WorldWideScience

Sample records for high pulsed magnetic

  1. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  2. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; DUAN, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  3. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  4. A Compact High Gradient Pulsed Magnetic Quadrupole

    CERN Document Server

    Shuman, Derek; Kireeff Covo, Michel; Ritchie, Gary; Seidl, Peter

    2005-01-01

    A design for a high gradient, low inductance pulsed quadrupole magnet is presented. The magnet is a circular current dominated design with a circular iron return yoke. Features include a five turn eddy current compensated solid conductor coil design which theoretically eliminates the first four higher order multipole field components, a single layer "non-spiral bedstead" coil design which both minimizes utilization of radial space and maximizes utilization of axial space, and allows incorporation of steering and correction coils within existing radial space. The coils are wound and stretched straight in a special winder, then bent in simple fixtures to form the upturned ends, simplifying fabrication and assembly.

  5. High voltage magnetic pulse generation using capacitor discharge technique

    Directory of Open Access Journals (Sweden)

    M. Rezal

    2014-12-01

    Full Text Available A high voltage magnetic pulse is designed by applying an electrical pulse to the coil. Capacitor banks are developed to generate the pulse current. Switching circuit consisting of Double Pole Double Throw (DPDT switches, thyristor, and triggering circuit is developed and tested. The coil current is measured using a Hall-effect current sensor. The magnetic pulse generated is measured and tabulated in a graph. Simulation using Finite Element Method Magnetics (FEMM is done to compare the results obtained between experiment and simulation. Results show that increasing the capacitance of the capacitor bank will increase the output voltage. This technology can be applied to areas such as medical equipment, measurement instrument, and military equipment.

  6. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  7. Penetration dynamics of a magnetic field pulse into high-? superconductors

    Science.gov (United States)

    Meerovich, V.; Sinder, M.; Sokolovsky, V.; Goren, S.; Jung, G.; Shter, G. E.; Grader, G. S.

    1996-12-01

    The penetration of a magnetic field pulse into a high-0953-2048/9/12/004/img9 superconducting plate is investigated experimentally and theoretically. It follows from our experiments that the threshold of penetration increases with increasing amplitude and/or decreasing duration of the applied pulse. The penetrating field continues to grow as the applied magnetic field decreases. The peculiarities observed are explained in the framework of the extended critical state model. It appears that the deviations from Bean's classical critical state model are characterized by a parameter equal to the square of the ratio of plate thickness to skin depth. The applicability of the classical critical state model is restricted by the condition that this parameter is much less than 1. This condition is also the criterion for the applicability of pulse methods of critical current measurements.

  8. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  9. High-performance pulsed magnets: Theory, design and construction

    Science.gov (United States)

    Li, Liang

    This thesis is an in-depth study of the design and construction of coils for pulsed magnets energised by a capacitor bank, including mathematical modelling and testing of the coils. The magnetic field generated by solenoid magnets with homogeneous and non-homogenous current distribution is calculated with the elliptical integral method. Coupled partial differential equations for magnetic and thermal diffusion and the electric circuits are solved numerically to calculate the pulse shape and the heating in a pulsed magnet. The calculations are in good agreement with test results for a large range of different coils; this provides useful insights for optimised coil design. Stresses and strains in the mid-plane of the coil are analytically calculated by solving the system of equations describing the displacement in each layer of the coil. Non-linear stress-strain characteristics and the propagation of the plastic deformation are taken into account by sub- dividing each layer of the coil in the radial direction and changing the elastic-plastic matrix at each transition point. Conductors, insulating materials and techniques used for pulsed magnets are discussed in detail. More than 80 pulsed magnets with optimised combinations of conductors and reinforcements have been built and tested, with peak fields in the range 45-73 T and a bore size from 8 mm-35 mm. The pulse duration is of the order of 10 milliseconds. A dual stage pulsed magnet for use at a free electron laser has been developed. This has a rise time of 10 microseconds and enables magneto-optical experiments in a parameter range previously inaccessible to condensed matter physicists. The joint of superconducting cables can be modelled by means of distributed circuit elements that characterise current diffusion.

  10. Simultaneous measurement of magnetization and magnetostriction in 50 T pulsed high magnetic fields.

    Science.gov (United States)

    Doerr, M; Lorenz, W; Neupert, T; Loewenhaupt, M; Kozlova, N V; Freudenberger, J; Bartkowiak, M; Kampert, E; Rotter, M

    2008-06-01

    To simultaneously perform magnetization and magnetostriction measurements in high magnetic fields, a miniaturized device was developed that combines an inductive magnetometer with a capacitive dilatometer and, therefore, it is called "dilamagmeter." This combination of magnetic and magnetoelastic investigations is a new step to a complex understanding of solid state properties. The whole system can be mounted in a 12 mm clear bore of any cryostat usually used in nondestructive pulsed high field magnets. The sensitivity of both methods is about 10(-5) A m(2) for magnetization and 10(-5) relative changes in length for striction measurements. Measurements on a GdSi single crystal, which are corrected by the background signal of the experimental setup, agree well with the results of steady field experiments. All test measurements, which are up until now performed in the temperature range of 4-100 K, confirm the perfect usability and high stability in pulsed fields up to 50 T with a pulse duration of 10 ms.

  11. Generation and measurement of pulsed high magnetic field

    CERN Document Server

    Jana, S

    2000-01-01

    Pulsed magnetic field has been generated by discharging a capacitor bank through a 5-layer air-core solenoid. The strength of the magnetic field at its peak has been measured using the voltage induced in various pick-up coils, and also from the Zeeman splitting of an ion having a known g value. Synchronizing a xenon flash at the peak of the magnetic field, this lab-made instrument has been made well suited to study the Zeeman effect, etc. at a temperature of 25 K. As an application of this setup, we have investigated the Zeeman splitting of the sup 4 I sub 9 sub / sub 2-> sup 4 G sub 5 sub / sub 2 transition of the Nd sup 3 sup + -doped CsCdCl sub 3 crystal at 7.8 T, and determined the splitting factors.

  12. Nuclear forward scattering of synchrotron radiation in pulsed high magnetic fields.

    Science.gov (United States)

    Strohm, C; Van der Linden, P; Rüffer, R

    2010-02-26

    We report the demonstration of nuclear forward scattering of synchrotron radiation from 57Fe in ferromagnetic alpha iron in pulsed high magnetic fields up to 30 T. The observed magnetic hyperfine field follows the calculated high field bulk magnetization within 1%, establishing the technique as a precise tool for the study of magnetic solids in very high magnetic fields. To perform these experiments in pulsed fields, we have developed a detection scheme for fully time resolved nuclear forward scattering applicable to other pump probe experiments.

  13. Simulation and experiments of Stacks of High Temperature Superconducting Coated Conductors Magnetized by Pulsed Field Magnetization with Multi-Pulse Technique

    CERN Document Server

    Zou, Shengnan; Baskys, A; Patel, A; Grilli, Francesco; Glowacki, B A

    2016-01-01

    High temperature superconducting (HTS) bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (<2 T), so they show potential for improving the performance of many electrical applications that use permanent magnets like rotating machines. Towards practical or commercial use of TFMs, effective in situ magnetization is one of the key issues. The pulsed field magnetization (PFM) is among the most promising magnetization methods in virtue of its compactness, mobility and low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electrom...

  14. Metamagnetic transitions of DyAg in pulsed high magnetic field

    Science.gov (United States)

    Yamagishi, A.; Yonenobu, K.; Kondo, O.; Morin, P.; Date, M.

    1990-12-01

    Metamagnetic transitions of a single crystal DyAg are investigated by using pulsed magnetic fields up to 410 kOe. Four step-magnetizations are found with the field along the [111] direction. These transitions are well understood by introducing a new model that the quadrupole order is quenched under high magnetic field.

  15. Metamagnetic transitions of DyAg in pulsed high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, A.; Yonenobu, K.; Kondo, O.; Date, M. (Research Center for Extreme Materials, Osaka Univ. (Japan)); Morin, P. (Lab. Louis Neel, CNRS, 38 - Grenoble (France))

    1990-12-01

    Metamagnetic transitions of a single crystal DyAg are investigated by using pulsed magnetic fields up to 410 kOe. Four step-magnetizations are found with the field along the (111) direction. These transitions are well understood by introducing a new model that the quadrupole order is quenched under high magnetic field. (orig.).

  16. NMR in pulsed high-field magnets and application to high-T(C) superconductors.

    Science.gov (United States)

    Stork, H; Bontemps, P; Rikken, G L J A

    2013-09-01

    This article deals with the implementation of Nuclear Magnetic Resonance (NMR) experiments in pulsed magnetic fields at the pulsed-field facility of the Laboratoire National des Champs Magnétiques Intenses and its application to the high-T(C) superconductor YBa2Cu3O6.51. The experimental setup is described in detail, including a low-temperature probe head adapted for pulsed fields. An entire paragraph is dedicated to the discussion of NMR in pulsed field and the introduction of an advanced deconvolution technique making use of the induction voltage in an additional pick-up coil. The (63)Cu/(65)Cu NMR experiments on an YBa2Cu3O6.51 single crystal were performed at 2.5K during a field pulse of 46.8-T-amplitude. In the recorded spectrum the (63)Cu center line and high-frequency satellites as well as the (65)Cu center line are identified and are compared with results in literature.

  17. Simulation and experiments of stacks of high temperature superconducting coated conductors magnetized by pulsed field magnetization with multi-pulse technique

    Science.gov (United States)

    Zou, Shengnan; Zermeño, Víctor M. R.; Baskys, A.; Patel, A.; Grilli, Francesco; Glowacki, B. A.

    2017-01-01

    High temperature superconducting bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electromagnetic-thermal coupled model with comprehensive temperature dependent parameters is used to simulate a stack of CCs magnetized by successive magnetic pulses. An overall picture is built to show how the trapped field and flux evolve with different pulse sequences and the evolution patterns are analyzed. Based on the discussion, an operable magnetization strategy of PFM with successive pulses is suggested to provide more trapped field and flux. Finally, experimental results of a stack of CCs magnetized by typical pulse sequences are presented for demonstration.

  18. Study on technology of high-frequency pulsed magnetic field strength measurement.

    Science.gov (United States)

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%.

  19. 25 Tesla pulsed-high-magnetic-field system for soft X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, M., E-mail: mhaya@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Narumi, Y.; Nojiri, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakamura, T.; Hirono, T.; Kinoshita, T. [JASRI/SPring-8, Sayo, Hyogo 679-5198 (Japan); Kodama, K. [Department of Mechanical Engineering, Nara National College of Technology, Nara 639-1080 (Japan); Kindo, K. [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan)

    2011-04-15

    Research highlights: {yields} We have developed a 25 T pulsed magnetic field system for soft X-ray MCD. {yields} The new capacitor bank can generate a field in the bipolar mode. {yields} We measured the Soft X-ray MCD of paramagnetic Gd{sub 2}O{sub 3} up to 25 T. - Abstract: We have developed a 25 T pulsed high magnetic field system for soft X-ray Magnetic Circular Dichroism: XMCD. The ultra-high vacuum chamber with a pulse magnet coil is installed. By using a newly developed bipolar capacitor bank, the XMCD of paramagnetic Gd{sub 2}O{sub 3} at the M{sub 5} and the M{sub 4} edges was clearly observed at low temperatures. The present system is capable of measuring XMCD of field induced moments in various compounds including paramagnets and antiferromagnets.

  20. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  1. A 3He Cryostat for Scientific Measurements in Pulsed High Magnetic Fields

    Science.gov (United States)

    Wang, Shaoliang; Li, Liang; Liu, Mengyu; Zuo, Huakun; Peng, Tao

    A top loading 3He cryostat has been developed for scientific experiments with a 60 T pulsed magnetic field facility at Wuhan National High Magnetic Field Center. The cryostat consists of a 4He bath cryostat, a 3He insert and a closed circulation system for 3He gas handling. To eliminate the eddy current heating during the pulse, the tail of the 3He insert with a vacuum space at the bottom is made from fiberglass tubing coated with epoxy. The 3He bath is separated from the 4He bath with the vacuum space. The 4He bath cryostat provides cooling power to condense 3He gas by a neck tube on top of the tail. Experimental results have shown that the sample can be cooled down to 385 mK and kept cold for more than 150 second by one-shot cooling, which is sufficiently long for an experiment in a pulsed high magnetic field.

  2. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J. J.; van der Meiden, H. J.; Morgan, T. W.; D.C. Schram,; De Temmerman, G.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 mu F) is parallel-coupled to the current regulated power supply. The current is transiently increased from i

  3. Manipulation of magnetic carriers for drug delivery using pulsed-current high T {sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yung [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: yscha@anl.gov; Chen, Lihua [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 (United States); Askew, Thomas [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Physics Department, Kalamazoo College, Kalamazoo, MI 49006 (United States); Veal, Boyd [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hull, John [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2007-04-15

    An innovative method of manipulating magnetic carriers is proposed, and its feasibility for drug delivery and therapy is demonstrated experimentally. The proposed method employs pulsed-field solenoid coils with high-critical- temperature (T {sub c}) superconductor inserts. Pulsed current is used to magnetize and de-magnetize the superconductor insert. The proposed method was demonstrated to be able to (1) move magnetic particles, ranging in size from a few millimeters to 10 {mu}m, with strong enough forces over a substantial distance, (2) hold the particles at a designated position as long as needed, and (3) reverse the processes and retrieve the particles. We further demonstrated that magnetic particles can be manipulated in a stationary environment, in water flow, and in simulated blood (water/glycerol mixture) flow.

  4. Manipulation of magnetic carriers for drug delivery using pulsed-current high Tc superconductors

    Science.gov (United States)

    Cha, Yung; Chen, Lihua; Askew, Thomas; Veal, Boyd; Hull, John

    2007-04-01

    An innovative method of manipulating magnetic carriers is proposed, and its feasibility for drug delivery and therapy is demonstrated experimentally. The proposed method employs pulsed-field solenoid coils with high-critical- temperature ( Tc) superconductor inserts. Pulsed current is used to magnetize and de-magnetize the superconductor insert. The proposed method was demonstrated to be able to (1) move magnetic particles, ranging in size from a few millimeters to 10 μm, with strong enough forces over a substantial distance, (2) hold the particles at a designated position as long as needed, and (3) reverse the processes and retrieve the particles. We further demonstrated that magnetic particles can be manipulated in a stationary environment, in water flow, and in simulated blood (water/glycerol mixture) flow.

  5. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction.

    Science.gov (United States)

    Dorranian, Davoud; Starodubtsev, Mikhail; Kawakami, Hiromichi; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2003-08-01

    Using a gas-jet flow, via the interaction between an ultrashort high-intensity laser pulse and plasma in the presence of a perpendicular external dc magnetic field, the short pulse radiation from a magnetized plasma wakefield has been observed. Different nozzles are used in order to generate different densities and gas profiles. The neutral density of the gas-jet flow measured with a Mach-Zehnder interferometer is found to be proportional to back pressure of the gas jet in the range of 1 to 8 atm. Strength of the applied dc magnetic field varies from 0 to 8 kG at the interaction region. The frequency of the emitted radiation with the pulse width of 200 ps (detection limit) is in the millimeter wave range. Polarization and spatial distributions of the experimental data are measured to be in good agreement with the theory based on the V(p)xB radiation scheme, where V(p) is the phase velocity of the electron plasma wave and B is the steady magnetic field intensity. Characteristics of the radiation are extensively studied as a function of plasma density and magnetic field strength. These experiments should contribute to the development of a new kind of millimeter wavelength radiation source that is tunable in frequency, pulse duration, and intensity.

  6. Self-resonant Coil for Contactless Electrical Conductivity Measurement under Pulsed Ultra-high Magnetic Fields

    CERN Document Server

    Nakamura, Daisuke; Takeyama, Shojiro

    2014-01-01

    In this study, we develop experimental apparatus for contactless electrical conductivity measurements under pulsed high magnetic fields over 100 T using a self-resonant-type high-frequency circuit. The resonant power spectra were numerically analyzed, and the conducted simulations showed that the apparatus is optimal for electrical conductivity measurements of materials with high electrical conductivity. The newly developed instruments were applied to a high-temperature cuprate superconductor La$_{2-x}$Sr$_x$CuO$_4$ to show conductivity changes in magnetic fields up to 102 T with a good signal-to-noise ratio. The upper critical field was determined with high accuracy.

  7. Characterisation of practical high temperature superconductors in pulsed magnetic fields and development of associated technology

    CERN Document Server

    Saleh, P M

    2000-01-01

    including a innovative design of a 100ms pulsed magnet solenoid. Critical current measurements on state of the art practical high temperature superconductors are presented. Bi sub 2 Sr sub 2 CaCu sub 2 O silver-alloy matrix powder-in-tube and silver-alloy substrate dip-coated tapes, formed into various geometries, have been tested in pulsed magnetic fields of various pulse lengths. These measurements have been compared to tests performed in continuous magnetic fields. A distinct discrepancy between pulsed and continuous measurements has been observed in these silver-alloy, high temperature superconductor composites. The critical current measured in pulsed fields is depressed compared to those measured in continuous fields. Evidence is provided to strongly suggest that eddy current heating in the silver-alloy substrate/sheath of the conductor is responsible for this discrepancy. A model is presented to predict the temperature rise due to eddy current heating. This model shows good agreement with observations. ...

  8. Effect of structural steel ion plasma nitriding on material durability in pulsed high magnetic fields

    Science.gov (United States)

    Spirin, A. V.; Krutikov, V. I.; Koleukh, D. S.; Mamaev, A. S.; Paranin, S. N.; Gavrilov, N. V.; Kaigorodov, A. S.

    2017-05-01

    The work was aimed to study the influence of plasma nitriding on electrical and mechanical properties of structural steels and their durability in pulsed high magnetic field. The plates and cylindrical magnetic flux concentrators were made of several steel grades (30KhGS, 40Kh, 50KhGA, 38Kh2MYuA, and U8A), heat-treated, and subjected to the low-temperature (400, 500°C) plasma nitriding. Electrical and mechanical properties of materials, phase composition of steel surface layer, microstructure and microhardness profiles were investigated on the plates before and after plasma treatment. Microstructure and microhardness profiles across the subsurface layer of plasma treated and untreated concentrators applied for high magnetic field generation were also studied. Magnetic field of 50 T under tens of microseconds in duration inside the flux concentrators was generated by long-life outer coil.

  9. Magnetization reversal in ultrashort magnetic field pulses

    CERN Document Server

    Bauer, M; Fassbender, J; Hillebrands, B

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization ...

  10. Flux jumps in high-J c MgB2 bulks during pulsed field magnetization

    Science.gov (United States)

    Fujishiro, H.; Mochizuki, H.; Naito, T.; Ainslie, M. D.; Giunchi, G.

    2016-03-01

    Pulsed field magnetization (PFM) of a high-J c MgB2 bulk disk has been investigated at 20 K, in which flux jumps frequently occur for high pulsed fields. Using a numerical simulation of the PFM procedure, we estimated the time dependence of the local magnetic field and temperature during PFM. We analyzed the electromagnetic and thermal instability of the high-J c MgB2 bulk to avoid flux jumps using the time dependence of the critical thickness, d c(t), which shows the upper safety thickness to stabilize the superconductor magnetically, and the minimum propagation zone length, l m(t), to obtain dynamical stability. The values of d c(t) and l m(t) change along the thermally-stabilized direction with increasing temperature below the critical temperature, T c. However, the flux jump can be qualitatively understood by the local temperature, T(t), which exceeds T c in the bulk. Finally, possible solutions to avoid flux jumps in high-J c MgB2 bulks are discussed.

  11. High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings.

    Science.gov (United States)

    Daou, Ramzy; Weickert, Franziska; Nicklas, Michael; Steglich, Frank; Haase, Ariane; Doerr, Mathias

    2010-03-01

    We report on a new high resolution apparatus for measuring magnetostriction suitable for use at cryogenic temperatures in pulsed high magnetic fields which we have developed at the Hochfeld-Magnetlabor Dresden. Optical fiber strain gauges based on fiber Bragg gratings are used to measure the strain in small (approximately 1 mm) samples. We describe the implementation of a fast measurement system capable of resolving strains in the order of 10(-7) with a full bandwidth of 47 kHz, and demonstrate its use on single crystal samples of GdSb and GdSi.

  12. A Cryogen-free Cryostat for Scientific Experiment in Pulsed High Magnetic Fields

    Science.gov (United States)

    Wang, Shaoliang; Li, Liang; Zuo, Huakun; Liu, Mengyu; Peng, Tao

    Traditional cryostats for scientific experiments in pulsed high magnetic fields use liquid helium as the cooling source. To reduce the running cost and to increase the operational efficiency, a cryogen-free cryostat based on a GM cryocooler has been developed for a 60 T pulsed field measurement cell at Wuhan National High Magnetic Field Center. A double layer temperature-control insert was designed to obtain a stable temperature in the sample chamber of the cryostat. In order to eliminate the sample temperature fluctuation caused by the eddy current heating during the pulse, the inner layer is made from a fiberglass tubing with an epoxy coating. Different from the traditional cryostat, the sample and the temperature controller are not immerged in the 4He bath. Instead, they are separated by helium gas under sub-atmospheric pressure, which makes the heat transfer smoother. At the sample position, a resistance heater wound with antiparallel wires is mounted on the inner layer to heat the sample. Using the temperature-control insert, the temperature can be controlled with an accuracy of ±0.01 K in the range of 1.4 K-20 K, and ±0.05 K between 20 K and 300 K.

  13. Magnetic Pulse Welding Technology

    Directory of Open Access Journals (Sweden)

    Ahmad K. Jassim

    2011-12-01

    Full Text Available In this paper, the benefits of using Magnetic Pulse machine which is belong to Non-conventional machine instead of conventional machine. Magnetic Pulse Technology is used for joining dissimilar metals, and for forming and cutting metals. It is a non contact technique. Magnetic field is used to generate impact magnetic pressure for welding and forming the work piece by converted the electrical energy to mechanical energy. It is enable us to design previously not possible by welding dissimilar materials and allowing to welds light and stronger materials together. It can be used to weld metallic with non metallic materials to created mechanical lock on ceramics, polymers, rubbers and composites. It is green process; there is no heat, no radiation, no gas, no smoke and sparks, therefore the emissions are negligible.

  14. Zylon-reinforced high magnetic field coils for the K.U. Leuven pulsed field laboratory

    Science.gov (United States)

    Rosseel, K.; Herlach, F.; Boon, W.; Bruynseraede, Y.

    2001-01-01

    PBO Zylon ® fibers have been used for the internal reinforcement of pulsed magnets. Due to the very high packing density (80%) of these fibers, vacuum impregnation of Zylon reinforced coils is difficult. Impregnation test were performed using pressure-vacuum impregnation and wet winding. A prototype series of coils for 60-70 T with 1-2 ms pulse duration was designed and wound, using wet winding for both the internal Zylon and external carbon fiber reinforcement. Special precautions were taken to avoid insulation breakdown at the transitions between conductor layers. Furthermore, axial movement of the conductor wires was restrained by strong axial compression of the coil with a steel shell casing. These modifications were incorporated into an 80 T coil made of Zylon and soft Cu. The design, construction and performance of this coil are discussed.

  15. Single-Shot Terahertz Time-Domain Spectroscopy in Pulsed High Magnetic Fields

    CERN Document Server

    Noe, G Timothy; Katsutani, Fumiya; Allred, James J; Horowitz, Jeffrey A; Zhang, Qi; Sekiguch, Fumiya; Woods, Gary L; Sullivan, David M; Hoffmann, Matthias C; Nojiri, Hiroyuki; Kono, Junichiro

    2016-01-01

    We have developed a single-shot terahertz time-domain spectrometer to perform optical pump/terahertz probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, the terahertz time-domain waveform can be retrieved by analyzing the resulting image. Here, we have measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in bulk, intrinsic silicon at high magnetic fields.

  16. A high-field pulsed magnet system for x-ray scattering studies in Voigt geometry

    CERN Document Server

    Islam, Zahirul; Ruff, Jacob P C; Das, Ritesh K; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Canfield, Paul C

    2011-01-01

    We present a new pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies in Voigt geometry. The apparatus consists of a large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields up to ~30 T with a minimum of ~6 ms in total duration are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (~23.6 deg.) through the magnet bore by virtue of a novel double-funnel insert. This instrument would facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using conventional split-pair magnets and offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  17. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    Science.gov (United States)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  18. Tailored RF pulse optimization for magnetization inversion at ultra high field

    CERN Document Server

    Hurley, Aaron C; Li, Bai; Aickelin, Uwe; Coxon, Ron; Glover, Paul; Gowland, Penny A

    2010-01-01

    The radiofrequency (RF) transmit field is severely inhomogeneous at ultrahigh field due to both RF penetration and RF coil design issues. This particularly impairs image quality for sequences that use inversion pulses such as magnetization prepared rapid acquisition gradient echo and limits the use of quantitative arterial spin labeling sequences such as flow-attenuated inversion recovery. Here we have used a search algorithm to produce inversion pulses tailored to take into account the heterogeneity of the RF transmit field at 7 T. This created a slice selective inversion pulse that worked well (good slice profile and uniform inversion) over the range of RF amplitudes typically obtained in the head at 7 T while still maintaining an experimentally achievable pulse length and pulse amplitude in the brain at 7 T. The pulses used were based on the frequency offset correction inversion technique, as well as time dilation of functions, but the RF amplitude, frequency sweep, and gradient functions were all generate...

  19. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    Science.gov (United States)

    Salazar Mejía, C.; Ghorbani Zavareh, M.; Nayak, A. K.; Skourski, Y.; Wosnitza, J.; Felser, C.; Nicklas, M.

    2015-05-01

    The present pulsed high-magnetic-field study on Ni50Mn35In15 gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  20. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Nayak, A. K.; Felser, C.; Nicklas, M. [Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Ghorbani Zavareh, M.; Wosnitza, J. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Institut für Festkörperphysik, TU Dresden, 01062 Dresden (Germany); Skourski, Y. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany)

    2015-05-07

    The present pulsed high-magnetic-field study on Ni{sub 50}Mn{sub 35}In{sub 15} gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  1. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  2. A high current sinusoidal pulse generator for the diluter magnets of the LHC beam dump system

    CERN Document Server

    Vossenberg, Eugène B; Ducimetière, L; Schröder, G H

    2000-01-01

    CERN is constructing the Large Hadron Collider (LHC), a superconducting accelerator that will collide protons at a center of mass energy of 14 TeV. The two colliding beams will each store an energy of up to 540 MJ, which must be safely deposited within one beam revolution of 89 mu s on two external absorbers located about 700 m from the extraction points at the end of dedicated extraction tunnels. To avoid evaporation of the graphite absorber material by the very high energy density of the incident beams, the deposition area of the beams on the absorber front face will be increased. This is done by a pair of sinusoidally powered orthogonal magnet systems producing approximately an e-shape figure of about 35 mm diameter, with a minimum velocity of 10 mm/ mu s during the dumping process. The pulse generators of the horizontally and vertically deflecting diluter magnets are composed of capacitor banks, discharged by stacks of solid state closing switches. They are connected to the magnets by 28 m long low induct...

  3. Academic Training - Pulsed SC Magnets

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 2, 3, June 29, 30, 31 May, 1, 2 June 11:00-12:00 - Auditorium, bldg 500 Pulsed SC Magnets by M. Wilson Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mech...

  4. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies.

    Science.gov (United States)

    Islam, Zahirul; Ruff, Jacob P C; Nojiri, Hiroyuki; Matsuda, Yasuhiro H; Ross, Kathryn A; Gaulin, Bruce D; Qu, Zhe; Lang, Jonathan C

    2009-11-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (approximately 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  5. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Mochizuki, H.; Takahashi, K.; Shi, Y.-H.; Namburi, D. K.; Zou, J.; Zhou, D.; Dennis, A. R.; Cardwell, D. A.

    2016-07-01

    Investigating and predicting the magnetization of bulk superconducting materials and developing practical magnetizing techniques is crucial to using them as trapped field magnets in engineering applications. The pulsed field magnetization (PFM) technique is considered to be a compact, mobile and relative inexpensive way to magnetize bulk samples, requiring shorter magnetization times (on the order of milliseconds) and a smaller and less complicated magnetization fixture; however, the trapped field produced by PFM is generally much smaller than that of slower zero field cooling or field cooling techniques, particularly at lower operating temperatures. In this paper, the PFM of two, standard Ag-containing Gd-Ba-Cu-O samples is carried out using two types of magnetizing coils: (1) a solenoid coil, and (2) a split coil, both of which make use of an iron yoke to enhance the trapped magnetic field. It is shown that a significantly higher trapped field can be achieved using a split coil with an iron yoke, and in order to explain these how this arrangement works in detail, numerical simulations using a 2D axisymmetric finite element method based on the H -formulation are carried to qualitatively reproduce and analyze the magnetization process from both electromagnetic and thermal points of view. It is observed that after the pulse peak significantly less flux exits the bulk when the iron core is present, resulting in a higher peak trapped field, as well as more overall trapped flux, after the magnetization process is complete. The results have important implications for practical applications of bulk superconductors as such a split coil arrangement with an iron yoke could be incorporated into the design of a portable, high magnetic field source/magnet to enhance the available magnetic field or in an axial gap-type bulk superconducting electric machine, where iron can be incorporated into the stator windings to (1) improve the trapped field from the magnetization process

  6. Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments

    Energy Technology Data Exchange (ETDEWEB)

    Sivaprasad, K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India); Ganesh Sundara Raman, S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India)]. E-mail: ganesh@iitm.ac.in; Mastanaiah, P. [Defence Research and Development Laboratory, Hyderabad (India); Madhusudhan Reddy, G. [Defence Metallurgical Research Laboratory, Hyderabad (India)

    2006-07-25

    The aim of the present work is to study the effect of magnetic arc oscillation and current pulsing on the microstructure and high temperature tensile strength of alloy 718 tungsten inert gas weldments. The magnetic arc oscillation technique resulted in refined Laves phase with lesser interconnectivity. The full benefits of current pulsing in breaking the dendrites could not be realized in the present study due to relatively higher heat input used in the welding process. In the direct aged condition weldments prepared using magnetic arc oscillation technique exhibited higher tensile strength due to the presence of refined and lesser-interconnected Laves particles. In the solution treated and aged condition, magnetic arc oscillated weldments exhibited lower tensile strength compared with the weldments made without arc oscillation due to the presence of large amounts of finer {delta} needles.

  7. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  8. Deflection of high-intensity pulsed ion beam in focusing magnetically insulated ion diode with a passive anode

    Science.gov (United States)

    Zhu, X. P.; Zhang, Q.; Ding, L.; Zhang, Z. C.; Yu, N.; Pushkarev, A.; Lei, M. K.

    2016-12-01

    The focused high-intensity pulsed ion beam (HIPIB) of 100 ns order pulse is generated with respect to its spatial stability in two types of magnetically insulated ion diodes (MIDs) with geometrical focusing configuration using the passive anode, i.e., insulation of electrons with an external magnetic-field and a self-magnetic field, respectively. Anode plasma formation for the ion beam generation is based on different processes in the two types of MIDs, as the surface breakdown on the polymer-coated anode operated in the unipolar pulse mode for the external-magnetic field MID and the explosive electron emission on the graphite anode in the bipolar-pulse mode for the self-magnetic field MID. Typical energy density per pulse is in the range of 3-6 J/cm2, at an accelerating voltage of 200-300 kV with a pulse duration of 120-150 ns. The spatial deviations of the HIPIB is evaluated by measuring the energy density distribution by using an infrared diagnostic method considering neutralizing during the ion beam propagation to the focal plane with a spatial resolution of 1 mm. The ion beam deviation is about ±1.5 mm for the external-magnetic field MID and ±2.5 mm for the self-magnetic field MID, leading to a fluctuation in the energy density of 1%-12%, and 9%-27% within a 10 mm range at the focal point, respectively. It is revealed that the displacement of different parts of a beam spot occurs nonsynchronously, mainly attributable to the intrinsic diode processes of plasma generation and expansion, and ion beam extraction from the anode-cathode gap, while the influence of magnetic field in the transportation region is negligible. The ion beam spatial deviation has a major influence on the shot-to-shot stability of ion beam, and it is suggested that the stability can be enhanced via diode process improvement.

  9. Pre-earthquake Magnetic Pulses

    CERN Document Server

    Scoville, John; Freund, Friedemann

    2014-01-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are observable because their extremely long wavelength allows them to pass through the Earth's crust. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stress is building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  10. Search for Two-Photon Interaction with Axionlike Particles Using High-Repetition Pulsed Magnets and Synchrotron X Rays

    Science.gov (United States)

    Inada, T.; Yamazaki, T.; Namba, T.; Asai, S.; Kobayashi, T.; Tamasaku, K.; Tanaka, Y.; Inubushi, Y.; Sawada, K.; Yabashi, M.; Ishikawa, T.; Matsuo, A.; Kawaguchi, K.; Kindo, K.; Nojiri, H.

    2017-02-01

    We report on new results of a search for a two-photon interaction with axionlike particles (ALPs). The experiment is carried out at a synchrotron radiation facility using a "light shining through a wall (LSW)" technique. For this purpose, we develop a novel pulsed-magnet system, composed of multiple racetrack magnets and a transportable power supply. It produces fields of about 10 T over 0.8 m with a high repetition rate of 0.2 Hz and yields a new method of probing a vacuum with high intensity fields. The data obtained with a total of 27 676 pulses provide a limit on the ALP-two-photon coupling constant that is more stringent by a factor of 5.2 compared to a previous x-ray LSW limit for the ALP mass ≲0.1 eV .

  11. Search for Two-Photon Interaction with Axionlike Particles Using High-Repetition Pulsed Magnets and Synchrotron X Rays

    CERN Document Server

    Inada, T; Namba, T; Asai, S; Kobayashi, T; Tamasaku, K; Tanaka, Y; Inubushi, Y; Sawada, K; Yabashi, M; Ishikawa, T; Matsuo, A; Kawaguchi, K; Kindo, K; Nojiri, H

    2016-01-01

    We report on new results of a search for two-photon interaction with axionlike particles (ALPs). The experiment was carried out at a synchrotron radiation facility using a "light shining through a wall (LSW)" technique. For this purpose, we have developed a novel pulsed-magnet system, composed of multiple racetrack-magnets and a transportable power supply. It produces fields of about 10 T over 0.8 m with a high repetition rate of 0.2 Hz and yields a new method of probing vacuum with high intensity fields. The data obtained with a total of 27,676 pulses provide a limit on the ALP-two-photon coupling constant that is more stringent by a factor of 5.2 compared to a previous x-ray LSW limit for the ALP mass below 0.1 eV.

  12. Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses

    Directory of Open Access Journals (Sweden)

    Vitalij Novickij

    2017-04-01

    Full Text Available Background Cell membrane permeabilization by pulsed electromagnetic fields (PEMF is a novel contactless method which results in effects similar to conventional electroporation. The non-invasiveness of the methodology, independence from the biological object homogeneity and electrical conductance introduce high flexibility and potential applicability of the PEMF in biomedicine, food processing, and biotechnology. The inferior effectiveness of the PEMF permeabilization compared to standard electroporation and the lack of clear description of the induced transmembrane transport are currently of major concern. Methods The PEMF permeabilization experiments have been performed using a 5.5 T, 1.2 J pulse generator with a multilayer inductor as an applicator. We investigated the feasibility to increase membrane permeability of Chinese Hamster Ovary (CHO cells using short microsecond (15 µs pulse bursts (100 or 200 pulses at low frequency (1 Hz and high dB/dt (>106 T/s. The effectiveness of the treatment was evaluated by fluorescence microscopy and flow cytometry using two different fluorescent dyes: propidium iodide (PI and YO-PRO®-1 (YP. The results were compared to conventional electroporation (single pulse, 1.2 kV/cm, 100 µs, i.e., positive control. Results The proposed PEMF protocols (both for 100 and 200 pulses resulted in increased number of permeable cells (70 ± 11% for PI and 67 ± 9% for YP. Both cell permeabilization assays also showed a significant (8 ± 2% for PI and 35 ± 14% for YP increase in fluorescence intensity indicating membrane permeabilization. The survival was not affected. Discussion The obtained results demonstrate the potential of PEMF as a contactless treatment for achieving reversible permeabilization of biological cells. Similar to electroporation, the PEMF permeabilization efficacy is influenced by pulse parameters in a dose-dependent manner.

  13. Irreversible magnetoporation of micro-organisms in high pulsed magnetic fields.

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Novickij, Jurij; Markovskaja, Svetlana

    2014-09-01

    Electroporation is an appealing way of stimulating living cells, which causes permanent or temporary nanoporosities in the structure of the biological objects. However, the technique has a disadvantage such as a requirement of contact between the electrodes and the cell medium. In this review, a methodology of contactless treatment of the biological objects using pulsed magnetic fields is proposed. The eukaryotic micro-organisms Achlya americana and Saprolegnia diclina have been used in the study and magnetic fields up to 7 T were applied, which caused effects similar to irreversible electroporation resulting in the death of the species. The proposed technique is applicable for different types of the biological cells or micro-organisms and possibly can be used in the area of cancer, antifungal treatment and other biotechnological fields.

  14. An exploding foil shockwave technique for magnetic flux compression and high voltage pulse generation

    CERN Document Server

    Goh, S E

    2002-01-01

    This thesis describes a novel electromagnetic shockwave technique for use in compressing magnetic flux and to serve as the basis for a new approach to producing fast-rising voltage pulses with amplitudes of several hundred kV. The shockwave is produced by an exploding foil driven electric gun that accelerates a Mylar flyer to impact with a sample of aluminium powder. Both Japanese and Russian researchers have previously published experimental results for shockwave magnetic flux compression using an explosive driver. The present research considers replacing the explosive energy of this driver by the electrostatic energy stored in a capacitor bank, thereby enabling experiments to be performed in a laboratory environment. Differences in performance that arise from the use of explosive and electrical driver are examined. A conventional electric gun system in planar geometry is developed to study the insulator-to-metallic transition in shock-compressed aluminium powder. This provides data on the conducting shock f...

  15. Unusual Pulsed X-Ray Emission from the Young, High Magnetic Field Pulsar PSR J1119--6127

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M E; Kaspi, V M; Camilo, F; Gaensler, B M; Pivovaroff, M J

    2005-08-05

    We present XMM-Newton observations of the radio pulsar PSR J1119-6127, which has an inferred age of 1,700 yr and surface dipole magnetic field strength of 4.1 x 10{sup 13} G. We report the first detection of pulsed X-ray emission from PSR J1119-6127. In the 0.5-2.0 keV range, the pulse profile shows a narrow peak with a very high pulsed fraction of (74 {+-} 14)%. In the 2.0-10.0 keV range, the upper limit for the pulsed fraction is 28% (99% confidence). The pulsed emission is well described by a thermal blackbody model with a temperature of T{infinity} = 2.4{sub -0.2}{sup +0.3} x 10{sup 6} K and emitting radius of 3.4{sub -0.3}{sup +1.8} km (at a distance of 8.4 kpc). Atmospheric models result in problematic estimates for the distance/emitting area. PSR J1119-6127 is now the radio pulsar with smallest characteristic age from which thermal X-ray emission has been detected. The combined temporal and spectral characteristics of this emission are unlike those of other radio pulsars detected at X-ray energies and challenge current models of thermal emission from neutron stars.

  16. High Yield Magnetic Nanoparticles Filled Multiwalled Carbon Nanotubes Using Pulsed Laser Deposition

    Science.gov (United States)

    2008-12-01

    plane magnetizations is the sharing produced by the demagnetizing field in the perpendicular direction. 1. INTRODUCTION Since its discovery in the...because of its large anisotropy and magnetostriction . The filling was carried out in high vacuum (2×10-7 Torr) where the polycrystalline CoFe2O4 was

  17. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques

    Directory of Open Access Journals (Sweden)

    Shaffer Jean M

    2010-05-01

    Full Text Available Abstract Background The assessment of arterial stiffness is increasingly used for evaluating patients with different cardiovascular diseases as the mechanical properties of major arteries are often altered. Aortic stiffness can be noninvasively estimated by measuring pulse wave velocity (PWV. Several methods have been proposed for measuring PWV using velocity-encoded cardiovascular magnetic resonance (CMR, including transit-time (TT, flow-area (QA, and cross-correlation (XC methods. However, assessment and comparison of these techniques at high field strength has not yet been performed. In this work, the TT, QA, and XC techniques were clinically tested at 3 Tesla and compared to each other. Methods Fifty cardiovascular patients and six volunteers were scanned to acquire the necessary images. The six volunteer scans were performed twice to test inter-scan reproducibility. Patient images were analyzed using the TT, XC, and QA methods to determine PWV. Two observers analyzed the images to determine inter-observer and intra-observer variabilities. The PWV measurements by the three methods were compared to each other to test inter-method variability. To illustrate the importance of PWV using CMR, the degree of aortic stiffness was assessed using PWV and related to LV dysfunction in five patients with diastolic heart failure patients and five matched volunteers. Results The inter-observer and intra-observer variability results showed no bias between the different techniques. The TT and XC results were more reproducible than the QA; the mean (SD inter-observer/intra-observer PWV differences were -0.12(1.3/-0.04(0.4 for TT, 0.2(1.3/0.09(0.9 for XC, and 0.6(1.6/0.2(1.4 m/s for QA methods, respectively. The correlation coefficients (r for the inter-observer/intra-observer comparisons were 0.94/0.99, 0.88/0.94, and 0.83/0.92 for the TT, XC, and QA methods, respectively. The inter-scan reproducibility results showed low variability between the repeated

  18. Pre-earthquake magnetic pulses

    Directory of Open Access Journals (Sweden)

    J. Scoville

    2014-12-01

    Full Text Available A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are generated deep in the Earth's crust, in and around the Hypocentral volume, days or even weeks before Earthquakes. They are observable at the surface because their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stresses are building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  19. Microstructure and performance of solid TC4 titanium alloy subjected to the high pulsed magnetic field treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.R., E-mail: liguirong@ujs.edu.cn; Li, Y.M.; Wang, F.F.; Wang, H.M.

    2015-09-25

    Highlights: • A high pulsed magnetic field was introduced to process the solid titanium alloy. • The phase transition from beta to alpha in processed alloy was discovered. • The magneto-plasticity effect was found and highlighted. • The strength and toughness of treated alloy were enhanced synchronously. - Abstract: The effect of high pulsed magnetic field with different magnetic induced intensity (B) on the microstructure and mechanical performance of solid TC4 titanium alloy was investigated. The microstructure morphology was characterized by metallographic microscope, scanning electronic microscopy and transmission electronic microscopy. The results show that the magnetic has induced the phase transformation from β to α. At 4 T the volume fraction of α phase has increased from 49% (B = 0) to 59%. Meanwhile, compared to that of original sample the dislocation density at 3 T is 4.8 times, which was the result of magneto-plasticity effect. However, the dislocation density will not always increase with B due to the dislocation pile-up effect. The mechanical properties tests show that the strength of materials is enhanced with the B increase within a certain scope. The strength and elongation of processed TC4 alloy exhibit the obvious changes: when B = 3 T the maximum strength reaches 1330 MPa which ascribes to the dislocation strengthening. It is enhanced by 7.6% compared to that of original sample. It is noted that when B = 4 T the strength and toughness are improved simultaneously which are attributed to not only the dislocation strengthening but also the amount, distribution and morphology of α phase.

  20. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Tetsuya; Watasaki, Masahiro [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Yosuke [Kawasaki Heavy Industries, Ltd. Technical Institute System Technology Development Centre 1-1, Kawasaki-cho, Akashi-shi, Hyogo 673-8666 (Japan); Miki, Motohiro; Izumi, Mitsuru, E-mail: ida@hiroshima-cmt.ac.j [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2010-06-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  1. High speed pulsed magnetic fields measurements, using the Faraday effect; Mesures de champs magnetiques pulses rapides a l'aide de l'effet Faraday

    Energy Technology Data Exchange (ETDEWEB)

    Dillet, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-12-01

    For these measures, the information used is the light polarization plane rotation induced by the magnetic field in a glass probe. This rotation is detected using a polarizer-analyzer couple. The detector is a photomultiplier used with high-current and pulsed light. In a distributed magnet (gap: 6 x 3 x 3 cm) magnetic fields to measure are 300 gauss, lasting 0.1 {mu}s, with rise times {<=} 35 ns, repetition rate: 1/s. An oscilloscope is used to view the magnetic field from the P.M. plate signal. The value of the field is computed from a previous static calibration. Magnetic fields from 50 to 2000 gauss (with the probe now used) can be measured to about 20 gauss {+-} 5 per cent, with a frequency range of 30 MHz. (author) [French] Pour faire de telles mesures, on utilise comme information la rotation du plan de polarisation de la lumiere provoquee par le champ magnetique dans une sonde en verre. On detecte cette rotation au moyen d'un polariseur et d'un analyseur, qui sont regles a 45 deg. pour conserver un phenomene lineaire. Le detecteur est un photomultiplicateur travaillant en fort courant en lumiere pulsee. Dans un aimant distribue d'entrefer 6 x 3 x 3 cm, on obtient des champs magnetiques a mesurer de 300 gauss, durant 0.1 {mu}s, avec des temps de montee {<=} 35 ns; au taux de 1 fois par seconde. L'observation du champ se fait sur oscilloscope a partir du signal de plaque du P.M. La valeur absolue du champ est obtenue au moyen d'un etalonnage statique prealable. On peut ainsi mesurer a 20 gauss et {+-} 5 pour cent pres environ des champs magnetiques de 50 a 2000 gauss (avec la sonde actuelle) et avec une bande passante de 30 MHz. (auteur)

  2. Lifetime of anode polymer in magnetically insulated ion diodes for high-intensity pulsed ion beam generation.

    Science.gov (United States)

    Zhu, X P; Dong, Z H; Han, X G; Xin, J P; Lei, M K

    2007-02-01

    Generation of high-intensity pulsed ion beam (HIPIB) has been studied experimentally using polyethylene as the anode polymer in magnetically insulated ion diodes (MIDs) with an external magnetic field. The HIPIB is extracted from the anode plasma produced during the surface discharging process on polyethylene under the electrical and magnetic fields in MIDs, i.e., high-voltage surface breakdown (flashover) with bombardments by electrons. The surface morphology and the microstructure of the anode polymer are characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The surface roughening of the anode polymer results from the explosive release of trapped gases or newly formed gases under the high-voltage discharging, leaving fractured surfaces with bubble formation. The polyethylene in the surface layer degrades into low-molecular-weight polymers such as polyethylene wax and paraffin under the discharging process. Both the surface roughness and the fraction of low molecular polymers apparently increase as the discharging times are prolonged for multipulse HIPIB generation. The changes in the surface morphology and the composition of anode polymer lead to a noticeable decrease in the output of ion beam intensity, i.e., ion current density and diode voltage, accompanied with an increase in instability of the parameters with the prolonged discharge times. The diode voltage (or surface breakdown voltage of polymer) mainly depends on the surface morphology (or roughness) of anode polymers, and the ion current density on the composition of anode polymers, which account for the two stages of anode polymer degradation observed experimentally, i.e., stage I which has a steady decrease of the two parameters and stage II which shows a slow decrease, but with an enhanced fluctuation of the two parameters with increasing pulses of HIPIB generation.

  3. Pulsed-field magnetometry for rock magnetism

    Science.gov (United States)

    Kodama, Kazuto

    2015-07-01

    An improved method is proposed for measuring dynamic magnetizations of bulk volcanic rock samples induced by a pulsed-field of 0.7 T and a duration of 10 ms. The transient magnetization is measured by a sensing system that consists of a pair of inductive differential coils, an analog preamplifier and integrator, and a high-speed digital storage scope. The system was calibrated using a paramagnetic salt (Gd2O3) and was tested to different kinds of volcanic rocks with their magnetic properties well-documented previously. The results were comparable with those measured by a quasi-static method using a vibrating sample magnetometer, although there were small discrepancies in hysteresis parameters suggesting the time-dependence of the magnetic properties. The proposed system provides not only the magnetization over the short interval of a pulse but also the rapid (~3 ms) exponential decay after a pulse. The decay time constant was different among the samples under study, indicating the variations of their magnetic relaxation time. Although the present system is not sensitive enough to characterize varieties of natural samples including sediments, it has the potential as a versatile and convenient tool for rock magnetism.

  4. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Matsuzaki, H [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Morita, E [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Sakashita, H [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Harada, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Ogata, H [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Kimura, Y [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Miki, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Kitano, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2006-06-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux.

  5. Enhancement of zinc vacancies in room-temperature ferromagnetic Cr–Mn codoped ZnO nanorods synthesized by hydrothermal method under high pulsed magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Min [Laboratory for Microstructures/School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, 200072 Shanghai (China); Li, Ying, E-mail: liying62@shu.edu.cn [Laboratory for Microstructures/School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, 200072 Shanghai (China); Hu, Yemin; Zhu, Mingyuan; Li, Wenxian; Jin, Hongmin; Wang, Shiwei [Laboratory for Microstructures/School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, 200072 Shanghai (China); Li, Yibing; Zhao, Huijun [Centre for Clean Environment and Energy, Griffith School of Environment, Griffith University, Gold Coast Campus, QLD 4222 (Australia)

    2015-10-25

    Room-temperature ferromagnetic Cr–Mn codoped ZnO diluted magnetic semiconductor was synthesized by pulse magnetic field-assisted hydrothermal method. X-ray diffraction and Raman spectra analysis reveal that all the samples have hexagonal wurtzite structure. High resolution transmission electron microscopy and Energy-dispersive spectroscopy measurements ensure that the Cr and Mn ions are incorporated into the wurtzite host matrix without any detectable impurity phase. X-ray photoelectron spectroscopy confirms that Mn and Cr ions are doped into the ZnO wurtzite host matrix with divalent states in the sample without magnetic field processing. Cr ions became trivalent states in ZnO synthesized with high pulsed magnetic field, while Mn keeps its divalent state. The presence of Cr{sup 3+} is attributed to hole doping in ZnO with zinc vacancies induced by the field. Magnetization measurements reveal the appearance of ferromagnetism for the magnetic field processed sample. Comparing with oxygen vacancies, zinc vacancies (hole doping) is more effectively to stabilized ferromagnetism in Mn-doped ZnO diluted magnetic semiconductors. - Graphical abstract: This figure shows the magnetization versus magnetic field curves for ZnO–Cr–Mn-0T and ZnO–Cr–Mn-4T at 290 K. The 4 T sample was well-defined hysteresis loops, which is indicative of room-temperature ferromagnetic behavior. But for 0 T sample, no ferromagnetic response at 290 K is observed. The hole doping enhanced by high pulsed magnetic field is crucial to stabilize ferromagnetism in Mn-doped ZnO diluted magnetic semiconductor. And the presence of Cr{sup 3+} in 4 T sample is a possible signature of hole doping induced by zinc vacancies. - Highlights: • Cr–Mn codoped ZnO nanorods were synthesized by hydrothermal method. • High pulsed magnetic field was applied during the hydrothermal method. • The valence state of doped elements was investigated by XPS. • High pulsed magnetic field enhances the

  6. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  7. Influence of High Pulsed and Continuous Magnetic Fields on the Corrosion and Microstructure of Metallic Conductors

    Science.gov (United States)

    2014-03-31

    constraints that made using commercial off the shelf (COTS) electrochemical test setups difficult to use. The first setup had to be designed to fit...Simple Dittjrcr (in.) Figure 1. (left) Electrochemical test cell located within a DC electromagnet which applies a uniform magnetic field across the...prepared in the same method as that discussed above, beginning with a wet rough grind and finishing with the 0.1 micron alumina paste. After the rod

  8. International magnetic pulse compression workshop: (Proceedings)

    Energy Technology Data Exchange (ETDEWEB)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  9. Successful suppression of magnetization precession after short field pulses

    OpenAIRE

    Bauer, Martin; Lopusnik, Radek; Fassbender, Jürgen; Hillebrands, Burkard; Dötsch, H.

    2000-01-01

    For the next generation of high data rate magnetic recording above 1 Gbit/s, a better understanding of the switching processes for both recording heads and media will be required. In order to maximize the switch-ing speed for such devices, the magnetization precession after the magnetic field pulse termination needs to be suppressed to a maximum degree. It is demonstrated experimentally for ferrite films that the appropriate adjustment of the field pulse parameters and/or the static applied f...

  10. Development of high-strength and high-conductivity conductor materials for pulsed high-field magnets at Dresden

    Science.gov (United States)

    Grünberger, W.; Heilmaier, M.; Schultz, L.

    2001-01-01

    The work at the IFW Dresden is focused on the development of microcomposite Cu-Ag alloys and steel-copper macrocomposites with high-nitrogen steel and pearlitic steel jackets, respectively. In Cu-Ag alloys the investigation of continuously cast rods with different starting diameters suggests that the cooling rate during solidification determining the dendrite arm spacing has a minor influence on the development of the strength compared to the cooling velocity after solidification which determines the extent of the Ag-supersaturation in the Cu solid solution. Maximum strength at minimum drawing strain demands (i) a sufficient volume fraction of eutectic in order to suppress discontinuous precipitation (absence of grain boundaries) and (ii) a sufficiently rapid cooling after solidification in order to prevent pre-precipitation. With a continuously cast starting rod of 12 mm diameter a maximum tensile strength of 1.3 GPa was obtained after a drawing strain of only η=4.3. Steel-copper macrocomposites were fabricated by the ‘rod-in-tube’ technology. The experiments with austenitic high-nitrogen steels were performed with two alloys. With the commercial alloy Nicrofer 3033 a strength level of 1.2 GPa has been achieved with a 52 vol% Cu composite at a drawing strain of η=2.3. A composite with pearlitic C60-steel (0.6 wt% C) and 56 vol% Cu showed a tensile strength of 1.53 GPa after a final patenting at a diameter of 14.7 mm and a drawing strain of η=4.

  11. Treatment Pulse Application for Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Sun-Seob Choi

    2011-01-01

    Full Text Available Treatment and diagnosis can be made in difficult areas simply by changing the output pulse form of the magnetic stimulation device. However, there is a limitation in the range of treatments and diagnoses of a conventional sinusoidal stimulation treatment pulse because the intensity, width, and form of the pulse must be changed according to the lesion type. This paper reports a multidischarge method, where the stimulation coils were driven in sequence via multiple switching control. The limitation of the existing simple sinusoidal pulse form could be overcome by changing the intensity, width, and form of the pulse. In this study, a new sequential discharge method was proposed to freely alter the pulse width. The output characteristics of the stimulation treatment pulse were examined according to the trigger signal delay applied to the switch at each stage by applying a range of superposition pulses to the magnetic simulation device, which is widely used in industry and medicine.

  12. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    Science.gov (United States)

    Spencer, B. F.; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Beck, M.; Bartels, A.; Guiney, I.; Humphreys, C. J.; Graham, D. M.

    2016-05-01

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 1012 cm-2 and 9000 cm2 V-1 s-1 at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m0.

  13. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  14. Microwave absorption in the singlet paramagnet HoVO 4 in high pulsed magnetic fields up to 40 T

    Science.gov (United States)

    Goiran, M.; Klingeler, R.; Kazei, Z. A.; Snegirev, V. V.

    2007-11-01

    Microwave absorption of the rare-earth (RE) oxide compound HoVO 4 (tetragonal-zircon structure) is investigated in pulsed magnetic fields up to 40 T in the low-temperature range. For a magnetic field along the tetragonal crystal axis a few resonance absorption lines are observed at the wavelengths 871, 406 and 305 μm corresponding to electron transitions from the ground and low-lying energy levels of the Ho 3+ ion. In addition, broad non-resonance absorption is observed at 871 and 406 μm in fields up to 15 T. The positions and intensities of the observed resonance lines are described quite well within the crystal field formalism with the known crystal field parameters. The effects of the small orthorhombic component of the crystal field, magnetic field misorientation out the symmetry axis and various pair interactions on the absorption spectra in HoVO 4 are analyzed and discussed.

  15. Composite superconducting bulks for efficient heat dissipation during pulse magnetization

    Science.gov (United States)

    Baskys, A.; Patel, A.; Hopkins, S.; Kenfaui, D.; Chaud, X.; Zhang, M.; Glowacki, B. A.

    2014-05-01

    Pulsed field magnetization is the most practical method of magnetizing a (RE)BCO bulk, however large heat generation limits the trapped field to significantly less than possible using field cooling. Modelling has been used to show that effective heat removal from the bulk interior, using embedded metallic structures, can enhance trapped field by increasing thermal stability. The reported results are for experimental pulsed magnetization of a thin walled YBCO sample with 55 vertical holes embedded with high thermal conductivity wires. A specially designed copper coldhead was used to increase the trapped field and flux of the perforated YBCO by about 12% at 35 K using a multi-pulse magnetization. Moreover, by filling the perforations with copper, the central trapped field was enhanced by 15% after a single-pulse at 35 K. 3D FEM computer model of a perforated YBCO bulk was also developed showing localised heating effects around the perforations during pulse magnetisation.

  16. Measurement system for SSRF pulsed magnets

    Institute of Scientific and Technical Information of China (English)

    PENG Chengcheng; GU Ming; LIU Bo; OUYANG Lianhua

    2007-01-01

    This paper describes the magnetic field measurement system for pulsed magnets in SSRF.The system consists of magnetic probes,analog active integrator,oscilloscope,stepper motor and a controller.An application program based on LabVIEW has been developed as main control unit.After the magnetic field mapping of a septum magnet prototype,it is verified that the test results accord with the results of theoretical calculation and computer simuladon.

  17. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma

    Science.gov (United States)

    Mahmoodi-Darian, Masoomeh; Ettehadi-Abari, Mehdi; Sedaghat, Mahsa

    2016-03-01

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range I{λ^2} ˜eq 10^{14}{-}10^{16}{{W}}{{{cm}}^{-2}} \\upmu{{{m}}2} . The collisionless effect is found to be significant when the incident laser intensity is less than 10^{16}{{W}}{{{cm}}^{-2}}\\upmu{{{m}}2} . In the current work, the propagation of a high-frequency electromagnetic wave, for underdense collisionless plasma in the presence of an external magnetic field is investigated. When a constant magnetic field parallel to the laser pulse propagation direction is applied, the electrons rotate along the magnetic field lines and generate the electromagnetic part in the wake with a nonzero group velocity. Here, by considering the ponderomotive force in attendance of the external magnetic field and assuming the isothermal collisionless plasma, the nonlinear permittivity of the plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. Here, by considering the effect of the ponderomotive force in isothermal collisionless magnetized plasma, it is shown that by increasing the laser pulse intensity, the electrons density profile leads to steepening and the electron bunches of plasma become narrower. Moreover, it is found that the wavelength of electric and magnetic field oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison to the unmagnetized collisionless plasma.

  18. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  19. Magnetic Linear Birefringence Measurements Using Pulsed Fields

    CERN Document Server

    Berceau, Paul; Battesti, Remy; Rizzo, Carlo

    2011-01-01

    In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum sensitivity is 2.1x 10^-19 T^-2 per 5 ms magnetic pulse. We finally discuss the perspectives to reach our final goal.

  20. Heat pulse propagation in chaotic 3-dimensional magnetic fields

    CERN Document Server

    del-Castillo-Negrete, D

    2014-01-01

    Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum...

  1. Circularly Polarized Attosecond Pulses and Molecular Atto-Magnetism

    CERN Document Server

    Bandrauk, Andre D

    2014-01-01

    Various schemes are presented for the generation of circularly polarized molecular high-order harmonic generation (MHOHG) from molecules. In particular it is shown that combinations of counter-rotating circularly polarized pulses produce the lowest frequency Coriolis forces with the highest frequency recollisions, thus generating new harmonics which are the source of circular polarized attosecond pulses (CPAPs). These can be used to generate circularly polarized electronic currents in molecular media on attosecond time scale. Molecular attosecond currents allow then for the generation of ultrashort magnetic field pulses on the attosecond time scale, new tools for molecular atto-magnetism (MOLAM).

  2. Switching of antiferromagnetic chains with magnetic pulses

    Science.gov (United States)

    Tao, Kun; Polyakov, Oleg P.; Stepanyuk, Valeri S.

    2016-04-01

    Recent experimental studies have demonstrated the possibility of information storage in short antiferromagnetic chains on an insulator substrate [S. Loth et al., Science 335, 196 (2012), 10.1126/science.1214131]. Here, using the density functional theory and atomistic spin dynamics simulations, we show that a local magnetic control of such chains with a magnetic tip and magnetic pulses can be used for fast switching of their magnetization. Furthermore, by changing the position of the tip one can engineer the magnetization dynamics of the chains.

  3. Design and Realization of the Control and Measurement System of the Wuhan Pulsed High Magnetic Field Facility

    Science.gov (United States)

    Han, X. T.; Xie, J. F.; Song, Z. W.; Li, L.

    2010-04-01

    A user-friendly Control and Measurement System (CMS) is designed and realized at the Wuhan High Magnetic Field Center (WHMFC). Structure and functions of the CMS system are described in detail. Three kernel parts of CMS are discussed. The success of the comprehensive system test shows that the CMS is effective and reliable.

  4. Optimization of the output power of a pulsed gas laser by using magnetic pulse compression

    Science.gov (United States)

    Louhibi, D.; Ghobrini, Mourad; Bourai, K.

    1999-12-01

    In pulsed gas lasers, the excitation of the active medium is produced through the discharge of a storage capacitor. Performances of these lasers were essentially linked to the type of switch used and also to its mode of operation. Thyratrons are the most common switches. Nevertheless, their technological limitations do not allow a high repetition rate, necessary for optimization of the output power of this type of laser. These limitations can be surpassed by combining the thyratron to a one stage of a magnetic pulse compression circuit. The mpc driver can improve the laser excitation pulse rise time and increase the repetition rate, increasing the laser output power of pulsed gas laser such as; nitrogen, excimer and copper vapor lasers. We have proposed in this paper a new configuration of magnetic pulse compression, the magnetic switch is place in our case in the charge circuit, and while in the typical utilization of magnetic pulse compression, it is placed in the discharge circuit. In this paper, we are more particularly interested in the design and the modeling of a saturate inductance that represents the magnetic switch in the proposed configuration of a thyratron - mpc circuit combination.

  5. High speed, high current pulsed driver circuit

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  6. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  7. Faraday rotation imaging microscope with microsecond pulse magnet

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, Masayori, E-mail: msuwa@chem.sci.osaka-u.ac.jp [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Tsukahara, Satoshi [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Watarai, Hitoshi, E-mail: watarai@chem.sci.osaka-u.ac.jp [Institute for NanoScience Design, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2015-11-01

    We have fabricated a high-performance Faraday rotation (FR) imaging microscope that uses a microsecond pulse magnet comprising an insulated gated bipolar transistor and a 2 μF capacitor. Our microscope produced images with greater stability and sensitivity than those of previous microscopes that used millisecond pulse magnet; these improvements are likely due to high repetition rate and negligible Joule heating effects. The mechanical vibrations in the magnet coil caused by the pulsed current were significantly reduced. The present FR microscope constructed an averaged image from 1000 FR images within 10 min under 1.7 T. Applications of the FR microscope to discriminating three benzene derivatives in micro-capillaries and oscillation-free imaging of spherical polystyrene and polymethyl methacrylate microparticles demonstrated its high performance. - Highlights: • A microsecond pulse magnet with high repetition rate of 10 Hz was fabricated. • Faraday rotation (FR) imaging microscope with the μs magnet was constructed. • Benzene derivatives in microcapillaries were distinguished with the FR microscope. • FR images of single polymer microspheres of 20 μm were correctly acquired. • Observed FR angles agreed quantitatively with those expected from Verdet constants.

  8. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  9. Measurement of dynamic magnetization induced by a pulsed field: Proposal for a new rock magnetism method

    Science.gov (United States)

    Kodama, Kazuto

    2015-02-01

    This study proposes a new method for measuring transient magnetization of natural samples induced by a pulsed field with duration of 11 ms using a pulse magnetizer. An experimental system was constructed, consisting of a pair of differential sensing coils connected with a high-speed digital oscilloscope for data acquisition. The data were transferred to a computer to obtain an initial magnetization curve and a descending branch of a hysteresis loop in a rapidly changing positive field. This system was tested with synthetic samples (permalloy ribbon, aluminum plate, and nickel powder) as well as two volcanic rock samples. Results from the synthetic samples showed considerable differences from those measured by a quasi-static method using a vibrating sample magnetometer (VSM). These differences were principally due to the time-dependent magnetic properties or to electromagnetic effects, such as magnetic viscosity, eddy current loss, or magnetic relaxation. Results from the natural samples showed that the transient magnetization-field curves were largely comparable to the corresponding portions of the hysteresis loops. However, the relative magnetization (scaled to the saturation magnetization) at the end of a pulse was greater than that measured by a VSM. This discrepancy, together with the occurrence of rapid exponential decay after a pulse, indicates magnetic relaxations that could be interpreted in terms of domain wall displacement. These results suggest that with further developments, the proposed technique can become a useful tool for characterizing magnetic particles contained in a variety of natural materials.

  10. Measurement of dynamic magnetization induced by a pulsed field: Proposal for a new rock magnetism method

    Directory of Open Access Journals (Sweden)

    Kazuto eKodama

    2015-02-01

    Full Text Available This study proposes a new method for measuring transient magnetization of natural samples induced by a pulsed field with duration of 11 ms using a pulse magnetizer. An experimental system was constructed, consisting of a pair of differential sensing coils connected with a high-speed digital oscilloscope for data acquisition. The data were transferred to a computer to obtain an initial magnetization curve and a descending branch of a hysteresis loop in a rapidly changing positive field. This system was tested with synthetic samples (permalloy ribbon, aluminum plate, and nickel powder as well as two volcanic rock samples. Results from the synthetic samples showed considerable differences from those measured by a quasi-static method using a vibrating sample magnetometer (VSM. These differences were principally due to the time-dependent magnetic properties or to electromagnetic effects, such as magnetic viscosity, eddy current loss, or magnetic relaxation. Results from the natural samples showed that the transient magnetization–field curves were largely comparable to the corresponding portions of the hysteresis loops. However, the relative magnetization (scaled to the saturation magnetization at the end of a pulse was greater than that measured by a VSM. This discrepancy, together with the occurrence of rapid exponential decay after a pulse, indicates magnetic relaxations that could be interpreted in terms of domain wall displacement. These results suggest that with further developments, the proposed technique can become a useful tool for characterizing magnetic particles contained in a variety of natural materials.

  11. High-Altitude Electromagnetic Pulse (HEMP) Testing

    Science.gov (United States)

    2015-07-09

    Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY...TOP 01-2-620A 9 July 2015 G-1 APPENDIX G. ABBREVIATIONS. AFEMP Advanced Fast Electromagnetic ... Electromagnetic Pulse A burst of electromagnetic radiation from a nuclear explosion or a suddenly fluctuating magnetic field. The resulting electric and

  12. Pulsed field probe of real time magnetization dynamics in magnetic nanoparticle systems

    Science.gov (United States)

    Foulkes, T.; Syed, M.; Taplin, T.

    2015-05-01

    Magnetic nanoparticles (MNPs) are extensively used in biotechnology. These applications rely on magnetic properties that are a keen function of MNP size, distribution, and shape. Various magneto-optical techniques, including Faraday Rotation (FR), Cotton-Mouton Effect, etc., have been employed to characterize magnetic properties of MNPs. Generally, these measurements employ AC or DC fields. In this work, we describe the results from a FR setup that uses pulsed magnetic fields and an analysis technique that makes use of the entire pulse shape to investigate size distribution and shape anisotropy. The setup employs a light source, polarizing components, and a detector that are used to measure the rotation of light from a sample that is subjected to a pulsed magnetic field. This magnetic field "snapshot" is recorded alongside the intensity pulse of the sample's response. This side by side comparison yields useful information about the real time magnetization dynamics of the system being probed. The setup is highly flexible with variable control of pulse length and peak magnitude. Examining the raw data for the response of bare Fe3O4 and hybrid Au and Fe3O4 nanorods reveals interesting information about Brownian relaxation and the hydrodynamic size of these nanorods. This analysis exploits the self-referencing nature of this measurement to highlight the impact of an applied field on creating a field induced transparency for a longitudinal measurement. Possible sources for this behavior include shape anisotropy and field assisted aggregate formation.

  13. High Voltage Pulse Testing Survey.

    Science.gov (United States)

    1985-10-01

    Cryogenic 23 E. Liquids 26 F. Solids 28 1. Polyethylene 28 2. Cross-Linked Polyethylene ( XLPE ) 29 3. Polyimide and Polyvenylchloride (PVC) 31 VI Benefits 35 A...Strength of XLPE Cables 29 vii * 4" I PROGRAM OBJECTIVES The Pulse Test Survey summarizes government, industry, and technical reports on high voltage pulse...system of silicone oil on a XLPE (cross-linked polyethylene) spacer tends to lower the impulse breakdown by approximately 10 percent. The negative impulse

  14. Fast magnetic field annihilation driven by two laser pulses in underdense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y. J.; Kumar, D.; Weber, S.; Korn, G. [Institute of Physics of the ASCR, ELI-Beamlines, 18221 Prague (Czech Republic); Klimo, O. [Institute of Physics of the ASCR, ELI-Beamlines, 18221 Prague (Czech Republic); FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); Bulanov, S. V.; Esirkepov, T. Zh. [Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215 (Japan)

    2015-10-15

    Fast magnetic annihilation is investigated by using 2.5-dimensional particle-in-cell simulations of two parallel ultra-short petawatt laser pulses co-propagating in underdense plasma. The magnetic field generated by the laser pulses annihilates in a current sheet formed between the pulses. Magnetic field energy is converted to an inductive longitudinal electric field, which efficiently accelerates the electrons of the current sheet. This new regime of collisionless relativistic magnetic field annihilation with a timescale of tens of femtoseconds can be extended to near-critical and overdense plasma with the ultra-high intensity femtosecond laser pulses.

  15. New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron

    CERN Document Server

    Lackey, James; John, Carson; Kashikhin, Vladimir; Makarov, Alexander; Prebys, Eric

    2005-01-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

  16. Response of magnetic tunnel junction-based spin-torque oscillator to series of sub-nanosecond magnetic pulses

    Science.gov (United States)

    Nagasawa, Tazumi; Suto, Hirofumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2016-11-01

    Spin-torque oscillator (STO) read heads with a high data transfer rate for hard disk drives have been proposed. To investigate the oscillation stability and frequency agility of the STO under magnetic pulses, we measured the response waveforms of the STO to a series of sub-nanosecond magnetic pulses and calculated the delay-detection output signal from the STO waveforms. We found that stable oscillation was maintained under the magnetic pulses and that the delay-detection output signal reproduced the applied pulse pattern. The results indicate that the STO read heads can operate at data transfer rates higher than 2 Gbits/s.

  17. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  18. Development of a 50-T pulsed magnetic field facility by using an 1.5-MJ capacitor bank

    Science.gov (United States)

    Shin, Y. H.; Kim, Yongmin

    2015-09-01

    Because DC magnets consume a huge amount of electricity (resistive DC magnet) or liquid helium (superconducting magnet), a capacitor-bank-driven pulsed magnet is known to be a cost-effective way of generating high magnetic fields. This type of pulsed magnet is normally operated at liquid nitrogen temperature and consumes little electric power to generate over 50 tesla (T) during a short transient time of less than 50 millisecond (ms). With modern fast data acquisition systems, almost all kinds of physical quantities, such as photoluminescence, magnetization or resistance can be measured during a short magnetic field pulse. We report a recently home-built capacitor-bankdriven pulsed magnetic field facility, in which a capacitor bank of 1.5-MJ maximum stored energy is utilized to generate pulsed magnetic fields up to 50 T with transient pulse time of 22 ms.

  19. Proceedings of Pulsed Magnet Design and Measurement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Shaftan, T.; Heese, R.; Ozaki,S.

    2010-01-19

    The goals of the Workshop are to assess the design of pulsed system at the NSLS-II and establish mitigation strategies for critical issues during development. The focus of the Workshop is on resolving questions related to the set-up of the pulsed magnet laboratory, on measuring the pulsed magnet's current waveforms and fields, and on achieving tight tolerances on the magnet's alignment and field quality.

  20. EXTERNAL MAGNETIC-PULSE STRAIGHTENING OF CARS BODY PANELS

    Directory of Open Access Journals (Sweden)

    A. Hnatov

    2014-10-01

    Full Text Available The basics of magnetic-pulse attraction of both ferromagnetic and non-ferromagnetic thin-wall sheet metals are investigated. The design models of inductor systems-magnetic-pulse straightening tools are presented. The final analytical expressins for excited efforts design in the tools under consideration are introduced. The practical testing of magnetic-pulse straightening with the tools under study is given.

  1. Development of reliable 70 T pulsed magnets

    Science.gov (United States)

    Lagutin, A.; Rosseel, K.; Herlach, F.; Vanacken, J.; Bruynseraede, Y.

    2003-12-01

    A capacitor-driven pulsed magnet coil has been designed to generate fields in the 70-75 T range, with a life expectancy of at least 100 pulses, thus qualifying as a '75 T class user magnet'. The bore is 10 mm and the rise time used in our experiments is 4 ms. The coil consists of two coaxial sections: the inner section, where stresses are highest, is made with CuNb microcomposite wire and optimized Zylon reinforcement; the outer section is made with soft copper and glass fibre composite. In the inner section, the stress in each layer is self-contained, while the stresses induced in the outer section are transmitted to a thick shell made from steel and carbon fibre composite. The cross section of the copper wires is adjusted to redistribute the heating evenly between the inner and the outer section. Another innovative design feature is a system for axial compression that can be easily retightened during coil training. Two nearly identical coils were manufactured and tested to 72 T this is a limit imposed due to overheating when using our 10 kV, 0.5 MJ capacitor bank (at an energy of 380 kJ). At 75 T, the calculated von Mises stress in the Zylon composite is 2.6 GPa, well below the UTS of more than 3 GPa, and the CuNb wire is still in an elastic state.

  2. Saturable inductor and transformer structures for magnetic pulse compression

    Science.gov (United States)

    Birx, Daniel L.; Reginato, Louis L.

    1990-01-01

    Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

  3. Superhard carbon deposited by pulsed high-current arc as protective nanocoating for magnetic hard disks; Superharter Kohlenstoff abgeschieden mit gepulstem Hochstrombogen als Nanoschutzschicht fuer Magnetspeicherplatten

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaeuser, M.; Hilgers, H. [IBM Mainz (Germany). Abt. 4627; Witke, T. [Infenion Dresden (Germany). Bereich PVD; Siemroth, P. [Fraunhofer-Institut fuer Werkstoffphysik und Schichttechnologie (IWS), Dresden (Germany)

    2001-08-01

    Superhard amorphous carbon films (ta-C) deposited by pulsed high-current arc (HCA) possess a good perspective to be used as future ultrathin protective coatings for magnetic hard disks. The ta-C coatings meet all demands concerning the mechanical, chemical and tribological properties required for corrosion and wear protective coatings with thicknesses of 2-3 nm. From the current point of view the deposition technique also qualifies for an industrial mass production. Consequently there is a very good prospect that in near future the high-current arc technique will be the method of choice for carbon deposition in industrial hard disk drive production. (orig.) [German] Superharte amorphe Kohlenstoffschichten (ta-C), die mit gepulstem Hochstrombogen (high-current arc, HCA) abgeschieden werden, besitzen ein hohes Potential als zukuenftige ultraduenne Schutzschichten fuer Magnetspeicherplatten. Die ta-C-Schichten erfuellen alle wesentlichen Anforderungen, die in mechanischer, chemischer und tribologischer Hinsicht an 2-3 nm dicke Verschleiss- und Korrosionsschutzschichten gestellt werden. Auch die Beschichtungstechnik ist aus jetziger Sicht fuer die Massenproduktion geeignet. Damit bestehen sehr gute Aussichten, dass in naher Zukunft die Hochstrombogenverdampfung die Methode der Wahl fuer die Kohlenstoffabscheidung in der industriellen Festplattenproduktion darstellt. (orig.)

  4. Pulsed field magnetization in rare-earth kagome systems

    Science.gov (United States)

    Hoch, M. J. R.; Zhou, H. D.; Mun, E.; Harrison, N.

    2016-02-01

    The rare-earth kagome systems R 3Ga5SiO14 (R  =  Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained from neutron scattering and from ESR and NMR results. The present pulsed field (0-60 T, 25 ms) magnetization measurements made on single crystals of Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) at temperatures down to 450 mK have revealed striking differences in the magnetic responses of the two materials. For NGS the magnetization shows a low field plateau, saturation in high transient fields, and significant hysteresis while the PGS magnetization does not saturate in transient fields up to 60 T and shows no hysteresis or plateaus. Nd3+ is a Kramers ion while Pr3+ is a non-Kramers ion and the crystal field effects are quite different in the two systems. For the conditions used in the experiments the magnetization behavior is not in agreement with Heisenberg model predictions for kagome systems in which easy-axis anisotropy is much larger than the exchange coupling. The extremely slow spin dynamics found below 4 K in NGS is, however, consistent with the model for Kramers ions and provides a basis for explaining the pulsed field magnetization features.

  5. Pulsed field magnetization in rare-earth kagome systems.

    Science.gov (United States)

    Hoch, M J R; Zhou, H D; Mun, E; Harrison, N

    2016-02-03

    The rare-earth kagome systems R 3Ga5SiO14 (R  =  Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained from neutron scattering and from ESR and NMR results. The present pulsed field (0-60 T, 25 ms) magnetization measurements made on single crystals of Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) at temperatures down to 450 mK have revealed striking differences in the magnetic responses of the two materials. For NGS the magnetization shows a low field plateau, saturation in high transient fields, and significant hysteresis while the PGS magnetization does not saturate in transient fields up to 60 T and shows no hysteresis or plateaus. Nd(3+) is a Kramers ion while Pr(3+) is a non-Kramers ion and the crystal field effects are quite different in the two systems. For the conditions used in the experiments the magnetization behavior is not in agreement with Heisenberg model predictions for kagome systems in which easy-axis anisotropy is much larger than the exchange coupling. The extremely slow spin dynamics found below 4 K in NGS is, however, consistent with the model for Kramers ions and provides a basis for explaining the pulsed field magnetization features.

  6. Trapped field measurements of Gd-Ba-Cu-O bulk superconductor in controlled pulse field magnetizing

    Energy Technology Data Exchange (ETDEWEB)

    Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Y; Sano, T; Yamaguchi, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Miki, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan)], E-mail: ida@hiroshima-cmt.ac.jp

    2008-02-01

    For large-scale electric power application of the melt-processed high temperature superconductor (HTS) bulks, especially at rotating machine, development of trapping much higher magnetic fields by using pulsed magnetization technique is essential. It is difficult to use static field cooling (FCM) technique that is most effective magnetizing method for the general industrial HTS applications, because the FCM requires large-scale superconducting magnets. Because the rise in temperature due to the magnetic flux motion decreases the pinning force, we controlled the magnetic flux penetrating to the bulk for the effective magnetization. A couple of vortex-type copper coils applied a magnetic field to a Gd-Ba-Cu-O bulk, which dimension was 45mm in diameter and 19 mm in thickness. HTS bulk was magnetized by the controlled pulse field without passive LCR pulse. We controlled waveform by using the discharge current that IGBT chopper in pulse magnetizer intermitted. We applied the pulse magnetic field with the various risetime to the HTS bulk in liquid nitrogen. The various conditions of the controlled waveform pulse to trap well-dressed profile magnetized the Gd-Ba-Cu-O bulk, strongly at 77K. In the present study, we show several properties which was measured in the PFM of the HTS bulk.

  7. High-speed pulse-shape generator, pulse multiplexer

    Science.gov (United States)

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  8. Microscopic Faraday rotation measurement system using pulsed magnetic fields.

    Science.gov (United States)

    Egami, Shigeki; Watarai, Hitoshi

    2009-09-01

    Microscopic Faraday rotation measurement system using a pulsed magnetic field has been constructed, which can be applied to micron sized diamagnetic and paramagnetic materials. A pulsed magnetic coil could generate a maximum magnetic flux density of about 12 T. The performance of the microscopic Faraday rotation apparatus was demonstrated by the measurement of the Verdet constant V of a polystyrene particle, after the calibration of the pulsed magnetic flux density using a glass plate as a standard material. Also, the magneto-optical rotation dispersion of some diamagnetic substances have been measured and analyzed with V=alambda(-2)+b. The values of a and b were compared to their magnetic susceptibilities.

  9. Behavior of metals Induced by magnetic pulse loading

    Directory of Open Access Journals (Sweden)

    Svetlana Atroshenko

    2015-01-01

    Full Text Available The investigation of copper and aluminum ring samples was carried out using magnetic pulse loading. Two modifications of the magnetic pulse technique were used. They were based on a GKVI-300 high-voltage narrow-pulse generator Morozov et al. (2011 [1]. It is possible using these two approaches to decrease the period of the harmonic load up to 100 ns. The study of fracture surfaces of aluminum and copper samples after the test was carried out on an optical microscope Axio-Observer-Z1-M in a dark field, and study of the cross sections structure – in the bright field or C-DIC. The structure has been studied in cross sections after appropriate etching. Grain size and the number of pores on the surface of cross sections were determined after etching. Microhardness was measured on a PMT-3 device with a load of 20 g. The optical micrographs of aluminum demonstrate that the long pulse causes almost fully ductile fracture. In the case of the short pulse, the number of fibers decreases: the fracture surface exhibits the signs of both ductile cup fracture and brittle crystalline fracture with cracks, which are sometimes rather deep. In addition, the short pulse results in twinning, which seems surprising for aluminum featuring a high stacking fault energy. It is seen that under short loading dynamic recrystallization occurs. As for copper samples before loading they were in the form of single crystal and after loading their structure due to dynamic recrystallization consists of small grain. The specimen with notch has more developed dynamic recrystallization shear bands.

  10. Research on Nanosecond Pulse Corona Discharge with Cross Magnetic Field Applied

    Institute of Scientific and Technical Information of China (English)

    HE Zheng-hao; YU Fu-sheng; HU Feng; YUAN Yun; GUO Li-na; LI Jin

    2007-01-01

    An application of magnetic field to the nanosecond pulse corona discharge is investigated.A cylinder reactor with different corona electodes is set up for experimental study.A manetic field with its direction perpendicular to the corona discharge is applied.Different discharge images are taken under single nanosecond pulse with a high sensitive UV-visible light imagine recorder.Experimental results show that with a cross magnetic field the nanosecond out the magnetic field. The results may lead to a possibility to apply a cross magnetic field on nanosecond pulse corona discharge for getting higher desulfurization effciency.

  11. Effects of beam velocity and density on an ion-beam pulse moving in magnetized plasmas

    CERN Document Server

    Zhao, Xiao-ying; Zhao, Yong-tao; Qi, Xin; Yang, Lei

    2016-01-01

    The wakefield and stopping power of an ion-beam pulse moving in magnetized plasmas are investigated by particle-in-cell (PIC) simulations. The effects of beam velocity and density on the wake and stopping power are discussed. In the presence of magnetic field, it is found that beside the longitudinal conversed V-shaped wakes, the strong whistler wave are observed when low-density and low-velocity pulses moving in plasmas. The corresponding stopping powers are enhanced due to the drag of these whistler waves. As beam velocities increase, the whistler waves disappear, and only are conversed V-shape wakes observed. The corresponding stopping powers are reduced compared with these in isotropic plasmas. When high-density pulses transport in the magnetized plasmas, the whistler waves are greatly inhibited for low-velocity pulses and disappear for high-velocity pulses. Additionally, the magnetic field reduces the stopping powers for all high-density cases.

  12. Internal Magnetic Field, Temperature and Density Measurements on Magnetized HED plasmas using Pulsed Polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Roger J. [Univ. of Washington, Seattle, WA (United States)

    2016-10-20

    The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.

  13. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  14. Detection of secular acceleration pulses from magnetic observatory data

    Science.gov (United States)

    Soloviev, Anatoly; Chulliat, Arnaud; Bogoutdinov, Shamil

    2017-09-01

    Geomagnetic secular variation (SV) models for the epochs before the space era are based on magnetic observatory data, which represent relatively rough and noisy time series due to magnetic storms, anthropogenic spikes and gaps. These models are often strongly regularized in time, so that fast variations in the SV are smoothed out. However, recent studies show that at least some of the geomagnetic jerks observed at the Earth's surface emanate from increasing and decreasing phases of secular acceleration (SA) pulses at the core surface. The latter ones are direct manifestation of the dynamic processes taking place in the liquid core. They were first detected from satellite data, which are both of higher quality and more homogeneous in terms of geographical coverage than ground data. Herein we attempt to carry out similar studies based on observatory data available for a longer period. The proposed method of SV modeling and recognition of SA pulses relies on a new technique of processing time series based on fuzzy mathematics. Comparison with the SV modeling results derived from satellite data shows their high conformity with the proposed method. Stability and reliability of the SA pulse recognition are demonstrated by the examples of well-studied SA pulses in 2006, 2009 and 2012. Moreover, several new SA pulses around 1996, 1999, 2002 and 2014 are discovered as a result of the new approach application to multi-observatory data analysis. The latter provides a basis for applying the method to older historical data and investigate SA pulses and geomagnetic jerks further back in time.

  15. High-voltage air-core pulse transformers

    Energy Technology Data Exchange (ETDEWEB)

    Rohwein, G. J.

    1981-01-01

    General types of air core pulse transformers designed for high voltage pulse generation and energy transfer applications are discussed with special emphasis on pulse charging systems which operate up to the multi-megavolt range. The design, operation, dielectric materials, and performance are described. It is concluded that high voltage air core pulse transformers are best suited to applications outside the normal ranges of conventional magnetic core transformers. In general these include charge transfer at high power levels and fast pulse generation with comparatively low energy. When properly designed and constructed, they are capable of delivering high energy transfer efficiency and have demonstrated superior high voltage endurance. The principal disadvantage of high voltage air core transformers is that they are not generally available from commercial sources. Consequently, the potential user must become thoroughly familiar with all aspects of design, fabrication and system application before he can produce a high performance transformer system. (LCL)

  16. Experimental studies of axial magnetic fields generated in ultrashort-pulse laser-plasma interaction

    Institute of Scientific and Technical Information of China (English)

    李玉同; 张杰; 陈黎明; 赵理曾; 夏江帆; 魏志义; 江文勉

    2000-01-01

    The quasistatic axial magnetic fields in plasmas produced by ultrashort laser pulses were measured by measuring the Faraday rotation angle of the backscattered emission. The spatial distribution of the axial magnetic field was obtained with a peak value as high as 170 Tesla. Theory suggests that the axial magnetic field is generated by dynamo effect in laser-plasma interaction.

  17. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  18. Magnetic pulse welding on the cutting edge of industrial applications

    Directory of Open Access Journals (Sweden)

    R. M. Miranda

    2014-03-01

    Full Text Available Magnetic Pulse Welding (MPW applies the electromagnetic principles postulated in the XIXth century and later demonstrated. In recent years the process has been developed to meet highly demanding market needs involving dissimilar material joining, specially involving difficult-to-weld materials. It is a very high speed joining process that uses an electromagnetic force to accelerate one material against the other, resulting in a solid state weld with no external heat source and no thermal distortions. A high power source, the capacitor, a discharge switch and a coil constitute the minimum equipment necessary for this process. A high intensity current flowing through a coil near an electrically conductive material, locally produce an intense magnetic field that generates eddy currents in the flyer according to Lenz law. The induced electromotive force gives rise to a current whose magnetic field opposes the original change in magnetic flux. The effect of this secondary current moving in the primary magnetic field is the generation of a Lorentz force, which accelerates the flyer at a very high speed. If a piece of material is placed in the trajectory of the flyer, the impact will produce an atomic bond in a solid state weld. This paper discusses the fundamentals of the process in terms of phenomenology and analytical modeling and numerical simulation. Recent industrial applications are presented in terms of materials, joint configurations and real examples as well as advantages and disadvantages of the process.

  19. Low-noise pulsed current source for magnetic-field measurements of magnets for accelerators

    Science.gov (United States)

    Omelyanenko, M. M.; Borisov, V. V.; Donyagin, A. M.; Khodzhibagiyan, H. G.; Kostromin, S. A.; Makarov, A. A.; Shemchuk, A. V.

    2017-01-01

    The schematic diagram, design, and technical characteristics of the pulsed current source developed and produced for the magnetic-field measurement system of superconducting magnets for accelerators are described. The current source is based on the current regulator with pass transistor bank in the linear mode. Output current pulses (0-100 A) are produced by utilizing the energy of the preliminarily charged capacitor bank (5-40 V), which is additionally charged between pulses. The output current does not have the mains frequency and harmonics ripple. The relative noise level is less than-100 dB (or 10-5) of RMS value (it is defined as the ratio of output RMS noise current to a maximal output current of 100 A within the operating bandwidth, expressed in dB). The work was performed at the Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research (JINR).

  20. A pulsed magnetic stress applied to Drosophila melanogaster flies

    Science.gov (United States)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  1. Generation of flat-top pulsed magnetic fields with feedback control approach

    CERN Document Server

    Kohama, Yoshimitsu

    2015-01-01

    We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet, and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of +-0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

  2. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  3. High-power pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  4. Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons

    Science.gov (United States)

    Schäffer, A. F.; Dürr, H. A.; Berakdar, J.

    2017-07-01

    Short electron pulses are demonstrated to trigger and control magnetic excitations, even at low electron current densities. We show that the tangential magnetic field surrounding a picosecond electron pulse can imprint topologically protected magnetic textures such as skyrmions in a sample with a residual Dzyaloshinskii-Moriya spin-orbital coupling. Characteristics of the created excitations such as the topological charge can be steered via the duration and the strength of the electron pulses. The study points to a possible way for a spatiotemporally controlled generation of skyrmionic excitations.

  5. Design of Pulsed Strong Magnetic Fields Generator and Preliminary Application

    Institute of Scientific and Technical Information of China (English)

    WEN Jun; QU Xue-min; WANG Xi-gang; LONG Kai-ping

    2015-01-01

    Objective: This paper aims to designing a pulsed strong magnetic fields generator. Methods: A large value capacitor was used to store electric energy, coil was used for producing magnetic fields, main control, circuit control charge, sampling, discharge, etc. Results: The generator provided a pulsed magnetic field with the ampli-tude of intensity from 0.1-2 T and variable time interval of pulse from 4 s-1 min. It was not only to be operated easily but also performed reliably. Conclusion:The generator will be applied in special clinical diagnosis, therapy and other fields.

  6. All-solid-state high-repetition-rate magnetic pulse compression generator%全固态高重复频率磁脉冲压缩发生器

    Institute of Scientific and Technical Information of China (English)

    张东东; 周媛; 李文峰; 许家雨; 王珏; 邵涛; 赵莹; 徐蓉

    2012-01-01

    The paper presents an all-solid-state high-repetition-rate pulse generator with adjustable output amplitude based on magnetic pulse compression (MPC) technique. The pulse compression network makes use of commercially available IGBTs switching a capacitor bank into a metglas transformer together with a voltage doubling circuit. The capacitor bank is charged to 500 V by a resonant LC charger, and also switched by a commercial diode. The output of the pulse generator is controlled by the gate voltage of the IGBTs. Pulses with a width of 70 ns can be generated with repetition rates up to 5 kHz. The amplitude can be controlled from 4 kV to 40 kV into a 500 Ω load. Equivalent circuits for the final operation stage of the compressor accounting for pre-pulse in magnetic switches are presented and analyzed, and the pre-pulse generation process of the MPC system is discussed. Simulation results show that, increasing the unsaturated inductance of the magnetic switch and reducing the load resistance enhance the pre-pulse peak. Thus to diminish the pre-pulse, a better ferrite core with higher permeability should be considered.%设计制作了全固态高重复频率磁脉冲压缩发生器,最高重复频率5 kHz,脉宽70 ns,通过调节初始储能电容上的电压可在500 Ω阻性负载上获得4~40 kV连续可调的输出电压.通过分析简化的磁压缩末级回路,分析了预脉冲产生的过程,得出了预脉冲的电压表达式,选取适当的磁芯相对磁导率,经过求解,得出在磁开关未饱和电感一定时预脉冲随负载阻值变化的曲线簇,从曲线中可以看出:随着负载的阻值的增大,预脉冲的峰值绝对值也增大;在负载恒定的情况下,增大磁开关未饱和电感的大小可以显著地减小负载两端预脉冲的峰值绝对值,这要求磁开关磁芯有更高的相对磁导率.

  7. High Power Picosecond Laser Pulse Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  8. High-power picosecond laser pulse recirculation.

    Science.gov (United States)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  9. Theory of pulsed reaction yield detected magnetic resonance

    NARCIS (Netherlands)

    Nasibulov, E.A.; Kulik, L.V.; Kaptein, R.; Ivanov, K.L.

    2012-01-01

    We propose pulse sequences for Reaction Yield Detected Magnetic Resonance (RYDMR), which are based on refocusing the zero-quantum coherences in radical pairs by non-selective microwave pulses and using the population of a radical pair singlet spin state as an observable. The new experiments are

  10. Pulse-to-pulse Diagnostics at High Reprate

    Science.gov (United States)

    Green, Bertram; Kovalev, Sergey; Golz, Torsten; Stojanovich, Nikola; Fisher, Alan; Kampfrath, Tobias; Gensch, Michael

    2016-03-01

    Femtosecond level diagnostic and control of sub-picosecond electron bunches is an important topic in modern accelerator research. At the same time new linear electron accelerators based on quasi-CW SRF technology will be the drivers of many future 4th Generation lightsources such as X-ray free electron lasers. A high duty cycle, high stability and online pulse to pulse diagnostic at these new accelerators are crucial ingredients to the success of these large scale facilities. A novel THz based online monitor concept is presented that has the potential to give access to pulse to pulse information on bunch form, arrival time and energy at high repetition rate and down to sub pC charges. We furthermore show experimentally that pulse to pulse arrival time measurements can be used to perform pump-probe experiments with a temporal resolution in the few-fs regime and an exceptional dynamic range. Our scheme has been tested at the superradiant test facility TELBE, but can be readily transferred to other SRF accelerator driven photon sources, such as X-FELs.

  11. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Mcdonald, Ross D [Los Alamos National Laboratory; Singleton, John [Los Alamos National Laboratory; Lancaster, Tom [OXFORD UNIV.; Goddard, Paul [OXFORD UNIV.; Manson, Jamie [EASTERN WASHINGTON UNIV.

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along

  12. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  13. Maximum trapped field of a ring bulk superconductor by low pulsed field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchimoto, M. [Hokkaido Institute of Technology, 7-15 Maeda, Teine-ku, Sapporo 006-8585 (Japan)], E-mail: tsuchi@hit.ac.jp; Kamijo, H. [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan)

    2007-10-01

    Pulsed field magnetization is an important technique for a bulk superconducting magnet, which is one practical application of a bulk high T{sub c} superconductor (HTS). Full magnetization of a ring HTS is effective to obtain large trapped field for low pulsed field magnetization. In this study, trapped field in a ring bulk superconductor by the low pulsed field magnetization is numerically analyzed under assumption of variable shielding current by the temperature control. Differences between one-dimensional Bean model and axisymmetric three-dimensional numerical solution are discussed through the analysis. There is maximum trapped field in the axisymmetric three-dimensional model because of finite thickness of the ring HTS. The shielding current density and inner radius of the ring HTS are discussed to obtain the maximum trapped field.

  14. Plasma response to transient high voltage pulses

    Indian Academy of Sciences (India)

    S Kar; S Mukherjee

    2013-07-01

    This review reports on plasma response to transient high voltage pulses in a low pressure unmagnetized plasma. Mainly, the experiments are reviewed, when a disc electrode (metallic and dielectric) is biased pulsed negative or positive. The main aim is to review the electron loss in plasmas and particle balance during the negative pulse electrode biasing, when the applied pulse width is less than the ion plasma period. Though the applied pulse width is less than the ion plasma period, ion rarefaction waves are excited. The solitary electron holes are reviewed for positive pulsed bias to the electrode. Also the excitation of waves (solitary electron and ion holes) is reviewed for a metallic electrode covered by a dielectric material. The wave excitation during and after the pulse withdrawal, excitation and propagation characteristics of various electrostatic plasma waves are reviewed here.

  15. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  16. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    Science.gov (United States)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  17. Increasing the magnetic helicity content of a plasma by pulsing a magnetized source.

    Science.gov (United States)

    Woodruff, S; Stallard, B W; McLean, H S; Hooper, E B; Bulmer, R; Cohen, B I; Hill, D N; Holcomb, C T; Moller, J; Wood, R D

    2004-11-12

    By operating a magnetized coaxial gun in a pulsed mode it is possible to produce large voltage pulses of duration approximately 500 mus while reaching a few kV, giving a discrete input of helicity into a spheromak. In the sustained spheromak physics experiment (SSPX), it is observed that pulsing serves to nearly double the stored magnetic energy and double the temperature. We discuss these results by comparison with 3D MHD simulations of the same phenomenon.

  18. Magnetically insulated electron flows in pulsed power systems

    Science.gov (United States)

    Lawconnell, Robert I.

    1989-08-01

    Magnetic insulation is crucial in the operation of large pulsed power systems. Particular attention will be paid to describing magnetic insulation in realistic pulsed power systems. A theoretical model is developed that allows the production of self consistent magnetically insulated laminar flows in perturbed cylindrical systems given only the electron density profile. The theory is checked and justified by detailed comparisons with results from a 2-dimensional electromagnetic code, MASK. The procedure followed in the theoretical development is to use the relativistic Vlasov equation, Ampere's law and Gauss' law, to obtain a relation between the density profile and the velocity profile for insulated flows. Given the density profile and the corresponding derived velocity profile, a self consistent flow solution is obtained by means of Maxwell's equations. It is checked by taking a special case (corresponding to no perturbations) which results in the well known Brillouin flow theory. Emphasis is placed on determining the magnetic insulation threshold of a pulsed power system employing a plasma erosion opening switch. The procedure employed in the computational study is to vary critical aspects of the pulsed power system and then note whether magnetic insulation breaks down. The point at which magnetic insulation breaks down (as a function of geometry, load impedance, and applied voltage) is the magnetic insulation threshold for the system.

  19. DYNAMIC COMPACTION OF PURE COPPER POWDER USING PULSED MAGNETIC FORCE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on the homogeneity and the compaction density of compacted specimens were presented and discussed. The results indicated that the compaction density of specimens increased with the augment of discharge voltage and time. During unidirectional compaction, there was a density gradient along the loading direction in the compacted specimen, and the minimum compaction density was localized to the center of the bottom of the specimen. The larger the aspect ratio of a powder body, the higher the compaction density of the compacted specimen. And high conductivity drivers were beneficial to the increase of the compaction density. The iterative and the double direction compaction were efficient means to manufacture the homogeneous and high-density powder parts.

  20. Ultra-fast ballistic magnetization reversal triggered by a single magnetic field pulse

    Energy Technology Data Exchange (ETDEWEB)

    Horley, Paul P; Gonzalez Hernandez, Jesus [Centro de Investigacion en Materiales Avanzados S.C., Chihuahua/Monterrey, Av. Miguel de Cervantes 120, 31109 Chihuahua, Chihuahua (Mexico); Vieira, Vitor R; Dugaev, Vitalii K [Centro de Fisica das Interaccoes Fundamentais, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Gorley, Peter [Department of Physics, Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky Street, 58012 Chernivtsi (Ukraine); Barnas, Jozef, E-mail: paul.horley@cimav.edu.m [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznan (Poland)

    2009-12-21

    Performance of devices such as magnetic random access memories crucially depends on magnetic switching time. By numerical simulations we show that ultra-fast (in the sub-nanosecond range) magnetic reversal in nanoparticles can be achieved with a single pulse of magnetic field oriented at some specific angles with respect to the magnetic moment. These angles form the areas of ballistic reversal (with no magnetization ringing). We show that the size of these areas increases with decreasing pulse duration, which allows reaching of the sub-nanosecond reversal for a pulse duration of the order of dozen(s) of ps. When changing the magnetic field, the areas of ballistic reversal move along the equator of the unitary sphere, and eventually merge with each other. For appropriate choice of the azimuthal angle, one can reach magnetic reversal along a trajectory located in or out of the easy plane.

  1. Miniature coils for producing pulsed inplane magnetic fields for nanospintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pawliszak, Łukasz; Zgirski, Maciej [Institute of Physics, Polish Academy of Sciences, al.Lotnikow 32/46, PL 02-668 Warszawa (Poland); Tekielak, Maria [Faculty of Physics, University of Białystok, ul.Lipowa 41, PL 15-424 Białystok (Poland)

    2015-03-15

    Nanospintronic and related research often requires the application of quickly rising magnetic field pulses in the plane of the studied planar structure. We have designed and fabricated sub-millimeter-sized coils capable of delivering pulses of the magnetic field up to ∼500 Oe in the plane of the sample with the rise time of the order of 10 ns. The placement of the sample above the coil allows for easy access to its surface with manipulators or light beams for, e.g., Kerr microscopy. We use the fabricated coil to drive magnetic domain walls in 1 μm wide permalloy wires and measure magnetic domain wall velocity as a function of the applied magnetic field.

  2. Hyperplasticity effect under magnetic pulse straightening of dual phase steel

    Science.gov (United States)

    Falaleev, AP; Meshkov, VV; Shymchenko, A.

    2016-10-01

    An investigation of the behaviour of dual phase steel parts during straightening operations, by means of magnetic pulse treatment, is presented. The mechanical analysis of magnetic-pulse treatment for the straightening of thin-walled sheet metal parts produced from dual phase steel was performed, taking into account the effect of hyperplasticity under the influence of the magnetic field. Taking account of the causes of the hyperplasticity and thus the increase of material plasticity, it has been shown that the magnetic impulse gravity can be adjusted by controlling the operation modes. The dependence of the generated magnetic impulse gravity force on the electrical current strength inducted in this part was explored and used for analysis of the magnetic pulse straightening of dual phase steel part. Experimental results were obtained for thin-walled sheet metal part produced from dual phase steel DP 780. The results are used to demonstrate the material deformation under the influence of magnetic impulse gravity force considering the increase of material plasticity. The dependence of relative material deformation on the generated magnetic impulse gravity as well as on the current strength induced in this material was obtained and analyzed

  3. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    Science.gov (United States)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  4. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    CERN Document Server

    del-Castillo-Negrete, D

    2016-01-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across m...

  5. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Science.gov (United States)

    Huang, Zhen; Ruiz, H. S.; Coombs, T. A.

    2017-03-01

    High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied under the same experimental conditions, what results in about three times larger magnetic pole areas but with an average drop on the peaks of trapped magnetic field of about 50%.

  6. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  7. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    Science.gov (United States)

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  8. Long-pulse magnetic field facility at Zaragoza

    Science.gov (United States)

    Algarabel, P. A.; del Moral, A.; Martín, C.; Serrate, D.; Tokarz, W.

    2006-11-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed.

  9. Transition-Selective Pulses in Zero-Field Nuclear Magnetic Resonance.

    Science.gov (United States)

    Sjolander, Tobias F; Tayler, Michael C D; King, Jonathan P; Budker, Dmitry; Pines, Alexander

    2016-06-30

    We use low-amplitude, ultralow frequency pulses to drive nuclear spin transitions in zero and ultralow magnetic fields. In analogy to high-field NMR, a range of sophisticated experiments becomes available as these allow narrow-band excitation. As a first demonstration, pulses with excitation bandwidths 0.5-5 Hz are used for population redistribution, selective excitation, and coherence filtration. These methods are helpful when interpreting zero- and ultralow-field NMR spectra that contain a large number of transitions.

  10. High-Precision Pulse Generator

    Science.gov (United States)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A document discusses a pulse generator with subnanosecond resolution implemented with a low-cost field-programmable gate array (FPGA) at low power levels. The method used exploits the fast carry chains of certain FPGAs. Prototypes have been built and tested in both Actel AX and Xilinx Virtex 4 technologies. In-flight calibration or control can be performed by using a similar and related technique as a time interval measurement circuit by measuring a period of the stable oscillator, as the delays through the fast carry chains will vary as a result of manufacturing variances as well as the result of environmental conditions (voltage, aging, temperature, and radiation).

  11. Laser pulse shaping for high gradient accelerators

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  12. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  13. Laser pulse shaping for high gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Villa, F., E-mail: fabio.villa@lnf.infn.it [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Anania, M.P.; Bellaveglia, M. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Bisesto, F. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Chiadroni, E. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-Roma Tor Vergata and Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Moreno, M.; Petrarca, M. [Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Pompili, R.; Vaccarezza, C. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc-lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  14. High-voltage, short-risetime pulse generator based on a ferrite pulse sharpener

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, N.; Thornton, E.

    1988-11-01

    A high-voltage, short-risetime pulse generator is described. The generator consists of a Marx bank, which produces an initial high-voltage pulse, and a ferrite pulse sharpener that reduces the risetime of the pulse. The generator delivers 70-kV, 350-ps risetime pulses into a 50-..cap omega.. load.

  15. High frequency group pulse electrochemical machining

    Institute of Scientific and Technical Information of China (English)

    WU Gaoyang; ZHANG Zhijing; ZHANG Weimin; TANG Xinglun

    2007-01-01

    In the process of machining ultrathin metal structure parts,the signal composition of high frequency group pulse,the influence of frequency to reverse current,and the design of the cathode in high frequency group pulse electrochemical machining (HGPECM) are discussed.The experiments on process were carried out.Results indicate that HGPECM can greatly improve the characteristics of the inter-electrode gap flow field,reduce electrode passivation,and obtain high machining quality.The machining quality is obviously improved by increasing the main pulse frequency.The dimensional accuracy reaches 30-40 pro and the roughness attained is at 0.30-0.35 μm.High frequency group pulse electrochemical machining can be successfully used in machining micro-parts.

  16. Efficacy in Microbial Sterilization of Pulsed Magnetic Field Treatment

    Science.gov (United States)

    Sterilization effects of the pulsed magnetic field with a maximum intensity of 11.37 Tesla were investigated on Escherichia coli AS 1.129, Staphylococcus aureus AS 1.89, Saccharomyces cerevisiae ATTC 7552 and Bacillus subtilis AS 1.921. The well-regulated fluctuations of sterilization effects with m...

  17. Pulsed laser deposition and characterization of Alnico5 magnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Butt, M.Z., E-mail: mzbutt49@yahoo.com [Department of Physics, GC University, Lahore 54000 (Pakistan); Ali, Dilawar [Department of Physics, GC University, Lahore 54000 (Pakistan); Ahmad, Fayyaz [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Magnetophotonics Research Laboratory, Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-09-01

    Alnico5 films were deposited by pulsed laser deposition on glass substrate at room temperature under a vacuum ∼10{sup −3} Torr in the absence and in the presence of 500 Oe external transverse magnetic field applied on the plasma plume during film deposition. For this purpose, Nd:YAG laser was employed to ablate the Alnico5 target. The ablated material was deposited on glass substrate placed at a distance of 2 cm from the target. The structural and magnetic properties of the film were analyzed by X-ray diffraction, atomic force microscope, and vibrating sample magnetometer. X-ray diffraction patterns showed that the Alnico5 films were amorphous in nature. Atomic force microscopy revealed that the Alnico5 film deposited in absence of external magnetic field has larger root-mean-square roughness value (60.2 nm) than the magnetically deposited film (42.9 nm). Vibrating sample magnetometer measurements showed that the in-plane saturation magnetization of Alnico5 film deposited in the presence of external magnetic field increases by 32% as compared to that for the film deposited in the absence of external magnetic field. However, the out-of-plane saturation magnetization was almost independent of the external magnetic field. In magnetically deposited film, there is in-plane anisotropy parallel to the applied external magnetic field.

  18. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Science.gov (United States)

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  19. Development of a long pulse plasma gun discharge for magnetic turbulence studies

    Science.gov (United States)

    Schaffner, David

    2016-10-01

    A long pulse ( 300 μs) plasma gun discharge is in development at the Bryn Mawr College Plasma Laboratory for the production of sustained magnetized plasma injection for magnetohydrodynamic (MHD) turbulence studies. An array of eight 0.5mF parallel capacitors are used to create a pulse-forming-network (PFN) with a plateaued current output of 50kA for at least 200 of the 300 μs pulse. A 24cm inner diameter plasma gun provides stuffing flux fields at the stuffing threshold in order to allow for the continuous injection of magnetic helicity. Plasma is injected into a 24cm diameter flux-conserving aluminum chamber with a high density port array for fine spatial resolution diagnostic access. Fluctuations of magnetic field and saturation current are measured using pickup probes and Langmuir probes respectively.

  20. Long-Pulse Integrator Testing with DIII-D Magnetic Diagnostics

    Science.gov (United States)

    Slobodov, Ilia; Miller, Kenneth; Ziemba, Timothy; Prager, James; Carscadden, John; Hanson, Eric

    2016-10-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high-gain integrator for magnetic diagnostics that meets ITER specifications including integration time and integration error limits. EHT has conducted testing of this long-pulse integrator at DIII-D with existing DIII-D magnetic probes. The EHT long-pulse integrator was operated for several hours up to a full day. During a single period of EHT integrator operation, DIII-D was pulsed multiple times. The multiple pulses from the DIII-D magnetic diagnostics can be clearly resolved in the integrator signal output. The results are compared to DIII-D measurements. EHT also operated the long pulse integrator in High Dynamic Range Mode (HDRM), which effectively allows for a dramatic increase in measurement bit depth for higher resolution signal acquisition with the same diagnostic and digitizers presently available on DIII-D. Additionally, EHT has tested a new microprocessor and FPGA-based digitizer, which can be included on the integrator PCB, for a single board magnetic diagnostic solution.

  1. Use of a probing pulsed magnetic field for determining plasma parameters

    Science.gov (United States)

    Rousskikh, A. G.; Oreshkin, V. I.; Zhigalin, A. S.; Yushkov, G. Yu.

    2016-11-01

    A novel, simple, and readily usable method is proposed for measuring the electrical conductivity and temperature of a plasma. The method is based on the interaction of the test plasma with a pulsed magnetic field. The electric signals induced by the magnetic field in the circuits of two probes (miniature solenoids), one immersed in the test plasma and the other placed outside the plasma, provide data for estimating the plasma parameters. The method was verified experimentally by determining the parameters of the plasma flows generated in the cathode spots high-current pulsed vacuum arcs that were used to form cylindrical shells of bismuth Z-pinch plasma.

  2. 600-T Magnetic Fields due to Cold Electron Flow in a simple Cu-Coil irradiated by High Power Laser pulses

    CERN Document Server

    Zhu, Baojun; Yuan, Dawei; Li, Yanfei; Li, Fang; Liao, Guoqian; Zhao, Jiarui; Zhong, Jiayong; Xue, Feibiao; Wei, Huigang; Zhang, Kai; Han, Bo; Pei, Xiaoxing; Liu, Chang; Zhang, Zhe; Wang, Weimin; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie

    2015-01-01

    A new simple mechanism due to cold electron flow to produce strong magnetic field is proposed. A 600-T strong magnetic field is generated in the free space at the laser intensity of 5.7x10^15 Wcm^-2. Theoretical analysis indicates that the magnetic field strength is proportional to laser intensity. Such a strong magnetic field offers a new experimental test bed to study laser-plasma physics, in particular, fast-ignition laser fusion research and laboratory astrophysics.

  3. Stability Theory for Interfacial Patterns in Magnetic Pulse Welding

    Science.gov (United States)

    Nassiri, Ali; Chini, Gregory; Kinsey, Brad; UNH Team

    2013-11-01

    Magnetic Pulse Welding (MPW) is a solid state, high strain-rate joining process in which a weld of dissimilar or similar materials can be created via high-speed oblique impact of two workpieces. Experiments routinely show the emergence of a distinctive wavy pattern, with a well defined amplitude and wavelength of approximately 20 and 70 micrometers, respectively, at the interface between the two welded materials. Although the origin of the wavy pattern has been the subject of much investigation, a unique fundamental physical theory for this phenomenon is as yet not widely accepted. Some researchers have proposed that the interfacial waves are formed in a process akin to Kelvin-Helmholtz instability, with relative shear movement of the flyer and base plates providing the energy source. Here, we employ a linear stability analysis to investigate whether the wavy pattern could be the signature of a shear-driven high strain-rate instability of an elastic-plastic solid material. Preliminary results confirm that an instability giving rise to a wavy interfacial pattern is possible.

  4. Control of high power pulse extracted from the maximally compressed pulse in a nonlinear optical fiber

    CERN Document Server

    Yang, Guangye; Jia, Suotang; Mihalache, Dumitru

    2013-01-01

    We address the possibility to control high power pulses extracted from the maximally compressed pulse in a nonlinear optical fiber by adjusting the initial excitation parameters. The numerical results show that the power, location and splitting order number of the maximally compressed pulse and the transmission features of high power pulses extracted from the maximally compressed pulse can be manipulated through adjusting the modulation amplitude, width, and phase of the initial Gaussian-type perturbation pulse on a continuous wave background.

  5. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Directory of Open Access Journals (Sweden)

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  6. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Science.gov (United States)

    Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi

    2011-01-01

    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  7. High Performance Magnets

    Science.gov (United States)

    2000-03-29

    Our efforts in this project were focused on three different materials, namely; interstitial Sm-Fe carbides and nitrides, high energy product Nd2Fe14B ...magnets with MgO addition, and nanocomposite Nd2Fe14B /alpha-Fe consisting of a fine mixture of hard and soft phases. In the Sm-Fe carbides and

  8. Performance characteristics of an induction linac magnetic pulse compression modulator at multi-kilohertz pulse repetition frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S.E.; Chambers, F.W.; Deadrick, F.J. [and others

    1991-05-01

    The ETA-II linear induction accelerator utilizes four pulse power conditioning chains. Magnetic pulse compression modulators (MAG1-Ds) form the last stage of each chain. A single power conditioning chain is used to drive the injector; the remaining three are used to drive 60 accelerator cells. Nominal parameters of the MAG1-D are an output voltage of greater than 120 kV, pulse width of 70 ns, and an output impedance of 2 ohms. Our operations goal for ETA-II is stable high average power operation at 5 kHz PRF. We have begun upgrading and characterizing the power conditioning chain on our High Average Power Test Stand (HAPTS). On HAPTS, the pulse to pulse amplitude stability has been improved to less than 0.7% (one sigma) and of order 3-5 ns random jitter about a systematic timing variation. In this paper we describe the status of our work to achieve the this paper we describe the status of our work to achieve the average power operation of ETA-II

  9. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    Science.gov (United States)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  10. Effects of an external magnetic field in pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, C.P. 09790, Mexico DF (Mexico)], E-mail: tupacgarcia@yahoo.com; Posada, E. de [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico); Villagran, M. [CCADET, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-186, C.P. 04510, Mexico DF (Mexico); Ll, J.L. Sanchez [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, La Habana 10400 (Cuba); Bartolo-Perez, P.; Pena, J.L. [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico)

    2008-12-30

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe{sub 12}O{sub 19} target with and without the presence of a nonhomogeneous magnetic field of {mu}{sub 0}H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  11. Vacuum magnetic linear birefringence using pulsed fields: the BMV experiment

    CERN Document Server

    Cadène, A; Fouché, M; Battesti, R; Rizzo, C

    2013-01-01

    In this letter we present the measurement of the vacuum magnetic birefringence obtained using the first generation setup of the BMV experiment. In particular, we detail our procedure of data acquisition and our analysis which takes into account the symmetry properties of raw data with respect to the orientation of the magnetic field and the sign of the cavity birefringence. Our current value of vacuum magnetic linear birefringence k_CM was obtained with about 100 magnetic pulses and a maximum field of 6.5 T. We get k_CM = (-7.4 \\pm 8.7).10^{-21} T^{-2} at 3 sigma confidence level. Our result is a clear validation of our innovative experimental method.

  12. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guoping [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States)

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  13. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  14. Neutron investigations of magnetic properties of crystal substances with use of a pulsed magnetic field

    CERN Document Server

    Nitts, V V

    2001-01-01

    Bases for neutron researches of magnetic properties of crystal substances with use of a pulsed magnetic field and analysis of possible application of various neutron sources in this area are submitted. The review of the most interesting physical results is presented. Main investigations on pulsed reactors of JINR are researches on kinetics of the first order reorientational phase transitions induced in single crystals, and also measurements of antiferromagnetic ordering induced by an external magnetic field. Magnetic phase transitions, induced by a field up to 160 kOe in several magnetic ordering substances, were studied in KEK (Japan). Experiment on observation of spin-flop transition in MnF sub 2 was carried out on TRIGA-reactor in a mode of single flashes of power

  15. Application of magnetic pulse compression to the grid system of the ETA/ATA accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Birx, D.L.; Cook, E.G.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1982-11-02

    During the past year, several magnetic pulse compression systems have been built and applied to the ETA accelerator. In view of their excellent performance, a non-linear magnetic system has been adopted for the ATA grid drive in place of the spark gap driven Blumlein. The magnetic system will give us a much higher reliability and greater flexibility by being independent of the high pressure gas blown system. A further advantage of this system will be the capability of achieving higher rep-rates in case of a future upgrade. System design and performance under burst mode will be described.

  16. Effects of Pulsed Current and Pulsed Magnetic Field Complex Pretreatment on Martensite Transformation of Cr5 Steel during Continuous Cooling

    Institute of Scientific and Technical Information of China (English)

    Qing-chun LI; Li-juan LI; Guo-wei CHANG; Qi-jie ZHAI

    2015-01-01

    Carbide precipitation and martensite transformation in Cr5 steel have been observed in situ by high-temper-ature confocal laser-scanning microscopy.In this way,the influences of pulsed current and pulsed magnetic field complex pretreatment on carbide precipitation and martensite transformation during continuous cooling have been studied.The results show that the electropulsing complex pretreatment promotes the precipitation of M7 C3-type car-bides at high temperature,increases the start and finish temperatures of martensite transformation,and extends the phase transformation time.Martensite prefers to nucleate in the austenite with less precipitation of carbides due to the chemically homogeneous distribution of solute atoms.

  17. High reflection mirrors for pulse compression gratings.

    Science.gov (United States)

    Palmier, S; Neauport, J; Baclet, N; Lavastre, E; Dupuy, G

    2009-10-26

    We report an experimental investigation of high reflection mirrors used to fabricate gratings for pulse compression application at the wavelength of 1.053microm. Two kinds of mirrors are studied: the mixed Metal MultiLayer Dielectric (MMLD) mirrors which combine a gold metal layer with some e-beam evaporated dielectric bilayers on the top and the standard e-beam evaporated MultiLayer Dielectric (MLD) mirrors. Various samples were manufactured, damage tested at a pulse duration of 500fs. Damage sites were subsequently observed by means of Nomarski microscopy and white light interferometer microscopy. The comparison of the results evidences that if MMLD design can offer damage performances rather similar to MLD design, it also exhibits lower stresses; being thus an optimal mirror substrate for a pulse compression grating operating under vacuum.

  18. Control of high power IGBT modules in the active region for fast pulsed power converters

    CERN Document Server

    Cravero, J M; Garcia Retegui, R; Maestri, S; Uicich, G

    2014-01-01

    At CERN, fast pulsed power converters are used to supply trapezoidal current in different magnet loads. These converters perform output current regulation by using a high power IGBT module in its ohmic region. This paper presents a new strategy for pulsed current control applications using a specifically designed IGBT driver.

  19. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression

    Science.gov (United States)

    Varshnay, N. K.; Singh, A.; Benerji, N. S.

    2017-02-01

    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  20. MAGNETIC-PULSE CAR BODY PANELS FLATTENING. THEORETICAL ASPECTS AND PRACTICAL RESULTS

    Directory of Open Access Journals (Sweden)

    Yu.V. Batygin

    2016-09-01

    Full Text Available The aim of the article is to provide theoretical and experimental studying of the «induction system with an attractive screen» practical effectiveness with the excited magnetic pulse attractive forces numerical estimation. Originality. For the first time, the theoretical analysis of the electrodynamics process for the «inductor system with attractive screen» at the low frequent assumption were conducted. Methodology of the analysis applied is based on the classic electrodynamics circuits theory. All of the resulted carried out, were obtained as the Maxwell’s differential equation solutions and its behavior was analyzed analytically. Results. The electrodynamics process was analyzed and the principle efficiency of the «induction system with an attractive screen» as an effective tool for magnetic pulse forming of the thin sheet metals was substantiated. The axis distributions of the attractive forces based on the relations been obtained were illuminated graphically. The results of experimental testing of the system in the engineering operation of the external non-contact dents removing on the car body panels samples were presented. Practical value. According to the results of the calculation analyses the fundamental workability of the «inductor system with attractive shield» as an effective magnetic pulse sheet metal part attraction tool was proved. It was shown that the not deep metal surface damages could be worked up by magnetic pulses technologies with a high performance in a short time.

  1. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression

    Indian Academy of Sciences (India)

    N K VARSHNAY; A A SINGH; N S BENERJI

    2017-02-01

    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C–C energy transfer circuit and thyratron is used as a high-voltage main switch with singlestage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni–Zn ferrite cores. The laser can generate about 150 mJ at ∼100 Hz rep-rate reliably from a discharge volumeof 100 cm$^3$. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  2. High power parallel ultrashort pulse laser processing

    Science.gov (United States)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  3. Efficient High-Energy Pulse-Train Generation Using a 2 n-Pulse Michelson Interferometer.

    Science.gov (United States)

    Siders, C W; Siders, J L; Taylor, A J; Park, S G; Weiner, A M

    1998-08-01

    We demonstrate a novel, Michelson-based, ultrafast multiplexer with a throughput approaching 100% for a polarization-multiplexed train and 50% for a linearly polarized train, which is compatible with a high-energy pulse train and shaped-pulse generation. The interpulse spacings in the resultant 2(n)-pulse train can be adjusted continuously from multinanoseconds through zero. Using this interferometer, we also demonstrate generation of a 16-pulse train of terahertz pulses.

  4. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  5. Generation And Measurement Of High Contrast Ultrashort Intense Laser Pulses

    CERN Document Server

    Konoplev, O A

    2000-01-01

    In this thesis, the generation and measurement of high contrast, intense, ultrashort pulses have been studied. Various factors affecting the contrast and pulse shape of ultrashort light pulses from a chirped pulse amplification (CPA) laser system are identified. The level of contrast resulting from influence of these factors is estimated. Methods for improving and controlling the pulse shape and increasing the contrast are discussed. Ultrahigh contrast, 1-ps pulses were generated from a CPA system with no temporal structure up to eleven orders of magnitude. This is eight orders of magnitude higher contrast than the original pulse. This contrast boost was achieved using two techniques. One is the optical pulse cleaning based on the nonlinear birefringence of the chirping fiber and applied to the pulses before amplification. The other is the fast saturable absorber. The fast saturable absorber was placed after amplification and compression of the pulse. The measurements of high-contrast, ultrashort pulse with h...

  6. A high precision magnetometer based on pulsed NMR

    NARCIS (Netherlands)

    Prigl, R; Haeberlen, U; Jungmann, K; Putlitz, GZ; vonWalter, P

    1996-01-01

    A magnetometer based on pulsed proton magnetic resonance has been developed and constructed. The system will be employed for an accurate measurement of the absolute magnetic field in the region of 1.45 T in a precision experiment on the muon's anomalous magnetic moment at the Brookhaven National Lab

  7. Pulsed magnetic field measurement system based on colossal magnetoresistance-B-scalar sensors for railgun investigation.

    Science.gov (United States)

    Stankevič, T; Medišauskas, L; Stankevič, V; Balevičius, S; Żurauskienė, N; Liebfried, O; Schneider, M

    2014-04-01

    A high pulsed magnetic field measurement system based on the use of CMR-B-scalar sensors was developed for the investigations of the electrodynamic processes in electromagnetic launchers. The system consists of four independent modules (channels) which are controlled by a personal computer. Each channel is equipped with a CMR-B-scalar sensor connected to the measurement device-B-scalar meter. The system is able to measure the magnitude of pulsed magnetic fields from 0.3 T to 20 T in the range from DC up to 20 kHz independently of the magnetic field direction. The measurement equipment circuit is electrically separated from the ground and shielded against low and high frequency electromagnetic noise. The B-scalar meters can be operated in the presence of ambient pulsed magnetic fields with amplitudes up to 0.2 T and frequencies higher than 1 kHz. The recorded signals can be transmitted to a personal computer in a distance of 25 m by means of a fiber optic link. The system was tested using the electromagnetic railgun RAFIRA installed at the French-German Research Institute of Saint-Louis, France.

  8. Innovation on high-power long-pulse gyrotrons

    Science.gov (United States)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-12-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H&CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  9. Enhancement of the amplitude of somatosensory evoked potentials following magnetic pulse stimulation of the human brain.

    Science.gov (United States)

    Seyal, M; Browne, J K; Masuoka, L K; Gabor, A J

    1993-01-01

    In this study we have demonstrated an enhancement of cortically generated wave forms of the somatosensory evoked potential (SEP) following magnetic pulse stimulation of the human brain. Subcortically generated activity was unaltered. The enhancement of SEP amplitude was greatest when the median nerve was stimulated 30-70 msec following magnetic pulse stimulation over the contralateral parietal scalp. We posit that the enhancement of the SEP is the result of synchronization of pyramidal cells in the sensorimotor cortex resulting from the magnetic pulse.

  10. High voltage pulse generator. [Patent application

    Science.gov (United States)

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  11. High field rf superconductivity: to pulse or not to pulse

    Energy Technology Data Exchange (ETDEWEB)

    Campisi, I.E.

    1984-10-01

    Experimental data on the behavior of superconductors under the application of rf fields of amplitude comparable to their critical fields are sporadic and not always consistent. In many cases the field level at which breakdown in superconducting rf cavities should be expected has not been clearly established. Tests conducted with very short (approx. 1 ..mu..s) rf pulses indicate that in this mode of operation fields close to the critical values can be consistently reached in superconducting cavities without breakdown. The advantages and disadvantages of the pulsed method are discussed compared to those of the more standard continuous wave (cw) systems. 60 references.

  12. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  13. Pulsed Magnetic Field Driven Gas Core Reactors for Space Power & Propulsion Applications

    Science.gov (United States)

    Anghaie, Samim; Smith, Blair; Knight, Travis; Butler, Carey

    2003-01-01

    The present results indicated that: 1. A pulsed magnetic driven fission power concept, PMD-GCR is developed for closed (NER) and semi-open (NTR) operations. 2. In power mode, power is generated at alpha less than 1 for power levels of hundreds of KW or higher 3. IN semi open NTR mode, PMD-GCR generates thrust at I(sub sp) approx. 5,000 s and jet power approx. 5KW/Kg. 4. PMD-GCR is highly subcritical and is actively driven to critically. 5. Parallel path with fusion R&D needs in many areas including magnet and plasma.

  14. Development of high-voltage pulse-slicer unit with variable pulse duration for pulse radiolysis system

    Science.gov (United States)

    Upadhyay, J.; Sharma, M. L.; Navathe, C. P.; Toley, M. A.; Shinde, S. J.; Nadkarni, S. A.; Sarkar, S. K.

    2012-02-01

    A high-voltage pulse-slicer unit with variable pulse duration has been developed and integrated with a 7 MeV linear electron accelerator (LINAC) for pulse radiolysis investigation. The pulse-slicer unit provides switching voltage from 1 kV to 10 kV with rise time better than 5 ns. Two MOSFET based 10 kV switches were configured in differential mode to get variable duration pulses. The high-voltage pulse has been applied to the deflecting plates of the LINAC for slicing of electron beam of 2 μs duration. The duration of the electron beam has been varied from 30 ns to 2 μs with the optimized pulse amplitude of 7 kV to get corresponding radiation doses from 6 Gy to 167 Gy.

  15. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    Science.gov (United States)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  16. Inductive Pulse Forming Network For High-Current, High-Power Applications

    OpenAIRE

    2011-01-01

    Patent An inductive pulse forming network stores electrical energy delivered from an outside prime power supply in the electric field of a low-voltage, high-energy density network capacitor. Through timed actuation of a series of one or more switches, the energy stored in the electric field of the network capacitor is subsequently converted to electrical energy stored in the magnetic field of a network inductor. The energy stored in the network inductor supplies high-c...

  17. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states

    Science.gov (United States)

    Heo, Changhoon; Kiselev, Nikolai S.; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-06-01

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion.

  18. Curling probe measurement of a large-volume pulsed plasma with surface magnetic confinement

    Science.gov (United States)

    Pandey, A.; Tashiro, H.; Sakakibara, W.; Nakamura, K.; Sugai, H.

    2016-12-01

    A curling probe (CP) based on microwave resonance is applied to the measurement of electron density in a pulsed DC glow discharge under surface magnetic confinement (SMC) provided by a number of permanent magnets on a chamber wall. Owing to the SMC effects, a 1 m scale large-volume plasma is generated by a relatively low voltage (~1 kV) at low pressure (~1 Pa) in various gases (Ar, CH4, and C2H2). Temporal variation of the electron density is measured for pulse frequency f  =  0.5-25 kHz for various discharge-on times (T ON) with a high resolution time (~0.2 µs), using the on-point mode. In general, the electron density starts to increase at time t  =  0 after turn-on of the discharge voltage, reaches peak density at t  =  T ON, and then decreases after turn-off. The peak electron density is observed to increase with the pulse frequency f for constant T ON owing to the residual plasma. This dependence is successfully formulated using a semi-empirical model. The spatio-temporal evolution of the cathode sheath in the pulsed discharge is revealed by a 1 m long movable CP. The measured thickness of the high-voltage cathode fall in a steady state coincides with the value of the so-called Child-Langmuir sheath.

  19. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation

    Science.gov (United States)

    Tseytlin, Mark; Epel, Boris; Sundramoorthy, Subramanian; Tipikin, Dmitriy; Halpern, Howard J.

    2016-11-01

    In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7 MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30 dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26 MHz and using sinusoidal modulation at 480 kHz.

  20. Differential effects of magnetic pulses on the orientation of naturally migrating birds.

    Science.gov (United States)

    Holland, Richard A

    2010-11-01

    In migratory passerine birds, strong magnetic pulses are thought to be diagnostic of the remagnetization of iron minerals in a putative sensory system contained in the beak. Previous evidence suggests that while such a magnetic pulse affects the orientation of migratory birds in orientation cages, no effect was present when pulse-treated birds were tested in natural migration. Here we show that two migrating passerine birds treated with a strong magnetic pulse, designed to alter the magnetic sense, migrated in a direction that differed significantly from that of controls when tested in natural conditions. The orientation of treated birds was different depending on the alignment of the pulse with respect to the magnetic field. These results can aid in advancing understanding of how the putative iron-mineral-based receptors found in birds' beaks may be used to detect and signal the intensity and/or direction of the Earth's magnetic field.

  1. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  2. Controlling magnetism by ultrashort laser pulses: from fundamentals to nanoscale engineering

    Science.gov (United States)

    Bossini, D.; Rasing, Th.

    2016-06-01

    From the discovery of sub-picosecond demagnetization over a decade ago [1] to the recent demonstration of magnetization reversal by a single 40 femtosecond laser pulse [2], the manipulation of spins by ultra-short laser pulses has become a fundamentally challenging topic with a potentially high impact for future spintronics, data storage and manipulation and quantum computation [3]. It was realized that the femtosecond laser induced all-optical switching (AOS) as observed in ferrimagnets exploits the laser induced strongly non-equilibrium dynamics and the antiferromagnetic exchange interaction between their sublattices [4-6]. This opens the way to engineer new magnetic materials for AOS [7,8], though for real applications nanoscale control of inhomogeneities appears to be relevant [9]. Besides the intruiging technological implications of these observations, they broadened remarkably the frontiers of our fundamental knowledge of magnetic phenomena. The laser driven out-of-equilibrium states cannot be described in term of the well-established thermodynamical approach, which is based on the concepts of equilibrium and adiabatic transformations. Theoretical efforts, although in their infancy, have already demonstrated [5,6] that light-induced spin dynamics on the (sub)-picosecond time scale results in phenomena utterly forbidden in a thermodynamical framework. Another challenge is how to bring the optical manipulation of magnetic media to the required nanoscale. This is clearly a key element for the perspectives in terms of magnetic recording. In addition, it would allow to explore a novel regime of spin dynamics, since the investigation of magnets on the femtosecond time-scale and the nanometer length-scale simultaneously is unexplored. One experimental approach which may be successful makes use of wave-shaping techniques [10]. Recent results with engineered hybrid magnetic materials and nanofocusing via a plasmonic antenna showed the practical potential of AOS: the

  3. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose...

  4. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    Science.gov (United States)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  5. 10 K high frequency pulse tube cryocooler with precooling

    Science.gov (United States)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  6. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Floyd; /Diversified Tech., Bedford; Kardo-Sysoev, A.; /Ioffe Phys. Tech. Inst.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to

  7. Analysis and Optimisation of Pulse Dynamics for Magnetic Stimulation

    CERN Document Server

    Goetz, Stefan M; Gerhofer, Manuel G; Weyh, Thomas; Herzog, Hans-Georg

    2011-01-01

    Magnetic stimulation is a standard tool in brain research and many fields of neurology, as well as psychiatry. From a physical perspective, one key aspect of this method is the inefficiency of available setups. Whereas the spatial field properties have been studied rather intensively with coil designs, the dynamics have been neglected almost completely for a long time. Instead, the devices and their technology defined the waveform. Here, an analysis of the waveform space is performed. Based on these data, an appropriate optimisation approach is outlined which makes use of a modern nonlinear axon description of a mammalian motor nerve. The approach is based on a hybrid global-local method; different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for sufficient stability. The results of the numeric setup suggest that there is plenty of room for waveforms with higher efficiency than the traditional shapes. One class of such pulses is analysed further. Although...

  8. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  9. Experimental Study of SO2 Removal by Pulsed DBD Along with the Application of Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    RONG Ming-zhe; LIU Ding-xin; WANG Xiao-hua; WANG Jun-hua

    2007-01-01

    Dielectric barrier discharge (DBD) for SO2 removal from indoor air is investigated.In order to improve the removal efficiency,two novel methods are combined in this paper,namely by applying a pulsed driving voltage with nanosecond rising time and applying a magnetic field.For SO2 removal efficiency,different matches of electric field and magnetic field are discussed.And nanosecond rising edge pulsed power supply and microsecond rising edge pulsed power supply are compared.It can be concluded that a pulsed DBD with nanosecond rising edge should be adopted,and electrical field and magnetic field should be applied in an appropriate match.

  10. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobin, E-mail: yangxb@lzu.edu.cn; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-04-15

    Highlights: • The differential equation including temperature and magnetic field was derived for a long cylindrical superconductor. • Thermal stress and electromagnetic stress were studied at the same time under pulse field magnetizing. • The distributions of the magnetic field, the temperature and stresses are studied and compared for two pulse fields of the different duration. • The Role thermal stress and electromagnetic stress play in the process of pulse field magnetizing is discussed. - Abstract: A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  11. Effect of pulse magnetic field on solidification structure and properties of pure copper

    Institute of Scientific and Technical Information of China (English)

    LIAO Xi-liang; GONG Yong-yong; LI Ren-xing; CHEN Wen-jie; ZHAI Qi-jie

    2007-01-01

    The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification structure,mechanical properties and conductivity of pure copper was experimentally investigated. The results showed that the solidification structure transformed from coarse columnar crystal to fine globular crystal with increasing pulse voltage.Increasing pulse voltage also improved the tensile strength. However, with the increase of pulse voltage, the elongation and electrical resistivity firstly decreased, then increased when the pulse voltage beyond a critical value. Moreover,in some conditions, pulse magnetic field can simultaneously improve the conductivity and mechanical property of pure copper.

  12. Interaction of CO2 laser pulses with solid targets in magnetic fields

    Science.gov (United States)

    Loter, N. G.; Halverson, W.; Lax, B.

    1981-08-01

    High-temperature plasmas were generated by focussing 225-J gain-switched CO2 laser pulses onto planar solid targets within the bore of a Bitter solenoid magnet. DC magnetic fields up to 100 kG were applied parallel to the laser propagation vector, partially confining a long plasma column streaming away from the target. Target materials included teflon (CF2), graphite, and Al. Soft x-ray diagnostics, including a dual-channel, time-resolving TAP crystal spectrometer, a pinhole camera, and differentially-filtered p-i-n diodes, were used to determine electron density, electron temperature, and axial and radial expansion characteristics of the plasma. From these measurements, it was deduced that effects of refraction became increasingly important as B was increased; furthermore, these effects were strongly dependent on target material. For all targets, refraction occurred late in the pulse when the radially confined plasmas left the focal volume. For teflon and aluminum targets, but not for the lower Z graphite targets, it was inferred that significant side scattering also occurred early in the pulse with sufficiently strong magnetic fields.

  13. Pulse-Current-Induced Switching of Ta/CoFeB/MgO with Perpendicular Magnetic Anisotropy

    Science.gov (United States)

    Hung, Yu-Ming; Rehm, Laura; Wolf, Georg; Kent, Andrew D.

    2015-03-01

    We study current-induced switching of thin magnetic layers with perpendicular magnetic anisotropy using in-plane currents and the spin-Hall effect in the quasi-static (swept current) and pulsed-current regimes. Our aim is to investigate the dynamics and efficiency of spin-transfer switching. The layer stacks consists of β-Ta(5nm)/Co40Fe40B20(0.8nm)/MgO(2nm)/Ta(2nm) layers on oxidized silicon substrates. Hall bar structures with dimensions of 15 × 180 μm2 and cross shaped devices with width of 6 μm are investigated with DC transport and pulse measurement, respectively. In DC transport experiments, we could switch the magnetization states reproducibly by varying the in-plane field and current. In pulsed experiments, we measured the dependence of the switching probability on pulse amplitude and duration in the presence of an in-plane field. A histogram analysis indicates the existence of intermediate states and suggests incoherent magnetization switching. Nearly 100% switching probability could be achieved at high enough pulse amplitude of 25.5 MA/cm2 with 10 ns pulse duration and an applied field of ~120 mT. Supported by SRC-INDEX program.

  14. Reliable spin-transfer torque driven precessional magnetization reversal with an adiabatically decaying pulse

    Science.gov (United States)

    Pinna, D.; Ryan, C. A.; Ohki, T.; Kent, A. D.

    2016-05-01

    We show that a slowly decaying current pulse can lead to nearly deterministic precessional switching in the presence of noise. We consider a biaxial macrospin, with an easy axis in-plane and a hard axis out-of-plane, typical of thin film nanomagnets patterned into asymmetric shapes. Out-of-plane precessional magnetization orbits are excited with a current pulse with a component of spin polarization normal to the film plane. By numerically integrating the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation we show that thermal noise leads to strong dephasing of the magnetization orbits. However, an adiabatically decreasing pulse amplitude overwhelmingly leads to magnetization reversal, with a final state dependent on the pulse polarity. We develop an analytic model to explain this phenomena and to determine the pulse decay time necessary for adiabatic magnetization relaxation and thus deterministic magnetization switching.

  15. Generation of high harmonics and attosecond pulses with ultrashort laser pulse filaments and conical waves

    Indian Academy of Sciences (India)

    A Couairon; A Lotti; D Faccio; P Di Trapani; D S Steingrube; E Schulz; T Binhammer; U Morgner; M Kovacev; M B Gaarde

    2014-08-01

    Results illustrating the nonlinear dynamics of ultrashort laser pulse filamentation in gases are presented, with particular emphasis on the filament properties useful for developing attosecond light sources. Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes and subcycle pulses generated within the filament. (ii) Simulation results on the spontaneous formation of conical wavepackets during filamentation in gases, which in turn can be used as efficient driving pulses for the generation of high harmonics and isolated attosecond pulses.

  16. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  17. Generating long sequences of high-intensity femtosecond pulses

    CERN Document Server

    Bitter, Martin

    2015-01-01

    We present an approach to create pulse sequences extending beyond 150~picoseconds in duration, comprised of $100~\\mu$J femtosecond pulses. A quarter of the pulse train is produced by a high-resolution pulse shaper, which allows full controllability over the timing of each pulse. Two nested Michelson interferometers follow to quadruple the pulse number and the sequence duration. To boost the pulse energy, the long train is sent through a multi-pass Ti:Sapphire amplifier, followed by an external compressor. A periodic sequence of 84~pulses of 120~fs width and an average pulse energy of 107~$\\mu$J, separated by 2~ps, is demonstrated as a proof of principle.

  18. Broadband finite-pulse radio-frequency-driven recoupling (fp-RFDR) with (XY8)4(1) super-cycling for homo-nuclear correlations in very high magnetic fields at fast and ultra-fast MAS frequencies.

    Science.gov (United States)

    Shen, Ming; Hu, Bingwen; Lafon, Oliver; Trébosc, Julien; Chen, Qun; Amoureux, Jean-Paul

    2012-10-01

    We demonstrate that inter-residue (13)C-(13)C proximities (of about 380 pm) in uniformly (13)C-labeled proteins can be probed by applying robust first-order recoupling during several milliseconds in single-quantum single-quantum dipolar homo-nuclear correlation (SQ-SQ D-HOMCOR) 2D experiments. We show that the intensity of medium-range homo-nuclear correlations in these experiments is enhanced using broadband first-order finite-pulse radio-frequency-driven recoupling (fp-RFDR) NMR sequence with a nested (XY8)4(1) super-cycling. The robustness and the efficiency of the fp-RFDR-(XY8)4(1) method is demonstrated at high magnetic field (21.1T) and high Magic-Angle Spinning (MAS) speeds (up to 60 kHz). The introduced super-cycling, formed by combining phase inversion and a global four-quantum phase cycle, improves the robustness of fp-RFDR to (i) chemical shift anisotropy (CSA), (ii) spread in isotropic chemical shifts, (iii) rf-inhomogeneity and (iv) hetero-nuclear dipolar couplings for long recoupling times. We show that fp-RFDR-(XY8)4(1) is efficient sans (1)H decoupling, which is beneficial for temperature-sensitive biomolecules. The efficiency and the robustness of fp-RFDR-(XY8)4(1) is investigated by spin dynamics numerical simulations as well as solid-state NMR experiments on [U-(13)C]-L-histidine·HCl, a tetra-peptide (Fmoc-[U-(13)C,(15)N]-Val-[U-(13)C,(15)N]-Ala-[U-(13)C,(15)N]-Phe-Gly-t-Boc) and Al(PO(3))(3).

  19. High voltage high repetition rate pulse using Marx topology

    Science.gov (United States)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  20. Analysis of Graphite Morphology of Gray Cast Iron in Pulse Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LI Qiu-shu; LIU Li-qiang; ZHAI Qi-jie

    2005-01-01

    By self-made pulse electrical source and strong magnetic field solidification tester,the effect of strong pulse magnetic field on graphite morphology and solidification structure of gray cast iron was studied.The results show that the structure is remarkably refined after treated by pulse magnetic field,and the width of graphite flakes is decreased while the length is increased after a slight decrease.The solidification temperature and eutectic temperature are increased and the undercooling degree of eutectic transformation is decreased by magnetic field.

  1. 25--30 T water cooled pulse magnet concept for neutron scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Eyssa, Y.M.; Walsh, R.P.; Miller, J.R.; Pernambuco-Wise, P.; Bird, M.D.; Schneider-Muntau, H.J. [National High Magnetic Field Lab., Tallahassee, FL (United States); Boeing, H.; Robinson, R. [Los Alamos National Lab., NM (United States)

    1997-12-31

    The Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory is in need of a high field, split-pair, pulse magnet that would provide a 25--30 T field in a 25 mm bore and 10 mm split gap for 2--4 ms at a repetition rate of 2 Hz. Single stack Bitter magnets of this type providing less than 20 T vertical field in the split gap have been constructed before. To produce higher fields, there is a need to use a multiple layer coil with internal reinforcement. The magnet should withstand up to 10{sup 7} cycles of loading and unloading. The authors have conducted a feasibility study that address these unique requirements.

  2. Anomalous magnetic behaviour of NdCu 2 in high magnetic fields

    Science.gov (United States)

    Doerr, M.; Kramp, S.; Loewenhaupt, M.; Rotter, M.; Kratz, R.; Krug, H.; Eckert, D.; Siegel, H.; Verges, P.

    2001-01-01

    Some of the RCu 2 compounds (R=Ce,Pr,Tb,Dy) with easy a-axis show an irreversible change of the easy axis into the c-direction in high magnetic fields. This metamagnetic “axis conversion” is caused by a strong magneto-elastic coupling in the ac-plane. With NdCu 2 a similar magnetic behaviour was found for the first time in a system with an easy axis perpendicular to the ac-plane. We present results of magnetization in static magnetic fields up to 14 T. The minimum conversion field is μ0Hcrit=12.5 T which is higher than in the other compounds. At low temperatures the magnetic axis conversion coincides with the transition into the induced ferromagnetic state. Magnetization measurements were also carried out in pulsed fields up to 50 T. They show an almost linear increase of the conversion fields with temperature which gives a strong evidence that the conversion is caused by an effective quadrupolar coupling. In addition, comparing the results of static and pulsed field experiments, an influence of field duration on the conversion process was found. The high-precision pulsed field magnetization experiments were done in the Dresden high magnetic field facility (HLD).

  3. High Power Semiconductor Devices and Solid State Switches for Pulsed Discharge Applications

    OpenAIRE

    Fleischmann, W.; Welleman, A.

    2006-01-01

    Based on long term experience, collected mainly with military applications like Rail Guns and Active Armour, a range of optimized semiconductor devices for pulsed applications was developed by ABB Switzerland Ltd and described in this presentation. The presented devices are optimized for pulsed discharge and fit very well for switching the short but high electrical power demand used for magnetic forming. Devices are available in different versions with silicon wafer diameters up to 120 mm and...

  4. Measurement of low-frequency magnetic pulses from negative stepped leaders in rocket-triggered lightning flashes

    Science.gov (United States)

    Lu, Gaopeng

    2017-04-01

    Measurement of low-frequency magnetic pulses from negative stepped leaders in rocket-triggered lightning flashes Gaopeng Lu,1,2 Yanfeng Fan,1,3 Hongbo Zhang,1,3 Rubin Jiang,1,2 Mingyuan Liu,1,2 and Xiushu Qie,1,2 1. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China 2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China 3. University of Chinese Academy of Sciences, Beijing 100049, China We report the measurement of magnetic pulses from the negative stepped leaders in positive rocket-triggered lightning flashes with the low-frequency (4 kHz to 420 kHz) magnetic sensor at two different distances (78 m and 970 m, respectively) during the SHantong Artificial Triggered Lightning Experiments (SHATLE) during summer of 2015. Different from the magnetic radiation from positive leaders as observed in the considerably more frequent cases, the impulsive signals from the negative leader sustain for a much longer time interval, while the attenuation of current pulse launched by the stepping of leader is also observed. The general pattern of magnetic pulses observed for the negative stepped leader is different from the positive counterpart. Also, the initial negative leader appears to be brighter than the positive ones, as shown by both high-speed video observation and the magnetic measurement.

  5. The break of shielding current at pulsed field magnetization of a superconducting annulus (experiment and model simulation)

    Science.gov (United States)

    Korotkov, V. S.; Krasnoperov, E. P.; Kartamyshev, A. A.

    2017-09-01

    During the pulsed field magnetization of a high-T c annulus in liquid nitrogen the shielding current drops abruptly, providing rapid penetration of the magnetic flux into the hole of the superconductor. After the break of current the trapped field in the hole is small and negative although the body of the annulus remains highly magnetized. In the present work the current breaking effect is investigated both experimentally and numerically. The influence of the pulse parameter on the shielding current evolution during the break is researched. A simple model for the qualitative description of this process is proposed. The model shows the development of heating localized on the inhomogeneity of the high-temperature superconductor annulus providing the formation of a high resistive channel with temperature near to T c. The appearance of this hot channel leads to the rapid reduction of the shielding current and presents a new scenario of flux jump at high temperature.

  6. Iridate compound produces extraordinarily high coercive magnetic field

    Science.gov (United States)

    Zapf, Vivien; Topping, Craig; Kim, Jae-Wook; Mun, Eun-Deok; Goddard, Paul; Ghannadzadeh, Saman; Luo, Xuan; Cheong, Sang-Wook; Singleton, John

    2014-03-01

    We present a data on an iridate compound that shows an extraordinarily large magnetic hysteresis loop. The coercive magnetic field exceeds 40 Tesla in single-crystal samples. The hysteresis coexists with a linear background, and the total remanent magnetization is about half a Bohr magneton. We will discuss the emergence of these properties from the interplay of spin-orbit coupling, magnetic exchange and possible frustration. The single crystalline material exhibits a magnetic hysteresis loop for one orientation of the magnetic field and a smooth linear increase in the magnetization with field for the other. Measurements were conducted in 65 T short-pulse magnets and the 60 Tesla shaped-pulse magnet at the National High Magnetic Field Lab in Los Alamos. We do not observe any dependence of the magnetic hysteresis on magnetic field sweep rate. Compounds containing Ir4 + have attracted attention recently due to strong spin-orbit coupling that competes with crystal-electric field and exchange interactions. This competition can result in non-Hund's-rule ground states with unusual properties.

  7. Full-density, net-shape powder consolidation using dynamic magnetic pulse pressures

    Science.gov (United States)

    Chelluri, Bhanu; Barber, John P.

    1999-07-01

    The full-density consolidation of powders into net-shape parts yields high green strength, low shrinkage, short sinter times, superior mechanical properties, and low manufacturing costs. The conventional lowcost, single-press, single-sinter process typically densifies powders at less than 65 percent green density. This article describes the Magnepress™ process, a powder-processing technique wherein pulsed magnetic pressures consolidate powders into full-density parts without admixed lubricants or binders. The Magnepress technique is especially suitable for producing net-shape products with radial symmetry (e.g., rods, cylindrical parts with internal features, tubular shapes, and high aspect-ratio specimens).

  8. High voltage pulse cable and connector experience in the kicker systems at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Harris, K.; Artusy, M.; Donaldson, A.; Mattison, T.

    1991-05-01

    The SLAC 2-mile linear accelerator uses a wide variety of pulse kicker systems that require high voltage cable and connectors to deliver pulses from the drivers to the magnet loads. Many of the drivers in the SLAC kicker systems use cable lengths up to 80 feet and are required to deliver pulses up to 40 kV, with rise and fall time on the order of 20 ns. Significant pulse degradation from the cable and connector assembly cannot be tolerated. Other drivers are required to deliver up to 80 kV, 20 {mu}s pulses over cables 20 feet long. Several combinations of an applicable high voltage cable and matching connector have been used at SLAC to determine the optimum assembly that meets the necessary specifications and is reliable. 14 refs., 3 figs., 1 tab.

  9. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  10. High reliability low jitter pulse generator

    Science.gov (United States)

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  11. Dissipation of Alfven wave pulses propagating along dipole magnetic tubes with reflections at the ionosphere

    NARCIS (Netherlands)

    Erkaev, NV; Shaidurov, VA; Semenov, VS; Biernat, HK; Heidorn, D; Lakhina, GS

    2006-01-01

    A ratio of the maximal and minimal cross sections of the magnetic tube (contraction ratio) is a crucial parameter which affects very strongly on reflections of MHD wave pulses propagating along a narrowing magnetic flux tube. In cases of large contraction ratios of magnetospheric magnetic tubes, the

  12. Characteristics of Magnetic Tribology on High Flux Pair of Magnetic Driving Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHOUQiang; XURui-qing; XUHong-qiu

    2004-01-01

    The rectangle-like pulsed magnetic field acted on the rubbing pair was presents through analyzing the exciting property in the reciprocationg travel the test of wear in NG-x tester shows that the wear between the electromagnetic core and down magnetic board distributes in the high veloctity slip region of reciprocating travel,an the adhesive wear in the low velocity slip region nearby up and down dead points is depressed owing to the presence of high flux magnetic field.the lubrication by magnetic fluid with high permeability effectively reduces the friction and wear of high flux rubbing pair and mproves the conductiong property of magnetic circuit constructed by the rubbing pair which is beneficial to increase the operation performance of magnetic driving mechanism.

  13. Strategies, Protections and Mitigations for Electric Grid Affets from Electro-Magnetic Pulse

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Rita Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); Frickey, Steven Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due to its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.

  14. Repeating Pulsed Magnet System for Axion-like Particle Searches and Vacuum Birefringence Experiments

    CERN Document Server

    Yamazaki, T; Namba, T; Asai, S; Kobayashi, T; Matsuo, A; Kindo, K; Nojiri, H

    2016-01-01

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  15. Repeating pulsed magnet system for axion-like particle searches and vacuum birefringence experiments

    Science.gov (United States)

    Yamazaki, T.; Inada, T.; Namba, T.; Asai, S.; Kobayashi, T.; Matsuo, A.; Kindo, K.; Nojiri, H.

    2016-10-01

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  16. Development of high capacity Stirling type pulse tube cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Imura, J. [College of Science and Technology, Nihon University, 7-24-1, Narashinodai, Funabashi-shi, Chiba 274-8501 (Japan)], E-mail: junnosuke_imura@yahoo.co.jp; Shinoki, S.; Sato, T.; Iwata, N.; Yamamoto, H.; Yasohama, K. [College of Science and Technology, Nihon University, 7-24-1, Narashinodai, Funabashi-shi, Chiba 274-8501 (Japan); Ohashi, Y.; Nomachi, H.; Okumura, N. [Aisin Seiki Co., Ltd., 2-1, Asahi-machi, Kariya, Aichi 448-8650 (Japan); Nagaya, S.; Tamada, T.; Hirano, N. [Chubu Electric Power Co., Inc., 1, Toshin-cho, Higashi-ku, Nagoya-shi, Aichi 261-8680 (Japan)

    2007-10-01

    We have been developing a Stirling type pulse tube cryocooler, aiming for a cooling capacity of 200 W at 80 K for a superconducting magnetic energy storage system. In this work, we adopted stainless steel meshes for the regenerator of the cryocooler, and studied the influences of the mesh number on the cooling capacity. The prepared mesh numbers were 150, 200, 250, 350 and 400. Using 250 mesh, and at a frequency of 45 Hz and power consumption of 3.1 kW, the achievable lowest temperature and cooling capacity at 80 K was 46.2 K and 123 W, respectively. Furthermore, in order to optimize the performance, some regenerators were made by stacking several kinds of meshes with different stacking orders. Using these regenerators, we have obtained a high cooling capacity of 169 W at 80 K with power consumption of 4 kW.

  17. Development of high capacity Stirling type pulse tube cryocooler

    Science.gov (United States)

    Imura, J.; Shinoki, S.; Sato, T.; Iwata, N.; Yamamoto, H.; Yasohama, K.; Ohashi, Y.; Nomachi, H.; Okumura, N.; Nagaya, S.; Tamada, T.; Hirano, N.

    2007-10-01

    We have been developing a Stirling type pulse tube cryocooler, aiming for a cooling capacity of 200 W at 80 K for a superconducting magnetic energy storage system. In this work, we adopted stainless steel meshes for the regenerator of the cryocooler, and studied the influences of the mesh number on the cooling capacity. The prepared mesh numbers were #150, 200, 250, 350 and 400. Using #250 mesh, and at a frequency of 45 Hz and power consumption of 3.1 kW, the achievable lowest temperature and cooling capacity at 80 K was 46.2 K and 123 W, respectively. Furthermore, in order to optimize the performance, some regenerators were made by stacking several kinds of meshes with different stacking orders. Using these regenerators, we have obtained a high cooling capacity of 169 W at 80 K with power consumption of 4 kW.

  18. Nanosecond pulsed laser welding of high carbon steels

    Science.gov (United States)

    Ascari, Alessandro; Fortunato, Alessandro

    2014-03-01

    The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.

  19. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    Science.gov (United States)

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

  20. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique.

    Science.gov (United States)

    Smith, R J

    2010-10-01

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an ∼1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n(e)>10(19)-10(20) cm(-3) and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.

  1. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制∗%Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix comp osites

    Institute of Scientific and Technical Information of China (English)

    王宏明; 李沛思; 郑瑞; 李桂荣; 袁雪婷

    2015-01-01

    For aluminum matrix composite, the introduced particles will strengthen the matrix, but as the obstacles, the heterogeneous particles will hinder the dislocation movement, generate uneven material structure, and may become a source of stress concentration. Therefore, they are detrimental severely to the elongation and plasticity of composite. It is known that dislocations exhibit a paramagnetic behavior because they contain paramagnetic centers including localized electrons, holes, triplet excitons, ion radicals, etc. The initial radical pair of the dislocation-obstacle S (spin angular momentum)=± 1/2 is in a singlet state, and the total spin of the radical pair is 0 and in the antiparallel spin direction, offsetting a magnetism of the radical pair. The magnetic field can change the spin direction from singlet state to triplet state. In the triplet state the electron spin is 1 and in the same spin direction. A strong bond of the dislocation-obstacle is formed only in the singlet state when the spins of the two electrons are antiparallel. So an obstacle is able to pin a dislocation only if the radical pair is in the singlet state. Under the condition of high pulsed magnetic field treatment (HPMFT) the conversion of electronic spin will be a fundamental cause of dislocation motion along a glide plane. The movement of pinned dislocations will change the material microstructure and influence the performance of material. By comparing the microstructural evolutions and the residual stresses of samples subjected to HPMFT with different values of magnetic induced density (B), the positive influence of magnetoplastic effect on the plasticity of aluminum matrix composite is investigated in this paper. The results show that the dislocation density is significantly increased when B changes from 2 T to 4 T. When B = 4 T the dislocation density is enhanced by 3.1 times compared with that of the sample without HPMFT. Moreover, the residual stress is reduced apparently from 41

  2. High energy protons generation by two sequential laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  3. Ultrafast quantum spin-state switching in the Co-octaethylporphyrin molecular magnet with a terahertz pulsed magnetic field

    Science.gov (United States)

    Farberovich, Oleg V.; Mazalova, Victoria L.

    2016-05-01

    Molecular spin crossover switches are the objects of intense theoretical and experimental studies in recent years. This interest is due to the fact that these systems allow one to control their spin state by applying an external photo-, thermo-, piezo-, or magnetic stimuli. The greatest amount of research is currently devoted to the study of the effect of the photoexcitation on the bi-stable states of spin crossover single molecular magnets (SMMs). The main limitation of photo-induced bi-stable states is their short lifetime. In this paper we present the results of a study of the spin dynamics of the Co-octaethylporphyrin (CoOEP) molecule in the Low Spin (LS) state and the High Spin (HS) state induced by applying the magnetic pulse of 36.8 T. We show that the spin switching in case of the HS state of the CoOEP molecule is characterized by a long lifetime and is dependent on the magnitude and duration of the applied field. Thus, after applying an external stimuli the system in the LS state after the spin switching reverts to its ground state, whereas the system in the HS state remains in the excited state for a long time. We found that the temperature dependency of magnetic susceptibility shows an abrupt thermal spin transition between two spin states at 40 K. Here the proposed theoretical approach opens the way to create modern devices for spintronics with the controllable spin switching process.

  4. 20 W High Efficiency 1550 nm Pulsed Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High peak power short pulsed lasers have been considered to be an enabling technology to build high power transmitters for future deep space high rate space...

  5. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2009-01-01

    If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will disco

  6. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    Science.gov (United States)

    Zevenhoven, Koos C. J.; Dong, Hui; Ilmoniemi, Risto J.; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents.

  7. High speed sampling circuit design for pulse laser ranging

    Science.gov (United States)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  8. CONTROL SYSTEM FEATURES OF MAGNETIC-PULSE INSTALLATION AT UNIPOLAR MODE

    Directory of Open Access Journals (Sweden)

    Dzyubenko, A.

    2012-06-01

    Full Text Available Construction features of monitoring and control system of magnetic pulse installation at work in unipolar mode were detected. Installation control system algorithm at work in multiple repeating mode of discharge pulses is proposed. Description of monitoring and control system structure schemes and their purposes have been conducted.

  9. Irreversible modification of magnetic properties of Pt/Co/Pt ultrathin films by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kisielewski, J., E-mail: jankis@uwb.edu.pl [Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen (Netherlands); Laboratory of Magnetism, University of Białystok, Lipowa 41, 15-424 Białystok (Poland); Dobrogowski, W.; Kurant, Z.; Stupakiewicz, A.; Tekielak, M.; Maziewski, A. [Laboratory of Magnetism, University of Białystok, Lipowa 41, 15-424 Białystok (Poland); Kirilyuk, A.; Kimel, A.; Rasing, Th. [Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen (Netherlands); Baczewski, L. T.; Wawro, A. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland); Balin, K.; Szade, J. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2014-02-07

    Annealing ultrathin Pt/Co/Pt films with single femtosecond laser pulses leads to irreversible spin-reorientation transitions and an amplification of the magneto-optical Kerr rotation. The effect was studied as a function of the Co thickness and the pulse fluence, revealing two-dimensional diagrams of magnetic properties. While increasing the fluence, the creation of two branches of the out-of-plane magnetization state was found.

  10. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    Science.gov (United States)

    Kozlovskij, K. I.; Shikanov, A. E.; Vovchenko, E. D.; Shatokhin, V. L.; Isaev, A. A.; Martynenko, A. S.

    2016-09-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10-3-10-1 Torr and at the accelerating voltage up to 200 kV was observed.

  11. High Fidelity Single Qubit Operations using Pulsed EPR

    CERN Document Server

    Morton, J J L; Ardavan, A; Porfyrakis, K; Lyon, S A; Briggs, G A D; Morton, John J. L.; Tyryshkin, Alexei M.; Ardavan, Arzhang; Porfyrakis, Kyriakos

    2005-01-01

    The fidelity of quantum logic operations performed on electron spin qubits using simple RF pulses falls well below the threshold for the application of quantum algorithms. Using three independent techniques, we demonstrate the use of composite pulses to improve this fidelity by several orders of magnitude. The observed high-fidelity operations are limited by pulse phase errors, but nevertheless fall within the limits required for the application of quantum error correction algorithms.

  12. 脉冲磁场技术在高矫顽力稀土永磁测量领域的应用%Application of pulsed field technique to magnetic property measurements of rare earth based hard magnetic materials with high coercivity

    Institute of Scientific and Technical Information of China (English)

    林安利; 贺建; 张跃; John Dudding

    2009-01-01

    An inherent problem was introduced when measuring the magnetic properties of high coercivity hard magnetic materials with an existent static BH tracer (hysteresisograph) and the reason why the problem happens was discussed. To deal with the problem a pulsed field magnetometer (PFM) system based on the f-2f method, which could generates 8756kA·m~(-1) magnetic field, was designed and applied to measure the whole hysteresis loop of high coercivity hard magnetic materials. The technical advantages, structure and eddy current effect correction of the system were also introduced. It can be approved, from a large quantity of measurement results, that the long term repeatability of the system is very good. The deviation of magnetic properties, i.e. remanence B_r, intrinsic coercivity H_(cJ), magnetic flux density coercivity H_(cB), and maximum energy product (BH)_(max), measured with a PFM compared with that measured with a national standard static BH tracer is within 1% for low coercivity hard magnets. For high coercivity hard magnets the system could measure the whole hysteresis loop and solve the high coercivity problem that a static BH tracer could not avoid.%简述了超高矫顽力永磁体测量现状,分析了静态磁滞回线仪在测量高矫顽力永磁体时存在的问题及其原因.为解决此问题,采用"f-2f"原理建立了基于脉冲磁场技术的高矫顽力永磁测量装置,该装置能产生最高8756kA·m~(-1)的测量磁场,能够测量高矫顽力永磁体的整个磁滞回线.阐述了该脉冲磁场测量装置的优势、组成结构以及涡流修正方法.经过实验验证,该系统具有良好的测量重复性.与国家永磁标准测量装置的对比结果显示:在低矫顽力范围内两者剩磁Br、内禀矫顽力H_(cJ)、磁感应强度矫顽力H_(cB)和最大磁能积(BH)_(max)四个参数的测量偏差在1%以内;在高矫顽力范围,该装置解决了静态磁滞回线仪测量曲线变形的问题.

  13. Substrate dependent structural and magnetic properties of pulsed laser deposited Fe3O4 thin films.

    Science.gov (United States)

    Goyal, Rajendra N; Kaur, Davinder; Pandey, Ashish K

    2010-12-01

    Nanocrystalline iron oxide thin films have been deposited on various substrates such as quartz, MgO(100), and Si(100) by pulsed laser deposition technique using excimer KrF laser (248 nm). The orientations, crystallite size and lattice parameters were studied using X-ray diffraction. The XRD results show that the films deposited on MgO and Si substrates are highly oriented and show only (400) and (311) reflections respectively. On the other hand, the orientation of the films deposited on quarts substrate changed from (311) to (400) with an increase in the substrate temperature from 400 degrees C to 600 degrees C, indicating thereby that the film growth direction is highly affected with nature of substrate and substrate temperature. The surface morphology of the deposited films was studied using Atomic Force Microscopy (AFM) and spherical ball like regular features of nanometer size grains were obtained. The magnetic properties were studied by Superconducting Quantum Interference Device (SQUID) magnetometer in the magnetic field +/- 6 Tesla. The magnetic field dependent magnetization (M-H) curves of all the Fe3O4 thin films measured at 5 K and 300 K show the ferrimagnetic nature. The electrochemical sensing of dopamine studied for these films shows that the film deposited on MgO substrate can be used as a sensing electrode.

  14. Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei

    2004-01-01

    A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.

  15. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  16. The impacts of magnetic field on repetitive nanosecond pulsed dielectric barrier discharge in air

    Science.gov (United States)

    Liu, Yidi; Qi, Haicheng; Fan, Zhihui; Yan, Huijie; Ren, ChunSheng

    2016-11-01

    In this paper, the impacts of the parallel magnetic field on the repetitive nanosecond pulsed dielectric barrier discharge (DBD) are experimentally investigated by optical and electrical measurements. The DBD is generated between two parallel-plate electrodes in the ambient air with the stationary magnetic field on the order of 1 T. The experimental results show that additional microdischarge channels are generated and the photocurrent intensity of the plasma is increased by the magnetic field. The microdischarge channels develop along the magnetic field lines and the diffuse background emission of the discharge is stronger in the DBD with the magnetic field. As the pulse repetition frequency decreases from 1200 Hz to 100 Hz, only the photocurrent intensity of the third discharge that occurred at about 500 ns is noticeably increased by the additional magnetic field. It is believed that the enhancement of the memory effect and the confinement of the magnetic field on electrons are the main reasons.

  17. High-pressure dielectric barrier discharge Xenon lamps generating short pulses of high-peak-power VUV radiation (172nm) with high pulse-to-pulse reproducibility.

    Science.gov (United States)

    Carman, Robert; Ward, Barry; Mildren, Richard; Kane, Deborah

    2003-10-01

    Dielectric barrier discharges (DBDs) are used to efficiently generate radiation in the ultraviolet and vacuum-ultraviolet spectral regions (88nm-350nm) by forming rare-gas and rare-gas halide excimers in a transient plasma. Usually, DBD lamps generate the light output quasi-continuously or in bursts with a high degree of stochastic or random variability in the instantaneous UV/VUV intensity. However, regular pulses of high-peak-power UV/VUV, with high pulse-to-pulse reproducibility, are of interest for applications in biology, surface treatment and cleaning, and time-resolved fluorescence spectroscopy. Such pulses can be generated from spatially homogeneous plasmas in a Xe DBD when the discharge is driven by uni-polar voltage pulses of short duration ( 100ns)^1. In the present study, we will report Xe DBD lamp performance and VUV output pulse characteristics for gas pressures up to 2.5bar and excitation conditions tailored for high-peak-power output. The experimental results will be compared to theoretical results from a detailed 1-D computer model of the spatio-temporal evolution of the plasma kinetics and Xe species population densities. ^1R.P.Mildren and R.J.Carman, J.Phys.D, 34, L1-L6, (2001)

  18. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  19. Near infrared few-cycle pulses for high harmonic generation

    CERN Document Server

    Driever, Steffen; Delagnes, Jean-Christophe; Fedorov, Nikita; Arnold, Martin; Bigourd, Damien; Cormier, Eric; Guichard, Roland; Constant, Eric; Zair, Amelle

    2014-01-01

    We report on the development of tunable few-cycle pulses with central wavelengths from 1.6 um to 2 um. Theses pulses were used as a proof of principle for high harmonic generation in atomic and molecular targets. In order to generate such pulses we produced a filament in a 4 bar krypton cell. Spectral broadening by a factor of 2 to 3 of a 40 fs near infrared input pulse was achieved. The spectrally broadened output pulses were then compressed by fused silica plates down to the few-cycle regime close to the Fourier limit. The auto-correlation of these pulses revealed durations of about 3 cycles for all investigated central wavelengths. Pulses with a central wavelength of 1.7 um and up to 430 uJ energy per pulse were employed to generate high order harmonics in Xe, Ar and N2. Moving to near infrared few-cycle pulses opens the possibility to operate deeply in the non-perturbative regime with a Keldysh parameter smaller than 1. Hence, this source is suitable for the study of the non-adiabatic tunneling regime in ...

  20. High power pulses extracted from the Peregrine rogue wave

    CERN Document Server

    Yang, Guangye; Jia, SuoTang; Mihalache, Dumitru

    2013-01-01

    We address the various initial excitations of the Peregrine rogue wave and establish a robust transmission scheme of high power pulses extracted from the Peregrine rogue wave in a standard telecommunications fiber. The results show that the Peregrine rogue wave can be excited by using a weak pulse atop a continuous wave background and that the high power pulses extracted from the Peregrine rogue wave exhibit the typical characteristics of breathing solitons. The influence of higher-order effects, such as the third-order dispersion, the self-steepening and the Raman effect, on the propagation of the pulse extracted from the peak position and the interaction between neighboring high power pulses induced by initial perturbations are also investigated.

  1. Criterion of Magnetic Saturation and Simulation of Nonlinear Magnetization for a Linear Multi-core Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    曾正中; 蒯斌; 孙凤举; 丛培天; 邱爱慈

    2002-01-01

    The linear multi-core pulse transformer is an important primary driving source usedin pulsed power apparatus for the production of dense plasma owing to its compact, relatively low-cost and easy-to-handle characteristics. The evaluation of the magnetic saturation of the transformer cores is essential to the transformer design, because the energy transfer efficiency of the transformer will degrade significantly after magnetic saturation. This work proposes analytical formulas of the criterion of magnetic saturation for the cores when the transformer drives practical loads. Furthermore, an electric circuit model based on a dependent source treatment for simulating the electric behavior of the cores related to their nonlinear magnetization is developed using the initial magnetization curve of the cores. The numerical simulation with the model is used to evaluate the validity of the criterion. Both the criterion and the model are found to be in agreement with the experimental data.

  2. Switching field dependence on heating pulse duration in thermally assisted magnetic random access memories

    Energy Technology Data Exchange (ETDEWEB)

    Papusoi, C. [Spintec, URA 2512 CEA/CNRS, 17 rue des Martyrs, 38054 Grenoble (France)], E-mail: cristian_papusoi@yahoo.com; Conraux, Y.; Prejbeanu, I.L. [Crocus Technology, 5 Robert Schumann, BP 1510, 38025 Grenoble (France); Sousa, R.; Dieny, B. [Spintec, URA 2512 CEA/CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2009-08-15

    The minimum applied field H{sub SW} required to reverse the magnetic moment of the ferromagnetic/antiferromagnetic storage layer of a thermally assisted magnetic random access memory (TA-MRAM) device during the application of a heating electric pulse is investigated as a function of pulse power P{sub HP} and duration {delta}. For the same power of the heating pulse P{sub HP} (or, equivalently, for the same temperature of the storage layer), H{sub SW} increases with decreasing heating time {delta}. This behavior is consistently interpreted by a thermally activated propagating domain-wall switching model, corroborated by a real-time study of switching. The increase of H{sub SW} with decreasing pulse width introduces a constraint for the minimum power consumption of a TA-MRAM where writing combines heating and magnetic field application.

  3. High-Sensitivity Magnetization Measurements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The three most common instruments for high-sensitivity magnetization measurements (the vibrating-sample magnetometer, the alternating gradient magnetometer, and the SQUID magne tometer) are described and their limiting sensitivities are discussed. The advantages and disad vantages of each are described. Magnetometers using micro-machined force detectors are briefly mentioned.

  4. A pulse-compression-ring circuit for high-efficiency electric propulsion.

    Science.gov (United States)

    Owens, Thomas L

    2008-03-01

    A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.

  5. Design study of a 60T pulsed magnet with 10 mu s risetime

    NARCIS (Netherlands)

    Li, L.; Van Bockstal, L.; Herlach, F.; van Amersfoort, W.

    1996-01-01

    A 60 T nondestructive pulsed magnet for the ''Free Electron Laser for;Infrared Experiments'' (FELIX) is developed. As a rise time of 10 mu s is required, the magnet is designed consisting of two coils in order to cope with the skin effect and power requirements. Each of the coils

  6. Cu-Ag alloy Bitter type magnet for repeating pulsed field

    Energy Technology Data Exchange (ETDEWEB)

    Motokawa, M.; Nojiri, H.; Mitsudo, S. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Arai, M.; Ubukata, K.; Fujita, M.; Arakawa, T.; Inamura, Y. [Kobe Univ. (Japan). Dept. of Physics

    1996-07-01

    Cu-Ag alloy is used for the repeating pulsed field magnets. It is found that fields up to 22 T or more will be available for this purpose instead of 16 T which is obtained with normal copper magnet used at present. This result is a big advantage for neutron diffraction experiments.

  7. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    Science.gov (United States)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  8. Magnetization and microstructure dynamics in Fe/MnAs/GaAs(001): Fe magnetization reversal by a femtosecond laser pulse.

    Science.gov (United States)

    Spezzani, C; Ferrari, E; Allaria, E; Vidal, F; Ciavardini, A; Delaunay, R; Capotondi, F; Pedersoli, E; Coreno, M; Svetina, C; Raimondi, L; Zangrando, M; Ivanov, R; Nikolov, I; Demidovich, A; Danailov, M B; Popescu, H; Eddrief, M; De Ninno, G; Kiskinova, M; Sacchi, M

    2014-12-12

    Thin film magnetization reversal without applying external fields is an attractive perspective for applications in sensors and devices. One way to accomplish it is by fine-tuning the microstructure of a magnetic substrate via temperature control, as in the case of a thin Fe layer deposited on a MnAs/GaAs(001) template. This work reports a time-resolved resonant scattering study exploring the magnetic and structural properties of the Fe/MnAs system, using a 100 fs optical laser pulse to trigger local temperature variations and a 100 fs x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics. The experiment provides direct evidence that a single optical laser pulse can reverse the Fe magnetization locally. It reveals that the time scale of the magnetization reversal is slower than that of the MnAs structural transformations triggered by the optical pulse, which take place after a few picoseconds already.

  9. EXTERNAL MAGNETIC PULSE STRAIGHTENING – NEW TECHNOLOGY CAR BODY REPAIR

    Directory of Open Access Journals (Sweden)

    А. Gnatov

    2015-07-01

    Full Text Available Innovative equipment of external contactless magnetic impulse straightening developed by the laboratory of Electromagnetic Technology of Kharkiv National Automobile and Highway University is presented in this paper. The effect of metal hyper-plasticity at magnetic impulse acting is described. Suggestions concerning practical testing of advanced technology of damaged car body panels by external contactless magnetic impulse straightening are presented. The processing route of external contactless magnetic impulse straightening process is specified.

  10. Efficacy of multipolar radiofrequency with pulsed magnetic field therapy for the treatment of abdominal cellulite.

    Science.gov (United States)

    Wanitphakdeedecha, Rungsima; Sathaworawong, Angkana; Manuskiatti, Woraphong; Sadick, Neil S

    2017-08-01

    Cellulite is a metabolic condition, predominately seen in females, that affects the subcutaneous tissue of the posterolateral thighs, buttocks, pelvic region, and abdomen. It is characterized by skin dimpling and lumpiness resembling an orange peel. Despite the wide range of treatment options for patients with cellulite, there is a paucity of empirical data supporting their efficacy. The objective of this study was to evaluate the efficacy of a new-generation multipolar radiofrequency (RF) device for the treatment of cellulite. A multipolar RF device with pulsed magnetic fields was used to treat abdominal cellulite. Twenty-five healthy adult females with stage II or stage III abdominal cellulite underwent 8 weekly treatments. Assessments were performed at baseline and at weeks 1, 4, and 12 following the final treatment. Reduction in subcutaneous thickness in the axial and sagittal plane of the abdomen was observed at 1 week following treatment initiation. Results from self-reported questionnaires revealed a significantly high level of patient satisfaction (60%). Assessments by a blinded investigator at one, four, and twelve weeks after the final treatment demonstrated a significant improvement in cellulite appearance. No adverse effects were reported and the treatment was well tolerated. This study demonstrates the safety, efficacy, and subject satisfaction of multipolar RF with pulsed magnetic field therapy in the treatment of abdominal cellulite.

  11. High power UV and VUV pulsed excilamps

    Science.gov (United States)

    Tarasenko, V.; Erofeev, M.; Lomaev, M.; Rybka, D.

    2008-07-01

    Emission characteristics of a nanosecond discharge in inert gases and its halogenides without preionization of the gap from an auxiliary source have been investigated. A volume discharge, initiated by an avalanche electron beam (VDIAEB) was realized at pressures up to 12 atm. In xenon at pressure of 1.2 atm, the energy of spontaneous radiation in the full solid angle was sim 45 mJ/cm^3, and the FWHM of a radiation pulse was sim 110 ns. The spontaneous radiation power rise in xenon was observed at pressures up to 12 atm. Pulsed radiant exitance of inert gases halogenides excited by VDIAEB was sim 4.5 kW/cm^2 at efficiency up to 5.5 %.

  12. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli

    DEFF Research Database (Denmark)

    Delvendahl, Igor; Gattinger, Norbert; Berger, Thomas;

    2014-01-01

    excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.......A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using......) compared monophasic, half-sine, and full-sine pulses, (ii) applied two-segment pulses consisting of two identical half-sines, and (iii) manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic...

  13. Simultaneous electronic and the magnetic excitation of a ferromagnet by intense THz pulses

    CERN Document Server

    Shalaby, Mostafa; Hauri, Christoph P

    2015-01-01

    The speed of magnetization reversal is a key feature in magnetic data storage. Magnetic fields from intense THz pulses have been recently shown to induce small magnetization dynamics in Cobalt thin film on the sub-picosecond time scale. Here, we show that at higher field intensities, the THz electric field starts playing a role, strongly changing the dielectric properties of the cobalt thin film. Both the electronic and magnetic responses are found to occur simultaneously, with the electric field response persistent on a time scale orders of magnitude longer than the THz stimulus

  14. Trapped fields up to 2 T in a 12 mm square stack of commercial superconducting tape using pulsed field magnetization

    Science.gov (United States)

    Patel, A.; Hopkins, S. C.; Glowacki, B. A.

    2013-03-01

    The ability of superconductors to sustain persistent currents has been well exploited with (RE)BCO superconducting bulks, which can be magnetized to form a compact source of high magnetic field. However, thin films can also sustain persistent currents, which can be utilized by stacking them in layers to create a type of composite bulk. Such a stack is capable of trapping higher fields than a bulk, as reported in this paper. 12 mm wide, 55 μm thick commercial (RE)BCO tape from Superpower Inc was cut into 12 mm by 12 mm squares, stacked together and magnetized at temperatures between 10 and 77.4 K using a sequence of pulsed magnetic fields. The results are compared to a commercial 14 mm diameter YBCO bulk, showing that the stack of tapes outperformed the bulk at temperatures below approximately 60 K. Particularly high trapped fields were achieved below 50 K, with a maximum of 2.0 T at 10 K measured 0.8 mm from the stack surface. The maximum trapped field possible for a stack of tapes increases significantly with decreasing temperature down to 10 K, rather than saturating at a higher temperature as in the case of a bulk, due to superior thermal stability. The Jc, thermal and mechanical properties of commercial (RE)BCO tapes give them great potential for use as trapped field magnets activated by pulsed magnetic fields.

  15. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  16. Development of Nuclear Magnetic Resonance Pulse Sequences and Probes to Study Biomacromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Cosman, M; Krishnan, V V; Maxwell, R

    2001-02-26

    The determination of the three dimensional structures at high resolution of biomolecules, such as proteins and nucleic acids, enables us to understand their function at the molecular level. At the present time, there are only two methods available for determining such structures, nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. Compared to well-established X-ray diffraction techniques, NMR methodology is relatively new and has many areas in which improvement can still be attained. In this project, we focused on the development of new NMR probes and pulse sequences that were tailored to tackle specific problems that are not adequately addressed by current technology. Probes are the hardware that contain the radio frequency (RF) circuitry used to both excite and detect the NMR signals. Pulse sequences are composed of a series of RF pulses and delays, which are applied to the sample held within the magnetic field by the probe, so as to manipulate the nuclear spins. Typically, a probe is developed for a specific set of nuclei and types of experiments and the pulse sequences are then written to use the probe in an optimal manner. In addition, the inter-development of instrumentation and methods are determined by the specific biological question to be examined. Thus our efforts focused on addressing an area of importance in NMR Structural Biology namely more effective ways to use the phosphorus ({sup 31}P) nucleus. Phosphorus is a very important biological element that is strategically located in nucleic acids, where it imparts negative charge and flexibility to RNA and DNA. It is also a component of the cellular membrane and thus interacts with membrane proteins. It is used in mechanisms to signal, activate or deactivate enzymes; and participates in energy storage and release. However, the phosphorus nucleus exhibits certain properties, such as poor spectral dispersion, low sensitivity of detection, and fast relaxation, which limit its effective use

  17. Quantum ring states in magnetic field and delayed half-cycle pulses

    Indian Academy of Sciences (India)

    KRITI BATRA; HIRA JOSHI; VINOD PRASAD

    2016-08-01

    The present work is dedicated to the time evolution of excitation of a quantum ring in external electric and magnetic fields. Such a ring of mesoscopic dimensions in an external magnetic field is known to exhibit a wide variety of interesting physical phenomena. We have studied the dynamics of the single electron quantum ring in the presence of a static magnetic field and a combination of delayed half-cycle pulse pair. Detailed calculations have been worked out and the impact on dynamics by variation in the ring radius, intensity of external electric field, delay between the two pulses, and variation in magnetic field have been reported. A total of 19 states have been taken and the population transfer in the single electron quantum ring is studied by solving the time-dependent Schrödinger equation (TDSE), using the efficient fourth-order Runge--Kutta method. Many interesting features have been observed in the transition probabilities with the variation of magnetic field, delay between pulses and ring dimensions. A very important aspect of the present work is the persistent current generation in a quantum ring in the presence of external magnetic flux and its periodic variation with the magnetic flux, ring dimensions and pulse delay.

  18. Sterilization of Escherichia coli cells by the application of pulsed magnetic field

    Institute of Scientific and Technical Information of China (English)

    LI Mei; QU Jiu-hui; PENG Yong-zhen

    2004-01-01

    The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that theapplication of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffersolution Na2 HPO4 / NaH2 PO4 (0.334/0.867 mmol/L). Experimental results indicated that the survivability( N/N0; whereN0 and N are the number of cells survived per milliliter before and after electromagnetic pulses application,respectively) of E. coli decreased with magnetic field intensity B and treatment time t. It was also found that themedium temperatures, the frequencies of pulse f, and the initial bacterial cell concentrations have determinateinfluences in destruction of E. coli cells by the application of magnetic pulses. The application of an magneticintensity B = 160 mT at pulses frequency f = 62 kHz and treatment time t = 16 h result in a considerable destructionlevels of E. coli cells ( N/N0 = 10-4 ). Possible mechanisms involved in sterilization of the magnetic field treatmentwere discussed. In order to shorten the treatment time, many groups of parallel inductive coil were used. Thepracticability test showed that the treatment time was shortened to 4 h with the application of three groups of parallelcoil when the survivability of E. coli cells was less than 0.01%; and the power consumption was about 0.2 kWh/m3 .

  19. High Voltage Coaxial Vacuum Gap Breakdown for Pulsed Power Liners

    Science.gov (United States)

    Cordaro, Samuel; Bott-Suzuki, Simon; Caballero Bendixsen, Luis Sebastian

    2015-11-01

    The dynamics of Magnetized Liner Inertial Fusion (MagLIF)1, are presently under detailed study at Sandia National Laboratories. Alongside this, a comprehensive analysis of the influence of the specific liner design geometry in the MagLIF system on liner initiation is underway in the academic community. Recent work at UC San Diego utilizes a high voltage pulsed system (25kV, 150ns) to analyze the vacuum breakdown stage of liner implosion. Such experimental analyses are geared towards determining how the azimuthal symmetry of coaxial gap breakdown affect plasma initiation within the liner. The final aim of the experimental analysis is to assess to what scale symmetry remains important at high (MV) voltages. An analysis of the above will utilize plasma self-emission via optical MCP, current measurements, voltage measurements near the gap, exact location of breakdown via 2D b-dot probe triangulation, as well as measuring the evolution of the B-field along the length of the liner via b-dot array. Results will be discussed along with analytical calculations of breakdown mechanisms

  20. Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation.

    Science.gov (United States)

    Zeek, E; Bartels, R; Murnane, M M; Kapteyn, H C; Backus, S; Vdovin, G

    2000-04-15

    We demonstrate the use of a deformable-mirror pulse shaper, combined with an evolutionary optimization algorithm, to correct high-order residual phase aberrations in a 1-mJ, 1-kHz, 15-fs laser amplifier. Frequency-resolved optical gating measurements reveal that the output pulse duration of 15.2 fs is within our measurement error of the theoretical transform limit. This technique significantly reduces the pulse duration and the temporal prepulse energy of the pulse while increasing the peak intensity by 26%. It is demonstrated, for what is believed to be the first time, that the problem of pedestals in laser amplifiers can be addressed by spectral-domain correction.

  1. Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Zeek, E.; Bartels, R.; Murnane, M. M.; Kapteyn, H. C.; Backus, S.; Vdovin, G.

    2000-04-15

    We demonstrate the use of a deformable-mirror pulse shaper, combined with an evolutionary optimization algorithm, to correct high-order residual phase aberrations in a 1-mJ, 1-kHz, 15-fs laser amplifier. Frequency-resolved optical gating measurements reveal that the output pulse duration of 15.2 fs is within our measurement error of the theoretical transform limit. This technique significantly reduces the pulse duration and the temporal prepulse energy of the pulse while increasing the peak intensity by 26%. It is demonstrated, for what is believed to be the first time, that the problem of pedestals in laser amplifiers can be addressed by spectral-domain correction. (c) 2000 Optical Society of America.

  2. In-situ fabrication of particulate reinforced aluminum matrix composites under high-frequency pulsed electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. Insitu Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using Al-Zr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix.Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication.

  3. Amplification of Short Pulse High Power UV Laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    At recent year, with the development of CPA and other amplification technology, laser intensity achieves great increase and laser power can be high to PW(105) now, this ultrashort pulse lasers offer scientists a route to investigate laser-matter interaction in an absolute new regime.So far the researches on ultrashort pulse laser-matter interaction concentrated on infrared regime, yet ultraviolet laser has the advantage in intense field physics and ICF researches for its short wavelength and less nonlinear effects. KrF excimer is the best medium in UV ultrashort pulse amplification for its small saturation energy and high contrast ratio accessible.

  4. High voltage pulsed cable design: a practical example

    Energy Technology Data Exchange (ETDEWEB)

    Kewish, R.W. Jr.; Boicourt, G.P.

    1979-01-01

    The design of optimum high voltage pulse cable is difficult because very little emperical data are available on performance in pulsed applications. This paper follows the design and testing of one high voltage pulse cable, 40/100 trigger cable. The design was based on an unproven theory and the impressive outcome lends support to the theory. The theory is outlined and it is shown that there exists an inductance which gives a cable of minimum size for a given maximum stress. Test results on cable manufactured according to the design are presented and compared with the test results on the cable that 40/100 replaces.

  5. Short pulse generation and high speed communication system

    Science.gov (United States)

    Fan, Honglei

    Ultrahigh-speed optical time-division-multiplexing (TDM) transmission technologies are essential to construct ultrahigh-speed all-optical networks needed in the multimedia era. In order to realize high-speed optical TDM systems, ultra-short pulses should be generated. In this dissertation, the gain switching and mode locking techniques have been analyzed and used to produce ultra- short pulses. Gain-switched pulses with a width of ~18ps have been obtained. The theoretical analysis on gain-switching phenomena has been carried out. A new approach for the simulation of the spectrum of a gain- switched laser has been developed. The principle of mode locking has been discussed. ~6.5ps, pulses have been obtained from a monolithic mode-locked distributed Bragg reflector (DBR) laser, which are the shortest pulses from the actively mode- locked DBR lasers as we know. ~1.1ps pulses have been achieved from a colliding-pulse mode-locked (CPM) laser. The operation principle of CPM lasers has been discussed. Pulse compression using dispersion-compensating fiber has been applied in order to get shorter pulses. The semiconductor optical amplifier (SOA) plays a very important role in TDM systems. The cross gain modulation (XGM) measurements on a 2-section SOA, using both cw and pulsed pump and probe beams, have been performed. A theoretical analysis has been carried out. Wavelength conversion and fiber transmission experiments have been achieved at different bit rates. The basic idea of TDM system has been discussed. Multiplexing has been achieved using fibers. Demulitplexing has been demonstrated using XGM in SOA, four-wave mixing (FWM) in SOA, and cascaded modulators. The operation principles have been discussed in detail. The FWM experiments between two optical pulses have been performed.

  6. Nonlinear Magnetoelectric Response of Planar Ferromagnetic-Piezoelectric Structures to Sub-Millisecond Magnetic Pulses

    Directory of Open Access Journals (Sweden)

    Mikhail Shamonin

    2012-11-01

    Full Text Available The magnetoelectric response of bi- and symmetric trilayer composite structures to pulsed magnetic fields is experimentally investigated in detail. The structures comprise layers of commercially available piezoelectric (lead zirconate titanate and magnetostrictive (permendur or nickel materials. The magnetic-field pulses have the form of a half-wave sine function with duration of 450 µs and amplitudes ranging from 500 Oe to 38 kOe. The time dependence of the resulting voltage is presented and explained by theoretical estimations. Appearance of voltage oscillations with frequencies much larger than the reciprocal pulse length is observed for sufficiently large amplitudes (~1–10 kOe of the magnetic-field pulse. The origin of these oscillations is the excitation of bending and planar acoustic oscillations in the structures. Dependencies of the magnetoelectric voltage coefficient on the excitation frequency and the applied magnetic field are calculated by digital signal processing and compared with those obtained by the method of harmonic field modulation. The results are of interest for developing magnetoelectric sensors of pulsed magnetic fields as well as for rapid characterization of magnetoelectric composite structures.

  7. The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection

    Institute of Scientific and Technical Information of China (English)

    SONG Jin-Xing; KANG Wen; HUO Li-Hua; HAO Yao-Dou; WANG Lei

    2011-01-01

    The injecton pulsed bending bump magnets of Rapid Cycling Synchrotron (RCS) in China Spallar tion Neutron Source (CSNS) consist of four horizontal bending (BH) magnets and four vertical bending (BV)magnets. The BH magnets are operated at a repetition rate of 25 Hz and are excited with a trapezoid rectangle waveform with about 1.6 milliseconds duration. The eddy current is induced in BH magnets and in the end plates it is expected to be large, so the heat generation is of our great concern. In this paper, the eddy current loss of the BH magnet has been investigated and calculated by using a coupling method of 3D electromagnetic and thermal analysis. The accuracy of the analysis is confirmed by testing the prototype BH magnet. The end plate temperature of the BH magnet provided with slit cuts has been decreased obviously and met the requirements.

  8. Using Novel Pulse Sequences for Magnetic Resonance Imaging of 31Phosphorus in Hard and Soft Solids

    Science.gov (United States)

    Frey, Merideth A.

    Since its invention in 1973, magnetic resonance imaging (MRI) has become an invaluable tool for clinical medicine, fundamental biomedical research, the physical sciences, and engineering. The vast majority of all MRI studies, in medicine and beyond, detect only the signal from a single nuclear isotope, 1H, in liquid water. Extending the reach of MRI to the study of other elements, and to hard or soft solids, opens new frontiers of discovery. In practice, however, the slower motion of the nuclei in solid environments compared to 1H in water results in much broader magnetic resonance (MR) spectra, limiting both the attainable spatial resolution and the signal-to-noise. Our lab recently discovered a novel nuclear magnetic resonance (NMR) pulse sequence while doing fundamental research related to the 'spins in semiconductors' approach to quantum computing. This sequence can greatly narrow the MR linewidth of solids, and it opens a new path to do high-resolution MRI of various nuclei in solids. In this thesis work, I use our quadratic echo line-narrowing pulse sequence to take the highest resolution MR images of 31P in hard and soft solids using a conventional animal MRI system. I also discuss strategies to accelerate the imaging speed by making use of sparse MRI techniques as well as a new algorithm developed in our lab to do fast and accurate image reconstruction from sparse data. For future work, I propose ways to enhance spatial resolution and speed up imaging as well as discuss the potential applications of this work to a wider range of scientific problems.

  9. SMALL VOLUME LONG PULSE X RAY PREIONISED XeCl LASER WITH DOUBLE DISCHARGE AND FAST FERRITE MAGNETIC SWITCH

    OpenAIRE

    J. Hueber; Kobhio, M.; Fontaine, B.; Delaporte, Ph.; Sentis, M.; Forestier, B.

    1991-01-01

    Experimental results obtained with a high efficiency small volume long pulse X-Ray preionised XeCl laser with double discharge and very fast ferrite magnetic switch are presented and compared with the results given by a new XeCl laser numerical self consistant model. The model takes into account most recent kinetic data and time variation of discharge impedence and switch inductance. There is a good agreement between experiment and model on electrical and laser parameters for typical conditions.

  10. Magnetic flux density measurement with balanced steady state free precession pulse sequence for MREIT: a simulation study.

    Science.gov (United States)

    Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol

    2009-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.

  11. Pulse Design in Solid-State Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Palani, Ravi Shankar

    2017-01-01

    The work presented in this dissertation is centred on the theory of experimental methods in solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, which deals with interaction of electromagnetic radiation with nuclei in a magnetic field and possessing a fundamental quantum mechanical property...

  12. Device for measurement of power and shape of radio frequency pulses in nuclear magnetic resonance

    Science.gov (United States)

    Pfeffer, M.; Řezníček, R.; Křišťan, P.; Štěpánková, H.

    2012-05-01

    A design of an instrument to measure the power and shape of radio frequency (RF) pulses operating in a broad frequency range is described. The device is capable of measuring the pulse power up to 500 W of both CW and extremely short (˜1 μs) RF pulses of arbitrary period. The pulse envelope can be observed on a logarithmic scale on a corresponding instrument output using an inexpensive storage oscilloscope. The instrument consists of a coaxial measurement head, the RF processing circuits and an AD conversion and display unit. The whole device is based on widely available integrated circuits; thus, good reproducibility and adaptability of the design is ensured. Since the construction is intended to be used in particular (but not solely) in nuclear magnetic resonance spectroscopy, we found it useful to provide a demonstration of two typical usage scenarios. Other application fields may comprise magnetic resonance imaging, radar and laser technology, power amplifier testing, etc.

  13. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    Directory of Open Access Journals (Sweden)

    Ilmārs Grants

    2016-06-01

    Full Text Available Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  14. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    Science.gov (United States)

    Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter

    2016-06-01

    Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  15. Development of the 320 kA pulsed magnetic horn power supply with a novel energy recovery system for the T2K experiment

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, Kunio, E-mail: kunio.koseki@kek.jp

    2014-01-21

    The 320 kA pulsed magnetic horn power supply with a novel magnetic energy recovery system for the T2K experiment has been developed. The magnetic energy once stored in the horn system during an excitation period by a pulsed current of 320 kA is recovered by a full-bridge circuit to the energy storage capacitors. Four switching arms by high-power thyristors in the full-bridge circuit are actively controlled for an efficient energy recovery process. Operational principle of the energy recovery system was proved by both the simulation study and the high-voltage test operation. Successful operations of the newly developed pulsed magnetic horn power supply were also confirmed by high-voltage test operations. -- Highlights: ●The 320 kA pulsed power supply for the T2K magnetic horn has been developed. ●A novel energy recovery method by a full-bridge circuit has been established. ●Successful operation of the pulsed power supply was confirmed by high-voltage operations.

  16. Note: radio frequency inductance-capacitance band-stop filter circuit to perform contactless conductivity measurements in pulsed magnetic fields.

    Science.gov (United States)

    Altarawneh, M M

    2012-09-01

    We present a new technique to perform radio frequency (rf) contactless conductivity measurements in pulsed magnetic fields to probe different ground states in condensed matter physics. The new method utilizes a simple analog band-stop filter circuit implemented in a radio frequency transmission setup to perform contactless conductivity measurements. The new method is more sensitive than the other methods (e.g., the tunnel diode oscillator and the proximity detector oscillator) due to more sensitive dependence of the circuit resonance frequency on the tank circuit inductance (not the transmission line). More important, the new method is more robust than other methods when used to perform measurements in very high magnetic fields, works for a wide range of temperatures (i.e., 300 K-1.4 K) and is less sensitive to noise and mechanical vibrations during pulse magnet operation. The new technique was successfully applied to measure the Shubnikov-de Haas effect in Bi(2)Se(3) in pulsed magnetic fields of up to 60 T.

  17. A magnetic pulse does not affect homing pigeon navigation: a GPS tracking experiment.

    Science.gov (United States)

    Holland, Richard; Filannino, Caterina; Gagliardo, Anna

    2013-06-15

    The cues by which homing pigeons are able to return to a home loft after displacement to unfamiliar release sites remain debated. A number of experiments in which migratory birds have been treated with a magnetic pulse have produced a disruption in their orientation, which argues that a ferrimagnetic sense is used for navigation in birds. One previous experiment has also indicated an effect of magnetic pulses on homing pigeon navigation, although with inconsistent results. Previous studies have shown that some magnetic-related information is transmitted by the trigeminal nerve to the brain in some bird species, including the homing pigeon. The function of this information is still unclear. It has been suggested that this information is important for navigation. Previous studies with trigeminal nerve lesioned homing pigeons have clearly shown that the lack of trigeminally mediated information, even if magnetic, is not crucial for homing performance. However, this result does not completely exclude the possibility that other ferrimagnetic receptors in the homing pigeon play a role in navigation. Additionally, recent studies on homing pigeons suggested the existence of a ferrimagnetic sense in a novel location presumably located in the inner ear (lagena). In the present study, we tested whether any ferrimagnetic magnetoreceptors, irrespective of their location in the bird's head, are involved in pigeons' homing. To do this, we treated homing pigeons with a strong magnetic pulse before release, tracked birds with GPS loggers and analyzed whether this treatment affected homing performance. In the single previous magnetic pulse experiment on homing pigeons, only initial orientation at a release site was considered and the results were inconsistent. We observed no effect of the magnetic pulse at any of the sites used on initial orientation, homing performance, tortuosity or track efficiency, which does not support a role for the ferrimagnetic sense in homing pigeon

  18. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility.

    Science.gov (United States)

    Fiksel, G; Agliata, A; Barnak, D; Brent, G; Chang, P-Y; Folnsbee, L; Gates, G; Hasset, D; Lonobile, D; Magoon, J; Mastrosimone, D; Shoup, M J; Betti, R

    2015-01-01

    An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.

  19. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility

    Science.gov (United States)

    Fiksel, G.; Agliata, A.; Barnak, D.; Brent, G.; Chang, P.-Y.; Folnsbee, L.; Gates, G.; Hasset, D.; Lonobile, D.; Magoon, J.; Mastrosimone, D.; Shoup, M. J.; Betti, R.

    2015-01-01

    An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.

  20. Ultra Fast Shutter Driven by Pulsed High Current

    Institute of Scientific and Technical Information of China (English)

    Zeng Jiangtao; Sun Fengju; Qiu Aici; Yin Jiahui; Guo Jianming; Chen Yulan

    2005-01-01

    Radiation simulation utilizing plasma radiation sources (PRS) generates a large number of undesirable debris, which may damage the expensive diagnosing detectors. An ultra fast shutter (UFS) driven by pulsed high current can erect a physical barrier to the slowly moving debris after allowing the passage of X-ray photons. The UFS consists of a pair of thin metal foils twisting the parallel axes in a Nylon cassette, compressed with an outer magnetic field, generated from a fast capacitor bank, discharging into a single turn loop. A typical capacitor bank is of 7.5μF charging voltages varying from 30 kV to 45 kV, with corresponding currents of approximately 90kA to140 kA and discharging current periods of approximately 13.1 μs. A shutter closing time as fast as 38 microseconds has been obtained with an aluminium foil thickness of 100 micrometers and a cross-sectional area of 15 mm by 20 mm. The design, construction and the expressions of the valve-closing time of the UFS are presented along with the measured results of valve-closing velocities.

  1. Formation of FRCs on the Pulsed High Density Experiment

    Science.gov (United States)

    Andreason, Samuel; Slough, John

    2008-11-01

    The Pulsed High Density (PHD) experiment has been reassembled at a new facility with sufficient space to continue through the full acceleration and compression stages to reach breakeven. The intention here is to produce a large FRC, but remain in the kinetic regime where the FRC is stable and the transport sufficiently low that a Q > 1 plasma can be attained at moderate densities ˜ 10^23 m-3. During reassembly a more complete analysis of previous experimental results has been made. One of the issues in the early phase of the experiment was inefficient flux trapping during field reversal due to the large scale of the FRC source (0.4 m radius). The on-axis seed plasma was unable to diffuse out to the walls on a timescale commensurate with the introduction of bias fields. This resulted in more than half of the initial bias flux lost before sheath formation halted flux loss. An annular array of plasma sources has been constructed that solves this problem and greatly enhances the flux retention. Dynamic formation has been employed on PHD and analysis tools capable of interpreting the magnetic loop diagnostic array have been developed. Results with comparison to numerical models will be presented.

  2. Research on the Pulsed Magnetic Field Device for Sterilization of Fruit and Vegetable Equipment

    Directory of Open Access Journals (Sweden)

    Liu Mingdan

    2013-04-01

    Full Text Available In view of the requests of the sterilization device of the fruit and vegetable that integrate cleaning and juicing together, and combined with the electromagnetic theory and the cold sterilization technology which is in common use in modern food industry, circuits are designed for the pulsed magnetic field sterilization device of the integrated machine .This circuits chose a linear solenoid in which r= 30mm, l= 200 mm. The experiment shows that the pulsed magnetic field produced by the device can achieve a better effect in killing bacillus coli, beer yeast and staphylococcus aurous, etc. Compared with the traditional sterilization device, the bactericidal effect of the pulsed magnetic field sterilization device is more obvious so that it will be the direction of the development of food equipments. [1]  

  3. A 300 Hz high frequency thermoacoustically driven pulse tube cooler

    Institute of Scientific and Technical Information of China (English)

    ZHU ShangLong; YU GuoYao; ZHANG XiaoDong; DAI Wei; LUO ErCang; ZHOU Yuan

    2008-01-01

    This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube cooler and their coupling mechanism. An inlet pressure ratio of 1.248 was obtained with the mean pressure and heating power of 4.13 MPa and 1760 W, respectively. A lowest no-load temperature of 69.5 K has been reached under this condition. This is the first time for thermoacousti-cally driven pulse tube coolers to reach the temperature below 76 K with such a high frequency.

  4. High-Precision Spectroscopy with Counter-Propagating Femtosecond Pulses

    CERN Document Server

    Barmes, Itan; Eikema, Kjeld S E

    2013-01-01

    An experimental realization of high-precision direct frequency comb spectroscopy using counter-propagating femtosecond pulses on two-photon atomic transitions is presented. Doppler broadened background signal, hampering precision spectroscopy with ultrashort pulses, is effectively eliminated with a simple pulse shaping method. As a result, all four 5S-7S two-photon transitions in a rubidium vapor are determined with both statistical and systematic uncertainties below 10$^{-11}$, which is an order of magnitude better than previous experiments on these transitions.

  5. High-power pulse trains excited by modulated continuous waves

    CERN Document Server

    Wang, Yan; Li, Lu; Malomed, Boris A

    2015-01-01

    Pulse trains growing from modulated continuous waves (CWs) are considered, using solutions of the Hirota equation for solitons on a finite background. The results demonstrate that pulses extracted from the maximally compressed trains can propagate preserving their shape and forming robust arrays. The dynamics of double high-power pulse trains produced by modulated CWs in a model of optical fibers, including the Raman effect and other higher-order terms, is considered in detail too. It is demonstrated that the double trains propagate in a robust form, with frequencies shifted by the Raman effect.

  6. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  7. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Energy Technology Data Exchange (ETDEWEB)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  8. Improved pulse laser ranging algorithm based on high speed sampling

    Science.gov (United States)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  9. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini;

    This work investigates structural and magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. The Fe layer thickness is varied from 70 to 150 nm and its effect on structural and magnetic properties of Gd/Fe multilayers has...... been explored. The samples have a 10 nm Ag capping layer to prevent oxidation during the processing. Two magnetization saturation plateaus were observed in the magnetization vs field isotherm at 290 K, in parallel configuration and these plateau values correspond to that of MFe and MFe + MGd....

  10. Eddy-current inspection of ferromagnetic tubing using pulsed magnetic saturation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C V; Deeds, W E

    1986-07-01

    A pulsed eddy-current system has been designed and developed for nondestructive evaluation of 2.25Cr-1Mo steam generator tubing from the bore side. Since the tubing is ferromagnetic, a large current pulse is sent through a driver coil to produce magnetic saturation all the way through the tube wall. A pickup coil produces an output pulse that is dependent upon the tube properties as well as the driving pulse. The output pulse heights at selected times are used as data that are computer-correlated with calibration data taken from machined standards. Performance data, circuit diagrams, and computer programs are given for the system, which has been demonstrated to detect small flaws located near the outside of a thick ferromagnetic tube.

  11. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.

    Science.gov (United States)

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  12. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    Science.gov (United States)

    Yang, Xiaobin; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-04-01

    A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  13. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  14. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.

    Science.gov (United States)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  15. Visualization and analysis of modulated pulses in magnetic resonance by joint time-frequency representations.

    Science.gov (United States)

    Köcher, S S; Heydenreich, T; Glaser, S J

    2014-10-17

    We study the utility of joint time-frequency representations for the analysis of shaped or composite pulses for magnetic resonance. Such spectrograms are commonly used for the visualization of shaped laser pulses in optical spectroscopy. This intuitive representation provides additional insight compared to conventional approaches, which exclusively show either temporal or spectral information. We focus on the short-time Fourier transform, which provides not only amplitude but also phase information. The approach is illustrated for broadband inversion pulses, multiple quantum excitation and broadband heteronuclear decoupling. The physical interpretation and validity of the approach is discussed.

  16. Unipolar magnetic field pulses as transient signals prior to the 2009 Aquila earthquake shock

    CERN Document Server

    Nenovski, Petko

    2016-01-01

    Unipolar pre-seismic magnetic field pulses have been observed first by Bleier et al. (2009) and Villante et al. (2010) and Nenovski et al. (2013). In the present study a detailed analysis of the pulses is conducted looking for signatures of transient signals similar to that recorded at the 2009 Aquila earthquake main shock (Nenovski, 2015). Various magnetic field data around the Aquila earthquake provide an instrumental basis for such an analysis. In addition to fluxgate magnetometer data (already examined in previous studies), overhauser magnetometer data are involved. The result is a detection and discrimination of transient signals of diffusive form that appear prior to the earthquake main shock.

  17. Initial position estimation method for permanent magnet synchronous motor based on improved pulse voltage injection

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    According to saliency of permanent magnet synchronous motor (PMSM), the information of rotor position is implied in performance of stator inductances due to the magnetic saturation effect. Researches focused on the initial rotor position estimation of PMSM by injecting modulated pulse voltage...... vectors. The relationship between the inductance variations and voltage vector positions was studied. The inductance variation effect on estimation accuracy was studied as well. An improved five-pulses injection method was proposed, to improve the estimation accuracy by choosing optimaized voltage vectors...

  18. A single-solenoid pulsed-magnet system for single-crystal scattering studies.

    Science.gov (United States)

    Islam, Zahirul; Capatina, Dana; Ruff, Jacob P C; Das, Ritesh K; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Welp, Ulrich; Canfield, Paul C

    2012-03-01

    We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to ~30 T with a zero-to-peak-field rise time of ~2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (~23.6°) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  19. High-Field Magnetization of the Pyrochlore Compound Gd2Ti2O7

    Science.gov (United States)

    Narumi, Yasuo; Kikkawa, Akiko; Katsumata, Koichi; Honda, Zentaro; Hagiwara, Masayuki; Kindo, Koichi

    2006-09-01

    High-field magnetization measurements have been preformed on a single crystal sample of the pyrochlore compound Gd2Ti2O7 using a pulse magnet in conjunction with a dilution refrigerator. The magnetization curve at 0.3 K reveals two magnetic phase transitions when the magnetic field is applied along b [111]. At temperatures slightly above TN, a magnetization plateau appears around 5 T and the magnetization increases again from about 15 T with a convex curvature. It is considered that this crossover is due to a competition among thermal fluctuations, short-range antiferromagnetic ordering and geometrical frustration.

  20. The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection%The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection

    Institute of Scientific and Technical Information of China (English)

    宋金星; 康文; 霍丽华; 郝耀斗; 王磊

    2011-01-01

    The injecton pulsed bending bump magnets of Rapid Cycling Synchrotron (RCS) in China Spalla- tion Neutron Source (CSNS) consist of four horizontal bending (BH) magnets and four vertical bending (BV) magnets. The BH magnets are operated at a repetition rat

  1. Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact

    DEFF Research Database (Denmark)

    Tomasevic, Leo; Takemi, Mitsuaki; Siebner, Hartwig Roman

    2017-01-01

    BACKGROUND: Electroencephalography (EEG) can capture the cortical response evoked by transcranial magnetic stimulation (TMS). The TMS pulse provokes a large artefact, which obscures the cortical response in the first milliseconds after TMS. Removing this artefact remains a challenge. METHODS: We...... were tested at 10 and 20 kHz using the head phantom. We also tested the effect of a soft sheet placed between the stimulation coil and recording electrodes in both human and melon. RESULTS & CONCLUSION: Synchronizing TMS and data acquisition markedly reduced trial-to-trial variability of the pulse......-to-trial variability renders it possible to create an artefact template for off-line filtering. Template-based subtraction of the artefact from the EEG signals is a prerequisite to effectively recover the immediate physiological response in the stimulated cortex and inter-connected areas....

  2. Microstructure refinement of AZ91D alloy solidified with pulsed magnetic field

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; YANG Yuan-sheng; ZHOU Ji-xue; TONG Wen-hui

    2008-01-01

    The effects of pulsed magnetic field on the solidified microstructure of an AZ91D magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied in the solidification of AZ91D alloy. The average grain size of the as-cast microstructure of AZ91D alloy is refined to 104μm. Besides the grain refinement, the morphology of the primary α-Mg is changed from dendritic to rosette, then to globular shape with changing the parameters of the pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface by the magnetic pressure, which makes the nucleation rate increased and big dendrites prohibited. In addition, primary α-Mg dendrites break into fine crystals, resulting in a refined solidification structure of the AZ91D alloy. The Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.

  3. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing.

    Science.gov (United States)

    Tang, Qi-Jie; Yang, Dong-Xu; Wang, Jian; Feng, Yi; Zhang, Hong-Fei; Chen, Teng-Yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  4. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing

    Science.gov (United States)

    Tang, Qi-jie; Yang, Dong-xu; Wang, Jian; Feng, Yi; Zhang, Hong-fei; Chen, Teng-yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  5. A portable magnetic field of >3 T generated by the flux jump assisted, pulsed field magnetization of bulk superconductors

    Science.gov (United States)

    Zhou, Difan; Ainslie, Mark D.; Shi, Yunhua; Dennis, Anthony R.; Huang, Kaiyuan; Hull, John R.; Cardwell, David A.; Durrell, John H.

    2017-02-01

    A trapped magnetic field of greater than 3 T has been achieved in a single grain GdBa2Cu3O7-δ (GdBaCuO) bulk superconductor of diameter 30 mm by employing pulsed field magnetization. The magnet system is portable and operates at temperatures between 50 K and 60 K. Flux jump behaviour was observed consistently during magnetization when the applied pulsed field, Ba, exceeded a critical value (e.g., 3.78 T at 60 K). A sharp dBa/dt is essential to this phenomenon. This flux jump behaviour enables the magnetic flux to penetrate fully to the centre of the bulk superconductor, resulting in full magnetization of the sample without requiring an applied field as large as that predicted by the Bean model. We show that this flux jump behaviour can occur over a wide range of fields and temperatures, and that it can be exploited in a practical quasi-permanent magnet system.

  6. Non-Thermionic Cathode for High Power Long Pulse, Long Lifetime Magnetrons

    Science.gov (United States)

    2010-11-18

    switched with an SCR. The coil produces a 3 kG magnetic field with a 20mS critically damped waveform. This is sufficient to allow flux penetration...that the conventional thermionic cathode doses not provide acceptable electron emission for operation in the HPM power levels (> 100Mw). In this work...TECHNICAL REPORT AFOSR CONTRACT: FA9550-09-C-0127 “Non- Thermionic Cathode for High Power Long Pulse, Long Lifetime Magnetrons” Miles Collins Clark

  7. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Science.gov (United States)

    Dartora, C. A.; Nobrega, K. Z.; Cabrera, G. G.

    2016-08-01

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  8. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  9. The Los Alamos/Arzamas-16 collaboration of ultrahigh magnetic fields and ultrahigh energy pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, V.K.; Mokhov, V.N.; Pavlovskii, A.I. [All-Russian Scientific Research Institute of Experimental Physics, Arzamas-16, Nizhni Novgorod Region (Russian Federation); Ekdahl, C.A.; Fowler, C.M.; Reinovsky, R.E.; Younger, S.M. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The end of the Cold War has made possible some remarkable scientific adventures--joint research projects between scientific institutions of the United States and the Russian Federation. Perhaps most unprecedented of the new partnerships is a formal collaboration which has been established between the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory (LANL), the two institutes which designed the first nuclear weapons for their respective countries. In early 1992, emerging governmental policy in the US and Russia began to encourage ``lab-to-lab`` interactions between the nuclear weapons design laboratories of the two countries. Each government recognized that as nuclear weapons stockpiles and design activities were being reduced, highly qualified scientists were becoming available to use their considerable skills in fundamental scientific research of interest to both nations. VNIIEF and LANL quickly recognized a common interest in the technology and applications of magnetic flux compression, the technique for converting the chemical energy released by high-explosives into intense electrical pulses and intensely concentrated magnetic energy. This document reports on current projects of the collaboration.

  10. High-frequency Pulse-tube Refrigerator for 4 K

    Science.gov (United States)

    Tanaeva, I. A.; Klaasse Bos, C. G.; de Waele, A. T. A. M.

    2006-04-01

    At present pulse-tube refrigerators (PTRs), used for the important temperature region of 4 K, are of the Gifford-McMahon (GM)-type. The main sources of losses in GM-type PTRs are the compressor and the rotary valve. The efficiency of the combination of the compressor and the rotary valve is only about 30%. In addition to that GM-type compressors are heavy and need periodic maintenance. The main goal of this research is to develop a Stirling-type 4-K pulse-tube refrigerator. This implies higher operating frequencies, compared to the usual 1-2 Hz. At higher frequencies a number of properties of a pulse-tube system, such as length-to-diameter ratios of the pulse tubes and the regenerator, volume and configuration of a regenerator material, phase-shift control method, etc., change significantly, and, therefore, require detailed study. The interactions between various parameters of the pulse tube and of the linear compressor are very complicated. Therefore, as a first part of this research, we study the pulse tube at high frequencies, independent of the compressor. We generate high-frequency pressure oscillations, using a GM-type compressor and a special type of rotary valve, which enables us to operate at frequencies up to 20 Hz. Results of this work are described in this contribution.

  11. Low temperature high frequency coaxial pulse tube for space application

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc [SBT, UMR-E CEA / UJF-Grenoble 1, INAC, 17, rue des Martyrs, Grenoble, F-38054 (France); Daniel, Christophe [CNES, 18, avenue Edouard Belin, Toulouse, F-31401 (France)

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  12. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe....../Gd/Fe sandwich multilayers has been explored. Gd films were found to change from amorphous to polycrystalline at a critical thickness of 20 nm....

  13. Initial position estimation method for permanent magnet synchronous motor based on improved pulse voltage injection

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    According to saliency of permanent magnet synchronous motor (PMSM), the information of rotor position is implied in performance of stator inductances due to the magnetic saturation effect. Researches focused on the initial rotor position estimation of PMSM by injecting modulated pulse voltage vec....... The experimental results show that the proposed method estimates the initial rotor position reliably and efficently. The method is also simple and can achieve satisfied estimation accuracy....

  14. Magnetic reconnection in high-energy-density plasmas in the presence of an external magnetic field

    Science.gov (United States)

    Fox, W.; Bhattacharjee, A.; Fiksel, G.; Nilson, P.; Hu, S.; Chang, P.-Y.; Barnak, D.; Betti, R.

    2012-10-01

    Magnetic reconnection has recently been observed and studied in high-energy-density, laser-produced plasmas. These experiments are interesting both for obtaining fundamental data on reconnection, and may also be relevant for inertial fusion, as this magnetic reconnection geometry, with multiple, colliding, magnetized plasma bubbles, occurs naturally inside ICF hohlraums. We present initial results of experiments conducted on the OMEGA EP facility on magnetic reconnection between colliding, magnetized blowoff plasmas. While in previous experiments the magnetic fields were self-generated in the plasma by the Biermann battery effect, in these experiments the seed magnetic field is generated by pulsing current through a pair of external foils using the MIFEDS current generator (Magneto-Inertial Fusion Electrical Discharge System) developed at LLE. Time-resolved images of the magnetic fields and plasma dynamics are obtained from proton radiography and x-ray self-emission, respectively. We present initial results of the experiments, including comparison to ``null'' experiments with zero MIFEDS magnetic field, and associated modeling using the radiation-hydro code DRACO and the particle-in-cell code PSC.

  15. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

    Science.gov (United States)

    Slutz, S. A.; Stygar, W. A.; Gomez, M. R.; Peterson, K. J.; Sefkow, A. B.; Sinars, D. B.; Vesey, R. A.; Campbell, E. M.; Betti, R.

    2016-02-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion-relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values: i.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and Bz = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.

  16. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli.

    Directory of Open Access Journals (Sweden)

    Igor Delvendahl

    Full Text Available A full-sine (biphasic pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS, but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1. In young healthy volunteers, we (i compared monophasic, half-sine, and full-sine pulses, (ii applied two-segment pulses consisting of two identical half-sines, and (iii manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic pulses compared with full-sine. Pulses combining two half-sines of identical polarity and duration were also characterized by higher RMT than full-sine stimuli resulting. For full-sine stimuli, decreasing the amplitude of the half-segment inducing posterior-anterior oriented current in M1 resulted in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.

  17. Bifurcation physics of magnetic islands and stochasticity explored by heat pulse propagation studies in toroidal plasmas

    Science.gov (United States)

    Ida, K.; Kobayashi, T.; Yoshinuma, M.; Suzuki, Y.; Narushima, Y.; Evans, T. E.; Ohdachi, S.; Tsuchiya, H.; Inagaki, S.; Itoh, K.

    2016-09-01

    Bifurcation physics of a magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in a large helical device (LHD) and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between the magnetic island with larger thermal diffusivity and that with smaller thermal diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.

  18. The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement.

    Science.gov (United States)

    Darendeliler, M A; Sinclair, P M; Kusy, R P

    1995-06-01

    The purpose of this study was to determine whether the application of either samarium cobalt magnets or pulsed electromagnetic fields could increase the rate and amount of orthodontic tooth movement observed in guinea pigs. In addition, the objective was to evaluate the effect of a magnetic field on bony physiology and metabolism and to monitor for possible systemic side effects. Fifteen grams of laterally directed orthodontic force were applied to move the maxillary central incisors of a sample of 18 young male Hartley guinea pigs divided into three groups: group 1, an orthodontic coil spring was used to move the incisors; group 2, a pair of samarium-cobalt magnets provided the tooth moving force; and group 3, a coil spring was used in combination with a pulsed electromagnetic field. The results showed that both the static magnetic field produced by the samarium-cobalt magnets and the pulsed electromagnetic field used in combination with the coil spring were successful in increasing the rate of tooth movement over that produced by the coil springs alone. The mechanism producing this effect appears to have involved a reduction in the "lag" phase often seen in orthodontic tooth movement. Both magnetically stimulated groups also showed increases in both the organization and amount of new bone deposited in the area of tension between the orthodontically moved maxillary incisors.

  19. Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.

    2014-06-01

    The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of

  20. Conceptual design for the superconducting magnet system of a pulsed DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.-L., E-mail: jean-luc.duchateau@cea.fr [CEA/IRFM, 13108 St. Paul lez Durance Cedex (France); Hertout, P.; Saoutic, B.; Magaud, P.; Artaud, J.-F.; Giruzzi, G.; Bucalossi, J.; Johner, J.; Sardain, P.; Imbeaux, F.; Ané, J.-M.; Li-Puma, A. [CEA/IRFM, 13108 St. Paul lez Durance Cedex (France)

    2013-10-15

    Highlights: ► A 1D design approach of a pulsed DEMO reactor is presented. ► The main CS and TF conductor design criteria are presented. ► A typical major radius for a 2 GW DEMO is 9 m. ► A typical plasma magnetic field is 4.9 T. ► The pulse duration is 1.85 h for an aspect ratio of 3. -- Abstract: A methodology has been developed to consistently investigate, taking into account main reactor components, possible magnet solutions for a pulsed fusion reactor aiming at a large solenoid flux swing duration within the 2–3 h range. In a conceptual approach, investigations are carried out in the equatorial plane, taking into account the radial extension of the blanket-shielding zone, of the toroidal field magnet system inner leg and of the central solenoid for estimation of the pulsed swing. Design criteria are presented for the radial extension of the superconducting magnets, which is mostly driven by the structures (casings and conductor jacket). Typical available cable current densities are presented as a function of the magnetic field and of the temperature margin. The magnet design criteria have been integrated into SYCOMORE, a code for reactor modeling presently in development at CEA/IRFM in Cadarache, using the tools of the EFDA Integrated Tokamak Modeling task force. Possible solutions are investigated for a 2 GW fusion power reactor with different aspect ratios. The final adjustment of the DEMO pulsed reactor parameters will have to be consistently done, considering all reactor components, when the final goals of the machine will be completely clarified.

  1. Analysis of the effect of repeated-pulse transcranial magnetic stimulation at the Guangming point on electroencephalograms

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Lingdi Fu; Yuehua Geng; Xiang Zhai; Yanhua Liu

    2014-01-01

    Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo-gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran-scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula-tion, signiifcant differences in sample entropy were found at ifve electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula-tion. The ifndings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag-netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangming is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus

  2. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    Science.gov (United States)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  3. A Pulse Power Modulator System for Commercial High Power Ion Beam Surface Treatment Applications

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, D.M.; Cockreham, B.D.; Dragt, A.J.; Ives, H.C.; Neau, E.L.; Reed, K.W.; White, F.E.

    1999-05-24

    The Ion Beam Surface Treatment (lBESTrM) process utilizes high energy pulsed ion beams to deposit energy onto the surface of a material allowing near instantaneous melting of the surface layer. The melted layer typically re-solidifies at a very rapid rate which forms a homogeneous, fine- grained structure on the surface of the material resulting in significantly improved surface characteristics. In order to commercialize the IBESTTM process, a reliable and easy-to-operate modulator system has been developed. The QM-I modulator is a thyratron-switched five-stage magnetic pulse compression network which drives a two-stage linear induction adder. The adder provides 400 kV, 150 ns FWHM pulses at a maximum repetition rate of 10 pps for the acceleration of the ion beam. Special emphasis has been placed upon developing the modulator system to be consistent with long-life commercial service.

  4. Frequency-Domain Maximum-Likelihood Estimation of High-Voltage Pulse Transformer Model Parameters

    CERN Document Server

    Aguglia, D

    2014-01-01

    This paper presents an offline frequency-domain nonlinear and stochastic identification method for equivalent model parameter estimation of high-voltage pulse transformers. Such kinds of transformers are widely used in the pulsed-power domain, and the difficulty in deriving pulsed-power converter optimal control strategies is directly linked to the accuracy of the equivalent circuit parameters. These components require models which take into account electric fields energies represented by stray capacitance in the equivalent circuit. These capacitive elements must be accurately identified, since they greatly influence the general converter performances. A nonlinear frequency-based identification method, based on maximum-likelihood estimation, is presented, and a sensitivity analysis of the best experimental test to be considered is carried out. The procedure takes into account magnetic saturation and skin effects occurring in the windings during the frequency tests. The presented method is validated by experim...

  5. Parametric Study of High Frequency Pulse Detonation Tubes

    Science.gov (United States)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  6. Why high-frequency pulse tubes can be tipped

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Gregory W092710 [Los Alamos National Laboratory; Backhaus, Scott N [Los Alamos National Laboratory

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  7. Storage of magnetization as singlet order by optimal control designed pulses

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Bowen, Sean; Vinding, Mads Sloth

    2014-01-01

    . With this aim, optimal control theory was applied to create pulses that for near‐equivalent spins accomplish transfers in and out of the singlet state with maximum efficiency while ensuring robustness toward variations in the nuclear spin system Hamiltonian (chemical shift, J‐couplings, B1 and B magnetic field...

  8. Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic fields

    NARCIS (Netherlands)

    Jhang, S.H.; Marganska, M.; Skourski, Y.; Preusche, D.; Witkamp, B.; Grifoni, M.; Van der Zant, H.; Wosnitza, J.; Strunk, C.

    2010-01-01

    The magnetoconductance of an open carbon nanotube (CNT)-quantum wire was measured in pulsed magnetic fields. At low temperatures, we find a peculiar split magnetoconductance peak close to the chargeneutrality point. Our analysis of the data reveals that this splitting is intimately connected to the

  9. REMANENCE MEASUREMENTS ON INDIVIDUAL MAGNETOTACTIC BACTERIA USING A PULSED MAGNETIC-FIELD

    NARCIS (Netherlands)

    PENNINGA, Ietje; Waard , de Hendrik; MOSKOWITZ, BM; BAZYLINSKI, DA; FRANKEL, RB

    1995-01-01

    We describe pulsed-magnetic-field remanence measurements of individual, killed, undisrupted cells of three different types of magnetotactic bacteria. The measurement technique involved the observation of aligned, individual magnetotactic bacteria with a light microscope as they were subjected to mag

  10. Energy-spread measurement of triple-pulse electron beams based on the magnetic dispersion principle

    CERN Document Server

    Wang, Yi; Yang, Zhiyong; Zhang, Huang; Ding, Hengsong; Yang, Anmin; Wang, Minhong

    2016-01-01

    The energy-spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator is measured using the method of energy dispersion in the magnetic field. A sector magnet is applied for energy analyzing of the electron beam, which has a bending radius of 300 mm and a deflection angle of 90 degrees. For each pulse, both the time-resolved and the integral images of the electron position at the output port of the bending beam line are recorded by a streak camera and a CCD camera, respectively. Experimental results demonstrate an energy-spread of less than +-2.0% for the electron pulses. The cavity voltage waveforms obtained by different detectors are also analyzed for comparison.

  11. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2012-08-15

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration t{sub w} = 20-200 {mu}s. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for t{sub w} < 50 {mu}s are characterized by a quasi-steady-state in electron density that persists for {approx} 20-40 {mu}s even after the end of the pulse and has a relatively slower decay rate ({approx} 4.3 Multiplication-Sign 10{sup 4} s{sup -1}) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at t{sub w} {approx} 50 {mu}s as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  12. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    Science.gov (United States)

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-08-01

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration tw = 20-200 μs. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for tw < 50 μs are characterized by a quasi-steady-state in electron density that persists for ˜ 20-40 μs even after the end of the pulse and has a relatively slower decay rate (˜ 4.3 × 104 s-1) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at tw ˜ 50 μs as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  13. Human exposure from pulsed magnetic field therapy mats: a numerical case study with three commercial products.

    Science.gov (United States)

    De Santis, Valerio; Douglas, Mark; Nadakuduti, Jagadish; Benkler, Stefan; Chen, Xi Lin; Kuster, Niels

    2015-02-01

    A previous study found that incident magnetic field exposure from pulsed magnetic field therapy (PMFT) mats can exceed ICNIRP 1998 reference levels. Due to the popularity of PMFT mats for private therapeutic use, regulators need to know if the products are compliant with the basic restrictions and how overexposure can be determined. This case study's objective was to test if such products are intrinsically compliant with ICNIRP 1998 and ICNIRP 2010 basic restrictions by evaluating three different commercially-available PMFT products. In the first step, experimentally validated numerical models of these mats were developed. As a second step, the induced fields were evaluated in high-resolution anatomical models of the IT'IS Virtual Population for various lying positions and compared to the safety guidelines. As expected, a strong influence of exposure on the PMFT design, anatomy, lying position and body orientation was found. The maximum exposure of one PMFT exceeds 3.1 times the basic restrictions of ICNIRP 1998 for the central nervous system tissues and 1.36 times the limit of ICNIRP 2010 for the peripheral tissues. Body loops can significantly increase the electric fields close to the skin, e.g., when the hand and thigh are in contact during mat use. In conclusion, PMFT products are not intrinsically compliant with ICNIRP 1998 and ICNIRP 2010 basic restrictions and therefore require special considerations. © 2015 Wiley Periodicals, Inc.

  14. The high-speed after pulse measurement system for PMT

    CERN Document Server

    Cheng, Yaping; Ning, Zhe; Xia, Jingkai; Wang, Wenwen; Wang, Yifang; Cao, Jun; Jiang, Xiaoshan; Wang, Zheng; Li, Xiaonan; Qi, Ming; Heng, Yuekun; Liu, Shulin; Lei, Xiangcui; Wu, Zhi

    2014-01-01

    A system employing a desktop FADC has been developed to investigate the features of 8 inches Hamamatsu PMT. The system stands out for its high-speed and informative results as a consequence of adopting fast waveform sampling technology. Recording full waveforms allows us to perform digital signal processing, pulse shape analysis, and precision timing extraction. High precision after pulse time and charge distribution characteristics are presented in this manuscript. Other photomultipliers characteristics, such as dark rate and transit time spread, can also be obtained by exploiting waveform analysis using this system.

  15. Fabrication of pulsed magnets with a linear-type coil-winding machine

    Science.gov (United States)

    Suzuki, O.; Sakamoto, K.; Imanaka, Y.; Kido, G.

    2001-01-01

    We developed a linear-type coil-winding machine for the fabrication of pulsed magnets. This machine is compact and makes the process of winding a wire easier. The wire is led to a coil shaft through a pair of timing-belts. Kapton tape and Zylon fiber are wrapped on the wire by interlocking with the drive part of the timing-belts. A test magnet fabricated with the linear-type coil-winding machine generates magnetic fields above 63 T.

  16. Pulsed magnetic field study of the spin gap in intermediate valence compound SmB 6

    Science.gov (United States)

    Flachbart, K.; Bartkowiak, M.; Demishev, S.; Gabani, S.; Glushkov, V.; Herrmannsdorfer, T.; Moshchalkov, V.; Shitsevalova, N.; Sluchanko, N.

    2009-10-01

    In this work, we report the behavior of electrical resistivity of SmB 6 at temperatures between 2.2 and 70 K in pulsed magnetic fields up to 54 T. A strong negative magnetoresistance was detected with increasing magnetic field, when lowering the temperature in the range T30 K is discussed within the framework of exciton-polaron model of local charge fluctuations in SmB 6 proposed by Kikoin and Mishchenko. It seems that these exciton-polaron in-gap states are influenced both by temperature and magnetic field.

  17. A high current, high gradient, laser excited, pulsed electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, K.; Farrell, J.P.; Dudnikova, G. [Brookhaven Technology Group, Inc., Stony Brook, NY (United States); Ben-Zvi, I.; Srinivasan-Rao, T.; Smedley, J.; Yakimenko, V. [Brookhaven National Lab., Upton, NY (United States)

    1998-06-01

    This paper describes a pulsed electron gun that can be used as an FEL, as an injector for electron linear accelerators or for rf power generation. It comprises a 1 to 5 MeV, 1 to 2 ns pulsed power supply feeding a single diode, photoexcited acceleration gap. Beam quality of a {approximately}1nC charge in {approximately}1 GV/m field was studied. Computations of the beam parameters as a function of electrode configuration and peak electron current are presented together with descriptions of the power supply, laser and beam diagnostics systems.

  18. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian;

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  19. Complex pulsing schemes for high frame rate imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Fink, Mathias; Jensen, Jørgen Arendt

    2002-01-01

    High frame rate ultrasound imaging can be achieved by simultaneous transmission of multiple focused beams along different directions. However, image quality degrades by the interference among beams. An alternative approach is to transmit spherical waves of a basic short pulse with frequency coding...... with linear frequency modulation along the transducer elements, that cover the 70% fractional bandwidth of the 7 MHz transducer. The resulted images (after beamforming and matched filtering) show an axial resolution at the same order as in conventional pulse excitation and axial sidelobes down to -45 d......B. With the proposed imaging strategy of pulse train excitation, a whole image can be formed with only two emissions, making it possible to obtain high quality images at a frame rate of 20 to 25 times higher than that of conventional phased array imaging...

  20. Empirical compensation function for eddy current effects in pulsed field gradient nuclear magnetic resonance experiments.

    Science.gov (United States)

    Zhu, X X; Macdonald, P M

    1995-05-01

    An empirical compensation function for the correction of eddy current effects in the Stejskal-Tanner pulsed-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiments has been established. Eddy currents may arise as a result of the application of sharp and strong gradient pulses and may cause severe distortion of the NMR signals. In this method, the length of one gradient pulse is altered to compensate for the eddy current effects. The compensation is considered to be ideal when the position and the phase of the spin-echo maximum obtained from an aqueous solution of poly(ethylene glycol) (PEG) is the same in the presence and absence of a gradient pulse in the PGSE pulse sequence. We first characterized the functional dependence of the length of the required compensation on the three principal variables in the PGSE experiment: the gradient strength, the duration of the gradient pulse, and the interval between the two gradient pulses. Subsequently, we derived a model which successfully describes the general relationship between these variables and the size of the induced eddy current. The parameters extracted from fitting the model to the experimental compensation data may be used to predict the correct compensation for any combination of the three principal variables.

  1. Flux motion in Y-Ba-Cu-O bulk superconductors during pulse field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, K [Department of Physics, College of Humanities and Sciences, Nihon University, 3-25-40 Sakura-Josui, Setagaya-ku, Tokyo 156-8550 (Japan); Nariki, S [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Sakai, N [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Murakami, M [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Hirabayasi, I [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Takizawa, T [Department of Physics, College of Humanities and Sciences, Nihon University, 3-25-40 Sakura-Josui, Setagaya-ku, Tokyo 156-8550 (Japan)

    2004-02-01

    We have studied the relationship between the magnetization and temperature change in Y-Ba-Cu-O bulk superconductor during pulse field magnetization (PFM). The flux motion was monitored using both Hall sensors and pick-up coils that are placed on a surface of a Y-Ba-Cu-O disc having dimensions of 15 mm in diameter and 0.95 mm in thickness. The peak value of the field was varied from 0.2 to 0.8 T. The effect of the static bias field was also studied in the range of 0-3 T. The temperature of the sample surface was measured using a resistance temperature sensor. The temperature increased with the magnitude of the applied pulsed magnetic field, and the amount of temperature rise decreased with increasing static bias field.

  2. A high efficiency hybrid stirling-pulse tube cryocooler

    Science.gov (United States)

    Wang, Xiaotao; Zhang, Yibing; Li, Haibing; Dai, Wei; Chen, Shuai; Lei, Gang; Luo, Ercang

    2015-03-01

    This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  3. A high efficiency hybrid stirling-pulse tube cryocooler

    Directory of Open Access Journals (Sweden)

    Xiaotao Wang

    2015-03-01

    Full Text Available This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  4. Investigation of Linear Stability Theory for Wavy Interface in Magnetic Pulse Welding

    Science.gov (United States)

    Nassiri, Ali; Chini, Gregory; Kinsey, Brad

    2012-11-01

    Magnetic Pulse Welding (MPW) is a solid state, high strain-rate joining process in which a weld of dissimilar or similar materials can be created via high-speed oblique impact of two workpieces. MPW is a lap welding method: the two workpieces are placed in a roughly parallel configuration with a small gap between them to achieve high impact velocity and pressure. Intriguingly, experiments routinely show the emergence of a distinctive wavy pattern, with a well defined amplitude and wavelength of approximately 20 and 70 micrometers, respectively, at the interface between the two welded materials. The mechanism underlying this wavy pattern is still not well understand. Some researchers have proposed that the interfacial waves are formed in a process akin to Kelvin-Helmholtz instability, with relative shear movement of the flyer and base plates providing an energy source for the vortical pattern. Here, we employ a linear stability analysis to investigate whether the wavy pattern could be the signature of a shear-driven high strain-rate instability of a perfectly plastic solid material. Preliminary results confirm that an instability giving rise to a wavy interfacial pattern is possible.

  5. A new ring-shape high-temperature superconducting trapped-field magnet

    Science.gov (United States)

    Sheng, Jie; Zhang, Min; Wang, Yawei; Li, Xiaojian; Patel, Jay; Yuan, Weijia

    2017-09-01

    This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trapped- field magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in size and can be made into magnets with large dimensions for industrial applications. Effective magnetization is the key to being able to use trapped-field magnets. Therefore, this paper focuses on the magnetization mechanism of this new magnet using both experimental and numerical methods. Unique features have been identified and quantified for this new type of HTS magnet in the field cooling and zero field cooling process. The magnetization mechanism can be understood by the interaction between shielding currents and the penetration of external magnetic fields. An accumulation in the trapped field was observed by using multiple pulse field cooling. Three types of demagnetization were studied to measure the trapped-field decay for practical applications. Our results show that this new ring-shape HTS magnet is very promising in the trapping of a high magnetic field. As a super-permanent magnet, it will have a significant impact on large-scale industrial applications, e.g. the development of HTS machines with a very high power density and HTS magnetic resonance imaging devices.

  6. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire.

    Science.gov (United States)

    Zhang, S F; Gan, W L; Kwon, J; Luo, F L; Lim, G J; Wang, J B; Lew, W S

    2016-04-21

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~10(12) A/m(2). Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 10(11) A/m(2). Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  7. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    Science.gov (United States)

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-04-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  8. Efficient high-energy pulse-train generation using a 2{sup n}-pulse Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C.W.; Siders, J.L.; Taylor, A.J. [Materials Science and Technology Division, Los Alamos National Laboratory, MS D429, Los Alamos, New Mexico 87545 (United States); Park, S.; Weiner, A.M. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    1998-08-01

    We demonstrate a novel, Michelson-based, ultrafast multiplexer with a throughput approaching 100{percent} for a polarization-multiplexed train and 50{percent} for a linearly polarized train, which is compatible with a high-energy pulse train and shaped-pulse generation. The interpulse spacings in the resultant 2{sup n}-pulse train can be adjusted continuously from multinanoseconds through zero. Using this interferometer, we also demonstrate generation of a 16-pulse train of terahertz pulses. {copyright} 1998 Optical Society of America

  9. Experimental studies on the thermal properties of fast pulsed superconducting accelerator magnets; Experimentelle Untersuchungen thermischer Eigenschaften schnell gepulster supraleitender Beschleunigermagnete

    Energy Technology Data Exchange (ETDEWEB)

    Bleile, Alexander

    2016-01-06

    The new Facility for Antiproton and Ion Research FAIR is being constructed at the GSI research center in Darmstadt (Germany). This wordwide unique accelerator facility will provide beams of ions and antiprotons at high intensities and high energies for the fundamental research in nuclear, atomic and plasma physics as well as for applied science. The superconducting synchrotron SIS100 with a magnetic rigidity of 100 T/m, the core component of the FAIR facility will provide primary ion beams of all types from hydrogen up to uranium. One of the key technical systems of a new synchrotron are fast ramped electromagnets for the generation of fast ramped magnetic fields for deflecting and focusing of the ion beams. To reduce the energy consumption and to keep the operating costs of the synchrotron as low as possible superconducting magnet technology is applied in the SIS100. Superconducting magnets have been developed at GSI within the scope of the FAIR project. Although the superconducting magnet technology promises high cost saving, the power consumption of the fast ramped superconducting magnets can't be completely neglected. The pulsed operation generates dynamic losses in the iron yokes as well as in the superconducting coils of the magnets. A forced two-phase helium flow provides effective cooling for supercounducting magnets exposed to a continous relative high heat flow. The subject of this PhD thesis is experimental investigations and analysis of the dynamic power losses in fast ramped superconducting magnets and their dependencies on the operation cycles of the synchrotron. This research was conducted on the the first series SIS100 dipole magnet. Based on the experimentally defined dynamic heat loads and helium mass flow rates in the dipole magnet the heat loads and helium consumption for all other types of superconducting magnet modules of the SIS100 have been estimated. These results are essential for the development of the cooling system for the the

  10. Control Loop for a Pulse Generator of a Fast Septum Magnet using DSP and Fuzzy Logic

    CERN Document Server

    Aldaz-Carroll, E; Dieperink, J H; Schröder, G; Vossenberg, Eugène B

    1997-01-01

    A prototype of a fast pulsed eddy current septum magnet for one of thebeam extraction's from the SPS towards LHC is under development. The precision of the magnetic field must be better than ±1.0 10-4 during a flat top of 30 µs. The current pulse is generated by discharging the capacitors of a LC circuit that resonates on the 1st and on the 3rd harmonic of a sine wave with a repetition rate of 15 s. The parameters of the circuit and the voltage on the capacitors must be carefully adjusted to meet the specifications. Drifts during operation must be corrected between two pulses by mechanically adjusting the inductance of the coil in the generator as well as the primary capacitor voltage. This adjustment process is automated by acquiring the current pulse waveform with sufficient time and amplitude resolution, calculating the corrections needed and applying these corrections to the hardware for the next pulse. A very cost-effective and practical solution for this adjustment process is the integration of off-th...

  11. Oval pulsed high-dose dexamethasone for myositis

    NARCIS (Netherlands)

    Hoogendijk, JE; Wokke, JHJ; de Visser, M

    2000-01-01

    To study the short-term effect of oral pulsed high-dose dexamethasone for myositis we treated eight newly diagnosed patients with three 28-day cycles of oral dexamethasone. Primary outcome measures were muscle strength, pain, and serum creatine kinase activity. Sis patients responded. Side effects w

  12. Pulse laser machining and particulate separation from high impact polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Saira; Kautek, Wolfgang, E-mail: wolfgang.kautek@univie.ac.at

    2014-01-01

    Opaque high impact polystyrene (HIPS) contaminated with graphite particles and poly(styrene-co-divinyl benzene) spheres can only be removed efficiently with nanosecond-pulsed laser radiation of 532 nm while the substrate is preserved. The destruction thresholds are 1–2 orders of magnitude lower than that of other common technical polymers. The inhomogeneously distributed polybutadiene composite component led to enhanced light scattering in the polystyrene matrix so that increased light absorption and energy density causes a comparatively low ablation threshold. Due to this fact there is advantageous potential for pulse laser machining at comparatively low fluences.

  13. Multi-Pulsed High Hydrostatic Pressure Treatment of Foods

    OpenAIRE

    Sencer Buzrul

    2015-01-01

    Multi-pulsed high hydrostatic pressure (mpHHP) treatment of foods has been investigated for more than two decades. It was reported that the mpHHP treatment, with few exceptions, is more effective than the classical or single-pulsed HHP (spHHP) treatment for inactivation of microorganisms in fruit juice, dairy products, liquid whole egg, meat products, and sea foods. Moreover, the mpHHP treatment could be also used to inactivate enzymes in foods and to increase the shelf-life of foods. The eff...

  14. SQUID holder with high magnetic shielding

    Science.gov (United States)

    Rigby, K. W.; Marek, D.; Chui, T. C. P.

    1990-01-01

    A SQUID holder designed for high magnetic shielding is discussed. It is shown how to estimate the attenuation of the magnetic field from the normal magnetic modes for an approximate geometry. The estimate agrees satisfactorily with the attenuation measured with a commercial RF SQUID installed in the holder. The holder attenuates external magnetic fields by more than 10 to the 9th at the SQUID input. With the SQUID input shorted, the response to external fields is 0.00001 Phi(0)/G.

  15. The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source

    CERN Document Server

    Yokoyama, K; Murahari, P; Wang, K; Dunstan, D J; Waller, S P; McPhail, D J; Hillier, A D; Henson, J; Harper, M R; Heathcote, P; Drew, A J

    2016-01-01

    A high power pulsed laser system has been installed on the high magnetic field muon instrument (HiFi) at the ISIS pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high field, which opens up a brand-new area in the muon spin spectroscopy. In this report we overview the principle of the HiFi Laser system, and describe the newly developed techniques and devices that enable a controlled photoexcitation in the muon instrument. A demonstration experiment illustrates the unique combination of the photoexcited system and avoided level crossing technique.

  16. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  17. Magnetic Flux-Trapping of Anisotropic-Grown Y-Ba-Cu-O Bulk Superconductors during and after Pulsed-Field Magnetizing Processes

    Science.gov (United States)

    Oka, T.; Yamada, Y.; Horiuchi, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.

    2014-05-01

    The magnetic flux penetration into the melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were precisely evaluated during and after the pulsed field magnetization processes operated at 30 K. The bulk magnets were carefully fabricated by the cold seeding method with use of a single and a pair of seed crystals composed of the Nd-Ba-Cu-O thin films. These seed crystals were put on the top surfaces of the precursors to let the large grains grow during the heat treatments. We observed the flux penetrations which occurred in the lower applied-field regions at around 3.1 T for the samples bearing the twin seeds than those of the single-seeded crystals at around 3.8 T. This means that the magnetic fluxes are capable of invading into the twin-seeded samples more easily than the single-seeds. It suggests that the anisotropic grain growths of parallel and normal to the rows of seed crystals affects the variations of Jc values with different distributions of the pinning centers, results in the preferential paths for the invading magnetic fluxes.

  18. Nonlinear interaction of charged particles with strong laser pulses in a magnetic undulator

    Directory of Open Access Journals (Sweden)

    H. K. Avetissian

    2010-08-01

    Full Text Available Laser acceleration due to the nonlinear-threshold phenomena of charged particle “reflection” and capture by slowed wave in a magnetic undulator is considered. The obtained numerical results prove the particle reflection and capture phenomena in the field of actual laser pulses with temporal and space profiles which lead to the particles acceleration. In contrast to the reflection regime where particle acceleration takes place already at the constant undulator step, in the capture regime it is necessary to increase adiabatically the undulator step along the laser pulse propagation direction by the certain self-consistent variation law corresponding to acceleration rate.

  19. MAGNETIC PULSED PROCESSING OF METALS FOR ADVANCED TECHNOLOGIES OF MODERNITY – A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Yu. V. Batygin

    2016-11-01

    Full Text Available The aim of the article is dedicated to the brief review of the main achievements of the advanced technologies with usage of the energy of the pulsed magnetic fields. Originality. The new suggestions are represented. They are based on the results of development of the new scientific direction in area of the magnetic pulsed processing of thin-walled sheet metals when a penetration of the acting fields is quite significant. The known traditional approaches based on the skin-effect in electrodynamics and were successfully implemented. Methodology of the analysis consist of careful theoretical and practical experiments review and its future development. Results of the research based on the existing experimental approbation were presented visually with the description followed The known approaches to solution actual production problems based on the skin-effect in electrodynamics are described. Practical value. The first of practical propositions is related to stamping of the drawing the printed circuit boards on the cooper foil with thickness about ~50 mkm. This operation is realizing by the forces of magnetic pressure directly without any supplements introduction. The second consists in usage the magnetic pulsed attraction for external removing the dents in the car body. This operation does not demand disassembling of elemental base and allows preserving the paint of coverings. Both of these technologies could to minimize the working time, to decries the volume of the waste products and to make the manufacturing existed much cheaper.

  20. Experimental studies on extremely low frequency pulsed magnetic field inhibiting sarcoma and enhancing cellular immune functions

    Institute of Scientific and Technical Information of China (English)

    张沪生; 叶晖; 张传清; 曾繁清; 黄兴鼎; 张晴川; 李宗山; 杜碧

    1997-01-01

    The previous observation with an electron microscope showed that extremely low frequency (ELF) pulsed magnetic field (PMF) (with the maximum intensity of 0. 6-2. 0 T, gradient of 10-100 T. M-1, pulse width of 20-200 ms and frequency of 0. 16-1. 34 Hz) inhibited the growth of S-180 sarcoma in mice and enhanced the ability of immune cell’s dissolving sarcoma cells. In this study, the DNA contents of nuclei were assayed by using Faulgen Staining method. With an electron microscope and cell stereoscopy technology it was observed that magnetic field affected the sarcoma cell’s metabolism, lowered its malignancy, and restrained its rapid and heteromorphic growth. The magnetic field enhanced the cellular immune ability and the reaction of lymphocytes and plasma. Since ELF pulsed magnetic fields can inhibit the growth of sarcomas and enhance the cellular immune ability, it is possible to use it as a new method to treat cancer.

  1. Progress at SLAC on high-power rf pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Nantista, C.; Ruth, R.D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Kroll, N.M. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    1992-06-01

    Rf pulse compression is a technique for augmenting the peak power output of a klystron (typically 50--100 MW) to obtain the high peak power required to drive a linear collider at a high accelerating gradient (typically 200 MW/m is required for a gradient of 100 MV/m). The SLED pulse compression system, with a power gain of about 2.6, has been operational on the SLAC linac for more than a decade. Recently, a binary pulse-compression system with a power gain of about 5.2 has been tested up to an output power of 120 MW. Further high-power tests are in progress. Our current effort is focused on prototyping a so-called SLED-II pulse-compression system with a power gain of four. Over-moded TE{sub 01}-mode circular waveguide components, some with novel technical features, are used to reduce losses at the 11.4-GHz operating frequency.

  2. Progress at SLAC on high-power rf pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Nantista, C.; Ruth, R.D. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Kroll, N.M. (Stanford Linear Accelerator Center, Menlo Park, CA (United States) California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics)

    1992-06-01

    Rf pulse compression is a technique for augmenting the peak power output of a klystron (typically 50--100 MW) to obtain the high peak power required to drive a linear collider at a high accelerating gradient (typically 200 MW/m is required for a gradient of 100 MV/m). The SLED pulse compression system, with a power gain of about 2.6, has been operational on the SLAC linac for more than a decade. Recently, a binary pulse-compression system with a power gain of about 5.2 has been tested up to an output power of 120 MW. Further high-power tests are in progress. Our current effort is focused on prototyping a so-called SLED-II pulse-compression system with a power gain of four. Over-moded TE[sub 01]-mode circular waveguide components, some with novel technical features, are used to reduce losses at the 11.4-GHz operating frequency.

  3. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1980-01-01

    A cell for pulse radiolytic measurements up to temperatures of 320°C and pressures of 14 MPa is constructed. The activation energy of the reaction OH + Cu2+ is determined to 13.3 kJ × mol−1 (3.2 kcal × mol−1). A preliminary study of the reaction e−aq + e−aq yields an activation energy of 22 kJ × ...

  4. The polaron effect in GaAs-(Al,Ga)As studied with a pulsed-field magnet: Free-electron-laser combination

    NARCIS (Netherlands)

    Langerak, Cjgm; Li, L.; Van Bockstal, L.; Ardavan, A.; van de Pol, M.J.; van der Meer, A. F. G.; Herlach, F.; Mueller, H. U.; Nicholas, R. J.; Singleton, J.

    1998-01-01

    The combination of a 60 T pulsed-field magnet and the continuous tunability of a high power, picosecond free-electron laser provides a powerful facility to study, e.g. cyclotron resonance in a wide range of materials with different effective masses and over a wide range of energies. Here we present

  5. Structural and Electrical Properties of Heteroepitaxial Magnetic Oxide Junction Diode Fabricated by Pulsed Laser Deposition

    Science.gov (United States)

    Li, M. K.; Wong, K. H.

    2010-11-01

    Heteroepitaxial junctions formed by p-type strontium doped lanthanum manganite and n-type cobalt doped titanium dioxide were fabricated on LaAlO3 (100) substrates by pulsed laser deposition. The La0.7Sr0.3MnO3 (LSMO) layers were grown at 650° C and under 150 mTorr ambient oxygen pressure. They showed room temperature ferromagnetism and metallic-like electrical conduction with a resistivity of 0.015 ohm cm at 300 K. The CoxTi1-xO2[x = 0.05 and 0.1] (CTO), which, at anatase phase, was reported as a wide-band-gap dilute magnetic semiconductor, was deposited on the LSMO film surface at 600° C with an ambient oxygen pressure of 20 mTorr. The as-grown CTO films exhibited pure anatase crystalline phase and semiconductor-like conduction. Under optimized fabrication conditions the CTO/LSMO junction revealed a heteroepitaxial relationship of (004)CTO‖‖(001)LSMO‖‖(001)LAO. Electrical characterization of these p-n junctions yielded excellent rectifying characteristics with a current rectifying ratio over 1000 at room temperature. The electrical transport across these diodes was dominated by diffusion current at low current (low bias voltage) regime and by recombination current at high current (high bias voltage) regime. Our results have demonstrated an all-oxide spintronic junction diode with good transport property. The simultaneous of electrical and magnetic modulation in a diode junction is therefore potentially realizable.

  6. Plasticity and microstructure of AZ31 magnesium alloy under coupling action of high pulsed magnetic field and external stress%强磁与应力场耦合作用下AZ31镁合金塑性变形行为∗

    Institute of Scientific and Technical Information of China (English)

    王宏明; 朱弋; 李桂荣; 郑瑞

    2016-01-01

    As an h.c.p crystal structure with only a few limited slipping planes, the AZ31 magnesium alloy exhibits a bad plasticity in the presence of external stress. Due to its low density, advanced damping capacity and high ratio strength and rigidity, the magnesium alloy has gradually become the focused and potential structural and functional metallic material in the diverse fields of aerospace, aviation and vehicle transportation, electronic products, etc. Therefore, it is of great importance to improve the process ability of conventional magnetism alloy as AZ31. In the past decades many approaches have been proposed in order to improve the plastic deformation capability. Among these, the diverse physical fields are regarded as the effective methods to improve the comprehensive mechanical properties of metallic materials due to their peculiar heat, force and quantum effects together with the advantageous characteristics of low pollution and high efficiency. In the paper, on the basis of previous researches, a high pulsed magnetic field is introduced into the tensile test to study the influences of magnetic field on the plasticity and microstructure of AZ31 magnesium alloy in order to explore a novel way to enhance the plastic deformation capability of alloy. As for the current experiment, the tensile test of AZ31 magnesium alloy is carried out under the coupling action of high pulsed magnetic field and external stress. The test results are compared with those processed without magnetic field. Several advanced detection methods are utilized to investigate the microstructure including the electron back scattered diffraction, X-ray diffraction and transmission electron microscopy, etc. Besides, the first principle is utilized to calculate the magnetic properties of main precipitatesβ(Mg17Al12). The experimental results show that the tensile strength and elongation of the 3 T sample are increased by 2.2%and 28.7%in comparison to those of the 0 T sample. It highlights that

  7. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    Energy Technology Data Exchange (ETDEWEB)

    Beeson, S.; Dickens, J.; Neuber, A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-09-15

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N{sub 2}, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  8. A high-power SLED 2 pulse compression system

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, N.M. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Ruth, R.D.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Nantista, C. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1992-03-01

    The enhancement of peak power by means of RF pulse compression has found important application for driving high energy electron linacs, the SLAC linac in particular. The SLAC Energy Doubler (SLED), however, yields a pulse shape in the form of a decaying exponential which limits the applicability of the method. Two methods of improving this situation have been suggested: binary pulse compression (BPC), in which the pulse is compressed by successive factors of two, and SLED II in which the pair of resonant cavities of SLED are replaced by long resonant delay lines (typically waveguides). Intermediate schemes in which the cavity pair is replaced by sequences of coupled cavities have also been considered. In this paper we describe our efforts towards the design and construction of high-power SLED II systems, which are intended to provide drivers for various advanced accelerator test facilities and potentially for the Next Linear Collider itself. The design path we have chosen requires the development of a number of microwave components in overmoded waveguide, and the bulk of this paper will be devoted to reporting our progress.

  9. Formation of porous inner architecture at the interface of magnetic pulse welded Al/Cu joints

    Science.gov (United States)

    Sapanathan, T.; Raoelison, R. N.; Yang, K.; Buiron, N.; Rachik, M.

    2016-10-01

    Porous inner architecture has been revealed at the interface of magnetic pulse welded aluminum/copper (Al/Cu) joints. These materials could serve the purpose of heterogeneous architectured materials, while their makeup of inner architecture of porous interface with the pore sizes of sub-micron to a few microns, could offer potential attributes in energy storage application. Two welding cases with various impact intensities are compared. An input voltage of 6.5 kV with an initial air gap of 1.5 mm and a higher voltage of 7.5 kV with a large initial air gap of 5 mm are respectively considered as two cases with low and high velocity impacts. Overall morphology of the porous medium was revealed at the interface either in layered or pocketed structures. The allocation of the porous zone and pore sizes vary with the impact condition. The low velocity impact welding conditions also produces smaller pores compared to the high velocity impact case, where the pore sizes varies in submicron to a few microns (<10μm). By investigating the potential mechanism of the porous zone formation, it was identified that a combined phenomena of cavitation and coalescence play a major role in nucleation and growth of the pores where a rapid cooling that eventually freezes the porous structure at the interface.

  10. Applications of pulsed nuclear magnetic resonance to chemistry: multiple-pulse NMR, cross polarization, magic-angle spinning annd instrumental design

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.

    1979-07-01

    Pulsed Nuclear Magnetic Resonance (NMR) has been applied to: (1) Measurements of the prinicpal components of the proton shielding tensors of the hydrides of zirconium chloride and zirconium bromide. Multiple-Pulse techniques have been used to remove static homonuclear dipolar coupling. The anisotropies and isotropic shifts of these tensors have been used to infer the possible locations of the hydrogen within the sandwich-like layers of these unusual compounds. (2) Studies of the oscillatory transfer of magnetic polarization between /sup 1/H and /sup 29/Si in substituted silanes. The technique of J Cross Polarization has been used to enhance sensitivity. The /sup 29/Si NMR shifts of -Si-O- model compounds have been investigated as a possible probe for future studies of the environment of bound oxygen in coal-derived liquids. (3) Measurements of the aromatic fraction of /sup 13/C in whole coals. The techniques of /sup 1/H-/sup 13/C Cross Polarization and Magic-Angle Spinning have been used to enhance sensitivity and remove shift anisotropy. Additional topics described are: (4) Calculation and properties of the broadened lineshape of the shileding Powder Pattern. (5) Calculation of the oscillatory transfer of magnetic polarization for an I-S system. (6) Numerical convolution and its uses. (7) The technique of digital filtering applied in the frequency domain. (8) The designs and properties of four NMR probe-circuits. (9) The design of a single-coil double-resonance probe for combined Magic-Angle Spinning and Cross Polarization. (10) The designs of low Q and high Q rf power amplifiers with emphasis on the rf matching circuitry.

  11. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J

    2013-01-01

    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  12. Stacked pulse-electroplated CoNiMnP-AAO nanocomposite permanent magnets for MEMS

    Science.gov (United States)

    Wu, P. R.; Chao, T. Y.; Cheng, Y. T.

    2015-12-01

    The paper presents a CMOS compatible pulse-electroplating technique combined with a low temperature bonding process for the synthesis of CoNiMnP-AAO (anodic alumina oxide) nanocomposite films and the fabrication of stacked composite permanent magnets (PMs). The magnetic nanocomposite film exhibits the best characteristics of the coercivity of 2472 Oe, remanence of 4000 G, and {{≤ft(\\text{BH}\\right)}\\max} of 16.13 kJ m-3, in the existing CoNiMnP systems. Meanwhile, a surface magnetic flux density of 9.2 mT generated by a 15-layer-stacked composite PM with a volume of 9 mm3 has shown the potential for various magnetic microelectromechanical systems (MEMS) fabrication using the nanocomposite material.

  13. Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel-Cobalt alloys

    Science.gov (United States)

    Sharma, Amit; Chhangani, Sumit; Madhavan, R.; Suwas, Satyam

    2017-07-01

    This paper reports the evolution of microstructure and texture in Nickel-Cobalt electrodeposits fabricated by pulse electrodeposition (PED) technique and the correlation of these attributes with the magnetic properties. The structural and microstructural investigation using X-ray diffraction and transmission electron microscopic studies indicate the presence of nanocrystalline grains and nano-twins in the electrodeposits. Convoluted Multiple Whole profile fitting reveals an increase in dislocation density and twin density with increasing cobalt content in the as-deposited samples. Strengthening of fibre texture and weakening of fibre texture with increasing cobalt concentration has been observed with X-ray texture analysis. A corresponding significant increase in the saturation magnetization and coercivity observed with increasing cobalt content. A significant improvement in the soft magnetic character in the electrodeposits in terms of increase in saturation magnetization and decrease in coercivity has been observed with thermal annealing.

  14. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  15. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  16. Generation of ultrahigh frequency air microplasma in a magnetic loop and effects of pulse modulation on operation

    Science.gov (United States)

    Taghioskoui, Mazdak; Perlow, Joshua; Zaghloul, Mona; Montaser, Akbar

    2010-05-01

    An atmospheric pressure air microplasma (APAMP) source was developed under ambient conditions using a magnetic loop at an operating frequency of 740 MHz. A self-igniting, stable APAMP was generated at 9.5 W. Pulse modulation (PM) was applied to the ultra high frequency signal. The effects of PM on self-ignition and operation of the APAMP source were studied by using a square wave modulating signal in the frequency range of 5-30 KHz. With the application of PM on the APAMP, in the best case, the plasma self-ignites and is sustained at 2.5 W.

  17. Mechanical Studies on Treatment of Malignant Tumour by Ultralow Frequency Pulsed- Gradient Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    Deng Ren-qing; Liu Qing-hua; Zhang Hu-sheng

    2003-01-01

    Ultralow frequency (ULF) pulsed-gradient magnetic field (with the maximum intensity of 0. 6-2. 0 T,gradient of 10-100 T @ m-1 , pulse width of 20-200 ms and frequency of 0. 16-1. 34 Hz) treatment of mice can inhibit murine malignant tumour growth and can induce apoptosis of cancer cell. The apoptotic cancer cell contracted, became rounder and divorced from adjacent cells; the heterochromatin condensed and coagulated together along the inner side of the nuclear membrane; the endoplasmic reticulums expanded and fused with the cellular membrane; many apoptotic bodies which were packed by the cellular membrane appeared and were devoured by some lymphocytes and plasma. By Lorentz force the magnetic field keeps the moving ions within bounds of Larmor radius. Thus, penetrating capability of the positive and negative ions through the cell membrane was affected,even the role on the cell membrane formed.

  18. Applications of high dielectric materials in high field magnetic resonance

    Science.gov (United States)

    Haines, Kristina Noel

    At high magnetic fields, radiation losses, wavelength effects, self-resonance, and the high resistance of components all contribute to losses in conventional RF MRI coil designs. The hypothesis tested here is that these problems can be combated by the use of high permittivity ceramic materials at high fields. High permittivity ceramic dielectric resonators create strong uniform magnetic fields in compact structures at high frequencies and can potentially solve some of the challenges of high field coil design. In this study NMR probes were constructed for operation at 600 MHz (14.1 Tesla) and 900 MHz (21.1 Tesla) using inductively fed CaTiO3 (relative permittivity of 156-166) cylindrical hollow bore dielectric resonators. The designs showed the electric field is largely confined to the dielectric itself, with near zero values in the hollow bore, which accommodates the sample. The 600 MHz probe has an unmatched Q value greater than 2000. Experimental and simulation mapping of the RF field show good agreement, with the ceramic resonator giving a pulse width approximately 25% less than a loop gap resonator of similar inner dimensions. High resolution images, with voxel dimensions less than 50 microm3, have been acquired from fixed zebrafish samples, showing excellent delineation of several fine structures. The 900 MHz probe has an unmatched Q value of 940 and shows Q performance five times better than Alderman-Grant and loop-gap resonators of similar dimensions. High resolution images were acquired of an excised mouse spinal cord (25 microm 3) and an excised rat soleus muscle (20 microm3). The spatial distribution of electromagnetic fields within the human body can be tailored using external dielectric materials. Here, a new material is introduced with high dielectric constant and low background MRI signal. The material is based upon metal titanates, which can be made into geometrically formable suspensions in de-ionized water. The suspension's material properties are

  19. Trapped field of YBCO single-domain samples using pulse magnetization from 77K to 20K

    Energy Technology Data Exchange (ETDEWEB)

    Chaud, X [CNRS/CRETA, 25 avenue des martyrs, 38042 Grenoble Cedex 09 (France); Haanappel, E [LNCMP, 143 avenue de Rangueil, 31400 Toulouse (France); Noudem, J G; Horvath, D [CRISMAT/ENSICAEN, 6 bd Marechal Juin, 14050 Caen (France)], E-mail: xavier.chaud@grenoble.cnrs.fr

    2008-02-01

    ReBCO single-domain bulk superconductors have been shown to trap significant magnetic field at 77K and below. They can advantageously replace permanent magnets in cryogenic motors; more power in a smaller volume can be achieved. But practically, their magnetization has to be performed in situ. Usually it implies the use of pulse magnetization which is severe for the samples. This technique generates heat and stress on the superconductors. The magnetic-flux-trapping capabilities of YBCO single-domain samples were explored using the pulse-field facilities at the LNCMP (National Pulsed Magnetic Field Laboratory) at Toulouse, France. The flux dynamic was monitored during magnetic pulses by measuring the surface induction with a Hall probe on top of the samples at different temperatures from 77K to 20K. The samples were 16 mm in diameter and about 10 mm in height. The best one trapped 400 mT at 77K and 2.5T at 20K. The trapped field increases almost linearly down to 40K. The magnetic pulse is seen to generate heat. The temperature rise increases with decreasing temperature dwell because of lower heat capacity. The achieved trapped field is a compromise between the temperature rise and the applied field, and depends greatly of the magnetization history.

  20. Magnetosome formation and expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1 exposed to pulsed magnetic field.

    Science.gov (United States)

    Wang, Xiaoke; Liang, Likun; Song, Tao; Wu, Longfei

    2009-09-01

    To investigate the effects of pulsed magnetic field on magnetosome formation in Magnetospirillum magneticum AMB-1, cultures inoculated with either mangetic or non-magnetic pre-cultures were incubated under 1 mT pulsed magnetic field. Magnetism of cells was measured by using spectrophotometer coupled with applied magnetic fields and the values were described as C(mag). Magnetosome in cells was counted by transmission electron microscopy observation. The results showed that pulsed magnetic field did not affect cellular growth, but enhanced magnetosome formation. The applied pulsed magnetic field might exceed the chain of magnetosomes and change the homogeneity of the magnetosome particles. The results implied that magnetite precipitation induced by the adjacent magnetosome was affected by pulsed magnetic field. Moreover, the applied pulsed magnetic field up-regulated the magA and mamA expression in cells, which might account for the increasing number and the exceeding chain of magnetosomes in cells.

  1. Field-stepped broadband NMR in pulsed magnets and application to SrCu2(BO3)2 at 54 T

    Science.gov (United States)

    Kohlrautz, J.; Haase, J.; Green, E. L.; Zhang, Z. T.; Wosnitza, J.; Herrmannsdörfer, T.; Dabkowska, H. A.; Gaulin, B. D.; Stern, R.; Kühne, H.

    2016-10-01

    Pulsed magnets generate the highest magnetic fields as brief transients during which the observation of NMR is difficult, however, this is the only route to unique insight into material properties up to the regime of 100 T. Here, it is shown how rather broad NMR spectra can be assembled in a pulsed magnet during a single field pulse by using the inherent time dependence of the field for the recording of field-stepped free induction decays that cover a broad frequency range. The technique is then applied to 11B NMR of the spin-dimer system SrCu2(BO3)2, a magnetic insulator known to undergo a series of field-driven changes of the magnetic ground state. At peak fields of about 54T at the Dresden High Magnetic Field Laboratory, 11B NMR spectra spanning a total of about 9MHz width are reconstructed. The results are in good accordance with a change from a high-temperature paramagnetic state to a low-temperature commensurate superstructure of field-induced spin-dimer triplets.

  2. Elastic properties of SmRu4P12 in pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, P [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Nakanishi, Y [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Kono, T [Superconductivity Research Laboratory, ISTEC, Morioka Laboratory for Applied Superconductivity Technology, Morioka 020-0852 (Japan); Sugawara, H [Faculty of Integrated Arts and Science, University of Tokushima, Tokushima 770-8502 (Japan); Kikuchi, D [Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Sato, H [Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Yoshizawa, M [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan)

    2006-11-15

    A setup for ultrasonic measurement in pulsed magnetic fields was established in this work. We first introduce the basic ideas of this measurement. Using this setup we measured the longitudinal elastic constant C{sub 11} and the corresponding ultrasound attenuation {beta}{sub 11} up to 28 T for the filled skutterudite compound SmRu{sub 4}P{sub 12}. At 14 K, C{sub 11} shows steep increase while {beta}{sub 11}a large peak at around 8 T, indicating the magnetic ordering of this compound. Anomalies were also observed at 4.2 K, however, it is not clear if these correspond to phase transitions.

  3. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam

    Energy Technology Data Exchange (ETDEWEB)

    Narevicius, E [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Parthey, C G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Libson, A [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Narevicius, J [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Chavez, I [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Even, U [Sackler School of Chemistry, Tel-Aviv University, Tel-Aviv (Israel); Raizen, M G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States)

    2007-10-15

    We report the experimental demonstration of a novel method to slow atoms and molecules with permanent magnetic moments using pulsed magnetic fields. In our experiments, we observe the slowing of a supersonic beam of metastable neon from 461.0 {+-} 7.7 to 403 {+-} 16 m s{sup -1} in 18 stages, where the slowed peak is clearly separated from the initial distribution. This method has broad applications as it may easily be generalized, using seeding and entrainment into supersonic beams, to all paramagnetic atoms and molecules.

  4. Design of a Large Bore 60-T Pulse Magnet for Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    LESCH,B.; LI,L.; PERNAMBUCO-WISE,P.; ROVANG,DEAN C.; SCHNEIDER-MUNTAU,H.J.

    1999-09-23

    The design of a new pulsed magnet system for the generation of intense electron beams is presented. Determined by the required magnetic field profile along the axis, the magnet system consists of two coils (Coil No.1 and No.2) separated by a 32-mm axial gap. Each coil is energized independently. Both coils are internally reinforced with HIM Zylon fiber/epoxy composite. Coil No.1 made with AI-15 Glidcop wire has a bore of 110-mm diameter and is 200-mm long; it is energized by a 1.3-MJ, 13-kV capacitor bank. The magnetic field at the center of this coil is 30 T. Coil No.2 made with CuNb wire has a bore of 45 mm diameter, generates 60 T with a pulse duration of 60 ms, and is powered by a 4.0-MJ, 17.7-kV capacitor bank. We present design criteria, the coupling of the magnets, and the normal and the fault conditions during operation.

  5. Manipulating antiferromagnets with magnetic fields: Ratchet motion of multiple domain walls induced by asymmetric field pulses

    Science.gov (United States)

    Gomonay, O.; Kläui, M.; Sinova, J.

    2016-10-01

    Future applications of antiferromagnets (AFs) in many spintronics devices rely on the precise manipulation of domain walls. The conventional approach using static magnetic fields is inefficient due to the low susceptibility of AFs. Recently proposed electrical manipulation with spin-orbit torques is restricted to metals with a specific crystal structure. Here, we propose an alternative, broadly applicable approach: using asymmetric magnetic field pulses to induce controlled ratchet motion of AF domain walls. The efficiency of this approach is based on three peculiarities of AF dynamics. First, a time-dependent magnetic field couples with an AF order parameter stronger than a static magnetic field, which leads to higher mobility of the domain walls. Second, the rate of change of the magnetic field couples with the spatial variation of the AF order parameter inside the domain, and this enables a synchronous motion of multiple domain walls with the same structure. Third, tailored asymmetric field pulses in combination with static friction can prevent backward motion of domain walls and thus lead to the desired controlled ratchet effect. The proposed use of an external field, rather than internal spin-orbit torques, avoids any restrictions on size, conductivity, and crystal structure of the AF material. We believe that our approach paves a way for the development of AF-based devices based on the controlled motion of AF domain walls.

  6. Effect of picosecond magnetic pulse on dynamics of electron's subbands in semiconductor bilayer nanowire

    Science.gov (United States)

    Chwiej, T.

    2017-10-01

    We report on possibility of charge current generation in nanowire made of two tunnel coupled one-dimensional electron waveguides by means of single magnetic pulse lasting up to 20 ps. Existence of interlayer tunnel coupling plays a crucial role in the effect described here as it allows for hybridization of the wave functions localized in different layers which can be dynamically modified by applying a time changeable in-plane magnetic field. Results of time-dependent DFT calculations performed for a bilayer nanowire confining many electrons show that the effect of such magnetic hybridization relies on tilting of electrons' energy subbands, to the left or to the right, depending on a sign of time derivative of oscillating magnetic field due to the Faraday law. Consequently, the tilted subbands become a source of charge flow along the wire. Strength of such magneto-induced current oscillations may achieve even 0.6 μA but it depends on duration of magnetic pulse as well as on charge density confined in nanowire which has to be unequally distributed between both transport layers to observe this effect.

  7. Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses

    Science.gov (United States)

    Kinsler, Paul

    2010-02-01

    I derive unidirectional wave equations for fields propagating in materials with both electric and magnetic dispersion and nonlinearity. The derivation imposes no conditions on the pulse profile except that the material modulates the propagation slowly, that is, that loss, dispersion, and nonlinearity have only a small effect over the scale of a wavelength. It also allows a direct term-to-term comparison of the exact bidirectional theory with its approximate unidirectional counterpart.

  8. Glass transition temperatures of epoxy resins by pulsed nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rutenberg, A.C.; Dorsey, G.F.; Peck, C.G.

    1976-04-21

    Pulsed nuclear magnetic resonance spectroscopy has been used to measure the glass transition temperatures of cured epoxy resins. These measurements make it possible to monitor the cure and determine the glass transition temperature as a function of the curing conditions and the concentration of the components. Knowledge of the glass transition temperature of the cured epoxies allows screening of them for a number of uses, including adhesives and coatings operations.

  9. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Slutz, S. A.; Stygar, W. A.; Gomez, M. R.; Peterson, K. J.; Sefkow, A. B.; Sinars, D. B.; Vesey, R. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Campbell, E. M.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 146 (United States)

    2016-02-15

    The MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion–relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values: i.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and B{sub z} = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.

  10. Highly Efficient Freestyle Magnetic Nanoswimmer.

    Science.gov (United States)

    Li, Tianlong; Li, Jinxing; Morozov, Konstantin I; Wu, Zhiguang; Xu, Tailin; Rozen, Isaac; Leshansky, Alexander M; Li, Longqiu; Wang, Joseph

    2017-08-09

    The unique swimming strategies of natural microorganisms have inspired recent development of magnetic micro/nanorobots powered by artificial helical or flexible flagella. However, as artificial nanoswimmers with unique geometries are being developed, it is critical to explore new potential modes for kinetic optimization. For example, the freestyle stroke is the most efficient of the competitive swimming strokes for humans. Here we report a new type of magnetic nanorobot, a symmetric multilinked two-arm nanoswimmer, capable of efficient "freestyle" swimming at low Reynolds numbers. Excellent agreement between the experimental observations and theoretical predictions indicates that the powerful "freestyle" propulsion of the two-arm nanorobot is attributed to synchronized oscillatory deformations of the nanorobot under the combined action of magnetic field and viscous forces. It is demonstrated for the first time that the nonplanar propulsion gait due to the cooperative "freestyle" stroke of the two magnetic arms can be powered by a plane oscillatory magnetic field. These two-arm nanorobots are capable of a powerful propulsion up to 12 body lengths per second, along with on-demand speed regulation and remote navigation. Furthermore, the nonplanar propulsion gait powered by the consecutive swinging of the achiral magnetic arms is more efficient than that of common chiral nanohelical swimmers. This new swimming mechanism and its attractive performance opens new possibilities in designing remotely actuated nanorobots for biomedical operation at the nanoscale.

  11. High-voltage pulsed generator for dynamic fragmentation of rocks.

    Science.gov (United States)

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  12. Short-pulse high intensity laser thin foil interaction

    Science.gov (United States)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  13. Generation of Ultra-high Intensity Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    N.J. Fisch; V.M. Malkin

    2003-06-10

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10{sup 25} W/cm{sup 2} can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  14. Magnetic microstructure and coercivity mechanism of high performance Nd-Fe-B magnets

    Institute of Scientific and Technical Information of China (English)

    ZHU Minggang; LIU Xingmin; FANG Yikun; LI Zhengbang; LI Wei

    2006-01-01

    Magnetic microstructure of high performance Nd-Fe-B magnets was investigated by using magnetic force microscopy. The correlation between magnetic microstructure and coercivity for high performance Nd-Fe-B magnets was studied. It is found that the magnets with different coercivity mechanism take on different microstructures and magnetism. Moreover, the magnetic microstructures of high performance permanent magnets can be explained by the starting field theory model.

  15. Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel.

    Science.gov (United States)

    Mulholland, Michael D; Seidman, David N

    2011-12-01

    The differences in artifacts associated with voltage-pulsed and laser-pulsed (wavelength = 532 or 355 nm) atom-probe tomographic (APT) analyses of nanoscale precipitation in a high-strength low-carbon steel are assessed using a local-electrode atom-probe tomograph. It is found that the interfacial width of nanoscale Cu precipitates increases with increasing specimen apex temperatures induced by higher laser pulse energies (0.6-2 nJ pulse(-1) at a wavelength of 532 nm). This effect is probably due to surface diffusion of Cu atoms. Increasing the specimen apex temperature by using pulse energies up to 2 nJ pulse(-1) at a wavelength of 532 nm is also found to increase the severity of the local magnification effect for nanoscale M2C metal carbide precipitates, which is indicated by a decrease of the local atomic density inside the carbides from 68 ± 6 nm(-3) (voltage pulsing) to as small as 3.5 ± 0.8 nm(-3). Methods are proposed to solve these problems based on comparisons with the results obtained from voltage-pulsed APT experiments. Essentially, application of the Cu precipitate compositions and local atomic density of M2C metal carbide precipitates measured by voltage-pulsed APT to 532 or 355 nm wavelength laser-pulsed data permits correct quantification of precipitation.

  16. High extinction amplitude modulation in ultrashort pulse shaping

    CERN Document Server

    Lin, Yen-Wei

    2016-01-01

    We explored the issues related to the resolution and the modulation extinction when filtering the spectrum of a UV femtosecond laser with a standard ultrashort pulse shaper. We have learned that a higher pulse shaping resolution often requires a larger working beam size or a higher density grating for greater dispersion. However, these approaches also introduce more optical errors and degrade the extinction. In this work, we examined specifics of each component to determine the best configuration of our spectral filtering setup. As a proof-of-concept demonstration, we utilized elements available as standard products and achieved 100 GHz filtering resolution with high extinction at the UV-A wavelength, which is superb in this wavelength range. The high extinction spectral filtering is especially important while modifying a broadband laser for the optical control of molecule's internal state.

  17. Thomson scattering in high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India); Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  18. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  19. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.

    Science.gov (United States)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  20. Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation

    Energy Technology Data Exchange (ETDEWEB)

    Schick, F. [Univ. of Tuebingen (Germany)

    1996-01-01

    A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage and muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.

  1. The imprint of the crustal magnetic field on the thermal spectra and pulse profiles of isolated neutron stars

    CERN Document Server

    Perna, Rosalba; Pons, Jose' A; Rea, Nanda

    2013-01-01

    Isolated neutron stars (NSs) show a bewildering variety of astrophysical manifestations, presumably shaped by the magnetic field strength and topology at birth. Here, using state-of-the art calculations of the coupled magnetic and thermal evolution of NSs, we compute the thermal spectra and pulse profiles expected for a variety of initial magnetic field configurations. In particular, we contrast models with purely poloidal magnetic fields to models dominated by a strong internal toroidal component. We find that, while the former displays double peaked profiles and very low pulsed fractions, in the latter, the anisotropy in the surface temperature produced by the toroidal field often results in a single pulse profile, with pulsed fractions that can exceed the 50-60% level even for perfectly isotropic local emission. We further use our theoretical results to generate simulated "observed" spectra, and show that blackbody (BB) fits result in inferred radii that can be significantly smaller than the actual NS radi...

  2. Control of transmission of right circularly polarized laser light in overdense plasma by applied magnetic field pulses.

    Science.gov (United States)

    Ma, Guangjin; Yu, Wei; Yu, M Y; Luan, Shixia; Wu, Dong

    2016-05-01

    The effect of a transient magnetic field on right-hand circularly polarized (RHCP) laser light propagation in overcritical-density plasma is investigated. When the electron gyrofrequency is larger than the wave frequency, RHCP light can propagate along the external magnetic field in an overcritical density plasma without resonance or cutoff. However, when the magnetic field falls to below the cyclotron resonance point, the propagating laser pulse will be truncated and the local plasma electrons resonantly heated. Particle-in-cell simulation shows that when applied to a thin slab, the process can produce intense two-cycle light pulses as well as long-lasting self-magnetic fields.

  3. High-temperature superconductors in high-field magnets

    NARCIS (Netherlands)

    Weijers, Hubertus Wilhelmus

    2009-01-01

    The properties of both BSCCO conductors and YBCO coated conductors and coils are studied to assess their applicability in high-field magnets. First, the magnetic field dependence of the critical current density in these HTS conductors is measured at 4.2 K in magnetic field conditions ranging from s

  4. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions

  5. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    OpenAIRE

    Ye Peng; Tao Liu; Haifeng Gong; Xianming Zhang

    2016-01-01

    The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric...

  6. The number of full-sine cycles per pulse influences the efficacy of multicycle transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Pechmann, Astrid; Delvendahl, Igor; Bergmann, Til O

    2012-01-01

    Previous studies have shown that the efficacy of transcranial magnetic stimulation (TMS) to excite corticospinal neurons depends on pulse waveform. OBJECTIVE/HYPOTHESES: In this study, we examined whether the effectiveness of polyphasic TMS can be increased by using a pulse profile that consists ...... of multiple sine cycles....

  7. Multiplexing Effect Due to Exposure of the Working Substance of a Spin Echo Processor to Magnetic Field Pulses

    Science.gov (United States)

    Pleshakov, I. V.; Popov, P. S.; Kuzmin, Yu. I.; Dudkin, V. I.

    2016-07-01

    We consider a spin echo processor that uses a magnetically ordered material (ferrite) as a working substance. It is shown that it is possible to achieve suppression of the crosstalk (spurious signals) excited by radio-frequency pulses from different chains arriving at the system if the working substance is affected by sufficiently long magnetic field pulses. Thus, time-division multiplexing of the information processes can be carried out.

  8. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    Science.gov (United States)

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  9. Subfemtosecond X-ray Pulses Produced Directly by High Harmonic Generation

    Institute of Scientific and Technical Information of China (English)

    WANG Ying-Song; XU Zhi-Zhan

    2000-01-01

    The generation of subfemtosecond pulses in hydrogen-like atoms through high-harmonic generation by using superintense multicycle driver pulses is numerically investigated. It is shown that a single subfemtosecond pulse can be directly generated when the driver pulse is strong enough to deplete the neutral atoms within several optical cycles. The propagation effect is neglected during the numerical examinations.

  10. Filamentation of arbitrary polarized femtosecond laser pulses in case of high-order Kerr effect.

    Science.gov (United States)

    Panov, Nikolay A; Makarov, Vladimir A; Fedorov, Vladimir Y; Kosareva, Olga G

    2013-02-15

    We developed a model of femtosecond filamentation which includes high-order Kerr effect and an arbitrary polarization of a laser pulse. We show that a circularly polarized pulse has maximum filament intensity. Also, we show that, independently of the initial pulse polarization, the value of a maximum filament intensity tends to the maximum intensity of either linearly or circularly polarized pulse.

  11. An Optimization of Pulsed ElectroMagnetic Fields Study

    Science.gov (United States)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  12. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Catrin F., E-mail: williamscf@cardiff.ac.uk [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom); Geroni, Gilles M.; Pirog, Antoine; Lees, Jonathan; Porch, Adrian [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); Lloyd, David [School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom)

    2016-08-29

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  13. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Science.gov (United States)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lloyd, David; Lees, Jonathan; Porch, Adrian

    2016-08-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the "internet of things" is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  14. Development of high field magnets at the National Research Institute for Metals. Kinzoku zairyo gijutsu kenkyusho ni okeru kojikai magnet gun no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshi, T.; Inoue, K.; Maeda, H. (National Research Inst. for Metals, Tsukuba (Japan))

    1993-06-20

    Sinece 1988, the Scince and Technology Agency has initiated the superconductor multicore project, which has a purpose of the versatile study on the high temperature superconducting materials of the oxide series. The National Research Institute for Metals is in charge of 5 cores out of them, and in the performance evaluation core which is one of them, the development of each kind of the high field magnets is being advanced for evaluating the characteristics under the high magnetic field. As the magnets, including the 40T class hybrid magnet which generates the steady state magnetic field of 40T, the superconducting magnet of 20T with a large diameter which generates the magnetic field over 20T with a superconductor, the condenser bank system for the pulse magnet to generate the pulse magnetic field up to 80T, and the ultra-precise magnet system which generates the magnetic field with a high uniformity will be consolidated. Keeping pace with a removal of the National Research Institute for Metals to Tsukuba, the construction of the strong magnetic field station is being advanced in the Sakura area. These several kinds of magnets are scheduled to be used in turn for the international joint study. 33 refs., 5 figs., 4 tabs.

  15. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    Science.gov (United States)

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  16. Multi-Pulsed High Hydrostatic Pressure Treatment of Foods

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2015-05-01

    Full Text Available Multi-pulsed high hydrostatic pressure (mpHHP treatment of foods has been investigated for more than two decades. It was reported that the mpHHP treatment, with few exceptions, is more effective than the classical or single-pulsed HHP (spHHP treatment for inactivation of microorganisms in fruit juice, dairy products, liquid whole egg, meat products, and sea foods. Moreover, the mpHHP treatment could be also used to inactivate enzymes in foods and to increase the shelf-life of foods. The effects of the mpHHP treatment of foods are summarized and the differences between the mpHHP and spHHP are also emphasized.

  17. Propagation of Optical Pulses in Polarization Maintaining Highly Birefringent Fibers

    Science.gov (United States)

    Leiva, Ariel; Olivares, Ricardo

    2008-04-01

    The propagation of Gaussian optical pulses through optical PM-HiBi (Polarization Maintaining Highly Birefringent) fibers is analyzed and simulated. Based upon a model of propagation as described by Marcuse, et al., [1] and Sunnerud, et al., [2], and the use of PMD (Polarization Mode Dispersion) compensators and emulators used by Kogelnik, et al. [2], [3] and Lima, et al. [4], we construct a simple model that allows graphical representation of the distortion experienced by optical pulses when propagating in a PM-HiBi fiber for different initial polarizations. The results of our analysis have the benefit of being identical to the more elaborate models of [1], [2], while also providing the additional advantage of simple graphical representation.

  18. Raman forward scattering of high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2002-06-23

    Raman forward scattering of a high-intensity, short-duration, frequency-chirped laser pulse propagating in an underdense plasma is examined. The growth of the direct forward scattered light is calculated for a laser pulse with a linear frequency chirp in various spatio-temporal regimes. This includes a previously undescribed regime of strongly-coupled four-wave nonresonant interaction, which is important for relativistic laser intensities. In all regimes of forward scattering, it is shown that the growth rate increases (decreases) for positive (negative) frequency chirp. The effect of chirp on the growth rate is relatively minor, i.e., a few percent chirp yields few percent changes in the growth rates. Relation of these results to recent experiments is discussed.

  19. Range ambiguity resolution for high PRF pulse-Doppler radar

    Science.gov (United States)

    Postema, G. B.

    The range ambiguity resolution for high 'PRF pulse-Doppler radars can be resolved using a simple algorithm based on residue arithmetic. The unambiguous range is found from R = T + R(a), where T is the output of a look-up table and R(a) is one of the measured ambiguous ranges. This formula is easily extended to multiple PRF ranging systems, where three or more measurements are required for the ambiguity resolution. Target obscuration in clutter reduces the visibility and leads, especially in dense target environments, to ghost ranges. It is shown that long range coverage requires a small resolved pulse length and PRFs as low as practical in the intended clutter and target environment. Special attention is given to the generation of sparsely populated look-up tables that reduce the ghosting problem. A practical example for an S-band surveillance radar is presented.

  20. Large field-induced irreversibility in Ni-Mn based Heusler shape-memory alloys: A pulsed magnetic field study

    Science.gov (United States)

    Nayak, A. K.; Mejia, C. Salazar; D'Souza, S. W.; Chadov, S.; Skourski, Y.; Felser, C.; Nicklas, M.

    2014-12-01

    We present a pulsed magnetic field study on the magnetic and magnetostriction properties of Ni-Mn-Z (Z =In , Sn, and Sb) based Heusler shape-memory alloys. These materials generally display a field-induced magnetostructural transition that could lead to an irreversible phase transition, when measured near the martensitic transition temperature. Here, we show that independently of the transition temperature, the critical field for the phase transition sensitively depends on the main-group element in the sample. Irrespective of their compositions, all samples display a magnetization of around 2 μB/f .u . in the martensite phase and about 6 μB/f .u . in the cubic austenite phase. Our magnetic and magnetostriction measurements at low temperatures exhibit a partial or complete arrest of the high-field austenite phase below the reverse martensitic transition. This results in a large irreversibility with a hysteresis width as high as 24 T. We introduce a theoretical model to discuss the experimental results.

  1. How to obtain a magnetic hard-soft architecture by pulsed laser deposition.

    Science.gov (United States)

    Fix, T; Trassin, M; Hassan, R Sayed; Schmerber, G; Viart, N; Mény, C; Colis, S; Dinia, A

    2007-12-12

    In spin valve type systems, one ferromagnetic electrode must be magnetically hard to act as a reference layer while the other electrode must be magnetically soft to act as a sensor or storage layer. This magnetic hard-soft architecture can usually be obtained by four different methods: the use of two ferromagnets with different coercive fields (here CoFe(2) and Ni(80)Fe(20)), the use of an underlayer enhancing the coercive field of one of the two ferromagnets (here Ta and Ru), the use of a ferromagnet coupled to a ferrimagnet or antiferromagnet (here NiO/CoFe(2) and CoFe(2)O(4)/CoFe(2)), or the use of an artificial antiferromagnet (here CoFe(2)/Ru/CoFe(2)). We show that at least the first and the third methods seem to work with pulsed laser deposition in the thermodynamic conditions used.

  2. Etch characteristics of magnetic tunnel junction materials using bias pulsing in the CH4/N2O inductively coupled plasma.

    Science.gov (United States)

    Jeon, Min Hwan; Youn, Ji Youn; Yang, Kyung Chae; Yun, Deok Hyun; Lee, Du Yeong; Shim, Tae Hun; Park, Jea Gun; Yeom, Geun Young

    2014-12-01

    The etch characteristics of magnetic tunneling junction (MTJ) related materials such as CoFeB, MgO, FePt, Ru, and W as hard mask have been investigated as functions of rf pulse biasing, substrate heating, and CH4/N2O gas combination in an inductively coupled plasma system. When CH4/N2O gas ratio was varied, at CH4/N2O gas ratio of 2:1, not only the highest etch rates but also the highest etch selectivity over W could be obtained. By increasing the substrate temperature, the linear increase of both the etch rates of MTJ materials and the etch selectivity over W could be obtained. The use of the rf pulse biasing improved the etch selectivity of the MTJ materials over hard mask such as W further. The surface roughness and residual thickness remaining on the etched surface of the CoFeB were also decreased by using rf pulse biasing and with the decrease of rf duty percentage. The improvement of etch characteristics by substrate heating and rf pulse biasing was possibly related to the formation of more stable and volatile etch compounds and the removal of chemically reacted compounds more easily on the etched CoFeB surface. Highly selective etching of MTJ materials over the hard mask could be obtained by using the rf pulse biasing of 30% of duty ratio and by increasing the substrate temperature to 200 degrees C in the CH4/N2O (2:1) plasmas.

  3. Control and manipulation of quantum spin switching and spin correlations in [Tb2] molecular magnet under a pulse magnetic field

    Science.gov (United States)

    Farberovich, Oleg V.; Bazhanov, Dmitry I.

    2017-10-01

    A general study of [Tb2] molecular magnet is presented using the general spin Hamiltonian formalism. A spin-spin correlators determined for a spin wave functions in [Tb2] are analyzed numerically and compared in details with the results obtained by means of conventional quantum mechanics. It is shown that the various expectation values of the spin operators and a study of their corresponding probability distributions allow to have a novel understanding in spin dynamics of entangled qubits in quantum [Tb2] system. The obtained results reveal that the properties of spin-spin correlators are responsible for the entanglement of the spin qubit under a pulse magnetic field. It allows us to present some quantum circuits determined for quantum computing within SSNQ based on [Tb2] molecule, including the CNOT and SWAP gates.

  4. Assembly delay line pulse generators

    CERN Document Server

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  5. Flux jump-assisted pulsed field magnetisation of high-J c bulk high-temperature superconductors

    Science.gov (United States)

    Ainslie, M. D.; Zhou, D.; Fujishiro, H.; Takahashi, K.; Shi, Y.-H.; Durrell, J. H.

    2016-12-01

    Investigating, predicting and optimising practical magnetisation techniques for charging bulk superconductors is a crucial prerequisite to their use as high performance ‘psuedo’ permanent magnets. The leading technique for such magnetisation is the pulsed field magnetisation (PFM) technique, in which a large magnetic field is applied via an external magnetic field pulse of duration of the order of milliseconds. Recently ‘giant field leaps’ have been observed during charging by PFM: this effect greatly aids magnetisation as flux jumps occur in the superconductor leading to magnetic flux suddenly intruding into the centre of the superconductor. This results in a large increase in the measured trapped field at the centre of the top surface of the bulk sample and full magnetisation. Due to the complex nature of the magnetic flux dynamics during the PFM process, simple analytical methods, such as those based on the Bean critical state model, are not applicable. Consequently, in order to successfully model this process, a multi-physical numerical model is required, including both electromagnetic and thermal considerations over short time scales. In this paper, we show that a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, can model this behaviour. In order to reproduce the observed behaviour in our model all that is required is the insertion of a bulk sample of high critical current density, J c. We further explore the consequences of this observation by examining the applicability of the model to a range of previously reported experimental results. Our key conclusion is that the ‘giant field leaps’ reported by Weinstein et al and others need no new physical explanation in terms of the behaviour of bulk superconductors: it is clear the ‘giant field leap’ or flux jump-assisted magnetisation of bulk superconductors will be a key enabling technology for practical applications.

  6. Curling probe measurement of large-volume pulsed plasma confined by surface magnetic field

    Science.gov (United States)

    Pandey, Anil; Sakakibara, Wataru; Matsuoka, Hiroyuki; Nakamura, Keiji; Sugai, Hideo; Chubu University Team; DOWA Thermotech Collaboration

    2015-09-01

    Curling probe (CP) has recently been developed which enables the local electron density measurement even in plasma for non-conducting film CVD. The electron density is obtained from a shift of resonance frequency of spiral antenna in discharge ON and OFF monitored by a network analyzer (NWA). In case of a pulsed glow discharge, synchronization of discharge pulse with frequency sweep of NWA must be established. In this paper, we report time and space-resolved CP measurement of electron density in a large volume plasma (80 cm diameter, 110 cm length) confined by surface magnetic field (multipole cusp field ~0.03 T). For plasma-aided modification of metal surface, the plasma is produced by 1 kV glow discharge at pulse frequency of 0.3 - 25 kHz with various duty ratio in gas (Ar, N2, C2H2) at pressure ~ 1 Pa. A radially movable CP revealed a remarkable effect of surface magnetic confinement: detach of plasma from the vessel wall and a fairly uniform plasma in the central region. In afterglow phase, the electron density was observed to decrease much faster in C2H2 discharge than in Ar discharge.

  7. High order coherent control sequences of fat pulses

    CERN Document Server

    Pasini, S; Uhrig, G S

    2010-01-01

    We analyze the performance of sequences of fat pulses of various lengths and shapes for dynamic decoupling and we compare it with that of sequences of ideal, instantaneous pulses. The use of second order, shaped pulses represents a significant improvement. Non-equidistant sequences characterized by pulse durations scaled proportional to the duration T of the sequence strikingly outperform the sequences with pulses of constant length for small T. Interestingly, for longer durations sequences of pulses of substantial length are found to suppress dephasing better than sequences of ideal pulses.

  8. High-frequency and brief-pulse stimulation pulses terminate cortical electrical stimulation-induced afterdischarges.

    Science.gov (United States)

    Ren, Zhi-Wei; Li, Yong-Jie; Yu, Tao; Ni, Duan-Yu; Zhang, Guo-Jun; Du, Wei; Piao, Yuan-Yuan; Zhou, Xiao-Xia

    2017-06-01

    Brief-pulse stimulation at 50 Hz has been shown to terminate afterdischarges observed in epilepsy patients. However, the optimal pulse stimulation parameters for terminating cortical electrical stimulation-induced afterdischarges remain unclear. In the present study, we examined the effects of different brief-pulse stimulation frequencies (5, 50 and 100 Hz) on cortical electrical stimulation-induced afterdischarges in 10 patients with refractory epilepsy. Results demonstrated that brief-pulse stimulation could terminate cortical electrical stimulation-induced afterdischarges in refractory epilepsy patients. In conclusion, (1) a brief-pulse stimulation was more effective when the afterdischarge did not extend to the surrounding brain area. (2) A higher brief-pulse stimulation frequency (especially 100 Hz) was more likely to terminate an afterdischarge. (3) A low current intensity of brief-pulse stimulation was more likely to terminate an afterdischarge.

  9. Application of High Intensity THz Pulses for Gas High Harmonic Generation

    CERN Document Server

    Balogh, Emeric; Hebling, János; Dombi, Péter; Farkas, Győző; Varjú, Katalin

    2013-01-01

    The main effects of an intense THz pulse on gas high harmonic generation are studied via trajectory analysis on the single atom level. Spectral and temporal modifications to the generated radiation are highlighted.

  10. Factors affecting high resting pulse rate in military pilots

    Directory of Open Access Journals (Sweden)

    Minarma Siagian

    2014-02-01

    Aviation and Aerospace (LAKESPRA from 2003 to 2008. The data extracted from medical records were age, rank, total flight hours, average yearly flight hours, and type of aircraft. Results: Out of 539 pilots, there were 155 with high resting pulse rate. Compared to pilots aged 23-29 years, pilots aged 30-39 years had 66% more risk for high resting pulse rate [adjusted odds ratio (ORa = 1.66; 95% confidence interval (CI = 1.17-2.35, P = 0.004], and those aged 40-49 years had a 2.4 risk (ORa = 2.40; P = 0.000]. Compared to pilots of transport planes, jet fighter pilots had a 59% more risk for high resting pulse rate (ORa = 1.59; P = 0.002. Conclusion: Older  age  and  fighter  jets  increased  the  risk  of  high  resting  pulse  rate  in  pilots. (Health Science Indones 2013;2:51-4Key words: age, type of aircraft, resting pulse rate, pilots

  11. Optically powered firing system for the Procyon high explosive pulse power system

    Energy Technology Data Exchange (ETDEWEB)

    Earley, L.; Paul, J.; Rohlev, L.; Goforth, J.; Hall, C.R.

    1995-10-01

    An optically powered fireset has been developed for the Procyon high explosive pulsed-power generator at Los Alamos National Laboratory. The fireset was located inside this flux compression experiment where large magnetic fields are generated. No energy sources were allowed inside the experiment and no wire connections can penetrate through the wall, of the experiment because of the high magnetic fields. The flux compression was achieved with high explosives in the experiment. The fireset was used to remotely charge a 1.2 {micro}f capacitor to 6,500V and to provide a readout of the voltage on the capacitor at the control room. The capacitor was charged by using two 7W fiber coupled GaAlAs laser diodes to illuminate two fiber coupled 12V solar cells. The solar cell outputs were connected in parallel to the input of a DC-DC converter which step up a 12V to 6,500V. A voltmeter, powered by illuminating a third 12V solar cell with 1W laser diode, was used to monitor the charge on the capacitor. The voltage was measured with a divider circuit, then converted to frequency in a V-F converter and transmitted to the control room over a fiber optic link. A fiducial circuit measured the capacitor firing current and provided an optical output timing pulse.

  12. Pulsed laser deposition of high-quality thin films of the insulating ferromagnet EuS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qi I., E-mail: qiyang@stanford.edu [Department of Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Zhao, Jinfeng; Risbud, Subhash H. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Zhang, Li; Dolev, Merav [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Fried, Alexander D. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Marshall, Ann F. [Stanford Nanocharacterization Laboratory, Stanford University, Stanford, California 94305 (United States); Kapitulnik, Aharon [Department of Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States)

    2014-02-24

    High-quality thin films of the ferromagnetic insulator europium(II) sulfide (EuS) were fabricated by pulsed laser deposition on Al{sub 2}O{sub 3} (0001) and Si (100) substrates. A single orientation was obtained with the [100] planes parallel to the substrates, with atomic-scale smoothness indicates a near-ideal surface topography. The films exhibit uniform ferromagnetism below 15.9 K, with a substantial component of the magnetization perpendicular to the plane of the films. Optimization of the growth condition also yielded truly insulating films with immeasurably large resistance. This combination of magnetic and electric properties opens the gate for future devices that require a true ferromagnetic insulator.

  13. Construction of high magnetic field facilities approved

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ On 25 January, the National Development and Reform Commission gave the green light to a proposal to construct high magnetic field facilities for experimental use. The suggestion was jointly submitted by the Ministry of Education and CAS.

  14. Improved Resistance Switching Stability in Fe-Doped ZnO Thin Films Through Pulsed Magnetic Field Annealing.

    Science.gov (United States)

    Xu, Hongtao; Wu, Changjin; Xiahou, Zhao; Jung, Ranju; Li, Ying; Liu, Chunli

    2017-12-01

    Five percent of Fe-doped ZnO (ZnO:Fe) thin films were deposited on Pt/TiO2/SiO2/Si substrates by a spin-coating method. The films were annealed without (ZnO:Fe-0T) and with a pulsed magnetic field of 4 T (ZnO:Fe-4TP) to investigate the magnetic annealing effect on the resistance switching (RS) behavior of the Pt/ZnO:Fe/Pt structures. Compared with the ZnO:Fe-0T film, the ZnO:Fe-4TP film showed improved RS performance regarding the stability of the set voltage and the resistance of the high resistance state. Transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the ZnO:Fe-4TP film contains more uniform grains and a higher density of oxygen vacancies, which promote the easier formation of conducting filaments along similar paths and the stability of switching parameters. These results suggest that external magnetic fields can be used to prepare magnetic oxide thin films with improved resistance switching performance for memory device applications.

  15. High Magnetic field generation for laser-plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H

    2006-05-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

  16. Magnetic anisotropy studies on pulsed electrodeposited Ni/Ag/Ni trilayer

    Energy Technology Data Exchange (ETDEWEB)

    Dhanapal, K.; Revathy, T.A.; Raj, M. Anand [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India); Narayanan, V. [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025 (India); Stephen, A., E-mail: stephen_arum@hotmail.com [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2014-09-15

    Highlights: • Ni/Ag/Ni layered film has been prepared using pulsed electrodeposition method. • Crystalline nature of layered films is confirmed using XRD. • Magnetic easy axis is observed to be parallel to the plane of the film. • Magnetic anisotropy change is dependent on number of layers. • Ni/Ag/Ni layered film shows higher anisotropy energy than pure Ni film. - Abstract: The pulsed electrodeposition method was employed for the deposition of pure Ni, Ni/Ag and Ni/Ag/Ni films due to its greater advantages while comparing with other methods. The X-ray diffraction pattern confirms the formation of fcc structure for both nickel and silver. The cross sectional scanning electron microscopy shows the layer formation in Ni/Ag and Ni/Ag/Ni films. The metallic nature of the nickel and silver were also confirmed using X-ray photoelectron spectroscopy. The magnetic anisotropy behaviour was studied using vibrating sample magnetometer which gives that the easy axis is in plan of the film for all the film.

  17. High-speed, high-voltage pulse generation using avalanche transistor

    Science.gov (United States)

    Yong-sheng, Gou; Bai-yu, Liu; Yong-lin, Bai; Jun-jun, Qin; Xiao-hong, Bai; Bo, Wang; Bing-li, Zhu; Chuan-dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design.

  18. Studies on Magnetization Technique of High Temperature Superconductors

    OpenAIRE

    大橋, 忠巌; 荻原, 宏康

    1999-01-01

    It is known that permanent magnets produce magnetic fields up to 1T. On the other hand, magnetized high temperature superconductors can be used as "super"-permanent magnets which produce magnetic fields higher than 1T, because superconductors can trap higher magnetic fluxes than usual permanent magnets. In order to magnetize a YBCO bulk superconductor, there are two ways; a field cooling (FC) method and a zero field cooling (ZFC) method. FC is the way of magnetizing the superconductor by appl...

  19. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution

    Science.gov (United States)

    Smith, R. J.; Weber, T. E.

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ˜mm interval given available fiber materials.

  20. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution.

    Science.gov (United States)

    Smith, R J; Weber, T E

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ∼mm interval given available fiber materials.

  1. High power semiconductor switches in the 12 kV, 50 kA pulse generator of the SPS beam dump kicker system

    CERN Document Server

    Bonthond, J; Faure, P; Vossenberg, Eugène B

    2001-01-01

    Horizontal deflection of the beam in the dump kicker system of the CERN SPS accelerator is obtained with a series of fast pulsed magnets. The high current pulses of 50 kA per magnet are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via a low inductance transmission line.

  2. A dual mode pulsed electro-magnetic cell stimulator produces acceleration of myogenic differentiation.

    Science.gov (United States)

    Leon-Salas, Walter D; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-04-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/- 40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models.

  3. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N. [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Yu, He [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-06-14

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n{sub e}) and temperature (T{sub e}) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n{sub e} peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n{sub e} increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n{sub e} and T{sub e} data, and ion extraction efficiency based on the measured plasma potential (V{sub p}) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T{sub e} and inefficient ion extraction in a larger pre-sheath potential.

  4. High-sensitive Optical Pulse-Shape Characterization using a Beating-Contrast-Measurement Technique

    CERN Document Server

    Roncin, Vincent; Millaud, Audrey; Cramer, Romain; Jaouën, Yves; Simon, Jean-Claude

    2014-01-01

    Ultrahigh-speed optical transmission technology, such as optical time domain multiplexing or optical signal processing is a key point for increasing the communication capacity. The system performances are strongly related to pulse properties. We present an original method dedicated to short pulse-shape characterization with high repetition rate using standard optical telecommunications equipments. Its principle is based on temporal measurement of the contrast produced by the beating of two delayed optical pulses in a high bandwidth photo detector. This technique returns firstly reliable information on the pulse-shape, such as pulse width, shape and pedestal. Simulation and experimental results evaluate the high-sensitivity and the high-resolution of the technique allowing the measurement of pulse extinction ratio up to 20 dB with typical timing resolution of about 100 fs. The compatibility of the technique with high repetition rate pulse measurement offers an efficient tool for short pulse analysis.

  5. Magnetic iron particles with high magnetization useful for immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Tokoro, Hisato [Hitachi Metals, Ltd., Advanced Electronics Research Laboratory, 5200 Mikajiri, Kumagaya, Saitama 360-0843 (Japan)], E-mail: hisato_tokoro@hitachi-metals.co.jp; Nakabayashi, Takashi; Fujii, Shigeo [Hitachi Metals, Ltd., Advanced Electronics Research Laboratory, 5200 Mikajiri, Kumagaya, Saitama 360-0843 (Japan); Zhao Hong; Haefeli, Urs O. [Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC V6T 1Z3 (Canada)

    2009-05-15

    TiO{sub 2}-encapsulated metallic Fe particles (Ti-O/Fe) were synthesized through a solid phase reaction. The Ti-O/Fe particles were non-toxic to tumor cells in a cell viability assay. After silica coating using a sol-gel method, streptavidin was covalently bound onto the Ti-O/Fe particles. Thus produced HMMI particles showed higher magnetization (114 Am{sup 2}/kg) and a larger specific surface area (15 m{sup 2}/g) than conventional streptavidin-immobilized magnetite particles. The high magnetization allowed for rapid magnetic separation, while the additional large specific surface area improved the detection of the adiponectin antigen both in terms of extended detection range and higher assay speed.

  6. Evaluation of conductor stresses in a pulsed high-current toroidal transformer

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Peter J [Los Alamos National Laboratory; Rousculp, Chritopher L [Los Alamos National Laboratory; Reass, William A [Los Alamos National Laboratory; Oro, David M [Los Alamos National Laboratory; Merrill, Frank E [Los Alamos National Laboratory; Greigo, Jeffery R [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory

    2009-01-01

    The Precision, High-Energy Density, Liner Implosion Experiment (PHELIX) pulsed power driver is currently under development at Los Alamos National Laboratory. When operational PHELIX will provide 5-10 MAmps of peak current with pulse rise-time of {approx} 5-10 ms. Crucial to the performance of PHELIX is a multi-turn primary, single-turn secondary, current step-up toroidal transformer, R{sub major} {approx} 30 cm, R{sub minor} {approx} 10 cm. The transformer lifetime should exceed 100 shots. Therefore it is essential that the design be robust enough to survive the magnetic stresses produced by high currents. In order to evaluate their design, two methods have been utilized. First, an analytical evaluation has been performed. By identifying the magnetic forces as J{sub 1}{sup 2}/2 {del}L{sub 1} + J{sub 1}J{sub 2}{del}M{sub 12}, where J{sub 1} and J{sub 2} are currents in two circuits, coupled by mutual inductance M{sub 12} and L{sub 1} is the self-inductance of the circuit carrying current J{sub 1}, analytical estimates of stress can be obtained. These results are then compared to a computational MHD model of the same system and to a full finite-element, electromagnetic simulation.

  7. High magnetic field magnetization of a new triangular lattice antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    In CsV(MoO4)2, the magnetic V3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO4)2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V3+ (3d2) ions. Apparently we need higher field to reach 1/3 value or full moment.

  8. Rydberg EIT in High Magnetic Field

    Science.gov (United States)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  9. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  10. Diameter-Controllable Magnetic Properties of Co Nanowire Arrays by Pulsed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2010-01-01

    Full Text Available The Co nanowires with different diameters were prepared by pulsed electrodeposition into anodic alumina membranes oxide templates. The micrographs and crystal structures of nanowires were studied by FE-SEM, TEM, and XRD. Due to their cylindrical shape, the nanowires exhibit perpendicular anisotropy. The coercivity and loop squareness (Mr/Ms of Co nanowires depend strongly on the diameter. Both coercivity and Mr/Ms decrease with increasing wire diameter. The behavior of the nanowires is explained briefly in terms of localized magnetization reversal.

  11. AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields

    OpenAIRE

    2010-01-01

    International audience; A new calorimeter for measurements of the heat capacity and magnetocaloric effect of small samples in pulsed magnetic fields is discussed for the exploration of thermal and thermodynamic properties at temperatures down to 2 K. We tested the method up to 0H=50 T, but it could be extended to higher fields. For these measurements we used carefully calibrated bare-chip Cernox® and RuO2 thermometers, and we present a comparison of their performances. The monotonic temperatu...

  12. A REFINED MATHEMATICAL MODEL OF MULTIPHYSICS PROCESSES FOR MAGNETIC PULSE TREATMENT OF MATERIALS

    Directory of Open Access Journals (Sweden)

    E.I. Baida

    2015-04-01

    Full Text Available Introduction. The complexity of the theoretical description of the magnetic pulse treatment of the material is in the mutual coupled processes of electromagnetic and thermal fields with plastic deformation of the material and processes in an electrical circuit. The paper deals with the combined transient mathematical model of the system of equations of the electromagnetic field, theory of elasticity, thermal conductivity and electrical circuit. Purpose. Research and testing of the developed mathematical model and assess the impact of various parameters on the process of deformation of the work piece. Methodology. Investigation of nonlinear mathematical model is carried out by the finite element method using a special software package. Results. The resulting solution of the transient mathematical model allows studying the influence of parameters of the circuit, the speed and the characteristics of the material to plastic deformation and heating of the work piece, which allows to select the optimum process parameters. Originality. This is an integrated approach to the development of a mathematical model, which includes the electromagnetic field equations, the theory of elasticity, thermal conductivity and electrical circuit equations with a storage capacitor. Conclusions. A comprehensive mathematical model and its solution are obtained. It is established a small effect of heating temperature on the amount of strain. Currents caused by movement of the work piece must be taken into account in the calculations. Inertial forces significantly affect the nature of the deformation. During the deformation it is necessary to consider the nonlinearity of elasticity modulus. Thermal deformation of the work piece is much less mechanical strain and opposite in sign to them, but the surface temperature stresses due to the high temperature gradient equal to 20 % of the yield strength of the work piece.

  13. High Magnetization FeCo/Pd multilayers

    Science.gov (United States)

    Walock, Michael; Klose, Frank; Chshiev, Mairbek; Mankey, Gary; Butler, William

    2007-03-01

    A high saturation magnetization is advantageous in magnetic recording. Currently, the peak of the Slater-Pauling curve is the BCC FeCo system with a saturation magnetization of 2.45 T. Recently, a magnetization of 2.57 T in the FeCo layers of a [40 nm Fe30Co70 /1.7 nm Pd]x25 superlattice has been reported [1, 2]. This behavior may be attributed to an enhanced Fe moment in the expanded FCC matrix, and an accompanying induced moment in the Pd. Our theoretical calculations show an atomic moment enhancement, but this is not great enough to overcome the overall magnetization density reduction caused by the incorporation of Pd in the matrix. The overall effect is a reduced magnetization. Through variation of the FeCo composition and Pd layer thickness, and the combinatorial methods of structural and magnetic characterization, we will gain insight into the magnetic structure of this tertiary thin film system. [1] K. Noma, M. Matsuoka, H. Kanai, Y. Uehara, K. Nomura, and N. Awaji. IEEE Trans. Magn. 42, 140 (2006). [2] ibid. 41, 2920 (2005).

  14. The Pulsed High Density Experiment (PHDX) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John P. [Univ. of Washington, Seattle, WA (United States); Andreason, Samuel [Univ. of Washington, Seattle, WA (United States)

    2017-04-27

    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasma ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.

  15. High energy high rate pulsed power processing of materials by powder consolidation and by railgun deposition

    Science.gov (United States)

    Persad, C.; Marcus, H. L.; Weldon, W. F.

    1987-03-01

    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other High Energy High Rate Processing. The characteristics of the High Energy High Rate (1MJ/s) powder consolidation using megampere current pulses from a Homopolar Generator, have been defined. Molybdenum Alloy TZM, A Nickel based metallic glass, Copper graphite composites, and P/M Aluminum Alloy X7091 have been investigated. The powder consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with sub second high temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time Temperature Transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Deposition experiments were conducted using an exploding foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate.

  16. Influence of pulse line switch inductance on output characteristics of high-current nanosecond accelerators

    Science.gov (United States)

    Mashchenko, A. I.; Vintizenko, I. I.

    2016-06-01

    Various types of high-current nanosecond accelerators are simulated numerically using an equivalent circuit representation. The influence of pulse forming line switch inductance on the amplitude and waveform of output voltage and current pulses is analyzed.

  17. AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields.

    Science.gov (United States)

    Kohama, Yoshimitsu; Marcenat, Christophe; Klein, Thierry; Jaime, Marcelo

    2010-10-01

    A new calorimeter for measurements of the heat capacity and magnetocaloric effect of small samples in pulsed magnetic fields is discussed for the exploration of thermal and thermodynamic properties at temperatures down to 2 K. We tested the method up to μ(0)H=50 T, but it could be extended to higher fields. For these measurements we used carefully calibrated bare-chip Cernox(®) and RuO(2) thermometers, and we present a comparison of their performances. The monotonic temperature and magnetic field dependences of the magnetoresistance of RuO(2) allow thermometry with a precision as good as ±4 mK at T=2 K. To test the performance of our calorimeter, heat capacity and magnetocaloric effect for the spin-dimer compound Sr(3)Cr(2)O(8) and the triangular lattice antiferromagnet RbFe(MoO(4))(2) are presented.

  18. Eddy Current Modeling and Measuring in Fast-Pulsed Resistive Magnets

    CERN Document Server

    Arpaia, P; Gollucio, G; Montenero, G

    2010-01-01

    A method for modeling and measuring electromagnetic transients due to eddy currents in fast-pulsed resistive magnets is proposed. In particular, an equivalent-circuit model and a method for time-domain measurements of eddy currents are presented. The measurements are needed for an accurate control of the magnetic field quality to ensure adequate stability and performance of the particle beam in particle accelerators in dynamic conditions (field ramps up to about 700 T/s). In the second part, the results of experiments for model definition, identification, and validation are discussed. The tests were carried out on a quadrupole of Linac4, a new linear particle accelerator under construction at CERN (European Organization for Nuclear Research).

  19. All-Optical Switching of Magnetic Tunnel Junctions with Single Subpicosecond Laser Pulses

    Science.gov (United States)

    Chen, Jun-Yang; He, Li; Wang, Jian-Ping; Li, Mo

    2017-02-01

    The magnetic tunnel junction (MTJ) is one of the most important building blocks of spintronic logic and memory components for beyond-CMOS computation and communication. Although switching of MTJs without magnetic field has been achieved by charge and spin current injection, the operation speed is limited fundamentally by the spin-precession time to many picoseconds. We report the demonstration of ultrafast all-optical switching of an MTJ using single subpicosecond infrared laser pulses. This optically switchable MTJ uses ferrimagnetic Gd(Fe,Co) as the free layer and its switching is read out by measuring its tunneling magnetoresistance with a Δ R /R ratio of 0.6%. A switching repetition rate at MHz has been demonstrated, but the fundamental upper limit should be higher than tens of GHz rate. This result represents an important step toward integrated optospintronic devices that combines spintronics and photonics technologies to enable ultrafast conversion between fundamental information carriers of electron spins and photons.

  20. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    Science.gov (United States)

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  1. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    Science.gov (United States)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  2. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  3. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  4. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  5. Modeling of high power pulse generator based on the non-linear elements of pulsed facilities

    Science.gov (United States)

    Averyanov, G. P.; Dmitrieva, V. V.; Kobylyatskiy, A. V.

    2017-01-01

    The article considered the software implementation mathematical model of the voltage pulse generator with a hard switch. The interactive object-oriented software interface provides the choice of generator parameters and the type of its load, as well as pulses parameters analysis on the load at the generator switching.

  6. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression.

    Science.gov (United States)

    Wang, Y Y; Peng, Xiang; Alharbi, M; Dutin, C Fourcade; Bradley, T D; Gérôme, F; Mielke, Michael; Booth, Timothy; Benabid, F

    2012-08-01

    We report on the recent design and fabrication of kagome-type hollow-core photonic crystal fibers for the purpose of high-power ultrashort pulse transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all kagome fibers) of 40 dB/km over a broadband transmission centered at 1500 nm. We show that the large core size, low attenuation, broadband transmission, single-mode guidance, and low dispersion make it an ideal host for high-power laser beam transportation. By filling the fiber with helium gas, a 74 μJ, 850 fs, and 40 kHz repetition rate ultrashort pulse at 1550 nm has been faithfully delivered at the fiber output with little propagation pulse distortion. Compression of a 105 μJ laser pulse from 850 fs down to 300 fs has been achieved by operating the fiber in ambient air.

  7. Outlook for the use of microsecond plasma opening switches to generate high-power nanosecond current pulses

    Science.gov (United States)

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.

    2006-12-01

    An analysis is made of the current break process in microsecond plasma opening switches and their possible application in high-current generators. Necessary conditions are determined for generating megavolt pulses in the erosion mode of a plasma opening switch with the gap insulated by an external magnetic field. Under these conditions, efficient sharpening of high-power submegampere current pulses can be achieved. The possibility of using plasma opening switches operating at voltages of 5 6 MV to generate X-ray and gamma emission is discussed. The main operating and design parameters of a six-module plasma opening switch with a current pulse amplitude of 3.7 MA and voltage of 4 6 MV for use in the MOL generator, which is the prototype of one of the 24 modules of the projected Baikal multimegajoule generator, are estimated by using the available scalings.

  8. PULSED LASER DEPOSITION OF MAGNETIC MULTILAYERS FOR THE GRANT ENTITLED LASER PROCESSING OF ADVANCED MAGNETIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Monica Sorescu

    2003-10-11

    Nanostructured magnetite/T multilayers, with T = Ni, Co, Cr, have been prepared by pulsed laser deposition. The thickness of individual magnetite and metal layers takes values in the range of 5-40 nm with a total multilayer thickness of 100-120 nm. X-ray diffraction has been used to study the phase characteristics as a function of thermal treatment up to 550 C. Small amounts of maghemite and hematite were identified together with prevailing magnetite phase after treatments at different temperatures. The mean grain size of magnetite phase increases with temperature from 12 nm at room temperature to 54 nm at 550 C. The thermal behavior of magnetite in multilayers in comparison with powder magnetite is discussed. These findings were published in peer-reviewed conference proceedings after presentation at an international materials conference.

  9. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    Science.gov (United States)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  10. High-pressure (>1-bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R J; Mildren, R P; Ward, B K; Kane, D M [Short Wavelength Interactions with Materials (SWIM), Physics Department, Macquarie University, North Ryde, Sydney, NSW 2109 (Australia)

    2004-09-07

    We have investigated the scaling of peak vacuum ultraviolet output power from homogeneous Xe dielectric barrier discharges excited by short voltage pulses. Increasing the Xe fill pressure above 1-bar provides an increased output pulse energy, a shortened pulse duration and increases in the peak output power of two to three orders of magnitude. High peak power pulses of up to 6 W cm{sup -2} are generated with a high efficiency for pulse rates up to 50 kHz. We show that the temporal pulse characteristics are in good agreement with results from detailed computer modelling of the discharge kinetics.

  11. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  12. Dual branch high voltage pulse generator for the beam extraction of the Large Hadron Collider

    CERN Document Server

    Bonthond, J; Ducimetière, L; Jansson, U; Vossenberg, Eugène B

    2002-01-01

    The LHC beam extraction kicker system, MKD, is composed of 15 fast kicker magnets per beam to extract the particles in one turn from the collider and to dispose them, after dilution, on an external absorber. Each magnet is powered by a separate pulse generator. The original single branch generator consisted of a discharge capacitor in series with a solid state closing switch left bracket 1 right bracket operating at 30 kV. In combination with a parallel freewheel diode stack this generator produced a current pulse of 2.7 mus rise time, 18.5 kA amplitude and about 1.8 ms fall time, of which only about 90 mus are needed to dump the beam. The freewheel diode circuit is equipped with a flat top current droop compensation network, consisting of a low voltage, low stray inductance, high current discharge capacitor. Extensive reliability studies have meanwhile suggested to further increase the operational safety of this crucial system by equipping each generator with two parallel branches. This paper presents the re...

  13. Loss Analysis of High Power Stirling-Type Pulse Tube Cryocooler

    Science.gov (United States)

    Nakano, K.; Hiratsuka, Y.

    2015-12-01

    For the purpose of cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES) and current fault limiters, cryocoolers should be compact in size, light-weight, and have high efficiency and reliability. In order to meet the demand of HTS devices world-wide, the cryocooler needs to have COP efficiency >0.1. We have developed a high power Stirling-type pulse tube cryocooler (SPTC) with an in-line expander. The experimental results were reported in June 2012[1]. The cooling capacity was 210 W at 77 K and the minimum temperature was 37 K when the compressor input power was 3.8 kW. Accordingly, the COP was about 0.055. To further improve the efficiency, the energy losses in the cryocooler were analyzed. The experimental results and the numerical calculation results are reported in this paper.

  14. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  15. Development of high current beam ns pulsed system

    CERN Document Server

    Shen Guan Ren; Gao Fu; Guan Xia Ling; LiuNaiYi

    2001-01-01

    The development of high current beam ns pulsed system of CPNG and its characteristic, main technological performance and application are introduced. Firstly, important parameters of the system are calculated using theoretical model, the design requirements of some important parts are understood. Some mistakes in physics conception are corrected. Second, the chopper is designed for parallel plate deflector, chopping aperture and sine wave voltage sweeping device. It is emphasized that the conception of parallel plate load impedance is the capacitance load, but not the 50 ohm load impedance. The dynamic capacitance value has been measured. The output emphasizes the output voltage amplitude, but not the output power for sweeping device. The display system of output sweeping voltage was set up and it is sure that the maximum output voltage(V-V) is >=4000 V. The klystron buncher are re-designed. It is emphasized to overcome difficulty of support high voltage electrode in the klystron and insulator of input sine wa...

  16. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields

    Science.gov (United States)

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-01

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform’s size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke’s brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  17. Stimulus-response profile during single-pulse transcranial magnetic stimulation to the primary motor cortex.

    Science.gov (United States)

    Hanakawa, Takashi; Mima, Tatsuya; Matsumoto, Riki; Abe, Mitsunari; Inouchi, Morito; Urayama, Shin-Ichi; Anami, Kimitaka; Honda, Manabu; Fukuyama, Hidenao

    2009-11-01

    We examined the stimulus-response profile during single-pulse transcranial magnetic stimulation (TMS) by measuring motor-evoked potentials (MEPs) with electromyographic monitoring and hemodynamic responses with functional magnetic resonance imaging (fMRI) at 3 Tesla. In 16 healthy subjects, single TMS pulses were irregularly delivered to the left primary motor cortex at a mean frequency of 0.15 Hz with a wide range of stimulus intensities. The measurement of MEP proved a typical relationship between stimulus intensity and MEP amplitude in the concurrent TMS-fMRI environment. In the population-level analysis of the suprathreshold stimulation conditions, significant increases in hemodynamic responses were detected in the motor/somatosensory network, reflecting both direct and remote effects of TMS, and also the auditory/cognitive areas, perhaps related to detection of clicks. The stimulus-response profile showed both linear and nonlinear components in the direct and remote motor/somatosensory network. A detailed analysis suggested that the nonlinear components of the motor/somatosensory network activity might be induced by nonlinear recruitment of neurons in addition to sensory afferents resulting from movement. These findings expand our basic knowledge of the quantitative relationship between TMS-induced neural activations and hemodynamic signals measured by neuroimaging techniques.

  18. High-Quality Ultrashort Pulse Generation Utilizing a Self-Phase Modulation-Based Reshaper

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An ultrashort 10-GHz pulse generation scheme was successfully demonstrated using a bulk material InGaAsP electroabsorption modulator to generate the seed pulse. A self-phase modulation-based reshaper was used after the adiabatic soliton compression in a comb-like dispersion profiled fiber. Experiments and simulations confirm that the reshaper effectively removes the pulse pedestal and improves the pulse extinction ratio. As a result, the 10-GHz pulse had no pedestal, a high extinction ratio, and a pulse width of only 1.4 ps.

  19. Laser ablation of borosilicate glass with high power shaped UV nanosecond laser pulses

    Science.gov (United States)

    von Witzendorff, Philipp; Bordin, Andrea; Suttmann, Oliver; Patel, Rajesh S.; Bovatsek, James; Overmeyer, Ludger

    2016-03-01

    The application of thin borosilicate glass as interposer material requires methods for separation and drilling of this material. Laser processing with short and ultra-short laser pulses have proven to enable high quality cuts by either direct ablation or internal glass modification and cleavage. A recently developed high power UV nanosecond laser source allows for pulse shaping of individual laser pulses. Thus, the pulse duration, pulse bursts and the repetition rate can be set individually at a maximum output power of up to 60 W. This opens a completely new process window, which could not be entered with conventional Q-switched pulsed laser sources. In this study, the novel pulsed UV laser system was used to study the laser ablation process on 400 μm thin borosilicate glass at different pulse durations ranging from 2 - 10 ns and a pulse burst with two 10 ns laser pulses with a separation of 10 ns. Single line scan experiments were performed to correlate the process parameters and the laser pulse shape with the ablation depth and cutting edge chipping. Increasing the pulse duration within the single pulse experiments from 2 ns to longer pulse durations led to a moderate increase in ablation depth and a significant increase in chipping. The highest material removal was achieved with the 2x10 ns pulse burst. Experimental data also suggest that chipping could be reduced, while maintaining a high ablation depth by selecting an adequate pulse overlap. We also demonstrate that real-time combination of different pulse patterns during drilling a thin borosilicate glass produced holes with low overall chipping at a high throughput rate.

  20. A short pulse, high rep-rate microdischarge VUV source

    Science.gov (United States)

    Stephens, Jacob; Fierro, Andrew; Dickens, James; Neuber, Andreas; CenterPulsed Power; Power Electronics Team

    2013-09-01

    A MOSFET based high voltage pulser is utilized to excite a microdischarge (MD), or microdischarge array (MDA) with pulsed voltages of up to 1 kV, with risetime and FWHM on the order of 10 ns and 30 ns, respectively. Additionally, the pulser is capable of pulsing at rep-rates in excess of 35 MHz. However, for these experiments the rep-rate was set on the order of 1 MHz, so as to limit excess energy deposition into the background gas and optimize the energy efficiency of VUV generation. Using VUV capable spectral diagnostics, the VUV emission of the MDs for various pressures (50-800 + Torr) and gases, focused on argon, argon-hydrogen mixtures, and neon-hydrogen mixtures (all of which provide strong emission at λ VUV emission is characterized and compared to results from transient fluid modeling of the MDA. For instance, the MDA turn-on time is recorded to be about 15 ns, which matches the full plasma development time in the model, and the MDA self- capacitance largely determines the turn-off behavior. This research was supported by an AFOSR grant on the Physics of Distributed Plasma Discharges and fellowships from the National Physical Sciences Consortium, supported by Sandia National Laboratories.