WorldWideScience

Sample records for high pressure gaseous

  1. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  2. Real-time portal imaging devices operating on high-pressure gaseous electronic principles

    Science.gov (United States)

    Giakos, George C.; Richardson, Donna B.; Ghotra, P.; Pillai, Bindu; Seetharaman, Lakshmi; Passalaqua, Anthony M.; DiBianca, Frank A.; Endorf, Robert J.; Devidas, Sreenivas

    1995-05-01

    A novel real-time portal imaging scanning detector, based on high-pressure gaseous electronics principles and operating up to 60 atmospheres, is presented and the predicted performance of this detector is analyzed. The idea is to utilize high pressure gaseous electronics imaging detectors operating in the saturation regime, aimed at improving image performance characteristics in real time portal imaging. As a result, beam localization errors are controlled, identified and corrected accurately and the patient radiotherapy treatment becomes more effective.

  3. High-power laser-metal interactions in pressurized gaseous atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Lugomer, S.; Furic, K.; Ivanda, M. [Ruder Boskovic Institute, Zagreb (Croatia); Stipancic, M. [Electrotechnical faculty, Osijek (Croatia); Stubicar, M. [Faculty of natural sciences and mathematics, Zagreb (Croatia); Gamulin, O. [School of medicine, Univ. of Zagreb, Zagreb (Croatia)

    1996-09-01

    Metal surfaces were irradiated in pressurized gaseous atmospheres by a CO{sub 2} laser beam. The gaseous pressures ranged from 2 atm to 6 atm, the energy density of the light beam was about 20-50 J/cm{sup 2} with a power density {approx} 10{sup 9} W/cm{sup 2} and a pulse duration p 150 ns. In the above conditions some new effects were observed. The laser-material interaction occurred in a highly absorptive plasma regime, meaning that the metal surface was effectively screened from the beam. The interaction ended either with plasma adiabatic expansion, in the case of Mo (in O{sub 2}), Te (in N{sub 2}) and T{sub i} (in N{sub 2}), or with plasma explosion, in the case of T{sub i} (in O{sub 2}). The metal surface properties were studied by means of optical analysis, microhardness tests, X-ray diffraction and Raman backscattering.

  4. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  5. Synthesis of novel deuterides in several Laves phases by using gaseous deuterium under high pressure

    CERN Document Server

    Filipek, S M; Jacob, I; Marchuk, I; Dorogova, M; Hirata, T; Kaszkur, Z

    2002-01-01

    New deuterides of Laves phases: ErFe sub 2 D sub 5 , YFe sub 2 D sub 5 , ZrFe sub 2 D sub 3 sub . sub 5 and ZrCo sub 2 D sub 2 , have been obtained by using of gaseous deuterium at high pressure. A new orthorhombic structure was found for ErFe sub 2 D sub 5 and YFe sub 2 D sub 5 , while ZrFe sub 2 D sub 3 sub . sub 5 and ZrCo sub 2 D sub 2 were formed with a large expansion of the initial C15 cubic lattice. Formation of hydrides with high hydrogen concentration substantially changes the magnetic properties of ErFe sub 2 and YFe sub 2 but has no significant influence on the magnetization of ZrFe sub 2. The possibility of the formation of new deuterides (hydrides) in ZrCr sub 2 and YMn sub 2 has also been confirmed.

  6. Hydroxyl radical-PLIF measurements and accuracy investigation in high pressure gaseous hydrogen/gaseous oxygen combustion

    Science.gov (United States)

    Vaidyanathan, Aravind

    In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9% at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).

  7. FINAL REPORT - Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Donald [Hexagon Lincoln LLC, Lincoln, NE (United States)

    2017-08-04

    The “Development of High Pressure Hydrogen Storage Tanks for Storage and Gaseous Truck Delivery” project [DE-FG36-08GO18062] was initiated on 01 July 2008. Hexagon Lincoln (then Lincoln Composites) received grant funding from the U.S. Department of Energy to support the design and development of an improved bulk hauling and storage solution for hydrogen in terms of cost, safety, weight and volumetric efficiency. The development of this capability required parallel development and qualification of large all-composites pressure vessels, a custom ISO container to transport and store said tanks, and performance of trade studies to identify optimal operating pressure for the system. Qualification of the 250 bar TITAN® module was completed in 2009 with supervision from the American Bureau of Shipping [ABS], and the equipment has been used internationally for bulk transportation of fuel gases since 2010. Phase 1 of the project was successfully completed in 2012 with the issuance of USDOT SP 14951, the special permit authorizing the manufacture, marking, sale and use of TITAN® Mobile Pipeline® equipment in the United States. The introduction of tube trailers with light weight composite tankage has meant that 2 to 3 times as much gaseous fuel can be transported with each trip. This increased hauling efficiency offers dramatically reduced operating costs and has enabled a profitable business model for over-the-road compressed natural gas delivery. The economic drivers of this business opportunity vary from country to country and region to region, but in many places gas distribution companies have realized profitable operations. Additional testing was performed in 2015 to characterize hydrogen-specific operating protocols for use of TITAN® systems in CHG service at 250 bar. This program demonstrated that existing compression and decompression methodologies can efficiently and safely fill and unload lightweight bulk hauling systems. Hexagon Lincoln and U.S. DOE agreed

  8. Exergoeconomic optimization of coaxial tube evaporators for cooling of high pressure gaseous hydrogen during vehicle fuelling

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Rothuizen, Erasmus Damgaard; Markussen, Wiebke Brix

    2014-01-01

    Gaseous hydrogen as an automotive fuel is reaching the point of commercial introduction. Development of hydrogen fuelling stations considering an acceptable fuelling time by cooling the hydrogen to -40 C has started. This paper presents a design study of coaxial tube ammonia evaporators for three...

  9. Proposal to Measure Hadron Scattering with a Gaseous High Pressure TPC for Neutrino Oscillation Measurements

    CERN Document Server

    Andreopoulos, C; Bordoni, S; Boyd, S; Brailsford, D; Brice, S; Catanesi, G; Chen-Wishart, Z; Denner, P; Dunne, P; Giganti, C; Gonzalez Diaz, D; Haigh, J; Hamacher-Baumann, P; Hallsjo, S; Hayato, Y; Irastorza, I; Jamieson, B; Kaboth, A; Korzenev, A; Kudenko, Y; Leyton, M; Luk, K-B; Ma, W; Mahn, K; Martini, M; McCauley, N; Mermod, P; Monroe, J; Mosel, U; Nichol, R; Nieves, J; Nonnenmacher, T; Nowak, J; Parker, W; Raaf, J; Rademacker, J; Radermacher, T; Radicioni, E; Roth, S; Saakyan, R; Sanchez, F; Sgalaberna, D; Shitov, Y; Sobczyk, J; Soler, F; Touramanis, C; Valder, S; Walding, J; Ward, M; Wascko, M; Weber, A; Yokoyama, M; Zalewska, A; Ziembicki, M

    2017-01-01

    We propose to perform new measurements of proton and pion scattering on argon using a prototype High Pressure gas Time Projection Chamber (HPTPC) detector, and by doing so to develop the physics case for, and the technological readiness of, an HPTPC as a neutrino detector for accelerator neutrino oscillation searches. The motivation for this work is to improve knowledge of final state interactions, in order to ultimately achieve 1-2% systematic error on neutrino-nucleus scattering for oscillation measurements at 0.6 GeV and 2.5 GeV neutrino energy, as required for the Charge-Parity (CP) violation sensitivity projections by the Hyper-Kamiokande experiment (Hyper-K) and the Deep Underground Neutrino Experiment (DUNE). The final state interaction uncertainties in neutrino-nucleus interactions dominate cross-section systematic errors, currently 5–10% at these energies, and therefore R&D is needed to explore new approaches to achieve this substantial improvement.

  10. Promoted combustion of nine structural metals in high-pressure gaseous oxygen - A comparison of ranking methods

    Science.gov (United States)

    Steinberg, Theodore A.; Rucker, Michelle A.; Beeson, Harold D.

    1989-01-01

    The 316, 321, 440C, and 17-4 PH stainless steels, as well as Inconel 600, Inconel 718, Waspaloy, Monel 400, and Al 2219, have been evaluated for relative nonflammability in a high-pressure oxygen environment with a view to the comparative advantages of four different flammability-ranking methods. The effects of changes in test pressure, sample diameter, promoter type, and sample configuration on ranking method results are evaluated; ranking methods employing velocity as the primary ranking criterion are limited by diameter effects, while those which use extinguishing pressure are nonselective for metals with similar flammabilities.

  11. A cylindrical multiwire high-pressure gas proportional chamber surrounding a gaseous $_{2} target with a mylar separation foil $6 \\mu m thick

    CERN Document Server

    Gastaldi, Ugo; Averdung, H; Bailey, J; Beer, G A; Dreher, B; Erdman, K L; Klempt, E; Merle, K; Neubecker, K; Sabev, C; Schwenk, H; Wendling, R D; White, B L; Wodrich, R

    1978-01-01

    The characteristics and performances of a cylindrical multiwire proportional chamber built and used at CERN in experiment S142 for the study of the pp atom spectroscopy are presented. The chamber surrounds a high-pressure gaseous H/sub 2/ target, from which it is separated by a very thin window (6 mu m mylar foil). The active volume (90 cm long; 2 cm thick, internal diameter=30 cm) is divided into 36 equal and independent cells each covering 10 degrees in azimuth. At 4 abs. atm the detection efficiency for X-rays is higher than 20% in the whole energy range 1.5-15 keV. Typical resolutions are 35% fwhm for the 3 ke V Ar fluorescence line and 25% fwhm for the 5.5 keV /sup 54/Mn line. Working pressures from 0.5 to 16 abs. atm have been used. (8 refs).

  12. Fatigue Crack Growth under High Pressure of Gaseous Hydrogen in a 15-5PH Martensitic Stainless Steel: Influence of Pressure and Loading Frequency

    Science.gov (United States)

    Sun, Z.; Moriconi, C.; Benoit, G.; Halm, D.; Henaff, G.

    2013-03-01

    In this study, the effect of gaseous hydrogen pressure in relation with the loading frequency on the fatigue crack growth behavior of a precipitation-hardened martensitic stainless steel is investigated. It is found that increasing the hydrogen pressure from 0.09 to 9 MPa induces an enhancement of the fatigue crack growth rates. This enhancement is pronounced particularly at higher stress intensity factor amplitudes at 9 MPa. Meanwhile, decreasing the frequency from 20 to 0.2 Hz under 0.9 MPa of hydrogen reveals a significant increase in the crack growth rates that tends to join the curve obtained under 9 MPa at 20 Hz, but with a different cracking mode. However, it is shown that the degradation in fatigue crack growth behavior derives from a complex interaction between the fatigue damage and the amount of hydrogen enriching the crack tip, which is dependent on the hydrogen pressure, loading frequency, and stress intensity factor level. Scanning electron microscope (SEM) observations of the fracture surfaces are used to support the explanations proposed to account for the observed phenomena.

  13. Gaseous hydrogen embrittlement of high strength steels

    Science.gov (United States)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  14. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    CERN Document Server

    Nakajima, Y; Matis, H S; Nygren, D; Oliveira, C; Renner, J

    2015-01-01

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtu...

  15. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    Science.gov (United States)

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  16. Quality Testing of Gaseous Helium Pressure Vessels by Acoustic Emission

    CERN Document Server

    Barranco-Luque, M; Hervé, C; Margaroli, C; Sergo, V

    1998-01-01

    The resistance of pressure equipment is currently tested, before commissioning or at periodic maintenance, by means of normal pressure tests. Defects occurring inside materials during the execution of these tests or not seen by usual non-destructive techniques can remain as undetected potential sources of failure . The acoustic emission (AE) technique can detect and monitor the evolution of such failures. Industrial-size helium cryogenic systems employ cryogens often stored in gaseous form under pressure at ambient temperature. Standard initial and periodic pressure testing imposes operational constraints which other complementary testing methods, such as AE, could significantly alleviate. Recent reception testing of 250 m3 GHe storage vessels with a design pressure of 2.2 MPa for the LEP and LHC cryogenic systems has implemented AE with the above-mentioned aims.

  17. Pressure Dependent Wall Relaxation in Polarized $^3$He Gaseous Cells

    CERN Document Server

    Peng, C; Chu, P -H; Gao, H; Zhang, Y

    2013-01-01

    Pressure dependence of longitudinal relaxation time (T$_1$) due to the cell wall was observed previously at both room temperature and low temperature in valved Rb-coated refillable $^3$He gaseous cells in \\cite{Zheng2}. The diffusion of $^3$He from measurement cell through a capillary tube to the valve and the subsequent depolarization on the surface of the valve was proposed to possibly explain such a pressure dependence at room temperature \\cite{Saam}. In this paper, we investigate this diffusion effect through measurements of T$_1$ with newly designed Rb-coated Pyrex glass cells at 295 K as well as finite element analysis (FEA) studies. Both the experimental results and FEA studies show that the diffusion effect is insufficient to explain the observed linear pressure-dependent behavior of T$_1$.

  18. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    CERN Document Server

    Nakajima, Y; Matis, H S; Miller, T; Nygren, D R; Oliveira, C A B; Renner, J

    2015-01-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light wi...

  19. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  20. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    Science.gov (United States)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nygren, D. R.; Oliveira, C. A. B.; Renner, J.

    2016-03-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. This work has been carried out within the context of the NEXT collaboration.

  1. Thermodynamic Vent System Performance Testing with Subcooled Liquid Methane and Gaseous Helium Pressurant

    Science.gov (United States)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2007-01-01

    Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure.

  2. Dispersal of Gaseous Circumstellar Discs around High-Mass Stars

    CERN Document Server

    Shen, Y; Shen, Yue; Lou, Yu-Qing

    2006-01-01

    We study the dispersal of a gaseous disc surrounding a central high-mass stellar core once this circumstellar disc becomes fully ionized. If the stellar and surrounding EUV and X-ray radiations are so strong as to rapidly heat up and ionize the entire circumstellar disc as further facilitated by disc magnetohydrodynamic (MHD) turbulence, a shock can be driven to travel outward in the fully ionized disc, behind which the disc expands and thins. For an extremely massive and powerful stellar core, the ionized gas pressure overwhelms the centrifugal and gravitational forces in the disc. In this limit, we construct self-similar shock solutions for such an expansion and depletion phase. As a significant amount of circumstellar gas being removed, the relic disc becomes vulnerable to strong stellar winds and fragments into clumps. We speculate that disc disappearance happens rapidly, perhaps on a timescale of $\\sim 10^3-10^4\\hbox{yr}$ once the disc becomes entirely ionized sometime after the onset of thermal nuclear ...

  3. Study of the high power laser-metal interactions in the gaseous atmospheres

    Science.gov (United States)

    Lugomer, Stjepan; Bitelli, G.; Stipancic, M.; Jovic, F.

    1994-08-01

    The tantalum and titanium plates were treated by pulsed, high power CO2 laser in the pressurized atmospheres of N2 and O2. Studies performed by the optical microscopy, microhardness measurements, and the auger electron spectroscopy revealed: (1) topographic modification of the surface caused by the temperature field; (2) metal hardening, caused by the laser shock; and (3) alloying/cladding, caused by the chemical reaction between the metal surface and the gaseous atmosphere.

  4. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    Science.gov (United States)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  5. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) Print ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  6. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.

    Science.gov (United States)

    Guan, Yulong; Palanzo, David; Kunselman, Allen; Undar, Akif

    2009-11-01

    An increasing amount of evidence points to cerebral embolization during cardiopulmonary bypass (CPB) as the principal etiologic factor of neurologic complications. In this study, the capability of capturing and classification of gaseous emboli and pressure drop of three different membrane oxygenators (Sorin Apex, Terumo Capiox SX25, Maquet QUADROX) were measured in a simulated adult model of CPB using a novel ultrasound detection and classification quantifier system. The circuit was primed with 1000 mL heparinized human packed red blood cells and 1000 mL lactated Ringer's solution (total volume 2000 mL, corrected hematocrit 26-28%). After the injection of 5 mL air into the venous line, an Emboli Detection and Classification Quantifier was used to simultaneously record microemboli counts at post-pump, post-oxygenator, and post-arterial filter sites. Trials were conducted at normothermic (35 degrees C) and hypothermic (25 degrees C) conditions. Pre-oxygenator and post-oxygenator pressure were recorded in real time and pressure drop was calculated. Maquet QUADROX membrane oxygenator has the lowest pressure drops compared to the other two oxygenators (P pressure drop. Based on this investigation, Maquet QUADROX membrane oxygenator has the lowest pressure drop and better capability for capturing gaseous microemboli.

  7. Gridless, very low energy, high-current, gaseous ion source

    Energy Technology Data Exchange (ETDEWEB)

    Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2010-02-15

    We have made and tested a very low energy gaseous ion source in which the plasma is established by a gaseous discharge with electron injection in an axially diverging magnetic field. A constricted arc with hidden cathode spot is used as the electron emitter (first stage of the discharge). The electron flux so formed is filtered by a judiciously shaped electrode to remove macroparticles (cathode debris from the cathode spot) from the cathode material as well as atoms and ions. The anode of the emitter discharge is a mesh, which also serves as cathode of the second stage of the discharge, providing a high electron current that is injected into the magnetic field region where the operating gas is efficiently ionized. In this discharge configuration, an electric field is formed in the ion generation region, accelerating gas ions to energy of several eV in a direction away from the source, without the use of a gridded acceleration system. Our measurements indicate that an argon ion beam is formed with an energy of several eV and current up to 2.5 A. The discharge voltage is kept at less than 20 V, to keep below ion sputtering threshold for cathode material, a feature which along with filtering of the injected electron flow, results in extremely low contamination of the generated ion flow.

  8. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  9. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  10. High energy chlorine for chlorine substitution involving Walden inversion in gaseous enantiomers

    Science.gov (United States)

    To, Kar-Chun; Rack, E. P.; Wolf, A. P.

    1981-01-01

    The reactions of 34mCl- for cl substitution in gaseous 2(S)-(+)- a and 2(R)-(-)-chloro-1-propanol are reported at various system pressures and in the presence of neon moderator and a radical scavenger. (AIP).

  11. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) A ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  12. High pressure technology 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, J.A.; Picqueuer, L.M. (eds.)

    1994-01-01

    This volume is divided into four sessions: fracture mechanics applications to high pressure vessels; high pressure code issues; high pressure design, analysis, and safety concerns; and military and other high pressure applications. Separate abstracts were prepared for eleven papers of this conference.

  13. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  14. Treating High Blood Pressure

    Science.gov (United States)

    About High Blood Pressure Many people in the United States die from high blood pressure. This condition usually does not cause symptoms. Most ... until it is too late. A person has high blood pressure when the blood pushes against Visit your doctor ...

  15. High blood pressure - children

    Science.gov (United States)

    ... number is the diastolic pressure. This measures the pressure in the arteries when the heart is at rest. Blood pressure ... Medical Professional Call your child's provider if home monitoring shows that your child's blood pressure is still high. Prevention Your child's provider will ...

  16. Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue

    DEFF Research Database (Denmark)

    Lewin, Peter A.; Jensen, Leif Bjørnø

    1981-01-01

    One of the mechanisms often suggested for the biological action of ultrasonic beams irradiating human tissues is concerned with the presence in the tissues of minute gaseous bubbles which may, under the influence of the ultrasonic field be stimulated to grow to a size at which resonance or collapse...... occurs with severe associated shear stresses. The evidence for the existence of microbubbles in tissues is reviewed. The results of calculations, using two existing theoretical models, of the peak pressure threshold as a function of frequency are presented. The frequency is normalized with the resonant...... frequency of the bubble, and results are presented for three bubble radii (1, 2, and 3.5 µm) and for different values of the gas concentration in the tissue between 0.1 and 1. The results from two models differ suggesting that an improved model and better experimental data for the threshold calculations...

  17. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  18. High Blood Pressure Facts

    Science.gov (United States)

    ... More black women than men have high blood pressure. 2 Race of Ethnic Group Men (%) Women (%) African Americans 43.0 45.7 Mexican Americans 27.8 28.9 Whites 33.9 31.3 All 34.1 32.7 Top of Page Why Blood Pressure Matters View this graphic snapshot of blood pressure ...

  19. Sanitizing radish seeds by simultaneous treatments with gaseous chlorine dioxide, high relative humidity, and mild heat.

    Science.gov (United States)

    Bang, Jihyun; Choi, Moonhak; Son, Hyeri; Beuchat, Larry R; Kim, Yoonsook; Kim, Hoikyung; Ryu, Jee-Hoon

    2016-11-21

    Sanitizing radish seeds intended for edible sprout production was achieved by applying simultaneous treatments with gaseous chlorine dioxide (ClO2), high relative humidity (RH, 100%), and mild heat (55°C). Gaseous ClO2 was produced from aqueous ClO2 (0.66ml) by mixing sulfuric acid (5% w/v) with sodium chlorite (10 mg/mL) in a sealed container (1.8L). Greater amounts of gaseous ClO2 were measured at 23% RH (144ppm after 6h) than at 100% RH (66ppm after 6h); however, the lethal activity of gaseous ClO2 against naturally occurring mesophilic aerobic bacteria (MAB) on radish seeds was significantly enhanced at 100% RH. For example, when exposed to gaseous ClO2 at 23% RH, the number of MAB on radish seeds decreased from 3.7logCFU/g to 2.6logCFU/g after 6h. However, when exposed to gaseous ClO2 at 100% RH for 6h, the MAB population decreased to 0.7logCFU/g after 6h. Gaseous ClO2 was produced in higher amounts at 55°C than at 25°C, but decreased more rapidly over time at 55°C than at 25°C. The lethal activity of gaseous ClO2 against MAB on radish seeds was greater at 55°C than at 25°C. When radish seeds were treated with gaseous ClO2 (peak concentration: 195ppm) at 100% RH and 55°C, MAB were reduced to populations below the detectable level (0.05) decreased after treatment for 6h. The information reported here will be useful when developing decontamination strategies for producing microbiologically safe radish seed sprouts.

  20. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution.

    Science.gov (United States)

    Laroche, G; Vallade, J; Bazinette, R; van Nijnatten, P; Hernandez, E; Hernandez, G; Massines, F

    2012-10-01

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm × 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45° beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  1. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  2. High blood pressure - infants

    Science.gov (United States)

    ... Certain tumors Inherited conditions (problems that run in families) Thyroid problems Blood pressure rises as the baby grows. The average blood ... vomiting constantly Prevention Some causes of high blood pressure run in families. Talk to your provider before you get pregnant ...

  3. Preventing High Blood Pressure

    Science.gov (United States)

    ... Web Sites Division for Heart Disease and Stroke Prevention Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share Compartir By living a healthy lifestyle, you can help keep your blood pressure in ...

  4. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... already been diagnosed with high blood pressure. Try yoga and meditation. Yoga and meditation not only can strengthen your body ... Accessed Sept. 21, 2015. Hu B, et al. Effects of psychological stress on hypertension in middle-aged ...

  5. Prevention of High Blood Pressure

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  6. High Blood Pressure Fact Sheet

    Science.gov (United States)

    ... High Blood Pressure Salt Cholesterol Million Hearts® WISEWOMAN High Blood Pressure Fact Sheet Language: English Español (Spanish) Recommend on ... time. High blood pressure is also called hypertension. High Blood Pressure in the United States Having high blood pressure ...

  7. The Collisions Of High-Velocity Clouds With A Magnetized Gaseous Galactic Disk

    CERN Document Server

    Santillan, A; Martos, M A; Kim, J; Santillan, Alfredo; Franco, Jose; Martos, Marco; Kim, Jongsoo

    1999-01-01

    We present two-dimensional MHD numerical simulations for the interaction of high-velocity clouds with both magnetic and non-magnetic Galactic thick gaseous disks. For the magnetic models, the initial magnetic field is oriented parallel to the disk, and we consider two different field topologies (with and without tension effects): parallel and perpendicular to the plane of motion of the clouds. The impinging clouds move in oblique trajectories and fall toward the central disk with different initial velocities. The $B$-field lines are distorted and compressed during the collision, increasing the field pressure and tension. This prevents the cloud material from penetrating into the disk, and can even transform a high-velocity inflow into an outflow, moving away from the disk. The perturbation creates a complex, turbulent, pattern of MHD waves that are able to traverse the disk of the Galaxy, and induce oscillations on both sides of the plane. Thus, the magnetic field efficiently transmits the perturbation over a...

  8. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  9. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  10. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Blood Pressure » Diagnosis of High Blood Pressure Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical ...

  11. Living with High Blood Pressure

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Living With High Blood Pressure If you have high blood pressure, the best thing to do is to talk ... help you track your blood pressure. Pregnancy Planning High blood pressure can cause problems for mother and baby. High ...

  12. High efficiency gaseous tracking detector for cosmic muon radiography

    CERN Document Server

    Varga, Dezső; Hamar, Gergő; Oláh, László

    2016-01-01

    A tracking detector system has been constructed with an innovative approach to the classical multi-wire proportional chamber concept, using contemporary technologies. The detectors, covering an area of 0.58 square meters each, are optimized for the application of muon radiography. The main features are high (>99.5%) and uniform detection efficiency, 9 mm FWHM position resolution, filling gas consumption below 2 liters per hour for the non toxic, non flammable argon and carbon dioxide mixture. These parameters, along with the simplicity of the construction and the tolerance for mechanical effects, make the detectors to be a viable option for a large area muography observation system.

  13. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... High Blood Pressure Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living ... Confirming High Blood Pressure A blood pressure test is easy and painless and can be done in ...

  14. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... providers diagnose high blood pressure when blood pressure readings are consistently 140/90 mmHg or above. Confirming ... minutes before the test. To track blood pressure readings over a period of time, the health care ...

  15. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  16. Chromium at High Pressure

    Science.gov (United States)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  17. High Blood Pressure

    Science.gov (United States)

    ... mmHg People read "118 over 76" millimeters of mercury. Normal Blood Pressure Normal blood pressure for adults ... health. Share your story with other women on Facebook . The Heart Truth campaign offers a variety of ...

  18. High Blood Pressure Increasing Worldwide

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162977.html High Blood Pressure Increasing Worldwide And health risks may appear even ... of people around the world with elevated or high blood pressure increases, so do the number of deaths linked ...

  19. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  20. What Causes High Blood Pressure?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Causes of High Blood Pressure Changes, either from genes or the environment, in ... and blood vessel structure and function. Biology and High Blood Pressure Researchers continue to study how various changes in ...

  1. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  2. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  3. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  4. Diagnosis of High Blood Pressure

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  5. [High Pressure Gas Tanks

    Science.gov (United States)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  6. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Science.gov (United States)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  7. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  8. Virial equations of state for gaseous ammonia, water, carbon dioxide, and their mixtures at elevated temperatures and pressures

    Science.gov (United States)

    Voronin, G. F.; Genkin, M. V.; Kutsenok, I. B.

    2015-11-01

    The available reference and experimental data on densities of the gaseous solutions, NH3-CO2, NH3-H2O, CO2-H2O, NH3-CO2-H2O and their components, NH3, CO2, H2O have been described as accurately as possible by virial equations of state in the temperature range from ~150 to 300°C and pressure range from 1 to 280 bar. More accurate and reliable values of the gas compressibility for the ternary NH3-CO2-H2O system and new data on the virial coefficients have been obtained. It was concluded that the obtained results are of interest for physical chemical simulations of many natural and technological processes particularly in the production of carbamide and other substances on the basis of urea.

  9. High-pressure neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu [Los Alamos National Laboratory

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  10. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... and Obesity Smoking and Your Heart Stroke Send a link to NHLBI to someone by E-MAIL | ... 90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless and ...

  11. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... of Intramural Research Research Resources Research Meeting Summaries Technology Transfer Clinical Trials What Are Clinical Trials? Children & ... blood pressure is due to other conditions or medicines or if you have primary high blood pressure. ...

  12. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... to keep a written log of all your results. Whenever you have an appointment with the health ... appointments to diagnose high blood pressure. Using the results of your blood pressure test, your health care ...

  13. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  14. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... ask for your readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in ...

  15. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... ask for your readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in ...

  16. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... above. Confirming High Blood Pressure A blood pressure test is easy and painless and can be done ... provider’s office or clinic. To prepare for the test: Don’t drink coffee or smoke cigarettes for ...

  17. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 readings at several medical appointments to diagnose high blood pressure. Using the ...

  18. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... and Obesity Smoking and Your Heart Stroke Send a link to NHLBI to someone by E-MAIL | ... 90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless and ...

  19. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... above. Confirming High Blood Pressure A blood pressure test is easy and painless and can be done ... provider’s office or clinic. To prepare for the test: Don’t drink coffee or smoke cigarettes for ...

  20. Ram-Pressure Stripping of Gas from Companions and Accretion onto a Spiral Galaxy A Gaseous Merger

    CERN Document Server

    Sofue, Y

    1993-01-01

    We simulated the behavior of interstellar gas clouds in a companion galaxy during a gas-dynamical interaction with the halo and disk of a spiral galaxy. By ram pressure, the gas clouds are stripped from the companion, and accreted to ward the disk of the spiral galaxy. If the companion's orbit is retrograde with respect to the rotation of the spiral galaxy, infalling clouds hit the nuclear region. Angular momentum transfer causes disruption of the inner gaseous disk, and makes a void of interstellar gas in the bulge. If the companion's orbit is either prograde or polar, infalling clouds are accreted by the outer disk, and form a rotating gas ring. We show that the ram-pressure stripping-and-accretion is one way from the companion to a gas-rich larger galaxy, which causes disposal of interstellar gas from the companion and effectively changes its galaxy type into earlier (redder). The ram-pressure process is significant durig merger of galaxies, in which interstellar gas is stripped and accreted prior to the s...

  1. Microballoon pressure sensors for particle imaging manometry in liquid and gaseous media.

    Science.gov (United States)

    Banerjee, N; Mastrangelo, C H

    2016-02-21

    We present the fabrication and testing of engineered microballoon particles that expand and contract under external pressure changes hence serving as microscopic pressure sensors. The particles consist of 12 μm hollow flexible 0.4 μm-thick parylene-C shells with and without a coating of ultrathin Al2O3 diffusion barriers, and the changes in the particle radius are measured from the particle spectral reflectivity. The microballoons display radial pressure sensitivities of 0.64 nm psi(-1) and 0.44 nm psi(-1), respectively in agreement with theoretical estimates. The microballoon devices were used for mapping the internal pressure drop within microfluidic chips. These devices experience nearly spherical symmetry which could make them potential flow-through sensors for the augmentation of particle-based flow characterization methodologies extending today's capabilities of particle imaging velocimetry.

  2. High Blood Pressure

    Science.gov (United States)

    ... giving Gift and estate planning Circle of Champions Corporate sponsorship Join us at an event The Hope ... blood pressure is the #2 cause of kidney failure. It accounts for about one-fourth of all ...

  3. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... possible. Practice healthy coping techniques, such as muscle relaxation, deep breathing or meditation. Getting regular physical activity ... you monitor your blood pressure at home. Practice relaxation or slow, deep breathing. Practice taking deep, slow ...

  4. High Blood Pressure and Women

    Science.gov (United States)

    ... blood pressure during a previous pregnancy, have a family history of high blood pressure or mild kidney disease. The combination of birth ... Print (PDF) | Online How to Measure Your Blood Pressure (PDF) Questions To Ask ... FREE digital-only, quarterly magazine for patients, families, and caregivers, which focuses on the prevention and ...

  5. System and process for capture of acid gasses at elevated pressure from gaseous process streams

    Science.gov (United States)

    Heldebrant, David J.; Koech, Phillip K.; Linehan, John C.; Rainbolt, James E.; Bearden, Mark D.; Zheng, Feng

    2016-09-06

    A system, method, and material that enables the pressure-activated reversible chemical capture of acid gasses such as CO.sub.2 from gas volumes such as streams, flows or any other volume. Once the acid gas is chemically captured, the resulting product typically a zwitterionic salt, can be subjected to a reduced pressure whereupon the resulting product will release the captures acid gas and the capture material will be regenerated. The invention includes this process as well as the materials and systems for carrying out and enabling this process.

  6. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [data aquisition

    Science.gov (United States)

    1977-01-01

    Information regarding the safety limits of hydrocarbons in liquid and gaseous oxygen, the steps taken for hydrocarbon removal from liquified gases, and the analysis of the contaminants was searched and the results are presented. The safety of hydrocarbons in gaseous systems was studied, and the latest hydrocarbon test equipment and methodology is reviewed. A detailed sampling and analysis plan is proposed to evaluate high pressure GN2 and LOX systems.

  7. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Oct 31,2016 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  8. Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis

    Science.gov (United States)

    Jones, Kelley, M.

    2013-01-01

    Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.

  9. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:Dec 9,2016 Knowing the facts ... health. This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  10. Stroke and High Blood Pressure

    Science.gov (United States)

    ... More How High Blood Pressure Can Lead to Stroke Updated:Dec 2,2016 Stroke and high blood ... Changes That Matter • Find Tools & Resources Show Your Stroke Support! Show your stroke support with our new ...

  11. Nanomaterials under high-pressure.

    Science.gov (United States)

    San-Miguel, Alfonso

    2006-10-01

    The use of high-pressure for the study and elaboration of homogeneous nanostructures is critically reviewed. Size effects, the interaction between nanostructures and guest species or the interaction of the nanosystem with the pressure transmitting medium are emphasized. Phase diagrams and the possibilities opened by the combination of pressure and temperature for the elaboration of new nanomaterials is underlined through the examination of three different systems: nanocrystals, nano-cage materials which include fullerites and group-14 clathrates, and single wall nanotubes. This tutorial review is addressed to scientist seeking an introduction or a panoramic view of the study of nanomaterials under high-pressure.

  12. High-Pressure Vibrational Spectroscopy.

    Science.gov (United States)

    Pogson, Mark

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. The study of solids at high pressure and variable temperature enables development of accurate interatomic potential functions over wide ranges of interatomic distances. A review of the main models used in the determination of these potentials is given in Chapter one. A discussion of phonon frequency as a variable physical parameter reflecting the interatomic potential is given. A high pressure Raman study of inorganic salts of the types MSCN, (M = K,Rb,Cs & NH_4^+ ) and MNO_2, (M = K,Na) has been completed. The studies have revealed two new phases in KNO_2 and one new phase in NaNO _2 at high pressure. The accurate phonon shift data have enabled the determination of the pure and biphasic stability regions of the phases of KNO _2. A discussion of the B1, B2 relationship of univalent nitrites is also given. In the series of thiocyanates studied new phases have been found in all four materials. In both the potassium and rubidium salts two new phases have been detected, and in the ceasium salt one new phase has been detected, all at high pressure, from accurate phonon shift data. These transitions are discussed in terms of second-order mechanisms with space groups suggested for all phases, based on Landau's theory of second-order phase transitions. In the ammonium salt one new phase has been detected. This new phase transition has been interpreted as a second-order transition. The series of molecular crystals CH_3 HgX, (X = Cl,Br & I) has been studied at high pressure and at variable temperature. In Chapter five, their phase behaviour at high pressure is detailed along with the pressure dependencies of their phonon frequencies. In the chloride and the bromide two new phases have been detected. In the bromide one has been detected at high temperature and one at high pressure, and latter being interpreted as the stopping of the methyl rotation. In the chloride one phase has been found at

  13. Raman Spectroscopy at High Pressures

    Directory of Open Access Journals (Sweden)

    Alexander F. Goncharov

    2012-01-01

    Full Text Available Raman spectroscopy is one of the most informative probes for studies of material properties under extreme conditions of high pressure. The Raman techniques have become more versatile over the last decades as a new generation of optical filters and multichannel detectors become available. Here, recent progress in the Raman techniques for high-pressure research and its applications in numerous scientific disciplines including physics and chemistry of materials under extremes, earth and planetary science, new materials synthesis, and high-pressure metrology will be discussed.

  14. Steam Oxidation at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL; Carney, Casey [URS

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  15. Performance characterization of solid oxide cells under high pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.;

    2014-01-01

    Solid oxide electrolysis cells (SOECs) offer a great potential for large scale conversion of renewable electrical energy into chemical energy via electrolysis of H2O and CO2 to produce syngas (H2 + CO). The produced syngas can be further catalytically converted into various gaseous or liquid...... hydrocarbon fuels, which is normally performed at high pressure to achieve a high yield. Operation of SOECs at elevated pressure will therefore facilitate integration with the downstream fuel synthesis and is furthermore advantageous as it increases the cell performance. In this work, recent pressurised test...... results of a planar Ni-YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. The test was performed at 800 °C at pressures up to 15 bar. A comparison of the electrochemical performance of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure...

  16. High Blood Pressure Prevention

    Science.gov (United States)

    ... or "no added salt." Look for the sodium content in milligrams and the Percent Daily Value. Aim for foods that are less than 5 percent of the Daily Value of sodium. Foods with 20 percent or more Daily Value of sodium are considered high. To learn more about reading nutrition labels, see ...

  17. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... over the years led to verification of the important role of high blood pressure—especially in concert with ... is specific for that person will be an important key to improving prevention, ... an international team of investigators, funded in part by the NIH, ...

  18. A Study to Improve the Radiation Hardness of Gaseous Detectors for Use at Very High Luminosities

    CERN Multimedia

    2002-01-01

    A two-year project is proposed to study the ageing of gas filled proportional detectors under irradiation. The goal is to obtain experimentally a better understanding of the gas polymerisation processes appearing at high radiation doses, in order to extend the lifetime of detectors well above the MRad region. \\\\ \\\\ The wide range of reported lifetimes is symptomatic of our poor understanding of the ageing process: often, measurements supposedly done under identical conditions result in very different lifetimes.\\\\ \\\\ The aim of this project is, with the knowledge gained, to construct a full scale prototype chamber on which future designs can be based. This will ultimately check the validity of our findings and results under realistic experimental circumstances. \\\\ \\\\ The study of ageing processes in gaseous detectors should commence with the construction of reference chambers.\\\\ \\\\ These chambers will be tested for signs of ageing by examination of the $^5

  19. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  20. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Planning, & Legislative Advisory Committees Jobs Contact Us FAQs Home » Health Information for the Public » Health Topics » High ... also may ask you to check readings at home or at other locations that have blood pressure ...

  1. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical Trials Links Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart ...

  2. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Health care providers diagnose this type of high blood pressure by reviewing readings in the office and readings taken anywhere else. ... The Heart Truth ® —a national heart disease awareness campaign for ...

  3. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... to check readings at home or at other locations that have blood pressure equipment and to keep ... office compared with readings taken in any other location. Health care providers diagnose this type of high ...

  4. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... provider usually takes 2–3 readings at several medical appointments to diagnose high blood pressure. Using the ... Researchers believe stress, which can occur during the medical appointment, causes white coat hypertension. Rate This Content: ...

  5. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs Contact Us FAQs Home » Health Information for the Public » Health Topics » High Blood Pressure » ...

  6. Characterization of gaseous detectors at the CERN Gamma Irradiation Facility: GEM performance in presence of high background radiation

    CERN Document Server

    AUTHOR|(CDS)2097588

    Muon detection is an efficient tool to recognize interesting physics events over the high background rate expected at the Large Hadron Collider (LHC) at CERN. The muon systems of the LHC experiments are based on gaseous ionization detectors. In view of the High-Luminosity LHC (HL-LHC) upgrade program, the increasing of background radiation could affect the gaseous detector performance, especially decreasing the efficiency and shortening the lifetime through ageing processes. The effects of charge multiplication, materials and gas composition on the ageing of gaseous detectors have been studied for decades, but the future upgrade of LHC requires additional studies on this topic. At the CERN Gamma Irradiation Facility (GIF++), a radioactive source of cesium-137 with an activity of 14 TBq is used to reproduce reasonably well the expected background radiation at HL-LHC. A muon beam has been made available to study detector performance. The characterization of the beam trigger will be discussed in the present w...

  7. High pressure rinsing parameters measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, E. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Fusetti, M. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Michelato, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Pagani, C. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)]. E-mail: carlo.pagani@mi.infn.it; Pierini, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Paulon, R. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Sertore, D. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)

    2006-07-15

    High pressure rinsing with ultra pure water jet is an essential step in the high field superconducting cavity production process. In this paper, we illustrate the experimental characterization of a HPR system, in terms of specific power and energy deposition on the cavity surfaces and on the damage threshold for niobium. These measurements are used to tentatively derive general rules for the optimization of the free process parameters (nozzle geometry, speeds and water pressure)

  8. High-pressure creep tests

    Science.gov (United States)

    Bhattacharyya, S.; Lamoureux, J.; Hales, C.

    1986-01-01

    The automotive Stirling engine, presently being developed by the U.S. Department of Energy and NASA, uses high-pressure hydrogen as a working fluid; its long-term effects on the properties of alloys are relatively unknown. Hence, creep-rupture testing of wrought and cast high-temperature alloys in high-pressure hydrogen is an essential part of the research supporting the development of the Stirling cycle engine. Attention is given to the design, development, and operation of a 20 MPa hydrogen high-temperature multispecimen creep-rupture possessing high sensitivity. This pressure vessel allows for the simultaneous yet independent testing of six specimens. The results from one alloy, XF-818, are presented to illustrate how reported results are derived from the raw test data.

  9. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  10. High-pressure liquid chromatography with direct injection of gas sample.

    Science.gov (United States)

    Astanin, Anton I; Baram, Grigory I

    2017-06-09

    The conventional method of using liquid chromatography to determine the composition of a gaseous mixture entails dissolving vapors in a suitable solvent, then obtaining a chromatograph of the resulting solution. We studied the direct introduction of a gaseous sample into a C18 reversed-phase column, followed by separation of the components by HPLC with UV detection. Since the chromatography was performed at high pressure, vapors readily dissolved in the eluent and the substances separated in the column as effectively as in liquid samples. Samples were injected into the column in two ways: a) through the valve without a flow stop; b) after stopping the flow and relieving all pressure. We showed that an injectable gas volume could reach 70% of column dead volume. When an injected gaseous sample volume was less than 10% of the column dead volume, the resulting peaks were symmetrical and the column efficiency was high. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st......In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together...... with their structural chemistry, controlled largely by subtle interactions between the host and the enclosed guest molecules, makes them attractive to study as model systems. Quantifying the numerous superimposed interactions in these clathrates will advance our understanding of more complex supramolecular aggregates....... High-pressure crystallography is the perfect method for studying intermolecular interactions, by forcing the molecules closer together. In all three studied hydroquinone clathrates, new pressure induced phase transitions have been discovered using a mixture of pentane and isopentane as the pressure...

  12. submitter Superconducting instrumentation for high Reynolds turbulence experiments with low temperature gaseous helium

    CERN Document Server

    Pietropinto, S; Baudet, C; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Roche, P

    2003-01-01

    Turbulence is of common experience and of high interest for industrial applications, despite its physical grounds is still not understood. Cryogenic gaseous helium gives access to extremely high Reynolds numbers (Re). We describe an instrumentation hosted in CERN, which provides a 6 kW @ 4.5 K helium refrigerator directly connected to the experiment. The flow is a round jet; the flow rates range from 20 g/s up to 260 g/s at 4.8 K and about 1.2 bar, giving access to the highest controlled Re flow ever developed. The experimental challenge lies in the range of scales which have to be investigated: from the smallest viscous scale η, typically 1 μm at Re=107 to the largest L∼10 cm. The corresponding frequencies: f=v/η can be as large as 1 MHz. The development of an original micrometric superconducting anemometer using a hot spot and its characteristics will be discussed together with its operation and the perspectives associated with superconducting anemometry.

  13. On the formation of highly charged gaseous ions from unfolded proteins by electrospray ionization.

    Science.gov (United States)

    Konermann, Lars; Rodriguez, Antony D; Liu, Jiangjiang

    2012-08-07

    Electrospray ionization (ESI) of native proteins results in a narrow distribution of low protonation states. ESI for these folded species proceeds via the charged residue mechanism. In contrast, ESI of unfolded proteins yields a wide distribution of much higher charge states. The current work develops a model that can account for this effect. Recent molecular dynamics simulations revealed that ESI for unfolded polypeptide chains involves protein ejection from nanodroplets, representing a type of ion evaporation mechanism (IEM). We point out the analogies between this IEM, and the dissociation of gaseous protein complexes after collisional activation. The latter process commences with unraveling of a single subunit, in concert with Coulombically driven proton transfer. The subunit then separates from the residual complex as a highly charged ion. We propose that similar charge equilibration events accompany the IEM of unfolded proteins, thereby causing the formation of high ESI charge states. A bead chain model is used for examining how charge is partitioned as protein and droplet separate. It is shown that protein ejection from differently sized ESI droplets generates a range of protonation states. The predicted behavior agrees well with experimental data.

  14. High Blood Pressure and Kidney Disease

    Science.gov (United States)

    ... Disease Mineral & Bone Disorder View All Content High Blood Pressure & Kidney Disease What is high blood pressure? Blood pressure is the force of blood ... million filtering units called nephrons. How does high blood pressure affect the kidneys? High blood pressure can ...

  15. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... Conditions High blood pressure (hypertension) Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  16. High Blood Pressure Often Undiagnosed, Untreated

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162996.html High Blood Pressure Often Undiagnosed, Untreated Half of mobile clinic patients ... that's often referred to as a "silent killer" -- high blood pressure, a new Canadian study reveals. High blood pressure, ...

  17. Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector

    Science.gov (United States)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-01-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  18. Vital Signs - High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-10-02

    In the U.S., nearly one third of the adult population have high blood pressure, the leading risk factor for heart disease and stroke - two of the nation's leading causes of death.  Created: 10/2/2012 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/17/2012.

  19. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in the office and readings taken anywhere else. Researchers believe stress, which can occur during the medical appointment, causes white coat hypertension. Rate This Content: NEXT >> Updated: ...

  20. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical Trials Links Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart Stroke Send a link ...

  1. A novel integrated UV-biofilter system to treat high concentration of gaseous chlorobenzene

    Institute of Scientific and Technical Information of China (English)

    WANG Can; XI JinYing; HU HongYing

    2008-01-01

    A novel integrated UV-biofilter system using UV reactor as the pretreatment process was setup to treat high concentration of gaseous volatile organic compounds (VOCs). Another control biofilter without the UV pretreatment was also established to compare the performance of the two systems. Chloro-benzene was selected as a model compound. The two systems were operated in parallel under different the integrated system could eliminate chlorobenzene completely (100% removal efficiency) at the inlet ter. Also the elimination capacity for the organic carbon of the integrated system was much higher than that of the control biofilter. On the basis of intermediates analysis by lon Chromatography and Gas Chromatography-Mass Spectrometry, the UV pretreatment has been proven to be able to enhance the performance of the following biofilter by transferring the recalcitrant target to some more biodegrad-able and soluble organic products (such as formic acid and chlorophenol). Furthermore, the produced ozone, a harmful by-product from UV photo-degradation, could be easily eliminated by the following biofiltration process.

  2. High Pressure Treatment in Foods.

    Science.gov (United States)

    Bello, Edwin Fabian Torres; Martínez, Gerardo González; Ceberio, Bernadette F Klotz; Rodrigo, Dolores; López, Antonio Martínez

    2014-08-19

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  3. High Pressure Treatment in Foods

    Directory of Open Access Journals (Sweden)

    Edwin Fabian Torres Bello

    2014-08-01

    Full Text Available High hydrostatic pressure (HHP, a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional. Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  4. High pressure rinsing system comparison

    Energy Technology Data Exchange (ETDEWEB)

    D. Sertore; M. Fusetti; P. Michelato; Carlo Pagani; Toshiyasu Higo; Jin-Seok Hong; K. Saito; G. Ciovati; T. Rothgeb

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  5. The $_{40 x 40 cm^{2}}$ gaseous microstrip detector Micromegas for the high-luminosity COMPASS experiment at CERN

    CERN Document Server

    Bernet, C; Ball, J; Bedfer, Y; Delagnes, E; Giganon, Arnaud; Kunne, Fabienne; Le Goff, J M; Magnon, A; Marchand, C; Neyret, D; Panebianco, S; Pereira, H; Platchkov, S; Procureur, S; Rebourgeard, P C; Tarte, Gérard; Thers, D

    2005-01-01

    The measurements in the COMPASS experiment at CERN require high- resolution tracking detectors, with low radiation length and high- rate capability. For this purpose we have developed and optimized a gaseous microstrip detector 'Micromegas'. Twelve planes with 1024 strips each, assembled in 3 stations of 4 views XYUV, are now being operated with success in the COMPASS environment. We describe here the performances and results obtained.

  6. The 40x40cm2 gaseous microstrip detector Micromegas for the high-luminosity COMPASS experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Bernet, C. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Abbon, P. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Ball, J. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Bedfer, Y. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Delagnes, E. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Giganon, A. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Kunne, F. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France)]. E-mail: f.kunne@cea.fr; Le Goff, J.-M. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Magnon, A. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Marchand, C. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Neyret, D. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Panebianco, S. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Pereira, H. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Platchkov, S. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Procureur, S. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Rebourgeard, P. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Tarte, G. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Thers, D. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France)

    2005-01-01

    The measurements in the COMPASS experiment at CERN require high-resolution tracking detectors, with low radiation length and high-rate capability. For this purpose we have developed and optimized a gaseous microstrip detector 'Micromegas'. Twelve planes with 1024 strips each, assembled in 3 stations of 4 views XYUV, are now being operated with success in the COMPASS environment. We describe here the performances and results obtained.

  7. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  8. High pressure processing of meat

    DEFF Research Database (Denmark)

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per

    in the myofibrillar protein pattern and HP-induced change in activity of cathepsin B and L were investigated. Results: In this study we showed that HP treatment of pork meat emulsion, ranging from 0.1 to 800 MPa, induced protein gel formation as shown by the increased Young’s modulus (Fig.1). Analysis of SDS...... the rheological properties of pork meat batters by inducing formation of protein gels. HP induced protein gels are suggested to be formed by high molecular weight myofibrillar protein aggregates and by peptides formed by lysosomal enzyme-induced cleavage of myofibrillar proteins. Perspectives: The data presented......Abstract Background: The research of high pressure (HP) processing of meat based foods needs to address how pressure affects protein interactions, aggregation and/or gelation. The understanding of the gel forming properties of myofibrillar components is fundamental for the development of muscle...

  9. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure t

  10. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  11. EXTERIOR PRESSURE OF THE GASEOUS MEDIUM AS AN ADDITIONAL TECHNOLOGICAL FACTOR FOR OPTIMIZING THE VAPORIZATION PROCESS IN THE PRODUCTION OF CELLULAR SILICATE CONCRETE

    Directory of Open Access Journals (Sweden)

    A. A. Rezanov

    2012-11-01

    Full Text Available Statement of the problem. The quality of silicate porous concrete is largely determined by vapor-ization processes at the stage of the formation of the macrostructure of the obtained material. In the production of cellular concrete with the use of injection molding, the existing manufacturing technologies do not enable the expeditious handling of the vaporization process. This is why there is a growing need to develop additional efficient methods of handling the vaporization process thus improving cellular silicate concrete.Results. Based on modelling and detailed examination of the balance of pressure affecting devel-oping gas pores, mechanisms and factors governing a defect-free structure are found. An additional governing factor, which is a pressure of the external gaseous medium, was discovered. The approaches to handling the vaporization process have been developed and a plant fitted with a system of automatic control of vaporization process by conscious operative pressuring effect from the external gaseous phase on a poring mixture has been designed.Conclusions. Theoretical validation along with the results of the experimental study help to arrive at the conclusion about the efficiency of the suggested system in controlling vaporization that could provide a good addition to the traditional injection molding and make it more susceptible against varying characteristics of raw materials.

  12. Imaging in (high pressure) Micromegas TPC detectors

    Science.gov (United States)

    Luzón, G.; Cebrián, S.; Castel, J.; Dafni, Th.; Galán, J.; Garza, J. G.; Irastorza, I. G.; Iguaz, F. J.; Mirallas, H.; Ruíz-Choliz, E.

    2016-11-01

    The T-REX project of the group of the University of Zaragoza includes a number of R&D and prototyping activities to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches where the pattern recognition of the signal is crucial for background discrimination. In the CAST experiment (CERN Axion Solar Telescope) a background level as low as 0.8 × 10-6 counts keV-1 cm-2 s-1 was achieved. Prototyping and simulations promise a 105 better signal-to-noise ratio than CAST for the future IAXO (International Axion Observatory) using x-ray telescopes. A new strategy is also explored in the search of WIMPS based on high gas pressure: the TREX-DM experiment, a low energy threshold detector. In both cases, axion and WIMP searches, the image of the expected signal is quite simple: a one cluster deposition coming from the magnet bore in the case of axions and, if possible, with a tadpole form in the case of WIMPs. It is the case of double beta decay (DBD) where imaging and pattern recognition play a major role. Results obtained in Xe + trimethylamine (TMA) mixture point to a reduction in electron diffusion which improves the quality of the topological pattern, with a positive impact on the discrimination capability, as shown in TREX-ββ prototype. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ~ 3% FWHM at the transition energy Qββ and even better (up to ~ 1% FWHM) as extrapolated from low energy events. That makes Micromegas-based HPXe TPC a very competitive technique for the next generation DBD experiments (as PANDAX-III). Here, it will be shown the last results of the TREX project detectors and software concerning Axions, Dark matter and double beta decay.

  13. Questions and Answers about High Blood Pressure

    Science.gov (United States)

    ... checked out by a doctor. Am I at risk for high blood pressure? Anyone can develop high blood pressure. But there are several factors that increase your risk: Being overweight or obese Not ... if I have high blood pressure? High blood pressure is often called "the silent ...

  14. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old High Blood Pressure (Hypertension) KidsHealth > For Parents > High Blood Pressure (Hypertension) A ... posture, and medications. continue Long-Term Effects of High Blood Pressure When someone has high blood pressure, the heart ...

  15. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old High Blood Pressure (Hypertension) KidsHealth > For Parents > High Blood Pressure (Hypertension) ... posture, and medications. continue Long-Term Effects of High Blood Pressure When someone has high blood pressure, the heart ...

  16. Characteristics of a high brightness gaseous field ion source employing tungsten-carbon doped NiAl needles

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Marwan S., E-mail: mmousa@mutah.edu.jo [Department of Physics, Mu' tah University, P.O. Box 7, Al-Karak (Jordan)

    2011-05-15

    We report on the characterization of a high brightness gaseous field ion source using an emitter made of a NiAl needle containing tiny spherical tungsten-carbon precipitates. By field evaporation of such a multiphase alloy, a surface protrusion is formed out of a precipitate, which can act as a small source size field ion emitter. The emission current-voltage characteristics of this emitter were recorded for a variety of parameters. The results obtained suggest that its application as a stable ion source is possible even on long term operation. -- Research highlights: {yields} High brightness gaseous field ion source of precipitation hardened NiAl+W+C emitter. {yields} Emission current-voltage characteristics are recorded for a variety of parameters. {yields} Very small virtual source sizes and energy spreads can be attained. {yields} Results suggest that application as long term stable ion source is possible.

  17. Effect of gaseous ozone for control of stored product pests at low and high temperature

    DEFF Research Database (Denmark)

    Hansen, Lise Stengård; Hansen, Peer; Vagn Jensen, Karl-Martin

    2013-01-01

    Gaseous ozone (O3) has shown potential for control of insects in stored grain. A previous laboratory study determined doses of ozone necessary to control freely exposed and internal stages of eleven stored product pest species at 20 C. In this study the impact of temperature on the effect of ozon...

  18. Cavity ring-down spectroscopy sensor development for high-time-resolution measurements of gaseous elemental mercury in ambient air

    OpenAIRE

    Pierce, A; D. Obrist; H. Moosmüller; X. Faïn; Moore, C.

    2013-01-01

    We describe further development of a previous laboratory prototype pulsed cavity ring-down spectroscopy (CRDS) sensor into a field-deployable system for high-time-resolution, continuous, and automated measurement of gaseous elemental mercury (GEM) concentrations in ambient air. We employed an external, isotopically enriched Hg cell for automated locking and stabilization of the laser wavelength on the GEM peak absorption during measurements. Further, we describe implementation of differential...

  19. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  20. STUDY ON THE GASEOUS PRODUCTS OF HIGH TEMPERATURE PYROLYSIS OF ACRYLONITRILE POLYMERS BY ON-LINE FTIR METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHAO Genxiang; CHEN Bangjie

    1987-01-01

    The gaseous products of high temperature pyrolysis (300℃ to 960℃) of acrylonitrile polymers were measured continuously under nitrogen atnosphere by on-line Fourier Transform Infrared Spectroscopic method (FTIR). From the variations of characteristic peaks it was found that the nitrogen of macromolecules evolved were mainly in the form of hydrogen cyanide and ammonia. During the pyrolysis amorphous carbonaceous element was formed, and crosslinked to form network structure. Three kinds of samples were used for comparison. The experimental results show that the gaseous products of volatile small molecules were HCN, NH3, CH4, C2H6 and cyanide. CO and CO2 were also formed when copolymers of PAN were thermally pyrolyzed.

  1. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    Science.gov (United States)

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  2. Pressure Drop in Cyclone Separator at High Pressure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For the design of pressurized circulating fluidized beds, experiments were conducted in a small cyclone with 120 mm in diameter and 300 mm in height at high pressures and at atmospheric temperatures. Influence of air leakage from the stand pipe into the cyclone was specially focused. A semi-empirical model was developed for the predic tion of the pressure drop of the cyclone separator at different operate pressures with the effect of air leakage and inlet solid loading. The operate pressure, air leakage and inlet solid loading act as significant roles in cyclone pressure drop. The pressure drop increases with the increasing of pressure and decreases with the increasing of the flow rate of air leakage from the standpipe and with the increasing of the inlet solid loading.

  3. High-pressure microhydraulic actuator

    Science.gov (United States)

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  4. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... blood pressure test is easy and painless and can be done in a health care provider’s office ... severity of your blood pressure, he or she can order additional tests to determine if your blood ...

  5. Biological production of methane from coal synthesis gas under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ko, C.W.; Vega, J.L.; Barik, S.; Clausen, E.C.; Gaddy, J.L.

    1987-01-01

    Carbon monoxide, hydrogen and carbon dioxide, the major components of coal synthesis gas, may be converted to methane by the action of anaerobic bacteria. Both pure and mixed cultures have been developed to carry out the water-gas shift and methanation reactions. Reaction rates are severely limited by mass-transfer of these gaseous substrates. Research studies show that increased pressure results in a proportionate increase in reaction rate. This paper examines the effects of high pressure on the performance of organisms, such as P. productus and Methanothrix, in converting coal gas into methane. The effects of carbon monoxide inhibition and high pressure are presented and discussed.

  6. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 10,2017 The importance of stress ... content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  7. Avoid the Consequences of High Blood Pressure

    Science.gov (United States)

    ... Thromboembolism Aortic Aneurysm More Avoid the Consequences of High Blood Pressure Infographic Updated:Oct 31,2016 View a downloadable version of this infographic High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  8. High Blood Pressure: Keep the Beat Recipes

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: High Blood Pressure Keep the Beat Recipes Past Issues / Fall 2011 ... 65 million American adults—one in three—with high blood pressure, you have probably heard the advice, "watch your ...

  9. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  10. Risk Factors for High Blood Pressure

    Science.gov (United States)

    ... Share this page from the NHLBI on Twitter. Risk Factors for High Blood Pressure Anyone can develop high blood pressure; however, age, ... Lifestyle Habits Unhealthy lifestyle habits can raise your risk for high blood pressure, and they include: Eating too much sodium or ...

  11. ATLAS Transition Radiation Tracker (TRT): Straw Tube Gaseous Detectors at High Rates

    CERN Document Server

    Vogel, A; The ATLAS collaboration

    2013-01-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. The ATLAS detector is located at LHC/CERN. We report on how these gaseous detectors (“straw tubes”) are performing during the ATLAS 2011 and 2012 runs where the TRT experiences higher rates than previously encountered. The TRT contains ~300000 thin-walled proportional-mode drift tubes providing on average 30 two-dimensional space points with ~130 µm resolution for charged particle tracks with |η| 0.5 GeV. Along with continuous tracking, the TRT provides electron identification capability through the detection of transition radiation X-ray photons. During the ATLAS 2012 proton-proton data runs, the TRT is operating successfully while being subjected to the highest rates of incident particles ever experienced by a large scale gaseous tracking system. In the second half of 2012, the TRT has collected data in an environment with instantaneous proton-proton luminosity of ~0.8 × 10³�...

  12. ATLAS Transition Radiation Tracker (TRT): Straw Tube Gaseous Detectors at High Rates

    CERN Document Server

    Vogel, A; The ATLAS collaboration

    2013-01-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. The ATLAS detector is located at LHC/CERN. We report on how these gaseous detectors (“straw tubes”) are performing during the ATLAS 2011 and 2012 runs where the TRT experiences higher rates than previously encountered. The TRT contains ~300000 thin-walled proportional-mode drift tubes providing on average 30 two-dimensional space points with ~130 µm resolution for charged particle tracks with |η|  0.5 GeV. Along with continuous tracking, the TRT provides electron identification capability through the detection of transition radiation X-ray photons. During the ATLAS 2012 proton-proton data runs, the TRT is operating successfully while being subjected to the highest rates of incident particles ever experienced by a large scale gaseous tracking system. As of the submission date of this abstract, the TRT has collected data in an environment with instantaneous proton-proton luminosi...

  13. Hydroformylation of Cyclohexene with Carbon Dioxide and Hydrogen Using Ruthenium Carbonyl Catalyst: Influence of Pressures of Gaseous Components

    Directory of Open Access Journals (Sweden)

    Masahiko Arai

    2007-08-01

    Full Text Available Hydroformylation of cyclohexene was studied with a catalyst system ofRu3(CO12 and LiCl using H2 and CO2 instead of CO in NMP. The influence of H2 andCO2 pressures on the total conversion and the product distribution was examined. It wasshown that increasing total pressure of H2 and CO2 promoted the reverse water gas shiftreaction and increased the yield of cyclohexanecarboxaldehyde. Its hydrogenation tocyclohexanemethanol was promoted with increasing H2 pressure but suppressed withincreasing CO2 pressure. Cyclohexane was also formed along with those products and thisdirect hydrogenation was suppressed with increasing CO2 pressure. The roles of CO2 as apromoter as well as a reactant were further examined by phase behavior observations andhigh pressure FTIR measurements.

  14. Correlation and prediction of gaseous diffusion coefficients.

    Science.gov (United States)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  15. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  16. Numerical analyses of high Reynolds number flow of high pressure fuel gas through rough pipes

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Margherita; Morini, Mirko; Pinelli, Michele [ENDIF - Engineering Department in Ferrara, University of Ferrara, Via Saragat, 1 - 44122 Ferrara (Italy)

    2010-07-15

    In this paper, a CFD commercial code is used to evaluate the pressure drop through pipes in a stream of high pressure gas. Both hexahedral and tetrahedral grids are considered. Preliminarily, a grid sensitivity analysis is carried out by comparing CFD results with analytical results. Each grid is characterized by a different number and thickness of layers in order to investigate the behavior of the grid with respect to the boundary layer. Then, the model is validated by using a literature test case, in which high pressure gas flow through a rough pipe is experimentally studied. Moreover, various equations of state (i.e., constant properties, Ideal Gas and Redlich-Kwong equations) and boundary conditions (e.g., pressure, mass flow, etc.) are taken into consideration and compared. Finally, the model is used to extrapolate the behavior of gaseous fuels (i.e., natural gas, biogas and hydrogen-methane mixture) flowing at high pressure through pipes of different roughness. The analyses show that the radial depth of the prism layers on pipe wall has to be controlled to allow the correct resolution of the boundary layer. Moreover, the results highlight that the first element height of the prism layer should be high enough to avoid inconsistencies in the rough model application. At the same time, the grid used for calculations does not strongly influence the numerical results and hence tune of the first element height to perfectly fit the roughness is not always justified. The final analysis on the different gaseous fuels put into evidence the capability of the CFD analysis to determine the energy performance of fuel transportation in gas pipeline. (author)

  17. Potential Danger of Pre-Pump Clamping on Negative Pressure-Associated Gaseous Microemboli Generation During Extracorporeal Life Support--An In Vitro Study.

    Science.gov (United States)

    Wang, Shigang; Chin, Brian J; Gentile, Frank; Kunselman, Allen R; Palanzo, David; Ündar, Akif

    2016-01-01

    The objectives of this study were to investigate the relationship between revolution speed of a conventional centrifugal pump and negative pressure at the inlet of the pump by clamping the tubing upstream of the pump, and to verify whether negative pressure leads to gaseous microemboli (GME) production in a simulated adult extracorporeal life support (ECLS) system. The experimental circuit, including a Maquet Rotaflow centrifugal pump and a Medos Hilite 7000 LT polymethyl-pentene membrane oxygenator, was primed with packed red blood cells (hematocrit 35%). Negative pressure was created in the circuit by clamping the tubing upstream of the pump for 10 s, and then releasing the clamp. An emboli detection and classification quantifier was used to record GME volume and count at pre-oxygenator and post-oxygenator sites, and pressure and flow rate data were collected using a custom-based data acquisition system. All trials were conducted at 36°C at revolution speeds of 2000-4000 rpm (500 rpm increment). The flow rates were 1092.5-4708.4 mL/min at the revolution speeds of 2000-4000 rpm. Higher revolution speed generated higher negative pressure at the pre-pump site when clamping the tubing upstream of the pump (-108.3 ± 0.1 to -462.0 ± 0.5 mm Hg at 2000-4000 rpm). Moreover, higher negative pressure was associated with a larger number and volume of GME at pre-oxygenator site after de-clamp (GME count 10,573 ± 271 at pre-oxygenator site at 4000 rpm). The results showed that there was a potential danger of delivering GME to the patient when clamping pre-pump tubing during ECLS using a centrifugal pump. Our results warrant further clinical studies to investigate this phenomenon.

  18. How Is High Blood Pressure Treated?

    Science.gov (United States)

    ... or focusing on something calm or peaceful Performing yoga or tai chi Meditating Medicines Blood pressure medicines work in different ways to stop or slow some of the body’s functions that cause high blood pressure. Medicines to lower ...

  19. NEXT: R and D towards a xenon high pressure TPC

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Thorsten [Universitat Autonoma de Barcelona, Barcelona (Spain); Sanchez, Federico [IFAE, Barcelona (Spain); Gomez-Cadenas, J.J.; Martin-Albo, Justo; Ball, Markus; Novella, Pau; Monrabal, Francesc; Cervera, Anselmo [IFIC, Valencia (Spain); Garcia Irastorza, Igor [Universidad de Zaragoza, Zaragoza (Spain)

    2008-07-01

    An open question within the Standard Model is the nature of the neutrino. Is it a Majorana or a Dirac particle? The only way to answer this, is the search for neutrino-less double beta decays. Various experimental approaches are investigated for this reason e.g. diodes, bolometers, liquid Xenon. The key points for all of them is the high requirements on the energy resolution to distinguish between the decay with two neutrinos and the neutrino-less decay and the external background suppression. Recently some Spanish groups started a R and D program to investigate the possibility to use a pressurized Xenon TPC with MPGD readout (MM, LEM (GEM)). In the presentation the choice of gaseous Xe is motivated and an overview about the R and D plans is given.

  20. High blood pressure in women.

    Science.gov (United States)

    Calhoun, D A; Oparil, S

    1997-01-01

    There is a sexual dimorphism in blood pressure of humans and experimental animals: males tend to have higher blood pressure than females with functional ovaries, while ovariectomy or menopause tends to abolish the sexual dimorphism and cause females to develop a "male" pattern of blood pressure. Hypertensive male laboratory animals tend to have NaCl-sensitive blood pressure, while females are NaCl resistant unless their ovaries are removed, in which case NaCl sensitivity appears. The hormonal basis of NaCl sensitivity of blood pressure and of the sexual dimorphism of hypertension remains to be defined. Synthetic estrogens and progestins, as found in oral contraceptives, tend to elevate blood pressure, while naturally occurring estrogens lower it, or have no effect. Hypertension increases cardiovascular risk in women, as well as men, although the benefits of antihypertensive treatment have been more difficult to demonstrate in women. In the population of the United States, women are more aware of their hypertension, more likely to be treated medically, and more likely to have their blood pressure controlled.

  1. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  2. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  3. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    Science.gov (United States)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  4. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs ... track blood pressure readings over a period of time, the health care provider may ask you to ...

  5. Application of High Pressure in Food Processing

    OpenAIRE

    Herceg, Z; Režek Jambrak, A; Lelas, V.; Krešić, G.

    2011-01-01

    In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200) MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure proc...

  6. Metallicity of boron carbides at high pressure

    Science.gov (United States)

    Dekura, Haruhiko; Shirai, Koun; Yanase, Akira

    2010-03-01

    Electronic structure of semiconducting boron carbide at high pressure has been theoretically investigated, because of interests in the positive pressure dependence of resistivity, in the gap closure, and in the phase transition. The most simplest form B12(CCC) is assumed. Under assumptions of hydrostatic pressure and neglecting finite-temperature effects, boron carbide is quite stable at high pressure. The crystal of boron carbide is stable at least until a pressure higher than previous experiments showed. The gap closure occurs only after p=600 GPa on the assumption of the original crystal symmetry. In the low pressure regime, the pressure dependence of the energy gap almost diminishes, which is an exceptional case for semiconductors, which could be one of reasons for the positive pressure dependence of resistivity. A monotonous increase in the apex angle of rhombohedron suggests that the covalent bond continues to increase. The C chain inserted in the main diagonal of rhombohedral structure is the chief reason of this stability.

  7. The effect of interstitial gaseous pressure on the thermal conductivity of a simulated Apollo 12 lunar soil sample

    Science.gov (United States)

    Horai, K.-I.

    1981-01-01

    The thermal conductivity of a simulated Apollo 12 soil sample is measured as a function of interstitial gas density, and implications for the thermal properties of lunar and Martian regolith are discussed. Measurements were performed for samples consisting of a mixture of Knippa and Berkely basalt powders with a grain size distribution identical to that of Apollo 12 lunar soil samples by the needle probe technique at interstitial pressures of He, N2, Ar and CO2 from 133,000 to 0.0133 Pa. It is shown that sample thermal conductivity decreases with decreasing interstitial gas pressure down to 1.0 Pa, due to the decreasing effective thermal conductivity of interstitial gas with decreasing gas pressure. Constant thermal conductivity values of 8.8 mW/m per K and 10.9 mW/m per K are obtained for sample densities of 1.70 and 1.85 g/cu cm, respectively, in agreement with in situ lunar regolith measurements. The results, which are greater than those obtained in previous soil studies, are explained by the dense packing of soil particles and enhanced intergranular thermal contact in the present experimental configuration, rather than the influence of interstitial gas pressure. The differences in conductivity between loose soils and packed regolith may also be used to account for the two peaks observed in Martian surface thermal inertia data.

  8. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Technology Transfer Clinical Trials What Are Clinical Trials? Children & Clinical Studies NHLBI Trials Clinical Trial Websites News & ... are consistently higher than 120/80 mmHg. Your child’s blood pressure numbers are outside average numbers for ...

  9. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart Stroke Send a link ... are consistently higher than 120/80 mmHg. Your child’s blood pressure numbers are outside average numbers for ...

  10. High pressure processing for food safety.

    Science.gov (United States)

    Fonberg-Broczek, Monika; Windyga, B; Szczawiński, J; Szczawińska, M; Pietrzak, D; Prestamo, G

    2005-01-01

    Food preservation using high pressure is a promising technique in food industry as it offers numerous opportunities for developing new foods with extended shelf-life, high nutritional value and excellent organoleptic characteristics. High pressure is an alternative to thermal processing. The resistance of microorganisms to pressure varies considerably depending on the pressure range applied, temperature and treatment duration, and type of microorganism. Generally, Gram-positive bacteria are more resistant to pressure than Gram-negative bacteria, moulds and yeasts; the most resistant are bacterial spores. The nature of the food is also important, as it may contain substances which protect the microorganism from high pressure. This article presents results of our studies involving the effect of high pressure on survival of some pathogenic bacteria -- Listeria monocytogenes, Aeromonas hydrophila and Enterococcus hirae -- in artificially contaminated cooked ham, ripening hard cheese and fruit juices. The results indicate that in samples of investigated foods the number of these microorganisms decreased proportionally to the pressure used and the duration of treatment, and the effect of these two factors was statistically significant (level of probability, P high pressure treatment than L. monocytogenes and A. hydrophila. Mathematical methods were applied, for accurate prediction of the effects of high pressure on microorganisms. The usefulness of high pressure treatment for inactivation of microorganisms and shelf-life extention of meat products was also evaluated. The results obtained show that high pressure treatment extends the shelf-life of cooked pork ham and raw smoked pork loin up to 8 weeks, ensuring good micro-biological and sensory quality of the products.

  11. CHRONOBIOLOGY OF HIGH BLOOD PRESSURE

    Science.gov (United States)

    Cornélissen, G.; Halberg, F.; Bakken, E. E.; Wang, Z.; Tarquini, R.; Perfetto, F.; Laffi, G.; Maggioni, C.; Kumagai, Y.; Homolka, P.; Havelková, A.; Dušek, J.; Svačinová, H.; Siegelová, J.; Fišer, B.

    2008-01-01

    BIOCOS, the project aimed at studying BIOlogical systems in their COSmos, has obtained a great deal of expertise in the fields of blood pressure (BP) and heart rate (HR) monitoring and of marker rhythmometry for the purposes of screening, diagnosis, treatment, and prognosis. Prolonging the monitoring reduces the uncertainty in the estimation of circadian parameters; the current recommendation of BIOCOS requires monitoring for at least 7 days. The BIOCOS approach consists of a parametric and a non-parametric analysis of the data, in which the results from the individual subject are being compared with gender- and age-specified reference values in health. Chronobiological designs can offer important new information regarding the optimization of treatment by timing its administration as a function of circadian and other rhythms. New technological developments are needed to close the loop between the monitoring of blood pressure and the administration of antihypertensive drugs. PMID:19122770

  12. SMART composite high pressure vessels with integrated optical fiber sensors

    Science.gov (United States)

    Blazejewski, Wojciech; Czulak, Andrzej; Gasior, Pawel; Kaleta, Jerzy; Mech, Rafal

    2010-04-01

    In this paper application of integrated Optical Fiber Sensors for strain state monitoring of composite high pressure vessels is presented. The composite tanks find broad application in areas such as: automotive industry, aeronautics, rescue services, etc. In automotive application they are mainly used for gaseous fuels storage (like CNG or compressed Hydrogen). In comparison with standard steel vessels, composite ones have many advantages (i.e. high mechanical strength, significant weight reduction, etc). In the present work a novel technique of vessel manufacturing, according to this construction, was applied. It is called braiding technique, and can be used as an alternative to the winding method. During braiding process, between GFRC layers, two types of optical fiber sensors were installed: point sensors in the form of FBGs as well as interferometric sensors with long measuring arms (SOFO®). Integrated optical fiber sensors create the nervous system of the pressure vessel and are used for its structural health monitoring. OFS register deformation areas and detect construction damages in their early stage (ensure a high safety level for users). Applied sensor system also ensured a possibility of strain state monitoring even during the vessel manufacturing process. However the main application of OFS based monitoring system is to detect defects in the composite structure. An idea of such a SMART vessel with integrated sensor system as well as an algorithm of defect detection was presented.

  13. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  14. A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    The reactions between gaseous potassium chloride and coal minerals were investigated in a lab-scale high temperature fixed-bed reactor using single sorbent pellets. The applied coal minerals included kaolin, mullite, silica, alumina, bituminous coal ash, and lignite coal ash that were formed...... into long cylindrical pellets. Kaolin and bituminous coal ash that both have significant amounts of Si and Al show superior potassium capture characteristics. Experimental results show that capture of potassium by kaolin is independent of the gas oxygen content. Kaolin releases water and forms metakaolin...... at temperatures below 1300°C. However, the weight gain by mullite is only slightly smaller than that by kaolin in the temperature range of 1300-1500°C. A simple model was developed for the gas-solid reaction between potassium vapor and metakaolin pellet at 900°C....

  15. Two-dimensional position-sensitive gaseous detectors for high-resolution neutron and X-ray diffraction

    CERN Document Server

    Marmotti, M; Kampmann, R

    2002-01-01

    Two-dimensional position-sensitive gaseous detectors have been developed at the Geesthacht Neutron Facility (GeNF) for high-resolution neutron and X-ray diffractometry. They are multi-wire proportional counters with delay-line readout and sensitive areas of 300 mm x 300 mm or 500 mm x 500 mm. For detecting X-rays, neutrons and hard X-rays the counters are filled with Ar/CO sub 2 , sup 3 He/CF sub 4 and Xe/CO sub 2 , respectively. One neutron detector is used at the ARES diffractometer at GKSS, which is dedicated to the analysis of residual stresses. Further ones are used for analysing textures and residual stresses at the hard-X-ray beamline PETRA-2 at HASYLAB, and one detector is being developed for the neutron reflectometer REFSANS at the research reactor FRM-II in Munich, Germany. (orig.)

  16. High Temperature Gaseous Rare-Earth Permeation of Polyoxotungstates:An New Effective Method for the Preparation of Tungsten Bronzes

    Institute of Scientific and Technical Information of China (English)

    李中华; 韦永德; 郭元茹; 周百斌

    2004-01-01

    New polyoxometalate α-K12H3[Y(BW11O39)2]·25H2O was synthesized and treated by high temperature gaseous rare earth permeation to prepare tungsten bronze K0.475WO3. XRD, TG-DTA, XPS, 183W-NMR,CV and AC impedance spectra were used to characterize the resulting material. The results of XPS indicate that La has permeated and diffused into the body of the sample and exists in the forms of binding with other components. The crystal structure parameters of K0.475WO3 were obtained by the analysis of XRD, which shows tetragonal crystal system with lattice parameters: a=12.28 nm, c=3.833 nm, V=578.48 nm-3. The conductivities calculated from the results of AC impedance spectra of the material increase with the increasing of temperature, which shows a semiconductor character.

  17. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  18. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  19. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  20. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  1. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity.

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  2. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  3. High-pressure minerals in shocked meteorites

    Science.gov (United States)

    Tomioka, Naotaka; Miyahara, Masaaki

    2017-09-01

    Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.

  4. Portable high precision pressure transducer system

    Science.gov (United States)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  5. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  6. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  7. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.

    Science.gov (United States)

    Qiu, Feng; Peng, Sophia; Kunselman, Allen; Ündar, Akif

    2010-11-01

    Gaseous microemboli (GME) remain a challenge for cardiopulmonary bypass (CPB) because there is a positive correlation between microemboli exposure during CPB and postoperative neurological injury. Thus, minimizing the number of GME delivered to pediatric patients undergoing CPB procedures would lead to better clinical outcomes. In this study, we used a simulated CPB model to evaluate the effectiveness of capturing GME and the degree of membrane pressure drop for a new membrane oxygenator, Capiox Baby FX05 (Terumo Corporation,Tokyo, Japan), which has an integrated arterial filter with open and closed purge line.We used identical components in this study as our clinical CPB circuit. Three emboli detection and classification quantifier transducers were placed at prepump, preoxygenator, and postoxygenator sites in the circuit.Two flow probes as well as three pressure transducers were placed upstream and downstream of the oxygenator. The system was primed with human blood titrated to 30% hematocrit with Lactated Ringer’s solution.A bolus of air (1 mL) was injected in the prepump site under nonpulsatile perfusion mode at three flow rates (500,750, and 1000 mL/min) and with the purge line either open or closed. Six trials were performed for each unique set-up for a total of 36 trials.All trials were conducted at 35°C. The circuit pressure was kept constant at 100 mm Hg. Both the size and quantity of microemboli detected at postoxygenator site were recorded for 5 min postair injection. It was found that total counts of GME were significantly reduced with the purge line open when compared to keeping the purge line closed (P purge line closed compared to keeping the purge line open at flow rates of 750 mL/min and 1000 mL/min (P purge line open and closed, which is due to the small arteriovenous (A-V) shunt(P < 0.001). These results suggest that the integrated arterial filter of the Capiox FX05 oxygenator significantly improves the capturing of GME but has little impact on

  8. HARPO—A gaseous TPC for high angular resolution γ-ray astronomy and polarimetry from the MeV to the TeV

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, D., E-mail: denis.bernard@in2p3.fr [LLR, Ecole Polytechnique, CNRS/IN2P3, 91128 Palaiseau (France)

    2013-08-01

    We propose a “thin” detector as a high-angular-precision telescope and polarimeter for cosmic γ-rays above the pair-creation threshold. We have built a demonstrator based on a gaseous TPC. We are presently characterizing the detector with charged cosmic rays in the laboratory. Here we present some of its properties.

  9. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  10. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... names are given for the drugs in each group.Find your drug. Then read some basic information about your kind of drug. Types of High Blood Pressure Medicines ACE Inhibitors Beta Blockers Calcium Channel Blockers ...

  11. High Blood Pressure May Hike Dementia Risk

    Science.gov (United States)

    ... fullstory_161398.html High Blood Pressure May Hike Dementia Risk New statement from American Heart Association warns ... in middle age, might open the door to dementia, the American Heart Association warns in a new ...

  12. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... as well as results at elevated pressure from literature. The experimental results and the modeling predictions do not support occurrence of NTC behavior in ethane oxidation. Even at the high-pressure conditions of the present work where the C2H5 + O2 reaction yields ethylperoxyl rather than C2H4 + HO2...

  13. High pressure ceramic heat exchanger

    Science.gov (United States)

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  14. Elasticity of orthoenstatite at high-pressure

    Science.gov (United States)

    Zhang, D.; Jackson, J. M.; Chen, B.; Zhao, J.; Yan, J.

    2011-12-01

    Orthoenstatite is an abundant yet complex mineral in Earth's upper mantle. Despite its abundance, the properties of orthopyroxene at high pressure remain ambiguous (e.g., Zhang et al. 2011; Jahn 2008; Kung et al. 2004). We explored select properties of a synthetic powdered orthoenstatite (Mg0.8757Fe0.13)2Si2O6 sample by X-ray diffraction (XRD) and nuclear resonance inelastic X-ray scattering (NRIXS) as a function of pressure in a neon pressure medium at 300 K. The XRD measurements were carried out at beamline 12.2.2 of the Advanced Light Source (Berkeley, CA), and the sample was studied up to 34 GPa. NRIXS measurements were carried out at sector 3ID-B of the Advanced Photon Source (Chicago, IL) in the pressure range of 3 to 17 GPa. From the raw NRIXS data, the partial phonon density of states (DOS) was derived (e.g., Sturhahn 2004). The volume (or pressure) dependence of several properties, such as the Lamb-Mössbauer factor, mean force constant, specific heat, vibrational entropy, and vibrational kinetic energy were determined from the DOS. We will discuss our results from these combined studies and the implications for Earth's upper mantle. References Zhang, D., J.M. Jackson, W. Sturhahn, and Y. Xiao (2011): Local structure variations observed in orthoenstatite at high-pressures. American Mineralogist, in press. Jahn, S. (2008) High-pressure phase transitions in MgSiO3 orthoenstatite studied by atomistic computer simulation. American Mineralogist, 93(4), 528-532. Kung, J., Li, B., Uchida, T., Wang, Y., Neuville, D., and Liebermann, R. (2004) In situ measurements of sound velocities and densities across the orthopyroxene high-pressure clinopyroxene transition in MgSiO3 at high pressure. Physics of the Earth and Planetary Interiors, 147(1), 27-44. Sturhahn, W. (2004): Nuclear Resonant Spectroscopy. J. Phys. Condens. Matter, 16, S497-S530.

  15. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  16. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  17. Structures of Liquid Aluminium under High Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Hui; WANG Guang-Hou; BIAN Xiu-Fang; ZHANG Lin

    2001-01-01

    Molecular dynamics simulation has been carried out for melt A1 under constant temperature and constant pressure. The interaction between atoms is described by tight-binding many-body potentials based on the second moment approximation to the electronic density of states. The pair correlation function and the pair analysis technique are used to reveal the structural features of liquid Al under normal and high pressure. High pressure is favourable to the existence of bcc clusters 1661 and 1441, but has no effect on the fcc cluster 1421. The bond pair 1551 and 1541 with fivefold symmetry exists at high pressure. The microstructure of liquid is more similar to the non-crystalline structure than to the crystalline structure. The simulation results are supported by thex-ray experimental results.

  18. High pressure Raman scattering of silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Khachadorian, Sevak; Scheel, Harald; Thomsen, Christian [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, 10623 Berlin (Germany); Papagelis, Konstantinos [Materials Science Department, University of Patras, 26504 Patras (Greece); Colli, Alan [Nokia Research Centre, 21 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ferrari, Andrea C, E-mail: khachadorian@physik.tu-berlin.de [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2011-05-13

    We study the high pressure response, up to 8 GPa, of silicon nanowires (SiNWs) with {approx} 15 nm diameter, by Raman spectroscopy. The first order Raman peak shows a superlinear trend, more pronounced compared to bulk Si. Combining transmission electron microscopy and Raman measurements we estimate the SiNWs' bulk modulus and the Grueneisen parameters. We detect an increase of Raman linewidth at {approx} 4 GPa, and assign it to pressure induced activation of a decay process into LO and TA phonons. This pressure is smaller compared to the {approx} 7 GPa reported for bulk Si. We do not observe evidence of phase transitions, such as discontinuities or change in the pressure slopes, in the investigated pressure range.

  19. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    Science.gov (United States)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  20. Characterization of a Compact, High Resolution Readout System for Micro Pattern Gaseous Detectors

    CERN Document Server

    Shi, Liangliang; Mjörnmark, U

    2013-01-01

    For the electronics, the requirements on miniaturization, the data volume and transfer bandwidth, temperature stability, power consumption and radiation hardness, high density of integration have to be driven to the technical limits and the detector development towards this is going on for the linear collider experiment. To meet these needs, S-ALTRO16 c...

  1. Efficient space propulsion and power using a high-temperature, gaseous radiation receiver

    Science.gov (United States)

    Mattick, A. T.; Mcfall, K. A.

    1990-01-01

    A two-dimensional analysis is carried out for a flowing gas radiation heater, a device whereby focused solar radiation is deposited volumetrically in a gas to produce high temperatures for space power or propulsion. The paper includes radiative losses to the walls of the absorption chamber, and demonstrates that if wall reflectivity exceeds 75 percent, gas temperatures above 3000 K are possible.

  2. High pressure studies of potassium perchlorate

    Science.gov (United States)

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; Reiser, Sharissa; White, Melanie

    2016-09-01

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 → hν KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. We present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregate at high pressure.

  3. Observation of gaseous nitric acid production at a high-energy proton accelerator facility

    CERN Document Server

    Kanda, Y; Nakajima, H

    2005-01-01

    High-energy protons and neutrons produce a variety of radionuclides as well as noxious and oxidative gases, such as ozone and nitric acid, in the air mainly through the nuclear spallation of atmospheric elements. Samples were collected from the surfaces of magnets, walls, and floors in the neutrino beamline tunnel and the target station of the KEK 12-GeV proton synchrotron facility by wiping surfaces with filter paper. Considerably good correlations were found between the amounts of nitrate and tritium and between those of nitrate and /sup 7/Be. This finding gives evidence that at high-energy proton facilities, nitric acid is produced in the radiolysis of air in beam- loss regions. Also, the nitric acid on the surfaces was found to be desorbed and tended to be more uniform throughout the tunnel due to air circulation. The magnitude of diminishing from the surfaces was in the order of tritium>nitrate>/sup 7/Be1).

  4. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  5. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...

  6. Crystal structures at high pressures and temperatures

    Science.gov (United States)

    Caldwell, Wendel Alexander

    2000-10-01

    The diamond anvil cell (DAC) is a unique instrument that can generate pressures equivalent to those inside planetary interiors (pressures on the order of 1 million atmospheres) under sustained conditions. When combined with a bright source of collimated x-rays, the DAC can be used to probe the structure of materials in-situ at ultra-high pressures. An understanding of the high-pressure structure of materials is important in determining what types of processes may take place in the Earth at great depths. Motivated by previous studies showing that xenon becomes metallic at pressures above ˜1 megabar (100 GPa), we examined the stable structures and reactivity of xenon at pressures approaching that of the core-mantle boundary in the Earth. Our findings indicate the transformation of xenon from face-centered cubic (fcc) to hexagonal close-packed (hcp) structures is kinetically hindered at room temperature, with the equilibrium fcc--hcp phase boundary at 21 (+/-3) gigapascals, a pressure lower than was previously thought. Additionally, we find no tendency on the part of xenon to form a metal alloy with iron or platinum to at least 100 to 150 gigapascals, making it unlikely that the Earth's core serves as a reservoir for primordial xenon. Measurements of the compressibility of natural (Mg.75,Fe .25)2SiO4 gamma-spinel at pressures of the Earth's transition zone yield a pressure derivative of the bulk modulus K0 ' = 6.3 (+/-0.3). As gamma-spinel is considered to be a dominant mineral phase of the transition-zone of the Earth's mantle (400--670 km depth), the relatively high value of K0' for gamma-spinel may help explain the rapid increase with depth of seismic velocities through the transition zone. The thermodynamics, mechanisms and kinetics of pressure-induced amorphization are not well understood. We report here new studies indicating little or no entropy difference between the crystalline and glassy states of Ca(OH) 2 (portlandite). Additional work on the pressure

  7. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  8. Adsorption of gaseous iodine-131 at high temperatures by silver impregnated alumina

    Institute of Scientific and Technical Information of China (English)

    程庆辉; 李泽军; 褚泰伟

    2015-01-01

    To prevent radioactive iodides from releasing into the environment in an accident of a nuclear power plant, silver-impregnated alumina (Ag/Al2O3) was fabricated, and its performance of radioactive iodine adsorption from high-temperature gas was tested. The silver loadings on alumina were obtained by ICP-OES and the texture properties of Ag/Al2O3 were characterized by N2 adsorption-desorption. The Ag/Al2O3 was of reduced specific surface (107.2 m2/g at 650◦C). Crystalline phases of Ag/Al2O3 were confirmed through XRD characterization. After calcination at 650◦C for 2 h, the crystalline phase of Ag/Al2O3 changed. The 131I-removal efficiency of Ag/Al2O3 was tested at 100, 250, 350, 450 and 650◦C, with good decontamination factor values for the radioactive iodine. Silver-impregnated alumina can be applied as adsorbents to remove radioactive iodine at high temperatures in nuclear accident.

  9. Source terms for radioactive gaseous effluents from a model high-level waste solidification facility

    Energy Technology Data Exchange (ETDEWEB)

    Godbee, H.W.; Kibbey, A.H.

    1976-11-01

    The model high-level waste solidification facility (WSF) is envisaged as being similar to the New Waste Calcining Facility (NWCF) being constructed at the Idaho National Engineering Laboratory but with provisions for incorporating the calcine into a glass. The decontamination factor (DF) is estimated to be one for tritium, 100 for iodine, and 5.0 x 10/sup 8/ for ruthenium. The DFs for other nuclides are in the range of mid to high 10/sup 9/. The volatile radionuclide of primary concern in waste solidification is ruthenium (in particular, /sup 106/Ru). With an estimated DF of 5.0 x 10/sup 8/, the /sup 106/Ru expected to be released from the WSF amounts to 3.4, 2.9, and 0.091 mCi/day for immediate solidification, a freshly filled waste tank (189 days), and five years of tank storage, respectively. The FSAR of the Barnwell Nuclear Fuel Plant Separations Facility implies that 4.6 mCi/day of /sup 106/Ru might be released from the stack of the separations facility and states that such a release meets all state and Federal standards and specifications.

  10. Study of a sealed high gas pressure THGEM detector and response of Alpha particle spectra

    CERN Document Server

    Zhang, Yu-Ning; Liu, Hong-Bang; Xie, Yi-Gang; Lyu, Xiao-Rui; Chen, Shi; Huang, Wen-Qian; Hong, Dao-Jin; Zheng, Yang-Heng

    2016-01-01

    A sealed high gas pressure detector working in pure argon is assembled. It consists of a 5 cm $\\times$ 5 cm PCB THGEM (THick Gaseous Electron Multipliers). The detector structure and experimental setup are described. The performances under high pressure of 2 atm mainly consist in selecting optimal voltages for ionization region and induction region. The dependence of the shape of Alpha particle spectra measured with relative gas gain on gas pressure (1.3 $\\sim$ 2.0 atm) has been studied. The 8 groups of relative gas gain versus working voltage of THGEM expressed by weighting filed $E/P$ are normalized, being consistent with theory. The results show that the air tightness of the chamber is good measured by a sensitive barometer and checked with gas gain. The experimental results are compared with Monte Carlo simulation on energy deposition without gas gain involved.

  11. A cavity ring-down spectroscopy sensor for measurements of gaseous elemental mercury – Part 1: Development for high time resolution measurements in ambient air

    OpenAIRE

    X. Faïn; D. Obrist; H. Moosmüller; Pierce, A; Moore, C.

    2012-01-01

    The ability to make high time resolution measurements of gaseous elemental mercury (GEM) concentrations in air is imperative for the understanding of mercury cycling. Here we describe further development and field implementation of a laboratory prototype pulsed cavity ring-down spectroscopy (CRDS) system for high time resolution, continuous and automated measurement of GEM concentrations in ambient air. In particular, we present use of an external, isotopically enriched Hg cell for automated ...

  12. Cavity ring-down spectroscopy sensor development for high-time-resolution measurements of gaseous elemental mercury in ambient air

    Directory of Open Access Journals (Sweden)

    A. Pierce

    2013-06-01

    Full Text Available We describe further development of a previous laboratory prototype pulsed cavity ring-down spectroscopy (CRDS sensor into a field-deployable system for high-time-resolution, continuous, and automated measurement of gaseous elemental mercury (GEM concentrations in ambient air. We employed an external, isotopically enriched Hg cell for automated locking and stabilization of the laser wavelength on the GEM peak absorption during measurements. Further, we describe implementation of differential absorption measurements via a piezoelectric tuning element for pulse-by-pulse tuning of the laser wavelength onto and off of the GEM absorption line. This allowed us to continuously correct (at 25 Hz for system baseline extinction losses unrelated to GEM absorption. Extensive measurement and calibration data obtained with the system were based on spike addition in both GEM-free air and ambient air. Challenges and interferences that occurred during measurements (particularly in ambient air are discussed including temperature and ozone (O3 concentration fluctuations, and steps taken to reduce these. CRDS data were highly linear (r2 ≥ 0.98 with data from a commercial Tekran 2537 Hg analyzer across a wide range of GEM concentrations (0 to 127 ng m−3 in Hg-free and ambient air. Measurements during periods of stable background GEM concentrations provided a conservative instrument sensitivity estimate of 0.35 ng m−3 for the CRDS system when time averaged for 5 min. This sensitivity, along with concentration patterns observed in ambient air (with the CRDS system and verified with the Tekran analyzer, showed that the sensor was capable of characterizing GEM fluctuations in ambient air. The value of fast-response GEM measurements was shown by a series of GEM spike additions – highlighting that high-temporal-resolution measurement allowed for detailed characterization of fast concentration fluctuations not possible with traditional analyzers.

  13. Effects of high pressure nitrogen on the thermal stability of SiC fibers

    Science.gov (United States)

    Jaskowiak, Martha H.

    1991-01-01

    Polymer-derived SiC fibers were exposed to nitrogen gas pressures of 7 and 50 atm at temperatures up to 1800 C. The fiber weight loss, chemical composition, and tensile strength were then measured at room temperature in order to understand the effects of nitrogen exposure on fiber stability. High pressure nitrogen treatments limited weight loss to 3 percent or less for temperatures up to 1800 C. The bulk Si-C-O chemical composition of the fiber remained relatively constant up to 1800 C with only a slight increase in nitrogen content after treatment at 50 atm; however, fiber strength retention was significantly improved. To further understand the effects of the nitrogen atmosphere on the fiber stability, the results of previous high pressure argon treatments were compared to those of the high pressure nitrogen treatments. High pressure inert gas can temporarily maintain fiber strength by physically inhibiting the evolution of gaseous species which result from internal reactions. In addition to this physical effect, it would appear that high pressure nitrogen further improved fiber temperature capability by chemically reacting with the fiber surface, thereby reducing the rate of gas evolution. Subsequent low pressure argon treatments following the initial nitrogen treatments resulted in stronger fibers than after argon treatment alone, further supporting the chemical reaction mechanism and its beneficial effects on fiber strength.

  14. Characterization of the gaseous companion {\\kappa} Andromedae b: New Keck and LBTI high-contrast observations

    CERN Document Server

    Bonnefoy, M; Marleau, G -D; Schlieder, J E; Wisniewski, J; Carson, J; Covey, K R; Henning, T; Biller, B; Hinz, P; Klahr, H; Boyer, A N Marsh; Zimmerman, N; Janson, M; McElwain, M; Mordasini, C; Skemer, A; Bailey, V; Defrère, D; Thalmann, C; Skrutskie, M; Allard, F; Homeier, D; Tamura, M; Feldt, M; Cumming, A; Grady, C; Brandner, W; Kandori, R; Kuzuhara, M; Fukagawa, M; Kwon, J; Kudo, T; Hashimoto, J; Kusakabe, N; Abe, L; Brandt, T; Egner, S; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, S; Hodapp, K; Ishii, M; Iye, M; Knapp, G; Matsuo, T; Mede, K; Miyama, M; Morino, J -I; Moro-Martin, A; Nishimura, T; Pyo, T; Serabyn, E; Suenaga, T; Suto, H; Suzuki, R; Takahashi,; Takami, M; Takato, N; Terada, H; Tomono, D; Turner, E; Watanabe, M; Yamada, T; Takami, H; Usuda, T

    2013-01-01

    We previously reported the direct detection of a low mass companion at a projected separation of 55+-2 AU around the B9 type star {\\kappa} Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. We present new angular differential imaging (ADI) images of the Kappa Andromedae system at 2.146 (Ks), 3.776 (L'), 4.052 (NB 4.05) and 4.78 {\\mu}m (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We derive a more accurate J = 15.86 +- 0.21, H = 14.95 +- 0.13, Ks = 14.32 +- 0.09 mag for {\\kappa} And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at Ks and L' band. We derive NB 4.05 = 13.0 +- 0.2 and M' = 13.3 +- 0.3 mag and estimate Log10(L/Lsun) = -3.76 +- 0.06. We build the 1-5 microns spectral energy distribution of the companion and co...

  15. Curved and conformal high-pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  16. Superconductivity from insulating elements under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya

    2015-07-15

    Highlights: • Even insulating molecule can become metal and superconductor by pressure with relatively high T{sub c}. • The highest T{sub c} is observed in sulfur with 17 K at 160 GPa. • Hydrogen is the best candidate of the highest T{sub c} element. - Abstract: The insulating and superconducting states would seem to have very different characteristics. Can any insulator become a superconductor? One proven method, doping an insulating material with carriers, can create itinerant states inside the gap between the conduction and valence bands. Another method is to squeeze the structure by applying pressure. Pressure can expand the bandwidth and also narrow the energy band gap. So the first step to turn an insulator into a superconductor is to make it metallic. Here we review our experimental research and results on superconductivity induced by applying pressure to insulating molecular systems such as elemental molecules.

  17. Characterization of the Gaseous Companion k Andromedae B* New Keck and LBTI High-contrast Observations

    Science.gov (United States)

    Bonnefoy, M.; Currie, T.; Marleau, G.-D.; Schlieder, J. E.; Wisniewski, J.; Carson, J.; Covey, K. R.; Henning, T.; Biller, B.; Hinz, P.; Klahr, H.; Boyer, A. N. Marsh; Zimmerman, N.; Janson, M.; McElwain, M.; Mordasini, C.; Skemer, A.; Bailey, V.; Defrere, D.; Thalmann, C.; Skrutskie, M.; Allard, F.; Homeier, D.; Tamura, M.; Grady, C.

    2013-01-01

    Context. We previously reported the direct detection of a low mass companion at a projected separation of 55+/-2 astronomical units around the B9 type star kappa Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. Aims. We present new angular differential imaging (ADI) images of the system at 2.146 (K(sub s)), 3.776 (L'), 4.052 (NB 4.05) and 4.78 micrometers (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We aim to determine the near-infrared spectral energy distribution (SED) of the companion and use it to characterize the object. Methods. We used analysis methods adapted to ADI to extract the companion flux. We compared the photometry of the object to reference young/old objects and to a set of seven PHOENIX-based atmospheric models of cool objects accounting for the formation of dust. We used evolutionary models to derive mass estimates considering a wide range of plausible initial conditions. Finally, we used dedicated formation models to discuss the possible origin of the companion. Results. We derive a more accurate J = 15.86 +/- 0.21, H = 14.95 +/- 0.13, K(sub s) = 14.32 +/- 0.09 mag for kappa And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at K(sub s) and L' band. We derive NB 4.05 = 13.0 +/- 0.2 and M' = 13.3 +/- 0.3 mag and estimate Log(base 10)(L/solar luminosity) = -3.76 +/- 0.06. Atmospheric models yield T(sub eff) = 1900(+100/-200) K. They do not set constrains on the surface gravity. "Hot-start" evolutionary models predict masses of 14(+25/-2) Jupiter mass based on the luminosity and temperature estimates, and considering a conservative age range for the system (30(+120/-10) million years). "warm-start" evolutionary tracks constrain the mass to M greater than or

  18. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  19. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    and pressures. Two measurement systems were built to perform measurements under high pressures and at elevated temperatures of up to 95 bar and 250 °C, respectively. The conductivity of aqueous KOH and aqueous KOH immobilized in a porous SrTiO3 structure were investigated at elevated temperatures and high...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... concentrations of the electrolyte using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.9 S cm-1 for 45 wt% KOH aqueous KOH and 0.84 S cm-1 for the immobilized KOH of the same concentration were measured at 200 °C. Porous SrTiO3 was used...

  20. High pressure effects on allergen food proteins.

    Science.gov (United States)

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod).

  1. High pressure effects in anaesthesia and narcosis.

    Science.gov (United States)

    Wlodarczyk, Agnieszka; McMillan, Paul F; Greenfield, Susan A

    2006-10-01

    There is growing interest in determining the effects of high pressure on biological functions. Studies of brain processes under hyperbaric conditions can give a unique insight into phenomena such as nitrogen narcosis, inert gas anaesthesia, and pressure reversal of the effects of anaesthetic and narcotic agents. Such research may shed light on the action of anaesthetics, which remains poorly understood, and on the nature of consciousness itself. Various studies have established the behavioural response of organisms to hyperbaric conditions, in the presence or absence of anaesthetic agents. At the molecular level, X-ray crystallography has been used to investigate the incorporation of species like Xe in hydrophobic pockets within model ion channels that may account for pressure effects on neuronal transmission. New magnetic resonance imaging techniques are providing tomographic three-dimensional images that detail brain structure and function, and that can be correlated with behavioural studies and psychological test results. Such whole organ techniques are linked to the molecular scale via voltage-sensitive dye (VSD) imaging studies on brain slices that provide time-resolved images of the dynamic formation and interconnection of inter-neuronal complexes. The VSD experiments are readily adapted to in situ studies under high pressure conditions. In this tutorial review we review the current state of knowledge of hyperbaric effects on brain processes: anaesthesia and narcosis, recent studies at the molecular level via protein crystallography at high pressure in a Xe atmosphere, and we also present some preliminary results of VSD imaging of brain slices under hyperbaric conditions.

  2. Introduction to High-Pressure Science

    Science.gov (United States)

    Dera, Przemyslaw

    To a common person pressure is just one of the parameters that describe a thermodynamic state. We all hear about it in everyday weather forecasts, and most of us do not associate it with anything particularly unique. Probably the most intuitive idea of the effect of high-pressure comes from movies, where submarine sinking to the bottom of the ocean is gradually crushed by the surrounding water, until its hull implodes. Why, then hundreds of scientists throughout the world spent their lifelong careers studying high-pressure phenomena? Despite all the developments in experimental technologies and instrumentation, modern scientist has very few tools that allow him or her to "grab" two atoms and bring them, in a very controllable way, closer together. Being able to achieve this task means the ability to directly probe interatomic interaction potentials and can cause transformations as dramatic as turning of a common gas into solid metal. Before the reader delves into more advanced topics described later in this book, this introductory chapter aims to explain several elementary, but extremely important concepts in high-pressure science. We will start with a brief discussion of laboratory devices used to produce pressure, address the issue of hydrostaticity, elastic and plastic compression, and will conclude with a short discussion of unique effects of anisotropic stress.

  3. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  4. Crack Growth of D6 Steel in Air and High Pressure Oxygen

    Science.gov (United States)

    Bixler, W. D.; Engstrom, W. L.

    1971-01-01

    Fracture and subcritical flaw growth characteristics were experimentally deter­mined for electroless nickel plated D6 steel in dry air and high pressure oxygen environments as applicable to the Lunar Module/Environmental Control System (LM/ECS) descent gaseous oxygen (GOX) tank. The material tested included forgings, plate, and actual LM/ECS descent GOX tank material. Parent metal and TIG (tungsten inert gas) welds were tested. Tests indicate that proof testing the tanks at 4000 pounds per square inch or higher will insure safe operation at 3060 pounds per square inch. Although significant flaw growth can occur during proofing, subsequent growth of flaws during normal tank operation is negligible.

  5. Photophysics of organic molecules at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean James

    1978-01-01

    The pressure dependence of emission intensities, energies, and lifetimes of several classes of organic compounds in plastic media were investigated over the range 0-140 kilobars. The fluorescence intensity of 9-anthraldehyde, 9-acetylanthracene, and 9-benzoylanthracene increases remarkably with increasing pressure, accompanied by a large red shift in the emission spectrum. For azulene and several derivatives, the efficiency of fluorescence from both the second and first excited singlet states was pressure dependent as was the relative energy of these states. The rate of internal conversion depended strongly on the energy separating the relevant states. The energy and quantum efficiency of fluorescence for fluorenone in crystalline form and in several polymeric matrices was measured as a function of pressure. The quantum yield, ranged from 0.001 at low pressure to a maximum of about 0.1 at high pressure in paraffinic plastics. Fluorescence quantum yields and phosphorescence quantum yields and lifetimes were measured for pyrazine (P) 2,6-dimethylpyrazine and tetramethylpyrazine (TMP) in PMMA over the pessure range 20-120 kbar. An additional emission, which is attributed to excimer fluorescence, was also observed for these samples and for crystalline pyrazine. The phosphorescence radiative lifetime for P and TMP was about 18 ms.

  6. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  7. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  8. High pressure photophysics of organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Brey, L. A.

    1979-01-01

    High pressure spectroscopic studies on several classes of organic compounds were made both in fluid solution (to 10 kbar) and in polymeric media (to 40 kbar). The first three studies were conducted in fluid solution and concern the effect of solvent viscosity on the nonradiative deactivation rates from electronically excited states. Pressure was utilized to attain high viscosities in organic solvents at room temperature. The primary experimental technique used was fluorescence emission spectroscopy. In the fourth and last study observations were made both in fluid solution and in plastic films. The focus of this study was the effect of pressure on the solvent-chromophore dispersion interaction in several polyenes and the concomitant changes in both the radiative and non-radiative rates from the excited states. Extensive use was made of fluorescence lifetime measurements and excitation spectra. 105 references.

  9. Too Many Americans Have High Blood Pressure, Doctors Warn

    Science.gov (United States)

    ... news/fullstory_163468.html Too Many Americans Have High Blood Pressure, Doctors Warn With February designated National Heart Month, ... physicians warns that too many Americans struggle with high blood pressure. High blood pressure is a major risk factor ...

  10. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  11. Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC

    CERN Document Server

    Álvarez, V; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Villar, J A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 $^{136}$Xe neutrino-less double beta decay ($0\

  12. Nanoshells as a high-pressure gauge

    Science.gov (United States)

    Tempere, Jacques; van den Broeck, Nick; Putteneers, Katrijn; Silvera, Isaac

    2012-02-01

    Nanoshells, consisting of multiple spherical layers, have an extensive list of applications, usually performing the function of a probe. We add a new application to this list in the form of a high-pressure gauge in a Diamond Anvil Cell (DAC). In a DAC, where high pressures are reached by pressing two diamonds together, existing gauges fail at higher pressures because of calibration difficulties and obscuring effects in the diamonds. The nanoshell gauge does not face this issue since its optical spectrum can be engineered by altering the thickness of its layers. Furthermore their properties are measured by broad band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Theoretical calculations based on the Maxwell equations in a spherical geometry combined with the Vinet equation of state show that a three-layer geometry (SiO2-Au-SiO2) indeed has a measurable pressure-dependent optical response desirable for gauges.

  13. Diagnostics of a High Pressure Helium Microplasma

    Science.gov (United States)

    Wang, Qiang; Koleva, Ivanka; Economou, Demetre; Donnelly, Vincent

    2004-09-01

    Gas and plasma diagnostics were performed in a slot-type DC microplasma (200 microns gap) discharge at high pressures. The gas temperature in a helium discharge was estimated by adding small quantities of nitrogen (excimer. At 250 Torr pressure and 200 mA/cm2 current density, the gas temperature was Tg = 350 +/- 25 K. The measured gas temperature was almost independent (to within experimental uncertainty) of pressure (in the range of 150 Torr - 600 Torr), and current density (in the range of 100 mA/cm2 - 400 mA/cm2). These measurements were consistent with a simple heat transfer model. Spatially resolved measurements of electron temperature were also performed using trace rare gas optical emission actinometry (TRG-OES). These measurements are greatly complicated by collisional quenching at the high operating pressures. Electron density and electron temperature profiles was deduced by comparing emission intensities from the Paschen 2px (x = 1-10) manifold of Ne, Ar, Kr and Xe trace gases. Results suggested that the electron temperature peaks in the cathode sheath region, while the plasma density peaks away from the cathode sheath. A self-consistent fluid model of a DC helium microdischarge was in agreement with the experimental data. The model was used to study the dependence of discharge characteristics on operating conditions (pressure, gap spacing, current density, etc.).

  14. Teaming Up Against High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  15. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  16. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  17. A cavity ring-down spectroscopy system for high time resolution measurements of gaseous elemental mercury concentrations

    Science.gov (United States)

    Pierce, Ashley M.

    The global cycling of mercury (Hg), a highly toxic environmental pollutant, currently has many unknowns. There are various sources of Hg to the atmosphere including both anthropogenic and natural sources. Processes involved in the global cycling of Hg include emissions from legacy Hg pools, deposition, re-emission, and chemical and physical transformation processes such as gas-phase oxidation and heterogeneous redox reactions. Gaseous elemental mercury (GEM) can represent >95% of Hg present in the atmosphere. GEM has a relatively long atmospheric lifetime, which allows it to be transported 1000s of km, effectively making it a global pollutant. Once deposited, Hg can be converted to methylmercury, a bioavailable form of Hg known to cause neurological damage in wildlife and humans. Current atmospheric Hg sensors require long analyzing periods for a single sample (minutes to hours), thus a faster-response sensor would improve characterization of surface-atmosphere exchange processes and atmospheric Hg dynamics. The goal of this thesis work was to develop a new, field-deployable sensor for high time resolution measurements of GEM in ambient air using pulsed cavity ring-down spectroscopy (CRDS). In this research, a CRDS system was developed using a pulsed laser (50 Hz pulse repetition rate) emitting wavelengths tunable between 215 and 280 nm (Hg absorbs at 253.65 nm), a high finesse 1-m-long cavity lined with two high reflectivity mirrors. Due to the long path length (˜1 km) produced inside the short cavity, sample volumes could be kept small while measurement sensitivity remained high. By optimizing the CRDS setup and reducing interferences (e.g., ozone concentration fluctuations), the current CRDS sensor was deployed in the field to measure GEM concentrations in ambient air. The sensor was also used for the first-ever GEM flux measurements by the eddy covariance flux method. Results showed that fast GEM fluctuations could be detected by the CRDS sensor and the

  18. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads.

    Science.gov (United States)

    Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Keller, Jurg

    2015-09-15

    The acid production from the oxidation of hydrogen sulfide (H2S) in sewer air results in serious corrosion of exposed concrete surfaces in sewers. Large fluctuations of gaseous H2S concentrations occur in sewers due to the diurnal profiles of sewage flow and retention times and the necessity of intermittent pumping of sewage from pressure pipes into gravity pipes. How the high concentrations of H2S due to these events may affect H2S uptake and subsequent corrosion by concrete sewers is largely unknown. This study determined the effect of short- and long-term increases in H2S levels on the sulfide uptake rate (SUR) of concrete surfaces with an active corrosion layer. The results showed that during the high load situation the SUR increased significantly but then decreased (compared to the baseline SUR) by about 7-14% and 41-50% immediately after short- and long-term H2S high-load periods, respectively. For both exposure conditions, the SUR gradually (over several hours) recovered to approximately 90% of the baseline SUR. Further tests suggest multiple factors may contribute to the observed decrease of SUR directly after the high H2S load. This includes the temporary storage of elemental sulfur in the corrosion layer and inhibition of sulfide oxidizing bacteria (SOB) due to high H2S level and temporary acid surge. Additionally, the delay of the corrosion layer to fully recover the SUR after the high H2S load suggests that there is a longer-term inhibitive effect of the high H2S levels on the activity of the SOB in the corrosion layer. Due to the observed activity reductions, concrete exposed to occasional short-term high H2S load periods had an overall lower H2S uptake compared to concrete exposed to constant H2S levels at the same average concentration. To accurately predict H2S uptake by sewer concrete and hence the likely maximum corrosion rates, a correction factor should be adopted for the H2S fluctuations when average H2S levels are used in the prediction

  19. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... microscope above maximum foaming temperature gives a suitable foaming temperature for the remaining samples. We show that the foaming kinetics depend on the type of gas and the pressure. A critical pressure of around 20 MPa is found to give the largest expansion for all gasses. Samples are obtained with 100...

  20. (Ultra high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review

    Directory of Open Access Journals (Sweden)

    Erika eGeorget

    2014-08-01

    Full Text Available Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for food industry which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to reduction of the organoleptic and nutritional properties of food and alternative are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra-high pressure homogenization (UHPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet and valve temperatures. This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  1. AXEL-a high pressure xenon gas TPC for neutrinoless double beta decay search

    Science.gov (United States)

    Nakamura, Kiseki; Ichikawa, Atsuko K.; Nakaya, Tsuyoshi; Minamino, Akihiro; Ban, Sei; Yanagita, Saori; Tanaka, Shunsuke; Hirose, Masanori; Sekiya, Hiroyuki; Ueshima, Kota; Miuchi, Kentaro

    2017-02-01

    To search for neutrinoless double beta decay, we have started developing a high pressure xenon gas time projection chamber as the AXEL (A Xenon ElectroLuminescence detector) project since 2014. We proposed a new scheme to measure energy deposit using electroluminescence lights to achieve high energy resolution, large mass and strong background rejection power. Important performances of compositions of our new readout scheme are shown: electric field simulation, VUV sensitivity of MPPC in high pressure gaseous xenon, response of MPPC for large amount of photons. To demonstrate as a whole system, we constructed a small prototype detector using 64 MPPCs filled with 4 bar xenon gas. Result of measurement with a 57Co gamma-ray source are shown.

  2. Zeeman Effect in Ruby at High Pressures

    Science.gov (United States)

    Dan, Ioana

    2012-02-01

    We have developed a versatile fiber-coupled system for magneto-optical spectroscopy measurements at high pressure. The system is based on a miniature Cu-alloy Diamond Anvil Cell (from D'Anvils, Ltd) fitted with a custom-designed He gas-actuated membrane for in-situ pressure control, and coupled with a He transfer cryostat incorporating a superconducting magnet (from Quantum Designs). This system allows optical measurements (Raman, photoluminescence, reflectivity) within wide ranges of pressures (up to 100GPa), temperatures (4.2-300K) and magnetic fields (0-9T). We employ this system to examine the effect of pressure and non-hydrostatic stress on the Zeeman split d-d transitions of Cr^3+ in ruby (Al2O3: Cr^3+). We determine the effect of pressure and non-hydrostaticity on the trigonal crystal field in this material, and discuss the use of the Zeman-split ruby fluorescence as a possible probe for deviatoric stresses in diamond anvil cell experiments.

  3. High Pressure Behavior of FeOOH

    Science.gov (United States)

    Reagan, M. M.; Gleason, A. E.; Mao, W. L.

    2013-12-01

    Understanding the stability and properties of simple hydroxides at high pressures and temperatures offers an important first step toward quantifying more complex hydrogen-bearing compounds relevant to the Earth's interior. We focus on iron-oxy-hydroxides because they may be an important Fe and water bearing component in the deep Earth. Goethite (α-FeOOH) transforms to a high-pressure phase, ɛ-FeOOH, which is isostructural with δ-AlOOH, a material which may transport hydrogen to the core-mantle boundary. Here we present XES spectroscopy data of powder samples of synthesized alpha-FeOOH, beta-FeOOH and gamma-FeOOH monitoring their electronic spin transition. The samples was loaded into a Beryllium gasket, where a 50 micron hole served as the sample chamber with 300 micron culet diamond paired with a beveled 150 micron diamond in a diamond-anvil cell (DAC) without a pressure transmitting medium. Pressure was determined using ruby fluorescence (Mao et al. 1978). Using the incident X-ray energy centered at 11.3 KeV from the Advanced Photon Source, beam line HPCAT 16-ID-D, we measured Fe K-β 13 emission to pressures greater than 73 GPa. For alpha-FeOOH, we saw a clear shift in the main peak to lower energy, and an increasingly diminishing K beta prime peak intensity, indicating the sample was undergoing an electronic spin transition. The K beta prime peak completely disappeared at a pressure greater than 73 GPa. Beta-FeOOH showed no evidence of the beginnings of a spin transition, while gamma- FeOOH underwent an incomplete transition.

  4. Yoga Called Good Medicine for High Blood Pressure

    Science.gov (United States)

    ... fullstory_162446.html Yoga Called Good Medicine for High Blood Pressure People who added this practice to a healthy ... elevated blood pressure] are likely to develop hypertension [high blood pressure] unless they improve their lifestyle," said study author ...

  5. Is sodium a superconductor under high pressure?

    Science.gov (United States)

    Tutchton, Roxanne; Chen, Xiaojia; Wu, Zhigang

    2017-01-07

    Superconductivity has been predicted or measured for most alkali metals under high pressure, but the computed critical temperature (Tc) of sodium (Na) at the face-centered cubic (fcc) phase is vanishingly low. Here we report a thorough, first-principles investigation of superconductivity in Na under pressures up to 260 GPa, where the metal-to-insulator transition occurs. Linear-response calculations and density functional perturbation theory were employed to evaluate phonon distributions and the electron-phonon coupling for bcc, fcc, cI16, and tI19 Na. Our results indicate that the maximum electron-phonon coupling parameter, λ, is 0.5 for the cI16 phase, corresponding to a theoretical peak in the critical temperature at Tc≈1.2 K. When pressure decreases or increases from 130 GPa, Tc drops quickly. This is mainly due to the lack of p-d hybridization in Na even at 260 GPa. Since current methods based on the Eliashberg and McMillian formalisms tend to overestimate the Tc (especially the peak values) of alkali metals, we conclude that under high pressure-before the metal-to-insulator transition at 260 GPa-superconductivity in Na is very weak, if it is measurable at all.

  6. Picosecond High Pressure Gas Switch experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  7. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  8. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  9. High-pressure investigations of Earth's interior

    Science.gov (United States)

    Jackson, Jennifer

    2007-03-01

    In the first half of the talk, the electronic structure of iron in ferromagnesium silicate perovskite will be discussed. Knowledge of iron valences and spin states in silicate perovskite is relevant to our understanding of the physical and chemical properties of Earth's lower mantle such as transport properties, mechanical behavior, and element partitioning. In this study, we have measured the electronic structure of the iron component of an aluminous Fe-bearing silicate perovskite sample, (Mg0.88Fe0.09)(Si0.94Al0.10)O3, close to a pyrolite composition, using synchrotron M"ossbauer spectroscopy (SMS) and laser heated diamond anvil cells at high-pressure and temperatures at beamline 3-ID of the Advanced Photon Source. Evaluation of the spectra provided the isomer shift and the quadrupole splitting of the iron component in silicate perovskite, which gives information on valence and spin states under lower mantle conditions. In the second half of the talk, experiments on the melting curve of iron at high-pressures will be presented. Seismological observations indicate that Earth's iron-dominated core consists of a solid inner region surrounded by a liquid outer core. Previously, melting studies of iron metal at high-pressures and temperatures were performed by shock-compression, resistive- and laser-heating in diamond anvil cells using visual observations or synchrotron x-ray diffraction and theoretical methods. However, the melting curve of iron is still controversial. Here, we will present a new method of detecting the solid-liquid phase boundary of iron at high-pressure using ^57Fe SMS. The characteristic SMS time signature is observed by fast detectors and vanishes suddenly when melting occurs. This process is described by the Lamb-M"ossbauer factor f = exp(-k^2), where k is the wave number of the resonant x-rays and is the mean-square displacement of the iron atoms.

  10. Modeling High Pressure Micro Hollow Cathode Discharges

    Science.gov (United States)

    2007-11-02

    cathode discharge excimer lamps , Phys. Plasmas 7, 286 (2000). [3] RH Stark and KH Schoenbach, Direct high pressure glow discharges, J. Appl. Phys...temperature profiles in argon glow discharges, J. Appl. Phys. 88, 2234 (2000) [8] M. Moselhy, W. Shi, R. Stark, A flat glow discharge excimer radiation...MHCD acts as a plasma cathode for a third electrode (anode). Some experimental results in this geometry are available for argon and for air from the

  11. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  12. Structures of xenon oxides at high pressures

    Science.gov (United States)

    Worth, Nicholas; Pickard, Chris; Needs, Richard; Dewaele, Agnes; Loubeyre, Paul; Mezouar, Mohamed

    2014-03-01

    For many years, it was believed that noble gases such as xenon were entirely inert. It was only in 1962 that Bartlett first synthesized a compound of xenon. Since then, a number of other xenon compounds, including oxides, have been synthesized. Xenon oxides are unstable under ambient conditions but have been predicted to stabilize under high pressure. Here we present the results of a combined theoretical and experimental study of xenon oxides at pressures of 80-100 GPa. We have synthesized new xenon oxides at these pressures and they have been characterized with X-ray diffraction and Raman spectroscopy. Calculations were performed with a density-functional theory framework. We have used the ab-initio random structure searching (AIRSS) method together with a data-mining technique to determine the stable compounds in the xenon-oxygen system in this pressure range. We have calculated structural and optical properties of these phases, and a good match between theoretical and experimental results has been obtained. Funding for computational research provided by the engineering and physical sciences research council (EPSRC; UK). Computing resources provided by Cambridge HPC and HECToR. X-ray diffraction experiments performed at ESRF.

  13. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  14. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    Science.gov (United States)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  15. Operating mode of high pressure straws with high spatial resolution

    CERN Document Server

    Davkov, K I; Peshekhonov, V D; Cholakov, V D

    2013-01-01

    The article presents results of studying the operating mode of thin-walled drift tubes (straws) at flushing it with a high-pressure gas mixture, which allowed obtaining extremely high spatial resolution for straw detectors. The results of studying the radiation ageing of straws operating in this mode are also described.

  16. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    to 250 °C and 2400 bar, in the deep petroleum reservoirs. Furthermore, many of these deep reservoirs are found offshore, including the North Sea and the Gulf of Mexico, making the development even more risky. On the other hand, development of these high pressure high temperature (HPHT) fields can...

  17. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose...

  18. Dietary spermidine for lowering high blood pressure

    Science.gov (United States)

    Zimmermann, Andreas; Schroeder, Sabrina; Pendl, Tobias; Harger, Alexandra; Stekovic, Slaven; Schipke, Julia; Magnes, Christoph; Schmidt, Albrecht; Ruckenstuhl, Christoph; Dammbrueck, Christopher; Gross, Angelina S; Herbst, Viktoria; Carmona-Gutierrez, Didac; Pietrocola, Federico; Pieber, Thomas R; Sigrist, Stephan J; Linke, Wolfgang A; Mühlfeld, Christian; Sadoshima, Junichi; Dengjel, Joern; Kiechl, Stefan; Kroemer, Guido; Sedej, Simon; Madeo, Frank

    2017-01-01

    Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular-protective autophagy inducer that can be readily integrated in common diets. PMID:28118075

  19. High stored energy of metallic glasses induced by high pressure

    Science.gov (United States)

    Wang, C.; Yang, Z. Z.; Ma, T.; Sun, Y. T.; Yin, Y. Y.; Gong, Y.; Gu, L.; Wen, P.; Zhu, P. W.; Long, Y. W.; Yu, X. H.; Jin, C. Q.; Wang, W. H.; Bai, H. Y.

    2017-03-01

    Modulating energy states of metallic glasses (MGs) is significant in understanding the nature of glasses and controlling their properties. In this study, we show that high stored energy can be achieved and preserved in bulk MGs by high pressure (HP) annealing, which is a controllable method to continuously alter the energy states of MGs. Contrary to the decrease in enthalpy by conventional annealing at ambient pressure, high stored energy can occur and be enhanced by increasing both annealing temperature and pressure. By using double aberration corrected scanning transmission electron microscopy, it is revealed that the preserved high energy, which is attributed to the coupling effect of high pressure and high temperature, originates from the microstructural change that involves "negative flow units" with a higher atomic packing density compared to that of the elastic matrix of MGs. The results demonstrate that HP-annealing is an effective way to activate MGs into higher energy states, and it may assist in understanding the microstructural origin of high energy states in MGs.

  20. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  1. Menopause and High Blood Pressure: What's the Connection?

    Science.gov (United States)

    ... blood pressure (hypertension) Is there a connection between menopause and high blood pressure? Answers from Shannon K. ... Tommaso, M.D. Blood pressure generally increases after menopause. Some doctors think this increase suggests that hormonal ...

  2. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  3. LHDAC setup for high temperature and high pressure studies

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nishant N., E-mail: nnpatel@barc.gov.in; Meenakshi, S., E-mail: nnpatel@barc.gov.in; Sharma, Surinder M., E-mail: nnpatel@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    A ytterbium fibre laser (λ = 1.07 μm) based laser heated diamond anvil cell (LHDAC) facility has been recently set up at HP and SRPD, BARC for simultaneous high temperature and high pressure investigation of material properties. Synthesis of GaN was carried out at pressure of ∼9 GPa and temperature of ∼1925 K in a Mao-Bell type diamond anvil cell (DAC) using the LHDAC facility. The retrieved sample has been characterized using our laboratory based micro Raman setup.

  4. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage,...

  5. High-pressure structural properties of tetramethylsilane

    Science.gov (United States)

    Zhen-Xing, Qin; Xiao-Jia, Chen

    2016-02-01

    High-pressure structural properties of tetramethylsilane are investigated by synchrotron powder x-ray diffraction at pressures up to 31.1 GPa and room temperature. A phase with the space group of Pnma is found to appear at 4.2 GPa. Upon compression, the compound transforms to two following phases: the phase with space groups of P21/c at 9.9 GPa and the phase with P2/m at 18.2 GPa successively via a transitional phase. The unique structural character of P21/c supports the phase stability of tetramethylsilane without possible decomposition upon heavy compression. The appearance of the P2/m phase suggests the possible realization of metallization for this material at higher pressure. Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (Grant No. 708070), the Fundamental Research Funds for the Central Universities, South China University of Technology (Grant No. 2014ZZ0069), the National Natural Science Foundation of China (Grant No. 51502189), and the Doctoral Project of Taiyuan University of Science and Technology, China (Grant No. 20132010).

  6. High-pressure Raman study of Terephthalonitrile

    Science.gov (United States)

    Li, DongFei; Zhang, KeWei; Song, MingXing; Zhai, NaiCui; Sun, ChengLin; Li, HaiBo

    2017-02-01

    The in situ high-pressure Raman spectra of Terephthalonitrile (TPN) have been investigated from ambient to 12.6 GPa at room temperature. All the fundamental vibrational modes of TPN at ambient were assigned based on the first-principle calculations. A detailed Raman spectroscopy analysis revealed that TPN underwent a phase transition at 5.3 GPa. The frequencies of the TPN Raman peaks increase with increasing the pressure which can be attributed to the reduction in the interatomic distances and the escalation of effective force constants. The intensity of the C-C-C ring-out-plane deformation mode increases gradually as the frequency remains almost constant during the compression which can be explained by the existence of π-π interactions in TPN molecules. Additionally, the pressure-induced structural changes of TPN on the Fermi resonance between the C ≡ N out-of-plane vibration mode and the C - CN out-of-plane vibration mode have been analyzed.

  7. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  8. Micromegas-TPC operation at high pressure in xenon-trimethylamine mixtures

    CERN Document Server

    Cebrián, S; Ferrer-Ribas, E; Giomataris, I; Gonzalez-Diaz, D; Gómez, H; Herrera, D C; Iguaz, F J; Irastorza, I G; Luzon, G; Rodríguez, A; Segui, L; Tomás, A

    2012-01-01

    In this work we present a systematic study of Micromegas detectors in high pressure gaseous Xenon using trimethylamine (TMA) as quencher gas. Gas gains and energy resolutions for 22.1 keV X-rays are measured for pressures between 1 and 10 bar and various relative concentrations of TMA from 0.3 % to 15 %. We observe stable operation at all pressures, and a strongly enhanced gas gain, suggestive of Penning-like energy-transfer processes. The effect is present at all pressures and it is strongest at TMA concentrations ranging from 1.5 % to 3 %. Operating in this concentration range, the maximum gain reached values as high as x10^3 (x10^2) at 1 (10) bar. Besides, the energy resolution achievable for 22.1 keV X-rays is substantially better than the one previously obtained in pure Xe, going down to 7.3 % (9.6 %) FWHM for 1 (10) bar. These results are of interest for calorimetric applications of high pressure gas Xe TPCs, in particular for the search of the neutrinoless double beta decay of Xe-136. The resolutions a...

  9. High voltage research (breakdown strengths of gaseous and liquid insulators). Semiannual report, April 1--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Christophorou, L. G.; James, D. R.; Pai, R. Y.; Mathis, R. A.; Pace, M. O.; Bouldin, D. W.; Christodoulides, A. A.; Chan, C. C.

    1977-11-01

    Direct current breakdown strength measurements on a large number of multicomponent gas mixtures at low (approximately less than 1 atm) and high (approximately less than 5 atm) pressures led to the discovery of many gas mixtures of electron-attaching gases and strongly electron-attaching gases with N/sub 2/ and C/sub 3/F/sub 8/ which are superior to SF/sub 6/. Of special significance are mixtures containing C/sub 4/F/sub 6/ (perfluoro-2-butyne). The breakdown strength of one such mixture (20 percent C/sub 4/F/sub 6/ to 80 percent SF/sub 6/) is approximately 30 percent higher than pure SF/sub 6/ under identical conditions, both at low (approximately 0.7 atm) and high (4.6 atm) pressures. Perfluorocyclohexene (C/sub 6/F/sub 10/) and C/sub 5/F/sub 8/ (perfluorocyclopentene) were found at low pressure (approximately 0.2 atm) to be, respectively, approximately 2.1 and 2.2 times better than SF/sub 6/ under comparable conditions; they both have a potential as additives in gas mixtures. The effect of the inelastic electron scattering properties of a gas via negative ion resonances in the low-energy range (1 to approximately 4 eV) on the breakdown strength has been demonstrated for H/sub 2/, N/sub 2/, and CO and binary mixtures of these with SF/sub 6/ and C/sub 4/F/sub 6/ (perfluoro-2-butyne). The construction of a new high pressure (to approximately 11 atm), variable temperature (-50/sup 0/C to + 150/sup 0/C) apparatus has been completed and a practical test facility utilizing cylindrical electrode geometries has been put into operation; the first results on the latter apparatus were on SF/sub 6/-N/sub 2/ and c-C/sub 4/F/sub 8/--N/sub 2/ mixtures. Studies of environmental effects of dielectric gases via their electron-impact-induced decompositions and analysis of their breakdown products have begun using mass spectrometry and gas chromatography; C/sub 4/F/sub 6/ (perfluoro-2-butyne) seems to be resistant to electron-impact-induced decomposition indicating long

  10. High blood pressure in children and adolescents.

    Science.gov (United States)

    Riley, Margaret; Bluhm, Brian

    2012-04-01

    High blood pressure in children and adolescents is a growing health problem that is often overlooked by physicians. Normal blood pressure values for children and adolescents are based on age, sex, and height, and are available in standardized tables. Prehypertension is defined as a blood pressure in at least the 90th percentile, but less than the 95th percentile, for age, sex, and height, or a measurement of 120/80 mm Hg or greater. Hypertension is defined as blood pressure in the 95th percentile or greater. A secondary etiology of hypertension is much more likely in children than in adults, with renal parenchymal disease and renovascular disease being the most common. Overweight and obesity are strongly correlated with primary hypertension in children. A history and physical examination are needed for all children with newly diagnosed hypertension to help rule out underlying medical disorders. Children with hypertension should also be screened for other risk factors for cardiovascular disease, including diabetes mellitus and hyperlipidemia, and should be evaluated for target organ damage with a retinal examination and echocardiography. Hypertension in children is treated with lifestyle changes, including weight loss for those who are overweight or obese; a healthy, low-sodium diet; regular physical activity; and avoidance of tobacco and alcohol. Children with symptomatic hypertension, secondary hypertension, target organ damage, diabetes, or persistent hypertension despite nonpharmacologic measures should be treated with antihypertensive medications. Thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, beta blockers, and calcium channel blockers are safe, effective, and well tolerated in children.

  11. Conformable pressure vessel for high pressure gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  12. Theory of high pressure hydrogen, made simple

    CERN Document Server

    Magdau, Ioan B; Ackland, Graeme J

    2015-01-01

    Phase I of hydrogen has several peculiarities. Despite having a close-packed crystal structure, it is less dense than either the low temperature Phase II or the liquid phase. At high pressure, it transforms into either phase III or IV, depending on the temperature. Moreover, spectroscopy suggests that the quantum rotor behaviour disappears with pressurisation, without any apparent phase transition. Here we present a simple thermodynamic model for this behaviour based on packing atoms and molecules and discuss the thermodynamics of the phase boundaries. We also report first principles molecular dynamics calculations for a more detailed look at the same phase transitions.

  13. CDC Vital Signs: High Blood Pressure and Cholesterol

    Science.gov (United States)

    ... the MMWR Science Clips High Blood Pressure and Cholesterol Out of Control Recommend on Facebook Tweet Share ... cdc.gov/GISCVH2/ High Blood Pressure and High Cholesterol Among US Adults SOURCES: National Health and Nutrition ...

  14. High Blood Pressure and Children: What Parents Need to Know

    Science.gov (United States)

    ... Lung, and Blood Institute Alternate Language URL Español High Blood Pressure and Children: What Parents Need to Know Page Content Children can have high blood pressure. Did you know that children could have high ...

  15. A gasdynamic gun driven by gaseous detonation

    Science.gov (United States)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  16. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study.

  17. High blood pressure and visual sensitivity

    Science.gov (United States)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  18. High-pressure coal fuel processor development

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, M.L.

    1992-11-01

    The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

  19. Cool gaseous nebulae

    CERN Document Server

    Shaver, P A; Pottasch, S R

    1979-01-01

    The electron temperatures of diffuse gaseous nebulae have long been thought to be close to 10/sup 4/K. Much lower temperatures were derived from some of the early radio continuum and recombination line work, but these were generally considered to be wrong for a variety of reasons. While there is little doubt that the bright nebulae do indeed have temperatures of approximately 8000-9000K, there are strong indications that some nebulae of lower densities have much lower temperatures, pressure broadening. Several of these nebulae have been found to have temperatures below 5000K and for two of them which are discussed (RCW94 and G339.1-0.2) absolute upper limits of approximately 4700 K are imposed by the line widths alone. (11 refs).

  20. High Pressure Hydrogen from First Principles

    Science.gov (United States)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  1. High pressure-resistant nonincendive emulsion explosive

    Science.gov (United States)

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  2. Stable magnesium peroxide at high pressure.

    Science.gov (United States)

    Lobanov, Sergey S; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B; Oganov, Artem R; Goncharov, Alexander F

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  3. Stable magnesium peroxide at high pressure

    Science.gov (United States)

    Lobanov, Sergey S.; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B.; Oganov, Artem R.; Goncharov, Alexander F.

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth’s lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O22-) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  4. High-pressure structures of yttrium hydrides

    Science.gov (United States)

    Liu, Lu-Lu; Sun, Hui-Juan; Wang, C. Z.; Lu, Wen-Cai

    2017-08-01

    In this work, the crystal structures of YH3 and YH4 at high pressure (100-250 GPa) have been explored using a genetic algorithm combined with first-principles calculations. New structures of YH3 with space group symmetries of P21/m and I4/mmm were predicted. The electronic structures and the phonon dispersion properties of various YH3 and YH4 structures at different temperatures and pressures were investigated. Among YH3 phases, the P21/m structure of YH3 was found to have a relatively high superconducting transformation temperature T c of 19 K at 120 GPa, which is reduced to 9 K at 200 GPa. Other YH3 structures have much lower T cs. Compared with YH3, the T c of the YH4 compound is much higher, i.e. 94 K at 120 GPa and 55 K at 200 GPa.

  5. High Speed Switching Micoplasma in High Pressure Gases

    Science.gov (United States)

    Wakim, Dani; Staack, David

    2012-10-01

    Micro-plasma discharges with switching times approaching 1 ns are studied at pressures from 1 to 16 atm. Applications of these devices are robust high speed switching transistors able to withstand electric interference, high temperatures and harsh environments. Measured discharge conditions at 250 psia in Nitrogen are: gas temperature 2900 K, discharge diameter ˜7 μm and electron density ˜10^17 cm-3. High speed switching is achieved by taking advantage of rapid dynamics of instabilities at high pressure and high electron density. The capacitance and inductance of the circuit also significantly affect transients. Tradeoffs are observed in switching times. By reducing capacitances from 10 pF to ˜1pF attainment of steady state conditions can be reduced from 1 us to ˜ 20 ns. However current rise times increase from 1 ns at high capacitance to 20 ns at low capacitance. A decrease in switching time with increased pressure is also observed. Also investigated are configurations with a third electrode acting as a gate or trigger and various high temperature (>2000K) materials such as platinum rhodium alloys and ceria stabilized zirconia ceramics for device fabrication.

  6. Synthesis of sodium polyhydrides at high pressures.

    Science.gov (United States)

    Struzhkin, Viktor V; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J; Needs, Richard J; Prakapenka, Vitali B; Goncharov, Alexander F

    2016-01-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  7. Synthesis of sodium polyhydrides at high pressures

    Science.gov (United States)

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-07-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  8. Food processing by high hydrostatic pressure.

    Science.gov (United States)

    Yamamoto, Kazutaka

    2017-04-01

    High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm(2)) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.

  9. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  10. Evolution of gaseous disk viscosity driven by supernova explosion. II. Structure and emissions from star-forming galaxies at high redshift

    CERN Document Server

    Yan, Chang-Shuo

    2010-01-01

    (Abridged) High redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics that are 1) high viscosity excited by SNexp can efficiently transport the gas from 10kpc to $\\sim 1$kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; 2) starbursts trigger SMBH activity with a lag $\\sim 10^8$yr depending on star formation rates, prompting the joint evolution of SMBHs and bulges; 3) the velocity dispersion is as high as $\\sim 100~\\kms$ in the gaseous disk. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis (GAL...

  11. The high-pressure behavior of bloedite

    DEFF Research Database (Denmark)

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci

    2014-01-01

    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS......), yielding V0 = 495.6(7) Å3 with K0 = 39.9(6) GPa, and V0 = 496.9(7) Å3, with K0 = 36(1) GPa and K′ = 5.1 (4) GPa-1, respectively. The axial moduli were calculated using a Birch-Murnaghan EOS truncated at the second order, fixing K′ equal to 4, for a and b axes and a third-order Birch-Murnaghan EOS for c...... axis. The results were a0 = 11.08(1) and K0 = 56(3) GPa, b0 = 8.20(2) and K0 = 43(3) GPa, and c0 = 5.528(5), K0 = 40(2) GPa, K′ = 1.7(3) GPa-1. The values of the compressibility for a, b, and c axes are ba = 0.0060(3) GPa-1, bb = 0.0078(5) GPa-1, bc = 0.0083(4) GPa-1 with an anisotropic ratio of ba...

  12. [High blood pressure and physical exercise].

    Science.gov (United States)

    Sosner, P; Gremeaux, V; Bosquet, L; Herpin, D

    2014-06-01

    High blood pressure is a frequent pathology with many cardiovascular complications. As highlighted in guidelines, the therapeutic management of hypertension relies on non-pharmacological measures, which are diet and regular physical activity, but both patients and physicians are reluctant to physical activity prescription. To acquire the conviction that physical activity is beneficial, necessary and possible, we can take into account some fundamental and clinical studies, as well as the feedback of our clinical practice. Physical inactivity is a major risk factor for cardiovascular morbidity and mortality, and hypertension contributes to increase this risk. Conversely, regular practice of physical activity decreases very significantly the risk by up to 60%. The acute blood pressure changes during exercise and post-exercise hypotension differs according to the dynamic component (endurance or aerobic and/or strength exercises), but the repetition of the sessions leads to the chronic hypotensive benefit of physical activity. Moreover, physical activity prescription must take into account the assessment of global cardiovascular risk, the control of the hypertension, and the opportunities and desires of the patient in order to promote good adherence and beneficial lifestyle change. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2017-01-01

    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  14. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  15. Sleep Deprivation: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... High blood pressure (hypertension) Is it true that sleep deprivation can cause high blood pressure? Answers from Sheldon ... Cirelli C, et al. Definition and consequences of sleep deprivation. http://www.uptodate.com/home. Accessed March 24, ...

  16. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, Afib and Your Risk of Stroke Updated:Sep ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  17. High blood pressure - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  18. A Nutritional Strategy for the Treatment of High Blood Pressure.

    Science.gov (United States)

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  19. High Blood Pressure Rates Have Doubled Worldwide Since 1975

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_162069.html High Blood Pressure Rates Have Doubled Worldwide Since 1975 Most of ... News) -- The number of people worldwide with high blood pressure has nearly doubled over the past 40 years, ...

  20. Novel High Pressure Pump-on-a-Chip Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  1. R&D studies of a RICH detector using pressurized C$_{4}$F$_{8}$O radiator gas and a CsI-based gaseous photon detector

    CERN Document Server

    Agócs, A.G; Barnaföldi, G.G; Bellwied, R; Bencédi, G; Bencze, G; Berényi, D; Boldizsár, L; Chattopadhyay, S; Chinellato, D.D; Cindolo, F; Das-Bose, L; Das, D; Das, K; De Cataldo, G; Di Bari, D; Di Mauro, A; Futó, E; Garcia, E; Hamar, G; Harton, A; Jimenez, R.T; Kim, D.W; Kim, J.S; Knospe, A; Kovacs, L; Lévai, P; Markert, C; Martinengo, P; Molnar, L; Nappi, E; Olah, L; Paic, G; Pastore, C; Patino, M.E; Peskov, V; Pinsky, L; Piuz, F; Pochybova, S; Sgura, I; Sinha, T; Song, J; Timmins, A; Van Beelen, J.B; Varga, D; Volpe, G; Weber, M; Xaplanteris, L; Yi, J; Yoo, I.-K

    2013-01-01

    We report on studies of layout and performance of a new Ring Imaging Cherenkov detector using for the fi rst time pressurized C 4 F 8 O radiator gas and a photon detector consisting of a MWPC equipped with a CsI photocathode. In particular, we present here the results of beam tests of a MWPC having an adjustable anode – cathode gap, aiming at the optimization of single photoelectron detection and Cherenkov angle resolution. This system was proposed as a Very High Momentum Particle Identi fi cation (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identi fi cation in the momentum range 5 – 25 GeV/c.

  2. DNS of High Pressure Supercritical Combustion

    Science.gov (United States)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  3. High-pressure structures of methane hydrate

    CERN Document Server

    Hirai, H; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K sub 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively.

  4. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  5. Simulating a high pressure die casting

    Energy Technology Data Exchange (ETDEWEB)

    Goldak, J.; Zhou, J.; Downey, D.; Aldea, V.; Li, G.; Mocanita, M. [Carleton Univ., Ottawa, Ontario (Canada)

    2000-07-01

    High pressure die casting is simulated for parts with complex geometry such as a large automotive transmission case. The closed die is filled in approximately 40 ms, the casting cools in the closed die for approximately 40s, to open the die, eject the casting and spray the die cavity surface requires another 40s. This 3D cyclic process is simulated using the following coupled composite solvers: the energy equation in the die and in the casting with solidification; filling of the casting by a droplet or a Navier-Stokes solver, and thermal stress analysis of the casting machine, casting and die during the cycle. This thermal analysis can be done for both starting and stopping transients and for the cyclic steady state. The software enables this analysis to be done almost automatically by designers. (author)

  6. Effect of high pressure on mesophilic lactic fermentation streptococci

    Science.gov (United States)

    Reps, A.; Kuźmicka, M.; Wiśniewska, K.

    2008-07-01

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  7. An experimental data base for material selection and design of high-speed, high-pressure, oxygen turbomachinery

    Science.gov (United States)

    Schoenman, L.; Stoltzfus, J. M.

    1985-01-01

    New technologies for space-based, reusable, throttleable, cryogenic, orbit transfer propulsion are being evaluated. A variable-thrust (200 to 3000 lbF), 2000 psi chamber pressure, LO2/LH2 engine has been selected to demonstrate the 20-hour, 500-restart life goal, and a specific impulse of 480 lbF-sec/lbM. The advanced design uses warm oxygen to power a fully integrated turbopump that delivers 4500 psi LO2. The selected engine cycle provides the following advantages over conventional expander cycle designs which use H2 to drive the LH2 and LO2 pumps; higher engine operating pressures and performance in a smaller envelope, lower turbine operating temperatures, elimination of interpropellant seals and purges, and an extended throttling range. The design approach and results of testing to characterize materials for use in high-pressure gaseous oxygen are discussed. Test methods include particle impact testing in a sonic-flow, hot GO2 streams and forced, high-speed friction rubbing testing. Materials are exposed to oxygen and nitrogen atmospheres at pressures of 100, 1000, and 3000 psi to identify separately the gas cooling effects from the metal oxidation effects at the rubbing surface. The selection of candidate design materials is based on an analytical parameter defined as the burn factor. Typical materials tested include carbon steel, stainless steel, nickel, copper, and monel alloys.

  8. What about African Americans and High Blood Pressure?

    Science.gov (United States)

    ... whites. • Heredity —A tendency to have high blood pressure runs in families. • Age — In general, the older you get, the greater your chance of developing high blood pressure. • Sex — Men tend to develop high blood pressure ...

  9. Let's Talk about High Blood Pressure and Stroke

    Science.gov (United States)

    ... stroke. How does high blood pressure increase stroke risk? High blood pressure is the single most important risk factor for ... vessel ruptures over time. Who is at higher risk for HBP? People with a family history of high blood pressure African-Americans People age 35 or older People ...

  10. Metabolic Activity of Bacteria at High Pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    Over the last 20 years, there has been increasing evidence for the presence of a large number of microbes in the oceanic subsurface. Such a habitat has a very low energy input because it is deprived of light. A few meters below the sediment surface, conditions are already anoxic in most cases, sulfate reduction and/or methanogenesis becoming thus the primary respiratory reactions of organic matter. Neither the fate of methanogenesis, nor the fate of Dissimilatory Metal-Reduction (DMR) has been investigated so far as a function of pressure. For this reason, we measured experimentally the pressure limits of microbial anaerobic energetic metabolism. In practice, we measured in situ the kinetics of selenite respiration by the bacterial model Shewanella oneidensis MR-1 under high hydrostatic pressure (HHP) between 0 and 150 MPa at 30°C. MR-1 stationary-phase cells were used in Luria-Bertani (LB) medium amended with lactate as an additional electron donor and sodium selenite as an electron acceptor. In situ measurements were performed by X- ray Absorption Near-Edge Structure (XANES) spectroscopy in both a diamond-anvil cell and an autoclave. A red precipitate of amorphous Se(0) was virtually observed at any pressure to 150 MPa. A progressive reduction of selenite Se(IV) into selenium Se(0) was also observed in the evolution of XANES spectra with time. All kinetics between 0.1 and 150 MPa can be adjusted to a first order kinetic law. MR-1 respires all available selenite up to 60 MPa. Above 60 MPa, the respiration yield decreases linearly as a function of pressure and reaches 0 at 155 ±5 MPa. This indicates that selenite respiration by Shewanella oneidensis MR-1 stops at about 155 MPa, whereas its growth is arrested at 50 MPa. Hence, the present results show that the respiration of selenium by the strain MR-1 occurs efficiently up to 60 MPa and 30°C, i.e. from the surface of a continental sediment to an equivalent depth of about 2 km, or beneath a 5-km water column and

  11. Probing Hydrogen Diffusion under High Pressure

    Science.gov (United States)

    Bove, L. E.; Klotz, S.; Strassle, T.; Saitta, M.

    2012-12-01

    The study of the microscopic mechanism governing hydrogen and hydrogen-based liquids (as water, ammonia and methane) diffusion is crucial for a variety of scientific issues spanning most of natural sciences. As an example, characterizing hydrogen diffusion in a confined medium, like in porous systems or zeolites, is fundamental in problems relating to environment, hydrogen storage and industrial applications [1]. The presence of water diffusion in the minerals of the Earth's mantle have strong incidence on the processes governing volcanic eruptions and intermediate-depth seismicity. As last example, knowing in details the microscopic dynamics of hydrogen-based simple liquids under extreme conditions is essential in order to interpret observations and develop models of planet interiors [2]. On the other hand, water and other simple hydrogen-based liquids have always been key systems in the development of modern condensed-matter physics, because of their simple electronic structure and the peculiar properties deriving from the hydrogen-bond network. Their high compressibility and chemical reactivity have made these systems very challenging to study experimentally under static high P-T conditions. In the last few years, a large effort has been undertaken by several groups around the world [2] to extend the static and dynamic techniques to high temperatures and pressures, a program in which our group has been actively involved [3-6]. However, while the structure of water and other hydrogenated liquids of geological interest, is now known up to almost 20 GPa, the study of their transport properties greatly lags behind. We have recently developed a new large-volume gasket-anvil ensemble for the Paris-Edinburgh press based on a novel toroidal design [7], which allows to perform quasi elastic neutron scattering measurements on hydrogen based liquids up to one order of magnitude higher pressures (5 GPa) respect to what was achievable with standard methods [8]. The large

  12. Atmospheric total gaseous mercury (TGM concentrations and wet and dry deposition of mercury at a high-altitude mountain peak in south China

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2009-11-01

    Full Text Available China is regarded as the largest contributor of mercury (Hg to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric total gaseous mercury (TGM were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Wet and dry deposition fluxes of Hg were also calculated following collection of precipitation, throughfall and litterfall. Atmospheric TGM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China, indicating great emissions of Hg in central, south and southwest China. Seasonal and diurnal variations of TGM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Wet deposition of Hg was quite low, while its dry deposition of Hg (litterfall + throughfall-direct wet deposition constituted a major portion of total deposition (~88% for total mercury (THg and 84% for methyl mercury (MeHg. This highlights the importance of vegetation to Hg atmospheric cycling. In a remote forest ecosystem of China, dry deposition of TGM, especially gaseous elemental mercury (GEM, was very important for the depletion of atmospheric Hg. Elevated TGM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated Hg dry deposition fluxes observed in Mt. Leigong.

  13. High-pressure superconducting state in hydrogen

    Science.gov (United States)

    Duda, A. M.; Szczȩśniak, R.; Sowińska, M. A.; Kosiacka, A. H.

    2016-10-01

    The paper determines the thermodynamic parameters of the superconducting state in the metallic atomic hydrogen under the pressure at 1 TPa, 1.5 TPa, and 2.5 TPa. The calculations were conducted in the framework of the Eliashberg formalism. It has been shown that the critical temperature is very high (in the range from 301.2 K to 437.3 K), as well as high are the values of the electron effective mass (from 3.43me to 6.88me), where me denotes the electron band mass. The ratio of the low-temperature energy gap to the critical temperature explicitly violates the predictions of the BCS theory: 2 Δ (0) /kB TC ∈ . Additionally, the free energy difference between the superconducting and normal state, the thermodynamic critical field, and the specific heat of the superconducting state have been determined. Due to the significant strong-coupling and retardation effects those quantities cannot be correctly described in the framework of the BCS theory.

  14. High-pressure Raman spectroscopy of carbon onions and nanocapsules

    Science.gov (United States)

    Guo, J. J.; Liu, G. H.; Wang, X. M.; Fujita, T.; Xu, B. S.; Chen, M. W.

    2009-08-01

    We report high-pressure Raman spectra of carbon onions and nanocapsules investigated by diamond anvil cell experiments. The pressure coefficient and elastic behavior of carbon onions and nanocapsules are found to be very similar to those of multiwall carbon nanotubes. Additionally, detectable structure changes, particularly the collapse of the concentric graphite structure, cannot been seen at pressures as high as ˜20 GPa, demonstrating that carbon onions and nanocapsules have significant hardness and can sustain very high pressures.

  15. High Chamber Pressure, Light Weight Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure and reducing engine weight. State of...

  16. Numerical simulation of high pressure water jet impacting concrete

    Science.gov (United States)

    Liu, Jialiang; Wang, Mengjin; Zhang, Di

    2017-08-01

    High pressure water jet technology is an unconventional concrete crushing technology. In order to reveal the mechanism of high pressure water jet impacting concrete, it built a three-dimensional numerical model of high pressure water jet impacting concrete based on fluid mechanics and damage mechanics. And the numerical model was verified by theoretical analysis and experiments. Based on this model, it studied the stress characteristics in concrete under high pressure water jet impacting at different time, and quantified the damage evolution rules in concrete along the water jet radial direction. The results can provide theoretical basis and guidance for the high pressure water jet crushing concrete technology.

  17. High pressure gas vessels for neutron scattering experiments

    CERN Document Server

    Done, R; Evans, B E; Bowden, Z A

    2010-01-01

    The combination of high pressure techniques with neutron scattering proves to be a powerful tool for studying the phase transitions and physical properties of solids in terms of inter-atomic distances. In our report we are going to review a high pressure technique based on a gas medium compression. This technique covers the pressure range up to ~0.7GPa (in special cases 1.4GPa) and typically uses compressed helium gas as the pressure medium. We are going to look briefly at scientific areas where high pressure gas vessels are intensively used in neutron scattering experiments. After that we are going to describe the current situation in high pressure gas technology; specifically looking at materials of construction, designs of seals and pressure vessels and the equipment used for generating high pressure gas.

  18. Automated high pressure cell for pressure jump x-ray diffraction

    Science.gov (United States)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Terrill, Nick J.; Rogers, Sarah E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  19. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  20. Selected studies of magnetism at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hearne, G.R. [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Physics; Pasternak, M.P. [Tel-Aviv Univ. (Israel). School of Physics and Astronomy; Taylor, R.D. [Los Alamos National Lab., NM (United States)

    1995-09-01

    Most previous studies of magnetism in various compounds under extreme conditions have been conducted over a wide pressure range at room temperature or over a wide range of cryogenic temperatures at pressures below 20 GPa (200 kbar). We present some of the most recent studies of magnetism over an extended range of temperatures and pressures far beyond 20 GPa, i.e., in regions of pressure-temperature (P-T) where magnetism has been largely unexplored. Recent techniques have permitted investigations of magnetism in selected 3d transition metal compounds in regions of P-T where physical properties may be drastically modified; related effects have often been seen in selected doping studies at ambient pressures.

  1. Equation of state of unreacted high explosives at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C-S

    1998-08-14

    Isotherms of unreacted high explosives (HMX, RDX, and PETN) have been determined to quasi-hydrostatic high pressures below 45 GPa, by using a diamond-anvil cell angle-resolved synchrotron x-ray diffraction method. The equation-of-state parameters (bulk modulus Bo, and its derivatives B' ) are presented for the 3rd-order Birch-Murnaghan formula based on the measured isotherms. The results are also used to retrieve unreacted Hugoniots in these high explosives and to develop the equations of state and kinetic models for composite high explolsivcs such as XTX-8003 and LX-04. The evidence of shear-induced chemistry of HMX in non-hydrostatic conditions is also presented.

  2. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  3. Spectroscopy of high pressure cesium discharge

    Science.gov (United States)

    Pichler, Goran; Pichler, Marin

    2008-05-01

    Near UV, visible and NIR spectrum of Cs lamp has been studied in many experimental situations. We concentrate on the spectral region around resonance lines where numerous satellite bands appear. We followed the appearance of these satellite bands after the ignition. They first appear in emission, and then in absorption, due to the steady increase of cesium atom density. The origin of the satellite bands have been described ootnotetextD. Veza, R. Beuc, S. Milosevi' c and G. Pichler, Eur. Phys. J. D, 2, 45 (1998)^,ootnotetextR. Beuc, H. Skenderovi' c, T. Ban, D. Veza, G. Pichler, W. Meyer, Eur. Phys. J.D 15, 209 (2001). We observed the satellite band intensity behavior in several different burners filled with cesium and xenon. In one burner made out of crystalline sapphire we observed interesting spatial distribution of entire visible spectrum, during evolution in time after the ignition. The intensity behavior of satellite bands in the near-infrared spectral region will be used in further development of the white light source with pulsed cesium high-pressure discharge.

  4. Functional Sub-states by High-pressure Macromolecular Crystallography.

    Science.gov (United States)

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  5. Enhanced MgB2 Superconductivity Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    刘振兴; 靳常青; 游江洋; 李绍春; 朱嘉林; 禹日成; 李风英; 苏少奎

    2002-01-01

    We report on in situ high-pressure studies up to 1.0 GPa on the MgB2 superconductor which was high-pressure synthesized. The as-prepared sample is of high quality in terms of sharp superconducting transition (Tc) at 39K from the magnetic measurements. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with mixed oil as the pressure transmitting medium which warrants a quasihydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that Tc increases by more than 1 K with pressure in the low-pressure range, before the Tc value decreases with the further increase of the pressure.

  6. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  7. Gaseous hydrogen production by water dissociation method

    Energy Technology Data Exchange (ETDEWEB)

    Lipovetsky, V.

    2003-04-01

    Gaseous hydrogen production is based on employment of the water dissociation process, intensified by action of a high water temperature and increase of the minus electric field, as a factor for water dissociation instead of electric current used in electrolysis. The water dissociation method makes it possible to produce concurrently both gaseous hydrogen and electric power in the operating reactor. The main power type used is thermal. (Author)

  8. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  9. High Toughness Light Weight Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a pressure vessel with 25% better Fracture Strength over equal strength designed Fiberglass to help reduce 10 to 25% weight for aerospace use. Phase I is...

  10. Propagation Limits of High Pressure Cool Flames

    Science.gov (United States)

    Ju, Yiguang

    2016-11-01

    The flame speeds and propagation limits of premixed cool flames at elevated pressures with radiative heat loss are numerically modelled using dimethyl ether mixtures. The primary focus is paid on the effects of pressure, mixture dilution, flame size, and heat loss on cool flame propagation. The results showed that cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits. There exist three different flame regimes, hot flame, cool flame, and double flame. A new flame flammability diagram including both cool flames and hot flames is obtained at elevated pressure. The results show that pressure significantly changes cool flame propagation. It is found that the increases of pressure affects the propagation speeds of lean and rich cool flames differently due to the negative temperature coefficient effect. On the lean side, the increase of pressure accelerates the cool flame chemistry and shifts the transition limit of cool flame to hot flame to lower equivalence ratio. At lower pressure, there is an extinction transition from hot flame to cool flame. However, there exists a critical pressure above which the cool flame to hot flame transition limit merges with the lean flammability limit of the hot flame, resulting in a direct transition from hot flame to cool flame. On the other hand, the increase of dilution reduces the heat release of hot flame and promotes cool flame formation. Moreover, it is shown that a smaller flame size and a higher heat loss also extend the cool flame transition limit and promote cool flame formation.

  11. Evidence of Tetragonal Nanodomains in the high pressure polymorph

    Energy Technology Data Exchange (ETDEWEB)

    Ehm, L.; Borkowski, L.A.; Parise J.B.; Ghose, S.; Chen, Z.

    2010-12-17

    The pressure induced P4mm {yields} Pm{bar 3}m phase transition in BaTiO{sub 3} perovskite was investigated by x-ray total scattering. The evolution of the structure was analyzed by fitting pair distribution functions over a pressure range from ambient pressure up to 6.85(7) GPa. Evidence for the existence of tetragonal ferroelectric nanodomains at high pressure was found. The average size of the nanodomains in the high-pressure phase decreases with increasing pressure. Extrapolation of the domain size to pressures higher than studied experimentally suggests a disappearance of the ferroelectric domains at about 9.3(5) GPa and a cubic symmetry of BaTiO{sub 3} high-pressure phase.

  12. Construction and performance study of the new Micro Pattern Gaseous Detectors for future upgrades of the CMS muon high rate region at the LHC

    CERN Document Server

    Fallavollita, Francesco

    2015-01-01

    We have tested a new type position-sensitive gaseous proportional detector, called the Fast Timing Micropattern (FTM) detector, based on advanced printed circuit board technology, for fast timing applications. The construction feasibility has been demonstrated by building a first working prototype. We expect that this technique can be exploited for applications in high energy physics experiments, particularly for upgrades at LHC where sub nanosecond time resolutions are critical for particle identification and vertex separation. Other applications include X-ray diffraction studies and fast time-resolved measurements offer excellent medical imaging opportunities. In combination with an X-ray convertor and FTM and a visible photocathode shows great promise for use in digital mammography. Other applications include X-ray astronomy by exploiting time resolution of the FTM and selective sensitivity to soft X-rays.

  13. What Are the Signs, Symptoms, and Complications of High Blood Pressure?

    Science.gov (United States)

    ... What Are the Signs, Symptoms, and Complications of High Blood Pressure? Because diagnosis is based on blood pressure readings, ... damaged from chronic high blood pressure. Complications of High Blood Pressure When blood pressure stays high over time, it ...

  14. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  15. Gaseous Nitrogen Orifice Mass Flow Calculator

    Science.gov (United States)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  16. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  17. High pressure/high temperature thermogravimetric apparatus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Suuberg, E.M.

    1999-12-01

    The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

  18. High pressure and anesthesia: pressure stimulates or inhibits bacterial bioluminescence depending upon temperature.

    Science.gov (United States)

    Nosaka, S; Kamaya, H; Ueda, I

    1988-10-01

    Although high pressure is often viewed as a nonspecific stimulus counteracting anesthesia, pressure can either excite or inhibit biological activity depending on the temperature at application. Temperature and pressure are two independent variables that determine equilibrium quantity, e.g., the state of organisms in terms of activity and anesthesia depth. We used the light intensity of luminous bacteria (Vibrio fischeri) as an activity parameter, and studied the effects of pressure and anesthetics on the bacteria's light intensity at various temperatures. The light intensity was greatest at about 30 degrees C at ambient pressure. When the system was pressurized up to 204 atm, the temperature for maximum light intensity was shifted to higher temperatures. Above the optimal temperature for the maximal light intensity, high pressure increased the light intensity. Below the optimal temperature, pressure decreased light intensity. Pressure only shifts the reaction equilibrium to the lower volume state (Le Chatelier's principle). When the volume of the excited state is larger than the resting state, high pressure inhibits excitation, and vice versa. Halothane 0.008 atm and isoflurane 0.021 atm inhibited the light intensity both above and below the optimal temperature. When pressurized, the light intensity increased in the high temperature range but decreased in the low temperature range, as in the control. Thus, high pressure seemingly potentiated the anesthetic action at low temperatures. When the ratio of the light intensity in bacteria exposed to anesthesia and those not exposed to anesthesia was plotted against the pressure, however, the value approached unity in proportion to the pressure increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Elastic properties of solids at high pressure

    Science.gov (United States)

    Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.

    2015-11-01

    This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.

  20. Study on Manganin High Pressure Array Sensor

    Institute of Scientific and Technical Information of China (English)

    DUAN Jianhua; DU Xiaosong; YANG Bangchao; ZHOU Hongre

    2003-01-01

    A new kind of thin film manganin aray gauge is fabricated by adopting a new sensor fabrication technique. The sensitive materials (manganin thin films) are first deposited by magnetron sputtering on fused silica substrates, and then covered by a layer of SiO2 thin films by electron beam evaporation. Based on impedance match method of "back configuration", the highest pressure measured in Al target is 51.68 Gpa, the highest pressure in SiO2 package is 35.396 Gpa and the piezoresistance coefficient k is 0.026 Gpa-1. The upper limit and measure precision of sensor is improved.

  1. Announcement: National High Blood Pressure Education Month - May 2016.

    Science.gov (United States)

    2016-05-27

    May is National High Blood Pressure Education Month. High blood pressure (hypertension) is a major contributor to heart disease and stroke, two leading causes of death in the United States.* High blood pressure affects one third of U.S. adults, or approximately 75 million persons, yet approximately 11 million of these persons are not aware they have hypertension, and approximately 18 million are not being treated (unpublished data) (1,2).

  2. High-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  3. High-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  4. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  5. Ultrasonic Propagation in Liquids Under High Pressures

    Science.gov (United States)

    1948-12-01

    34 Proc. Am, Acad. Arts Sci. 19, 143 (1923). 28. Bridgman P. W., "The Viscosity of Liquids under Pressure," Proc. Nat. Acad. Sci. 119 603 (1925). TM3...1932). 42. Ewell, R. H., and Eyring, H., "Theory of the Viscosity of Liquids as a Function of Temperature and Pressureg" J. Chem. Phys. 1, 726 (1937

  6. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  7. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  8. A system for incubations at high gas partial pressure

    DEFF Research Database (Denmark)

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial...... pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations...... and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow...

  9. Blood pressure in childhood : epidemiological probes into the aetiology of high blood pressure

    NARCIS (Netherlands)

    A. Hofman (Albert)

    1983-01-01

    textabstractHigh arterial blood pressure takes a heavy toll in western populations (1 ). Its causes are still largely unknown, but its sequelae, a variety of cardiovascular and renal diseases, have been referred to as "a modern scourge" (2). High blood pressure of unknown cause, or essential hyperte

  10. Blood pressure in childhood : epidemiological probes into the aetiology of high blood pressure

    NARCIS (Netherlands)

    A. Hofman (Albert)

    1983-01-01

    textabstractHigh arterial blood pressure takes a heavy toll in western populations (1 ). Its causes are still largely unknown, but its sequelae, a variety of cardiovascular and renal diseases, have been referred to as "a modern scourge" (2). High blood pressure of unknown cause, or

  11. [Genesis study of omphacite at high pressure and high temperature].

    Science.gov (United States)

    Xiao, Ben-Fu; Yi, Li; Wang, Duo-Jun; Xie, Chao; Tang, Xue-Wu; Liu, Lei; Cui, Yue-Ju

    2013-11-01

    The melting and recrystallizing experiments of alkali basalt powder and mixture of pure oxides mixed as stoichiometry were performed at 3 GPa and 1 200 degrees C. Electronic microprobe analysis and Raman spectra showed that the recrystallized products were omphacites, the FWHM (full width at half maximum) of the Raman peak was narrow and its shape was sharp, which is attributed to the stable Si-O tetrahedral structure and the high degree of order in omphacite. Based on the results of previous studies, the influencing factors of omphacite genesis and its primary magma were discussed. The results showed that the formation of omphacite could be affected by many factors, such as the composition of parent rocks, the concentration of fluid in the system and the conditions of pressure and temperature. This result could support some experimental evidences on the genesis studies of omphacite and eclogite.

  12. High Pressure Cryocooling of Protein Crystals: The Enigma of Water

    Science.gov (United States)

    Gruner, Sol M.

    2010-03-01

    A novel high-pressure cryocooling technique for preparation biological samples for x-ray analysis is described. The method, high-pressure cryocooling, involves cooling samples to cryogenic temperatures (e.g., 100 K) in high-pressure Helium gas (up to 200 MPa). It bears both similarities and differences to high-pressure cooling methods that have been used to prepare samples for electron microscopy, and has been especially useful for cryocooling of macromolecular crystals for x-ray diffraction. Examples will be given where the method has been effective in providing high quality crystallographic data for difficult samples, such as cases where ligands needed to be stabilized in binding sites to be visualized, or where very high resolution data were required. The talk concludes with a discussion of data obtained by high-pressure cryocooling that pertains to two of the most important problems in modern science: the enigma of water and how water affects the activity of proteins.

  13. Dirty Air, High Blood Pressure Linked

    Institute of Scientific and Technical Information of China (English)

    应树道

    2001-01-01

    贵刊去年第6期曾刊登一短文,题目是:盐,迫升血压之元凶。读了该文,我开始严格控制每日的食盐摄入量,再附以药物治疗,血压果然趋于平稳。近日上网,遇一奇文,意思是人的血压与空气污染状况有涉!根据对2600个成年人的调查,得出了这样的结论:Pollution may cause changes in the part of the nervous system that controls blood pressure.文章又同时说明:Exactly how pollution might cause blood pressure to climb remains unclear.人体之奥妙由此可见一斑。

  14. High pressurized CO2 release CFD calculations from onshore pipeline leakages

    Science.gov (United States)

    Herzog, Nicoleta; Gorenz, Paul; Egbers, Christoph

    2013-04-01

    Emissions from high pressurized pipelines can be determined on the basis of hydrodynamical and thermophysical calculations of the escaped fluid. If a rupture occurs when CO2 is onshore transported in liquid form there will be initially a large pressure drop in the pipeline, the pressure will fall until the liquid becomes a mixture of saturated vapor/liquid. In the vicinity of the rupture, liquid CO2 will escape and immediately vaporize and expand, some of the liquid will desublimate into dry ice, which will precipitate onto the ground [1, 2]. The period of time taken for a large amount of carbon dioxide to be discharged would be short. Initially CO2 will escape by pushing the overlying soil upwards at an explosion-like speed. After the pressure in the pipe fell the flow profile of the escaping gas will almost be as described for gaseous material transport. The expansion of carbon dioxide will occur at sonic speed and will continue to do so until the pressure ratio between the CO2 and the ambient air is lower than about 1.9 [3]. As a result of the expansion also the temperature of the escaping gas will fall drastically and a cloud of cold gas will form which is then dispersed and slowly mixed with ambient air. The rate of emptying the pipeline is controlled by the pipe cross-section area and the speed of the escaping gas, or by the pressure difference between the pipeline and the atmosphere. Therefore the mass flow will be largest immediately after the accident with an exponential decay in time. In this study a two-phase model is applied to a high pressurized pipeline through which liquid carbon dioxide flows. A leakage is considered to be at different positions along the pipeline and the release pressure is calculated over several parameter ranges. It is also intended to characterize from hydrodynamical point of view the dispersion of released CO2 in the ambient medium by means of CFD simulations which includes multiphase flow treatment. For that a turbulent two

  15. Low Pressure Evidence of High Pressure Shock: Thermal Histories and Annealing in Shocked Meteorites

    Science.gov (United States)

    Sharp, T. G.; Hu, J.

    2016-08-01

    In this study we look at the mineralogy associated with shock veins in several highly shocked L chondrites to better understand shock conditions and the importance of thermal history in creating and destroying high-pressure minerals.

  16. Recent progress in high pressure metrology in Europe

    Directory of Open Access Journals (Sweden)

    Sabuga Wladimir

    2014-01-01

    Full Text Available Five European national metrology institutes in collaboration with a university, a research institute and five industrial companies are working on a joint research project within a framework of the European Metrology Research Programme aimed at development of 1.6 GPa primary and 1.5 GPa transfer pressure standards. Two primary pressure standards were realised as pressure-measuring multipliers, each consisting of a low pressure and a high pressure (HP piston-cylinder assembly (PCA. A special design of the HP PCAs was developed in which a tungsten carbide cylinder is supported by two thermally shrunk steel sleeves and, additionally, by jacket pressure applied to the outside of the outer sleeve. Stress-strain finite element analysis (FEA was performed to predict behaviour of the multipliers and a pressure generation system. With FEA, the pressure distortion coefficient was determined, taking into account irregularities of the piston-cylinder gap. Transfer pressure standards up to 1.5 GPa are developed on the basis of modern 1.5 GPa pressure transducers. This project shall solve a discrepancy between the growing needs of the industry demanding precise traceable calibrations of the high pressure transducers and the absence of adequate primary standards for pressures higher than 1 GPa in the European Union today.

  17. The electrical resistance of PuSb under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Link, P. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany)); Benedict, U. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany)); Wittig, J. (Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D52425 Juelich (Germany)); Wuehl, H. (Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D76128 Karlsruhe (Germany)); Rebizant, J. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany)); Spirlet, J.C. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany))

    1994-10-01

    A new experimental set-up with a Bridgman-type high pressure cell in a closed containment allows resistance measurements on highly radioactive materials. We present results of high pressure, low temperature studies on PuSb single crystals in the pressure range to 25 GPa and at temperatures between 1.3 K and 300 K. As pressure on PuSb is increased, its Neel temperature and the transition temperature to the ferromagnetic ground state are increased. In the pressure range from 10 to 15 GPa, we observed a strong decrease in the resistance associated with the crystallographic phase transition from the B1 (NaCl) to the B2 (CsCl) structure. The high pressure phase appears to be non-magnetic. ((orig.))

  18. High-pressure behavior of superconducting boron-doped diamond

    Science.gov (United States)

    Abdel-Hafiez, Mahmoud; Kumar, Dinesh; Thiyagarajan, R.; Zhang, Q.; Howie, R. T.; Sethupathi, K.; Volkova, O.; Vasiliev, A.; Yang, W.; Mao, H. K.; Rao, M. S. Ramachandra

    2017-05-01

    This work investigates the high-pressure structure of freestanding superconducting (Tc=4.3 K) boron-doped diamond (BDD) and how it affects the electronic and vibrational properties using Raman spectroscopy and x-ray diffraction in the 0-30 GPa range. High-pressure Raman scattering experiments revealed an abrupt change in the linear pressure coefficients, and the grain boundary components undergo an irreversible phase change at 14 GPa. We show that the blueshift in the pressure-dependent vibrational modes correlates with the negative pressure coefficient of Tc in BDD. The analysis of x-ray diffraction data determines the equation of state of the BDD film, revealing a high bulk modulus of B0=510 ±28 GPa. The comparative analysis of high-pressure data clarified that the s p2 carbons in the grain boundaries transform into hexagonal diamond.

  19. High-pressure hollow cathode discharges

    Science.gov (United States)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Shi, Wenhui; Ciocca, Marco

    1997-11-01

    Reducing the diameter of the cathode hole in a plane anode - hollow cathode geometry to 0963-0252/6/4/003/img1m has allowed us to generate direct current discharges in argon at atmospheric pressure. Up to pressure times cathode hole diameter (pD) values of approximately 5 Torr cm, and at sub-mA currents, glow discharges (predischarges) are observed with a shape which is determined by the vacuum electric field. In the same pD range, but at higher currents of up to approximately 4 mA, the discharges are of the hollow cathode discharge type. At pD values exceeding 5 Torr cm the predischarges turn into surface discharges along the mica spacer between the electrodes. At currents > 4 mA filamentary, pulsed discharges are observed. Qualitative information on the electron energy distribution in the microdischarges has been obtained by studying the VUV emission from ionized argon atoms and the argon excimer radiation at 130 nm. The results of the spectral measurements indicate the presence of a relatively large concentration of electrons with energies > 15 eV over the entire pressure range. The fact that the current - voltage characteristic of the microdischarges has a positive slope over much of the current range where excimer radiation is emitted indicates the possibility of forming arrays of these discharges and using them in flat panel excimer lamps.

  20. Pattern recognition of $^{136}$Xe double beta decay events and background discrimination in a high pressure Xenon TPC

    CERN Document Server

    Cebrian, S; Gomez, H; Herrera, D C; Iguaz, F J; Irastorza, I G; Luzon, G; Segui, L; Tomas, A

    2013-01-01

    High pressure gas detectors offer advantages for the detection of rare events, where background reduction is crucial. For the neutrinoless double beta decay of 136Xe a high pressure xenon gas Time Projection Chamber (TPC) combines a good energy resolution and a detailed topological information of each event. The ionization topology of the double beta decay event of 136Xe in gaseous xenon has a characteristic shape defined by the two straggling electron tracks ending up in two higher ionization charge density blobs. With a properly pixelized readout, this topological information is invaluable to perform powerful background discrimination. In this study we carry out detailed simulations of the signal topology, as well as the competing topologies from gamma events that typically compose the background at these energies. We define observables based on graph theory concepts and develop automated discrimination algorithms which reduce the background level in around three orders of magnitude while keeping signal eff...

  1. Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams

    Science.gov (United States)

    Siriwardane, Ranjani V [Morgantown, WV; Stevens, Robert W [Morgantown, WV

    2012-03-06

    A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.

  2. Raman spectroscopy on carbon nanotubes at high pressure

    OpenAIRE

    Loa, I.

    2003-01-01

    Raman spectroscopy has been the most extensively employed method to study carbon nanotubes at high pressures. This review covers reversible pressure-induced changes of the lattice dynamics and structure of single- and multi-wall carbon nanotubes as well as irreversible transformations induced by high pressures. The interplay of covalent and van-der-Waals bonding in single-wall nanotube bundles and a structural distortion near 2 GPa are discussed in detail. Attempts of transforming carbon nano...

  3. Dynamic High-Pressure Behavior of Hierarchical Heterogeneous Geological Materials

    Science.gov (United States)

    2016-04-01

    pressure -density Hugoniot plots for simulations using the ‘mix 5’ option, as will be presented later. The volume weighted option for mixed cells (refered...AFRL-AFOSR-VA-TR-2016-0150 Dynamic High- Pressure Behavior of Geological Materials Naresh Thadhani GEORGIA TECH RESEARCH CORPORATION Final Report 04...31-12-2015 4.  TITLE AND SUBTITLE Dynamic High- Pressure Behavior of Hierarchical Heterogeneous Geological Materials 5a.  CONTRACT NUMBER 5b.  GRANT

  4. Structural behaviour of niobium oxynitride under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bharat Bhooshan, E-mail: bbs86phy@gmail.com; Poswal, H. K., E-mail: bbs86phy@gmail.com; Pandey, K. K., E-mail: bbs86phy@gmail.com; Sharma, Surinder M., E-mail: bbs86phy@gmail.com [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Mumbai-400085 (India); Yakhmi, J. V. [Homi Bhabha National Institute, Mumbai - 400094 (India); Ohashi, Y.; Kikkawa, S. [Faculty of Engineering, Hokkaido University, N13W8, Sapporo 080-8628 (Japan)

    2014-04-24

    High pressure investigation of niobium oxynitrides (NbN{sub 0.98}O{sub 0.02}) employing synchrotron based angle dispersive x-ray diffraction experiments was carried out in very fine pressure steps using membrane driven diamond anvil cell. Ambient cubic phase was found to be stable up to ∼18 GPa. At further high pressure cubic phase showed rhombohedral distortion.

  5. High-pressure effects on intramolecular electron transfer compounds

    CERN Document Server

    He Li Ming; Li Hong; Zhang Bao Wen; Li Yi; Yang Guo Qiang

    2002-01-01

    We explore the effect of pressure on the fluorescence spectra of the intramolecular electron transfer compound N-(1-pyrenylmethyl), N-methyl-4-methoxyaniline (Py-Am) and its model version, with poly(methyl methacrylate) blended in, at high pressure up to 7 GPa. The emission properties of Py-Am and pyrene show distinct difference with the increase of pressure. This difference indicates the strength of the charge transfer interaction resulting from the adjusting of the conformation of Py-Am with increase of pressure. The relationship between the electronic state of the molecule and pressure is discussed.

  6. Cells under pressure - treatment of eukaryotic cells with high hydrostatic pressure, from physiologic aspects to pressure induced cell death.

    Science.gov (United States)

    Frey, Benjamin; Janko, Christina; Ebel, Nina; Meister, Silke; Schlücker, Eberhard; Meyer-Pittroff, Roland; Fietkau, Rainer; Herrmann, Martin; Gaipl, Udo S

    2008-01-01

    The research on high hydrostatic pressure in medicine and life sciences is multifaceted. According to the used pressure head the research has to be divided into two different parts. To study physiological aspects of pressure on eukaryotic cells physiological pressure (pHHP; highly reversible alterations and normally does not affect cellular viability. The treatment of eukaryotic cells with non-physiological pressure (HHP; > or = 100 MPa) reveals different outcomes. Treatment with HHP or = 200 MPa. Moreover, HHP treatment with > 300 MPa leads to necrosis. Therefore, HHP plays a role for the sterilisation of human transplants, of food stuff, and pharmaceuticals. Human tumour cells subjected to HHP > 300 MPa display a necrotic phenotype along with a gelificated cytoplasm, preserve their shape, and retain their immunogenicity. These observations favour the use of HHP to produce whole cell based tumour vaccines. Further experiments revealed that the increment of pressure as well as the pressure holding time influences the cell death of tumour cells. We conclude that high hydrostatic pressure offers both, an economic, easy to apply, clean, and fast technique for the generation of vaccines, and a promising tool to study physiological aspects.

  7. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... atrial fibrillation has more than five times the risk of stroke.” “Because high blood pressure is so frequent, affecting tens of millions of ... is a more potent risk factor.” The two risk factors are also related to each other: High blood pressure is a risk factor for atrial fibrillation. Middle- ...

  8. Simple high-pressure cell for neutron scattering

    Science.gov (United States)

    Bao, Wei; Broholm, C.; Trevino, S. F.

    1995-02-01

    A high-pressure cell, capable of 8 kbar, is developed for neutron scattering. It can be used with ILL type orange cryostats to obtain a temperature as low as 1.5 K. The simple seal design described here can easily be adopted to other high-pressure applications.

  9. High-pressure processing for preservation of blood products

    NARCIS (Netherlands)

    Matser, A.M.; Ven, van der C.; Gouwerok, C.W.N.; Korte, de D.

    2005-01-01

    The possibilities of high pressure as a preservation method for human blood products were evaluated by examining the functional properties of blood fractions, after high-pressure processing at conditions which potentially inactivate micro-organisms and viruses. Blood platelets, red blood cells and

  10. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ..., 2011 (76 FR 28807). The conference was held in Washington, DC, on June 1, 2011, and all persons who... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... injured by reason of imports from China of high pressure steel cylinders, provided for in subheading...

  11. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register on January 23, 2012 (77 FR... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... imports of high pressure steel cylinders from China, provided for in subheading 7311.00.00 of...

  12. What You Should Know About High Blood Pressure and Medications

    Science.gov (United States)

    ... Aortic Aneurysm More What You Should Know About High Blood Pressure and Medications Updated:Jan 18,2017 Is medication ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  13. Heart and Artery Damage and High Blood Pressure

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to a Heart Attack Updated:Dec ... sheet This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  14. Americans with High Blood Pressure Still Eating Too Much Salt

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_163977.html Americans With High Blood Pressure Still Eating Too Much Salt Average sodium intake ... March 8, 2017 (HealthDay News) -- For Americans with high blood pressure, cutting back on salt is an important way ...

  15. Changes You Can Make to Manage High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More Changes You Can Make to Manage High Blood Pressure Updated:Mar 10,2017 Fighting back against the “ ... Follow us on Twitter Follow us on Facebook High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  16. Strong environmental tolerance of Artemia under very high pressure

    Science.gov (United States)

    Minami, K.; Ono, F.; Mori, Y.; Takarabe, K.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.

    2010-03-01

    It was shown by the present authors group that a tardigrade in its tun-state can survive after exposed to 7.5 GPa for 13 hours. We have extended this experiment to other tiny animals searching for lives under extreme conditions of high hydrostatic pressure. Artemia, a kind of planktons, in its dried egg-state have strong environmental tolerance. Dozens of Artemia eggs were sealed in a small Teflon capsule together with a liquid pressure medium, and exposed to the high hydrostatic pressure of 7.5 GPa. After the pressure was released, they were soaked in seawater to observe hatching rate. It was proved that 80-90% of the Artemia eggs were alive and hatched into Nauplii after exposed to the maximum pressure of 7.5 GPa for up to 48 hours. Comparing with Tardigrades, Artemia are four-times stronger against high pressure.

  17. Introduction to high-pressure bioscience and biotechnology.

    Science.gov (United States)

    Bartlett, Douglas H

    2010-02-01

    The manipulation of biological materials using elevated pressure is providing an ever-growing number of opportunities in both the applied and basic sciences. Manipulation of pressure is a useful parameter for enhancing food quality and shelf life; inactivating microbes, viruses, prions, and deleterious enzymes; affecting recombinant protein production; controlling DNA hybridization; and improving vaccine preparation. In biophysics and biochemistry, pressure is used as a tool to study intermediates in protein folding, enzyme kinetics, macromolecular interactions, amyloid fibrous protein aggregation, lipid structural changes, and to discern the role of solvation and void volumes in these processes. Biologists, including many microbiologists, examine the utility and basis of pressure inactivation of cells and cellular processes, and conversely seek to discover how deep-sea life has evolved a preference for high-pressure environments. This introduction and the papers that follow provide information on the nature and promise of the highly interdisciplinary field of high-pressure bioscience and biotechnology (HPBB).

  18. Pressurized metallurgy for high performance special steels and alloys

    Science.gov (United States)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  19. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  20. Impurity trapped excitons under high hydrostatic pressure

    Science.gov (United States)

    Grinberg, Marek

    2013-09-01

    Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.

  1. Protection against high intravascular pressure in giraffe legs

    DEFF Research Database (Denmark)

    Petersen, Karin K; Hørlyck, Arne; Østergaard, Kristine Hovkjær

    2013-01-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination....... All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure....... revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along...

  2. On some hydrogen bond correlations at high pressures

    Science.gov (United States)

    Sikka, S. K.

    2007-09-01

    In situ high pressure neutron diffraction measured lengths of O H and H O pairs in hydrogen bonds in substances are shown to follow the correlation between them established from 0.1 MPa data on different chemical compounds. In particular, the conclusion by Nelmes et al that their high pressure data on ice VIII differ from it is not supported. For compounds in which the O H stretching frequencies red shift under pressure, it is shown that wherever structural data is available, they follow the stretching frequency versus H O (or O O) distance correlation. For compounds displaying blue shifts with pressure an analogy appears to exist with improper hydrogen bonds.

  3. Gaskinetic Modeling on Dilute Gaseous Plume Impingement Flows

    Directory of Open Access Journals (Sweden)

    Chunpei Cai

    2016-12-01

    Full Text Available This paper briefly reviews recent work on gaseous plume impingement flows. As the major part of this paper, also included are new comprehensive studies on high-speed, collisionless, gaseous, circular jet impinging on a three-dimensional, inclined, diffuse or specular flat plate. Gaskinetic theories are adopted to study the problems, and several crucial geometry-location and velocity-direction relations are used. The final complete results include impingement surface properties such as pressure, shear stress, and heat flux. From these surface properties, averaged coefficients of pressure, friction, heat flux, moment over the entire flat plate, and the distance from the moment center to the flat plate center are obtained. The final results include accurate integrations involving the geometry and specific speed ratios, inclination angle, and the temperature ratio. Several numerical simulations with the direct simulation Monte Carlo method validate these analytical results, and the results are essentially identical. The gaskinetic method and processes are heuristic and can be used to investigate other external high Knudsen (Kn number impingement flow problems, including the flow field and surface properties for a high Knudsen number jet from an exit and flat plate of arbitrary shapes. The results are expected to find many engineering applications, especially in aerospace and space engineering.

  4. A gaseous stripper proposal based on hadrontherapy facility HIMM

    CERN Document Server

    Xie, Xiucui; Zhang, Xiaohu

    2013-01-01

    Multi-turn Injection scheme with gaseous stripper is usually used in high intensity and super heavy ion injection process. With its advantage of long lifetime and uniformity, a gaseous stripper is proposed based on the under construction hadrontherapy facility HIMM (Heavy Ion Medical Machine). In this paper, the physical process between the injecting beam and the gaseous target is studied, and a simulation work is conducted based on the former developed code.

  5. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  6. High-pressure applications in medicine and pharmacology

    Science.gov (United States)

    Silva, Jerson L.; Foguel, Debora; Suarez, Marisa; Gomes, Andre M. O.; Oliveira, Andréa C.

    2004-04-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  7. Temperature control for high pressure processes up to 1400 MPa

    Science.gov (United States)

    Reineke, K.; Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s-1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling as

  8. Temperature control for high pressure processes up to 1400 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Reineke, K; Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box: 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 {mu}L sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s{sup -1} and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and

  9. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  10. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  11. High pressure, high strain rate material strength studies

    Science.gov (United States)

    Remington, B. A.; Arsenlis, A.; Barton, N.; Belof, J.; Cavallo, R.; Maddox, B.; Park, H.-S.; Prisbrey, S.; Rudd, R.; Comley, A.; Meyers, M.; Wark, J.

    2011-10-01

    Constitutive models for material strength are currently being tested at high pressures by comparing 2D simulations with experiments measuring the Rayleigh-Taylor (RT) instability evolution in solid-state samples of vanadium (V), tantalum (Ta), and iron (Fe). The multiscale strength models being tested combine molecular dynamics, dislocation dynamics, and continuum simulations. Our analysis for the V experiments suggests that the material deformation at these conditions falls into the phonon drag regime, whereas for Ta, the deformation resides mainly in the thermal activation regime. Recent Fe-RT experiments suggest perturbation growth about the alpha-epsilon (bcc-hcp) phase transition threshold has been observed. Using the LLNL multiscale models, we decompose the strength as a function of strain rate into its dominant components of thermal activation, phonon drag, and work hardening. We have also developed a dynamic diffraction diagnostic technique to measure strength directly from shock compressed single crystal samples. Finally, recovery experiments allow a comparison of residual dislocation density with predictions from the multiscale model. This work performed under the auspices of the U.S. DoE by LLNL Security, LLC under Contract DE-AC52-07NA27344.

  12. High-speed visualization and radiated pressure measurement of a laser-induced gas bubble in glycerin-water solutions

    Science.gov (United States)

    Nakajima, Takehiro; Kondo, Tomoki; Ando, Keita

    2016-11-01

    We study the dynamics of a spherical gaseous bubble created by focusing a nanosecond laser pulse at 532 nm into a large volume of glycerin-water solutions. Free oscillation of the bubble and shock wave emission from the bubble dynamics are recorded by a high-speed camera together with a pulse laser stroboscope; concurrently, pressure radiated from the oscillating bubble is measured by a hydrophone. The bubble achieves a mechanical equilibrium after free oscillation is damped out; the equilibrium state stays for a while, unlike vapor bubbles. We speculate that the bubble content is mainly gases originally dissolved in the liquid (i.e., air). The bubble dynamics we observed are compared to Rayleigh-Plesset-type calculations that account for diffusive effects; the (unknown) initial pressure just after laser focusing is tuned to obtain agreement between the experiment and the calculation. Moreover, viscous effects on the shock propagation are examined with the aid of compressible Navier-Stokes simulation.

  13. Synthetic chemistry with periodic mesostructures at high pressure.

    Science.gov (United States)

    Mandal, Manik; Landskron, Kai

    2013-11-19

    Over the last two decades, researchers have studied extensively the synthesis of mesostructured materials, which could be useful for drug delivery, catalytic cracking of petroleum, or reinforced plastics, among other applications. However, until very recently researchers used only temperature as a thermodynamic variable for synthesis, completely neglecting pressure. In this Account, we show how pressure can affect the synthetic chemistry of periodic mesoporous structures with desirable effects. In its simplest application, pressure can crystallize the pore walls of periodic mesoporous silicas, which are difficult to crystallize otherwise. The motivation for the synthesis of periodic mesoporous silica materials (with pore sizes from 2 to 50 nm) 20 years ago was to replace the microporous zeolites (which have pore sizes of machining, drilling, and polishing. Overall, the results show that periodic mesoporous materials are suitable starting materials for the synthesis of nanoporous high-pressure phases and nanocrystals of high pressure phases. The substantially enhanced hydrothermal stability seen in periodic mesoporous silicas synthesized at high pressure demonstrates that high pressure can be a useful tool to produce porous materials with improved properties. We expect that synthesis using mesostructures at high pressure can be extended to many other materials beyond silicas and carbons. Presumably, this chemistry can also be extended from mesoporous to microporous and macroporous materials.

  14. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.

    2016-04-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures - while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  15. High pressure optical studies of crystalline anils and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hockert, E.N.; Drickamer, H.G.

    1977-12-01

    High pressure optical studies have been made on a series of crystalline therochromic and photochromic anils and model compounds. Measurements include absorption and emission peak locations and the integrated intensities of various absorption peaks including the uv peak and visible peaks introduced thermally or by irradiation at various temperatures and pressures. Emission yields were also obtained. For the thermochromic compounds there was a large increase in the equilibrium yield of the thermally induced peak with pressure (piezochromism), corresponding to a volume decrease of approx.1.2 cc/mole for 5-bromosalicylidene aniline (5BrSA). The emission peak shifts to lower energy and decreases in intensity primarily because of increased rate of the radiationless conversion. For salicylidene aniline and related photochromic crystals the rate of photochromic conversion varied with both pressure and temperature in a manner which depends on the size of the energy barriers to the forward and reverse processes. The emission yield increases with pressure at low pressure, goes through a maximum, and decreases at high pressure. At low pressure the dominant feature is increase in occupation of the emitting state while at high pressure the increased rate of the radiationless process governs. For 2- (O-hydroxyphenyl) benzoxazole (OHBO) (see Fig. 1), where a keto--enol rearrangement is most probable, the changes in absorption and emission intensity can be related to the same diagram used for the anils. This diagram also describes the behavior of benzilidene aniline (BA), where only a cis--trans isomerization is possible.

  16. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    Science.gov (United States)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  17. Viscosity of mafic magmas at high pressures

    Science.gov (United States)

    Cochain, B.; Sanloup, C.; Leroy, C.; Kono, Y.

    2017-01-01

    While it is accepted that silica-rich melts behave anomalously with a decrease of their viscosity at increased pressures (P), the viscosity of silica-poor melts is much less constrained. However, modeling of mantle melts dynamics throughout Earth's history, including the magma ocean era, requires precise knowledge of the viscous properties of silica-poor magmas. We extend here our previous measurements on fayalite melt to natural end-members pyroxenite melts (MgSiO3 and CaSiO3) using in situ X-ray radiography up to 8 GPa. For all compositions, viscosity decreases with P, rapidly below 5 GPa and slowly above. The magnitude of the viscosity decrease is larger for pyroxene melts than for fayalite melt and larger for the Ca end-member within pyroxene melts. The anomalous viscosity decrease appears to be a universal behavior for magmas up to 13 GPa, while the P dependence of viscosity beyond this remains to be measured. These results imply that mantle melts are very pervasive at depth.

  18. Studies of Alkali Sorption Kinetics for Pressurized Fluidized Bed Combustion by High Pressure Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, K.J.; Willenborg, W.; Fricke, C.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    This work describes the first approach to use High Pressure Mass Spectrometry (HPMS) for the quantification and analysis of alkali species in a gas stream downstream a sorbent bed of different tested alumosilicates.

  19. Underground storage systems for high-pressure air and gases

    Science.gov (United States)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  20. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  1. Gaseous detonation synthesis and characterization of nano-oxide

    Science.gov (United States)

    Yan, Honghao; Wu, Linsong; Li, Xiaojie; Wang, Xiaohong

    2015-07-01

    Gaseous detonation is a new method of heating the precursor of nanomaterials into gas, and integrating it with combustible gas as mixture to be detonated for the synthesis of nanomaterials. In this paper, the mixed gas of oxygen and hydrogen is used as the source for detonation, to synthesize nano TiO2, nano SiO2 and nano SnO2 through gaseous detonation method, characterization and analysis of the products, it was found that the products from gaseous detonation method were of high purity, good dispersion, smaller particle size and even distribution. It also shows that for the synthesis of nano-oxides, gaseous detonation is universal.

  2. Pressure ratio effects on self-similar scalar mixing of high-pressure turbulent jets in a pressurized volume

    Science.gov (United States)

    Ruggles, Adam; Pickett, Lyle; Frank, Jonathan

    2014-11-01

    Many real world combustion devices model fuel scalar mixing by assuming the self-similar argument established in atmospheric free jets. This allows simple prediction of the mean and rms fuel scalar fields to describe the mixing. This approach has been adopted in super critical liquid injections found in diesel engines where the liquid behaves as a dense fluid. The effect of pressure ratio (injection to ambient) when the ambient is greater than atmospheric pressure, upon the self-similar collapse has not been well characterized, particularly the effect upon mixing constants, jet spreading rates, and virtual origins. Changes in these self-similar parameters control the reproduction of the scalar mixing statistics. This experiment investigates the steady state mixing of high pressure ethylene jets in a pressurized pure nitrogen environment for various pressure ratios and jet orifice diameters. Quantitative laser Rayleigh scattering imaging was performed utilizing a calibration procedure to account for the pressure effects upon scattering interference within the high-pressure vessel.

  3. Detection systems for high energy particle producing gaseous ionization; Sistemas de deteccion de particulas de alta energia mediante ionizacion gaseosa

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L.; Duran, I.

    1985-07-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs.

  4. DASH diet to lower high blood pressure

    Science.gov (United States)

    ... that are naturally low in salt, cholesterol, and saturated fats. You will also include foods that are high ... AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of ...

  5. A Study on Development of Variable High Pressurizer Pressure Trip Function to Mitigate System Peak Pressure during Transients for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ung Soo; Park, Min Soo; Huh, Jae Young; Lee, Gyu Cheon [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    According to intensified regulation environment such as separate safety analysis for the reactor coolant system (RCS) and the main steam system peak pressure, strict consideration of a control system malfunction as a single failure for the safety analysis and so on, the safety margin with respect to system pressure of pressurized water reactors (PWRs) has been decreased. Also, the possibility for that the main steam system pressure may violate the acceptance criteria during the LOCV event has been raised and relevant design modifications for the main steam safety valve (MSSV) have ever been performed as a solution. In order to overcome this problem, in this work, the variable high pressurizer pressure trip (VHPPT) function has been developed and a feasibility study on the application of this trip function has been performed. The VHPPT function has been devised to trip the reactor beforehand when a sharply pressurizing transient such as the LOCV occurs and to cutoff system pressure increase, resulting in reducing the system peak pressure. In this work, the VHPPT function has been suggested and developed to trip the reactor beforehand and to cutoff system pressure increase mitigating the system peak pressure of PWRs when a sharply pressurizing transient like the LOCV occurs. The VHPPT function uses the rate-limited variable setpoint and includes the existing HPPT function.

  6. High-pressure ignition plasma torch for aerospace testing facilities

    Science.gov (United States)

    Yusupov, D. I.; Kulikov, Yu M.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Son, E. E.

    2016-11-01

    The present paper discusses the issues of implementation of high-pressure ignition plasma torch in terms of discharge phenomena in compressed gases, dense nitrogen plasma properties and stable arcing power requirements. Contact ignition has been tested in a pressure range p = 1-25 bar and has proved to be a reliable solution for pilot arc burning.

  7. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction

    DEFF Research Database (Denmark)

    Marshall, William G.; Urquhart, Andrew; Oswald, Iain D. H.

    2015-01-01

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low press...

  8. High-pressure saline washing of allografts reduces bacterial contamination.

    Science.gov (United States)

    Hirn, M Y; Salmela, P M; Vuento, R E

    2001-02-01

    60 fresh-frozen bone allografts were contaminated on the operating room floor. No bacterial growth was detected in 5 of them after contamination. The remaining 55 grafts had positive bacterial cultures and were processed with three methods: soaking in saline, soaking in antibiotic solution or washing by high-pressure saline. After high-pressure lavage, the cultures were negative in three fourths of the contaminated allografts. The corresponding figures after soaking grafts in saline and antibiotic solution were one tenth and two tenths, respectively. High-pressure saline cleansing of allografts can be recommended because it improves safety by reducing the superficial bacterial bioburden.

  9. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  10. Recent Results on High-Pressure Axial Blowers

    Science.gov (United States)

    Eckert, B.

    1947-01-01

    Considerable progress has, in recent times, been attained in the development of the high-pressure axial blower by well-planned research. The efforts are directed toward improving the efficiencies, which are already high for the axial blower, and in particular the delivery pressure heads. For high pressures multistage arrangements are used. Of fundamental importance is the careful design of all structural parts of the blower that are subject to the effects of the flow. In the present report, several recent results and experiences are reported, which are based on results of German engine research.

  11. Safety analysis of high pressure gasous fuel container punctures

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  12. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  13. Pasteurization of food by hydrostatic high pressure: chemical aspects.

    Science.gov (United States)

    Tauscher, B

    1995-01-01

    Food pasteurized by hydrostatic high pressure have already been marketed in Japan. There is great interest in this method also in Europe and USA. Temperature and pressure are the essential parameters influencing the state of substances including foods. While the influence of temperature on food has been extensively investigated, effects of pressure, also in combination with temperature, are attracting increasing scientific attention now. Processes and reactions in food governed by Le Chatelier's principle are of special interest; they include chemical reactions of both low- and macromolecular compounds. Theoretical fundamentals and examples of pressure affected reactions are presented.

  14. Isostructural Transition of MgB2 Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    SUN Li-Ling; WU Qi; ZHAN Zai-Ji; WANG Wen-Kui; WANG Wen-Kui; T.Kikegawa

    2001-01-01

    The high-pressure behaviour of the superconductor MgB2 with a hexagonal structure has been investigated by the in situ synchrotron radiation x-ray diffraction method under pressures up to 42.2 GPa in a diamond anvil cell. An abrupt decrease of about 7% in the unit cell volume of this material occurs in the pressure range of 26.3-30.2 GPa. A split of the Raman spectrum was also observed. The jump of the compression curve and Raman spectrum are ascribed to an isostructural transition in MgB2 at a pressure of 30.2 GPa.

  15. Highly compressible fluorescent particles for pressure sensing in liquids

    Science.gov (United States)

    Cellini, F.; Peterson, S. D.; Porfiri, M.

    2017-05-01

    Pressure sensing in liquids is important for engineering applications ranging from industrial processing to naval architecture. Here, we propose a pressure sensor based on highly compressible polydimethylsiloxane foam particles embedding fluorescent Nile Red molecules. The particles display pressure sensitivities as low as 0.0018 kPa-1, which are on the same order of magnitude of sensitivities reported in commercial pressure-sensitive paints for air flows. We envision the application of the proposed sensor in particle image velocimetry toward an improved understanding of flow kinetics in liquids.

  16. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  17. Acoustic wave propagation in high-pressure system.

    Science.gov (United States)

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  18. Explosive Breakup of a Water Droplet with a Nontransparent Solid Inclusion Heated in a High-Temperature Gaseous Medium

    Directory of Open Access Journals (Sweden)

    Dmitrienko Margarita A.

    2015-01-01

    Full Text Available This paper investigates the evaporation of a water droplet with a comparably sized solid nontransparent inclusion in a high-temperature (500–800 K gas medium. Water evaporates from the free surface of the inclusion. During this process, intensive vapor formation occurs on the inner interface “water droplet – solid inclusion” with the subsequent explosive decay of the droplet. Experiments have been conducted using high-speed (up to 105 fps video cameras “Phantom” and software “Phantom Camera Control”. The conditions of the explosive vapor formation of the heterogeneous water droplet were found. The typical phase change mechanisms of the heterogeneous water droplet under the conditions of intensive heat exchange were determined.

  19. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  20. In situ studies of microbial inactivation during high pressure processing

    Science.gov (United States)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  1. Characterization of coaxial rocket injector sprays under high pressure environments

    Science.gov (United States)

    Sankar, S. V.; Wang, G.; Brena De La Rosa, A.; Rudoff, R. C.; Isakovic, A.; Bachalo, W. D.

    1992-01-01

    The effect of elevated environment pressures on the atomization characteristics of a single element, scaled-down, shear-coaxial rocket injector has been investigated. In this study, the shear coaxial injector was operated with water and air as simulants for conventionally used liquid oxygen and hydrogen gas, respectively. The experiments were conducted in a specially designed high pressure rig. A two-component PDPA/DSA system was used to study the spray characteristics at different chamber pressures ranging from atmospheric to 100 psig. The study showed an overall increase in the droplet sizes at higher chamber pressures. This phenomenon is attributed to a decrease in the secondary atomization effects at higher chamber pressures which, in turn, is directly related to a decrease in the shear experienced by the droplets as they move axially through the pressure chamber.

  2. Strong environmental tolerance of moss Venturiella under very high pressure

    Science.gov (United States)

    Ono, F.; Mori, Y.; Takarabe, K.; Nishihira, N.; Shindo, A.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.

    2010-03-01

    It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 25°C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.

  3. Strong environmental tolerance of moss Venturiella under very high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ono, F; Mori, Y; Takarabe, K [Department of Applied Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005 (Japan); Nishihira, N; Shindo, A [Okayama Ichinomiya High School, Okayama 700-0005 (Japan); Saigusa, M [Department of Biology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530 (Japan); Matsushima, Y [Department of Physics, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530 (Japan); Saini, N L [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Rome (Italy); Yamashita, M, E-mail: fumihisa@das.ous.ac.j [Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan)

    2010-03-01

    It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 25{sup 0}C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.

  4. Microorganisms under high pressure--adaptation, growth and biotechnological potential.

    Science.gov (United States)

    Mota, Maria J; Lopes, Rita P; Delgadillo, Ivonne; Saraiva, Jorge A

    2013-12-01

    Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology. © 2013.

  5. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen

    Science.gov (United States)

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels. PMID:26601024

  6. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    Science.gov (United States)

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  7. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency

  8. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pre

  9. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, S.; Brake, ter H.J.M.; Jansen, H.V.; Zhao, Y.; Holland, H.J.; Burger, J.F.; Elwenspoek, M.C.

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pre

  10. Study of long-term sustained operation of gaseous detectors for the high rate environment in CMS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00366989; Sharma, Archana

    The muon system of CMS aims to provide an efficient and fast identification of the muons produced in the proton-proton collisions. However, the forward region of the end-caps is only instrumented with Cathode Strip Chambers. This lack of redundancy will be problematic after the high-luminosity upgrade of the LHC (HL-LHC), for which the increase of the background rate would degrade the Level-1 trigger performance and thus the selection of interesting physics channels. The goal of the CMS muon upgrade is to maintain the L1 trigger rate with maximum selection efficiency in order to fully exploit the HL-LHC. The CMS GEM Collaboration has proposed to instrument the vacant high-eta region of the muon end-caps with Gas Electron Multiplier (GEM) detectors, called GE1/1 chambers. The Ph.D. subject proposed by the CMS GEM Collaboration aims to demonstrate that the GE1/1 technology is the most suitable choice for the upgrade of the muon end-caps. Three main research projects were conducted in this context. The first pro...

  11. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  12. High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers

    Science.gov (United States)

    Li, Xiaoyi; Soteriou, Marios C.

    2016-08-01

    Recent advances in numerical methods coupled with the substantial enhancements in computing power and the advent of high performance computing have presented first principle, high fidelity simulation as a viable tool in the prediction and analysis of spray atomization processes. The credibility and potential impact of such simulations, however, has been hampered by the relative absence of detailed validation against experimental evidence. The numerical stability and accuracy challenges arising from the need to simulate the high liquid-gas density ratio across the sharp interfaces encountered in these flows are key reasons for this. In this work we challenge this status quo by presenting a numerical model able to deal with these challenges, employing it in simulations of liquid jet in crossflow atomization and performing extensive validation of its results against a carefully executed experiment with detailed measurements in the atomization region. We then proceed to the detailed analysis of the flow physics. The computational model employs the coupled level set and volume of fluid approach to directly capture the spatiotemporal evolution of the liquid-gas interface and the sharp-interface ghost fluid method to stably handle high liquid-air density ratio. Adaptive mesh refinement and Lagrangian droplet models are shown to be viable options for computational cost reduction. Moreover, high performance computing is leveraged to manage the computational cost. The experiment selected for validation eliminates the impact of inlet liquid and gas turbulence and focuses on the impact of the crossflow aerodynamic forces on the atomization physics. Validation is demonstrated by comparing column surface wavelengths, deformation, breakup locations, column trajectories and droplet sizes, velocities, and mass rates for a range of intermediate Weber numbers. Analysis of the physics is performed in terms of the instability and breakup characteristics and the features of downstream

  13. Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation.

    Science.gov (United States)

    Maxwell, Anne K; Banakis Hartl, Renee M; Greene, Nathaniel T; Benichoux, Victor; Mattingly, Jameson K; Cass, Stephen P; Tollin, Daniel J

    2017-08-01

    Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.

  14. Enhanced photocatalytic oxidation of gaseous elemental mercury by TiO{sub 2} in a high temperature environment

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Huazhen; Ie, Iau-Ren [Institute of Environmental Engineering, National Sun Yat-Sen University No. 70, Lian-Hai Road, Kaohsiung 804, Taiwan (China); Yuan, Chung-Shin, E-mail: ycsngi@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University No. 70, Lian-Hai Road, Kaohsiung 804, Taiwan (China); Hung, Chung-Hsuang [Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology No. 2, Juoyue Road, Nantz District, Kaohsiung 811, Taiwan (China); Chen, Wei-Hsiang [Institute of Environmental Engineering, National Sun Yat-Sen University No. 70, Lian-Hai Road, Kaohsiung 804, Taiwan (China); Luo, Jinjing [College of the Environmental & Ecology, Xiamen University, Xiamen, Fujian (China); Jen, Yi-Hsiu [Institute of Environmental Engineering, National Sun Yat-Sen University No. 70, Lian-Hai Road, Kaohsiung 804, Taiwan (China)

    2015-05-30

    Highlights: • The photo-oxidation efficiency of Hg{sup 0} by TiO{sub 2} at high temperatures was investigated. • The irradiation of 254 nm promoted the photo-oxidation efficiency of TiO{sub 2} at high temperatures. • The best calcination of TiO{sub 2} for photo-oxidation of Hg{sup 0} was 400 °C. • Increasing irradiation strength enhanced the photo-oxidation of Hg{sup 0}. - Abstract: The photo-oxidation of Hg{sup 0} in a lab-scale reactor by titanium dioxide (TiO{sub 2}) coated on the surface of glass beads was investigated at high temperatures. TiO{sub 2} was calcinated at four different temperatures of 300 °C, 400 °C, 500 °C and 600 °C (noted as Ti300, Ti400, Ti500 and Ti600) and characterized for its physicochemical properties. The calcinated TiO{sub 2} coating on the glass beads was then tested to compare the photo-oxidation efficiencies of Hg{sup 0} with an incident light of 365 nm. The results showed that the oxidation efficiencies of Hg{sup 0} for Ti400 and Ti500 were higher than those of Ti300 and Ti600. To enhance the photo-oxidation efficiency of Hg{sup 0}, Ti400 was selected to examine the wave lengths (λ) of 254 nm, 365 nm and visible light with various influent Hg{sup 0} concentrations. The effects of irradiation strength and the presence of oxygen on the photo-oxidation efficiency of Hg{sup 0} were further investigated, respectively. This study revealed that the wave length (λ) of 254 nm could promote the photo-oxidation efficiency of Hg{sup 0} at 140 and 160 °C, while increasing the influent Hg{sup 0} concentration and could enhance the photo-oxidation rate of Hg{sup 0}. However, the influence of 5% O{sub 2} present in the flue gas for the enhancement of Hg{sup 0} oxidation was limited. Moreover, the intensity of the incident wave length of 365 nm and visible light were demonstrated to boost the photo-oxidation efficiency of Hg{sup 0} effectively.

  15. High Pressure Equation of State Studies Using Ethanol-Methanol And Argon As Pressure Medium

    Science.gov (United States)

    Godwal, B. K.; Speziale, S.; Clark, S.; Yan, J.; Jeanloz, R.

    2008-12-01

    Experimental high pressure studies are extremely important to planetary science, material science and to the development of condensed matter theory. With experimental difficulties in creating the extreme pressure temperature conditions appropriate to planetary interiors, the approach used is to obtain the thermodynamic data on materials of interest by extrapolating the condensed matter theory which has been benchmarked with the outcome of high pressure experiments to the available high pressures. However the high pressure data used to match the theory heavily depends on the use of pressure media; like ethanol-methanol, silicon oil, argon and helium. Unfortunately still there exist controversy in the literature even with the use of helium as pressure medium as illustrated by the unsettled debate on Zn and Os among different groups. We have measured the equation of state of intermetallic compound AuIn2 and Cd0.8Hg0.2 alloy using ethanol-methanol and argon to the pressure of 20 GPa to confirm the appearance of anomalies in the data due to occurrence of subtle electronic phase transitions. However these anomalies can also be attributed to oriented lattice strains and local non-hydrostatic conditions. We have tried to remove these at room temperature by stabilizing the sample in argon medium in the diamond anvil cell with proper annealing as indicated by the uniformity of the pressure across the sample by ruby fluorescence measurements. We will present the data revealing the electronic transition in AuIn2 at 2.7 GPa and in Cd0.8Hg0.2 near 9 and 18 GPa.

  16. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  17. The high-pressure compressibility of B12P2

    Science.gov (United States)

    Gao, Yang; Zhou, Mi; Wang, Haiyan; Ji, Cheng; Whiteley, C. E.; Edgar, J. H.; Liu, Haozhe; Ma, Yanzhang

    2017-03-01

    In situ high pressure synchrotron X-ray diffraction measurements were performed on icosahedral boron phosphide (B12P2) to 43.2 GPa. No structural phase transition occurs over this pressure range. The bulk modulus of B12P2 is KOT = 207 ± 7 GPa with pressure derivative of K'OT = 6.6 ± 0.8 . The structure is most compressible along the chain formed by phosphorus and boron atoms in the crystal structure. It is believed that the compressibility of boron-rich compounds at close to ambient pressure is determined by the boron icosahedral structure, while the inclusive atoms (both boron and non-boron) between the icosahedra determine the high-pressure compressibility and structure stability.

  18. A scanning fluorescence spectroscopy of decorin under high pressure

    Science.gov (United States)

    Komoda, Takahito; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    High pressure processing is able to tenderize not only meat but also intramuscular connective tissue, which is mainly composed of collagen. Decorin, one of the proteoglycans, binds to and stabilizes collagen fibrils. It has been suggested that structural weakening of intramuscular connective tissue may result from the disappearance of the decorin-collagen interaction. In this study, the fluorescence spectra and the surface hydrophobicity of decorin molecules were measured under high pressure in order to examine the resulting change in the tertiary structure. The fluorescence intensity and the surface hydrophobicity of decorin molecules both decreased with increasing applied pressure and with applied time at the constant applied pressure, respectively. The observations indicate that the native structure of decorin is maintained during 200 MPa pressurization for less than 30 min.

  19. High pressure in semiconductor physics II

    CERN Document Server

    Willardson, R K; Suski, Tadeusz; Paul, William

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  20. CARS Diagnostics of High Pressure Combustion.

    Science.gov (United States)

    1982-11-01

    single pulse spontaneous Raman scattering. Furthermore. in this ture increases, the band broadens as the rotational population distri- sooting flame , laser... sooting flame with height above the burner. S cm- the fine structure shown in Fig. 2 is lost, but the spectra Recently, the feasibility of CARS for...under adverse conditions, measurements in a highly important in such devices as gas turbines, internal sooting flame will be described (Ref. 3). BOXCARS

  1. High pressure differential conductance measurements of (Pb,Sn)Se

    Science.gov (United States)

    Paul, Tiffany; Vangennep, Derrick; Jackson, Daniel; Biswas, Amlan; Hamlin, James

    Topological transitions have been recognized as a new type of quantum phase transition. Recently, a number of papers have reported scanning tunneling microscope (STM) measurements of the Landau level spectra of topologically non-trivial materials. Such measurements can offer substantial insight into the nature of the transition between topologically distinct phases. Although applied pressure represents an attractive means to drive a topological quantum phase transition, STM measurements can not be performed under high pressure conditions. In this talk, I will discuss our recent attempts to observe Landau level spectra in compressed (Pb,Sn)Se using differential conductance measurements. Acknowledgements: TAP supported by REU NSF DMR-1461019. Pressure cell development and measurements at high magnetic fields supported by the National High Magnetic Field Laboratory User Collaboration Grants Program. Synthesis, characterization, and high pressure measurements supported by NSF DMR-1453752.

  2. The high pressure gas Cerenkov counter at the Omega Facility.

    CERN Multimedia

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  3. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  4. The principles of ultra high pressure technology and its application ...

    African Journals Online (AJOL)

    The principles of ultra high pressure technology and its application in food processing/preservation: A review of ... African Journal of Biotechnology ... along the entire food chain, food preservation remains as necessary today as in the past.

  5. Novel High Pressure Pump-on-a-Chip Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc proposes to develop a novel high pressure "pump-on-a-chip" and "valve-on-a-chip" microfluidic technology for NASA planetary science...

  6. The Combustion of HMX. [burning rate at high pressures

    Science.gov (United States)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.

    1980-01-01

    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  7. Scheelite CaWO{sub 4} at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Grzechnik, Andrzej [Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany); Crichton, Wilson A [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble cedex (France); Hanfland, Michael [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble cedex (France); Smaalen, Sander van [Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany)

    2003-11-05

    The high-pressure room-temperature behaviour of scheelite CaWO{sub 4} (I4{sub 1}/a,Z = 4) is studied using high-resolution synchrotron angle-dispersive x-ray powder diffraction in diamond anvil cells loaded with helium or a mixture of methanol and ethanol as the pressure-transmitting media. At about 10 GPa, there occurs a phase transition to the fergusonite type (I 2/a,Z = 4) without any discontinuity in the pressure dependence of the unit cell volumes. These observations are discussed in relation to the high-pressure-high-temperature systematics of the AMX{sub 4} and AX{sub 2} type compounds.

  8. Deformation Twinning of a Silver Nanocrystal under High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Liu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang

    2015-11-01

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  9. High-Pressure Design of Advanced BN-Based Materials.

    Science.gov (United States)

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B13N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  10. How Potassium Can Help Control High Blood Pressure

    Science.gov (United States)

    ... natural sources of potassium. For example, a medium banana has about 420 mg of potassium and half ... high blood pressure. Learn more Get a fact sheet on following a heart-healthy diet: English | Spanish ...

  11. A Generalized Equation of State for High-Pressure Liquids

    Institute of Scientific and Technical Information of China (English)

    LIANG Yan-bo; TONG Jing-shan

    2005-01-01

    An equation of state (EOS) for high-pressure liquids, I.e., Tait EOS, is deduced according to isothermal compressibility KT=-1/V·((а)V/(а)p)T·.Based on the equation, a generalized EOS for high pressure-liquids is established by using the reduced state principle and introducing a characteristic parameter-configuration factorξ.Reasonably satisfactory P-V-T data for many organic compounds, including some polar components, were calculated by using the equation.

  12. Synthesis of an orthorhombic high pressure boron phase

    Science.gov (United States)

    Zarechnaya, Evgeniya Yu; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Miyajima, Nobuyoshi; Filinchuk, Yaroslav; Chernyshov, Dmitry; Dmitriev, Vladimir

    2008-12-01

    The densest boron phase (2.52 g cm-3) was produced as a result of the synthesis under pressures above 9 GPa and temperatures up to ~1800 °C. The x-ray powder diffraction pattern and the Raman spectra of the new material do not correspond to those of any known boron phases. A new high-pressure high-temperature boron phase was defined to have an orthorhombic symmetry (Pnnm (No. 58)) and 28 atoms per unit cell.

  13. Effect of high pressure on physicochemical properties of meat.

    Science.gov (United States)

    Buckow, Roman; Sikes, Anita; Tume, Ron

    2013-01-01

    The application of high pressure offers some interesting opportunities in the processing of muscle-based food products. It is well known that high-pressure processing can prolong the shelf life of meat products in addition to chilling but the pressure-labile nature of protein systems limits the commercial range of applications. High pressure can affect the texture and gel-forming properties of myofibrillar proteins and, hence, has been suggested as a physical and additive-free alternative to tenderize and soften or restructure meat and fish products. However, the rate and magnitude at which pressure and temperature effects take place in muscles are variable and depend on a number of circumstances and conditions that are still not precisely known. This review provides an overview of the current knowledge of the effects of high pressure on muscle tissue over a range of temperatures as it relates to meat texture, microstructure, color, enzymes, lipid oxidation, and pressure-induced gelation of myofibrillar proteins.

  14. High-pressure-low-temperature x-ray power diffractometer.

    Science.gov (United States)

    Syassen, K; Holzapfel, W B

    1978-08-01

    A high-pressure technique for x-ray diffraction studies at low temperatures is described. The system consists of a Bridgman anvil type high-pressure device with either tungsten carbide or boron carbide anvils, a liquid He cryostat, and x-ray diffractometer operating in Debye-Scherrer geometry. The newly developed boron carbide anvil cell is capable of containing a liquid pressure transmitting medium. The precision of the lattice parameter determination is discussed and the effect of nonisostatic stress components on the diffraction pattern is examined.

  15. High pressure and multiferroics materials: a happy marriage

    Science.gov (United States)

    Gilioli, Edmondo; Ehm, Lars

    2014-01-01

    The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities. PMID:25485138

  16. Very high pressure Moessbauer spectroscopy using diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, M.P.; Taylor, R.D.

    1988-01-01

    The technique of generating very high pressure by means of Diamond Anvil Cells (DAC) for Mossbauer Effect applications is outlined. A comprehensive description is presented of the principles of DAC, modification for the use in M/umlt o/ssbauer Spectroscopy (MS), the Merrill--Bassett and Bassett cells, of pressure measurements, of gasketing and collimation, and of hydrostatic media. Examples of /sup 151/Eu, /sup 119/Sn and /sup 129/I are given showing the feasibility of DAC applications in MS. Other isotopes with potential use for high pressure MS using DAC are suggested. 27 refs., 9 figs.

  17. High pressure and multiferroics materials: a happy marriage.

    Science.gov (United States)

    Gilioli, Edmondo; Ehm, Lars

    2014-11-01

    The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.

  18. High pressure and multiferroics materials: a happy marriage

    Directory of Open Access Journals (Sweden)

    Edmondo Gilioli

    2014-11-01

    Full Text Available The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.

  19. The treatment of gaseous benzene by two-phase partitioning bioreactors: a high performance alternative to the use of biofilters

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.T.; Daugulis, A.J. [Dept. of Chemical Engineering, Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    A 2-1 (1-1 working volume) two-phase partitioning bioreactor (TPPB) was used as an integrated scrubber/bioreactor in which the removal and destruction of benzene from a gas stream was achieved by the reactor's organic/aqueous liquid contents. The organic solvent used to trap benzene was n-hexadecane, and degradation of benzene was achieved in the aqueous phase using the bacterium Alcaligenes xylosoxidans Y234. A gas stream with a benzene concentration of 340 mg l{sup -1} at a flow rate of 0.414 l h{sup -1} was delivered to the system at a loading capacity of 140 g m{sup -3} h{sup -1}, and an elimination capacity of 133 g m{sup -3} h{sup -1} was achieved (the volume in this term is the total liquid volume of the TPPB). This elimination capacity is between 3 and 13 times greater than any benzene elimination achieved by biofiltration, a competing biological air treatment strategy. It was also determined that the evaluation of TPPB performance in terms of elimination capacity should include the cell mass present in the system, as this is a readily controllable quantity. A specific benzene utilization rate of 0.57 g benzene (g cells){sup -1} h{sup -1} was experimentally determined in a bioreactor with a cell concentration that varied dynamically between 0.2 and 1 g l{sup -1}. If it assumed that this specific benzene utilization rate (0.57 g g{sup -1} h{sup -1}) is independent of cell concentration, then a TPPB operated at high cell concentrations could potentially achieve elimination capacities several hundred times greater than those obtained with biofilters. (orig.)

  20. Enhanced photocatalytic oxidation of gaseous elemental mercury by TiO2 in a high temperature environment.

    Science.gov (United States)

    Shen, Huazhen; Ie, Iau-Ren; Yuan, Chung-Shin; Hung, Chung-Hsuang; Chen, Wei-Hsiang; Luo, Jinjing; Jen, Yi-Hsiu

    2015-05-30

    The photo-oxidation of Hg(0) in a lab-scale reactor by titanium dioxide (TiO2) coated on the surface of glass beads was investigated at high temperatures. TiO2 was calcinated at four different temperatures of 300 °C, 400 °C, 500 °C and 600 °C (noted as Ti300, Ti400, Ti500 and Ti600) and characterized for its physicochemical properties. The calcinated TiO2 coating on the glass beads was then tested to compare the photo-oxidation efficiencies of Hg(0) with an incident light of 365 nm. The results showed that the oxidation efficiencies of Hg(0) for Ti400 and Ti500 were higher than those of Ti300 and Ti600. To enhance the photo-oxidation efficiency of Hg(0), Ti400 was selected to examine the wave lengths (λ) of 254 nm, 365 nm and visible light with various influent Hg(0) concentrations. The effects of irradiation strength and the presence of oxygen on the photo-oxidation efficiency of Hg(0) were further investigated, respectively. This study revealed that the wave length (λ) of 254 nm could promote the photo-oxidation efficiency of Hg(0) at 140 and 160 °C, while increasing the influent Hg(0) concentration and could enhance the photo-oxidation rate of Hg(0). However, the influence of 5% O2 present in the flue gas for the enhancement of Hg(0) oxidation was limited. Moreover, the intensity of the incident wave length of 365 nm and visible light were demonstrated to boost the photo-oxidation efficiency of Hg(0) effectively.

  1. High-pressure studies of cyclohexane to 40 GPa.

    Science.gov (United States)

    Pravica, Michael; Shen, Yongrong; Quine, Zachary; Romano, Edward; Hartnett, David

    2007-04-26

    We present data from two room temperature synchrotron X-ray powder diffraction studies of cyclohexane up to approximately 40 and approximately 20 GPa. In the first experiment, pressure cycling was employed wherein pressure was varied up to approximately 16 GPa, reduced to 3.5 GPa, and then raised again to 40 GPa. Initially, the sample was found to be in the monoclinic phase (P12(1)/n1) at approximately 8.4 GPa. Beyond this pressure, the sample adopted triclinic unit cell symmetry (P1) which remained so even when the pressure was reduced to 3.5 GPa, indicating significant hysteresis and metastability. In the second experiment, pressure was more slowly varied, and the monoclinic unit cell structure (P12(1)/n1) was observed at lower pressures up to approximately 7 GPa, above which a phase transformation into the P1 triclinic unit cell symmetry occurred. Thus, the pressure onset of the triclinic phase may be dependent upon the pressurizing conditions. High-pressure Raman data that further emphasize a phase transition (probably into phase VI) around 10 GPa are also presented. We also have further evidence for a phase VII, which is probably triclinic.

  2. High-pressure crystallography of periodic and aperiodic crystals.

    Science.gov (United States)

    Hejny, Clivia; Minkov, Vasily S

    2015-03-01

    More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal-organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium 'High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

  3. Hydrogen Storage in Mesoporous Materials under High Pressure

    Science.gov (United States)

    Weinberger, Michelle; Somayazulu, Maddury; Hemley, Russell

    2008-03-01

    To date, the materials considered best candidates for hydrogen storage fuel cells include activated carbon and metal organic frameworks. Both very high surface area activated carbon and MOF-5 have been shown to adsorb around 4.5 wt % of hydrogen gas at 78 K. We have investigated the fundamental structural response of these materials to high pressure, as well as their behavior at high pressure when packed with dense hydrogen. Further investigation of these materials at low temperatures while still at elevated pressures may in fact provide a route for recovery of these hydrogen-packed materials to near ambient conditions. Covalent organic frameworks offer the potential for even better hydrogen storage capacity. These materials have significantly lower densities than the MOF materials and offer a significantly larger number of adsorption sites. Diamond anvil cells are uniquely suited for the study of these materials, allowing in situ measurements at high pressure as well as at low temperatures. Using X-ray diffraction and Raman spectroscopy and Infrared Spectroscopy we probe the behavior of the hydrogen confined in these porous materials at high pressure by tracking changes in the in situ high pressure x-ray diffraction patterns and shifts in the hydrogen vibron peaks.

  4. Advances and synergy of high pressure sciences at synchrotron sources

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  5. High-pressure crystallography of periodic and aperiodic crystals

    Directory of Open Access Journals (Sweden)

    Clivia Hejny

    2015-03-01

    Full Text Available More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal–organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium `High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

  6. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Swanson

    2005-08-30

    50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  7. High blood pressure in older subjects with cognitive impairment.

    Science.gov (United States)

    Mossello, Enrico; Simoni, David

    2016-06-22

    High blood pressure and cognitive impairment often coexist in old age, but their pathophysiological association is complex. Several longitudinal studies have shown that high blood pressure at midlife is a risk factor for cognitive impairment and dementia, although this association is much less clear in old age. The effect of blood pressure lowering in reducing the risk of dementia is only borderline significant in clinical trials of older subjects, partly due to the insufficient follow-up time. Conversely, dementia onset is associated with a decrease of blood pressure values, probably secondary to neurodegeneration. Prognostic effect of blood pressure values in cognitively impaired older subjects is still unclear, with aggressive blood pressure lowering being potentially harmful in this patients category. Brief cognitive screening, coupled with simple motor assessment, are warranted to identify frail older subjects who need a more cautious approach to antihypertensive treatment. Values obtained with ambulatory blood pressure monitoring seem more useful than clinical ones to predict the outcome of cognitively impaired older subjects. Future studies should identify the most appropriate blood pressure targets in older subjects with cognitive impairment.

  8. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  9. Aqueous Geochemistry at High Pressures and High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Jay D. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  10. Electrical Resistivity and Thermodynamic Properties of Iron Under High Pressure

    Science.gov (United States)

    Hieu, Ho Khac; Hai, Tran Thi; Hong, Nguyen Thi; Sang, Ngo Dinh; Tuyen, Nguyen Viet

    2017-03-01

    In this work, the electrical resistivity and thermodynamic properties of iron under high pressure have been investigated by using the semi-empirical approach. The recently well-established Grüneisen parameter expressions have been applied to derive the Debye frequency and temperature under compression. Using these results combined with the Bloch-Grüneisen law, the resistivity of iron has also been determined up to Earth's core pressures. We show that the electrical resistivity diminished gradually with pressure and saturates at high pressure. Our model gives low electrical resistivity values which are in agreement with the recent experimental measurements. The low resistivity may be attributed to the well-known resistivity saturation effect at high temperature, which was not considered in earlier models of core conductivity.

  11. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    Science.gov (United States)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  12. Ultra-High Pressure Modeling and Experiments Review

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, M; Darnell, I

    2004-06-01

    The RDHWT/MARIAH II energy addition, run time, and mass flow rate requirement simply large air and nitrogen fluid volumes at the highest practicable static enthalpy. The objective of the gas supply concept development is the satisfaction of ultra-high pressure (UHP), high temperature thermodynamic requirements in a facility with acceptable safety and economic risks. The primary challenges for the mechanical design are connecting multiple volumes at pressures greater than 1,400MPa and temperatures greater than 500 K; fabricating high strength steel sections approximately 2 m in typical dimension, and reacting the pressure-related forces in the system. In the 'octahedral module' concept, four UHP intensifiers and two UHP manifolds are arranged in an 'octahedral' geometry that results in acceptable deviatoric stresses at cross bores. Multiple modules join to provide the required UHP volume at a stagnation pressure of 2100MPa and stagnation temperature of 750 K.

  13. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H.; Bonner, Brian P.

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  14. High pressure extraction of phenolic compounds from citrus peels†

    Science.gov (United States)

    Casquete, R.; Castro, S. M.; Villalobos, M. C.; Serradilla, M. J.; Queirós, R. P.; Saraiva, J. A.; Córdoba, M. G.; Teixeira, P.

    2014-10-01

    This study evaluated the effect of high pressure processing on the recovery of high added value compounds from citrus peels. Overall, the total phenolic content in orange peel was significantly (P < .05) higher than that in lemon peel, except when pressure treated at 500 MPa. However, lemon peel demonstrated more antioxidant activity than orange peel. Pressure-treated samples (300 MPa, 10 min; 500 MPa, 3 min) demonstrated higher phenolic content and antioxidant activity comparatively to the control samples. For more severe treatments (500 MPa, 10 min), the phenolic content and antioxidant activity decreased in both lemon and orange peels. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014), in Nantes (France), 15-18 July 2014.

  15. Solid–gaseous phase transformation of elemental contaminants during the gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Ameh, Abiba [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom); Lei, Mei [Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Duan, Lunbo [Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Longhurst, Philip, E-mail: P.J.Longhurst@cranfield.ac.uk [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid–gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (< 1000 °C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000–1200 °C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (> 1200 °C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. - Highlights: • Disposal of plants removed from metal contaminated land raises environmental concerns • Plant samples collected from a contaminated site are shown to contain heavy metals. • Gasification is suitable for plant disposal and its emission is modelled by MTDATA. • As, Cd, Zn and Pb are found in gaseous emissions at a low process temperature. • High pressure gasification can reduce heavy metal elements in process emission.

  16. An apparatus to load gaseous materials to the diamond-anvil cell

    Science.gov (United States)

    Yagi, Takehiko; Yusa, Hitoshi; Yamakata, Masa-aki

    1996-08-01

    An apparatus to load gases to the sample chamber of the diamond-anvil cell has been devised. The apparatus is driven by a conventional 50 ton hydraulic press and no gas compressor is required. The gas from a commercial gas bomb is compressed to 150 MPa and loaded into the diamond-anvil cell sample chamber. After loading, the pressure of the diamond-anvil cell is increased further using the lever and spring mechanism. This kind of gas loading apparatus will become indispensable not only for studying gaseous materials themselves, but also for making precision measurements at high pressures and high temperatures under hydrostatic conditions.

  17. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.;

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi......The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse...... at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition...

  18. Viscosity and compressibility of diacylglycerol under high pressure

    Science.gov (United States)

    Malanowski, Aleksander; Rostocki, A. J.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Kościesza, R.; Tarakowski, R.; Ptasznik, S.; Siegoczyński, R. M.

    2013-03-01

    The influence of high pressure on viscosity and compressibility of diacylglycerol (DAG) oil has been presented in this paper. The investigated DAG oil was composed of 82% of DAGs and 18% TAGs (triacylglycerols). The dynamic viscosity of DAG was investigated as a function of the pressure up to 400 MPa. The viscosity was measured by means of the surface acoustic wave method, where the acoustic waveguides were used as sensing elements. As the pressure was rising, the larger ultrasonic wave attenuation was observed, whereas amplitude decreased with the liquid viscosity augmentation. Measured changes of physical properties were most significant in the pressure range near the phase transition. Deeper understanding of DAG viscosity and compressibility changes versus pressure could shed more light on thermodynamic properties of edible oils.

  19. Measurements of Charge and Light in Pure High Pressure Xe towards the Study of Xe+TMA Mixtures with Dark Matter Directionality Sensitivity and Supra-intrinsic Energy Resolution for 0νββ Decay Searches

    Science.gov (United States)

    Oliveira, C. A. B.; Gehman, V.; Goldschmidt, A.; Nygren, D.; Renner, J.

    Trimethylamine (TMA) may improve the energy resolution of gaseous xenon based detectors for 0νββ decay searches through the reduction of the Fano factor by the Penning effect. This molecule may also be the key for sensing directionality of nuclear recoils induced by Weakly Interacting Massive Particles (WIMPs) in monolithic massive (ton-scale) detectors, without the need of track imaging, by making use of columnar recombination. Nuclear recoil directionality may be the path for a definite discovery of the WIMP nature of Dark Matter. An ionization chamber has been constructed and operated to explore the properties of high pressure gaseous Xe + TMA mixtures for particle detection in rare-event experiments. The ionization, scintillation and electroluminescence (EL) signals are measured as function of pressure and electric field. We present results for pure xenon at pressures up to 8 bar. This work has been carried out within the context of the NEXT collaboration.

  20. Gaseous haloes : Linking galaxies to the IGM

    NARCIS (Netherlands)

    Fraternali, Filippo; Binney, James; Oosterloo, Tom; Sancisi, Renzo

    2007-01-01

    In recent years, evidence has accumulated that nearby spiral galaxies are surrounded by massive haloes of neutral and ionised gas. These gaseous haloes rotate more slowly than the disks and show inflow motions. They are clearly analogous to the High Velocity Clouds of the Milky Way. We show that the

  1. High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C

    2004-05-26

    Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid [1]. With modern advances in high-pressure technologies [2], it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration [3]. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varying temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carbon-carbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high

  2. High Pressure Strength Study on NaCl

    Science.gov (United States)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  3. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1980-01-01

    A cell for pulse radiolytic measurements up to temperatures of 320°C and pressures of 14 MPa is constructed. The activation energy of the reaction OH + Cu2+ is determined to 13.3 kJ × mol−1 (3.2 kcal × mol−1). A preliminary study of the reaction e−aq + e−aq yields an activation energy of 22 kJ × ...

  4. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  5. High voltage research (breakdown strengths of gaseous and liquid insulators) and environmental effects of dielectric gases. Semiannual report, October 1, 1979-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Christophorou, L.G.; James, D.R.; Pai, R.Y.

    1980-08-01

    Topics covered include basic studies of gaseous dielectrics, direct current breakdown strengths of gases/mixtures, environmental effects studies and decomposition analyses, impulse studies, breakdown strengths of binary mixtures with concentric cylinder geometry, and a discussion of the experimental apparatus. (GHT)

  6. Experimental Survey of Microbial Survival at High Pressure

    Science.gov (United States)

    Griffin, P.; Kish, A.

    2008-12-01

    The magnitude and onset of lethal pressure effects varies widely even among closely related organisms. This variability complicates the prediction of a species' piezotolerance based on cellular physiology and native stress resistance. In this study several non-piezophilic species were cultured at optimal conditions to both mid log and stationary phases, exposed to elevated pressure for ten minutes, and plated upon return to ambient conditions to determine survival via colony count. The archaeal halophile Halobacterium strain NRC-1 exhibited almost full survival up to pressures of 400 MPa. Model organism Escherichia coli was used to establish a baseline for bacterial organisms but also displayed a bifurcated pressure response, with pressure-sensitive and -tolerant substrains residing within a single population . Pressure exposure proved slightly more lethal to the bacterial halophile Chromohalobacter salexigens than for E. coli up to a critical point of 300 MPa beyond which modest increases in pressure (~ 25 MPa) decreased survival by orders of magnitude. These survival data combined with a comparison of cellular physiology and native stress resistance provide some insight into which aspects of cellular function contribute to high pressure survival.

  7. Experimental in situ investigations of turbulence under high pressure.

    Science.gov (United States)

    Song, Kwonyul; Al-Salaymeh, Ahmed; Jovanovic, Jovan; Rauh, Cornelia; Delgado, Antonio

    2010-02-01

    In tube injection systems applied in high-pressure processing of packed biomaterials and foods, the pressure-transmitting medium is injected into the vessel to increase the pressure up to 1000 MPa, generating a submerged liquid-free jet. The presence of a turbulent-free jet during the pressurization phase and its positive influence on the homogeneity of the product treatment has already been examined by computational fluid dynamics investigations. However, no experimental data have supported the existence and properties of turbulent flow under high-pressure (HP) conditions up to 400 MPa. This contribution presents the development of two experimental setups: HP-laser Doppler anemometry and HP-hot wire anemometry. For the first time the time-averaged velocity profiles of a free jet during pressurization up to 300 MPa at different Reynolds numbers (Re) have been obtained. In this article, the dependence of the velocity profiles on the Re is discussed in detail. Moreover, the relaminarization phenomenon of the turbulent pipe flow most likely caused by the compressibility effects and viscosity changes of the pressure-transmitting medium is examined.

  8. Photoconductivity studies of the ferrocyanide ion under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Finston, M. I.

    1979-01-01

    The photoaquation of the ferrocyanide ion was studied using a high-pressure photoconductivity apparatus and a steady-state high-pressure mercury lamp. The first-order photocurrent rise-time could be related to the relative quantum efficiency of the photoaquation process, while the dark decay of the photocurrent yielded a relative value of the bimolecular rate-constant for the reverse reaction. Kinetic measurements were carried out on dilute solutions of potassium ferrocyanide in pure water, and in 20% ethanol. The photocurrent yield in aqueous solution was dependent upon secondary chemical equilibria which were sensitive to pressure in a predictable way. In ethanolic solution, the dependence of photocurrent yield on pressure followed the variation of the reciprocal solvent vicosity. In both aqueous and alcoholic solution, the photoaquation quantum efficiency decreased exponentially with pressure, as did the biomolecular rate-constant for the dark reaction in aqueous solution. The pressure dependence of the bimolecular rate-constant in the alcoholic solution indicated a diffusion-limited process. The pressure dependence of the photoaquation quantum yield, and of the bimolecular rate-constant in aqueous solution, was interpreted in terms of an activation volume model. The photoaquation data for both the aqueous and the alcoholic solutions agreed with a hypothetical mechanism whereby ligand-to-metal bond-breaking, and solvent-to-metal bond-formation, are effectively simultaneous. The results for the aqueous dark reaction strongly indicated breaking of the solvent-to-metal bond as the rate-limiting step.

  9. High-Pressure Microscopy for Studying Molecular Motors.

    Science.gov (United States)

    Nishiyama, Masayoshi

    2015-01-01

    Movement is a fundamental characteristic of all living things. This biogenic function is carried out by various nanometer-sized molecular machines. Molecular motor is a typical molecular machinery in which the characteristic features of proteins are integrated; these include enzymatic activity, energy conversion, molecular recognition and self-assembly. These biologically important reactions occur with the association of water molecules that surround the motors. Applied pressures can alter the intermolecular interactions between the motors and water. In this chapter we describe the development of a high-pressure microscope and a new motility assay that enables the visualization of the motility of molecular motors under conditions of high-pressure. Our results demonstrate that applied pressure dynamically changes the motility of molecular motors such as kinesin, F1-ATPase and bacterial flagellar motors.

  10. High pressure fracturing in Colombia: a quantum leap

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Juan C. [BP Exploration (United Kingdom); Gutierrez, Jim; Ham, Ernesto; Castro, Alberto [BJ Services Company (United States)

    2004-07-01

    Fracturing has become one of the most common stimulation and well completion techniques in petroleum production. Due to the deeper depths and high frac gradients encountered in some areas, various treatments have resulted in early screen outs or aborted operations due to insufficient rate limited by the available treating pressures. A state of the art technology and high pressure equipment including the largest frac pumps (rated at 2,700 hhp) in the world, were used in Colombian fields to overcome these limitations. The reliability of this equipment has allowed the treatment of these wells to operating pressures of up to 18,000 psi and rates in excess of 40 bpm, placing up to 400,000 lbs of bauxite. Bottom hole treating pressures of 25,000 psi also were reached. This paper describes the development of the fracture campaign and relates the jobs performed to date, including the results and lessons learned (author)

  11. Oxygen Escape from Venus During High Dynamic Pressure ICMEs

    Science.gov (United States)

    McEnulty, Tess; Luhmann, J. G.; Brain, D. A.; Fedorov, A.; Jian, L. K.; Russell, C. T.; Zhang, T.; Möstl, C.; Futaana, Y.; de Pater, I.

    2013-10-01

    Previous studies using data from Pioneer Venus suggested that oxygen ion escape flux may be enhanced by orders of magnitude during Interplanetary Coronal Mass Ejections. However, this large enhancement has been ambiguous in Venus Express ion data - with some analyses showing no flux enhancement or a small enhancement (within 2 times undisturbed cases). One possible explanation is that high escape flux may be due to high dynamic pressure in the solar wind, and the dynamic pressure has been lower during the VEX time period. So, we focus on ICMEs with the largest dynamic pressure and with VEX sampling of the escaping ions during the sheath of the ICMEs (during which the highest dynamic pressures in the solar wind occur). We will show the characteristics of these large events measured by VEX, and compare them to the largest ICMEs measured by PVO. We will then discuss estimates of the oxygen ion escape flux during these events.

  12. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    Science.gov (United States)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  13. High pressure intensification of cassava resistant starch (RS3) yields.

    Science.gov (United States)

    Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan

    2015-08-15

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.

  14. The phase diagram of high-pressure superionic ice

    Science.gov (United States)

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; Car, Roberto

    2015-08-01

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P21/c symmetry. We also discover that higher pressure phases have lower transition temperatures. The diffusive hydrogen in the P21/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P21/c superionic phase transition.

  15. Structural transition of FeSe under high pressure

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Chen Jun-Fang; He Qin-Yu; Wang Teng; Pan Zhong-Liang

    2011-01-01

    The density functional calculations of the energy band structure and density of state for the tetragonal PbO-type phase α-FeSe and hexagonal NiAs-type phase β-FeSe are reported in this paper. The structural phase transition from tetragonal to hexagonal FeSe under high pressure is investigated, it is found that the calculated transition pressure for the α→β phase transformation is 8.5 GPa. Some fluctuations in the transition pressure maybe occurred by different external factors such as temperature and stress condition. There is about 17% volume collapse accompanying the α→β phase transformation.

  16. High-pressure study of tetramethylsilane by Raman spectroscopy.

    Science.gov (United States)

    Qin, Zhen-Xing; Zhang, Jian-Bo; Troyan, Ivan; Palasyuk, Taras; Eremets, Mikhail; Chen, Xiao-Jia

    2012-01-14

    High-pressure behavior of tetramethylsilane, one of the Group IVa hydrides, was investigated by Raman scattering measurements at pressures up to 142 GPa and room temperature. Our results revealed the phase transitions at 0.6, 9, and 16 GPa from both the mode frequency shifts with pressure and the changes of the full width half maxima of these modes. These transitions were suggested to result from the changes in the inter- and intra-molecular bonding of this material. We also observed two other possible phase transitions at 49-69 GPa and 96 GPa. No indication of metallization in tetramethylsilane was found with stepwise compression to 142 GPa.

  17. Order-Disorder Transformation in Alloys under High Pressure

    OpenAIRE

    Hiroshi, IWASAKI; The Research Institute for Iron, Steel and Other Metals Tohoku University

    1981-01-01

    Effects of high pressure on the order-disorder transformation have been investigated by means of X-ray diffraction and electrical resistivity measurement on the four kinds of binary alloys. It has been shown that pressure not only shifts the critical temperature of the transformation (CuAu, CuPt, AgZn) but also the homogeneity range in which ordered phase forms (Cu_6Pd_4). The ordered phase with long period, CuAuII, becomes less stable with increasing pressure and the one with the simple Ll_0...

  18. {alpha}-Glycine under high pressures: a Raman scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Murli, Chitra; Sharma, S.M.Surinder M.; Karmakar, S.; Sikka, S.K

    2003-11-01

    High-pressure behaviour of {alpha}-glycine has been investigated up to {approx}23 GPa using Raman scattering technique. The experimental results show slope change in the CO{sub 2} bending, NH{sub 3} torsional and NH{sub 3} rocking modes around 3 GPa and are interpreted in terms of change in the nature of an N-H...O-C intra-layer hydrogen bond at this pressure. Several other spectral features seem to arise from pressure-induced variations in the inter-molecular coupling.

  19. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  20. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanocrystalline powders under pressure. We offer a tentative interpretation of the distribution of macro- and micro-strains in nanoparticles of different grain size.