array transmitter and two monopole receivers, the spaces from the transmitter being 0.91 m and 1.52 m, respectively. The transmitter includes eight transducer sub-units. By controlling the high-voltage firing signal phase for each transmitter, the radiation energy of the phased arc array transducer can be focused in a single direction. Compared with conventional monopole and dipole transmitters, the new transmitter provides cement quality evaluation with azimuthal sensitivity, which is not possible with conventional cement bond log/variable density log tools. Laboratory measurements indicate that the directivity curves for the phased arc array and those computed theoretically are consistent and show good agreement. We acquire measurements from a laboratory cistern and from the field to validate the reliability and applicability of the AABT. Results indicate that the AABT accurately evaluates the azimuthal cement quality of case-cement interfaces by imaging the amplitude of the first-arrival wave. This tool visualizes the size, position and orientation of channeling and holes. In the case of good case-cement bonding, the AABT also evaluates the azimuthal cementing quality of the cement formation interface by imaging the amplitude of formation waves. (paper)

  13. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  14. On-chip nanofluidic integration of acoustic sensors towards high Q in liquid

    Science.gov (United States)

    Liang, Ji; Liu, Zifeng; Zhang, Hongxiang; Liu, Bohua; Zhang, Menglun; Zhang, Hao; Pang, Wei

    2017-11-01

    This paper reports an on-chip acoustic sensor comprising a piston-mode film bulk acoustic resonator and a monolithically integrated nanochannel. The resonator with the channel exhibits a resonance frequency (f) of 2.5 GHz and a quality (Q) factor of 436 in deionized water. The f × Q product is as high as 1.1 × 1012, which is the highest among all the acoustic wave sensors in the liquid phase. The sensor consumes 2 pl liquid volume and thus greatly saves the precious assays in biomedical testing. The Q factor is investigated, and real-time viscosity tests of glucose solution are demonstrated. The highly miniaturized and integrated sensor is capable to be arrayed with readout-circuitry, which opens an avenue for portable applications and lab-on-chip systems.

  15. Acoustic Method for Testing the Quality of Sterilized Male Tsetse Flies Glossina Pallidipes

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, H [Department of Evolutionary Biology, University of Vienna, Halsriegelstr. 34, Vienna A-1090 (Austria); Noll, A [Institut fuer Schallforschung, Oe Ak d Wiss, Wohllebengasse 12-14, Vienna A-1040 (Austria); Bolldorf, J [Umweltbundesamt, Spittelauer Laende 5, Vienna A-1090 (Austria); Parker, A G [Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf A-2444 (Austria)

    2012-07-15

    Tsetse flies are able to emit different acoustic signals. An acoustic method to test the quality of sterilized male tsetse flies was developed. Differences in the sound characteristics between males and females, between sterilized and unsterilized males, and between males sterilized in air and nitrogen, were determined. Also, the acoustic parameters (frequency, time, sound pressure level) of the sounds that are useful as criteria for quality control were determined. It was demonstrated that only the so-called 'feeding sounds' can be used as a quality criterion. Both sexes emitted feeding sounds while feeding on a host. These sounds were also used to find sexual partners, and had an effect on male copulation success. An acoustic sound analysis programme was developed; it automatically measured sound activity (only feeding sounds) under standard conditions (random sample, relative humidity, temperature, light intensity). (author)

  16. Nonlinear acoustics of water-saturated marine sediments

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1976-01-01

    Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...

  17. Computational Aero-Acoustic Using High-order Finite-Difference Schemes

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2007-01-01

    are solved using the in-house flow solver EllipSys2D/3D which is a second-order finite volume code. The acoustic solution is found by solving the acoustic equations using high-order finite difference schemes. The incompressible flow equations and the acoustic equations are solved at the same time levels......In this paper, a high-order technique to accurately predict flow-generated noise is introduced. The technique consists of solving the viscous incompressible flow equations and inviscid acoustic equations using a incompressible/compressible splitting technique. The incompressible flow equations...

  18. The Relationship Between Acoustic Signal Typing and Perceptual Evaluation of Tracheoesophageal Voice Quality for Sustained Vowels.

    Science.gov (United States)

    Clapham, Renee P; van As-Brooks, Corina J; van Son, Rob J J H; Hilgers, Frans J M; van den Brekel, Michiel W M

    2015-07-01

    To investigate the relationship between acoustic signal typing and perceptual evaluation of sustained vowels produced by tracheoesophageal (TE) speakers and the use of signal typing in the clinical setting. Two evaluators independently categorized 1.75-second segments of narrow-band spectrograms according to acoustic signal typing and independently evaluated the recording of the same segments on a visual analog scale according to overall perceptual acoustic voice quality. The relationship between acoustic signal typing and overall voice quality (as a continuous scale and as a four-point ordinal scale) was investigated and the proportion of inter-rater agreement as well as the reliability between the two measures is reported. The agreement between signal type (I-IV) and ordinal voice quality (four-point scale) was low but significant, and there was a significant linear relationship between the variables. Signal type correctly predicted less than half of the voice quality data. There was a significant main effect of signal type on continuous voice quality scores with significant differences in median quality scores between signal types I-IV, I-III, and I-II. Signal typing can be used as an adjunct to perceptual and acoustic evaluation of the same stimuli for TE speech as part of a multidimensional evaluation protocol. Signal typing in its current form provides limited predictive information on voice quality, and there is significant overlap between signal types II and III and perceptual categories. Future work should consider whether the current four signal types could be refined. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  19. The relationship between sound insulation and acoustic quality in dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1998-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings.......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the difficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  20. TU-F-CAMPUS-I-04: Head-Only Asymmetric Gradient System Evaluation: ACR Image Quality and Acoustic Noise

    Energy Technology Data Exchange (ETDEWEB)

    Weavers, P; Shu, Y; Tao, S; Bernstein, M [Mayo Clinic, Rochester, Minnesota (United States); Lee, S; Piel, J; Foo, T [GE Global Research, Niskayuna, NY (United States); Mathieu, J-B [GE Healthcare, Florence, SC (Italy)

    2015-06-15

    Purpose: A high-performance head-only magnetic resonance imaging gradient system with an acquisition volume of 26 cm employing an asymmetric design for the transverse coils has been developed. It is able to reach a magnitude of 85 mT/m at a slew rate of 700 T/m/s, but operated at 80 mT/m and 500 T/m/s for this test. A challenge resulting from this asymmetric design is that the gradient nonlinearly exhibits both odd- and even-ordered terms, and as the full imaging field of view is often used, the nonlinearity is pronounced. The purpose of this work is to show the system can produce clinically useful images after an on-site gradient nonlinearity calibration and correction, and show that acoustic noise levels fall within non-significant risk (NSR) limits for standard clinical pulse sequences. Methods: The head-only gradient system was inserted into a standard 3T wide-bore scanner without acoustic damping. The ACR phantom was scanned in an 8-channel receive-only head coil and the standard American College of Radiology (ACR) MRI quality control (QC) test was performed. Acoustic noise levels were measured for several standard pulse sequences. Results: Images acquired with the head-only gradient system passed all ACR MR image quality tests; Both even and odd-order gradient distortion correction terms were required for the asymmetric gradients to pass. Acoustic noise measurements were within FDA NSR guidelines of 99 dBA (with assumed 20 dBA hearing protection) A-weighted and 140 dB for peak for all but one sequence. Note the gradient system was installed without any shroud or acoustic batting. We expect final system integration to greatly reduce noise experienced by the patient. Conclusion: A high-performance head-only asymmetric gradient system operating at 80 mT/m and 500 T/m/s conforms to FDA acoustic noise limits in all but one case, and passes all the ACR MR image quality control tests. This work was supported in part by the NIH grant 5R01EB010065.

  1. TU-F-CAMPUS-I-04: Head-Only Asymmetric Gradient System Evaluation: ACR Image Quality and Acoustic Noise

    International Nuclear Information System (INIS)

    Weavers, P; Shu, Y; Tao, S; Bernstein, M; Lee, S; Piel, J; Foo, T; Mathieu, J-B

    2015-01-01

    Purpose: A high-performance head-only magnetic resonance imaging gradient system with an acquisition volume of 26 cm employing an asymmetric design for the transverse coils has been developed. It is able to reach a magnitude of 85 mT/m at a slew rate of 700 T/m/s, but operated at 80 mT/m and 500 T/m/s for this test. A challenge resulting from this asymmetric design is that the gradient nonlinearly exhibits both odd- and even-ordered terms, and as the full imaging field of view is often used, the nonlinearity is pronounced. The purpose of this work is to show the system can produce clinically useful images after an on-site gradient nonlinearity calibration and correction, and show that acoustic noise levels fall within non-significant risk (NSR) limits for standard clinical pulse sequences. Methods: The head-only gradient system was inserted into a standard 3T wide-bore scanner without acoustic damping. The ACR phantom was scanned in an 8-channel receive-only head coil and the standard American College of Radiology (ACR) MRI quality control (QC) test was performed. Acoustic noise levels were measured for several standard pulse sequences. Results: Images acquired with the head-only gradient system passed all ACR MR image quality tests; Both even and odd-order gradient distortion correction terms were required for the asymmetric gradients to pass. Acoustic noise measurements were within FDA NSR guidelines of 99 dBA (with assumed 20 dBA hearing protection) A-weighted and 140 dB for peak for all but one sequence. Note the gradient system was installed without any shroud or acoustic batting. We expect final system integration to greatly reduce noise experienced by the patient. Conclusion: A high-performance head-only asymmetric gradient system operating at 80 mT/m and 500 T/m/s conforms to FDA acoustic noise limits in all but one case, and passes all the ACR MR image quality control tests. This work was supported in part by the NIH grant 5R01EB010065

  2. Acoustic levitation for high temperature containerless processing in space

    Science.gov (United States)

    Rey, C. A.; Sisler, R.; Merkley, D. R.; Danley, T. J.

    1990-01-01

    New facilities for high-temperature containerless processing in space are described, including the acoustic levitation furnace (ALF), the high-temperature acoustic levitator (HAL), and the high-pressure acoustic levitator (HPAL). In the current ALF development, the maximum temperature capabilities of the levitation furnaces are 1750 C, and in the HAL development with a cold wall furnace they will exceed 2000-2500 C. The HPAL demonstrated feasibility of precursor space flight experiments on the ground in a 1 g pressurized-gas environment. Testing of lower density materials up to 1300 C has also been accomplished. It is suggested that advances in acoustic levitation techniques will result in the production of new materials such as ceramics, alloys, and optical and electronic materials.

  3. Acoustic properties of perforates under high level multi-tone excitation

    OpenAIRE

    Bodén, Hans

    2013-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. Compared to previously published results the present investigation concentrates on the effect of multiple harmonics. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perfo...

  4. Validation of the Acoustic Voice Quality Index Version 03.01 and the Acoustic Breathiness Index in the Spanish language.

    Science.gov (United States)

    Delgado Hernández, Jonathan; León Gómez, Nieves M; Jiménez, Alejandra; Izquierdo, Laura M; Barsties V Latoszek, Ben

    2018-05-01

    The aim of this study was to validate the Acoustic Voice Quality Index 03.01 (AVQIv3) and the Acoustic Breathiness Index (ABI) in the Spanish language. Concatenated voice samples of continuous speech (cs) and sustained vowel (sv) from 136 subjects with dysphonia and 47 vocally healthy subjects were perceptually judged for overall voice quality and breathiness severity. First, to reach a higher level of ecological validity, the proportions of cs and sv were equalized regarding the time length of 3 seconds sv part and voiced cs part, respectively. Second, concurrent validity and diagnostic accuracy were verified. A moderate reliability of overall voice quality and breathiness severity from 5 experts was used. It was found that 33 syllables as standardization of the cs part, which represents 3 seconds of voiced cs, allows the equalization of both speech tasks. A strong correlation was revealed between AVQIv3 and overall voice quality and ABI and perceived breathiness severity. Additionally, the best diagnostic outcome was identified at a threshold of 2.28 and 3.40 for AVQIv3 and ABI, respectively. The AVQIv3 and ABI showed in the Spanish language valid and robust results to quantify abnormal voice qualities regarding overall voice quality and breathiness severity.

  5. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  6. From acoustic descriptors to evoked quality of car door sounds.

    Science.gov (United States)

    Bezat, Marie-Céline; Kronland-Martinet, Richard; Roussarie, Vincent; Ystad, Sølvi

    2014-07-01

    This article describes the first part of a study aiming at adapting the mechanical car door construction to the drivers' expectancies in terms of perceived quality of cars deduced from car door sounds. A perceptual cartography of car door sounds is obtained from various listening tests aiming at revealing both ecological and analytical properties linked to evoked car quality. In the first test naive listeners performed absolute evaluations of five ecological properties (i.e., solidity, quality, weight, closure energy, and success of closure). Then experts in the area of automobile doors categorized the sounds according to organic constituents (lock, joints, door panel), in particular whether or not the lock mechanism could be perceived. Further, a sensory panel of naive listeners identified sensory descriptors such as classical descriptors or onomatopoeia that characterize the sounds, hereby providing an analytic description of the sounds. Finally, acoustic descriptors were calculated after decomposition of the signal into a lock and a closure component by the Empirical Mode Decomposition (EMD) method. A statistical relationship between the acoustic descriptors and the perceptual evaluations of the car door sounds could then be obtained through linear regression analysis.

  7. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  8. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha; Wu, Ying

    2016-01-01

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  9. Comprehensive evaluation of the acoustic impulse-response of apples as a measure of fruit quality

    OpenAIRE

    Landahl, Sandra

    2007-01-01

    The acoustic impulse-response technique is a means to evaluate apple quality. In this work the effect of physiological changes in the fruit on the physical measurements of fruit quality are examined. In the acoustic impulse-response technique the fruit is mechanically excited by an impact force and starts to vibrate at its own natural frequency. The resulting sound waves are then recorded and analysed. It is a fast method and yields a produce-averaged value: the stiffness factor. Experimen...

  10. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  11. High efficiency and broadband acoustic diodes

    Science.gov (United States)

    Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.

    2018-01-01

    Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.

  12. High-frequency acoustic charge transport in GaAs nanowires

    NARCIS (Netherlands)

    Büyükköse, S.; Hernandez-Minguez, A.; Vratzov, B.; Somaschini, C.; Geelhaar, L.; Riechert, H.; van der Wiel, Wilfred Gerard; Santos, P.V.

    2014-01-01

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short

  13. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    Science.gov (United States)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  14. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    Science.gov (United States)

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  15. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...

  16. Quality factor due to roughness scattering of shear horizontal surface acoustic waves in nanoresonators

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to

  17. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  18. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    International Nuclear Information System (INIS)

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed. An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported. It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first, then it transforms into a jet wave. The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases. The results of the investigation can be used to understand the acoustic characteristics of bubble bursting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...... this information is discussed. The conclusion of the paper is that the application of acoustical simulation programs is most beneficial in the last of three phases but that an application of the program to the two first phases would be preferable and possible with an improvement of the interface of the program....

  20. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  1. Influence of acoustic waves on TEA CO2 laser performance

    CSIR Research Space (South Africa)

    Von Bergmann, H

    2007-01-01

    Full Text Available In this paper the author’s present results on the influence of acoustic waves on the output laser beam from high repetition rate TEA CO2 lasers. The authors show that acoustic waves generated inside the cavity lead to deterioration in beam quality...

  2. Acoustic detection of ultra-high energy cascades in ice

    Energy Technology Data Exchange (ETDEWEB)

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  3. Acoustic detection of ultra-high energy cascades in ice

    International Nuclear Information System (INIS)

    Boeser, S.

    2006-01-01

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km 3 scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km 3 will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and transmitters was

  4. Parametric Analysis of Acoustical Requirements for Lateral Reflections: Melbourne Recital Hall Case Study

    Directory of Open Access Journals (Sweden)

    Erica Claustro

    2013-06-01

    Full Text Available This paper is an investigation of the Melbourne Recital Centre as a case study to define the parameters necessary for good acoustical quality as it relates to the Binaural Quality Index and determining the intimacy of the hall by its initial time delay gap. The Melbourne Recital Centre, designed by Ashton Raggatt McDougall Architects, is a significant case study, as its design was driven by the acoustic requirements of reflection and diffusion through Odeon Acoustical Software. It achieves the same acoustical quality of older, ornately designed shoebox concert halls, from the perspective of contemporary design and fabrication tools and techniques. The sleek design of the Melbourne Recital Centre successfully reflects sound waves in low, mid, and high frequencies due to corresponding wall panel differentiation in the corresponding scales, as engineered by Arup Acoustics.

  5. Acoustic communication for Maya Autonomous Underwater Vehicle - performance evaluation of acoustic modem

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.; Maurya, P.; Navelkar, G.S.; Desa, E.S.; Mascarenhas, A.A.M.Q.; Dabholkar, N.A.; Madhan, R.; Prabhudesai, S.P.

    traffic. This necessitates monitoring the AUV status and data quality through an acoustic link which needs to perform reliably under such conditions, at long range. To address these situations partially, acoustic communication capability is planned...

  6. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    International Nuclear Information System (INIS)

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s −1 ) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening

  7. Observation of the fundamental Nyquist noise limit in an ultra-high Q-factor cryogenic bulk acoustic wave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, Maxim, E-mail: maxim.goryachev@uwa.edu.au; Ivanov, Eugene N.; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Kann, Frank van [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Galliou, Serge [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe, 25000 Besançon (France)

    2014-10-13

    Thermal Nyquist noise fluctuations of high-Q bulk acoustic wave cavities have been observed at cryogenic temperatures with a DC superconducting quantum interference device amplifier. High Q modes with bandwidths of few tens of milliHz produce thermal fluctuations with a signal-to-noise ratio of up to 23 dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high (Q > 10{sup 8} at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  8. Holographic and acoustic emission evaluation of pressure vessels

    International Nuclear Information System (INIS)

    Boyd, D.M.

    1980-01-01

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality

  9. Acoustic grating fringe projector for high-speed and high-precision three-dimensional shape measurements

    International Nuclear Information System (INIS)

    Yin Xuebing; Zhao Huijie; Zeng Junyu; Qu Yufu

    2007-01-01

    A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields

  10. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    Energy Technology Data Exchange (ETDEWEB)

    Cuttitta, Christina M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314 (United States); Ericson, Daniel L. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260 (United States); Scalia, Alexander [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 11973-5000 (United States); Roessler, Christian G. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Teplitsky, Ella [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Stony Brook University, Stony Brook, NY 11794-5215 (United States); Joshi, Karan [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); PEC University of Technology, Chandigarh (India); Campos, Olven [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33414 (United States); Agarwal, Rakhi; Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sweet, Robert M.; Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  11. Harnessing Multiple Internal Reflections to Design Highly Absorptive Acoustic Metasurfaces

    Science.gov (United States)

    Shen, Chen; Cummer, Steven A.

    2018-05-01

    The rapid development of metasurfaces has enabled numerous intriguing applications with acoustically thin sheets. Here we report the theory and experimental realization of a nonresonant sound-absorbing strategy using metasurfaces by harnessing multiple internal reflections. We theoretically and numerically show that the higher-order diffraction of thin gradient-index metasurfaces is tied to multiple internal reflections inside the unit cells. Highly absorbing acoustic metasurfaces can be realized by enforcing multiple internal reflections together with a small amount of loss. A reflective gradient-index acoustic metasurface is designed based on the theory, and we further experimentally verify the performance using a three-dimensional printed prototype. Measurements show over 99% energy absorption at the peak frequency and a 95% energy absorption bandwidth of around 600 Hz. The proposed mechanism provides an alternative route for sound absorption without the necessity of high absorption of the individual unit cells.

  12. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    Science.gov (United States)

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  13. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2012-05-01

    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  14. High-frequency modulation of ion-acoustic waves.

    Science.gov (United States)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  15. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging† †Electronic supplementary information (ESI) available: Additional information about 1D model calculations for a piezoelectric transducer. See DOI: 10.1039/c6lc00182c Click here for additional data file.

    Science.gov (United States)

    McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-01-01

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  16. High Frequency Acoustic Propagation using Level Set Methods

    Science.gov (United States)

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...the Eikonal equation derived from the high frequency approximation to the wave equation, ucuH ∇±=∇ )(),( xx , with the nonnegative function c(x...For simplicity, we only consider the case ucuH ∇+=∇ )(),( xx . Two difficulties must be addressed when solving the Eikonal equation in a fixed

  17. Classroom acoustics in public schools: A case study

    Science.gov (United States)

    Loro, Carmen P.; Zannin, Paulo T.

    2004-05-01

    The acoustic quality of a standard classroom (Standard 23) of the public school system in the city of Curitiba has been evaluated. This standard has a central circulation aisle with two classrooms in each side. Each room has windows to the outside and to the internal aisle. Additionally, the aisle has a 6-m-high zenithal skylight, together composing the building's main lighting and ventilation system. But, Standard 23 lacks acoustic quality of the classrooms. In order to assay this, measurements have been performed under several conditions, using the Building Acoustics System of Bruel & Kjaer. The measured reverberation time (RT) of the four classrooms for a frequency of 500 Hz was: 1.65 s (empty classroom), 1.15 s (20 students in the room), and 0.76 s (40 students). According to WHO recommendations, the ideal RT in classrooms should be around 0.6 s. DIN 18041 establishes an RT between 0.8 and 1.0 s, to allow for adequate intelligibility. Background noise in an empty room was 63.3 dB (A), above the limit established by the Brazilian standard of acoustic comfort: 40 dB (A). The reaction of students and teachers has indicated that the main source of acoustic discomfort is the noise generated by the neighboring classrooms.

  18. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  19. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    Science.gov (United States)

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples

    OpenAIRE

    Bodén, Hans

    2012-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates and liner samples. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perforates at other frequencies, thereby changing the boundary condition seen by the acoustic waves. Thi...

  1. Nonlinear electron acoustic structures generated on the high-potential side of a double layer

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2009-04-01

    Full Text Available High-time resolution measurements of the electron distribution function performed in the auroral upward current region reveals a large asymmetry between the low- and high-potential sides of a double-layer. The latter side is characterized by a large enhancement of a locally trapped electron population which corresponds to a significant part (~up to 30% of the total electron density. As compared to the background hot electron population, this trapped component has a very cold temperature in the direction parallel to the static magnetic field. Accordingly, the differential drift between the trapped and background hot electron populations generates high frequency electron acoustic waves in a direction quasi-parallel to the magnetic field. The density of the trapped electron population can be deduced from the frequency where the electron acoustic spectrum maximizes. In the auroral midcavity region, the electron acoustic waves may be modulated by an additional turbulence generated in the ion acoustic range thanks to the presence of a pre-accelerated ion beam located on the high-potential side of the double layer. Electron holes characterized by bipolar pulses in the electric field are sometimes detected in correlation with these electron acoustic wave packets.

  2. Program for the feasibility of developing a high pressure acoustic levitator

    Science.gov (United States)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.

    1988-01-01

    This is the final report for the program for the feasibility of developing a high-pressure acoustic levitator (HPAL). It includes work performed during the period from February 15, 1987 to October 26, 1987. The program was conducted for NASA under contract number NAS3-25115. The HPAL would be used for containerless processing of materials in the 1-g Earth environment. Results show that the use of increased gas pressure produces higher sound pressure levels. The harmonics produced by the acoustic source are also reduced. This provides an improvement in the capabilities of acoustic levitation in 1-g. The reported processing capabilities are directly limited by the design of the Medium Pressure Acoustic Levitator used for this study. Data show that sufficient acoustic intensities can be obtained to levitate and process a specimen of density 5 g/cu cm at 1500 C. However, it is recommended that a working engineering model of the HPAL be developed. The model would be used to establish the maximum operating parameters of furnace temperature and sample density.

  3. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  4. Monitoring of the threshing process quality by using advanced vibro-acoustic indicators

    OpenAIRE

    Fiorati, Stefano

    2011-01-01

    This PhD thesis concerns the vibro-acoustic monitoring of the threshing process in an axial flow harvesting machine. This research is a step towards the development of online control systems finalized to maximize the process efficiency and the product quality. By using different signal processing tools it is possible to analyse the link between sound/vibration and material distribution in the threshing unit. In more details, the threshing process is mainly given by two principa...

  5. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    Science.gov (United States)

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  6. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    Science.gov (United States)

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Circuit quantum acoustodynamics with surface acoustic waves.

    Science.gov (United States)

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  8. Investigation of air-assisted sprays submitted to high frequency transverse acoustic fields: Droplet clustering

    Science.gov (United States)

    Ficuciello, A.; Blaisot, J. B.; Richard, C.; Baillot, F.

    2017-06-01

    An experimental investigation of the effects of a high amplitude transverse acoustic field on coaxial jets is presented in this paper. Water and air are used as working fluids at ambient pressure. The coaxial injectors are placed on the top of a semi-open resonant cavity where the acoustic pressure fluctuations of the standing wave can reach a maximum peak-to-peak amplitude of 12 kPa at the forcing frequency of 1 kHz. Several test conditions are considered in order to quantify the influence of injection conditions, acoustic field amplitude, and injector position with respect to the standing wave acoustic field. A high speed back-light visualization technique is used to characterize the jet response. Image processing is used to obtain valuable information about the jet behavior. It is shown that the acoustic field drastically affects the atomization process for all atomization regimes. The position of the injector in the acoustic field determines the jet response, and a droplet-clustering phenomenon is highlighted in multi-point injection conditions and quantified by determining discrete droplet location distributions. A theoretical model based on nonlinear acoustics related to the spatial distribution of the radiation pressure exerted on an object explains the behavior observed.

  9. Stabilized Acoustic Levitation of Dense Materials Using a High-Powered Siren

    Science.gov (United States)

    Gammell, P. M.; Croonquist, A.; Wang, T. G.

    1982-01-01

    Stabilized acoustic levitation and manipulation of dense (e.g., steel) objects of 1 cm diameter, using a high powered siren, was demonstrated in trials that investigated the harmonic content and spatial distribution of the acoustic field, as well as the effect of sample position and reflector geometries on the acoustic field. Although further optimization is possible, the most stable operation achieved is expected to be adequate for most containerless processing applications. Best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper one. Operation slightly below resonance enhances stability as this minimizes the second harmonic, which is suspected of being a particularly destabilizing influence.

  10. An Underwater Acoustic Vector Sensor with High Sensitivity and Broad Band

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2014-05-01

    Full Text Available Recently, acoustic vector sensor that use accelerators as sensing elements are widely used in underwater acoustic engineering, but the sensitivity of which at low frequency band is usually lower than -220 dB. In this paper, using a piezoelectric trilaminar optimized low frequency sensing element, we designed a high sensitivity internal placed ICP piezoelectric accelerometer as sensing element. Through structure optimization, we made a high sensitivity, broadband, small scale vector sensor. The working band is 10-2000 Hz, sound pressure sensitivity is -185 dB (at 100 Hz, outer diameter is 42 mm, length is 80 mm.

  11. Switchable and tunable film bulk acoustic resonator fabricated using barium strontium titanate active layer and Ta{sub 2}O{sub 5}/SiO{sub 2} acoustic reflector

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, N. M., E-mail: sbrockey@structuredmaterials.com; Tompa, G. S. [Structured Materials Industries, Inc., Piscataway, New Jersey 08854 (United States); Kalkur, T. S.; Mansour, A. [Department of Electrical and Computer Engineering, Colorado State University at Colorado Springs, Colorado Springs, Colorado 80933 (United States); Khassaf, H.; Yu, H.; Aindow, M.; Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2016-08-01

    A solidly mounted acoustic resonator was fabricated using a Ba{sub 0.60}Sr{sub 0.40}TiO{sub 3} (BST) film deposited by metal organic chemical vapor deposition. The device was acoustically isolated from the substrate using a Bragg reflector consisting of three pairs of Ta{sub 2}O{sub 5}/SiO{sub 2} layers deposited by chemical solution deposition. Transmission electron microscopy verified that the Bragg reflector was not affected by the high temperatures and oxidizing conditions necessary to process high quality BST films. Electrical characterization of the resonator demonstrated a quality factor (Q) of 320 and an electromechanical coupling coefficient (K{sub t}{sup 2}) of 7.0% at 11 V.

  12. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  13. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  14. Radiation acoustics and its applications

    International Nuclear Information System (INIS)

    Lyamshev, L.M.

    1992-01-01

    Radiation acoustics is a new branch of acoustics, developing on the boundary of acoustics, nuclear physics, elementary particles and high-energy physics. Its fundamentals are laying in the research of acoustical effects due to the interaction of penetrating radiation with matter. The study of radiation-acoustical effects leads to the new opportunities in the penetration radiation research (acoustical detection, radiation-acoustical dosimetry), study of the physical parameters of matter, in a solution of some applied problems of nondestructive testing, and also for the radiation-acoustical influence on physical and chemical structure of the matter. Results of theoretical and experimental investigations are given. Different mechanisms of the sound generation by penetrating radiation of liquids and solids are considered. Some applications - the radiation acoustical microscopy and visualisation, the acoustical detection of high energy X-ray particles and possibility of using of high energy neutrino beams in geoacoustics - are discussed

  15. International proposal for an acoustic classification scheme for dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2014-01-01

    Acoustic classification schemes specify different quality levels for acoustic conditions. Regulations and classification schemes for dwellings typically include criteria for airborne and impact sound insulation, façade sound insulation and service equipment noise. However, although important...... classes, implying also trade barriers. Thus, a harmonized classification scheme would be useful, and the European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", running 2009-2013 with members from 32 countries, including three overseas...... for quality of life, information about acoustic conditions is rarely available, neither for new or existing housing. Regulatory acoustic requirements will, if enforced, ensure a corresponding quality for new dwellings, but satisfactory conditions for occupants are not guaranteed. Consequently, several...

  16. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  17. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  18. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    Science.gov (United States)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  19. Uncertainty of input data for room acoustic simulations

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Marbjerg, Gerd; Brunskog, Jonas

    2016-01-01

    Although many room acoustic simulation models have been well established, simulation results will never be accurate with inaccurate and uncertain input data. This study addresses inappropriateness and uncertainty of input data for room acoustic simulations. Firstly, the random incidence absorption...... and scattering coefficients are insufficient when simulating highly non-diffuse rooms. More detailed information, such as the phase and angle dependence, can greatly improve the simulation results of pressure-based geometrical and wave-based models at frequencies well below the Schroeder frequency. Phase...... summarizes potential advanced absorption measurement techniques that can improve the quality of input data for room acoustic simulations. Lastly, plenty of uncertain input data are copied from unreliable sources. Software developers and users should be careful when spreading such uncertain input data. More...

  20. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  1. Australia's continental-scale acoustic tracking database and its automated quality control process

    Science.gov (United States)

    Hoenner, Xavier; Huveneers, Charlie; Steckenreuter, Andre; Simpfendorfer, Colin; Tattersall, Katherine; Jaine, Fabrice; Atkins, Natalia; Babcock, Russ; Brodie, Stephanie; Burgess, Jonathan; Campbell, Hamish; Heupel, Michelle; Pasquer, Benedicte; Proctor, Roger; Taylor, Matthew D.; Udyawer, Vinay; Harcourt, Robert

    2018-01-01

    Our ability to predict species responses to environmental changes relies on accurate records of animal movement patterns. Continental-scale acoustic telemetry networks are increasingly being established worldwide, producing large volumes of information-rich geospatial data. During the last decade, the Integrated Marine Observing System's Animal Tracking Facility (IMOS ATF) established a permanent array of acoustic receivers around Australia. Simultaneously, IMOS developed a centralised national database to foster collaborative research across the user community and quantify individual behaviour across a broad range of taxa. Here we present the database and quality control procedures developed to collate 49.6 million valid detections from 1891 receiving stations. This dataset consists of detections for 3,777 tags deployed on 117 marine species, with distances travelled ranging from a few to thousands of kilometres. Connectivity between regions was only made possible by the joint contribution of IMOS infrastructure and researcher-funded receivers. This dataset constitutes a valuable resource facilitating meta-analysis of animal movement, distributions, and habitat use, and is important for relating species distribution shifts with environmental covariates.

  2. A screening approach for classroom acoustics using web-based listening tests and subjective ratings.

    Science.gov (United States)

    Persson Waye, Kerstin; Magnusson, Lennart; Fredriksson, Sofie; Croy, Ilona

    2015-01-01

    Perception of speech is crucial in school where speech is the main mode of communication. The aim of the study was to evaluate whether a web based approach including listening tests and questionnaires could be used as a screening tool for poor classroom acoustics. The prime focus was the relation between pupils' comprehension of speech, the classroom acoustics and their description of the acoustic qualities of the classroom. In total, 1106 pupils aged 13-19, from 59 classes and 38 schools in Sweden participated in a listening study using Hagerman's sentences administered via Internet. Four listening conditions were applied: high and low background noise level and positions close and far away from the loudspeaker. The pupils described the acoustic quality of the classroom and teachers provided information on the physical features of the classroom using questionnaires. In 69% of the classes, at least three pupils described the sound environment as adverse and in 88% of the classes one or more pupil reported often having difficulties concentrating due to noise. The pupils' comprehension of speech was strongly influenced by the background noise level (pcomprehension. Of the pupils' descriptions of acoustic qualities, clattery significantly (pcomprehension. Clattery was furthermore associated to difficulties understanding each other, while the description noisy was associated to concentration difficulties. The majority of classrooms do not seem to have an optimal sound environment. The pupil's descriptions of acoustic qualities and listening tests can be one way of predicting sound conditions in the classroom.

  3. The near-field acoustic levitation of high-mass rotors

    International Nuclear Information System (INIS)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-01-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope

  4. The near-field acoustic levitation of high-mass rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  5. The near-field acoustic levitation of high-mass rotors.

    Science.gov (United States)

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  6. Dielectric and acoustical high frequency characterisation of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)

    2010-02-15

    Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  7. High throughput imaging cytometer with acoustic focussing.

    Science.gov (United States)

    Zmijan, Robert; Jonnalagadda, Umesh S; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn; Glynne-Jones, Peter

    2015-10-31

    We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.

  8. High-speed automated NDT device for niobium plate using scanning laser acoustic microscopy

    International Nuclear Information System (INIS)

    Oravecz, M.G.; Yu, B.Y.; Riney, K.; Kessler, L.W.; Padamsee, H.

    1988-01-01

    This paper presents a nondestructive testing (NDT) device which rapidly and automatically identifies defects throughout the volume of a 23.4 cm x 23.4 cm x 0.3 cm, pure niobium plate using Scanning Laser Acoustic Microscope (SLAM), high-resolution, 60 MHz, ultrasonic images. A principle advantage of the SLAM technique is that it combines a video scan rate with a high scan density (130 lines/mm at 60 MHz). To automate the inspection system they integrated under computer control the following: the SLAM RS-170/330 video output, a computerized XY plate scanner, a real-time video digitizer/integrator, a computer algorithm for defect detection, a digital mass storage device, and a hardcopy output device. The key element was development of an efficient, reliable defect detection algorithm using a variance filter with a locally determined threshold. This algorithm is responsible for recognizing valid flaws in the midst of random texture. This texture was seen throughout the acoustic images and was caused by the niobium microstructure. The images, as analyzed, contained 128 x 120 pixels with 64 grey levels per pixel. This system allows economical inspection of the large quantities (eg. 100 tons) of material needed for future particle accelerators based on microwave superconductivity. Rapid nondestructive inspection of pure niobium sheet is required because current accelerator performance is largely limited by the quality of commercially available material. Previous work documented critical flaws that are detectable by SLAM techniques. 15 references, 9 figures

  9. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    Science.gov (United States)

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  10. Spatial Processing of Urban Acoustic Wave Fields from High-Performance Computations

    National Research Council Canada - National Science Library

    Ketcham, Stephen A; Wilson, D. K; Cudney, Harley H; Parker, Michael W

    2007-01-01

    .... The objective of this work is to develop spatial processing techniques for acoustic wave propagation data from three-dimensional high-performance computations to quantify scattering due to urban...

  11. A visual acoustic high-pressure cell for the study of critical behavior of nonsimple mixtures

    Science.gov (United States)

    Aguiar-Ricardo, A.; Temtem, M.; Casimiro, T.; Ribeiro, N.

    2004-10-01

    A visual acoustic high-pressure cell was constructed for the determination of critical data of multicomponent mixtures. The cell was specially designed to include two piezoelectric transducers and two sapphire windows that make this cell well suited to investigate the critical behavior of mixtures, simultaneously using the acoustic technique and the direct visual inspection of the critical opalescence. Critical data obtained on the binary mixtures of CO2+CHF3 were used for comparison with values given in literature using the traditional methods. The acoustic results are in agreement with those obtained by the conventional methods, within the combined experimental errors. Comparison of visual and acoustic data enabled the evaluation of the applicability of the acoustic technique to study the critical behavior of multicomponent mixtures.

  12. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available A high-overtone bulk acoustic resonator (HBAR consisting of a piezoelectric film with two electrodes on a substrate exhibits a high quality factor (Q and multi-mode resonance spectrum. By analyzing the influences of each layer’s material and structure (thickness parameters on the effective electromechanical coupling coefficient (Keff2, the resonance spectrum characteristics of Keff2 have been investigated systematically, and the optimal design of HBAR has been provided. Besides, a device, corresponding to one of the theoretical cases studied, is fabricated and evaluated. The experimental results are basically consistent with the theoretical results. Finally, the effects of Keff2 on the function of the crystal oscillators constructed with HBARs are proposed. The crystal oscillators can operate in more modes and have a larger frequency hopping bandwidth by using the HBARs with a larger Keff2·Q.

  13. A model of the enhancement of coal combustion using high intensity acoustic fields

    International Nuclear Information System (INIS)

    Yavuzkurt, S.; Ha, M.Y.; Koopmann, G.H.; Scaroni, A.

    1989-01-01

    In this paper a model for the enhancement of coal combustion in the presence of high intensity acoustics is developed. A high intensity acoustic field induces an oscillating velocity over pulverized coal particles otherwise entrained in the main gas stream, resulting in increased heat and mass transfer. The augmented heat and mass transfer coefficients, expressed as space- and time-averaged Nusselt and Sherwood numbers for the oscillating flow, were implemented in an existing computer code (PCGC-2) capable of predicting various aspects of pulverized coal combustion and gasification. Increases in the Nusselt and Sherwood numbers of about 45, 60 and 82.5% at sound pressure levels of 160, 165, and 170 dB for 100 μm coal particles were obtained due to increases in the acoustic slop velocity associated with the increased sound pressure levels. The main effect of the acoustic field was observed during the char combustion phase in a diffusionally controlled situation. A decrease in the char burnout length (time) of 15.7% at 160 dB and 30.2% at 170 dB was obtained compared to the case with no sound for the 100 μm coal particles

  14. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    International Nuclear Information System (INIS)

    Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Soukiassian, A; Tenne, D A; Schlom, D; Xi, X X; Cantarero, A

    2007-01-01

    We study high quality molecular-beam epitaxy grown BaTiO 3 /SrTiO 3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO 3 /SrTiO 3 layer thicknesses the effective sound velocities within each of the layers are obtained

  15. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    Science.gov (United States)

    Bruchhausen, A.; Lanzillotti-Kimura, N. D.; Fainstein, A.; Soukiassian, A.; Tenne, D. A.; Schlom, D.; Xi, X. X.; Cantarero, A.

    2007-12-01

    We study high quality molecular-beam epitaxy grown BaTiO3/SrTiO3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO3/SrTiO3 layer thicknesses the effective sound velocities within each of the layers are obtained.

  16. STRATEGIES TO INCREASE THE ACOUSTICAL QUALITY OF THE MOSQUES WITHOUT REINFORCEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Ernaning Setiyowati

    2012-03-01

    Full Text Available One of the criteria of a good mosque is a good quality of building acoustic for some ibadah purposes, such as prayer and Friday speech. Mosques with medium size actually need no reinforcement system yet. Unfortunately, most of Indonesian mosques’ typological form were given very little attention about their acoustical problem. Such problems have found in almost every mosques. Therefore, some strategies are needed to fix the problem. Those strategies can be practiced on mosque’s interior surfaces such as ceiling, walls, and floor. One of the strategy is using the absorption material on the wall and the floor, beside using the reflection material on the ceiling. The placement of those materials depends on the path of the sound. The strategy can be used in every form of mosque with only  little different treatment in each mosque’s form. With this strategy, it is expected that mosques with medium size will no longer use the reinforcement system, yet the voice still can reach all of the jamaah. Thus this strategy can be used to reduce the use of energy in these buildings.

  17. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  18. Quality Assessment of Scarf Joints Considering the Acoustic Parameters: A Nondestructive Approach

    Directory of Open Access Journals (Sweden)

    Ali Yavari

    2015-07-01

    Full Text Available The present research studied the acoustic properties of 40 oak timber samples (Quercus castaneifolia: the acoustic coefficient (K and acoustic conversion efficiency (ACE in free vibration mode, using the free-free bar method with different planes of vibration, i.e., tangential (LT and radial (LR. These acoustic parameters were considered for both primary virgin wooden beams and modified beams carrying a single scarf joint in four different bonding angles (60°, 65°, 70°, and 75°, individually glued with two different adhesives (isocyanate and polyvinyl acetate. Comparing the acoustic properties of primary solid beams with scarf jointed beams of oak wood in LT and LR planes, the steeper joint angles of 70° and 75° did not result in any serious changes with polyvinyl acetate adhesive. Scarf-jointed beams with smaller joint angles (60° and 65° had significant effect on the acoustic properties relative to larger angles. Thus, beams having larger joint angles and beams glued using polyvinyl acetate may have enhanced acoustic properties.

  19. A high-efficiency acoustic chamber and the anomalous sample rotation

    Science.gov (United States)

    Wang, Taylor G.; Allen, J. L.

    1992-01-01

    A high efficiency acoustic chamber for the levitation and manipulation of liquid or molten samples in a microgravity environment has been developed. The chamber uses two acoustic drivers that are mounted at opposite corners of the chamber; by driving these at the same frequency, with 18-deg phase shifts, an increase in force of a factor of 3-4 is obtainable relative to the force of a single-driver system that is operated at the same power level. This enhancement is due to the increased coupling between the sound driver and the chamber. An anomalous rotation is noted to be associated with the chamber; this is found to be eliminated by a physically as-yet inexplicable empirical solution.

  20. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bruchhausen, A [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Lanzillotti-Kimura, N D [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Fainstein, A [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Soukiassian, A [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Tenne, D A [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Schlom, D [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Xi, X X [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Cantarero, A [Materials Science Institute, University of Valencia, PO Box 22085, E-46071 Valencia (Spain)

    2007-12-15

    We study high quality molecular-beam epitaxy grown BaTiO{sub 3}/SrTiO{sub 3} superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO{sub 3}/SrTiO{sub 3} layer thicknesses the effective sound velocities within each of the layers are obtained.

  1. Acoustical quality in office workstations, as assed by occupant surveys

    DEFF Research Database (Denmark)

    Jensen, Kasper Lynge

    2005-01-01

    We analyzed acoustic satisfaction in office environments in buildings surveyed by The Center For The Built Environment (CBE). A total of 23,450 respondents from 142 buildings were included in the analysis. Acoustic satisfaction in the CBE survey is a function of satisfaction with both noise and s...

  2. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Directory of Open Access Journals (Sweden)

    Ken Watanabe

    Full Text Available Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM and the acoustic tempo was 60 or 80 beats per minute (BPM or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz to high (0.15-0.40 Hz frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  3. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Science.gov (United States)

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  4. Solidly Mounted Resonator with Optimized Acoustic Reflector

    NARCIS (Netherlands)

    Jose, Sumy; Jansman, Andreas; Hueting, Raymond Josephus Engelbart

    2009-01-01

    The quality factor (Q) of the Solidly Mounted Resonator is limited by acoustic losses caused by waves leaking through the mirror stack. Traditionally employed acoustic mirror reflects only longitudinal waves and not shear waves. Starting with the stop-band theory and the principle of spacer layers

  5. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—User’s manual for version 2.8

    Science.gov (United States)

    Mueller, David S.

    2016-05-12

    The software program, QRev computes the discharge from moving-boat acoustic Doppler current profiler measurements using data collected with any of the Teledyne RD Instrument or SonTek bottom tracking acoustic Doppler current profilers. The computation of discharge is independent of the manufacturer of the acoustic Doppler current profiler because QRev applies consistent algorithms independent of the data source. In addition, QRev automates filtering and quality checking of the collected data and provides feedback to the user of potential quality issues with the measurement. Various statistics and characteristics of the measurement, in addition to a simple uncertainty assessment are provided to the user to assist them in properly rating the measurement. QRev saves an extensible markup language file that can be imported into databases or electronic field notes software. The user interacts with QRev through a tablet-friendly graphical user interface. This report is the manual for version 2.8 of QRev.

  6. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media

    International Nuclear Information System (INIS)

    Wilcox, Lucas C.; Stadler, Georg; Burstedde, Carsten; Ghattas, Omar

    2010-01-01

    We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic-acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic-acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.

  7. [Acoustic characteristics of adductor spasmodic dysphonia].

    Science.gov (United States)

    Yang, Yang; Wang, Li-Ping

    2008-06-01

    To explore the acoustic characteristics of adductor spasmodic dysphonia. The acoustic characteristics, including acoustic signal of recorded voice, three-dimensional sonogram patterns and subjective assessment of voice, between 10 patients (7 women, 3 men) with adductor spasmodic dysphonia and 10 healthy volunteers (5 women, 5 men), were compared. The main clinical manifestation of adductor spasmodic dysphonia included the disorders of sound quality, rhyme and fluency. It demonstrated the tension dysphonia when reading, acoustic jitter, momentary fluctuation of frequency and volume, voice squeezing, interruption, voice prolongation, and losing normal chime. Among 10 patients, there were 1 mild dysphonia (abnormal syllable number dysphonia (abnormal syllable number 25%-49%), 1 severe dysphonia (abnormal syllable number 50%-74%) and 2 extremely severe dysphonia (abnormal syllable number > or = 75%). The average reading time in 10 patients was 49 s, with reading time extension and aphasia area interruption in acoustic signals, whereas the average reading time in health control group was 30 s, without voice interruption. The aphasia ratio averaged 42%. The respective symptom syllable in different patients demonstrated in the three-dimensional sonogram. There were voice onset time prolongation, irregular, interrupted and even absent vowel formants. The consonant of symptom syllables displayed absence or prolongation of friction murmur in the block-friction murmur occasionally. The acoustic characteristics of adductor spasmodic dysphonia is the disorders of sound quality, rhyme and fluency. The three-dimensional sonogram of the symptom syllables show distinctive changes of proportional vowels or consonant phonemes.

  8. Numerical investigation of symmetry breaking and critical behavior of the acoustic streaming field in high-intensity discharge lamps

    International Nuclear Information System (INIS)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled three-dimensional multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. In certain respects the system behaves similar to a ferromagnet near the Curie point. It is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach with a transient model. (paper)

  9. Developments in Acoustic Navigation and Communication for High-Latitude Ocean Research

    Science.gov (United States)

    Gobat, J.; Lee, C.

    2006-12-01

    Developments in autonomous platforms (profiling floats, drifters, long-range gliders and propeller-driven vehicles) offer the possibility of unprecedented access to logistically difficult polar regions that challenge conventional techniques. Currently, however, navigation and telemetry for these platforms rely on satellite positioning and communications poorly suited for high-latitude applications where ice cover restricts access to the sea surface. A similar infrastructure offering basin-wide acoustic geolocation and telemetry would allow the community to employ autonomous platforms to address previously intractable problems in Arctic oceanography. Two recent efforts toward the development of such an infrastructure are reported here. As part of an observational array monitoring fluxes through Davis Strait, development of real-time RAFOS acoustic navigation for gliders has been ongoing since autumn 2004. To date, test deployments have been conducted in a 260 Hz field in the Pacific and 780 Hz fields off Norway and in Davis Strait. Real-time navigation accuracy of ~1~km is achievable. Autonomously navigating gliders will operate under ice cover beginning in autumn 2006. In addition to glider navigation development, the Davis Strait array moorings carry fixed RAFOS recorders to study propagation over a range of distances under seasonally varying ice cover. Results from the under-ice propagation and glider navigation experiments are presented. Motivated by the need to coordinate these types of development efforts, an international group of acousticians, autonomous platform developers, high-latitude oceanographers and marine mammal researchers gathered in Seattle, U.S.A. from 27 February -- 1 March 2006 for an NSF Office of Polar Programs sponsored Acoustic Navigation and Communication for High-latitude Ocean Research (ANCHOR) workshop. Workshop participants focused on summarizing the current state of knowledge concerning Arctic acoustics, navigation and communications

  10. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  11. Mechanism of an acoustic wave impact on steel during solidification

    Directory of Open Access Journals (Sweden)

    K. Nowacki

    2013-04-01

    Full Text Available Acoustic steel processing in an ingot mould may be the final stage in the process of quality improvement of a steel ingot. The impact of radiation and cavitation pressure as well as the phenomena related to the acoustic wave being emitted and delivered to liquid steel affect various aspects including the internal structure fragmentation, rigidity or density of steel. The article provides an analysis of the mechanism of impact of physical phenomena caused by an acoustic wave affecting the quality of a steel ingot.

  12. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  13. Error analysis by means of acoustic holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Wuestenberg, H.

    1976-01-01

    The possilbilities to use the acoustical holography in nondestructive testing are discussed. Although compared to optical holography the image quality of acoustical holography is reduced this technique can give important informations about the shape of defects. Especially in nondestructive testing of thick walled components no alternative exists until now. (orig.) [de

  14. Containerless processing at high temperatures using acoustic levitation

    Science.gov (United States)

    Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.

    1991-01-01

    Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.

  15. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    Science.gov (United States)

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  16. [Acoustic emission diagnostic techniques for high-field high current-density super inducting poles

    International Nuclear Information System (INIS)

    1990-01-01

    Acoustic emission technology was introduced in the late 1970's to monitor superconducting magnets. It has now been firmly established that acoustic signals in superconducting magnets are emitted principally by mechanical events such as conductor strain, conductor motion, frictional motion, and epoxy cracking. Despite earlier suggestions, flux motion, except during flux jumping, does not appear to be an important source of AE signals in superconducting magnets. Of these several potential sources of AE signals in superconducting magnets, mechanical disturbances have been identified to be most important in high-performance, ''adiabatic'' magnets such as the dipoles used in accelerators. These mechanical disturbances are transitory, each generating a packet of AE signals that can be located with sensors. Source identification and location has been achieved with a number of superconducting magnets. In this section, the basic principle for the operation of adiabatic magnets is discussed, followed by presentation of some of the important experimental results relevant to the question of premature quench obtained at MIT

  17. Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation

    Science.gov (United States)

    Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.

    2000-01-01

    At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL

  18. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  19. Acoustic emission technique and its applications

    International Nuclear Information System (INIS)

    Sato, Ichiya; Sasaki, Soji

    1976-01-01

    Acoustic emission technique is described. The characteristics of acoustic emission signal, measurement techniques, and its application are explained. The acoustic signals are grouped into continuous and burst types. The continuous signal is due to plastic deformation, and the burst type is due to the generation and growth of cracks. The latter can be used for the identification of the position of cracks. The frequency of the acoustic emission is in the range from several tens of KHz to two MHz. Piezoelectric ceramics are used as the oscillators of sensors. The dynamic behavior of acoustic emission can be observed with a two-channel acoustic emission measuring apparatus. Multi-channel method was developed at Hitachi, Ltd., and is used for large structures. General computer identification method and simple zone identification method are explained. Noise elimination is important for the measurement, and the methods were studied. Examples of application are the observation of acoustic emission in the plastic deformation of steel, the tensile test of large welded material with natural defects, and others. The method will be used for the diagnosis and observation of large structures, the test and quality control of products. (Kato, T.)

  20. Acoustic levitation technique for containerless processing at high temperatures in space

    Science.gov (United States)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.; Danley, Thomas J.

    1988-01-01

    High temperature processing of a small specimen without a container has been demonstrated in a set of experiments using an acoustic levitation furnace in the microgravity of space. This processing technique includes the positioning, heating, melting, cooling, and solidification of a material supported without physical contact with container or other surface. The specimen is supported in a potential energy well, created by an acoustic field, which is sufficiently strong to position the specimen in the microgravity environment of space. This containerless processing apparatus has been successfully tested on the Space Shuttle during the STS-61A mission. In that experiment, three samples wer successfully levitated and processed at temperatures from 600 to 1500 C. Experiment data and results are presented.

  1. SIMONA: A multi-purpose acoustic data simulator for development and testing of sonar signal processing

    NARCIS (Netherlands)

    Robert, M.K.; Groen, J.; Konijnendijk, N.J.

    2005-01-01

    The development of undersea defence technologies such as sonar relies heavily on the availability of high quality acoustic data. However, data acquisition is particularly expensive as sea trials involve experienced manpower and costly high-tech equipment. Also, at sea, the environment remains

  2. A hydrophone prototype for ultra high energy neutrino acoustic detection

    International Nuclear Information System (INIS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-01-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  3. A hydrophone prototype for ultra high energy neutrino acoustic detection

    Energy Technology Data Exchange (ETDEWEB)

    Cotrufo, A. [University of Genoa, Department of Physics, Via Dodecaneso 33, I-16146 (Italy)], E-mail: cotrufo@ge.infn.it; Plotnikov, A.; Yershova, O. [GSI Helmholtz Centre for Heavy Ion Research, GmbH Planckstrasse1, 64291 Darmstadt (Germany); Anghinolfi, M.; Piombo, D. [INFN, University of Genoa, Department of Physics, Via Dodecaneso 33, I-16146 (Italy)

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  4. Design and simulation study of high frequency response for surface acoustic wave device by using CST software

    Science.gov (United States)

    Zakaria, M. R.; Hashim, U.; Amin, Mohd Hasrul I. M.; Ayub, R. Mat; Hashim, M. N.; Adam, T.

    2015-05-01

    This paper focuses on the enhancement and improvement of the Surface Acoustic Wave (SAW) device performance. Due to increased demand in the international market for biosensor product, the product must be emphasized in terms of quality. However, within the technological advances, demand for device with low cost, high efficiency and friendly-user preferred. Surface Acoustic Wave (SAW) device with the combination of pair electrode know as Interdigital Transducer (IDT) was fabricated on a piezoelectric substrate. The design of Interdigital Transducer (IDT) parameter is changes in several sizes and values for which it is able to provide greater efficiency in sensing sensitivity by using process simulation with CST STUDIO Suite software. In addition, Interdigital Transducer (IDT) parameters also changed to be created the products with a smaller size and easy to handle where it also reduces the cost of this product. Parameter values of an Interdigital Transducer (IDT) will be changed in the design is the total number of fingers pair, finger length, finger width and spacing, aperture and also the thickness of the Interdigital Transducer (IDT). From the result, the performance of the sensor is improved significantly after modification is done.

  5. Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound.

    Science.gov (United States)

    Sikes, Anita L; Mawson, Raymond; Stark, Janet; Warner, Robyn

    2014-11-01

    The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600kHz at 48kPa and 65kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7days at 4°C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7days at 4°C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2MHz at 48kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3weeks at 0°C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  6. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    Science.gov (United States)

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.

  7. Demonstration of acoustic source localization in air using single pixel compressive imaging

    Science.gov (United States)

    Rogers, Jeffrey S.; Rohde, Charles A.; Guild, Matthew D.; Naify, Christina J.; Martin, Theodore P.; Orris, Gregory J.

    2017-12-01

    Acoustic source localization often relies on large sensor arrays that can be electronically complex and have large data storage requirements to process element level data. Recently, the concept of a single-pixel-imager has garnered interest in the electromagnetics literature due to its ability to form high quality images with a single receiver paired with shaped aperture screens that allow for the collection of spatially orthogonal measurements. Here, we present a method for creating an acoustic analog to the single-pixel-imager found in electromagnetics for the purpose of source localization. Additionally, diffraction is considered to account for screen openings comparable to the acoustic wavelength. A diffraction model is presented and incorporated into the single pixel framework. In this paper, we explore the possibility of applying single pixel localization to acoustic measurements. The method is experimentally validated with laboratory measurements made in an air waveguide.

  8. Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine

    Science.gov (United States)

    Boyle, Devin K.

    2014-01-01

    The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state

  9. Analysis of acoustic emission during abrasive waterjet machining of sheet metals

    Science.gov (United States)

    Mokhtar, Nazrin; Gebremariam, MA; Zohari, H.; Azhari, Azmir

    2018-04-01

    The present paper reports on the analysis of acoustic emission (AE) produced during abrasive waterjet (AWJ) machining process. This paper focuses on the relationship of AE and surface quality of sheet metals. The changes in acoustic emission signals recorded by the mean of power spectral density (PSD) via covariance method in relation to the surface quality of the cut are discussed. The test was made using two materials for comparison namely aluminium 6061 and stainless steel 304 with five different feed rates. The acoustic emission data were captured by Labview and later processed using MATLAB software. The results show that the AE spectrums correlated with different feed rates and surface qualities. It can be concluded that the AE is capable of monitoring the changes of feed rate and surface quality.

  10. Experimental Facility for Checking the Possibility to Obtain Super-High Temperature Due to Acoustic Cavitation

    CERN Document Server

    Miller, M B; Sobolev, Yu G; Kostenko, B F

    2004-01-01

    An experimental facility developed for checking the possibility to obtain super-high temperature sufficient for thermonuclear reaction D($d, n$)$^{3}$He in an acoustic cavitation is described. The acoustic part of the instrumentation consists of a resonator and a system exciting high amplitude of the acoustic field within the resonator. The cavitation process is controlled with the use of fast neutron pulses. The instrument includes a system of pumping out solute gases from the liquid (acetone enriched with deuterium up to 99{\\%}) without losses of matter. Measuring of the field is based on the calibration procedure including observation of sonoluminescence. The system of detection and identification of D($d, n$)$^{3}$He reaction is based on a scintillation detector of fast neutrons and a system of measuring multiparameter events by the correlation technique with separation of the neutrons from the $\\gamma $-radiation background (pulse shape discrimination).

  11. Laser-induced acoustic imaging of underground objects

    Science.gov (United States)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  12. An introduction to acoustic emission technology for in-process inspection of welds

    International Nuclear Information System (INIS)

    Goswami, G.L.

    1983-01-01

    Weld quality monitoring, as it stands today, is primarily done by X-ray radiography and ultrasonic testing which is applied after welding is complete. Acoustic Emission Technique (AET) also presents a possible substitute for weld quality monitoring which can be used during welding. Acoustic signals are generated during welding and the sound waves of weld defects are picked up by using AE sensors. With the introduction of sophisticated instrumentation in AET, it is possible to carry out the test even in noisy shop floor environments. Large number of reports on the subject of acoustic emission in recent years is a clear indication that it is gaining importance in welding industry. The present day status of the acoustic emission technology as an on-line weld quality monitoring technique has been reviewed. This report discusses the technique and system along with the acoustic emission parameters important for weld quality analysis. This also deals with the application of this technique in different welding processes like TIG, resistance, electro slag and submerged arc. It has been reported that monitoring of emission during welding can detect crack formation, crack growth and lack of fusion precisely. Static defects like porosity and inclusion do not generate very strong acoustic signals and are therefore difficult to intercept, but, however, lately they have detected successfully. (author)

  13. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    KAUST Repository

    Elayouch, A.

    2017-01-05

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degrees-bent channel. This kind of acoustic metamaterial can, therefore, give rise to acoustic functions like controlling the wavefront, which may lead to very promising applications in acoustic cloacking or imaging.

  14. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  15. Acoustic analysis after radiotherapy in T1 vocal cord carcinoma: a new approach to the analysis of voice quality

    International Nuclear Information System (INIS)

    Rovirosa, Angeles; Martinez-Celdran, Eugenio; Ortega, Alicia; Ascaso, Carlos; Abellana, Rosa; Velasco, Mercedes; Bonet, Montserrat; Herrera, Carmen; Casas, Francesc; Francisco, Rosa Maria; Arenas, Meritxell; Hernandez, Victor; Sanchez-Reyes, Alberto; Leon, Concha; Traserra, Jordi; Biete, Albert

    2000-01-01

    Purpose: The study of acoustic voice parameters (fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio) in extended vowel production, oral reading of a standard paragraph, spontaneous speech and a song in irradiated patients for Tis-T1 vocal cord carcinoma. Methods and Materials: Eighteen male patients irradiated for Tis-T1 vocal cord carcinoma and a control group of 31 nonirradiated subjects of the same age were included in a study of acoustic voice analysis. The control group had been rigorously selected for voice quality and the irradiated group had previous history of smoking in two-thirds of the cases and a vocal cord biopsy. Radiotherapy patients were treated with a 6MV Linac receiving a total dose of 66 Gy, 2 Gy/day, with median treatment areas of 28 cm 2 . Acoustic voice analysis was performed 1 year after radiotherapy, the voice of patients in extended vowel production, oral reading of a standard paragraph, spontaneous speech, and in a song was tape registered and analyzed by a Kay Elemetric's Computerized Speech Lab (model CSL no. 4300). Fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio were obtained in each case. Mann Whitney analysis was used for statistical tests. Results: The irradiated group presented higher values of fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio. Mann-Whitney analysis showed significant differences for fundamental frequency and jitter in vowel production, oral reading, spontaneous speech, and song. Shimmer only showed differences in vowel production and harmonics-to-noise ratio in oral reading and song. Conclusions: In our study only fundamental frequency and jitter showed significant increased values to the control group in all the acoustic situations. Sustained vowel production showed the worst values of the acoustic parameters in comparison with the other acoustic situations. This study seems to suggest that more work should be done in this field

  16. Acoustic-noise-optimized diffusion-weighted imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M

    2015-12-01

    This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.

  17. Acoustic detection of high energy neutrinos in sea water: status and prospects

    Directory of Open Access Journals (Sweden)

    Lahmann Robert

    2017-01-01

    Full Text Available The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of neutrinos at energies in the EeV-range and above. The technique is based on the thermo-acoustic model, which implies that the energy deposition by a particle cascade – resulting from a neutrino interaction in a medium with suitable thermal and acoustic properties – leads to a local heating and a subsequent characteristic pressure pulse that propagates in the surrounding medium. Current or recent test setups for acoustic neutrino detection have either been add-ons to optical neutrino telescopes or have been using acoustic arrays built for other purposes, typically for military use. While these arrays have been too small to derive competitive limits on neutrino fluxes, they allowed for detailed studies of the experimental technique. With the advent of the research infrastructure KM3NeT in the Mediterranean Sea, new possibilities will arise for acoustic neutrino detection. In this article, results from the “first generation” of acoustic arrays will be summarized and implications for the future of acoustic neutrino detection will be discussed.

  18. Acoustic Impedance Inversion To Identify Oligo-Miocene Carbonate Facies As Reservoir At Kangean Offshore Area

    Science.gov (United States)

    Zuli Purnama, Arif; Ariyani Machmud, Pritta; Eka Nurcahya, Budi; Yusro, Miftahul; Gunawan, Agung; Rahmadi, Dicky

    2018-03-01

    Model based inversion was applied to inversion process of 2D seismic data in Kangean Offshore Area. Integration acoustic impedance from wells and seismic data was expected showing physical property, facies separation and reservoir quality of carbonate rock, particularly in Kangean Offshore Area. Quantitative and qualitative analysis has been conducted on the inversion results to characterize the carbonate reservoir part of Kujung and correlate it to depositional facies type. Main target exploration in Kangean Offshore Area is Kujung Formation (Oligo-Miocene Carbonate). The type of reservoir in this area generate from reef growing on the platform. Carbonate rock is a reservoir which has various type and scale of porosity. Facies determination is required to to predict reservoir quality, because each facies has its own porosity value. Acoustic impedance is used to identify and characterize Kujung carbonate facies, also could be used to predict the distribution of porosity. Low acoustic impedance correlated with packstone facies that has acoustic impedance value below 7400 gr/cc*m/s. In other situation, high acoustic impedance characterized by wackestone facies above 7400 gr/cc*m/s. The interpretation result indicated that Kujung carbonate rock dominated by packstone facies in the upper part of build-up and it has ideal porosity for hydrocarbon reservoir.

  19. High-frequency acoustic spectrum analyzer based on polymer integrated optics

    Science.gov (United States)

    Yacoubian, Araz

    This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.

  20. Objective and subjective evaluation of the acoustic comfort in classrooms.

    Science.gov (United States)

    Zannin, Paulo Henrique Trombetta; Marcon, Carolina Reich

    2007-09-01

    The acoustic comfort of classrooms in a Brazilian public school has been evaluated through interviews with 62 teachers and 464 pupils, measurements of background noise, reverberation time, and sound insulation. Acoustic measurements have revealed the poor acoustic quality of the classrooms. Results have shown that teachers and pupils consider the noise generated and the voice of the teacher in neighboring classrooms as the main sources of annoyance inside the classroom. Acoustic simulations resulted in the suggestion of placement of perforated plywood on the ceiling, for reduction in reverberation time and increase in the acoustic comfort of the classrooms.

  1. Does coastal lagoon habitat quality affect fish growth rate and their recruitment? Insights from fishing and acoustic surveys

    Science.gov (United States)

    Brehmer, P.; Laugier, T.; Kantoussan, J.; Galgani, F.; Mouillot, D.

    2013-07-01

    Ensuring the sustainability of fish resources necessitates understanding their interaction with coastal habitats, which is becoming ever more challenging in the context of ever increasing anthropogenic pressures. The ability of coastal lagoons, exposed to major sources of disturbance, to provide resources and suitable habitats for growth and survival of juvenile fish is especially important. We analysed three lagoons with different ecological statuses and habitat quality on the basis of their eutrophication and ecotoxicity (Trix test) levels. Fish abundances were sampled using fishing and horizontal beaming acoustic surveys with the same protocols in the same year. The relative abundance of Anguilla anguilla, Dicentrarchus labrax or the Mugilidae group was not an indicator of habitat quality, whereas Atherina boyeri and Sparus aurata appeared to be more sensitive to habitat quality. Fish abundance was higher in the two lagoons with high eutrophication and ecotoxicity levels than in the less impacted lagoon, while fish sizes were significantly higher in the two most severely impacted lagoons. This leads us to suggest low habitat quality may increase fish growth rate (by the mean of a cascading effect), but may reduce lagoon juvenile abundance by increasing larval mortality. Such a hypothesis needs to be further validated using greater investigations which take into account more influences on fish growth and recruitment in such variable environments under complex multi-stressor conditions.

  2. The normative study of acoustic parameters in normal Egyptian ...

    African Journals Online (AJOL)

    Yehia A. Abo-Ras

    2013-03-21

    Mar 21, 2013 ... all children were subjected to computerized acoustic analysis using Multidimensional voice program ... cal quality is important for social relations to happen effectively. ... lish comparative parameters with the normal values of the acoustic ... from lower age ranges in the normative studies since the child's.

  3. MANAGING THE ACOUSTIC CLIMATE IN LOCAL GOVERNMENT UNITS – A NEW APPROACH

    Directory of Open Access Journals (Sweden)

    Waldemar PASZKOWSKI

    2013-01-01

    Full Text Available The paper presents a new approach to shaping acoustic comfort as a process of managing the acoustic environment in urbanised areas. The research in this area focuses on the psychoacoustic aspect of shaping acoustic comfort in an urban environment. This approach permits, depending on the purpose of land, not only to reduce the noise to the allowable limits but also to evaluate the acoustic quality of sounds originating in different sources. In this context, a review was performed of the research carried out on identifying soundscapes as a way of shaping acoustic comfort in the urban environment. In this paper it is suggested that the entropy method be used for the assessment of auditory sound perception. The research carried out by the author shows that linking the relationship between the quality of perceived sounds with the elements/factors which shape the acoustic environment can be used to valorise soundscapes.

  4. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  5. The ERATO project and its contribution to our understanding of the acoustics of ancient Greek and Roman theatres

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Nielsen, Martin Lisa

    2006-01-01

    the acoustics of the open air theatres and compare to the smaller, originally roofed theatres, also called odea (from Greek: Odeion, a hall for song and declamation with music). The method has been to make computer models of the spaces, first as the exist today, and adjust the acoustical data for surface...... of the spaces. The acoustical simulations have given a lot of interesting information about the acoustical qualities, mainly in the Roman theatres, but the earlier Greek theatre has also been studied in one case (Syracusa in Italy). It is found that the Roman open-air theatres had very high clarity of sound......, but the sound strength was quite low. In contrast, the odea had reverberation time like a concert hall, relatively low clarity, and high sound strength. Thus, the acoustical properties reflect the original different purposes of the buildings, the theatre intended mainly for plays (speech) and the Odeon mainly...

  6. Finite element analysis of surface acoustic waves in high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2008-01-01

    This paper elaborates on how the finite element method is employed to model surface acoustic waves generated by high aspect ratio electrodes and their interaction with optical waves in a waveguide. With a periodic model it is shown that these electrodes act as a mechanical resonator which slows...

  7. Acoustic characterization of a nonlinear vibroacoustic absorber at low frequencies and high sound levels

    Science.gov (United States)

    Chauvin, A.; Monteil, M.; Bellizzi, S.; Côte, R.; Herzog, Ph.; Pachebat, M.

    2018-03-01

    A nonlinear vibroacoustic absorber (Nonlinear Energy Sink: NES), involving a clamped thin membrane made in Latex, is assessed in the acoustic domain. This NES is here considered as an one-port acoustic system, analyzed at low frequencies and for increasing excitation levels. This dynamic and frequency range requires a suitable experimental technique, which is presented first. It involves a specific impedance tube able to deal with samples of sufficient size, and reaching high sound levels with a guaranteed linear response thank's to a specific acoustic source. The identification method presented here requires a single pressure measurement, and is calibrated from a set of known acoustic loads. The NES reflection coefficient is then estimated at increasing source levels, showing its strong level dependency. This is presented as a mean to understand energy dissipation. The results of the experimental tests are first compared to a nonlinear viscoelastic model of the membrane absorber. In a second step, a family of one degree of freedom models, treated as equivalent Helmholtz resonators is identified from the measurements, allowing a parametric description of the NES behavior over a wide range of levels.

  8. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Science.gov (United States)

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  9. External Validation of the Acoustic Voice Quality Index Version 03.01 With Extended Representativity.

    Science.gov (United States)

    Barsties, Ben; Maryn, Youri

    2016-07-01

    The Acoustic Voice Quality Index (AVQI) is an objective method to quantify the severity of overall voice quality in concatenated continuous speech and sustained phonation segments. Recently, AVQI was successfully modified to be more representative and ecologically valid because the internal consistency of AVQI was balanced out through equal proportion of the 2 speech types. The present investigation aims to explore its external validation in a large data set. An expert panel of 12 speech-language therapists rated the voice quality of 1058 concatenated voice samples varying from normophonia to severe dysphonia. The Spearman rank-order correlation coefficients (r) were used to measure concurrent validity. The AVQI's diagnostic accuracy was evaluated with several estimates of its receiver operating characteristics (ROC). Finally, 8 of the 12 experts were chosen because of reliability criteria. A strong correlation was identified between AVQI and auditoryperceptual rating (r = 0.815, P = .000). It indicated that 66.4% of the auditory-perceptual rating's variation was explained by AVQI. Additionally, the ROC results showed again the best diagnostic outcome at a threshold of AVQI = 2.43. This study highlights external validation and diagnostic precision of the AVQI version 03.01 as a robust and ecologically valid measurement to objectify voice quality. © The Author(s) 2016.

  10. The Influence of Acoustic Field Induced by HRT on Oscillation Behavior of a Single Droplet

    Directory of Open Access Journals (Sweden)

    Can Ruan

    2017-01-01

    Full Text Available This paper presents an experimental and theoretical study on the effects of an acoustic field induced by Hartmann Resonance Tube (HRT on droplet deformation behavior. The characteristics of the acoustic field generated by HRT are investigated. Results show that the acoustic frequency decreases with the increase of the resonator length, the sound pressure level (SPL increases with the increase of nozzle pressure ratio (NPR, and it is also noted that increasing resonator length can cause SPL to decrease, which has rarely been reported in published literature. Further theoretical analysis reveals that the resonance frequency of a droplet has several modes, and when the acoustic frequency equals the droplet’s frequency, heightened droplet responses are observed with the maximum amplitude of the shape oscillation. The experimental results for different resonator cavity lengths, nozzle pressure ratios and droplet diameters confirm the non-linear nature of this problem, and this conclusion is in good agreement with theoretical analysis. Measurements by high speed camera have shown that the introduction of an acoustic field can greatly enhance droplet oscillation, which means with the use of an ultrasonic atomizer based on HRT, the quality of atomization and combustion can be highly improved.

  11. Select Internet Resources on Acoustics

    Directory of Open Access Journals (Sweden)

    Angela R. Davis

    2016-12-01

    Full Text Available Merriam-Webster (2016 defines acoustics as, “a science that deals with the production, control, transmission, reception, and effects of sounds.” According to Rossing (2014, the study of acoustics began in ancient Greece with Pythagoras’ study of vibrating strings on musical instruments. Since those early beginnings, famous scientists including Rayleigh, Alexander Graham Bell, and Thomas Edison, have helped expand the field of acoustics to include architectural, physical, engineering, structural, underwater, physiological and psychological, musical acoustics, and speech. Acoustics is a highly interdisciplinary field and researchers may need resources from physics, medicine, and engineering to understand all aspects of their research.

  12. Multiscale modeling of acoustic shielding materials

    NARCIS (Netherlands)

    Gao, K.; Dommelen, van J.A.W.; Geers, M.G.D.

    2012-01-01

    It is very important to protect high-tech systems from acoustic excitation when operating in a noisy environment. Some passive absorbing materials such as acoustic foams can improve the performance which depends on the interaction of the acoustic wave and the microstructure of the foam.

  13. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  14. Acoustic Sample Deposition MALDI-MS (ASD-MALDI-MS): A Novel Process Flow for Quality Control Screening of Compound Libraries.

    Science.gov (United States)

    Chin, Jefferson; Wood, Elizabeth; Peters, Grace S; Drexler, Dieter M

    2016-02-01

    In the early stages of drug discovery, high-throughput screening (HTS) of compound libraries against pharmaceutical targets is a common method to identify potential lead molecules. For these HTS campaigns to be efficient and successful, continuous quality control of the compound collection is necessary and crucial. However, the large number of compound samples and the limited sample amount pose unique challenges. Presented here is a proof-of-concept study for a novel process flow for the quality control screening of small-molecule compound libraries that consumes only minimal amounts of samples and affords compound-specific molecular data. This process employs an acoustic sample deposition (ASD) technique for the offline sample preparation by depositing nanoliter volumes in an array format onto microscope glass slides followed by matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis. An initial study of a 384-compound array employing the ASD-MALDI-MS workflow resulted in a 75% first-pass positive identification rate with an analysis time of <1 s per sample. © 2015 Society for Laboratory Automation and Screening.

  15. Acoustic classification of housing according to ISO/CD 19488 compared with VDI 4100 and DEGA Recommendation 103

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2017-01-01

    and for further development of design tools. Due to the high diversity in Europe, the European COST Action TU0901 ”Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions” was established in 2009 with preparation of a proposal for an acoustic classification scheme...... and impact sound insulation between dwellings, facade sound insulation and service equipment noise. The schemes have been implemented and revised gradually since the 1990es. However, due to lack of coordination, there are significant discrepancies, implying obstacles for exchange of experience......In Europe, national acoustic classification schemes for housing exist in about ten countries. The schemes specify a number of quality classes, reflecting different levels of acoustic protection, and include class criteria concerning several acoustic aspects, main criteria being about airborne...

  16. Acoustically assisted diffusion through membranes and biomaterials

    International Nuclear Information System (INIS)

    Floros, J.D.; Liang, H.

    1994-01-01

    Part of a special section on the symposium ''Ultrasonic Applications in the Food Industry.'' The use of high-intensity ultrasound in food processing is reviewed. Acoustic radiation, or sound, can be used to monitor various operations or products or to alter a process or product; however, the direct use of sound to improve food processes is not very popular. High-intensity acoustic radiation induces various changes as it passes through a medium, largely as a result of heating, cavitation, agitation and shear stresses, compression and rarefaction, and turbulence. The diffusion of sound through a medium is influenced by factors such as the temperature, acoustic intensity, acoustic frequency, direction of the acoustic wave, pulsation of the acoustic wave, and properties of the medium. Some potential applications of acoustic energy in food processes are increased drying efficiency, acceleration of diffusion through polymeric and biological membranes, and enhanced diffusion through porous materials

  17. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  18. Occupant satisfaction with the acoustical environment : green office buildings before and after treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, M. [British Columbia Univ., Vancouver, BC (Canada). School of Occupational and Environmental Hygiene, Acoustics and Noise Research Group

    2009-07-01

    Sustainable architecture is meant to preserve the environment and conserve natural resources, as well as provide an environment for the occupants that promotes wellbeing and productivity. Occupants generally claim that the acoustical environment is the least satisfactory aspect of green office buildings. They are dissatisfied with excessive noise and poor speech privacy. This paper reported on the results of 2 studies of the acoustical environments in green office buildings before and after acoustical-control measures were installed. Acoustical quality was evaluated by occupant-satisfaction surveys and acoustical-parameter measurements. The first study, which involved 6 green office buildings, showed that buildings designed to obtain LEED ratings are unlikely to have satisfactory acoustical environments. A naturally-ventilated, green university building with a poor acoustical environment was examined in the second study. The results of this study suggest that improving acoustical environments in green buildings requires good acoustical design, with input from an acoustical specialist from the beginning of the design process. The design should consider site selection and building orientation; external envelope and penetrations in it; building layout and internal partitions; HVAC systems; appropriate dimensioning of spaces; and the amount and location of sound absorbing treatments. The study also showed that a building's energy efficiency, lighting, ventilation, air-quality and acoustics are interconnected, and that no aspect can be successfully designed in isolation. It was concluded that optimized engineering-control measures can improve poor acoustical environments. 11 refs., 1 tab., 1 fig.

  19. High-precision measurement of tidal current structures using coastal acoustic tomography

    Science.gov (United States)

    Zhang, Chuanzheng; Zhu, Xiao-Hua; Zhu, Ze-Nan; Liu, Wenhu; Zhang, Zhongzhe; Fan, Xiaopeng; Zhao, Ruixiang; Dong, Menghong; Wang, Min

    2017-07-01

    A high-precision coastal acoustic tomography (CAT) experiment for reconstructing the current variation in Dalian Bay (DLB) was successfully conducted by 11 coastal acoustic tomography systems during March 7-8, 2015. The horizontal distributions of tidal currents and residual currents were mapped well by the inverse method, which used reciprocal travel time data along 51 successful sound transmission rays. The semi-diurnal tide is dominant in DLB, with a maximum speed of 0.69 m s-1 at the eastern and southwestern parts near the bay mouth that gradually decreases toward the inner bay with an average velocity of 0.31 m s-1. The residual current enters the observational domain from the two flanks of the bay mouth and flows out in the inner bay. One anticyclone and one cyclone were noted inside DLB as was one cyclone at the bay mouth. The maximum residual current in the observational domain reached 0.11 m s-1, with a mean residual current of 0.03 m s-1. The upper 15-m depth-averaged inverse velocities were in excellent agreement with the moored Acoustic Doppler Current Profiler (ADCP) at the center of the bay, with a root-mean-square difference (RMSD) of 0.04 m s-1 for the eastward and northward components. The precision of the present tomography measurements was the highest thus far owing to the largest number of transmission rays ever recorded. Sensitivity experiments showed that the RMSD between CAT and moored-ADCP increased from 0.04 m s-1 to 0.08 m s-1 for both the eastward and northward velocities when reducing the number of transmission rays from 51 to 11. The observational accuracy was determined by the spatial resolution of acoustic ray in the CAT measurements. The cost-optimal scheme consisted of 29 transmission rays with a spatial resolution of acoustic ray of 2.03 √{ km2 / ray numbers } . Moreover, a dynamic analysis of the residual currents showed that the horizontal pressure gradient of residual sea level and Coriolis force contribute 38.3% and 36

  20. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, L; Tang, S [University of Oklahoma, Norman, OK (United States); Ahmad, M [Stanford University, Palo Alto, CA (United States); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprised of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.

  1. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    Science.gov (United States)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  2. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-01-01

    During irradiation UO 2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO 2 pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO 2 pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  3. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics

    International Nuclear Information System (INIS)

    Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun

    2015-01-01

    Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)

  4. Speech privacy and annoyance considerations in the acoustic environment of passenger cars of high-speed trains.

    Science.gov (United States)

    Jeon, Jin Yong; Hong, Joo Young; Jang, Hyung Suk; Kim, Jae Hyeon

    2015-12-01

    It is necessary to consider not only annoyance of interior noises but also speech privacy to achieve acoustic comfort in a passenger car of a high-speed train because speech from other passengers can be annoying. This study aimed to explore an optimal acoustic environment to satisfy speech privacy and reduce annoyance in a passenger car. Two experiments were conducted using speech sources and compartment noise of a high speed train with varying speech-to-noise ratios (SNRA) and background noise levels (BNL). Speech intelligibility was tested in experiment I, and in experiment II, perceived speech privacy, annoyance, and acoustic comfort of combined sounds with speech and background noise were assessed. The results show that speech privacy and annoyance were significantly influenced by the SNRA. In particular, the acoustic comfort was evaluated as acceptable when the SNRA was less than -6 dB for both speech privacy and noise annoyance. In addition, annoyance increased significantly as the BNL exceeded 63 dBA, whereas the effect of the background-noise level on the speech privacy was not significant. These findings suggest that an optimal level of interior noise in a passenger car might exist between 59 and 63 dBA, taking normal speech levels into account.

  5. Measurement of acoustic velocity components in a turbulent flow using LDV and high-repetition rate PIV

    Science.gov (United States)

    Léon, Olivier; Piot, Estelle; Sebbane, Delphine; Simon, Frank

    2017-06-01

    The present study provides theoretical details and experimental validation results to the approach proposed by Minotti et al. (Aerosp Sci Technol 12(5):398-407, 2008) for measuring amplitudes and phases of acoustic velocity components (AVC) that are waveform parameters of each component of velocity induced by an acoustic wave, in fully turbulent duct flows carrying multi-tone acoustic waves. Theoretical results support that the turbulence rejection method proposed, based on the estimation of cross power spectra between velocity measurements and a reference signal such as a wall pressure measurement, provides asymptotically efficient estimators with respect to the number of samples. Furthermore, it is shown that the estimator uncertainties can be simply estimated, accounting for the characteristics of the measured flow turbulence spectra. Two laser-based measurement campaigns were conducted in order to validate the acoustic velocity estimation approach and the uncertainty estimates derived. While in previous studies estimates were obtained using laser Doppler velocimetry (LDV), it is demonstrated that high-repetition rate particle image velocimetry (PIV) can also be successfully employed. The two measurement techniques provide very similar acoustic velocity amplitude and phase estimates for the cases investigated, that are of practical interest for acoustic liner studies. In a broader sense, this approach may be beneficial for non-intrusive sound emission studies in wind tunnel testings.

  6. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    Science.gov (United States)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  7. Passive acoustic detection of deep-diving beaked whales

    DEFF Research Database (Denmark)

    Zimmer, W.M.X.; Harwood, J.; Tyack, P.L.

    2008-01-01

    Beaked whales can remain submerged for an hour or more and are difficult to sight when they come to the surface to breathe. Passive acoustic detection (PAD) not only complements traditional visual-based methods for detecting these species but also can be more effective because beaked whales produce...... clicks regularly to echolocate on prey during deep foraging dives. The effectiveness of PAD for beaked whales depends not only on the acoustic behavior and output of the animals but also on environmental conditions and the quality of the passive sonar implemented. A primary constraint on the range...... at which beaked whale clicks can be detected involves their high frequencies, which attenuate rapidly, resulting in limited ranges of detection, especially in adverse environmental conditions. Given current knowledge of source parameters and in good conditions, for example, with a wind speed of 2  m...

  8. Acoustic outsourcing: New employment possibilities for the specialists

    Science.gov (United States)

    Perez, Patricia; Rios, Heriberto; Andrade, Armando; Ramirez, Mario

    2002-11-01

    The need for companies to be more competitive has led them to resort to training, external consultantship, continuous improvement programs, but with the aim of achieving maximum productivity, the big companies go even further: they are opting to focus on their high-priority activities, leaving some nonstrategic functions in the hands of third parties (organizations or individuals). Acoustic outsourcing presents immense business opportunities for the specialists in this area when offering services or completing a production process that the company carries out in an internal way but that is not its main function or activity. Outsourcing contemplates a serious long term commitment between the two parties; a kind of strategic alliance, all with the purpose of increasing efficiency and the quality of the products that the company develops, besides solving acoustic problems related to the production stage. (To be presented in Spanish.)

  9. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  10. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.

    Science.gov (United States)

    Lebon, G S Bruno; Tzanakis, I; Djambazov, G; Pericleous, K; Eskin, D G

    2017-07-01

    To address difficulties in treating large volumes of liquid metal with ultrasound, a fundamental study of acoustic cavitation in liquid aluminium, expressed in an experimentally validated numerical model, is presented in this paper. To improve the understanding of the cavitation process, a non-linear acoustic model is validated against reference water pressure measurements from acoustic waves produced by an immersed horn. A high-order method is used to discretize the wave equation in both space and time. These discretized equations are coupled to the Rayleigh-Plesset equation using two different time scales to couple the bubble and flow scales, resulting in a stable, fast, and reasonably accurate method for the prediction of acoustic pressures in cavitating liquids. This method is then applied to the context of treatment of liquid aluminium, where it predicts that the most intense cavitation activity is localised below the vibrating horn and estimates the acoustic decay below the sonotrode with reasonable qualitative agreement with experimental data. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Acoustic emission technique for characterisation of deformation, fatigue, fracture and phase transformation and for leak detection with high sensitivity- our experiences

    International Nuclear Information System (INIS)

    Jayakumar, T.; Mukhopadhyay, C.K.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used for studying tensile deformation, fracture behaviour, detection and assessment of fatigue crack growth and α-martensite phase transformation in austenitic alloys. A methodology for amplification of weak acoustic emission signals has been established. Acoustic emission technique with advanced spectral analysis has enabled detection with high sensitivity of minute leaks in noisy environments. (author)

  12. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Science.gov (United States)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  13. Investigation of acoustic resonances in high-power lamps

    International Nuclear Information System (INIS)

    Kettlitz, M; Zalach, J; Rarbach, J

    2011-01-01

    High-power, medium-pressure, mercury-containing lamps are used as UV sources for many industrial applications. Lamps investigated in this paper are driven with an electronic ballast with a non-sinusoidal current waveform at a fixed frequency of 20 kHz and a maximum power output of 35 kW. Instabilities can occur if the input power is reduced below 50%. The reason is identified as acoustic resonances in the lamp. Comparison of calculated and measured resonance frequencies shows a good agreement and explains the observed lamp behaviour. This has led to the development of a new ballast prototype which is able to avoid instabilities by changing the driving frequency dependent on the applied power.

  14. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Directory of Open Access Journals (Sweden)

    Tongzhi Zhang

    2016-11-01

    Full Text Available We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  15. A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance

    Science.gov (United States)

    Kustanovich, K.; Yantchev, V.; Kirejev, V.; Jeffries, G. D. M.; Lobovkina, T.; Jesorka, A.

    2017-11-01

    We demonstrate herein a new concept for lab-on-a-chip in-liquid sensing, through integration of surface acoustic wave resonance (SAR) in a one-port configuration with a soft polymer microfluidic delivery system. In this concept, the reflective gratings of a one-port surface acoustic wave (SAW) resonator are employed as mass loading-sensing elements, while the SAW transducer is protected from the measurement environment. We describe the design, fabrication, implementation, and characterization using liquid medium. The sensor operates at a frequency of 185 MHz and has demonstrated a comparable sensitivity to other SAW in-liquid sensors, while offering quality factor (Q) value in water of about 250, low impedance and fairly low susceptibility to viscous damping. For proof of principle, sensing performance was evaluated by means of binding 40 nm neutravidin-coated SiO2 nanoparticles to a biotin-labeled lipid bilayer deposited over the reflectors. Frequency shifts were determined for every step of the affinity assay. Demonstration of this integrated technology highlights the potential of SAR technology for in-liquid sensing.

  16. Voice Quality After a Semi-Occluded Vocal Tract Exercise With a Ventilation Mask in Contemporary Commercial Singers: Acoustic Analysis and Self-Assessments.

    Science.gov (United States)

    Fantini, Marco; Succo, Giovanni; Crosetti, Erika; Borragán Torre, Alfonso; Demo, Roberto; Fussi, Franco

    2017-05-01

    The current study aimed at investigating the immediate effects of a semi-occluded vocal tract exercise with a ventilation mask in a group of contemporary commercial singers. A randomized controlled study was carried out. Thirty professional or semi-professional singers with no voice complaints were randomly divided into two groups on recruitment: an experimental group and a control group. The same warm-up exercise was performed by the experimental group with an occluded ventilation mask placed over the nose and the mouth and by the control group without the ventilation mask. Voice was recorded before and after the exercise. Acoustic and self-assessment analysis were accomplished. The acoustic parameters of the voice samples recorded before and after training were compared, as well as the parameters' variations between the experimental and the control group. Self-assessment results of the experimental and the control group were compared too. Significant changes after the warm-up exercise included jitter, shimmer, and singing power ratio (SPR) in the experimental group. No significant changes were recorded in the control group. Significant differences between the experimental and the control group were found for ΔShimmer and ΔSPR. Self-assessment analysis confirmed a significantly higher phonatory comfort and voice quality perception for the experimental group. The results of the present study support the immediate advantageous effects on singing voice of a semi-occluded vocal tract exercise with a ventilation mask in terms of acoustic quality, phonatory comfort, and voice quality perception in contemporary commercial singers. Long-term effects still remain to be studied. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Acoustical Design Guidelines for Living Rooms for Adults with intellectual Disabilities

    NARCIS (Netherlands)

    Saher, K.

    2013-01-01

    The aim of this thesis is to investigate the effects of building design tools on acoustical quality parameters in living rooms for adults with intellectual disabilities (ID) and develop acoustical design guidelines for architects. This study is specifically concerned with the validation of

  19. SILICON COMPATIBLE ACOUSTIC WAVE RESONATORS: DESIGN, FABRICATION AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Aliza Aini Md Ralib

    2014-12-01

    Full Text Available ABSTRACT: Continuous advancement in wireless technology and silicon microfabrication has fueled exciting growth in wireless products. The bulky size of discrete vibrating mechanical devices such as quartz crystals and surface acoustic wave resonators impedes the ultimate miniaturization of single-chip transceivers. Fabrication of acoustic wave resonators on silicon allows complete integration of a resonator with its accompanying circuitry.  Integration leads to enhanced performance, better functionality with reduced cost at large volume production. This paper compiles the state-of-the-art technology of silicon compatible acoustic resonators, which can be integrated with interface circuitry. Typical acoustic wave resonators are surface acoustic wave (SAW and bulk acoustic wave (BAW resonators.  Performance of the resonator is measured in terms of quality factor, resonance frequency and insertion loss. Selection of appropriate piezoelectric material is significant to ensure sufficient electromechanical coupling coefficient is produced to reduce the insertion loss. The insulating passive SiO2 layer acts as a low loss material and aims to increase the quality factor and temperature stability of the design. The integration technique also is influenced by the fabrication process and packaging.  Packageless structure using AlN as the additional isolation layer is proposed to protect the SAW device from the environment for high reliability. Advancement in miniaturization technology of silicon compatible acoustic wave resonators to realize a single chip transceiver system is still needed. ABSTRAK: Kemajuan yang berterusan dalam teknologi tanpa wayar dan silikon telah menguatkan pertumbuhan yang menarik dalam produk tanpa wayar. Saiz yang besar bagi peralatan mekanikal bergetar seperti kristal kuarza menghalang pengecilan untuk merealisasikan peranti cip. Silikon serasi  gelombang akustik resonator mempunyai potensi yang besar untuk menggantikan unsur

  20. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.

    1990-01-01

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  1. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water

    Directory of Open Access Journals (Sweden)

    ANDRÉ G. SIMÃO

    2016-06-01

    Full Text Available Abstract The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert’s period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.

  2. Model Equation for Acoustic Nonlinear Measurement of Dispersive Specimens at High Frequency

    Science.gov (United States)

    Zhang, Dong; Kushibiki, Junichi; Zou, Wei

    2006-10-01

    We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Regarding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.

  3. Non-contact test set-up for aeroelasticity in a rotating turbomachine combining a novel acoustic excitation system with tip-timing

    International Nuclear Information System (INIS)

    Freund, O; Seume, J R; Montgomery, M; Mittelbach, M

    2014-01-01

    Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact—and thus low interference—experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used

  4. In-situ acoustic signature monitoring in additive manufacturing processes

    Science.gov (United States)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  5. Thermo-acoustic instabilities of high-frequency combustion in rocket engines; Instabilites thermo-acoustiques de combustion haute-frequence dans les moteurs fusees

    Energy Technology Data Exchange (ETDEWEB)

    Cheuret, F

    2005-10-15

    Rocket motors are confined environments where combustion occurs in extreme conditions. Combustion instabilities can occur at high frequencies; they are tied to the acoustic modes of the combustion chamber. A common research chamber, CRC, allows us to study the response of a turbulent two-phase flame to acoustic oscillations of low or high amplitudes. The chamber is characterised under cold conditions to obtain, in particular, the relative damping coefficient of acoustic oscillations. The structure and frequency of the modes are determined in the case where the chamber is coupled to a lateral cavity. We have used a powder gun to study the response to a forced acoustic excitation at high amplitude. The results guide us towards shorter flames. The injectors were then modified to study the combustion noise level as a function of injection conditions. The speed of the gas determines whether the flames are attached or lifted. The noise level of lifted flames is higher. That of attached flames is proportional to the Weber number. The shorter flames whose length is less than the radius of the CRC, necessary condition to obtain an effective coupling, are the most sensitive to acoustic perturbations. The use of a toothed wheel at different positions in the chamber allowed us to obtain informations on the origin of the thermo-acoustic coupling, main objective of this thesis. The flame is sensitive to pressure acoustic oscillations, with a quasi-zero response time. These observations suggest that under the conditions of the CRC, we observe essentially the response of chemical kinetics to pressure oscillations. (author)

  6. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    Science.gov (United States)

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  7. Understanding seafloor morphology using remote high frequency acoustic methods: An appraisal to modern techniques and its effectiveness

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    Content-Type text/plain; charset=UTF-8 179 Understanding seafloor morphology using remote high frequency acoustic methods: an appraisal to modern techniques and its effectiveness Bishwajit Chakraborty National institute of Oceanography.... The two third of the earth surface i.e. 362 million square km (70 %) is covered by the ocean. In order to understand the seafloor various methods like: application of remote acoustic techniques, seafloor photographic and geological sampling techniques...

  8. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  9. Acoustic measurements on trees and logs: a review and analysis

    Science.gov (United States)

    Xiping Wang

    2013-01-01

    Acoustic technologies have been well established as material evaluation tools in the past several decades, and their use has become widely accepted in the forest products industry for online quality control and products grading. Recent research developments on acoustic sensing technology offer further opportunities to evaluate standing trees and logs for general wood...

  10. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, M. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); Laux, D. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Technische Universitaet Muenchen, Department of Nuclear Engineering, Boltzmannstrasse 15, 85747 Garching bei Munchen (Germany); Laurie, M.; Van Uffelen, P.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Despaux, G. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  11. Enhanced sources of acoustic power surrounding AR 11429

    International Nuclear Information System (INIS)

    Donea, Alina; Hanson, Christopher

    2013-01-01

    Multi-frequency power maps of the local acoustic oscillations show acoustic enhancements (''acoustic-power halos'') at high frequencies surrounding large active region. Computational seismic holography reveals a high-frequency ''acoustic-emission halo'', or ''seismic glory'' surrounding large active regions. In this study, we have applied computational seismic holography to map the seismic seismic source density surrounding AR 11429. Studies of HMI/SDO Doppler data, shows that the ''acoustic halos'' and the ''seismic glories'' are prominent at high frequencies 5–8 mHz. We investigate morphological properties of acoustic-power and acoustic emission halos around an active region to see if they are spatially correlated. Details about the local magnetic field from vectormagnetograms of AR 11429 are included. We identify a 15'' region of seismic deficit power (dark moat) shielding the white-light boundary of the active region. The size of the seismic moat is related to region of intermediate magnetic field strength. The acoustic moat is circled by the halo of enhanced seismic amplitude as well as enhanced seismic emission. Overall, the results suggest that features are related. However, if we narrow the frequency band to 5.5 – 6.5 mHz, we find that the seismic source density dominates over the local acoustic power, suggesting the existence of sources that emit more energy downward into the solar interior than upward toward the solar surface.

  12. Prediction of sound insulation in buildings: a tool to improve the acoustic quality

    NARCIS (Netherlands)

    Gerretsen, E.

    2003-01-01

    Noise from neighbours is an important item in the acoustic climate in which we live and work. And yet the requirements remain essentially the same as fifty years ago, though the noise situation in and around dwellings has changed. In the past the acoustic performance of a building design could

  13. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    generated by a Fluke 292 arbitrary waveform generator. The signal generator was then fed to two Trek PZD2000A high- voltage amplifiers that drove two...Processes of Impinging Jet Injectors,” NASA Propulsion Engineering Research Center, vol. 2, N94-23042, 1993, pp.69-74. 8 Li, R., and Ashgriz...Instability,” NASA SP-194, 1972 V. Appendix A Figure A1. Instantaneous images of an acoustic cycle for the PAN 5 condition. A large group of

  14. Determination of acoustic fields in acidic suspensions of peanut shell during pretreatment with high-intensity ultrasound

    Directory of Open Access Journals (Sweden)

    Tiago Carregari Polachini

    Full Text Available Abstract The benefits of high-intensity ultrasound in diverse processes have stimulated many studies based on biomass pretreatment. In order to improve processes involving ultrasound, a calorimetric method has been widely used to measure the real power absorbed by the material as well as the cavitation effects. Peanut shells, a byproduct of peanut processing, were immersed in acidified aqueous solutions and submitted to an ultrasonic field. Acoustic power absorbed, acoustic intensity and power yield were obtained through specific heat determination and experimental data were modeled in different conditions. Specific heat values ranged from 3537.0 to 4190.6 J·kg-1·K-1, with lower values encountered for more concentrated biomass suspensions. The acoustic power transmitted and acoustic intensity varied linearly with the applied power and quadratically with solids concentration, reaching maximum values at higher applied nominal power and for less concentrated suspensions. A power yield of 82.7% was reached for dilute suspensions at 320 W, while 6.4% efficiency was observed for a concentrated suspension at low input energy (80 W.

  15. Development of acoustic particle detector

    International Nuclear Information System (INIS)

    Matsuyama, Tadayoshi; Hinode, Fujio; Konno, Osamu

    1999-01-01

    To detect acoustic sign from electron, determination of acoustic radiation from high energy electron and detector were studied. When charge particles pass through medium, energy loss generates local expansion and contraction of medium and pressure compression wave. We need caustic element with 10 -5 Pa the minimum acoustic receive sensitivity and from 10 to 100 kHz frequency sensitivity characteristic. Elements were made by Low-Q materials, piezoelectric materials (PZT). Various sharp of elements were constructed and measured. 50 mm spherical element showed 38 m V/Pa, the best sensitivity. Our developed acoustic element could detect acoustic radiation generated by electron beam from accelerator. The wave sharp detected proved the same as bipolar wave, which was given theoretically. The pressure generated by beam was proportional to the energy loss E. 200 MeV electron beam existed about 95% particles on the incident axis. So that acoustic detector on the axis proved to detect sound wave generated on the beam axis. (S.Y.)

  16. Acoustic Levitation Containerless Processing

    Science.gov (United States)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  17. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  18. Imaging of microwave-induced acoustic fields in LiNbO{sub 3} by high-performance Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Krueger, J K [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Univ. des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Elmazria, O [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Bouvot, L [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Mainka, J [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Universitaet des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Sanctuary, R [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Materiaux, Campus Luxembourg-Limpertsberg, L-1511 Luxembourg (Luxembourg); Rouxel, D [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Alnot, P [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France)

    2005-06-21

    High performance Brillouin microscopy (BM) has been used to characterize the spatial distribution of piezoelectrically induced acoustic fields excited at microwave frequencies in a LiNbO{sub 3} single crystal. It is demonstrated that under suitable conditions BM is able to detect microwave-induced bulk as well as surface acoustic waves. Brillouin spectroscopy is able to probe sound wave intensities of induced phonons, which are as small as those of thermal phonons.

  19. Particle separation by phase modulated surface acoustic waves.

    Science.gov (United States)

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  20. Environment noise reduction study. The effect of acoustical ceramics

    International Nuclear Information System (INIS)

    Nakayasu, Fumio

    2007-01-01

    Asbestos was used to improve acoustical and thermal conditions in the working environment. The purpose of this study is to investigate ceramics properties as the alternative material for asbestos. The acoustical properties of ceramics designed to absorb sound were investigated in this study. The properties of the concerned ceramics show the characteristics of an excellent sound absorber. Concrete is a good sound barrier but reflect more than 90% of the incident sound striking it. The thickness of conventional acoustical materials, like fibers, has a great impact on the material sound absorbing qualities. However, the acoustical effect of the thickness of the concerned ceramics was found to be reasonably small. A acoustical analysis of a working environment was done to determine the level of reverberation influenced by the different materials used to construct the space. It was found that the concerned ceramics has a potential to be good thermal shield material. (author)

  1. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    International Nuclear Information System (INIS)

    Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Sun, Hong-xiang; Zhang, Shu-yi

    2016-01-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  2. Acoustic window planning for ultrasound acquisition.

    Science.gov (United States)

    Göbl, Rüdiger; Virga, Salvatore; Rackerseder, Julia; Frisch, Benjamin; Navab, Nassir; Hennersperger, Christoph

    2017-06-01

    Autonomous robotic ultrasound has recently gained considerable interest, especially for collaborative applications. Existing methods for acquisition trajectory planning are solely based on geometrical considerations, such as the pose of the transducer with respect to the patient surface. This work aims at establishing acoustic window planning to enable autonomous ultrasound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart. We propose a fully automatic approach for the planning of acquisition trajectories, which only requires information about the target region as well as existing tomographic imaging data, such as X-ray computed tomography. The framework integrates both geometrical and physics-based constraints to estimate the best ultrasound acquisition trajectories with respect to the available acoustic windows. We evaluate the developed method using virtual planning scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a tissue-mimicking phantom. The proposed method yields superior image quality in comparison with a naive planning approach, while maintaining the necessary coverage of the target. We demonstrate that by taking image formation properties into account acquisition planning methods can outperform naive plannings. Furthermore, we show the need for such planning techniques, since naive approaches are not sufficient as they do not take the expected image quality into account.

  3. Measurements of acoustic pressure at high amplitudes and intensities

    International Nuclear Information System (INIS)

    Crum, L A; Bailey, M R; Kaczkowski, P; McAteer, J A; Pishchalnikov, Y A; Sapozhnikov, O A

    2004-01-01

    In our research group, we desire measurements of the large pressure amplitudes generated by the shock waves used in shock wave lithotripsy (SWL) and the large acoustic intensities used in High Intensity Focused Ultrasound (HIFU). Conventional piezoelectric or PVDF hydrophones can not be used for such measurements as they are damaged either by cavitation, in SWL applications, or heat, in HIFU applications. In order to circumvent these difficulties, we have utilized optical fiber hydrophones in SWL that do not cavitate, and small glass probes and a scattering technique for measurements of large HIFU intensities. Descriptions of these techniques will be given as well as some typical data

  4. Physics of Acoustic Radiation from Jet Engine Inlets

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  5. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3

    Science.gov (United States)

    Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan

    2016-12-01

    Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.

  6. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro

    2013-06-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic signal to each hydrophone in a triangular array. The characteristics of the hydrophones, the projector, and the target acoustic signal used for iSAT are described. Initially it is designed to study the movements of whale sharks (Rhincodon typus), but it could potentially be used to describe high resolution movements of other marine species. © 2013 IEEE.

  7. HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME

    International Nuclear Information System (INIS)

    Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Pinto, Phillip; Xu Xiaoying; Padmanabhan, Nikhil; Takahashi, Ryuichi; White, Martin

    2010-01-01

    We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5σ for shift values from different simulations and derive shift α(z) - 1 = (0.300 ± 0.015) %[D(z)/D(0)] 2 using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations. After reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the initial and the low redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compare with the Zel'dovich approximation and the shifts measured from the χ 2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations, but we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 h -3 Gpc 3 of cosmological Particle-Mesh simulations from Takahashi et al. At an expected sample variance level of 1%, the agreement between the Fisher matrix estimates based on Seo and Eisenstein and the N-body results is better than 10%.

  8. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  9. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai; Xiao, Bingmu; Wu, Ying

    2014-01-01

    and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  10. Acoustic and Perceptual Measurement of Expressive Prosody in High-Functioning Autism: Increased Pitch Range and What it Means to Listeners

    Science.gov (United States)

    Nadig, Aparna; Shaw, Holly

    2012-01-01

    Are there consistent markers of atypical prosody in speakers with high functioning autism (HFA) compared to typically-developing speakers? We examined: (1) acoustic measurements of pitch range, mean pitch and speech rate in conversation, (2) perceptual ratings of conversation for these features and overall prosody, and (3) acoustic measurements of…

  11. High-energy ion tail formation due to ion acoustic turbulence in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1982-02-01

    The two-component ion energy spectra observed in the TRIAM-1 tokamak are explained as a result of the high-energy ion tail formation due to ion acoustic turbulence driven by a toroidal current pulse for turbulent heating.

  12. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  13. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  14. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  15. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    Science.gov (United States)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  16. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    Science.gov (United States)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  17. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  18. An Experimental Introduction to Acoustics

    Science.gov (United States)

    Black, Andy Nicholas; Magruder, Robert H.

    2017-11-01

    Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.

  19. Sound insulation quality in Dutch dwellings

    NARCIS (Netherlands)

    Gerretsen, E.

    2003-01-01

    In the context of the EAA symposium on Building acoustic quality, an overview is given of the current situation in Germany, Belgium and the Netherlands. The topics considered are the current common building techniques, the legal minimum requirements, the desirable acoustic quality and the building

  20. Acoustic source for generating an acoustic beam

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  1. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  2. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  3. Validation of the facial dysfunction domain of the Penn Acoustic Neuroma Quality-of-Life (PANQOL) Scale.

    Science.gov (United States)

    Lodder, Wouter L; Adan, Guleed H; Chean, Chung S; Lesser, Tristram H; Leong, Samuel C

    2017-06-01

    The objective of this study is to evaluate the strength of content validity within the facial dysfunction domain of the Penn Acoustic Neuroma Quality-of-Life (PANQOL) Scale and to compare how it correlates with a facial dysfunction-specific QOL instrument (Facial Clinimetric Evaluation, FaCE). The study design is online questionnaire survey. Members of the British Acoustic Neuroma Association received both PANQOL questionnaires and the FaCE scale. 158 respondents with self-identified facial paralysis or dysfunction had completed PANQOL and FaCE data sets for analysis. The mean composite PANQOL score was 53.5 (range 19.2-93.5), whilst the mean total FaCE score was 50.9 (range 10-95). The total scores of the PANQOL and FaCE correlated moderate (r = 0.48). Strong correlation (r = 0.63) was observed between the PANQOL's facial dysfunction domain and the FaCE total score. Of all the FaCE domains, social function was strongly correlated with the PANQOL facial dysfunction domain (r = 0.66), whilst there was very weak-to-moderate correlation (range 0.01-0.43) to the other FaCE domains. The current study has demonstrated a strong correlation between the facial dysfunction domains of PANQOL with a facial paralysis-specific QOL instrument.

  4. PREFACE: 11th Anglo-French Physical Acoustics Conference (AFPAC 2012)

    Science.gov (United States)

    Saffari, Nader; Lhémery, Alain; Lowe, Mike

    2013-08-01

    The 11th Anglo-French Physical Acoustics Conference (AFPAC) was held in Brighton, UK on 18-20 January 2012. This event, which is an annual collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique, successfully achieved its main aim of being a small, friendly meeting of high scientific quality, welcoming younger researchers and PhD students and covering a broad range of subjects in Acoustics. The participants heard 44 excellent presentations covering an exciting and diverse range of subjects, from audio acoustics to guided waves in composites and from phononic crystals to ultrasound surgery. As is the custom at these meetings, four prominent invited speakers set the pace for the event; these were Keith Attenborough (The Open University, UK), Claire Prada (Institut Langevin, France), David Moore (University of Nottingham, UK) and Philippe Roux (IS Terre, France). The submission of manuscripts for publication in the proceedings was, as in previous years, on a voluntary basis and in these proceedings we present 11 peer reviewed papers. Due to some unforeseen problems there has been a longer than planned delay in preparing these proceedings, for which the Editors sincerely apologise to the authors and the community. Nader Saffari, Mike Lowe and Alain Lhémery

  5. Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.

    Science.gov (United States)

    Maryn, Youri; Ysenbaert, Femke; Zarowski, Andrzej; Vanspauwen, Robby

    2017-03-01

    The ability to move with mobile communication devices (MCDs; ie, smartphones and tablet computers) may induce differences in microphone-to-mouth positioning and use in noise-packed environments, and thus influence reliability of acoustic voice measurements. This study investigated differences in various acoustic voice measures between six recording equipments in backgrounds with low and increasing noise levels. One chain of continuous speech and sustained vowel from 50 subjects with voice disorders (all separated by silence intervals) was radiated and re-recorded in an anechoic chamber with five MCDs and one high-quality recording system. These recordings were acquired in one condition without ambient noise and in four conditions with increased ambient noise. A total of 10 acoustic voice markers were obtained in the program Praat. Differences between MCDs and noise condition were assessed with Friedman repeated-measures test and posthoc Wilcoxon signed-rank tests, both for related samples, after Bonferroni correction. (1) Except median fundamental frequency and seven nonsignificant differences, MCD samples have significantly higher acoustic markers than clinical reference samples in minimal environmental noise. (2) Except median fundamental frequency, jitter local, and jitter rap, all acoustic measures on samples recorded with the reference system experienced significant influence from room noise levels. Fundamental frequency is resistant to recording system, environmental noise, and their combination. All other measures, however, were impacted by both recording system and noise condition, and especially by their combination, often already in the reference/baseline condition without added ambient noise. Caution is therefore warranted regarding implementation of MCDs as clinical recording tools, particularly when applied for treatment outcomes assessments. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Magnetic resonance imaging in 38 cases of acoustic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Masafumi; Ohtsuka, Takashi; Seiki, Yoshikatsu; Matsumoto, Mikiro; Shibata, Iekado; Terao, Hideo [Toho Univ., Tokyo (Japan). School of Medicine; Kohno, Takeshi; Sanpei, Kenji; Mano, Isamu

    1989-08-01

    The value of magnetic resonance imaging (MRI) in the diagnosis of acoustic tumors was retrospectively assessed in 38 cases. A 0.15 Tesla permanent magnet and a 1.5 Tesla superconducting magnet were employed in 24 and 14 cases, respectively. Gadolinium diethlene triamine pentaacetic acid (Gd-DTPA), a paramagnetic contrast agent, was used in 10 cases. Acoustic tumors were identified in all cases. Small, medium, and large tumors were depicted with equal clarity by MRI and computed tomography (CT). However, tumor contour and extension, accompanying cysts, and brainstem displacement were more clarly visualized on MRI. The use of Gd-DTPA improved the quality of the MR images by markedly enhancing the acoustic tumors in all cases. In particular, detection of small acoustic tumors and intra- or paratumoral cysts was facilitated by the use of Gd-DTPA. The possibility of a correlation between acoustic tumor histology and MRI features was studied by calculation of the contrast to noise (C/N) ratio in 10 cases of acoustic tumor and 7 cases of meningioma. No definite correlation was demonstrated, but there appeared to be some difference in the C/N ratio between acoustic tumors and meningiomas. In three volunteers, MRI demonstrated intracanalicular nerves, separately. Because of its higher resolution, MRI can be expected to replace CT and air CT in the diagnosis of acoustic tumors. (author).

  7. Dynamics of levitated objects in acoustic vortex fields.

    Science.gov (United States)

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  8. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  9. Laser-nucleated acoustic cavitation in focused ultrasound.

    Science.gov (United States)

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. © 2011 American Institute of Physics

  10. Material Property Measurement in Hostile Environments using Laser Acoustics

    International Nuclear Information System (INIS)

    Ken L. Telschow

    2004-01-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods-it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100's of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for laser

  11. Acoustic Levitation With One Transducer

    Science.gov (United States)

    Barmatz, Martin B.

    1987-01-01

    Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.

  12. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  13. Acoustic and Optical Televiewer Borehole Logging

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin; Nik Marzukee Nik Ibrahim; Zaidi Ibrahim; Nurul Wahida Ahmad Khairuddin; Azmi Ibrahim

    2016-01-01

    This review paper is focused on Borehole Televiewer. Borehole Televiewer or (BHTV) was used to obtain high-resolution acoustical images from the borehole wall. A probe with a high resolution downward looking camera is used. The camera has specific optics (a conical mirror with a ring of bulbs) with just one shot needed to capture the entire borehole circumference as a 360 panoramic view. Settings similar to traditional cameras (exposure, quality, light, frame rate and resolution) make it effective in almost any type of borehole fluid. After each shot, a series of horizontal pixel strings are acquired, giving a rasterized RGB picture in real-time which is transmitted to the console and finally to a monitor. The orientation device embedded in the tool, which is made of 3 inclinometers and 3 magnetometers, allows the inclination and azimuth of the probe to be computed in real-time, correctly orienting the borehole images. Besides, Acoustic and Optical Televiewer has been introduced as its advanced in technological research. Its logging has been successfully applied to geotechnical investigations and mineral exploration (Schepers et al., 2001) due to advances in beam focusing, increased dynamic range, digital recording techniques, and digital data processing (Schepers, 1991). Thus, this paper will go through to the basic principle of (BHTV) as one type of data collection today. (author)

  14. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    Science.gov (United States)

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  15. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  16. FOREWORD: 10th Anglo-French Physical Acoustics Conference (AFPAC 2011)

    Science.gov (United States)

    Lhémery, Alain; Saffari, Nader

    2012-03-01

    The Anglo-French Physical Acoustics Conference (AFPAC) had its 10th annual meeting in Villa Clythia, Fréjus, France, from 19-21 January 2011. This series of meetings is a collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique. The conference has its loyal supporters whom we wish to thank. It is their loyalty that has made this conference a success. AFPAC alternates between the UK and France and its format has been designed to ensure that it remains a friendly meeting of very high scientific quality, offering a broad spectrum of subjects, welcoming young researchers and PhD students and giving them the opportunity to give their first presentations in an 'international' conference, but with limited pressure. For the third consecutive year AFPAC is followed by the publication of its proceedings in the form of 18 peer-reviewed papers, which cover the most recent research developments in the field of Physical Acoustics in the UK and France. Alain Lhémery CEA, France Nader Saffari UCL, United Kingdom

  17. Excitation of hypersonic acoustic waves in diamond-based piezoelectric layered structure on the microwave frequencies up to 20GHz.

    Science.gov (United States)

    Sorokin, B P; Kvashnin, G M; Novoselov, A S; Bormashov, V S; Golovanov, A V; Burkov, S I; Blank, V D

    2017-07-01

    First ultrahigh frequency (UHF) investigation of quality factor Q for the piezoelectric layered structure «Al/(001)AlN/Mo/(100) diamond» has been executed in a broad frequency band from 1 up to 20GHz. The record-breaking Q·f quality parameter up to 2.7·10 14 Hz has been obtained close to 20GHz. Frequency dependence of the form factor m correlated with quality factor has been analyzed by means of computer simulation, and non-monotonic frequency dependence can be explained by proper features of thin-film piezoelectric transducer (TFPT). Excluding the minimal Q magnitudes measured at the frequency points associated with minimal TFPT effectiveness, one can prove a rule of Qf∼f observed for diamond on the frequencies above 1GHz and defined by Landau-Rumer's acoustic attenuation mechanism. Synthetic IIa-type diamond single crystal as a substrate material for High-overtone Bulk Acoustic Resonator (HBAR) possesses some excellent acoustic properties in a wide microwave band and can be successfully applied for design of acoustoelectronic devices, especially the ones operating at a far UHF band. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. PVT Degradation Studies: Acoustic Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-01

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regions with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.

  19. The Chemical Percolation Devolatilization Model Applied to the Devolatilization of Coal in High Intensity Acoustic Fields

    Directory of Open Access Journals (Sweden)

    Veras Carlos A. G.

    2002-01-01

    Full Text Available The chemical percolation devolatilization model (CPD was extended for the prediction of drying and devolatilization of coal particles in high intensity acoustic fields found in Rijke tube reactors. The acoustic oscillations enhance the heat and mass transfer processes in the fuel bed as well as in the freeboard, above the grate. The results from simulations in a Rijke tube combustor have shown an increase in the rate of water evaporation and thermal degradation of the particles. The devolatilization model, based on chemical percolation, applied in pulsating regime allowed the dynamic prediction on the yields of CO, CO2, CH4, H2O, other light gases as well as tar which are important on ignition and stabilization of flames. The model predicted the quantity and form of nitrogen containing species generated during devolatilization, for which knowledge is strategically indispensable for reducing pollutant emissions (NOx in flames under acoustic excitation .

  20. High levels of sound pressure: acoustic reflex thresholds and auditory complaints of workers with noise exposure

    Directory of Open Access Journals (Sweden)

    Alexandre Scalli Mathias Duarte

    2015-08-01

    Full Text Available INTRODUCTION: The clinical evaluation of subjects with occupational noise exposure has been difficult due to the discrepancy between auditory complaints and auditory test results. This study aimed to evaluate the contralateral acoustic reflex thresholds of workers exposed to high levels of noise, and to compare these results to the subjects' auditory complaints.METHODS: This clinical retrospective study evaluated 364 workers between 1998 and 2005; their contralateral acoustic reflexes were compared to auditory complaints, age, and noise exposure time by chi-squared, Fisher's, and Spearman's tests.RESULTS: The workers' age ranged from 18 to 50 years (mean = 39.6, and noise exposure time from one to 38 years (mean = 17.3. We found that 15.1% (55 of the workers had bilateral hearing loss, 38.5% (140 had bilateral tinnitus, 52.8% (192 had abnormal sensitivity to loud sounds, and 47.2% (172 had speech recognition impairment. The variables hearing loss, speech recognition impairment, tinnitus, age group, and noise exposure time did not show relationship with acoustic reflex thresholds; however, all complaints demonstrated a statistically significant relationship with Metz recruitment at 3000 and 4000 Hz bilaterally.CONCLUSION: There was no significance relationship between auditory complaints and acoustic reflexes.

  1. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  2. Feedback control of acoustic musical instruments: collocated control using physical analogs.

    Science.gov (United States)

    Berdahl, Edgar; Smith, Julius O; Niemeyer, Günter

    2012-01-01

    Traditionally, the average professional musician has owned numerous acoustic musical instruments, many of them having distinctive acoustic qualities. However, a modern musician could prefer to have a single musical instrument whose acoustics are programmable by feedback control, where acoustic variables are estimated from sensor measurements in real time and then fed back in order to influence the controlled variables. In this paper, theory is presented that describes stable feedback control of an acoustic musical instrument. The presentation should be accessible to members of the musical acoustics community who may have limited or no experience with feedback control. First, the only control strategy guaranteed to be stable subject to any musical instrument mobility is described: the sensors and actuators must be collocated, and the controller must emulate a physical analog system. Next, the most fundamental feedback controllers and the corresponding physical analog systems are presented. The effects that these controllers have on acoustic musical instruments are described. Finally, practical design challenges are discussed. A proof explains why changing the resonance frequency of a musical resonance requires much more control power than changing the decay time of the resonance. © 2012 Acoustical Society of America.

  3. Acoustic modes in dense dusty plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Bhattacharjee, A.; Hu, S.

    2002-01-01

    Properties of acoustic modes in high dust density dusty plasmas are studied. The solutions of fluid equations for electrons, ions, and dust grains with collisional and ionization effects are solved along with an equation for grain charging. The high dust density effects on the acoustic modes are interpreted in terms of a change in the screening properties of the grain charge. At low dust density, the grain charge is screened due to electrons and ions. However, at high dust density, the screening of the grain charge due to other grains also becomes important. This leads to a reduction of the phase-velocity, which in turn is shown to make the plasma more unstable at high dust density. In this regime the role of the ion acoustic mode is replaced by the charging mode. The relevance of these results to earlier theoretical studies and experimental results are discussed

  4. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  5. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  6. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    Science.gov (United States)

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.

  7. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  8. Acoustic-Levitation Chamber

    Science.gov (United States)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  9. Evaluation of Sound Quality, Boominess and Boxiness in Small Rooms

    DEFF Research Database (Denmark)

    Weisser, Adam; Rindel, Jens Holger

    2006-01-01

    ratings. The classical bass ratio definitions showed poor correlation with all subjective ratings. The overall sound quality ratings gave different results for speech and music. For speech the preferred mean RT should be as low as possible, whereas for music there was found a preferred range between 0......The acoustics of small rooms has been studied with emphasis on sound quality, boominess and boxiness when the rooms are used for speech or music. Seven rooms with very different characteristics have been used for the study. Subjective listening tests were made using binaural recordings...... of reproduced speech and music. The test results were compared with a large number of objective acoustic parameters based on the frequency-dependent reverberation times measured in the rooms. This has led to the proposal of three new acoustic parameters, which have shown high correlation with the subjective...

  10. Modulation of photonic structures by surface acoustic waves

    International Nuclear Information System (INIS)

    Mauricio M de Lima Jr; Santos, Paulo V

    2005-01-01

    This paper reviews the interaction between coherently stimulated acoustic phonons in the form of surface acoustic waves with light beams in semiconductor based photonic structures. We address the generation of surface acoustic wave modes in these structures as well as the technological aspects related to control of the propagation and spatial distribution of the acoustic fields. The microscopic mechanisms responsible for the interaction between light and surface acoustic modes in different structures are then reviewed. Particular emphasis is given to the acousto-optical interaction in semiconductor microcavities and its application in photon control. These structures exhibit high optical modulation levels under acoustic excitation and are compatible with integrated light sources and detectors

  11. Paternal Effort in Relation to Acoustically Mediated Mate Choice in a Neotropical Frog

    Science.gov (United States)

    Pettitt, Beth Ann

    One aspect of communication not normally considered in studies of anuran amphibians involves the extent to which acoustic signals indicate the quality of parental care a male provides. My research examined this question in the golden rocket frog (Anomaloglossus beebei), a Neotropical dendrobatid that exhibits acoustically mediated mate choice and biparental care. I investigated the function of the male advertisement call of A. beebei in the context of female mate choice by testing the predictions of four hypotheses that have been proposed to explain the relationship between mate signals and male parental care quality. In addition, I conducted a series of studies on acoustic variability, female preferences for advertisement call traits and the importance of male parental care on offspring survival.

  12. An integrated optimum design approach for high speed prop-rotors including acoustic constraints

    Science.gov (United States)

    Chattopadhyay, Aditi; Wells, Valana; Mccarthy, Thomas; Han, Arris

    1993-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop multilevel decomposition optimization process. The procedures involve the consideration of blade-aeroelastic aerodynamic performance, structural-dynamic design requirements, and acoustics. Further, since the design involves consideration of several different objective functions, multiobjective function formulation techniques are developed.

  13. Monitoring microbe-induced physical property changes using high-frequency acoustic waveform data: Toward the development of a microbial megascope

    International Nuclear Information System (INIS)

    Williams, Kenneth Hurst

    2002-01-01

    A laboratory investigation was undertaken to determine the effect of microbe generated gas bubbles in controlled, saturated sediment columns utilizing a novel technique involving acoustic wave propagation. Specifically, the effect of denitrifying bacteria on saturated flow conditions was evaluated in light of the stimulated production of N(sub 2) gas and the resulting plugging of the pore throats. The propagation of high frequency acoustic waves through the sediment columns was used to locate those regions in the column where gas accumulation occurred. Over a period of six weeks, regions of gas accumulation resulted in the attenuation of acoustic wave energies with the decreases in amplitude typically greater than one order of magnitude

  14. Monitoring microbe-induced physical property changes using high-frequency acoustic waveform data: Toward the development of a microbial megascope

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kenneth Hurst [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    A laboratory investigation was undertaken to determine the effect of microbe generated gas bubbles in controlled, saturated sediment columns utilizing a novel technique involving acoustic wave propagation. Specifically, the effect of denitrifying bacteria on saturated flow conditions was evaluated in light of the stimulated production of N2 gas and the resulting plugging of the pore throats. The propagation of high frequency acoustic waves through the sediment columns was used to locate those regions in the column where gas accumulation occurred. Over a period of six weeks, regions of gas accumulation resulted in the attenuation of acoustic wave energies with the decreases in amplitude typically greater than one order of magnitude.

  15. Philosophical and cultural perspectives on acoustics in Vedic Hinduism

    Science.gov (United States)

    Prasad, M. G.

    2004-05-01

    Acoustics plays a very important multi-faceted role in Vedic Hinduism. Vedas, that is an infinitely large collection of chants (mantras) in ancient Sanskrit language, form the foundational literature of Vedic Hinduism. The Vedic chants have specific acoustical qualities and intonations. The Vedic literature describes the various aspects of acoustics, namely, philosophical, spiritual, and cultural. The use of sounds from conch-shell, bells, cymbal in addition to the Vedic chants in rituals shows the spiritual aspects. Vedic literature discusses the role of sound in the philosophical understanding of our world. Music, both vocal and instrumental, plays an important role in the cultural aspects of Vedic Hinduism. It can be seen that certain musical instruments such as ``mridangam,'' a percussion drum, reflect scientific principles underlying in their design. This paper presents an overview of the various important and interesting roles of acoustics in Vedic Hinduism.

  16. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    Science.gov (United States)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  17. Developing an Acoustic Sensing Yarn for Health Surveillance in a Military Setting

    Directory of Open Access Journals (Sweden)

    Theodore Hughes-Riley

    2018-05-01

    Full Text Available Overexposure to high levels of noise can cause permanent hearing disorders, which have a significant adverse effect on the quality of life of those affected. Injury due to noise can affect people in a variety of careers including construction workers, factory workers, and members of the armed forces. By monitoring the noise exposure of workers, overexposure can be avoided and suitable protective equipment can be provided. This work focused on the creation of a noise dosimeter suitable for use by members of the armed forces, where a discrete dosimeter was integrated into a textile helmet cover. In this way the sensing elements could be incorporated very close to the ears, providing a highly representative indication of the sound level entering the body, and also creating a device that would not interfere with military activities. This was achieved by utilising commercial microelectromechanical system microphones integrated within the fibres of yarn to create an acoustic sensing yarn. The acoustic sensing yarns were fully characterised over a range of relevant sound levels and frequencies at each stage in the yarn production process. The yarns were ultimately integrated into a knitted helmet cover to create a functional acoustic sensing helmet cover prototype.

  18. Diamond: a material for acoustic devices

    OpenAIRE

    MORTET, Vincent; WILLIAMS, Oliver; HAENEN, Ken

    2008-01-01

    Diamond has been foreseen to replace silicon for high power, high frequency electronic applications or for devices that operates in harsh environments. However, diamond electronic devices are still in the laboratory stage due to the lack of large substrates and the complexity of diamond doping. On another hand, surface acoustic wave filters based on diamond are commercially available. Diamond is especially suited for acoustic applications because of its exceptional mechanical properties. The ...

  19. [Treatment of giant acoustic neuromas].

    Science.gov (United States)

    Samprón, Nicolás; Altuna, Xabier; Armendáriz, Mikel; Urculo, Enrique

    2014-01-01

    To analyze the treatment modality and outcome of a series of patients with giant acoustic neuromas, a particular type of tumour characterised by their size (extracanalicular diameter of 4cm or more) and high morbidity and mortality. This was a retrospective unicentre study of patients with acoustic neuromas treated in a period of 12 years. In our institutional series of 108 acoustic neuromas operated on during that period, we found 13 (12%) cases of giant acoustic neuromas. We reviewed the available data of these cases, including presentation and several clinical, anatomical, and microsurgical aspects. All patients were operated on by the same neurosurgeon and senior author (EU) using the suboccipital retrosigmoid approach and complete microsurgical removal was achieved in 10 cases. In one case, near total removal was deliberately performed, in another case a CSF shunt was placed as the sole treatment measure, and in the remaining case no direct treatment was given. One patient died in the immediate postoperative period. One year after surgery, 4 patients showed facial nerve function of iii or more in the House-Brackman scale. The 4 most important prognostic characteristics of giant acoustic neuromas are size, adhesion to surrounding structures, consistency and vascularity. Only the first of these is evident in neuroimaging. Giant acoustic neuromas are characterised by high morbidity at presentation as well as after treatment. Nevertheless, the objective of complete microsurgical removal with preservation of cranial nerve function is attainable in some cases through the suboccipital retrosigmoid approach. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  20. Acoustic cues identifying phonetic transitions for speech segmentation

    CSIR Research Space (South Africa)

    Van Niekerk, DR

    2008-11-01

    Full Text Available The quality of corpus-based text-to-speech (TTS) systems depends strongly on the consistency of boundary placements during phonetic alignments. Expert human transcribers use visually represented acoustic cues in order to consistently place...

  1. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    International Nuclear Information System (INIS)

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  2. Physics of thermo-acoustic sound generation

    Science.gov (United States)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  3. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  4. Industrial installation surveillance acoustic device

    International Nuclear Information System (INIS)

    Marini, Jean; Audenard, Bernard.

    1981-01-01

    The purpose of this invention is the detection of possible impacts of bodies migrating inside the installation, using acoustic sensors of the waves emitted at the time of impact of the migrating bodies. This device makes it possible to take into account only those acoustic signals relating to the impacts of bodies migrating in the area under surveillance, to the exclusion of any other acoustic or electric perturbing phenomenon. The invention has a preferential use in the case of a linear shape installation in which a fluid flows at high rate, such as a section of the primary system of a pressurized water nuclear reactor [fr

  5. The quality of our drinking water: aluminium determination with an acoustic wave sensor.

    Science.gov (United States)

    Veríssimo, Marta I S; Gomes, M Teresa S R

    2008-06-09

    A new methodology based on an inexpensive aluminium acoustic wave sensor is presented. Although the aluminium sensor has already been reported, and the composition of the selective membrane is known, the low detection limits required for the analysis of drinking water, demanded the inclusion of a preconcentration stage, as well as an optimization of the sensor. The necessary coating amount was established, as well as the best preconcentration protocol, in terms of oxidation of organic matter and aluminium elution from the Chelex-100. The methodology developed with the acoustic wave sensor allowed aluminium quantitation above 0.07 mg L(-1). Several water samples from Portugal were analysed using the acoustic wave sensor, as well as by UV-vis spectrophotometry. Results obtained with both methodologies were not statistically different (alpha=0.05), both in terms of accuracy and precision. This new methodology proved to be adequate for aluminium quantitation in drinking water and showed to be faster and less reagent consuming than the UV spectrophotometric methodology.

  6. High-rate wireless data communications: An underwater acoustic communications framework at the physical layer

    Directory of Open Access Journals (Sweden)

    Bessios Anthony G.

    1996-01-01

    Full Text Available A variety of signal processing functions are performed by Underwater Acoustic Systems. These include: 1 detection to determine presence or absence of information signals in the presence of noise, or an attempt to describe which of a predetermined finite set of possible messages { m i , i , ... , M } the signal represents; 2 estimation of some parameter θ ˆ associated with the received signal (i.e. range, depth, bearing angle, etc.; 3 classification and source identification; 4 dynamics tracking; 5 navigation (collision avoidance and terminal guidance; 6 countermeasures; and 7 communications. The focus of this paper is acoustic communications. There is a global current need to develop reliable wireless digital communications for the underwater environment, with sufficient performance and efficiency to substitute for costly wired systems. One possible goal is a wireless system implementation that insures underwater terminal mobility. There is also a vital need to improve the performance of the existing systems in terms of data-rate, noise immunity, operational range, and power consumption, since, in practice, portable high-speed, long range, compact, low-power systems are desired. We concede the difficulties associated with acoustic systems and concentrate on the development of robust data transmission methods anticipating the eventual need for real time or near real time video transmission. An overview of the various detection techniques and the general statistical digital communication problem is given based on a statistical decision theory framework. The theoretical formulation of the underwater acoustic data communications problem includes modeling of the stochastic channel to incorporate a variety of impairments and environmental uncertainties, and proposal of new compensation strategies for an efficient and robust receiver design.

  7. The deep sea Acoustic Detection system AMADEUS

    International Nuclear Information System (INIS)

    Naumann, Christopher Lindsay

    2008-01-01

    As a part of the ANTARES neutrino telescope, the AMADEUS (ANTARES Modules for Acoustic Detection Under the Sea) system is an array of acoustical sensors designed to investigate the possibilities of acoustic detection of ultra-high energy neutrinos in the deep sea. The complete system will comprise a total of 36 acoustic sensors in six clusters on two of the ANTARES detector lines. With an inter-sensor spacing of about one metre inside the clusters and between 15 and 340 metres between the different clusters, it will cover a wide range of distances as will as provide a considerable lever arm for point source triangulation. Three of these clusters have already been deployed in 2007 and have been in operation since, currently yielding around 2GB of acoustic data per day. The remaining three clusters are scheduled to be deployed in May 2008 together with the final ANTARES detector line. Apart from proving the feasibility of operating an acoustic detection system in the deep sea, the main aim of this project is an in-depth survey of both the acoustic properties of the sea water and the acoustic background present at the detector site. It will also serve as a platform for the development and refinement of triggering, filtering and reconstruction algorithms for acoustic particle detection. In this presentation, a description of the acoustic sensor and read-out system is given, together with examples for the reconstruction and evaluation of the acoustic data.

  8. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  9. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  10. Vibro-acoustics of lightweight sandwich structures

    CERN Document Server

    Lu, Tianjian

    2014-01-01

    Vibro-Acoustics of Lightweight Sandwich Structures introduces the study of the coupled vibration and acoustic behavior of lightweight sandwich structures in response to harmonic force and sound pressure. This book focuses on the theoretical modeling and experimental investigation of lightweight sandwich structures in order to provide a predictive framework for vibro-acoustic characteristics of typical engineering structures. Furthermore, by developing solution tools, it concentrates on the influence of key systematic parameters leading to effective guidance for optimal structure design toward lightweight, high-stiffness and superior sound insulation capability. This book is intended for researchers, scientists, engineers and graduate students in mechanical engineering especially in structural mechanics, mechanics and acoustics. Fengxian Xin and Tianjian Lu both work at the School of Aerospace, Xi’an Jiaotong University.

  11. A new, simple electrostatic-acoustic hybrid levitator

    Science.gov (United States)

    Lierke, E. G.; Loeb, H.; Gross, D.

    1990-01-01

    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.

  12. Acoustic signal analysis in the creeping discharge

    International Nuclear Information System (INIS)

    Nakamiya, T; Sonoda, Y; Tsuda, R; Ebihara, K; Ikegami, T

    2008-01-01

    We have previously succeeded in measuring the acoustic signal due to the dielectric barrier discharge and discriminating the dominant frequency components of the acoustic signal. The dominant frequency components appear over 20kHz of acoustic signal by the dielectric barrier discharge. Recently surface discharge control technology has been focused from practical applications such as ozonizer, NO X reactors, light source or display. The fundamental experiments are carried to examine the creeping discharge using the acoustic signal. When the high voltage (6kV, f = 10kHz) is applied to the electrode, the discharge current flows and the acoustic sound is generated. The current, voltage waveforms of creeping discharge and the sound signal detected by the condenser microphone are stored in the digital memory scope. In this scheme, Continuous Wavelet Transform (CWT) is applied to discriminate the acoustic sound of the micro discharge and the dominant frequency components are studied. CWT results of sound signal show the frequency spectrum of wideband up to 100kHz. In addition, the energy distributions of acoustic signal are examined by CWT

  13. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  14. New schools design: Acoustics as main target

    Science.gov (United States)

    Maffei, Luigi; Lembo, Paola

    2005-04-01

    The effects of poor intelligibility and high background noise levels on the cognitive development of school children and on the dissatisfaction of teachers has been largely investigated. National standards have been implemented and attempts to harmonize these standards in international guidelines are ongoing. All these activities have led to the awareness that design of new schools must be centered on the achievement of a good acoustic environment. At this point a strong research effort to study and implement best solutions must be conducted, in collaboration, by architects, acousticians, pedagogues, psychologists, builders and acoustic materials producers. Recently an international competition for the planning of new primary schools in Rome, Italy has been announced. The aim of the competition is to study new architectural and running features of primary schools to obtain, among other parameters such as lighting, low cost energy solutions and air quality, the control of reverberation time, sound insulation and mechanical equipments noise. In these school buildings, as innovative requirement, children must be also able to elaborate interpretative hypothesis of physical phenomena such as sound emission and perception and be aware of their influence on these phenomena. Different possible solutions are presented.

  15. Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2015-01-01

    Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.

  16. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    Science.gov (United States)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria.

  17. Acoustic analysis in Mudejar-Gothic churches: Experimental results

    Science.gov (United States)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  18. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  19. Experimental verification of transient nonlinear acoustical holography.

    Science.gov (United States)

    Jing, Yun; Cannata, Jonathan; Wang, Tianren

    2013-05-01

    This paper presents an experimental study on nonlinear transient acoustical holography. The validity and effectiveness of a recently proposed nonlinear transient acoustical holography algorithm is evaluated in the presence of noise. The acoustic field measured on a post-focal plane of a high-intensity focused transducer is backward projected to reconstruct the pressure distributions on the focal and a pre-focal plane, which are shown to be in good agreement with the measurement. In contrast, the conventional linear holography produces erroneous results in this case where the nonlinearity involved is strong. Forward acoustic field projection was also carried out to further verify the algorithm.

  20. Acoustics an introduction

    CERN Document Server

    Kuttruff, Heinrich

    2006-01-01

    This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.

  1. Anomalous acoustic dispersion in architected microlattice metamaterials

    Science.gov (United States)

    KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara

    The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.

  2. Perceptual structure of adductor spasmodic dysphonia and its acoustic correlates.

    Science.gov (United States)

    Cannito, Michael P; Doiuchi, Maki; Murry, Thomas; Woodson, Gayle E

    2012-11-01

    To examine the perceptual structure of voice attributes in adductor spasmodic dysphonia (ADSD) before and after botulinum toxin treatment and identify acoustic correlates of underlying perceptual factors. Reliability of perceptual judgments is considered in detail. Pre- and posttreatment trial with comparison to healthy controls, using single-blind randomized listener judgments of voice qualities, as well as retrospective comparison with acoustic measurements. Oral readings were recorded from 42 ADSD speakers before and after treatment as well as from their age- and sex-matched controls. Experienced judges listened to speech samples and rated attributes of overall voice quality, breathiness, roughness, and brokenness, using computer-implemented visual analog scaling. Data were adjusted for regression to the mean and submitted to principal components factor analysis. Acoustic waveforms, extracted from the reading samples, were analyzed and measurements correlated with perceptual factor scores. Four reliable perceptual variables of ADSD voice were effectively reduced to two underlying factors that corresponded to hyperadduction, most strongly associated with roughness, and hypoadduction, most strongly associated with breathiness. After treatment, the hyperadduction factor improved, whereas the hypoadduction factor worsened. Statistically significant (P<0.01) correlations were observed between perceived roughness and four acoustic measures, whereas breathiness correlated with aperiodicity and cepstral peak prominence (CPPs). This study supported a two-factor model of ADSD, suggesting perceptual characterization by both hyperadduction and hypoadduction before and after treatment. Responses of the factors to treatment were consistent with previous research. Correlations among perceptual and acoustic variables suggested that multiple acoustic features contributed to the overall impression of roughness. Although CPPs appears to be a partial correlate of perceived

  3. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance.

    Science.gov (United States)

    Mukundarajan, Haripriya; Hol, Felix Jan Hein; Castillo, Erica Araceli; Newby, Cooper; Prakash, Manu

    2017-10-31

    The direct monitoring of mosquito populations in field settings is a crucial input for shaping appropriate and timely control measures for mosquito-borne diseases. Here, we demonstrate that commercially available mobile phones are a powerful tool for acoustically mapping mosquito species distributions worldwide. We show that even low-cost mobile phones with very basic functionality are capable of sensitively acquiring acoustic data on species-specific mosquito wingbeat sounds, while simultaneously recording the time and location of the human-mosquito encounter. We survey a wide range of medically important mosquito species, to quantitatively demonstrate how acoustic recordings supported by spatio-temporal metadata enable rapid, non-invasive species identification. As proof-of-concept, we carry out field demonstrations where minimally-trained users map local mosquitoes using their personal phones. Thus, we establish a new paradigm for mosquito surveillance that takes advantage of the existing global mobile network infrastructure, to enable continuous and large-scale data acquisition in resource-constrained areas.

  4. Interior acoustic cloak

    OpenAIRE

    Wael Akl; A. Baz

    2014-01-01

    Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which a...

  5. Absorption of longitudinal high-frequency acoustic waves in Ysub(3-x)Lusub(x)Alsub(5)Osub(12) crystals

    International Nuclear Information System (INIS)

    Gulyaev, Yu.V.; Ivanov, S.N.; Kozorezov, A.G.; Kotelyanskij, I.M.; Medved', V.V.; Akhmetov, S.F.; Davydchenko, A.G.

    1983-01-01

    Absorption of longitudinal high frequency acoustic waves in Ysub(3-x)Lusub(x)Alsub(5)Osub(12) l0<=x<=3) crystals is investigated theoretically and experimentally at temperatures T<80 K in the case when the absorption in a pure crystal is due to three-phonon processes. It is shown that the absorption of acoustic waves depends pronouncedly on the impurity concentration. The frequency dependence of sound absorption at low temperatures is found to possess a number of peculiarities. The form of the dependence qualitatively corresponds to that predicted theoretically

  6. Prototype acoustic resonance spectroscopy monitor

    International Nuclear Information System (INIS)

    Sinha, D.N.; Olinger, C.T.

    1996-03-01

    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn

  7. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  8. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    Directory of Open Access Journals (Sweden)

    Jianning Han

    2014-05-01

    Full Text Available Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  9. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  10. Pattern-formation under acoustic driving forces

    Science.gov (United States)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  11. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  12. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  13. Panel acoustic contribution analysis.

    Science.gov (United States)

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  14. Acoustic classification schemes in Europe – Applicability for new, existing and renovated housing

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2016-01-01

    The first acoustic classification schemes for dwellings were published in the 1990’es as national standards with the main purpose to introduce the possibility of specifying easily stricter acoustic criteria for new-build than the minimum requirements found in building regulations. Since then, more...... countries have introduced acoustic classification schemes, the first countries updated more times and some countries introduced acoustic classification also for other building categories. However, the classification schemes continued to focus on new buildings and have in general limited applicability...... for existing buildings from before implementation of acoustic regulations, typically in the 1950’es or later. The paper will summarize main characteristics, differences and similarities of the current national quality classes for housing in ten countries in Europe. In addition, the status and challenges...

  15. Theoretical analysis of leaky surface acoustic waves of point-focused acoustic lens and some experiments

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Suzuki, Yoshiaki; Ogura, Yukio; Katakura, Kageyoshi

    1997-01-01

    When a point-focused acoustic lens in the scanning acoustic microscope (SAM) is faced to test specimen and defocused to some extent, two effective echoes can be obtained. One is the echo of longitudinal wave, which is normally incident upon the specimen of an on-axis beam in the central region of the lens and is reflected normal to the lens surface, hence detected by the transducer. The other is of leaky surface acoustic waves(LSAW), which are mode converted front a narrow beam of off-axis longitudinal wave, then propagate across the surface of the specimen and reradiate at angles normal to the lens surface, thus detected by the transducer. These two echoes are either interfered or separated with each other depending ell the defocused distance. It turned out theoretically that the LSAW have a narrow focal spot in the central region of the point-focused acoustic lens, whose size is approximately 40% of the LSAW wavelength. On top of that, a wavelength of LSAW is about 50% short as that of longitudinal wave. So, It is expected that high resolution images can be obtained provided LSAW are used in the scanning acoustic microscope.

  16. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling

  17. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Collier, Sandra L. (U.S. Army Research Laboratory); Marlin, David H. (U.S. Army Research Laboratory); Ostashev, Vladimir E. (NOAA/Environmental Technology Laboratory); Symons, Neill Phillip; Wilson, D. Keith (U.S. Army Cold Regions Research Engineering Lab.)

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  18. A new time–space domain high-order finite-difference method for the acoustic wave equation

    KAUST Repository

    Liu, Yang; Sen, Mrinal K.

    2009-01-01

    A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.

  19. A new time–space domain high-order finite-difference method for the acoustic wave equation

    KAUST Repository

    Liu, Yang

    2009-12-01

    A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.

  20. Absorption of acoustic waves in La3Ga5SiO14 monocrystals

    International Nuclear Information System (INIS)

    Mansfel'd, G.D.; Bezdelkin, V.V.; Freik, A.D.; Kucheryavaya, E.S.

    1995-01-01

    Frequency dependences of longitudinal and transverse acoustic wave absorption coefficient in the basic crystallographic La 3 Ga 5 SiO 14 directions are measured by composite resonator method. The obtained values of absorption coefficient for all directions appear to be lower or approximately equal to the values of absorption coefficient in quartz monocrystals. Application of the resonator methods allows one to study factors affecting the resonator high-quality as well. 9 refs., 4 figs

  1. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping

    KAUST Repository

    De Basabe, Jonás D.

    2010-04-01

    We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively. © 2010 The Authors Journal compilation © 2010 RAS.

  2. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  3. Holograms for acoustics.

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-09-22

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  4. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  6. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    Science.gov (United States)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  7. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    Science.gov (United States)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  8. Acoustic Levitator Power Device: Study of Ethylene-Glycol Water Mixtures

    Science.gov (United States)

    Caccamo, M. T.; Cannuli, A.; Calabrò, E.; Magazù, S.

    2017-05-01

    Acoustic levitator power device is formed by two vertically and opposed high output acoustic transducers working at 22 kHz frequency and produces sound pressure levels of 160 dB. The acoustic waves are monitored from an oscilloscope using a signal amplifier. The ability to perform contactless measurements, avoidance of undesired contamination from the container, are some of advantages of this apparatus. Acoustic levitation can be also used for sample preparation of high concentrated mixtures starting from solutions. In the present paper, an acoustic levitator power device is employed to collect data on levitated water mixtures of Ethylene Glycol (EG) which are then analysed by Infra-Red spectroscopy. The study allows to follow the drying process versus time and to obtain a gel-like compound characterized by an extended chemical crosslinking.

  9. Research on the Influence of an Acoustic Field on Particle Cohesion in Liquid

    Directory of Open Access Journals (Sweden)

    Ramūnas Vilkišius

    2012-12-01

    Full Text Available Iron is one of the most common natural elements. When iron concentration in water is more than 0,3 mg/l, it causes the formation of rust drain tag or changes the colour of the fabric during washing. Thus, the use of the acoustic field to improve water quality is a very relevant topic. Acoustic oscillations are currently widely used in various industrial sectors, including water treatment, metallurgy, chemical and food industry, equipment manufacturing and medicine. When materials are affected by acoustic fields, physical-chemical processes begin. Acoustic fields cause material dispersion, emulsification, coagulation and degassing (gas removal as well as influence the crystallization and melting processes. Acoustic vibrations may also cause various chemical transformations such as oxidation, polymerization processes and depolymerisation. The utilization of acoustics to enhance water oxidation and precipitation of coarse impurities further extends the scope of the use of this physical method.Article in Lithuanian

  10. Research on the Influence of an Acoustic Field on Particle Cohesion in Liquid

    Directory of Open Access Journals (Sweden)

    Ramūnas Vilkišius

    2013-02-01

    Full Text Available Iron is one of the most common natural elements. When iron concentration in water is more than 0,3 mg/l, it causes the formation of rust drain tag or changes the colour of the fabric during washing. Thus, the use of the acoustic field to improve water quality is a very relevant topic. Acoustic oscillations are currently widely used in various industrial sectors, including water treatment, metallurgy, chemical and food industry, equipment manufacturing and medicine. When materials are affected by acoustic fields, physical-chemical processes begin. Acoustic fields cause material dispersion, emulsification, coagulation and degassing (gas removal as well as influence the crystallization and melting processes. Acoustic vibrations may also cause various chemical transformations such as oxidation, polymerization processes and depolymerisation. The utilization of acoustics to enhance water oxidation and precipitation of coarse impurities further extends the scope of the use of this physical method.Article in Lithuanian

  11. Reliable discrimination of high explosive and chemical/biological artillery using acoustic UGS

    Science.gov (United States)

    Hohil, Myron E.; Desai, Sachi

    2005-10-01

    discrimination between conventional and simulated chemical/biological artillery rounds using acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. We show that, highly reliable discrimination (> 98%) between conventional and potentially chemical/biological artillery is achieved at ranges exceeding 3km. A feedforward neural network classifier, trained on a feature space derived from the distribution of wavelet coefficients found within different levels of the multiresolution decomposition yields.

  12. Case study of restaurant successfully designed, constructed, and operated for excellent dining acoustics

    Science.gov (United States)

    Bollard, Paul; Des Jardins, Stephen

    2005-09-01

    Prior to the construction of La Provence Restaurant in Roseville, California in 2004, the owner, Stephen Des Jardins, traveled with his cook, architect, and engineer to the Provence Region of France to study the cuisine, architecture, and acoustics of the local restaurants. This information was incorporated into the design, construction, and operation of his restaurant, with acoustical design assistance provided by the author, Paul Bollard. The result of the owner's painstaking attention to detail is a restaurant which has received very positive reviews for its architecture, quality of food, service, and acoustic ambience. This paper documents the measures included in the construction of the restaurant to ensure that the building acoustics enhance the dining experience, rather than detract from it. Photographs of acoustic treatments are included, as are reverberation time (RT60) test results and ambient noise level measurement results.

  13. Creating geometrically robust designs for highly sensitive problems using topology optimization: Acoustic cavity design

    DEFF Research Database (Denmark)

    Christiansen, Rasmus E.; Lazarov, Boyan S.; Jensen, Jakob S.

    2015-01-01

    Resonance and wave-propagation problems are known to be highly sensitive towards parameter variations. This paper discusses topology optimization formulations for creating designs that perform robustly under spatial variations for acoustic cavity problems. For several structural problems, robust...... and limitations are discussed. In addition, a known explicit penalization approach is considered for comparison. For near-uniform spatial variations it is shown that highly robust designs can be obtained using the double filter approach. It is finally demonstrated that taking non-uniform variations into account...... further improves the robustness of the designs....

  14. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    Science.gov (United States)

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    Science.gov (United States)

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier

  16. Fundamentals of Acoustic Measurements on Trees and Logs and Their Implication to Field Application

    Science.gov (United States)

    Xiping Wang

    2011-01-01

    Acoustic technologies have been well established as material evaluation tools in the past several decades, and their use has become widely accepted in the forest products industry for on-line quality control and products grading. Recent research developments on acoustic sensing technology offer further opportunities to evaluate standing trees and logs for general wood...

  17. New Insights of High-precision Asteroseismology: Acoustic Radius and χ2-matching Method for Solar-like Oscillator KIC 6225718

    Directory of Open Access Journals (Sweden)

    Wu Tao

    2017-01-01

    parameters. In the present work, we adopt the χ2-minimization method but only use the observed high-precision seismic observations (i.e., oscillation frequencies to constrain theoretical models for analyzing solar-like oscillator KIC 6225718. Finally, we find the acoustic radius τ0 is the only global parameter that can be accurately measured by the χ2-matching method between observed frequencies and theoretical model calculations for a pure p-mode oscillation star. We obtain τ0=4601.5−8.3+4.4 seconds for KIC 6225718. It leads that the mass and radius of the CMMs are degenerate with each other. In addition, we find that the distribution range of acoustic radius is slightly enlarged by some extreme cases, which posses both a larger mass and a higher (or lower metal abundance, at the lower acoustic radius end.

  18. Acoustic Neuroma Association

    Science.gov (United States)

    ... EVENTS DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Brain Freeze ? READ MORE Read More What is acoustic neuroma? Identifying an AN Learn More Get Info ...

  19. Application of acoustic emission testing as a non-destructive quality control of conrete

    International Nuclear Information System (INIS)

    Feineis, N.

    1982-01-01

    The time dependence of texture changes in concrete is studied in short-time pressure experiments, using the method of acoustic emission testing. These investigations have been performed as a function of strength and composition of the material under study. As a result, the method of acoustic emission testing is shown to be an adequate method to evaluate the evolution and the character of the structural changes. In the case where only the time developement is of interest, a simple electronic method, the pulse-sum-method or pulse rate method can be applied. However only a signal evaluation procedure can give information on the character of the structure changes. (orig./RW) [de

  20. Development of ion-acoustic double layers through ion-acoustic fluctuations

    International Nuclear Information System (INIS)

    Sekar, A.N.; Saxena, Y.C.

    1985-01-01

    Experimental results on the formation of ion acoustic double layers resembling asymmetric ion-holes are presented. In a double plasma device, modified suitably to inject electron beam into the target plasma, modulation of the beam through step potential leads to excitation of ion-acoustic fluctuation. The ion-acoustic fluctuation, growing away from the grids separating source and target plasmas, developed into weak asymmetric ion-acoustic double layer. The observations are in qualitative agreement with theoretical models and computer simulations. (author)

  1. Feasibility of using acoustic velocity meters for estimating highly organic suspended-solids concentrations in streams

    Science.gov (United States)

    Patino, Eduardo

    1996-01-01

    A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may

  2. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    International Nuclear Information System (INIS)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-01-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing

  3. Influence of Architectural Features and Styles on Various Acoustical Measures in Churches

    Science.gov (United States)

    Carvalho, Antonio Pedro Oliveira De.

    16% in the differences between the predicted and real RTs. Using binaural measurements and subjective information collected in these churches, BACH (Binaural Acoustical CoHerence), a new binaural measure, is presented. A linear correlation coefficient near 0.7 was found between BACH and the subjective quality ratings, supporting the hypothesis that it can be useful in predicting the quality of music in churches. In conclusion, this study revealed important acoustical and architectural parameters and their relations, providing the basic information to predict several acoustical measures in churches at early stages of design or without the need of measurements in the real buildings.

  4. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film with Graphene Electrodes for Acoustic Generator and Analyzer.

    Science.gov (United States)

    Cheong, Oug Jae; Lee, James S; Kim, Jae Hyun; Jang, Jyongsik

    2016-05-01

    A bass frequency response enhanced flexible polyvinylidene fluoride (PVDF) based thin film acoustic actuator is successfully fabricated. High concentrations of various zinc oxide (ZnO) is embedded in PVDF matrix, enhancing the β phase content and the dielectric property of the composite thin film. ZnO acts as a nucleation agent for the crystallization of PVDF. A chemical vapor deposition grown graphene is used as electrodes, enabling high electron mobility for the distortion free acoustic signals. The frequency response of the fabricated acoustic actuator is studied as a function of the film thickness and filler content. The optimized film has a thickness of 80 μm with 30 wt% filler content and shows 72% and 42% frequency response enhancement in bass and midrange compared to the commercial PVDF, respectively. Also, the total harmonic distortion decreases to 82% and 74% in the bass and midrange regions, respectively. Furthermore, the composite film shows a promising potential for microphone applications. Most of all, it is demonstrated that acoustic actuator performance is strongly influenced by degree of PVDF crystalline. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Direction selective structural-acoustic coupled radiator

    Science.gov (United States)

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-04-01

    This paper presents a method of designing a structural-acoustic coupled radiator that can emit sound in the desired direction. The structural-acoustic coupled system is consisted of acoustic spaces and wall. The wall composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. An equation is developed that predicts energy distribution and energy flow in the two spaces separated by the wall, and its computational examples are presented including near field acoustic characteristics. To design the directional coupled radiator, Pareto optimization method is adapted. An objective is selected to maximize radiation power on a main axis and minimize a side lobe level and a subjective is selected direction of the main axis and dimensions of the walls geometry. Pressure and intensity distribution of the designed radiator is also presented.

  6. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    Science.gov (United States)

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  7. Data Quality Assurance for Supersonic Jet Noise Measurements

    Science.gov (United States)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  8. Sound reduction by metamaterial-based acoustic enclosure

    Directory of Open Access Journals (Sweden)

    Shanshan Yao

    2014-12-01

    Full Text Available In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  9. Perturbation measurement of waveguides for acoustic thermometry

    Science.gov (United States)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  10. Sound reduction by metamaterial-based acoustic enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming; Hu, Gengkai, E-mail: hugeng@bit.edu.cn [Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-12-15

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  11. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  12. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  13. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  14. Ultrahigh-frequency surface acoustic wave generation for acoustic charge transport in silicon

    NARCIS (Netherlands)

    Büyükköse, S.; Vratzov, B.; van der Veen, Johan (CTIT); Santos, P.V.; van der Wiel, Wilfred Gerard

    2013-01-01

    We demonstrate piezo-electrical generation of ultrahigh-frequency surface acoustic waves on silicon substrates, using high-resolution UV-based nanoimprint lithography, hydrogen silsequioxane planarization, and metal lift-off. Interdigital transducers were fabricated on a ZnO layer sandwiched between

  15. Acoustic noise reduction in T 1- and proton-density-weighted turbo spin-echo imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Breuer, Felix; Grodzki, David; Heismann, Björn; Jakob, Peter

    2016-02-01

    To reduce acoustic noise levels in T 1-weighted and proton-density-weighted turbo spin-echo (TSE) sequences, which typically reach acoustic noise levels up to 100 dB(A) in clinical practice. Five acoustic noise reduction strategies were combined: (1) gradient ramps and shapes were changed from trapezoidal to triangular, (2) variable-encoding-time imaging was implemented to relax the phase-encoding gradient timing, (3) RF pulses were adapted to avoid the need for reversing the polarity of the slice-rewinding gradient, (4) readout bandwidth was increased to provide more time for gradient activity on other axes, (5) the number of slices per TR was reduced to limit the total gradient activity per unit time. We evaluated the influence of each measure on the acoustic noise level, and conducted in vivo measurements on a healthy volunteer. Sound recordings were taken for comparison. An overall acoustic noise reduction of up to 16.8 dB(A) was obtained by the proposed strategies (1-4) and the acquisition of half the number of slices per TR only. Image quality in terms of SNR and CNR was found to be preserved. The proposed measures in this study allowed a threefold reduction in the acoustic perception of T 1-weighted and proton-density-weighted TSE sequences compared to a standard TSE-acquisition. This could be achieved without visible degradation of image quality, showing the potential to improve patient comfort and scan acceptability.

  16. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  17. Calibration of acoustic sensors in ice using the reciprocity method

    Energy Technology Data Exchange (ETDEWEB)

    Meures, Thomas; Bissok, Martin; Laihem, Karim; Paul, Larissa; Wiebusch, Christopher; Zierke, Simon [III. Physikalisches Institut, RWTH Aachen (Germany); Semburg, Benjamin [Bergische Universitaet Wuppertal (Germany). Fachbereich C

    2010-07-01

    Within the IceCube experiment at the South Pole an R and D program investigates new ways of ultra high energy neutrino detection. In particular when aiming for detector volumes of the order of 100 km{sup 3} acoustic or radio detectors are promising approaches. The acoustic detection method relies on the thermo-acoustic effect occurring when high energetic particles interact and deposit heat within a detection medium. This effect is investigated in the Aachen Acoustic Laboratory (AAL). The high energy particle interaction is simulated by a powerful pulsed Nd:YAG LASER shooting into a 3m{sup 3} tank of clear ice (or water). Eighteen acoustic sensors are situated on three rings in different depths and record the generated signals. These sensors serve as reference for later measurements of other devices. The reciprocity method, used for the absolute calibration of these sensors, is independent of an absolutely calibrated reference. This method and its application to the calibration of the AAL sensors are presented and first results are shown.

  18. What does See the Impulse Acoustic Microscopy inside Nanocomposites?

    Science.gov (United States)

    Levin, V. M.; Petronyuk, Y. S.; Morokov, E. S.; Celzard, A.; Bellucci, S.; Kuzhir, P. P.

    The paper presents results of studying bulk microstructure in carbon nanocomposites by impulse acoustic microscopy technique. Nanocomposite materials are in the focus of interest because of their outstanding properties in minimal nanofiller content. Large surface area and high superficial activity cause strong interaction between nanoparticles that can result in formation of fractal conglomerates. This paper involves results of the first direct observation of nanoparticle conglomerates inside the bulk of epoxy-carbon nanocomposites. Diverse types of carbon nanofiller have been under investigation. The impulse acoustic microscope SIAM-1 (Acoustic Microscopy Lab, IBCP RAS) has been employed for 3D imaging bulk microstructure and measuring elastic properties of the nanocomposite specimens. The range of 50-200 MHz allows observing microstructure inside the entire specimen bulk. Acoustic images are obtained in the ultramicroscopic regime; they are formed by the Rayleigh type scattered radiation. It has been found the high-resolution acoustic vision (impulse acoustic microscopy) is an efficient technique to observe mesostructure formed by fractal cluster inside nanocomposites. The clusterization takes its utmost form in nanocomposites with graphite nanoplatelets as nanofiller. The nanoparticles agglomerate into micron-sized conglomerates distributed randomly over the material. Mesostructure in nanocomposites filled with carbon nanotubes is alternation of regions with diverse density of nanotube packing. Regions with alternative density of CNT packing are clearly seen in acoustical images as neighboring pixels of various brightness.

  19. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  20. Separation of acoustic waves in isentropic flow perturbations

    International Nuclear Information System (INIS)

    Henke, Christian

    2015-01-01

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given

  1. New Insights of High-precision Asteroseismology: Acoustic Radius and χ2-matching Method for Solar-like Oscillator KIC 6225718

    Science.gov (United States)

    Wu, Tao; Li, Yan

    2017-10-01

    Asteroseismology is a powerful tool for probing stellar interiors and determining stellar fundamental parameters. In the present work, we adopt the χ2-minimization method but only use the observed high-precision seismic observations (i.e., oscillation frequencies) to constrain theoretical models for analyzing solar-like oscillator KIC 6225718. Finally, we find the acoustic radius τ0 is the only global parameter that can be accurately measured by the χ2-matching method between observed frequencies and theoretical model calculations for a pure p-mode oscillation star. We obtain seconds for KIC 6225718. It leads that the mass and radius of the CMMs are degenerate with each other. In addition, we find that the distribution range of acoustic radius is slightly enlarged by some extreme cases, which posses both a larger mass and a higher (or lower) metal abundance, at the lower acoustic radius end.

  2. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  3. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  4. The acoustic environment in large HTGR's

    International Nuclear Information System (INIS)

    Burton, T.E.

    1979-01-01

    Well-known techniques for estimating acoustic vibration of structures have been applied to a General Atomic high-temperature gas-cooled reactor (HTGR) design. It is shown that one must evaluate internal loss factors for both fluid and structure modes, as well as radiation loss factors, to avoid large errors in estimated structural response. At any frequency above 1350 rad/s there are generally at least 20 acoustic modes contributing to acoustic pressure, so statistical energy analysis may be employed. But because the gas circuit consists mainly of high-aspect-ratio cavities, reverberant fields are nowhere isotropic below 7500 rad/s, and in some regions are not isotropic below 60 000 rad/s. In comparison with isotropic reverberant fields, these anistropic fields enhance the radiation efficiencies of some structural modes at low frequencies, but have surprisingly little effect at most frequencies. The efficiency of a dipole sound source depends upon its orientation. (Auth.)

  5. Acoustic Metamaterials in Aeronautics

    Directory of Open Access Journals (Sweden)

    Giorgio Palma

    2018-06-01

    Full Text Available Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. Despite the tremendous growth in research on acoustic metamaterials during the last decade, the potential of metamaterial-based technologies in aeronautics has still not been fully explored, and its utilization is still in its infancy. Thus, the principal concepts mentioned above could very well provide a means to develop devices that allow the mitigation of the impact of civil aviation noise on the community. This paper gives a review of the most relevant works on acoustic metamaterials, analyzing them for their potential applicability in aeronautics, and, in this process, identifying possible implementation areas and interesting metabehaviors. It also identifies some technical challenges and possible future directions for research with the goal of unveiling the potential of metamaterials technology in aeronautics.

  6. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  7. Acoustic Emission Stethoscope - Measurements with Acoustic Emission on Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Krystof Kryniski [AaF Infrastructure, Stockholm (Sweden)

    2013-02-15

    A remote ultrasonic stethoscope, designed on mobile devices to help a maintenance team in diagnosing drive train problems, has been demonstrated. By implementing an acoustic emission technology, the operating conditions of wind turbines have been assessed by trending techniques and ultrasonic acoustic emission converted into audible sound. The new approach has been developed and tested and compared to other monitoring techniques. Acoustic emission has generally been shown to provide a number of advantages over vibration and shock pulse methods because the system is operating in a substantially higher frequency range (100 kHz) and therefore it is more immune to operation of surrounding machines and components. Quick attenuation of ultrasonic propagation waves in the drive-train structure helps to pin-point the origin of any fault as the signals are sharper and more pronounced. Further, with the intensity measurements a direction of the source of ultrasonic energy can be identified. Using a high frequency thus makes the method suitable for measuring local effects and to determine local defects since the disturbing signals from other parts are damped. Recently developed programmable sensors capable of processing signals onboard, producing quality outputs with extremely low noise-to-signal ratio, have been used. It is discussed how the new approach can lower the cost of a wind-turbine monitoring system, while at the same time making it simple and more reliable, see Appendix A. The method has been tested on rotating parts of wind-turbines, including traditionally difficult areas such as low speed main bearings and planetary gearboxes. The method developed in the project was designed to see physical processes such as friction, impacts and metal removal, occurring when machinery degrades, can be detected and notified with the developed notification system. Apart from reporting the status and displaying the changes of the pre-defined parameters or symptoms, the system has

  8. Acoustic emission during hydrogen absorption and desorption in palladium

    International Nuclear Information System (INIS)

    Ramesh, R.; Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used to study charging and discharging of hydrogen in palladium. During charging, breaking of oxide film due to surface activation and saturation of hydrogen absorption have been identified by acoustic emission. In the discharging cycle, the desorption of hydrogen from the specimen leads to high AE activity immediately after initiation of discharging, followed by gradual decrease in the acoustic activity, which reaches a minimum upon completion of the desorption. The potential of the acoustic emission technique for studying the kinetics of hydrogen absorption and desorption in metals has been shown. (author)

  9. Assessment of spatial and physical neighborhood characteristics that influence sound quality and herewith well-being and health.

    NARCIS (Netherlands)

    Devilee, Jeroen; Kempen, Elise van; Swart, Wim; Kamp, Irene van; Ameling, Caroline

    2018-01-01

    Environmental noise and health studies seldom address the positive effect of environments with high acoustic quality. Sound quality, in turn, is influenced by a large number of factors, including the spatial-physical characteristics of a neighborhood. In general, these characteristics cannot be

  10. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    International Nuclear Information System (INIS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-01-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation. (paper)

  11. Calibration of acoustic emission transducers

    International Nuclear Information System (INIS)

    Leschek, W.C.

    1976-01-01

    A method is described for calibrating an acoustic emission transducer to be used in a pre-set frequency range. The absolute reception sensitivity of a reference transducer is determined at frequencies selected within the frequency range. The reference transducer and the acoustic emission transducer are put into acoustic communication with the surface of a limited acoustic medium representing an equivalent acoustic load appreciably identical to that of the medium in which the use of the acoustic emission transducer is intended. A blank random acoustic noise is emitted in the acoustic medium in order to establish a diffuse and reverberating sound field, after which the output responses of the reference transducer and of the acoustic emission transducer are obtained with respect to the diffuse and reverberating field, for selected frequencies. The output response of the acoustic emission transducer is compared with that of the reference transducer for the selected frequencies, so as to determine the reception sensitivity of the acoustic emission transducer [fr

  12. Lightweight acoustic treatments for aerospace applications

    Science.gov (United States)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  13. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  14. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1

    Science.gov (United States)

    Zheng, Dan; Guo, Peng; Xiong, Juan; Wang, Shengfu

    2016-09-01

    A ZnO-based film bulk acoustic resonator has been fabricated using a magnetron sputtering technology, which was employed as a biosensor for detection of mucin 1. The resonant frequency of the thin-film bulk acoustic resonator was located near at 1503.3 MHz. The average electromechanical coupling factor {K}_{eff}^2 and quality factor Q were 2.39 % and 224, respectively. Using the specific binding system of avidin-biotin, the streptavidin was self-assembled on the top gold electrode as the sensitive layer to indirectly test the MUC1 molecules. The resonant frequency of the biosensor decreases in response to the mass loading in range of 20-500 nM. The sensor modified with the streptavidin exhibits a high sensitivity of 4642.6 Hz/nM and a good selectivity.

  15. Fully kinetic simulation of ion acoustic and dust-ion acoustic waves

    International Nuclear Information System (INIS)

    Hosseini Jenab, S. M.; Kourakis, I.; Abbasi, H.

    2011-01-01

    A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson's equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where T e ≅ T i . The Landau damping rate is shown to be minimized for a strong dust concentration or/and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.

  16. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  17. Acoustic Power Transmission Through a Ducted Fan

    Science.gov (United States)

    Envia, Ed

    2016-01-01

    For high-speed ducted fans, when the rotor flowfield is shock-free, the main contribution to the inlet radiated acoustic power comes from the portion of the rotor stator interaction sound field that is transmitted upstream through the rotor. As such, inclusion of the acoustic transmission is an essential ingredient in the prediction of the fan inlet noise when the fan tip relative speed is subsonic. This paper describes a linearized Euler based approach to computing the acoustic transmission of fan tones through the rotor. The approach is embodied in a code called LINFLUX was applied to a candidate subsonic fan called the Advanced Ducted Propulsor (ADP). The results from this study suggest that it is possible to make such prediction with sufficient fidelity to provide an indication of the acoustic transmission trends with the fan tip speed.

  18. Resonance wood [Picea abies (L.) Karst.]--evaluation and prediction of violin makers' quality-grading.

    Science.gov (United States)

    Buksnowitz, Christoph; Teischinger, Alfred; Müller, Ulrich; Pahler, Andreas; Evans, Robert

    2007-04-01

    The definition of quality in the field of resonance wood for musical instrument making has attracted considerable interest over decades but has remained incomplete. The current work compares the traditional knowledge and practical experience of violin makers with a material-science approach to objectively characterize the properties of resonance wood. Norway spruce [Picea abies (L.) Karst.] has earned a very high reputation for the construction of resonance tops of stringed instruments and resonance boards of keyboard instruments, and was therefore chosen as the focus of the investigation. The samples were obtained from numerous renowned resonance wood regions in the European Alps and cover the whole range of available qualities. A set of acoustical, anatomical, mechanical and optical material properties was measured on each sample. These measurements were compared with subjective quality grading by violin makers, who estimated the acoustical, optical and overall suitability for violin making. Multiple linear regression models were applied to evaluate the predictability of the subjective grading using the measured material characteristics as predictors. The results show that luthiers are able to estimate wood quality related to visible features, but predictions of mechanical and acoustical properties proved to be very poor.

  19. Beam aperture modifier design with acoustic metasurfaces

    Science.gov (United States)

    Tang, Weipeng; Ren, Chunyu

    2017-10-01

    In this paper, we present a design concept of acoustic beam aperture modifier using two metasurface-based planar lenses. By appropriately designing the phase gradient profile along the metasurface, we obtain a class of acoustic convex lenses and concave lenses, which can focus the incoming plane waves and collimate the converging waves, respectively. On the basis of the high converging and diverging capability of these lenses, two kinds of lens combination scheme, including the convex-concave type and convex-convex type, are proposed to tune up the incoming beam aperture as needed. To be specific, the aperture of the acoustic beam can be shrunk or expanded through adjusting the phase gradient of the pair of lenses and the spacing between them. These lenses and the corresponding aperture modifiers are constructed by the stacking ultrathin labyrinthine structures, which are obtained by the geometry optimization procedure and exhibit high transmission coefficient and a full range of phase shift. The simulation results demonstrate the effectiveness of our proposed beam aperture modifiers. Due to the flexibility in aperture controlling and the simplicity in fabrication, the proposed modifiers have promising potential in applications, such as acoustic imaging, nondestructive evaluation, and communication.

  20. Time-Efficient High-Rate Data Flooding in One-Dimensional Acoustic Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jae Kyun Kwon

    2015-10-01

    Full Text Available Because underwater communication environments have poor characteristics, such as severe attenuation, large propagation delays and narrow bandwidths, data is normally transmitted at low rates through acoustic waves. On the other hand, as high traffic has recently been required in diverse areas, high rate transmission has become necessary. In this paper, transmission/reception timing schemes that maximize the time axis use efficiency to improve the resource efficiency for high rate transmission are proposed. The excellence of the proposed scheme is identified by examining the power distributions by node, rate bounds, power levels depending on the rates and number of nodes, and network split gains through mathematical analysis and numerical results. In addition, the simulation results show that the proposed scheme outperforms the existing packet train method.

  1. The sound of trustworthiness: Acoustic-based modulation of perceived voice personality.

    Directory of Open Access Journals (Sweden)

    Pascal Belin

    Full Text Available When we hear a new voice we automatically form a "first impression" of the voice owner's personality; a single word is sufficient to yield ratings highly consistent across listeners. Past studies have shown correlations between personality ratings and acoustical parameters of voice, suggesting a potential acoustical basis for voice personality impressions, but its nature and extent remain unclear. Here we used data-driven voice computational modelling to investigate the link between acoustics and perceived trustworthiness in the single word "hello". Two prototypical voice stimuli were generated based on the acoustical features of voices rated low or high in perceived trustworthiness, respectively, as well as a continuum of stimuli inter- and extrapolated between these two prototypes. Five hundred listeners provided trustworthiness ratings on the stimuli via an online interface. We observed an extremely tight relationship between trustworthiness ratings and position along the trustworthiness continuum (r = 0.99. Not only were trustworthiness ratings higher for the high- than the low-prototypes, but the difference could be modulated quasi-linearly by reducing or exaggerating the acoustical difference between the prototypes, resulting in a strong caricaturing effect. The f0 trajectory, or intonation, appeared a parameter of particular relevance: hellos rated high in trustworthiness were characterized by a high starting f0 then a marked decrease at mid-utterance to finish on a strong rise. These results demonstrate a strong acoustical basis for voice personality impressions, opening the door to multiple potential applications.

  2. Summary and consensus in 7th International Conference on acoustic neuroma: An update for the management of sporadic acoustic neuromas

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-12-01

    Full Text Available Sporadic vestibular schwannoma (acoustic neuroma is a benign tumor arising from cochleovestibular nerve. Nowadays, various specialties and medical centers are treating this disease, and the multidisciplinary collaboration is the trend. In an effort to promote a uniform standard for reporting clinical results, even for treatment indications, the mainly controversies were posed and discussed during the 7th International Conference on acoustic neuroma, and the agreement was summarized by the Committee of this conference. The main symptoms grading and tumor stage should note its name of classification for making them comparable. The goal of the modern managements for vestibular schwannoma is to improve the quality of life with lower mortality, lower morbidity and better neurological function preservation. The experience of surgical team and their preference might be a major factor for the outcome. Because of lacking of long-term follow-up large data after radiotherapy, and with the development of microsurgery, radiotherapy is now less recommended except for recurrent cases or elderly patients. Keywords: Sporadic acoustic neuroma, Vestibular schwannoma, Management, Symptoms grading, Tumor stage, Microsurgery, Radiotherapy

  3. Steerable sound transport in a 3D acoustic network

    Science.gov (United States)

    Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie

    2017-10-01

    Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.

  4. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  5. Flow visualization of acoustic levitation experiment

    Science.gov (United States)

    Baroth, ED

    1987-01-01

    Acoustic levitation experiments for space applications were performed. Holographic interferometry is being used to study the heat transfer rates on a heated rod enclosed in a 6 cu in chamber. Acoustic waves at levels up to 150 db increased the heating rates to the rod by factors of three to four. High speed real time holographic interferometry was used to measure the boundary layer on the heated rod. Data reduction and digitization of the interferograms are being implemented.

  6. Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network

    Science.gov (United States)

    Wei, Qi; Tian, Ye; Zuo, Shu-Yu; Cheng, Ying; Liu, Xiao-Jun

    2017-03-01

    Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.

  7. Microfibrous metallic cloth for acoustic isolation of a MEMS gyroscope

    Science.gov (United States)

    Dean, Robert; Burch, Nesha; Black, Meagan; Beal, Aubrey; Flowers, George

    2011-04-01

    The response of a MEMS device that is exposed to a harsh environment may range from an increased noise floor to a completely erroneous output to temporary or even permanent device failure. One such harsh environment is high power acoustic energy possessing high frequency components. This type of environment sometimes occurs in small aerospace vehicles. In this type of operating environment, high frequency acoustic energy can be transferred to a MEMS gyroscope die through the device packaging. If the acoustic noise possesses a sufficiently strong component at the resonant frequency of the gyroscope, it will overexcite the motion of the proof mass, resulting in the deleterious effect of corrupted angular rate measurement. Therefore if the device or system packaging can be improved to sufficiently isolate the gyroscope die from environmental acoustic energy, the sensor may find new applications in this type of harsh environment. This research effort explored the use of microfibrous metallic cloth for isolating the gyroscope die from environmental acoustic excitation. Microfibrous cloth is a composite of fused, intermingled metal fibers and has a variety of typical uses involving chemical processing applications and filtering. Specifically, this research consisted of experimental evaluations of multiple layers of packed microfibrous cloth composed of sintered nickel material. The packed cloth was used to provide acoustic isolation for a test MEMS gyroscope, the Analog Devices ADXRS300. The results of this investigation revealed that the intermingling of the various fibers of the metallic cloth provided a significant contact area between the fiber strands and voids, which enhanced the acoustic damping of the material. As a result, the nickel cloth was discovered to be an effective acoustic isolation material for this particular MEMS gyroscope.

  8. On The Acoustics of Süleymaniye Mosque: From Past to Present

    Directory of Open Access Journals (Sweden)

    Zühre Sü GÜL

    2014-09-01

    Full Text Available Süleymaniye Mosque, the central structure of one of the largest mosque complexes of the Ottoman Empire, has been and remains an inspirational edifice for many fields, including architectural acoustics and material science. Comprehensive studies are needed to assess the acoustic conditions of Süleymaniye Mosque in relation to its architectural elements, interior finish materials, and any changes which have occurred in acoustic comfort levels as a result of large-scale repairs the structure has been subjected to in its life time. In-situ acoustic tests were undertaken in 2013, immediately following final restoration work done between 2007-2011. These recent data were then compared to previously-published in-situ measurement data showing acoustic conditions in the Mosque after 1969 and 1980 restorations. Acoustic simulations were performed to represent and discuss activity patterns in the structure when full to capacity. As a result of architectural form-geometry and interior material factors, the acoustic field of the Mosque exhibited the presence of very high reverberation times in all field tests, especially at low frequencies. The Mosque was found to suffer from high background noise levels emanating from the mechanical systems introduced during the 2007-2011 restoration. This study also highlights the necessity for further investigations of the acoustic characteristics of burnt-clay pots and historical lime-based plasters. Both should be investigated further in order to scientifically prove their contribution to the acoustics of the Mosque and help to restore the structure’s original acoustic comfort conditions.

  9. Zerodur polishing process for high surface quality and high efficiency

    International Nuclear Information System (INIS)

    Tesar, A.; Fuchs, B.

    1992-08-01

    Zerodur is a glass-ceramic composite importance in applications where temperature instabilities influence optical and mechanical performance, such as in earthbound and spaceborne telescope mirror substrates. Polished Zerodur surfaces of high quality have been required for laser gyro mirrors. Polished surface quality of substrates affects performance of high reflection coatings. Thus, the interest in improving Zerodur polished surface quality has become more general. Beyond eliminating subsurface damage, high quality surfaces are produced by reducing the amount of hydrated material redeposited on the surface during polishing. With the proper control of polishing parameters, such surfaces exhibit roughnesses of < l Angstrom rms. Zerodur polishing was studied to recommend a high surface quality polishing process which could be easily adapted to standard planetary continuous polishing machines and spindles. This summary contains information on a polishing process developed at LLNL which reproducibly provides high quality polished Zerodur surfaces at very high polishing efficiencies

  10. The Acoustical Durability of Thin Noise Reducing Asphalt Layers

    Directory of Open Access Journals (Sweden)

    Cedric Vuye

    2016-05-01

    Full Text Available Within the context of the European Noise Directive, traffic noise action plans have been established. One of those actions is to deepen the knowledge about low noise roads, as they are considered the most cost-efficient measure for traffic noise abatement. Therefore, ten test sections were installed in May 2012 in Belgium, with the objective of integrating Thin noise-reducing Asphalt Layers (TAL in the Flemish road surface policy in a later stage. Eight test sections are paved with TAL with a thickness of a maximum of 30 mm and a maximum content of accessible voids of 18%. The other two sections consist of a Double-layer Porous Asphalt Concrete (DPAC and a Stone Mastic Asphalt (SMA-10 as a reference section. The acoustical quality of the asphalt surfaces has been monitored in time using Statistical Pass-By (SPB and Close-ProXimity (CPX measurements up to 34 months after construction. Texture measurements performed with a laser profilometer are linked to the noise measurement results. Very promising initial noise reductions were found, up to 6 dB(A, but higher than expected acoustic deterioration rates and the presence of raveling led to noise reductions of a max. of 1 dB(A after almost three years. It is shown that the construction process itself has a large influence on the acoustical quality over time.

  11. Adductor spasmodic dysphonia: Relationships between acoustic indices and perceptual judgments

    Science.gov (United States)

    Cannito, Michael P.; Sapienza, Christine M.; Woodson, Gayle; Murry, Thomas

    2003-04-01

    This study investigated relationships between acoustical indices of spasmodic dysphonia and perceptual scaling judgments of voice attributes made by expert listeners. Audio-recordings of The Rainbow Passage were obtained from thirty one speakers with spasmodic dysphonia before and after a BOTOX injection of the vocal folds. Six temporal acoustic measures were obtained across 15 words excerpted from each reading sample, including both frequency of occurrence and percent time for (1) aperiodic phonation, (2) phonation breaks, and (3) fundamental frequency shifts. Visual analog scaling judgments were also obtained from six voice experts using an interactive computer interface to quantify four voice attributes (i.e., overall quality, roughness, brokenness, breathiness) in a carefully psychoacoustically controlled environment, using the same reading passages as stimuli. Number and percent aperiodicity and phonation breaks correlated significanly with perceived overall voice quality, roughness, and brokenness before and after the BOTOX injection. Breathiness was correlated with aperidocity only prior to injection, while roughness also correlated with frequency shifts following injection. Factor analysis reduced perceived attributes to two principal components: glottal squeezing and breathiness. The acoustic measures demonstrated a strong regression relationship with perceived glottal squeezing, but no regression relationship with breathiness was observed. Implications for an analysis of pathologic voices will be discussed.

  12. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    Science.gov (United States)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  13. [Quality management is associated with high quality services in health care].

    Science.gov (United States)

    Nielsen, Tenna Hassert; Riis, Allan; Mainz, Jan; Jensen, Anne-Louise Degn

    2013-12-09

    In these years, quality management has been the focus in order to meet high quality services for the patients in Danish health care. This article provides information on quality management and quality improvement and it evaluates its effectiveness in achieving better organizational structures, processes and results in Danish health-care organizations. Our findings generally support that quality management is associated with high quality services in health care.

  14. Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.

    Science.gov (United States)

    Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L

    2018-03-01

    Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.

  15. Perception of recorded singing voice quality and expertise: cognitive linguistics and acoustic approaches.

    Science.gov (United States)

    Morange, Séverine; Dubois, Danièle; Fontaine, Jean-Marc

    2010-07-01

    The objective of the present pluridisciplinary study was to contribute to determine how a diversity of audience differently appreciates several versions resulting from different "restoration" treatments of one single original lyrical recording. We present here a joint analysis coupling psychological and linguistic analyses with acoustic descriptions on a unique research object: a Caruso's piece of song diversely remastered on commercial CDs. Thirty-two subjects were selected contrasted on age ("younger than 30 years" and "older than 60 years") related with their different experience of earlier technical recording devices (rendering through devices such as radio, 78rpm records, CD...) and on expertise concerning musical acoustics (acousticians and/or musicians vs ordinary music lovers). Eleven excerpts of reediting of an opera record interpreted by Caruso were selected from what could found on the market. The listening protocol involved a free categorization task and the selection of excerpts on preference judgments. Each task involved subjects' free commentaries about their choices as a joint output from psychological processing. A cluster analysis scaffold by a psycholinguistic processing of the verbal comments of the categories allowed to identify both commonalities and differences in groupings excerpts by the different groups of the subjects, along a diversity of criteria, varying according to age and expertise. Each excerpt can therefore be characterized both according to psychological and to acoustic criteria. This study has enabled us to develop the idea that a lyric voice is a multifaced object (cultural, esthetic, technical, physical), acoustic parameters being linked to the various sensory experiences and expertises of appraisers. Such pluridisciplinary research and the coupling of the correlated multiplicity of methodologies we developed acknowledge for a better understanding of listening practices and music-lover assessments here concerned with a

  16. The treatment for acoustic neuromas. Indication and results of gamma knife radiosurgery and surgery

    International Nuclear Information System (INIS)

    Iwai, Yoshiyasu; Yamanaka, Kazuhiro; Uyama, Taichi; Morikawa, Toshie; Honda, Yuji; Matsusaka, Yasuhiro; Komiyama, Masaki; Yasui, Toshihiro

    2004-01-01

    We evaluated the treatment results of acoustic neuromas in the era of radiosurgery. We treated acoustic neuromas using the following strategy. Small to medium size tumors (below 3 cm) were treated by gamma knife radiosurgery and large tumors (above 3 cm) were treated using a combination of surgery and radiosurgery. Using gamma knife radiosurgery we were able to achieve 96.4% of clinical tumor growth control with 0.7% incidence of trigeminal neuropathy (without new facial neuropathy). We used low dose radiosurgery (average tumor marginal dose 11.8 Gy) with a follow-up of an average of 54 months. For the 17 patients with large tumors treated by the combination of surgery and radiosurgery who could be followed up for over 24 months after radiosurgery, we were able to preserve normal facial function (House-Brackmann grade I-II) in 70.6% of the patients after subtotal removal. High clinical tumor growth control for residual tumor was achieved in 94.1% of subjects with an average of 40 months follow-up. By using this strategy, the treatment outcome for acoustic neuroma is improved from the standpoint of functional outcome and maintaining the patient's quality of life. (author)

  17. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  18. The acoustics of snoring.

    Science.gov (United States)

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as judged by the bed partner, is due to an altered sound spectrum. Whether some acoustic aspects of snoring, such as changes in pitch, have predictive value for the presence of

  19. Mapping thunder sources by inverting acoustic and electromagnetic observations

    Science.gov (United States)

    Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.

    2014-12-01

    We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.

  20. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors.

    Science.gov (United States)

    Qin, Lei; Ren, Hong-Wei; Dong, Bi-Qin; Xing, Feng

    2014-10-02

    Acoustic emission (AE) is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1-3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  1. Woods with physical, mechanical and acoustic properties similar to those of Caesalpinia echinata have high potential as alternative woods for bow makers

    Directory of Open Access Journals (Sweden)

    Eduardo Luiz Longui

    2014-09-01

    Full Text Available For nearly two hundred years, Caesalpinia echinata wood has been the standard for modern bows. However, the threat of extinction and the enforcement of trade bans have required bow makers to seek alternative woods. The hypothesis tested was that woods with physical, mechanical and acoustic properties similar to those of C. echinata would have high potential as alternative woods for bows. Accordingly, were investigated Handroanthus spp., Mezilaurus itauba, Hymenaea spp., Dipteryx spp., Diplotropis spp. and Astronium lecointei. Handroanthus and Diplotropis have the greatest number of similarities with C. echinata, but only Handroanthus spp. showed significant results in actual bow manufacture, suggesting the importance of such key properties as specific gravity, speed of sound propagation and modulus of elasticity. In practice, Handroanthus and Dipteryx produced bows of quality similar to that of C. echinata.

  2. Material and Phonon Engineering for Next Generation Acoustic Devices

    Science.gov (United States)

    Kuo, Nai-Kuei

    This thesis presents the theoretical and experimental work related to micromachining of low intrinsic loss sapphire and phononic crystals for engineering new classes of electroacoustic devices for frequency control applications. For the first time, a low loss sapphire suspended membrane was fabricated and utilized to form the main body of a piezoelectric lateral overtone bulk acoustic resonator (LOBAR). Since the metalized piezoelectric transducer area in a LOBAR is only a small fraction of the overall resonant cavity (made out of sapphire), high quality factor (Q) overtones are attained. The experiment confirms the low intrinsic mechanical loss of the transferred sapphire thin film, and the resonators exhibit the highest Q of 5,440 at 2.8 GHz ( f·Q of 1.53.1013 Hz). This is also the highest f·Q demonstrated for aluminum-nitride-(AIN)-based Lamb wave devices to date. Beyond demonstrating a low loss device, this experimental work has laid the foundation for the future development of new micromechanical devices based on a high Q, high hardness and chemically resilient material. The search for alternative ways to more efficiently perform frequency control functionalities lead to the exploration of Phononic Crystal (PnC) structures in AIN thin films. Four unit cell designs were theoretically and experimentally investigated to explore the behavior of phononic bandgaps (PBGs) in the ultra high frequency (UHF) range: (i) the conventional square lattice with circular air scatterer, (ii) the inverse acoustic bandgap (IABG) structure, (iii) the fractal PnC, and (iv) the X-shaped PnC. Each unit cell has its unique frequency characteristic that was exploited to synthesize either cavity resonators or improve the performance of acoustic delay lines. The PBGs operate in the range of 770 MHz to 1 GHz and exhibit a maximum acoustic rejection of 40 dB. AIN Lamb wave transducers (LWTs) were employed for the experimental demonstration of the PBGs and cavity resonances. Ultra

  3. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    Science.gov (United States)

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  4. Acoustically sticky topographic metasurfaces for underwater sound absorption.

    Science.gov (United States)

    Lee, Hunki; Jung, Myungki; Kim, Minsoo; Shin, Ryung; Kang, Shinill; Ohm, Won-Suk; Kim, Yong Tae

    2018-03-01

    A class of metasurfaces for underwater sound absorption, based on a design principle that maximizes thermoviscous loss, is presented. When a sound meets a solid surface, it leaves a footprint in the form of thermoviscous boundary layers in which energy loss takes place. Considered to be a nuisance, this acoustic to vorticity/entropy mode conversion and the subsequent loss are often ignored in the existing designs of acoustic metamaterials and metasurfaces. The metasurface created is made of a series of topographic meta-atoms, i.e., intaglios and reliefs engraved directly on the solid object to be concealed. The metasurface is acoustically sticky in that it rather facilitates the conversion of the incident sound to vorticity and entropy modes, hence the thermoviscous loss, leading to the desired anechoic property. A prototype metasurface machined on a brass object is tested for its anechoicity, and shows a multitude of absorption peaks as large as unity in the 2-5 MHz range. Computations also indicate that a topographic metasurface is robust to hydrostatic pressure variation, a quality much sought-after in underwater applications.

  5. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Han, Jongyoon; Ai, Ye

    2016-12-20

    Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.

  6. Field-Deployable Acoustic Digital Systems for Noise Measurement

    Science.gov (United States)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  7. Anti-sound and Acoustical Cloaks

    Directory of Open Access Journals (Sweden)

    Veturia CHIROIU

    2016-12-01

    Full Text Available The principles by which the acoustics can be mimicked in order to reduce or cancel the vibrational field are based on anti-sound concept which can be materialized by acoustic cloaks. Geometric transformations open an elegant way towards the unconstrained control of sound through acoustic metamaterials. Acoustic cloaks can be achieved through geometric transformations which bring exotic metamaterial properties into the acoustic equations. Our paper brings new ideas concerning the technological keys for manufacturing of novel metamaterials based on the spatial compression of Cantor structures, and the architecture of 3D acoustic cloaks in a given frequency band, with application to architectural acoustics.

  8. Multistep translation and cultural adaptation of the Penn acoustic neuroma quality-of-life scale for German-speaking patients.

    Science.gov (United States)

    Kristin, Julia; Glaas, Marcel Fabian; Stenin, Igor; Albrecht, Angelika; Klenzner, Thomas; Schipper, Jörg; Eysel-Gosepath, Katrin

    2017-11-01

    Monitoring the health-related quality of life (HRQOL) for patients with vestibular schwannoma (VS) has garnered increasing interest. In German-speaking countries, there is no disease-specific questionnaire available similar to the "Penn Acoustic Neuroma Quality-of-life Scale" (PANQOL). We translated the PANQOL for German-speaking patients based on a multistep protocol that included not only a forward-backward translation but also linguistic and sociocultural adaptations. The process consists of translation, synthesis, back translation, review by an expert committee, administration of the prefinal version to our patients, submission and appraisal of all written documents by our research team. The required multidisciplinary team for translation comprised head and neck surgeons, language professionals (German and English), a professional translator, and bilingual participants. A total of 123 patients with VS underwent microsurgical procedures via different approaches at our clinic between January 2007 and January 2017. Among these, 72 patients who underwent the translabyrinthine approach participated in the testing of the German-translated PANQOL. The first German version of the PANQOL questionnaire was created by a multistep translation process. The responses indicate that the questionnaire is simple to administer and applicable to our patients. The use of a multistep process to translate quality-of-life questionnaires is complex and time-consuming. However, this process was performed properly and resulted in a version of the PANQOL for assessing the quality of life of German-speaking patients with VS.

  9. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    Science.gov (United States)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  10. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  11. Implementation and development of an automated, ultra-high-capacity, acoustic, flexible dispensing platform for assay-ready plate delivery.

    Science.gov (United States)

    Griffith, Dylan; Northwood, Roger; Owen, Paul; Simkiss, Ellen; Brierley, Andrew; Cross, Kevin; Slaney, Andrew; Davis, Miranda; Bath, Colin

    2012-10-01

    Compound management faces the daily challenge of providing high-quality samples to drug discovery. The advent of new screening technologies has seen demand for liquid samples move toward nanoliter ranges, dispensed by contactless acoustic droplet ejection. Within AstraZeneca, a totally integrated assay-ready plate production platform has been created to fully exploit the advantages of this technology. This enables compound management to efficiently deliver large throughputs demanded by high-throughput screening while maintaining regular delivery of smaller numbers of compounds in varying plate formats for cellular or biochemical concentration-response curves in support of hit and lead optimization (structure-activity relationship screening). The automation solution, CODA, has the capability to deliver compounds on demand for single- and multiple-concentration ranges, in batch sizes ranging from 1 sample to 2 million samples, integrating seamlessly into local compound and test management systems. The software handles compound orders intelligently, grouping test requests together dependent on output plate type and serial dilution ranges so that source compound vessels are shared among numerous tests, ensuring conservation of sample, reduced labware and costs, and efficiency of work cell logistics. We describe the development of CODA to address the customer demand, challenges experienced, learning made, and subsequent enhancements.

  12. Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range

    Science.gov (United States)

    Chen, Xing; Liu, Peng; Hou, Zewei; Pei, Yongmao

    2017-04-01

    Wavelength division multiplexing technology, adopted to increase the information density, plays a significant role in optical communication. However, in acoustics, a similar function can be hardly implemented due to the weak dispersion in natural acoustic materials. Here, an acoustic demultiplexer, based on the concept of metasurfaces, is proposed for splitting acoustic waves and propagating along different trajectories in a low frequency range. An acoustic metasurface, containing multiple resonant units, is designed with various phase profiles for different frequencies. Originating from the highly dispersive properties, the resonant units are independent and merely work in the vicinity of their resonant frequencies. Therefore, by combing multiple resonant units appropriately, the phenomena of anomalous reflection, acoustic focusing, and acoustic wave bending can occur in different frequencies. The proposed acoustic demultiplexer has advantages on the subwavelength scale and the versatility in wave control, providing a strategy for separating acoustic waves with different Fourier components.

  13. Sodium boiling detection in LMFBRs by acoustic-neutronic cross correlation

    International Nuclear Information System (INIS)

    Wright, S.A.

    1977-01-01

    The acoustic and neutronic noise signals caused by boiling are the signals primarily considered likely to detect sodium boiling in an LMFBR. Unfortunately, these signals may have serious signal-to-noise problems due to strong background noise sources. Neutronic-acoustic cross correlation techniques are expected to provide a means of improving the signal-to-noise ratio. This technique can improve the signal-to-noise ratio because the neutronic and acoustic signals due to boiling are highly correlated near the bubble repetition frequency, while the background noise sources are expected to be uncorrelated (or at most weakly correlated). An experiment was designed to show that the neutronic and acoustic noise signals are indeed highly correlated. The experiment consisted of simulating the void and pressure effects of local sodium boiling in the core of a zero-power reactor (ARK). The analysis showed that the neutronic and acoustic noise signals caused by boiling are almost perfectly correlated in a wide frequency band about the bubble repetition frequency. The results of the experiments were generalized to full-scale reactors to compare the inherent effectiveness of the methods which use the neutronic or acoustic signals alone with a hybrid method, which cross correlates the neutronic and acoustic signals. It was concluded that over a zone of the reactor where the void coefficient is sufficiently large (approximately 85 percent the core volume), the cross correlation method can provide a more rapid detection system for a given signal-to-noise ratio. However, where the void coefficient is small, one must probably rely on the acoustic method alone

  14. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  15. How hummingbirds hum: Acoustic holography of hummingbirds during maneuvering flight

    Science.gov (United States)

    Hightower, Ben; Wijnings, Patrick; Ingersoll, Rivers; Chin, Diana; Scholte, Rick; Lentink, David

    2017-11-01

    Hummingbirds make a characteristic humming sound when they flap their wings. The physics and the biological significance of hummingbird aeroacoustics is still poorly understood. We used acoustic holography and high-speed cameras to determine the acoustic field of six hummingbirds while they either hovered stationary in front of a flower or maneuvered to track flower motion. We used a robotic flower that oscillated either laterally or longitudinally with a linear combination of 20 different frequencies between 0.2 and 20 Hz, a range that encompasses natural flower vibration frequencies in wind. We used high-speed marker tracking to dissect the transfer function between the moving flower, the head, and body of the bird. We also positioned four acoustic arrays equipped with 2176 microphones total above, below, and in front of the hummingbird. Acoustic data from the microphones were back-propagated to planes adjacent to the hummingbird to create the first real-time holograms of the pressure field a hummingbird generates in vivo. Integration of all this data offers insight into how hummingbirds modulate the acoustic field during hovering and maneuvering flight.

  16. Acoustic Emission Beamforming for Detection and Localization of Damage

    Science.gov (United States)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  17. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  18. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  19. Acoustical case studies of three green buildings

    Science.gov (United States)

    Siebein, Gary; Lilkendey, Robert; Skorski, Stephen

    2005-04-01

    Case studies of 3 green buildings with LEED certifications that required extensive acoustical retrofit work to become satisfactory work environments for their intended user groups will be used to define areas where green building design concepts and acoustical design concepts require reconciliation. Case study 1 is an office and conference center for a city environmental education agency. Large open spaces intended to collect daylight through clerestory windows provided large, reverberant volumes with few acoustic finishes that rendered them unsuitable as open office space and a conference room/auditorium. Case Study 2 describes one of the first gold LEED buildings in the southeast whose primary design concepts were so narrowly focused on thermal and lighting issues that they often worked directly against basic acoustical requirements resulting in sound levels of NC 50-55 in classrooms and faculty offices, crosstalk between classrooms and poor room acoustics. Case study 3 is an environmental education and conference center with open public areas, very high ceilings, and all reflective surfaces made from wood and other environmentally friendly materials that result in excessive loudness when the building is used by the numbers of people which it was intended to serve.

  20. Simulation of sound transmission through the porous material, determining the parameters of acoustic absorption and sound reduction

    Directory of Open Access Journals (Sweden)

    Zvolenský Peter

    2018-01-01

    Full Text Available Currently, the quality of structural design of a railway coach is evaluated by so called acoustic comfort, which is characterized by achieved levels of internal noise. Therefore, acoustic parameters of car body are being developed purposely. The paper presents the results of the computer simulation of noise transmission through the wagon walls and the use of noise tests from the train running. The acoustic properties of the original and new materials in the care body are compared.

  1. A numerical study of the effects of design parameters on the acoustics noise of a high efficiency propeller

    Science.gov (United States)

    Yang, Liu; Huang, Jun; Yi, Mingxu; Zhang, Chaopu; Xiao, Qian

    2017-11-01

    A numerical study of a high efficiency propeller in the aerodynamic noise generation is carried out. Based on RANS, three-dimensional numerical simulation is performed to obtain the aerodynamic performance of the propeller. The result of the aerodynamic analysis is given as input of the acoustic calculation. The sound is calculated using the Farassat 1A, which is derived from Ffowcs Williams-Hawkings equation, and compared with the data of wind tunnel. The propeller is modified for noise reduction by changing its geometrical parameters such as diameter, chord width and pitch angle. The trend of variation between aerodynamic analysis data and acoustic calculation result are compared and discussed for different modification tasks. Meaningful conclusions are drawn on the noise reduction of propeller.

  2. Electro-acoustic sensors based on AlN thin film: possibilities and limitations

    Science.gov (United States)

    Wingqvist, Gunilla

    2011-06-01

    The non-ferroelectric polar wurtzite aluminium nitride (AlN) material has been shown to have potential for various sensor applications both utilizing the piezoelectric effect directly for pressure sensors or indirectly for acoustic sensing of various physical, chemical and biochemical sensor applications. Especially, sputter deposited AlN thin films have played a central role for successful development of the thin film electro-acoustic technology. The development has been primarily driven by one device - the thin film bulk acoustic resonator (FBAR or TFBAR), with its primary use for high frequency filter applications for the telecom industry. AlN has been the dominating choice for commercial application due to compatibility with the integrated circuit technology, low acoustic and dielectric losses, high acoustic velocity in combination with comparably high (but still for some applications limited) electromechanical coupling. Recently, increased piezoelectric properties (and also electromechanical coupling) in the AlN through the alloying with scandium nitride (ScN) have been identified both experimentally and theoretically. Inhere, the utilization of piezoelectricity in electro-acoustic sensing will be discussed together with expectation on acoustic FBAR sensor performance with variation in piezoelectric material properties in the parameter space around AlN due to alloying, in view of the ScxAl1-xN (0

  3. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  4. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high

  5. System for detecting acoustic emissions in multianvil experiments: Application to deep seismicity in the Earth

    International Nuclear Information System (INIS)

    Jung, Haemyeong; Fei Yingwei; Silver, Paul G.; Green, Harry W.

    2006-01-01

    One of the major goals in the experimental study of deep earthquakes is to identify slip instabilities at high pressure and high temperature (HPHT) that might be responsible for the occurrence of earthquakes. Detecting acoustic emissions from a specimen during faulting provides unique constraints on the instability process. There are few experimental studies reporting acoustic emissions under HPHT conditions, due to technical challenges. And those studies have used only one or at most two acoustic sensors during the experiments. Such techniques preclude the accurate location of the acoustic emission source region and thus the ability to distinguish real signal from noise that may be coming from outside the sample. We have developed a system for detecting acoustic emissions at HPHT. Here we present a four-channel acoustic emission detecting system working in the HPHT octahedral multianvil apparatus. Each channel has high resolution (12 bits) and a sampling rate of 30 MHz. In experiments at the pressures up to 6 GPa and temperatures up to 770 deg. C, we have observed acoustic emissions under various conditions. Analyzing these signals, we are able to show that this system permits us to distinguish between signal and noise, locate the source of the acoustic emission, and obtain reliable data on the radiation pattern. This system has greatly improved our ability to study faulting instabilities under high pressure and high temperature

  6. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  7. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  8. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  9. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  10. Investigation of bulk acoustic microwaves excited by an interdigital transducer

    Directory of Open Access Journals (Sweden)

    Reshotka O. G.

    2015-12-01

    Full Text Available Excitation of bulk and surface acoustic waves with the interdigital transducer (IDT, which is deposited on the surface of piezoelectric crystal, is widely used in the development of devices in acoustoelectronics and in the design of the microwave acousto-optic deflectors. Excitation of bulk acoustic waves by IDT in the devices on surface acoustic waves leads to the appearance of spurious signals. At the same time excitation of bulk acoustic waves with IDT from the surface of lithium niobate crystals allows creating high frequency acousto-optic deflectors, which makes possible to significantly simplify the technology of their production. Therefore, significant attention is paid to the task of excitation and distribution of bulk acoustic waves with IDT including recent times by the method of simulation of their excitation and distribution. The obtained theoretical results require experimental verification. This paper documents the visualization of acoustic beams excited with IDT from the XY-surface of lithium niobate crystals. The Bragg cells with LiNbO3 crystals coated with IDT with a different period of electrodes were manufactured for the experimental research of excitation and distribution of bulk acoustic waves. Visualization results have shown that the acoustic waves excited with IDT distribute in both the Fresnel zone and the Fraunhofer zone. The length of these zones is caused by individual elementary emitters of which consists the IDT (by their size. At the same time the far zone for IDT is located at distances much greater than the actual size of the LiNbO3 crystals. This peculiarity is not always taken into account when calculating diffraction. The achieved results can be used to design high-frequency acousto-optic devices, as well as in the development of devices based on surface acoustic waves.

  11. Analysis of Using Acoustic Microscopy to Evaluate Defects in Spot Welding Joints

    Directory of Open Access Journals (Sweden)

    Korzeniowski M.

    2016-06-01

    Full Text Available The article presents the possibilities of using acoustic microscopy to evaluate defects in resistance spot welding joints. For this purpose, the welded joints were made from two grades of aluminium plates EN AW5754 H24 and EN AW6005 T606, which were then subjected to non-destructive testing using acoustic microscopy and conventional destructive testing using traditional light microscopy techniques. Additionally, the study examined the influence of the typical contaminants found in industrial conditions on the quality of the joint.

  12. The relationship between target quality and interference in sound zones

    DEFF Research Database (Denmark)

    Baykaner, Khan; Coleman, Phillip; Mason, Russell

    2015-01-01

    Sound zone systems aim to control sound fields in such a way that multiple listeners can enjoy different audio programs within the same room with minimal acoustic interference. Often, there is a trade-off between the acoustic contrast achieved between the zones and the fidelity of the reproduced...... audio program in the target zone. A listening test was conducted to obtain subjective measures of distraction, target quality, and overall quality of listening experience for ecologically valid programs within a sound zoning system. Sound zones were reproduced using acoustic contrast control, planarity...

  13. Characterization of microchannel anechoic corners formed by surface acoustic waves

    Science.gov (United States)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  14. Coherent acoustic phonon oscillation accompanied with backward acoustic pulse below exciton resonance in a ZnO epifilm on oxide-buffered Si(1 1 1)

    International Nuclear Information System (INIS)

    Lin, Ja-Hon; Shen, Yu-Kai; Lu, Chia-Hui; Chen, Yao-Hui; Chang, Chun-peng; Liu, Wei-Rein; Hsu, Chia-Hung; Lee, Wei-Chin; Hong, Minghwei; Kwo, Jueinai-Raynien; Hsieh, Wen-Feng

    2016-01-01

    Unlike coherent acoustic phonons (CAPs) generated from heat induced thermal stress by the coated Au film, we demonstrated the oscillation from c-ZnO epitaxial film on oxide buffered Si through a degenerate pump–probe technique. As the excited photon energy was set below the exciton resonance, the electronic stress that resulted from defect resonance was used to induce acoustic wave. The damped oscillation revealed a superposition of a high frequency and long decay CAP signal with a backward propagating acoustic pulse which was generated by the absorption of the penetrated pump beam at the Si surface and selected by the ZnO layer as the acoustic resonator. (paper)

  15. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  16. Acoustic insulator for combined well equipment of acoustic and radioactivity logging

    International Nuclear Information System (INIS)

    Arkad'ev, E.A.; Gorbachev, Yu.I.; Dseban', I.P.; Yagodov, G.I.

    1977-01-01

    The design of an acoustic insulator for cobined well equipment of acoustic and radioactivity logaing made on the basis of studying the velocity of elastic waves propagation and attenuation in cable structures of various marks is described. It is shown that the cable probe of electric loggign equipment which is recommended as an acoustic insulator for combined well equipment has the necessary sound-insulating properties

  17. An acoustic wave equation for pure P wave in 2D TTI media

    KAUST Repository

    Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.

    2011-01-01

    In this paper, a pure P wave equation for an acoustic 2D TTI media is derived. Compared with conventional TTI coupled equations, the resulting equation is unconditionally stable due to the complete isolation of the SV wave mode. To avoid numerical dispersion and produce high quality images, the rapid expansion method REM is employed for numerical implementation. Synthetic results validate the proposed equation and show that it is a stable algorithm for modeling and reverse time migration RTM in a TTI media for any anisotropic parameter values. © 2011 Society of Exploration Geophysicists.

  18. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    Science.gov (United States)

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    International Nuclear Information System (INIS)

    Cheng, H; Li, H B; Zhang, W; Wu, Z Q; Liu, B R

    2016-01-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure (paper)

  20. Project Ancient Acoustics Part 1 of 4 : a method for accurate impulse response measurements in large open air theatres

    NARCIS (Netherlands)

    Hak, C.C.J.M.; Hoekstra, N.; Nicolai, B.; Wenmaekers, R.H.C.

    2016-01-01

    Selecting an appropriate method for measuring ‘normal’ indoor concert hall acoustics is always a trade-off between time, stimulus type, number of measurements and measurement quality. For ISO 3382 room acoustic parameters to be derived accurately from impulse responses, this tradeoff aims at a

  1. The acoustics of the echo cornet

    Science.gov (United States)

    Pyle, Robert W., Jr.; Klaus, Sabine K.

    2002-11-01

    The echo cornet was an instrument produced by a number of makers in several countries from about the middle of the nineteenth to the early twentieth centuries. It consists of an ordinary three-valve cornet to which a fourth valve has been added, downstream of the three normal valves. The extra valve diverts the airstream from the normal bell to an ''echo'' bell that gives a muted tone quality. Although the air column through the echo bell is typically 15 cm longer than the path through the normal bell, there is no appreciable change of playing pitch when the echo bell is in use. Acoustic input impedance and impulse response measurements and consideration of the standing-wave pattern within the echo bell show how this can be so. Acoustically, the echo bell is more closely related to hand-stopping on the French horn than to the mutes commonly used on the trumpet and cornet.

  2. Evaluation of acoustic resonance at branch section in main steam line. Part 1. Effects of steam wetness on acoustic resonance

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2011-01-01

    The power uprating of the nuclear power plant (NPP) is conducted in United States, EU countries and so on, and also is planned in Japan. However, the degradation phenomena such as flow-induced vibration and wall thinning may increase or expose in the power uprate condition. In U.S. NPP, the dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a 17% extended power uprating (EPU) condition. This is caused by acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSL). Increased velocity by uprating excites the pressure fluctuations and makes large amplitude resonance. To evaluate the acoustic resonance at the stub pipes of SRVs in actual BWR, it is necessary to clarify the acoustic characteristics in steam flow. Although there are several previous studies about acoustic resonance, most of them are not steam flow but air flow. Therefore in this study, to investigate the acoustic characteristics in steam flow, we conducted steam flow experiments in each dry and wet steam conditions, and also nearly saturated condition. We measured pressure fluctuation at the top of the single stub pipe and in main steam piping. As a result, acoustic resonance in dry steam flow could be evaluated as same as that in air flow. It is clarified that resonance amplitude of fluctuating pressure at the top of the stub pipe in wet steam was reduced to one-tenth compared with that in dry. (author)

  3. Education in acoustics in Argentina

    Science.gov (United States)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  4. Demodulation of acoustic telemetry binary phase shift keying signal based on high-order Duffing system

    International Nuclear Information System (INIS)

    Yan Bing-Nan; Liu Chong-Xin; Ni Jun-Kang; Zhao Liang

    2016-01-01

    In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. (paper)

  5. Review of Progress in Acoustic Levitation

    Science.gov (United States)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2018-04-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  6. How hummingbirds hum: acoustic holography of hummingbirds during maneuvering flight

    NARCIS (Netherlands)

    Hightower, B.; Wijnings, P.W.A.; Ingersoll, R.; Chin, D.; Scholte, R.; Lentink, D.

    2017-01-01

    Hummingbirds make a characteristic humming sound when they flap their wings. The physics and the biological significance of hummingbird aeroacoustics is still poorly understood. We used acoustic holography and high-speed cameras to determine the acoustic field of six hummingbirds while they either

  7. The magnetized electron-acoustic instability driven by a warm, field-aligned electron beam

    International Nuclear Information System (INIS)

    Sooklal, A.; Mace, R.L.

    2004-01-01

    The electron-acoustic instability in a magnetized plasma having three electron components, one of which is a field-aligned beam of intermediate temperature, is investigated. When the plasma frequency of the cool electrons exceeds the electron gyrofrequency, the electron-acoustic instability 'bifurcates' at sufficiently large propagation angles with respect to the magnetic field to yield an obliquely propagating, low-frequency electron-acoustic instability and a higher frequency cyclotron-sound instability. Each of these instabilities retains certain wave features of its progenitor, the quasiparallel electron-acoustic instability, but displays also new magnetic qualities through its dependence on the electron gyrofrequency. The obliquely propagating electron-acoustic instability requires a lower threshold beam speed for its excitation than does the cyclotron-sound instability, and for low to intermediate beam speeds has the higher maximum growth rate. When the plasma is sufficiently strongly magnetized that the plasma frequency of the cool electrons is less than the electron gyrofrequency, the only instability in the electron-acoustic frequency range is the strongly magnetized electron-acoustic instability. Its growth rate and real frequency exhibit a monotonic decrease with wave propagation angle and it grows at small to intermediate wave numbers where its parallel phase speed is approximately constant. The relevance of the results to the interpretation of cusp auroral hiss and auroral broadband electrostatic noise is briefly discussed

  8. Frequency effects on the scale and behavior of acoustic streaming.

    Science.gov (United States)

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  9. Broadband and flexible acoustic focusing by metafiber bundles

    Science.gov (United States)

    Sun, Hong-Xiang; Chen, Jia-He; Ge, Yong; Yuan, Shou-Qi; Liu, Xiao-Jun

    2018-06-01

    We report a broadband and flexible acoustic focusing through metafiber bundles in air, in which each metafiber consists of eight circular and narrow rectangular cavities. The fractional bandwidth of the acoustic focusing could reach about 0.2, which arises from the eigenmodes of the metafiber structure. Besides, owing to the flexible characteristic of the metafibers, the focus position can be manipulated by bending the metafiber bundles, and the metafiber bundles could bypass rigid scatterers inside the lens structure. More interestingly, the acoustic propagation and focusing directions can be changed by using a designed right-angled direction converter fabricated by the metafibers, and a waveform converter and a focusing lens of the cylindrical acoustic source are realized based on the metafiber bundles. The proposed focusing lens has the advantages of broad bandwidth, flexible structure, and high focusing performance, showing great potentials in versatile applications.

  10. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    International Nuclear Information System (INIS)

    Naumann, C.L.

    2007-01-01

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called ''equivalent circuit diagram (=ECD) model'' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/μPa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/√(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with exemplary results for

  11. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L.

    2007-09-17

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called 'equivalent circuit diagram (=ECD) model' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/{mu}Pa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/{radical}(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with

  12. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    Science.gov (United States)

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  13. Subjective evaluation of restaurant acoustics in a virtual sound environment

    DEFF Research Database (Denmark)

    Nielsen, Nicolaj Østergaard; Marschall, Marton; Santurette, Sébastien

    2016-01-01

    Many restaurants have smooth rigid surfaces made of wood, steel, glass, and concrete. This often results in a lack of sound absorption. Such restaurants are notorious for high sound noise levels during service that most owners actually desire for representing vibrant eating environments, although...... surveys report that noise complaints are on par with poor service. This study investigated the relation between objective acoustic parameters and subjective evaluation of acoustic comfort at five restaurants in terms of three parameters: noise annoyance, speech intelligibility, and privacy. At each...... location, customers filled out questionnaire surveys, acoustic parameters were measured, and recordings of restaurant acoustic scenes were obtained with a 64-channel spherical array. The acoustic scenes were reproduced in a virtual sound environment (VSE) with 64 loudspeakers placed in an anechoic room...

  14. Validation of the Penn Acoustic Neuroma Quality-of-Life Scale (PANQOL) for Spanish-Speaking Patients.

    Science.gov (United States)

    Medina, Maria Del Mar; Carrillo, Alvaro; Polo, Ruben; Fernandez, Borja; Alonso, Daniel; Vaca, Miguel; Cordero, Adela; Perez, Cecilia; Muriel, Alfonso; Cobeta, Ignacio

    2017-04-01

    Objective To perform translation, cross-cultural adaptation, and validation of the Penn Acoustic Neuroma Quality-of-Life Scale (PANQOL) to the Spanish language. Study Design Prospective study. Setting Tertiary neurotologic referral center. Subjects and Methods PANQOL was translated and translated back, and a pretest trial was performed. The study included 27 individuals diagnosed with vestibular schwannoma. Inclusion criteria were adults with untreated vestibular schwannoma, diagnosed in the past 12 months. Feasibility, internal consistency, test-retest reliability, construct validity, and ceiling and floor effects were assessed for the present study. Results The mean overall score of the PANQOL was 69.21 (0-100 scale, lowest to highest quality of life). Cronbach's α was 0.87. Intraclass correlation coefficient was performed for each item, with an overall score of 0.92. The κ coefficient scores were between moderate and almost perfect in more than 92% of patients. Anxiety and energy domains of the PANQOL were correlated with both physical and mental components of the SF-12. Hearing, balance, and pain domains were correlated with the SF-12 physical component. Facial and general domains were not significantly correlated with any component of the SF-12. Furthermore, the overall score of the PANQOL was correlated with the physical component of the SF-12. Conclusion Feasibility, internal consistency, reliability, and construct validity outcomes in the current study support the validity of the Spanish version of the PANQOL.

  15. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  16. Collective oscillations of twin boundaries in high temperature superconductors as an acoustic analogue of two-dimensional plasmons

    International Nuclear Information System (INIS)

    Kosevich, Yu.A.; Syrkin, E.S.

    1990-06-01

    Low frequency collective oscillations in a superlattice consisting of alternating highly anisotropic layers are considered. Such superstructure may be formed in the ferroelastic near the structural phase transition by alternation of twins. For the surface waves, propagating along the layers, the conditions and the range of existence of those with the dispersion law ω∼K 1/2 , characteristics for two-dimensional plasmons, have been analyzed for a solid-state system with consideration for elastic anisotropy and retardation of acoustic waves. Such excitations ('dyadons') were used in an attempt to explain the anomalies of low temperature thermodynamic and kinetic characteristics of high-T c superconductors. We have shown that the similarity of the densities of the matching phases and the retardation of elastic waves in the crystal narrow the range of existence of dyadons, but high elastic anisotropy of the solid phases enlarges the range of existence of such excitations in solid-state systems. The example of possible crystalline geometry of the phase matching, for which there arise collective excitations of the type under consideration, is found. For transverse and longitudinal waves propagating across the layers, the existence is proved of low frequency acoustic branches separated by a wide gap from the nearest optical branches. (author). 18 refs

  17. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  18. A consideration on physical tuning for acoustical coloration in recording studio

    Science.gov (United States)

    Shimizu, Yasushi

    2003-04-01

    Coloration due to particular architectural shapes and dimension or less surface absorption has been mentioned as an acoustical defect in recording studio. Generally interference among early reflected sounds arriving within 10 ms in delay after the direct sound produces coloration by comb filter effect over mid- and high-frequency sounds. In addition, less absorbed room resonance modes also have been well known as a major component for coloration in low-frequency sounds. Small size in dimension with recording studio, however, creates difficulty in characterization associated with wave acoustics behavior, that make acoustical optimization more difficult than that of concert hall acoustics. There still remains difficulty in evaluating amount of coloration as well as predicting its acoustical characteristics in acoustical modeling and in other words acoustical tuning technique during construction is regarded as important to optimize acoustics appropriately to the function of recording studio. This paper presents a example of coloration by comb filtering effect and less damped room modes in typical post-processing recording studio. And acoustical design and measurement technique will be presented for adjusting timbre due to coloration based on psycho-acoustical performance with binaural hearing and room resonance control with line array resonator adjusted to the particular room modes considered.

  19. D33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity

    KAUST Repository

    Shen, Zhiyuan; Lu, Jingyu; Tan, Cheewee; Miao, Jianmin; Wang, Zhihong

    2013-01-01

    This paper presents the design, fabrication, and characterization of an acoustic transducer using a piezoelectric freestanding bulk diaphragm as the sensing element. The diaphragm bearing the spiral electrode operates in d 33 mode, which allows the in-plane deformation of the diaphragm to be converted to the out-of-plane deformation and generates an acoustic wave in the same direction. A finite element code is developed to reorient the material polarization distribution according to the poling field calculated. The first four resonance modes have been simulated and verified by impedance and velocity spectra. The sensitivity and the sound pressure level of the transducer were characterized. The realized sensitivity of 126.21 μV/Pa at 1 kHz is nearly twenty times of the sensitivity of a sandwich d31 mode transducer. © 2012 Elsevier B.V.

  20. Thermo-acoustic coupling in can-annular combustors : A numerical investigation

    NARCIS (Netherlands)

    Farisco, Federica; Panek, Lukasz; Kok, Jim B.W.; Pent, Jared; Rajaram, Rajesh

    2015-01-01

    Thermo-acoustic instabilities in modern, high power density gas turbines need to be predicted and understood in order to avoid unexpected damage and engine failure. While the annular combustor design is expected to suffer from the occurrence of transverse waves and burner-to-burner acoustic

  1. Effects of Acoustic Impulses on the Middle Ear

    Science.gov (United States)

    2016-10-01

    reflexive MEMC measurements, and verification of the integrity of the cranial nerves supplying the stapedius and tensor tympani muscles (CNVII and CNV...of new (or revising existing) damage risk criteria and health hazard assessment methods for exposure to high-level acoustic impulses such as...exposures to acoustic impulses. This information is necessary for the development of new (or revision of existing) damage risk criteria and health hazard

  2. Acoustic Resonance between Ground and Thermosphere

    Directory of Open Access Journals (Sweden)

    M Matsumura

    2009-04-01

    Full Text Available Ultra-low frequency acoustic waves called "acoustic gravity waves" or "infrasounds" are theoretically expected to resonate between the ground and the thermosphere. This resonance is a very important phenomenon causing the coupling of the solid Earth, neutral atmosphere, and ionospheric plasma. This acoustic resonance, however, has not been confirmed by direct observations. In this study, atmospheric perturbations on the ground and ionospheric disturbances were observed and compared with each other to confirm the existence of resonance. Atmospheric perturbations were observed with a barometer, and ionospheric disturbances were observed using the HF Doppler method. An end point of resonance is in the ionosphere, where conductivity is high and the dynamo effect occurs. Thus, geomagnetic observation is also useful, so the geomagnetic data were compared with other data. Power spectral density was calculated and averaged for each month. Peaks appeared at the theoretically expected resonance frequencies in the pressure and HF Doppler data. The frequencies of the peaks varied with the seasons. This is probably because the vertical temperature profile of the atmosphere varies with the seasons, as does the reflection height of infrasounds. These results indicate that acoustic resonance occurs frequently.

  3. Application of acoustic agglomeration for removing sulfuric acid mist from air stream

    Directory of Open Access Journals (Sweden)

    Asghar Sadighzadeh

    2018-01-01

    Full Text Available The application of acoustic fields at high sound pressure levels (SPLs for removing sulfuric acid mists from the air stream was studied. An acoustic agglomeration chamber was used to conduct the experiments. The studied SPLs ranged from 115 to 165 decibel (dB, with three inlet concentrations of acid mist at 5–10, 15–20, and 25–30 ppm. The air flow rates for conducting experiments were 20, 30, and 40 L min−1. The concentration of sulfuric acid mist was measured using US Environmental Protection Agency Method 8 at inlet and outlet of the chamber. The resonance frequencies for experiments were found to be 852, 1410, and 3530 Hz. The maximum acoustic agglomeration efficiency of 86% was obtained at optimum frequency of 852 Hz. The analysis of variance test revealed significant differences between agglomeration efficiency at three resonance frequencies (p-value < 0.001. The maximum acoustic agglomeration efficiency was obtained at SPL level of 165 dB. High initial concentrations of acid mists and lower air flow rates enhance the acoustic agglomeration of mists. High removal efficiency of acid mists from air stream could be achieved by the application of acoustic agglomeration method with appropriate range of frequencies and SPLs. Keywords: Sulfuric acid, Mist, Acoustic agglomeration, SPL

  4. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    Science.gov (United States)

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  5. The effects of two counterpropagating surface acoustic wave beams on single electron acoustic charge transport

    International Nuclear Information System (INIS)

    He Jianhong; Guo Huazhong; Song Li; Zhang Wei; Gao Jie; Lu Chuan

    2010-01-01

    We present a comprehensive study of the effects of two counterpropagating surface acoustic waves on the acoustoelectric current of single electron transport devices. A significant improvement in the accuracy of current quantization is achieved as a result of an additional surface acoustic wave beam. The experiments reveal the sinusoidally periodical modulation in the acoustoelectric current characteristic as a function of the relative phase of the two surface acoustic wave beams. Besides, by using standing surface acoustic waves, the acoustoelectric current is detected which we consider as the so-called anomalous acoustoelectric current produced by acoustic wave mechanical deformations. This kind current is contributed to one component of the acoustoelectric current in surface acoustic wave device, which could enable us to establish a more adequate description of acoustoelectric effects on single-electron acoustic charge transport.

  6. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  7. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    Science.gov (United States)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  8. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  9. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    Science.gov (United States)

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  10. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    Science.gov (United States)

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  11. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  12. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    Science.gov (United States)

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  13. A computational study for investigating acoustic streaming and tissue heating during high intensity focused ultrasound through blood vessel with an obstacle

    Science.gov (United States)

    Parvin, Salma; Sultana, Aysha

    2017-06-01

    The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.

  14. Potential-well model in acoustic tweezers.

    Science.gov (United States)

    Kang, Shih-Tsung; Yeh, Chih-Kuang

    2010-06-01

    Standing-wave acoustic tweezers are popularly used for non-invasive and non-contact particle manipulation. Because of their good penetration in biological tissue, they also show promising prospects for in vivo applications. According to the concept of an optical vortex, we propose an acoustics-vortex- based trapping model of acoustic tweezers. A four-element 1-MHz planar transducer was used to generate 1-MHz sine waves at 1 MPa, with adjacent elements being driven with a pi/2-rad phase difference. Each element was a square with a side length of 5.08 mm, with kerfs initially set at 0.51 mm. An acoustic vortex constituting the spiral motion of an acoustic wave around the beam axis was created, with an axial null. Applying Gor'kov's theory in the Rayleigh regime yielded the potential energy and radiation force for use in subsequent analysis. In the transverse direction, the vortex structure behaved as a series of potential wells that tended to drive a suspended particle toward the beam axis. They were highly fragmented in the near field that is very close to the transducer where there was spiral interference, and well-constructed in the far field. We found that the significant trapping effect was only present between these two regions in the transverse direction--particles were free to move along the beam axis, and a repulsive force was observed in the outer acoustic vortex. Because the steepness of the potential gradient near an axial null dominates the trapping effect, the far field of the acoustic vortex is inappropriate for trapping. Particles too close to the transducer are not sufficiently trapped because of the fragmented potential pattern. We suggest that the ideal distance from the transducer for trapping particles is in front of one-fourth of the Rayleigh distance, based on the superposition of the wavefronts. The maximum trapping force acting on a 13-mum polystyrene sphere in the produced acoustic vortex was 50.0 pN, and it was possible to trap

  15. Acoustic Emission Technology and Application

    International Nuclear Information System (INIS)

    Joo, Y. S.; Lim, S. H.; Eom, H. S.; Kim, J. H.; Jung, H. K.

    2003-10-01

    Acoustic emission is the elastic wave that is generated by the rapid release of energy from the localized sources within a material. After the observation of acoustic emission phenomenon in 1950, the research and further investigation had been performed. Acoustic emission examination becomes a rapidly matured nondestructive testing method with demonstrated capabilities for characterizing material behavior and for detecting the defect. It is of interest as a possible passive monitoring technique for detecting, locating and characterizing the defects in component and structure. Acoustic emission technology has recently strengthened the on-line monitoring application for the detection of incipient failures and the assurance of structural integrity. The field of acoustic emission testing is still growing vigorously and presents many challenges. Especially, acoustic emission has been successfully applied in the leak detection of primary pressure boundary of nuclear power plants. In this state-of-art report, the principle, measurement and field applications of acoustic emission technique is reviewed and summarized. Acoustic emission technology will contribute to the assurance of nuclear safety as the on-line monitoring technique of structural integrity of NSSS components and structures

  16. Acoustic levitation: recent developments and emerging opportunities in biomaterials research.

    Science.gov (United States)

    Weber, Richard J K; Benmore, Chris J; Tumber, Sonia K; Tailor, Amit N; Rey, Charles A; Taylor, Lynne S; Byrn, Stephen R

    2012-04-01

    Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.

  17. Virtual microphone sensing through vibro-acoustic modelling and Kalman filtering

    Science.gov (United States)

    van de Walle, A.; Naets, F.; Desmet, W.

    2018-05-01

    This work proposes a virtual microphone methodology which enables full field acoustic measurements for vibro-acoustic systems. The methodology employs a Kalman filtering framework in order to combine a reduced high-fidelity vibro-acoustic model with a structural excitation measurement and small set of real microphone measurements on the system under investigation. By employing model order reduction techniques, a high order finite element model can be converted in a much smaller model which preserves the desired accuracy and maintains the main physical properties of the original model. Due to the low order of the reduced-order model, it can be effectively employed in a Kalman filter. The proposed methodology is validated experimentally on a strongly coupled vibro-acoustic system. The virtual sensor vastly improves the accuracy with respect to regular forward simulation. The virtual sensor also allows to recreate the full sound field of the system, which is very difficult/impossible to do through classical measurements.

  18. Acoustic emission monitoring of HFIR vessel during hydrostatic testing

    International Nuclear Information System (INIS)

    Friesel, M.A.; Dawson, J.F.

    1992-08-01

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results

  19. Acoustic building infiltration measurement system

    Science.gov (United States)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  20. ZnO film for application in surface acoustic wave device

    International Nuclear Information System (INIS)

    Du, X Y; Fu, Y Q; Tan, S C; Luo, J K; Flewitt, A J; Maeng, S; Kim, S H; Choi, Y J; Lee, D S; Park, N M; Park, J; Milne, W I

    2007-01-01

    High quality, c-axis oriented zinc oxide (ZnO) thin films were grown on silicon substrate using RF magnetron sputtering. Surface acoustic wave (SAW) devices were fabricated with different thickness of ZnO ranging from 1.2 to 5.5 μmUm and the frequency responses were characterized using a network analyzer. Thick ZnO films produce the strongest transmission and reflection signals from the SAW devices. The SAW propagation velocity is also strongly dependent on ZnO film thickness. The performance of the ZnO SAW devices could be improved with addition of a SiO 2 layer, in name of reflection signal amplitude and phase velocity of Rayleigh wave

  1. Integrating Real-Time Room Acoustics Simulation into a CAD Modeling Software to Enhance the Architectural Design Process

    Directory of Open Access Journals (Sweden)

    Sönke Pelzer

    2014-04-01

    Full Text Available For architects, real-time 3D visual rendering of CAD-models is a valuable tool. The architect usually perceives the visual appearance of the building interior in a natural and realistic way during the design process. Unfortunately this only emphasizes the role of the visual appearance of a building, while the acoustics often remain disregarded. Controlling the room acoustics is not integrated into most architects’ workflows—due to a lack of tools. The present contribution describes a newly developed plug-in for adding an adequate 3D-acoustics feedback to the architect. To present intuitively the acoustical effect of the current design project, the plug-in uses real-time audio rendering and 3D-reproduction. The room acoustics of the design can be varied by modifying structural shapes as well as by changing the material selection. In addition to the audio feedback, also a visualization of important room acoustics qualities is provided by displaying color-coded maps inside the CAD software.

  2. The accidental (acoustical) tourist

    Science.gov (United States)

    Van Kirk, Wayne

    2002-11-01

    The acoustical phenomenon observed at an ancient temple in the Great Ball Court at Chichen Itza was described as ''little short of amazing--an ancient whispering gallery'' by Silvanus G. Morley, leader of the Carnegie Institute's archaeological team that excavated and restored these structures in the 1920s. Since then, many others have experienced the extraordinary acoustics at Chichen Itza and other Maya sites. Despite these reports, archaeologists and acousticians have until recently shown little interest in understanding these phenomena. After experiencing Chichen Itza's remarkable acoustics as a tourist in 1994, the author commenced collecting and disseminating information about acoustical phenomena there and at other Mayan sites, hoping to stimulate interest among archaeologists and acousticians. Were these designs accidental or intentional? If intentional, how was the knowledge obtained? How were acoustical features used? This paper highlights the author's collection of anecdotal reports of mysterious Mayan acoustics (http://http://www.ianlawton.com/pa1.htm), recommended reading for scientists and engineers who wish to pursue this fascinating study. Also recounted are some of the reactions of archaeologists-ranging from curious, helpful, and insightful to humorous and appalling--to outsiders' efforts to bring serious scientific attention to the new field of acoustical archaeology.

  3. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  4. Study on structural plane characteristics of deep rock mass based on acoustic borehole TV

    International Nuclear Information System (INIS)

    Wang Xiyong; Su Rui; Chen Liang; Tian Xiao

    2014-01-01

    Deep rock mass structural plane characteristics are one of the basic data for evaluating the quality of rock mass. Based on acoustic borehole TV, the structural plane quantity, density, attitude, dominant set, structural plane aperture of deep rock mass in boreholes BS15 # and BS16 # located in Beishan granite rock mass of Gansu Province have been calculated and compared with the results of geological documentation of drill core. The results indicate that acoustic borehole TV has the effect in study on characteristics of structural plane. But as a kind of technique of geophysical logging, the acoustic borehole TV has certain defect, and need to combine with the analysis of the other geological materials in applications. (authors)

  5. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  6. Negative refraction imaging of solid acoustic waves by two-dimensional three-component phononic crystal

    International Nuclear Information System (INIS)

    Li Jing; Liu Zhengyou; Qiu Chunyin

    2008-01-01

    By using of the multiple scattering methods, we study the negative refraction imaging effect of solid acoustic waves by two-dimensional three-component phononic crystals composed of coated solid inclusions placed in solid matrix. We show that localized resonance mechanism brings on a group of flat single-mode bands in low-frequency region, which provides two equivalent frequency surfaces (EFS) close to circular. The two constant frequency surfaces correspond to two Bloch modes, a right-handed and a left-handed, whose leading mode are respectively transverse (T) and longitudinal (L) modes. The negative refraction behaviors of the two kinds of modes have been demonstrated by simulation of a Gaussian beam through a finite system. High-quality far-field imaging by a planar lens for transverse or longitudinal waves has been realized separately. This three-component phononic crystal may thus serve as a mode selector in negative refraction imaging of solid acoustic waves

  7. Acoustic MIMO communications in a very shallow water channel

    Science.gov (United States)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  8. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  9. Agorá Acoustics - Effects of arcades on the acoustics of public squares

    DEFF Research Database (Denmark)

    Paini, Dario; Gade, Anders Christian; Rindel, Jens Holger

    2005-01-01

    This paper is part of a PhD work, dealing with the acoustics of the public squares (‘Agorá Acoustics’), especially when music (amplified or not) is played. Consequently, our approach will be to evaluate public squares using the same set of acoustics concepts for subjective evaluation and objective...... measurements as applied for concert halls and theatres. In this paper the acoustical effects of arcades will be studied, in terms of reverberation (EDT and T30), clarity (C80), intelligibility (STI) and other acoustical parameters. For this purpose, also the theory of coupled rooms is applied and compared...... with results. An acoustic modelling program, ODEON 7.0, was used for this investigation. Three different sizes of public squares were considered. In order to evaluate the ‘real’ effects of the arcades on the open square, models of all three squares were designed both with and without arcades. The sound source...

  10. Understanding acoustics an experimentalist’s view of acoustics and vibration

    CERN Document Server

    Garrett, Steven L

    2017-01-01

    This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chap...

  11. High accuracy acoustic relative humidity measurement in duct flow with air

    NARCIS (Netherlands)

    Schaik, van W.; Grooten, M.H.M.; Wernaart, T.; Geld, van der C.W.M.

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and

  12. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  13. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Science.gov (United States)

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  14. Light-induced ion-acoustic instability of rarefied plasma

    International Nuclear Information System (INIS)

    Krasnov, I.V.; Sizykh, D.V.

    1987-01-01

    A new method of ion-acoustic instability excitation under the effect of coherent light, resonance to ion quantum transitions on collisionless plasma, is suggested. The light-induced ion-acoustic instability (LIIAI) considered is based on the induced progressive nonequilibrium resonance particles in the field of travelling electromagnetic wave. Principal possibility to use LIIAI in high-resolution spectroscopy and in applied problems of plasma physics, related to its instability, is pointed out

  15. Fatigue characteristics of high strength fire resistance steel for frame structure and time-frequency analysis its acoustic emission signal

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Kang, Chang Young

    2000-01-01

    Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc

  16. Response of a swirl-stabilized flame to transverse acoustic excitation

    Science.gov (United States)

    O'Connor, Jacqueline

    This work addresses the issue of transverse combustion instabilities in annular gas turbine combustor geometries. While modern low-emissions combustion strategies have made great strides in reducing the production of toxic emissions in aircraft engines and power generation gas turbines, combustion instability remains one of the foremost technical challenges in the development of next generation combustor technology. To that end, this work investigates the response of a swirling flow and swirl-stabilized flame to a transverse acoustic field is using a variety of high-speed laser techniques, especially high-speed particle image velocimetry (PIV) for detailed velocity measurements of this highly unsteady flow phenomenon. Several important issues are addressed. First, the velocity-coupled pathway by which the unsteady velocity field excites the flame is described in great detail. Here, a transfer function approach has been taken to illustrate the various pathways through which the flame is excited by both acoustic and vortical velocity fluctuations. It has been shown that while the direct excitation of the flame by the transverse acoustic field is a negligible effect in most combustor architectures, the coupling between the transverse acoustic mode in the combustor and the longitudinal mode in the nozzle is an important pathway that can result in significant flame response. In this work, the frequency response of this pathway as well as the resulting flame response is measured using PIV and chemiluminescence measurements, respectively. Next, coupling between the acoustic field and the hydrodynamically unstable swirling flow provides a pathway that can lead to significant flame wrinkling by large coherent structures in the flow. Swirling flows display two types of hydrodynamic instability: an absolutely unstable jet and convectively unstable shear layers. The absolute instability of the jet results in vortex breakdown, a large recirculation zone along the centerline of

  17. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    Science.gov (United States)

    Summers, Jason E.

    2003-11-01

    A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.

  18. Operational monitoring of acoustic sensor networks

    Directory of Open Access Journals (Sweden)

    Boltenkov V.A.

    2015-06-01

    Full Text Available Acoustic sensor networks (ASN are widely used to monitor water leaks in the power generating systems. Since the ASN are used in harsh climatic conditions the failures of microphone elements of ASN are inevitable. That's why the failure detection of ASN elements is a problem of current interest. Two techniques of operational monitoring ASN are developed. Both of them are based on the placement of the test sound source within a network. The signal processing for ASN sensors had to detect the failed element. Techniques are based time difference of arrival (TDOA estimating at the each pair of ASN elements. TDOA estimates as argmaximum of cross-correlation function (CCF for signals on each microphone sensors pair. The M-sequence phase-shift keyed signal is applied as a test acoustic signal to ensure high accuracy of the CCF maximum estimation at low signal/noise ratio (SNR. The first technique is based on the isolation principle for TDOA sum at three points. It require to locate the test sound source in the far field. This is not always possible due to technological reasons. For the second proposed technique test sound source can be located near the ASN. It is based on a system of hyperbolic equations solving for each of the four elements of the ASN. Both techniques has been tested in the computer imitation experiment. It was found that for the SNR to –5 dB both techniques show unmistakable indicators of control quality. The second method requires significantly more time control.

  19. Radiation-acoustic system for solid state research

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Kalinichenko, A.I.; Kresnin, Yu.; Popov, G.F.

    1998-01-01

    The radiation-acoustic system (RAS) is designed for comprehensive investigation of thermoelastic (TE), thermophysical (TP) and thermodynamic (TD) characteristics of structural materials. It operation is based on radiation-acoustic method, which includes probing of investigated materials by pulsed electron beam and registration the exited thermo acoustic stress. The hardware includes a CAMAC crate, an IBM PC computer, a set of sensors, a strobe analog-digital converter, a commutators of analog signals, and drivers of physical parameters. The system allows to process thermo acoustic signals generated in beam-target interaction and to extract information about phase state, TE-, TP-, and TD characteristics of the target materials. The system was used for simultaneous measuring of phase state, TE-, TP-, and TD characteristics and for investigation of kinetics of structural phase transitions in multifunctional materials such as materials with the shape memory effect (CuAlNi, TiNi, TiNiFe, TiNiCu), rare-earth metals (Dy, Gd), high-temperature superconductors YBaCuO, piezoelectric crystals (TiBa, ZrTiPb-ceramics), polymers (PMMA, PTFE, PE) etc

  20. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    Science.gov (United States)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  1. Deep Water Acoustics

    Science.gov (United States)

    2016-06-28

    the Deep Water project and participate in the NPAL Workshops, including Art Baggeroer (MIT), J. Beron- Vera (UMiami), M. Brown (UMiami), T...Kathleen E . Wage. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Am., 134(4...estimate of the angle α during PhilSea09, made from ADCP measurements at the site of the DVLA. Sim. A B1 B2 B3 C D E F Prof. # 0 4 4 4 5 10 16 20 α

  2. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    Directory of Open Access Journals (Sweden)

    Nasir Saeed

    2017-12-01

    Full Text Available Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB is derived for localization accuracy of the proposed technique.

  3. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.

    Science.gov (United States)

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  4. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    KAUST Repository

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  5. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    KAUST Repository

    Saeed, Nasir

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  6. Acoustic Levitation With Less Equipment

    Science.gov (United States)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  7. Anisotropy of acoustic properties in paratellurite

    International Nuclear Information System (INIS)

    Parygin, Vladimir N.

    1996-01-01

    One of the peculiarities of the TeO 2 crystal consists of its strong acoustic anisotropy. This anisotropy demonstrates itself by acoustic energy walk-off and anisotropic distortion of an acoustic beam. Four constants completely characterise the acoustic anisotropy of the medium. In this paper these constants are calculated for various directions of the acoustic beam in crystal. (authors)

  8. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    Science.gov (United States)

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  9. Variable-Position Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  10. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels.

    Science.gov (United States)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-12-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q, the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component. Consequently, the well-known criterion v(1)≪c(s) for the validity of the perturbation expansion is replaced by the more restrictive criterion v(1)≪c(s)/Q. Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts.

  11. The effects of pressure sensor acoustics on airdata derived from a High-angle-of-attack Flush Airdata Sensing (HI-FADS) system

    Science.gov (United States)

    Whitmore, Stephen A.; Moes, Timothy R.

    1991-01-01

    The accuracy of a nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was verified for quasi-steady flight conditions up to 55 deg angle of attack during the F-18 High Alpha Research Vehicle (HARV) Program. The system is a matrix of nine pressure ports arranged in annular rings on the aircraft nose. The complete airdata set is estimated using nonlinear regression. Satisfactory frequency response was verified to the system Nyquist frequency (12.5 Hz). The effects of acoustical distortions within the individual pressure sensors of the nonintrusive pressure matrix on overall system performance are addressed. To quantify these effects, a frequency-response model describing the dynamics of acoustical distortion is developed and simple design criteria are derived. The model adjusts measured HI-FADS pressure data for the acoustical distortion and quantifies the effects of internal sensor geometries on system performance. Analysis results indicate that sensor frequency response characteristics very greatly with altitude, thus it is difficult to select satisfactory sensor geometry for all altitudes. The solution used presample filtering to eliminate resonance effects, and short pneumatic tubing sections to reduce lag effects. Without presample signal conditioning the system designer must use the pneumatic transmission line to attenuate the resonances and accept the resulting altitude variability.

  12. Prediction and control of acoustically induced vibrations of high-precision equipment

    NARCIS (Netherlands)

    Roozen, N.B.

    2007-01-01

    With the accuracy of metrology frame applications entering the nanometer-range, the necessity arises to tackle all types of disturbances. In the process of estimating the relative importance of the different types of disturbances on the machine accuracy, also called dynamic error budgeting, acoustic

  13. A High-Speed High-Frequency Broadband Acoustic Modem for Short-to-Medium Range Data Transmission in Ports, Very Shallow Waters and Deep Waters Using Spread-Spectrum Modulation and Decision Feedback Equalizing

    National Research Council Canada - National Science Library

    Beaujean, Pierre-Philippe; Spruance, John; Kriel, Dion

    2006-01-01

    ...: The long-term objective is the commercialization of a high-speed high-frequency acoustic modem transmitting data at true rates of up to 105,000 bps, at a maximum range of 500 m and operate between 240 kHz and 380 kHz...

  14. Magnetoactive Acoustic Metamaterials.

    Science.gov (United States)

    Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming

    2018-04-11

    Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication and Characterization of High-Sensitivity Underwater Acoustic Multimedia Communication Devices with Thick Composite PZT Films

    Directory of Open Access Journals (Sweden)

    Jeng-Cheng Liu

    2017-01-01

    Full Text Available This paper presents a high-sensitivity hydrophone fabricated with a Microelectromechanical Systems (MEMS process using epitaxial thin films grown on silicon wafers. The evaluated resonant frequency was calculated through finite-element analysis (FEA. The hydrophone was designed, fabricated, and characterized by different measurements performed in a water tank, by using a pulsed sound technique with a sensitivity of −190 dB ± 2 dB for frequencies in the range 50–500 Hz. These results indicate the high-performance miniaturized acoustic devices, which can impact a variety of technological applications.

  16. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  17. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  18. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying

    2017-12-15

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric

  19. Canada Basin Acoustic Propagation Experiment (CANAPE)

    Science.gov (United States)

    2015-09-30

    acoustic communications, acoustic navigation, or acoustic remote sensing of the ocean interior . RELATED PROJECTS The 2015 CANAPE pilot study was a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned

  20. Transmission acoustic microscopy investigation

    Science.gov (United States)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.