WorldWideScience

Sample records for high performance quantum

  1. Quantum Accelerators for High-performance Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL

    2017-11-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.

  2. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  3. Progress in high-performance quantum cascade lasers

    Science.gov (United States)

    Lyakh, Arkadiy; Maulini, Richard; Tsekoun, Alexei G.; Patel, C. Kumar N.

    2010-11-01

    Because of their compact size, reliability, tunability, and convenience of direct electrical pumping, quantum cascade lasers have found a number of important civilian and defense applications in the midwave infrared and long-wave-infrared spectral range. Most of these applications would benefit from higher laser optical power and higher wall-plug efficiency. We describe some of the most important features of high-efficiency quantum cascade laser design and realization of high-power quantum cascade laser systems. Specifically, optimization of the active region and waveguide, thermal management on the chip level, and impact of the laser facet coating on laser efficiency and scaling of optical power with cavity length are discussed. Also, we present experimental results demonstrating multiwatt operation with reliability of at least several thousands of hours on a system level.

  4. Possibility of high performance quantum computation by superluminal evanescent photons in living systems.

    Science.gov (United States)

    Musha, Takaaki

    2009-06-01

    Penrose and Hameroff have suggested that microtubules in living systems function as quantum computers by utilizing evanescent photons. On the basis of the theorem that the evanescent photon is a superluminal particle, the possibility of high performance computation in living systems has been studied. From the theoretical analysis, it is shown that the biological brain can achieve large quantum bits computation compared with the conventional processors at room temperature.

  5. Solution-processed, high-performance light-emitting diodes based on quantum dots

    Science.gov (United States)

    Dai, Xingliang; Zhang, Zhenxing; Jin, Yizheng; Niu, Yuan; Cao, Hujia; Liang, Xiaoyong; Chen, Liwei; Wang, Jianpu; Peng, Xiaogang

    2014-11-01

    Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions--remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm-2), and a long operational lifetime of more than 100,000 hours at 100 cd m-2, making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.

  6. High-performance graphene-quantum-dot photodetectors

    National Research Council Canada - National Science Library

    Kim, Chang Oh; Hwang, Sung Won; Kim, Sung; Shin, Dong Hee; Kang, Soo Seok; Kim, Jong Min; Jang, Chan Wook; Kim, Ju Hwan; Lee, Kyeong Won; Choi, Suk-Ho; Hwang, Euyheon

    2014-01-01

    ...) behaviors of PDs consisting of multiple-layer GQDs sandwiched between graphene sheets. High detectivity (>10(11) cm Hz(1/2)/W) and responsivity (0.2 ~ 0.5 A/W) are achieved in the broad spectral range from UV to near infrared...

  7. A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers

    Energy Technology Data Exchange (ETDEWEB)

    Potok, Thomas E [ORNL; Schuman, Catherine D [ORNL; Young, Steven R [ORNL; Patton, Robert M [ORNL; Spedalieri, Federico [University of Southern California, Information Sciences Institute; Liu, Jeremy [University of Southern California, Information Sciences Institute; Yao, Ke-Thia [University of Southern California, Information Sciences Institute; Rose, Garrett [University of Tennessee (UT); Chakma, Gangotree [University of Tennessee (UT)

    2016-01-01

    Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determine network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.

  8. Confinement enhancing barriers for high performance quantum dots-in-a-well infrared detectors

    Science.gov (United States)

    Barve, A. V.; Sengupta, S.; Kim, J. O.; Sharma, Y. D.; Adhikary, S.; Rotter, T. J.; Lee, S. J.; Kim, Y. H.; Krishna, S.

    2011-11-01

    We demonstrate the use of thin AlGaAs barrier layers in the quantum dots in a well heterostructure to enhance the quantum confinement of carriers in the excited energy level, while maintaining high escape probability. This is achieved by controlling the excited state energy between the confinement enhancing (CE) barriers and the continuum level. Responsivity of ˜0.1 A/W, detectivity of 6.5 × 1010 cmHz1/2 W-1 (77 K, 0.6 V, 7.5 µm, f/2), and a factor of 10 improvement over a control sample without the CE barriers have been measured. The effect of changing the quantum well thickness and quantum dot size is also reported.

  9. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications.

    Science.gov (United States)

    Altintas, Yemliha; Genc, Sinan; Talpur, Mohammad Younis; Mutlugun, Evren

    2016-07-22

    Colloidal quantum dots have attracted significant interest in recent years for lighting and display applications and have recently appeared in high-end market products. The integration of quantum dots with light emitting diodes has made them promising candidates for superior lighting applications with tunable optical characteristics. In this work we propose and demonstrate high quality colloidal quantum dots in their novel free-standing film forms to allow high quality white light generation to address flexible lighting and display applications. High quality quantum dots have been characterized using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, steady state and time resolved photoluminescence and dynamic light scattering methods. The engineering of colloidal quantum dot composition and its optical properties in stand-alone film form has led to the experimentally high NTSC color gamut of 122.5 (CIE-1931) for display applications, color rendering index of 88.6, luminous efficacy of optical radiation value of 290 lm/Wopt and color temperature of 2763 K for lighting applications.

  10. Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors

    Science.gov (United States)

    Wu, Yage; Ran, Fen

    2017-03-01

    In this article, vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers (VNQD/CNF) is developed by a method of combination of electrostatic spinning and high-temperature calcination under the atmosphere of NH3: N2 = 3: 2 for high performance supercapacitors. VNQD dispersing into CNF, enrichment of N atom doped in carbon bulk, and abundant porous structure not only prevent the growth and aggregation of VN nanoparticles, improve electrical conductivity, wettability, and stability of the electrode materials, but also enhance fast migration of electrolyte ions during the electrochemical process. Thus, VNQD/CNF exhibits a high specific capacitance of 406.5 F g-1 at 0.5 A g-1 and a good rate capability with a capacitance retention of 75.1% at 5.0 A g-1. Additionally, VNQD/CNF as a negative electrode are combined with Ni(OH)2 as a positive electrode to fabricate the hybrid supercapacitor of VNQD/CNF//Ni(OH)2. Remarkably, at a power density of 774.6 W kg-1, the supercapacitor device delivers an ultrahigh energy density of 31.2 Wh kg-1.

  11. Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells.

    Science.gov (United States)

    Wu, Rongfang; Yang, Yuehua; Li, Miaozi; Qin, Donghuan; Zhang, Yangdong; Hou, Lintao

    2017-07-28

    PbS colloidal quantum dots (CQDs) solar cells have already demonstrated very impressive advances in recent years due to the development of many different techniques to tailor the interface morphology and compactness in PbS CQDs thin film. Here, n-hexane, n-octane, n-heptane, isooctane and toluene or their hybrids are for the first time introduced as solvent for comparison of the dispersion of PbS CQDs. PbS CQDs solar cells with the configuration of PbS/TiO₂ heterojunction are then fabricated by using different CQDs solution under ambient conditions. The performances of the PbS CQDs solar cells are found to be tuned by changing solvent and its content in the PbS CQDs solution. The best device could show a power conversion efficiency (PCE) of 7.64% under AM 1.5 G illumination at 100 mW cm(-2) in a n-octane/isooctane (95%/5% v/v) hybrid solvent scheme, which shows a ~15% improvement compared to the control devices. These results offer important insight into the solvent engineering of high-performance PbS CQDs solar cells.

  12. Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells

    Directory of Open Access Journals (Sweden)

    Rongfang Wu

    2017-07-01

    Full Text Available PbS colloidal quantum dots (CQDs solar cells have already demonstrated very impressive advances in recent years due to the development of many different techniques to tailor the interface morphology and compactness in PbS CQDs thin film. Here, n-hexane, n-octane, n-heptane, isooctane and toluene or their hybrids are for the first time introduced as solvent for comparison of the dispersion of PbS CQDs. PbS CQDs solar cells with the configuration of PbS/TiO2 heterojunction are then fabricated by using different CQDs solution under ambient conditions. The performances of the PbS CQDs solar cells are found to be tuned by changing solvent and its content in the PbS CQDs solution. The best device could show a power conversion efficiency (PCE of 7.64% under AM 1.5 G illumination at 100 mW cm−2 in a n-octane/isooctane (95%/5% v/v hybrid solvent scheme, which shows a ~15% improvement compared to the control devices. These results offer important insight into the solvent engineering of high-performance PbS CQDs solar cells.

  13. Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells

    Science.gov (United States)

    Wu, Rongfang; Yang, Yuehua; Li, Miaozi; Zhang, Yangdong; Hou, Lintao

    2017-01-01

    PbS colloidal quantum dots (CQDs) solar cells have already demonstrated very impressive advances in recent years due to the development of many different techniques to tailor the interface morphology and compactness in PbS CQDs thin film. Here, n-hexane, n-octane, n-heptane, isooctane and toluene or their hybrids are for the first time introduced as solvent for comparison of the dispersion of PbS CQDs. PbS CQDs solar cells with the configuration of PbS/TiO2 heterojunction are then fabricated by using different CQDs solution under ambient conditions. The performances of the PbS CQDs solar cells are found to be tuned by changing solvent and its content in the PbS CQDs solution. The best device could show a power conversion efficiency (PCE) of 7.64% under AM 1.5 G illumination at 100 mW cm−2 in a n-octane/isooctane (95%/5% v/v) hybrid solvent scheme, which shows a ~15% improvement compared to the control devices. These results offer important insight into the solvent engineering of high-performance PbS CQDs solar cells. PMID:28788077

  14. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells

    Science.gov (United States)

    McDaniel, Hunter; Fuke, Nobuhiro; Makarov, Nikolay S.; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-01-01

    Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2−x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2−x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime. PMID:24322379

  15. High performance reconciliation for continuous-variable quantum key distribution with LDPC code

    Science.gov (United States)

    Lin, Dakai; Huang, Duan; Huang, Peng; Peng, Jinye; Zeng, Guihua

    2015-03-01

    Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.

  16. High performance quantum cascade lasers: Loss, beam stability, and gain engineering

    Science.gov (United States)

    Bouzi, Pierre Michel

    Quantum Cascade (QC) lasers are semiconductor devices emitting in the mid-infrared (3-30 micron) and terahertz (30-300 micron) regions of the electromagnetic spectrum. Since their first demonstration by Jerome Faist et. al. in 1994, they have evolved very quickly into high performance devices and given rise to many applications such as trace-gas sensing, medical diagnosis, free-space communication, and light detection and ranging (LIDAR). In this thesis, we investigate a further increase of the performance of QC devices and, through meticulous device modeling and characterizations, gain a deeper understanding of several of their unique characteristics, especially their carrier transport and lifetime, their characteristic temperature, their waveguide loss and modal gain, their leakage current, and their transverse mode profile. First, in our quest to achieve higher performance, we investigate the effect of growth asymmetries on device transport characteristics. This investigation stems from recent studies on the role of interface roughness on intersubband scattering and device performance. Through a symmetric active core design, we find that interface roughness and ionized impurity scattering induced by dopant migration play a significant role in carrier transport through the device. Understanding how interface roughness affects intersubband scattering, in turn, we engineer the gain in QC devices by placing monolayer barriers at specific locations within the device band structure. These strategically placed additional thin barrier layers introduce roughness scattering into the device active region, thereby selectively decreasing the lower laser state lifetime and increasing population inversion necessary for laser action. Preliminary measurement results from modified devices reveal a 50% decrease in the emission broadening compared to the control structures, which should lead to a two-fold increase in gain. A special class of so-called "strong coupling" QC lasers

  17. High-dimensional quantum cloning and applications to quantum hacking.

    Science.gov (United States)

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim

    2017-02-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.

  18. On the impact of quantum computing technology on future developments in high-performance scientific computing

    NARCIS (Netherlands)

    Möller, M.; Vuik, C.

    2017-01-01

    Quantum computing technologies have become a hot topic in academia and industry receiving much attention and financial support from all sides. Building a quantum computer that can be used practically is in itself an outstanding challenge that has become the ‘new race to the moon’. Next to

  19. Polyethylenimine Ethoxylated-Mediated All-Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device.

    Science.gov (United States)

    Kim, Daekyoung; Fu, Yan; Kim, Sunho; Lee, Woosuk; Lee, Ki-Heon; Chung, Ho Kyoon; Lee, Hoo-Jeong; Yang, Heesun; Chae, Heeyeop

    2017-02-28

    We report on an all-solution-processed fabrication of highly efficient green quantum dot-light-emitting diodes (QLEDs) with an inverted architecture, where an interfacial polymeric surface modifier of polyethylenimine ethoxylated (PEIE) is inserted between a quantum dot (QD) emitting layer (EML) and a hole transport layer (HTL), and a MoOx hole injection layer is solution deposited on top of the HTL. Among the inverted QLEDs with varied PEIE thicknesses, the device with an optimal PEIE thickness of 15.5 nm shows record maximum efficiency values of 65.3 cd/A in current efficiency and 15.6% in external quantum efficiency (EQE). All-solution-processed fabrication of inverted QLED is further implemented on a flexible platform by developing a high-performing transparent conducting composite film of ZnO nanoparticles-overcoated on Ag nanowires. The resulting flexible inverted device possesses 35.1 cd/A in current efficiency and 8.4% in EQE, which are also the highest efficiency values ever reported in flexible QLEDs.

  20. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics

    National Research Council Canada - National Science Library

    Kim, Jung Kyu; Kim, Sang Jin; Park, Myung Jin; Bae, Sukang; Cho, Sung-Pyo; Du, Qing Guo; Wang, Dong Hwan; Park, Jong Hyeok; Hong, Byung Hee

    2015-01-01

    Graphene quantum dots (GQDs), a newly emerging 0-dimensional graphene based material, have been widely exploited in optoelectronic devices due to their tunable optical and electronic properties depending on their functional groups...

  1. Quantum Tunneling Affects Engine Performance.

    Science.gov (United States)

    Som, Sibendu; Liu, Wei; Zhou, Dingyu D Y; Magnotti, Gina M; Sivaramakrishnan, Raghu; Longman, Douglas E; Skodje, Rex T; Davis, Michael J

    2013-06-20

    We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 + O2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here.

  2. Growth of Bi2Te3 quantum dots/rods in glass: a unique highly stable nanosystem with novel functionality for high performance magneto optical devices.

    Science.gov (United States)

    Panmand, Rajendra P; Kumar, Ganapathy; Mahajan, Satish M; Shroff, Niloufer; Kale, Bharat B; Gosavi, Suresh W

    2012-12-21

    Magneto optical materials are currently of great interest, primarily for modern applications in optical isolation, modulation and switching in telecommunication. However, single crystals are the benchmark materials still used in these devices which are rather expensive and very difficult to fabricate. In this context, we are reporting herewith a stable and novel Bi(2)Te(3) quantum dot-glass nanosystem obtained using a controlled thermo-chemical method. The Q-dots of hexagonal Bi(2)Te(3) of size 4 to 14 nm were grown along the direction. Surprisingly, we obtained quantum rods of Bi(2)Te(3) of size 6 × 10 nm for the first time. The strong quantum confinement in the nanosystem is clearly shown by the optical study. The band gap of the host glass was drastically reduced (from 4.00 to 1.88 eV) due to the growth of Bi(2)Te(3) quantum dots whereas photoluminescence showed a Stokes shift ~175 meV. Faraday Rotation (FR) investigations of the Bi(2)Te(3) quantum dot-glass nanosystem show a nonlinear response in Verdet constant with a decrease in the Bi(2)Te(3) dot sizes. The Bi(2)Te(3) Q-dot-glass nanosystem with ~4 nm dots shows significant enhancement (70 times) in Verdet constant compared to the host glass and more radically better than conventional single crystal (TGG). This is the first time that such a type of unique nanosystem has been architectured and has given extremely good magneto-optical performance. We strongly feel that this novel nanosystem has tremendous applications in magneto-optical devices. It is noteworthy that expensive single crystals can be replaced with this cost effective novel glass nanosystem. Interestingly, the present quantum dot-glass nanosystem can be transformed into optical fibers very easily, which will have an exceptionally high impact on the fabrication of high performance magneto optical devices.

  3. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction

    Science.gov (United States)

    2016-01-01

    Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows that graphene quenches emission from the quantum dot suggesting spontaneous charge transfer to graphene. CQD photodetectors exhibit increased photoresponse and improved transport properties. We propose that the CQD/SG hybrid structure is a route to make CQD thin films with improved charge extraction, therefore resulting in improved solar cell efficiency. PMID:27213219

  4. Low quantum defect laser performance

    Science.gov (United States)

    Bowman, Steven R.

    2017-01-01

    Low quantum defect lasers are possible using near-resonant optical pumping. This paper examines the laser material performance as the quantum defect of the laser is reduced. A steady-state model is developed, which incorporates the relevant physical processes in these materials and predicts extraction efficiency and waste heat generation. As the laser quantum defect is reduced below a few percent, the impact of fluorescence cooling must be included in the analysis. The special case of a net zero quantum defect laser is examined in detail. This condition, referred to as the radiation balance laser (RBL), is shown to provide two orders of magnitude lower heat generation at the cost of roughly 10% loss in extraction efficiency. Numerical examples are presented with the host materials Yb:YAG and Yb:Silica. The general conditions, which yield optimal laser efficiency, are derived and explored.

  5. High-performance InGaN/GaN Quantum-Disks-in-Nanowires Light-emitters for Monolithic Metal-Optoelectronics

    KAUST Repository

    Zhao, Chao

    2016-11-21

    The first droop-free, reliable, and high-power InGaN/GaN quantum-disks-in-nanowires light-emitting diode on molybdenum substrates was demonstrated. The high performance was achieved through the epitaxial growth of high-quality nanowires on the all-metal stack of TiN/Ti/Mo.

  6. Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells.

    Science.gov (United States)

    Chen, Lijia; Guo, Chun Xian; Zhang, Qiaoming; Lei, Yanlian; Xie, Jiale; Ee, Shujing; Guai, Guanhong; Song, Qunliang; Li, Chang Ming

    2013-03-01

    Herein graphene quantum dot (GQD), a graphene material with lateral dimension less than 100 nm, is explored to dope PPy on F-doped tin oxide glass as an efficient counter electrode for high-performance dye-sensitized solar cells (DSSCs). The GQDs-doped PPy film has a porous structure in comparison to the densely structured plain PPy, and displays higher catalytic current density and lower charge transfer resistance than the latter toward I3(-)/I(-) redox reaction. The highest power conversion efficiency (5.27%) for DSSCs is achieved with PPy doped with10% GQDs, which is comparable to that of Pt counter electrode-based DSSCs. This work provides an inexpensive alternative to replace platinum for DSSCs.

  7. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics

    Science.gov (United States)

    Kim, Jung Kyu; Kim, Sang Jin; Park, Myung Jin; Bae, Sukang; Cho, Sung-Pyo; Du, Qing Guo; Wang, Dong Hwan; Park, Jong Hyeok; Hong, Byung Hee

    2015-09-01

    Graphene quantum dots (GQDs), a newly emerging 0-dimensional graphene based material, have been widely exploited in optoelectronic devices due to their tunable optical and electronic properties depending on their functional groups. Moreover, the dispersibility of GQDs in common solvents depending on hydrophobicity or hydrophilicity can be controlled by chemical functionalization, which is particularly important for homogeneous incorporation into various polymer layers. Here we report that a surface-engineered GQD-incorporated polymer photovoltaic device shows enhanced power conversion efficiency (PCE), where the oxygen-related functionalization of GQDs enabled good dispersity in a PEDOT:PSS hole extraction layer, leading to significantly improved short circuit current density (Jsc) value. To maximize the PCE of the device, hydrophobic GQDs that are hydrothermally reduced (rGQD) were additionally incorporated in a bulk-heterojunction layer, which is found to promote a synergistic effect with the GQD-incorporated hole extraction layer.

  8. High-performance full adder architecture in quantum-dot cellular automata

    Directory of Open Access Journals (Sweden)

    Hamid Rashidi

    2017-06-01

    Full Text Available Quantum-dot cellular automata (QCA is a new and promising computation paradigm, which can be a viable replacement for the complementary metal–oxide–semiconductor technology at nano-scale level. This technology provides a possible solution for improving the computation in various computational applications. Two QCA full adder architectures are presented and evaluated: a new and efficient 1-bit QCA full adder architecture and a 4-bit QCA ripple carry adder (RCA architecture. The proposed architectures are simulated using QCADesigner tool version 2.0.1. These architectures are implemented with the coplanar crossover approach. The simulation results show that the proposed 1-bit QCA full adder and 4-bit QCA RCA architectures utilise 33 and 175 QCA cells, respectively. Our simulation results show that the proposed architectures outperform most results so far in the literature.

  9. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics

    Science.gov (United States)

    Kim, Jung Kyu; Kim, Sang Jin; Park, Myung Jin; Bae, Sukang; Cho, Sung-Pyo; Du, Qing Guo; Wang, Dong Hwan; Park, Jong Hyeok; Hong, Byung Hee

    2015-01-01

    Graphene quantum dots (GQDs), a newly emerging 0-dimensional graphene based material, have been widely exploited in optoelectronic devices due to their tunable optical and electronic properties depending on their functional groups. Moreover, the dispersibility of GQDs in common solvents depending on hydrophobicity or hydrophilicity can be controlled by chemical functionalization, which is particularly important for homogeneous incorporation into various polymer layers. Here we report that a surface-engineered GQD-incorporated polymer photovoltaic device shows enhanced power conversion efficiency (PCE), where the oxygen-related functionalization of GQDs enabled good dispersity in a PEDOT:PSS hole extraction layer, leading to significantly improved short circuit current density (Jsc) value. To maximize the PCE of the device, hydrophobic GQDs that are hydrothermally reduced (rGQD) were additionally incorporated in a bulk-heterojunction layer, which is found to promote a synergistic effect with the GQD-incorporated hole extraction layer. PMID:26392211

  10. MoS2 Quantum Dots with a Tunable Work Function for High-Performance Organic Solar Cells.

    Science.gov (United States)

    Xing, Wang; Chen, Yusheng; Wang, Xinlong; Lv, Lei; Ouyang, Xinhua; Ge, Ziyi; Huang, Hui

    2016-10-12

    An efficient hole extraction layer (HEL) is critical to achieve high-performance organic solar cells (OSCs). In this study, we developed a pinhole-free and efficient HEL based on MoS2 quantum dots (QDs) combined with UV-ozone (UVO) treatment. The optophysical properties and morphology of MoS2 QDs and their photovoltaic performance are investigated. The results showed that MoS2 QDs can form homogeneous films and can be applied as an interfacial layer not only for donors with shallow highest occupied molecular orbital (HOMO) but also for those with deep HOMO energy levels after UVO treatment (O-MoS2 QDs). The solar cells based on O-MoS2 QDs yield a power conversion efficiency (PCE) of 8.66%, which is 71% and 12% higher than those of the OSCs with pristine MoS2 QD and O-MoS2 nanosheets, respectively, and the highest PCEs for OSCs containing MoS2 materials. Furthermore, the stability of solar cells based on MoS2 QDs is greatly improved in comparison with state-of-the-art PEDOT:PSS. These results demonstrate the great potential of O-MoS2 QDs as an efficient HEL for high-performance OSCs.

  11. Direct aqueous synthesis of quantum dots for high-performance AgInSe2 quantum-dot-sensitized solar cell

    Science.gov (United States)

    Li, Pei-Ni; Ghule, Anil V.; Chang, Jia-Yaw

    2017-06-01

    Compared to the use of an organic system, a synthetic method based on aqueous solutions offers the potential for simple, environmentally friendly, low-cost fabrication with high synthetic reproducibility and easy upscaling. Here, AgInSe2 quantum dots (QDs) capped with different types of thiol molecules [thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), or glutathione (GSH)] are prepared within 15 min in aqueous media under microwave irradiation. The GSH-stabilized AgInSe2 QDs are demonstrated to be effective light harvesters in a QD-sensitized solar cell (QDSSC), showing ∼23% better efficiency than cells using TGA- and MPA-stabilized AgInSe2 QDs. The performance enhancement is attributed to the multidentate chelating effect of the GSH stabilizer, which provides efficient charge injection from QDs into the conduction band of TiO2 in the photoanode. Electrochemical impedance spectroscopy and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy measurements are adopted for more detailed study of the interfacial properties and electron transport characteristics of these AgInSe2 QDSSCs. More importantly, the GSH-stabilized AgInSe2 QDSSC with TiCl4 treatment exhibits an excellent power conversion efficiency of 5.69% with an average value of 5.48 ± 0.19% under 100 mW cm-2 illumination, which is one of the highest values observed for a QDSSC sensitized with a Ag-based metal chalcogenide.

  12. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors

    Science.gov (United States)

    Muralee Gopi, Chandu V. V.; Ravi, Seenu; Rao, S. Srinivasa; Eswar Reddy, Araveeti; Kim, Hee-Je

    2017-04-01

    Carbon nanotubes (CNT) and metal sulfides have attracted considerable attention owing to their outstanding properties and multiple application areas, such as electrochemical energy conversion and energy storage. Here we describes a cost-effective and facile solution approach to the preparation of metal sulfides (PbS, CuS, CoS, and NiS) grown directly on CNTs, such as CNT/PbS, CNT/CuS, CNT/CoS, and CNT/NiS flexible electrodes for quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the CNT network was covered with high-purity metal sulfide compounds. QDSSCs equipped with the CNT/NiS counter electrode (CE) showed an impressive energy conversion efficiency (η) of 6.41% and remarkable stability. Interestingly, the assembled symmetric CNT/NiS-based polysulfide SC device exhibited a maximal energy density of 35.39 W h kg-1 and superior cycling durability with 98.39% retention after 1,000 cycles compared to the other CNT/metal-sulfides. The elevated performance of the composites was attributed mainly to the good conductivity, high surface area with mesoporous structures and stability of the CNTs and the high electrocatalytic activity of the metal sulfides. Overall, the designed composite CNT/metal-sulfide electrodes offer an important guideline for the development of next level energy conversion and energy storage devices.

  13. High performance liquid chromatography with mid-infrared detection based on a broadly tunable quantum cascade laser.

    Science.gov (United States)

    Beskers, Timo F; Brandstetter, Markus; Kuligowski, Julia; Quintás, Guillermo; Wilhelm, Manfred; Lendl, Bernhard

    2014-05-07

    This work introduces a tunable mid-infrared (mid-IR) external cavity quantum cascade laser (EC-QCL) as a new molecular specific detector in liquid chromatography. An EC-QCL with a maximum tunability of 200 cm(-1) (1030-1230 cm(-1)) was coupled to isocratic high performance liquid chromatography (HPLC) for the separation of sugars with a cation exchange column (counter ion: Ca(2+)) and distilled water as the mobile phase. Transmission measurements in a 165 μm thick flow cell allowed for on-line coupling and independent quantification of glucose, fructose and sucrose in the concentration range from 5 mg mL(-1) to 100 mg mL(-1) in several beverages. The results obtained with the EC-QCL detector were found to be in good agreement with those obtained using a differential refractive index detector as a reference. The standard deviation of the method for the linear calibration was better than 5 mg mL(-1) for all sugars and reached a minimum of 1.9 mg mL(-1), while the DRI detector reached a minimum of 1 mg mL(-1). Besides the quantification of sugars for which a calibration was performed, also chromatographic peaks of other components could be identified on the basis of their IR absorption spectra. This includes taurine, ethanol, and sorbitol.

  14. High-performance quantum-dot solids via elemental sulfur synthesis

    KAUST Repository

    Yuan, Mingjian

    2014-03-21

    An elemental-sulfur-based synthesis is reported, which, combined with processing to improve the size dispersion and passivation, results in a low-cost high-quality platform for small-bandgap PbS-CQD-based devices. Size-selective precipitation and cadmium chloride passivation are used to improve the power conversion efficiency of 1 eV bandgap CQD photovoltaic devices dramatically, which leads to record power conversion efficiency for a 1 eV PbS CQD solar cell of 5.4%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High resolution quantum metrology via quantum interpolation

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  16. Towards highly multimode optical quantum memory for quantum repeaters

    OpenAIRE

    Jobez, Pierre; Timoney, Nuala; Laplane, Cyril; Etesse, Jean; Ferrier, Alban; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2015-01-01

    Long-distance quantum communication through optical fibers is currently limited to a few hundreds of kilometres due to fiber losses. Quantum repeaters could extend this limit to continental distances. Most approaches to quantum repeaters require highly multimode quantum memories in order to reach high communication rates. The atomic frequency comb memory scheme can in principle achieve high temporal multimode storage, without sacrificing memory efficiency. However, previous demonstrations hav...

  17. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography.

    Science.gov (United States)

    Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang

    2017-04-07

    Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High-speed quantum networking by ship.

    Science.gov (United States)

    Devitt, Simon J; Greentree, Andrew D; Stephens, Ashley M; Van Meter, Rodney

    2016-11-02

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  19. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  20. Quantum interpolation for high-resolution sensing.

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  1. Design, fabrication and characterization of high- performance native-oxide confined InGaAs/GaAs quantum- well edge-emitting and surface-emitting lasers

    Science.gov (United States)

    Cheng, Yong

    1997-11-01

    This thesis presents design, fabrication and characterization of high-performance InGaAs-GaAs edge- emitting and surface-emitting lasers confined by AlAs native-oxide, and discusses the confinement effects of AlAs native oxide as a current constriction layer. The edge-emitting lasers utilizing AlAs native-oxide layers above and below waveguide region to form narrow- stripe lasers demonstrate CW threshold currents of a few mAs, external quantum efficiencies higher than 80%. The folded-cavity surface-emitting lasers (FCSEL's) structure in our study minimizes the additional losses introduced by folded-cavity to allow high performance operation. A simplified process to fabricate FCSEL's involves a stop etch to position the surface emitting output mirror close to the waveguide and ion-beam-etching (IBE) to form the 45o deflecting mirror. FCSEL's of both broad- area and native-oxide confined narrow-stripe structures have been demonstrated here with the best performance ever reported. Uniform 2D arrays of FCSEL's have been achieved as well. AlAs native-oxide apertured vertical- cavity surface-emitting lasers (VCSEL's), utilizing InGaAs single-quantum-well λ-cavity, an intracavity p-contact, and DBR's composed of AlAs/GaAs have been fabricated with threshold currents ranging from 220 μA to 100 μA for various aperture sizes from 10 × 10 μm2 to <2 × 2 μm2. An experiment to characterize the dependence of round-trip loss and internal quantum efficiency on aperture size is carried out and discussed. Based on the device data of AlAs native-oxide apertured edge-emitting lasers and VCSEL's, the analysis of threshold current and modal properties of native-oxide shows that loss of current and carrier confinement in small aperture NSEEL's results from lateral carrier loss owing to current spreading and carrier diffusion, while both carrier loss and optical diffraction loss contribute to limit performance of VCSEL's with small aperture sizes. The scaling of threshold current on

  2. High-Performance 1.55-µm Superluminescent Diode Based on Broad Gain InAs/InGaAlAs/InP Quantum Dash Active Region

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2014-08-01

    We report on the high-performance characteristics from superluminescent diodes (SLDs) based on four-stack InAs/InGaAlAs chirped-barrier thickness quantum dash (Qdash) in a well structure. The active region exhibits a measured broad gain spectrum of 140 nm, with a peak modal gain of ~41 cm-1. The noncoated two-section gainabsorber broad-area and ridge-waveguide device configuration exhibits an output power of > 20 mW and > 12 mW, respectively. The corresponding -3-dB bandwidths span ~82 nm and ~72 nm, with a small spectral ripple of <; 0.2 dB, related largely to the contribution from dispersive height dash ensembles of the highly inhomogeneous active region. These C-L communication band devices will find applications in various cross-disciplinary fields of optical metrology, optical coherent tomography, etc.

  3. High-Performance Solid-State PbS Quantum Dot-Sensitized Solar Cells Prepared by Introduction of Hybrid Perovskite Interlayer.

    Science.gov (United States)

    Heo, Jin Hyuck; Jang, Min Hyuk; Lee, Min Ho; Shin, Dong Hee; Kim, Do Hun; Moon, Sang Hwa; Kim, Sang Wook; Park, Bum Jun; Im, Sang Hyuk

    2017-11-29

    High-performance solid-state PbS quantum dot-sensitized solar cells (QD-SSCs) with stable 9.2% power conversion efficiency at 1 Sun condition are demonstrated by introduction of hybrid perovskite interlayer. The PbS QDs formed on mesoscopic TiO2 (mp-TiO2) by spin-assisted successive precipitation and anionic exchange reaction method do not exhibit PbSO4 but have PbSO3 oxidation species. By introducing perovskite interlayer in between mp-TiO2/PbS QDs and poly-3-hexylthiophene, the PbSO3 oxidation species are fully removed in the PbS QDs and thereby the efficiency of PbS QD-SSCs is enhanced over 90% compared to the pristine PbS QD-SSCs.

  4. High-fidelity quantum driving

    DEFF Research Database (Denmark)

    Bason, Mark George; Viteau, Matthieu; Malossi, Nicola

    2011-01-01

    Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experi......Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources...... with the Heisenberg uncertainty principle. In the opposite limit, we realize the recently proposed transitionless superadiabatic protocols in which the system follows the instantaneous adiabatic ground state nearly perfectly. We demonstrate that superadiabatic protocols are extremely robust against control parameter...

  5. Synthesis of silicon quantum dots showing high quantum efficiency.

    Science.gov (United States)

    Cho, Bomin; Baek, Sangsoo; Woo, Hee-Gweon; Sohn, Honglae

    2014-08-01

    Quantum efficiencies of Si quantum dots (QDs) have been investigated from the reaction of magnesium silicide and ammonium chloride. The change of quantum yield and optical characterization of Si QDs are measured depending on the reaction time. Highly luminescent Si QDs were obtained as the reaction time increased. Absorption measurement indicated that the Si QDs consisted of only silicon and hydrogen atom. Optical characterizations of Si QDs were measured by UV-Vis and PL spectroscopy. The size distribution and orientation of Si QDs were measured by TEM and XRD. TEM image displays the spherical Si QDs with the size of 3-4 nm. As the reaction time increased, Si QDs grew and their emission wavelength shifted to the longer wavelength. The monotonic shift of the PL as a function of excitation wavelength resulted in the excitation of different sizes of QDs that had different optical transition energies. Photoluminescence quantum yields exceeding 60% have been achieved.

  6. Amorphous ZnO Quantum Dot/Mesoporous Carbon Bubble Composites for a High-Performance Lithium-Ion Battery Anode.

    Science.gov (United States)

    Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin

    2017-01-11

    Due to its high theoretical capacity (978 mA h g-1), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g-1 (at current density of 100 mA g-1) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.

  7. High performance superluminescent diode with InAs quantum-dashes and chirped AlGaInAs barriers active region

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-01-01

    The demonstration of high power, ultra-low ripple superluminescent diode using multiple quantum-dash-in-a-well layers with variable barrier thickness is reported. The device exhibits >20 mW power, < 0.3dB ripple, and > 80 nm 3dB bandwidth at ~1.55 μm.

  8. High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seed-mediated underlayer

    Science.gov (United States)

    Qi, Jiabin; Xiong, Hao; Wang, Gang; Xie, Huaqing; Jia, Wei; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2018-02-01

    Crystallization and interface engineering of perovskite are the most important factors in achieving high-performance perovskite solar cells (PSCs). Herein, we construct an ultrathin CdSe quantum dots (QDs) underlayer via a solution-processable method, which acts as a seed-mediated layer for perfect perovskite film, with both uniform morphology and better absorption capacity. In addition, CdSe QDs and perovskites form a fully crystalline heterojunction, which is beneficial to minimizing the defect and trap densities. Then, an Ostwald ripening process is adopted to fabricate large-grain, pinhole-free perovskite thin film, by a simple methylammonium bromide treatment. Besides, the first principle is applied in calculating organic/inorganic hybrid perovskite, confirming that electrons can move even quicker and more effectively, as a result of our work. Due to these treatments, representing a very simple method to simultaneously control perovskite crystallization and optimize the interfaces in PSCs, a maximum power conversion efficiency of 15.68% is achieved, 35% higher than the PSC both without CdSe and MABr treatment (11.57%), indicating better performance.

  9. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries

    Science.gov (United States)

    Zhu, Chengling; Zhu, Shenmin; Zhang, Kai; Hui, Zeyu; Pan, Hui; Chen, Zhixin; Li, Yao; Zhang, Di; Wang, Da-Wei

    2016-01-01

    Construction of metal oxide nanoparticles as anodes is of special interest for next-generation lithium-ion batteries. The main challenge lies in their rapid capacity fading caused by the structural degradation and instability of solid-electrolyte interphase (SEI) layer during charge/discharge process. Herein, we address these problems by constructing a novel-structured SnO2-based anode. The novel structure consists of mesoporous clusters of SnO2 quantum dots (SnO2 QDs), which are wrapped with reduced graphene oxide (RGO) sheets. The mesopores inside the clusters provide enough room for the expansion and contraction of SnO2 QDs during charge/discharge process while the integral structure of the clusters can be maintained. The wrapping RGO sheets act as electrolyte barrier and conductive reinforcement. When used as an anode, the resultant composite (MQDC-SnO2/RGO) shows an extremely high reversible capacity of 924 mAh g−1 after 200 cycles at 100 mA g−1, superior capacity retention (96%), and outstanding rate performance (505 mAh g−1 after 1000 cycles at 1000 mA g−1). Importantly, the materials can be easily scaled up under mild conditions. Our findings pave a new way for the development of metal oxide towards enhanced lithium storage performance. PMID:27181691

  10. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries.

    Science.gov (United States)

    Zhu, Chengling; Zhu, Shenmin; Zhang, Kai; Hui, Zeyu; Pan, Hui; Chen, Zhixin; Li, Yao; Zhang, Di; Wang, Da-Wei

    2016-05-16

    Construction of metal oxide nanoparticles as anodes is of special interest for next-generation lithium-ion batteries. The main challenge lies in their rapid capacity fading caused by the structural degradation and instability of solid-electrolyte interphase (SEI) layer during charge/discharge process. Herein, we address these problems by constructing a novel-structured SnO2-based anode. The novel structure consists of mesoporous clusters of SnO2 quantum dots (SnO2 QDs), which are wrapped with reduced graphene oxide (RGO) sheets. The mesopores inside the clusters provide enough room for the expansion and contraction of SnO2 QDs during charge/discharge process while the integral structure of the clusters can be maintained. The wrapping RGO sheets act as electrolyte barrier and conductive reinforcement. When used as an anode, the resultant composite (MQDC-SnO2/RGO) shows an extremely high reversible capacity of 924 mAh g(-1) after 200 cycles at 100 mA g(-1), superior capacity retention (96%), and outstanding rate performance (505 mAh g(-1) after 1000 cycles at 1000 mA g(-1)). Importantly, the materials can be easily scaled up under mild conditions. Our findings pave a new way for the development of metal oxide towards enhanced lithium storage performance.

  11. Facile fabrication of highly efficient carbon nanotube thin film replacing CuS counter electrode with enhanced photovoltaic performance in quantum dot-sensitized solar cells

    Science.gov (United States)

    Gopi, Chandu V. V. M.; Venkata-Haritha, Mallineni; Kim, Soo-Kyoung; Kim, Hee-Je

    2016-04-01

    An ideal counter electrode (CE), with high electrocatalytic activity, high performance stability, cost-efficient and applicable fabrication simplicity, is necessary to give full play to the advantages of quantum dot-sensitized solar cells (QDSSCs). Herein, we report a facile one-step preparation for carbon nanotubes (CNTs) have been explored as an electrocatalyst and low-cost alternative to platinum (Pt) and cuprous sulfide (CuS) CEs for polysulfide reduction in QDSSCs. QDSSC using this newly prepared CNT as a CE achieves a higher power conversion efficiency of 4.67% than those with a CuS (3.67%) or Pt CE (1.56%). Besides, a preliminary stability test reveals that the new CNT CE exhibits good stability. The results of Tafel polarization and electrochemical impedance spectroscopy measurements revealed that the CNTs had higher electrocatalytic activity for the polysulfide redox reaction and a smaller charge transfer resistance (8.61 Ω) at the CE/electrolyte interface than the CuS (21.87 Ω) and Pt (54.99 Ω) CEs. These results indicate that the CNT CE has superior electrocatalytic activity and can potentially replace CuS and Pt as CEs in QDSSCs. The preparation method of the CNT CE is simple and shows much promise as an efficient, stable, cost-effective and environmentally friendly CE for QDSSCs.

  12. Graphene Quantum Dots/Eggshell Membrane Composite as a Nano-sorbent for Preconcentration and Determination of Organophosphorus Pesticides by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Vahideh Abdollahi

    2017-10-01

    Full Text Available In this study graphene quantum dots/eggshell membrane nanocomposite (GQDS/ESM is prepared and used as an efficient solid-phase extraction (SPE sorbent for preconcentration of organophosphorus pesticides (OPPs from aqueous solutions. The retained analytes on the sorbent are stripped by acetonitrile and subsequently are determined by high-performance liquid chromatography. Various parameters affecting the extraction efficiency of OPPs on the GQDS/ESM, such as solution pH, amount of nano-sorbent, sample loading flow rate, elution conditions and sample volume are investigated. The results demonstrated that the proposed method has a wide dynamic linear range (0.05–100 ng mL-1, good linearity (R2>0.997 and low detection limits (0.006-0.32 ng mL-1. High enrichment factors are achieved ranging from 110 to 140. In the optimum experimental conditions, the established method is successfully applied for the determination of OPPs in spiked water samples (well, tap, shaft and canal and apple juice. Satisfactory recovery results show that the sample matrices under consideration do not significantly affect the extraction process.

  13. Performance characteristics of a quantum Diesel refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    He Jizhou [Department of Physics, Nanchang University, Nanchang 330031 (China)], E-mail: hjzhou@ncu.edu.cn; Wang Hao; Liu Sanqiu [Department of Physics, Nanchang University, Nanchang 330031 (China)

    2009-04-15

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed.

  14. Performance characteristics of a quantum Diesel refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    He, Jizhou; Wang, Hao; Liu, Sanqiu [Department of Physics, Nanchang University, Nanchang 330031 (China)

    2009-04-15

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed. (author)

  15. A Lattice-Trapped and Cavity-Enhanced High-Quality Quantum Memory

    Science.gov (United States)

    Yang, Sheng-Jun; Wang, Xu-Jie; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-05-01

    Quantum memory plays an increasing essential part in many applications of quantum information science. Currently, the intense research and crucial challenge is that integration of a full functional quantum memory with various high-performance properties in a single system. Storage lifetime and retrieval efficiency are the two most important qualities of quantum memory, especially indispensable for quantum repeater and long-distance quantum communication. Here based on techniques of magic optical lattice trap and ring cavity enhancement, we experimentally achieved a high-quality cold atom quantum memory. The initial intrinsic retrieval efficiency is up to 77(5)%, with an e-1-storage lifetime about 0.25 sec for the first time. Such high effective and long-lived quantum memory should be significantly important for quantum communication and cryptography, and would truly stimulate a first practical demonstration of long distance quantum repeaters in the near future.

  16. The asynchronous rapid single-flux quantum electronics ─ a promising alternative for the development of high-performance digital circuits

    Directory of Open Access Journals (Sweden)

    S. Terzieva

    2008-05-01

    Full Text Available In this paper, we investigate the application of the asynchronous logic approach for the realization of ultra high-speed digital electronics with high complexity. We evaluate the possible physical, technological, and schematical origins of restrictions limiting such an application, and propose solutions for their overcoming. Although our considerations are based on the rapid single-flux quantum technique, the conclusions derived can be generalized about any type of digital information coding.

  17. Growth and fabrication of high-performance 980-nm strained InGaAs quantum-well lasers for erbium-doped fiber amplifiers

    Science.gov (United States)

    Chand, Naresh; Chu, Sung Nee George; Dutta, Niloy K.; Lopata, John; Geva, Michael; Syrbu, Alexei; Mereutza, Alexandru Z.; Yakovlev, Vladimir P.

    1994-02-01

    A 980-nm strained InGaAs quantum-well (QW) laser is the preferred pump source for an Er(3+)-doped fiber amplifier for the next generation of lightwave communication systems because of lower noise, high power conversion efficiency, and low temperature sensitivity. Obtaining long lifetime, narrow far field, high power output in the fundamental transverse mode centered at 980 +/- 5 nm, and planarity of the structure while maintaining low threshold current density (J(sub th)) and high differential quantum efficiency (eta) are the major challenges. We report work aimed at optimizing the design, growth, and fabrication of 980-nm lasers to address some of these issues. We demonstrate very low broad-area J(sub th) of 47 cm(exp -2), operation up to 200 C, and a very low linewidth enhancement factor of 0.54 of these lasers. We have also monolithically integrated 980-nm lasers with 850-nm GaAs QW lasers.

  18. Quantum wells for high-efficiency photovoltaics

    Science.gov (United States)

    Alonso-Álvarez, Diego; Ekins-Daukes, Nicholas

    2016-03-01

    Over the last couple of decades, there has been an intense research on strain balanced semiconductor quantum wells (QW) to increase the efficiency of multi-junction solar (MJ) solar cells grown monolithically on germanium. So far, the most successful application of QWs have required just to tailor a few tens of nanometers the absorption edge of a given subcell in order to reach the optimum spectral position. However, the demand for higher efficiency devices requiring 3, 4 or more junctions, represents a major difference in the challenges QWs must face: tailoring the absorption edge of a host material is not enough, but a complete new device, absorbing light in a different spectral region, must be designed. Among the most important issues to solve is the need for an optically thick structure to absorb enough light while keeping excellent carrier extraction using highly strained materials. Improvement of the growth techniques, smarter device designs - involving superlattices and shifted QWs, for example - or the use of quantum wires rather than QWs, have proven to be very effective steps towards high efficient MJ solar cells based on nanostructures in the last couple of years. But more is to be done to reach the target performances. This work discusses all these challenges, the limitations they represent and the different approaches that are being used to overcome them.

  19. Quantum entanglement of high angular momenta.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  20. Competitive performance of carbon "quantum" dots in optical bioimaging.

    Science.gov (United States)

    Cao, Li; Yang, Sheng-Tao; Wang, Xin; Luo, Pengju G; Liu, Jia-Hui; Sahu, Sushant; Liu, Yamin; Sun, Ya-Ping

    2012-01-01

    Carbon-based "quantum" dots or carbon dots are surface-functionalized small carbon nanoparticles. For bright fluorescence emissions, the carbon nanoparticles may be surface-doped with an inorganic salt and then the same organic functionalization. In this study, carbon dots without and with the ZnS doping were prepared, followed by gel-column fractionation to harvest dots of 40% and 60% in fluorescence quantum yields, respectively. These highly fluorescent carbon dots were evaluated for optical imaging in mice, from which bright fluorescence images were obtained. Of particular interest was the observed competitive performance of the carbon dots in vivo to that of the well-established CdSe/ZnS QDs. The results suggest that carbon dots may be further developed into a new class of high-performance yet nontoxic contrast agents for optical bioimaging.

  1. Enhanced performance of quantum cascade Raman laser

    Science.gov (United States)

    Yousefvand, Hossein Reza; Aahmadi, Vahid

    2015-05-01

    We present a self-consistent numerical approach for quantum cascade Raman laser (QC-RL) with a modified design to improve the device performance. Our modeling approach is based on monolithic integration of stimulated Raman scattering (SRS) and electrically pumped QC laser. The laser band structure utilizing techniques with both material-dependent effective mass and band nonparabolicity is calculated by solving the Schrodinger-Poisson equations self-consistently. A detailed analysis of output characteristics of the obtained structure is carried out within a simplified 4-level rate equations model taking into account the SRS process. The model accurately explains the operating characteristics found in QCLs, such as damping transient response and non-resonant behavior of modulation frequency response. Furthermore, modification of the structure is focused on improving the SRS in the QC-RL. This leads to an enhancement of the device performance such as threshold current, external quantum efficiency, conversion efficiency, turn-on delay and modulation response. The excellent agreement of the experimental data with the simulated light output-current characteristics confirms the validity of the model.

  2. Performance, Performance System, and High Performance System

    Science.gov (United States)

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  3. High Efficiency Colloidal Quantum Dot Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  4. Performing quantum computing experiments in the cloud

    Science.gov (United States)

    Devitt, Simon J.

    2016-09-01

    Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.

  5. High quantum yield III-V photoanodes

    Energy Technology Data Exchange (ETDEWEB)

    Erne, B.H.

    1995-09-01

    The morphological and electrochemical aspects of the (photo)anodic etching of the n-type 3-5 semiconductors GaP, GaAs, and InP are examined. The etched surfaces are characterized experimentally by electrochemical and other methods. Particular attention is paid to the anodic photocurrent quantum yield. The processes investigated lead to a large enhancement of the quantum yield or give a quantum yield in excess of unity, hence the title of the thesis. The quantum yield of a photoanode is determined by processes both in the bulk and at the surface of the semiconductor. The competition between charge separation and recombination in the bulk of the semiconductor determines the fraction of the photogenerated holes which reaches the surface, and surface processes determine the fraction of those holes which contributes to current in the external circuit. Chapter 2 examines the increased effective absorption due to surface roughness and the increase in the diffusion length of holes associated with photocurrent flow, two effects which can cause charge separation to compete more effectively with bulk recombination. Chapter 3 considers the influence of the wavelength of the light used for photoanodic etching on the morphology. Chapter 4 demonstrates that porous etching may lead to an enormous enhancement of the photoresponse. The influence of surface (electro)chemistry on the quantum yield is investigated for n-type InP electrodes by means of optoelectrical impedance spectroscopy. Even in indifferent electrolyte, InP photoanodes have remarkably high quantum yields in excess of unity, due to electron injection by dissolution intermediates (Chapter 5). Interaction with a chemical etchant can increase the quantum yield even further (Chapter 6). The main conclusions of the thesis are summarized in Chapter 7. 52 figs., 180 refs., 1 appendix

  6. Improving Charge Injection via a Blade-Coating Molybdenum Oxide Layer: Toward High-Performance Large-Area Quantum-Dot Light-Emitting Diodes.

    Science.gov (United States)

    Zeng, Qunying; Xu, Zhongwei; Zheng, Congxiu; Liu, Yang; Chen, Wei; Guo, Tailiang; Li, Fushan; Xiang, Chaoyu; Yang, Yixing; Cao, Weiran; Xie, Xiangwei; Yan, Xiaolin; Qian, Lei; Holloway, Paul H

    2018-02-21

    A solution-processed molybdenum oxide (MoO x ) as the hole injection layer (HIL) by doctor-blade coating was developed to improve the efficiency and lifetime of red-emitting quantum-dot light-emitting diodes (QD-LEDs). It has been demonstrated that by adding isopropyl alcohol into the MoO x precursor during the doctor-blade coating process, the morphology, composition, and the surface electronic structure of the MoO x HIL could be tailored. A high-quality MoO x film with optimized charge injection was obtained, based on which all-solution-processed highly efficient red-emitting QD-LEDs were realized by using a low-cost doctor-blade coating technique under ambient conditions. The red QD-LEDs exhibited the maximum current efficiency and external quantum efficiency of 16 cd/A and 15.1%, respectively. Moreover, the lifetime of red devices initializing at 100 cd/m 2 was 3236 h under ambient conditions, which is about twice as long as those with a conventional poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) HIL. Large-area QD-LEDs with 4 in. emitting areas were fabricated with blade coating as well, which exhibit a high efficiency of 12.1 cd/A for red emissions. Our work paves a new way to the realization of efficient large-area QD-LEDs, and the processing and findings from this work can be expanded into next-generation lighting and flat-panel displays.

  7. Quantum Performance of Thermal Machines over Many Cycles

    Science.gov (United States)

    Watanabe, Gentaro; Venkatesh, B. Prasanna; Talkner, Peter; del Campo, Adolfo

    2017-02-01

    The performance of quantum heat engines is generally based on the analysis of a single cycle. We challenge this approach by showing that the total work performed by a quantum engine need not be proportional to the number of cycles. Furthermore, optimizing the engine over multiple cycles leads to the identification of scenarios with a quantum enhancement. We demonstrate our findings with a quantum Otto engine based on a two-level system as the working substance that supplies power to an external oscillator.

  8. Quantum Performance of Thermal Machines over Many Cycles.

    Science.gov (United States)

    Watanabe, Gentaro; Venkatesh, B Prasanna; Talkner, Peter; Del Campo, Adolfo

    2017-02-03

    The performance of quantum heat engines is generally based on the analysis of a single cycle. We challenge this approach by showing that the total work performed by a quantum engine need not be proportional to the number of cycles. Furthermore, optimizing the engine over multiple cycles leads to the identification of scenarios with a quantum enhancement. We demonstrate our findings with a quantum Otto engine based on a two-level system as the working substance that supplies power to an external oscillator.

  9. High-density quantum sensing with dissipative first order transitions

    OpenAIRE

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2017-01-01

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of $N$ independent particles is proportional to $\\sqrt{N}$. However, interactions invariably occuring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be t...

  10. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  11. Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors

    Science.gov (United States)

    Xu, Yongjie; Li, Xinyu; Hu, Guanghui; Wu, Ting; Luo, Yi; Sun, Lang; Tang, Tao; Wen, Jianfeng; Wang, Heng; Li, Ming

    2017-11-01

    Nitrogen-enriched graphene was fabricated via a facile strategy. Graphene oxide (GO) nanosheets and graphene oxide quantum dots (GQDs) were used as a structure-directing agent and in situ activating agent, respectively, after photoreduction under NH3 atmosphere. The combination of photoreduction and NH3 not only reduced GO and GQD composites (GO/GQDs) within a shorter duration but also doped a high level of nitrogen on the composites (NrGO/GQDs). The nitrogen content of NrGO/GQDs reached as high as 18.86 at% within 5 min of irradiation. Benefiting from the nitrogen-enriched GO/GQDs hybrid structure, GQDs effectively prevent the agglomeration of GO sheets and increased the numbers of ion channels in the material. Meanwhile, the high levels of nitrogen improved electrical conductivity and strengthened the binding energy between GQD and GO sheets. Compared with reduced GO and low nitrogen-doped reduced GO, NrGO/GQD electrodes exhibited better electrochemical characteristics with a high specific capacitance of 344 F g-1 at a current density of 0.25 A g-1. Moreover, the NrGO/GQD electrodes exhibited 82% capacitance retention after 3000 cycles at a current density of 0.8 A g-1 in 6 M KOH electrolyte. More importantly, the NrGO/GQD electrodes deliver a high energy density of 43 Wh kg-1 at a power density of 417 W kg-1 in 1 M Li2SO4 electrolyte. The nitrogen-doped graphene and corresponding supercapacitor presented in this study are novel materials with potential applications in advanced energy storage systems.

  12. High performance tunnel injection InGaN/GaN quantum Dot light emitting diodes emitting in the green (λ=495nm)

    KAUST Repository

    Zhang, Meng

    2011-05-01

    InGaN/GaN self-organized quantum dots with density of (2-5)×10 10 cm-2, internal quantum efficiency of 32% and a reduced recombination lifetime of 0.6 ns were grown by plasma assisted molecular beam epitaxy. The photoluminescence spectra of the dots peak at 495 nm at 300 K. The characteristics of tunnel injection InGaN/GaN quantum dot light emitting diodes are presented. The current density at maximum efficiency is 90.2 A/cm 2, which is superior to equivalent multiquantum well devices. © 2010 Elsevier B.V. All rights reserved.

  13. High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots.

    Science.gov (United States)

    Supran, Geoffrey J; Song, Katherine W; Hwang, Gyu Weon; Correa, Raoul E; Scherer, Jennifer; Dauler, Eric A; Shirasaki, Yasuhiro; Bawendi, Moungi G; Bulović, Vladimir

    2015-02-25

    Core-shell PbS-CdS quantum dots enhance the peak external quantum efficiency of shortwave-infrared light-emitting devices by up to 50-100-fold (compared with core-only PbS devices). This is more than double the efficiency of previous quantum-dot light-emitting devices operating at wavelengths beyond 1 μm, and results from the passivation of the PbS cores by the CdS shells against in situ photoluminescence quenching. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  15. High-rate measurement-device-independent quantum cryptography

    DEFF Research Database (Denmark)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana

    2015-01-01

    Quantum cryptography achieves a formidable task - the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction...... than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers....

  16. High-efficiency reconciliation for continuous variable quantum key distribution

    Science.gov (United States)

    Bai, Zengliang; Yang, Shenshen; Li, Yongmin

    2017-04-01

    Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD.

  17. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  18. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  19. Modeling, Simulation, and Performance Analysis of Decoy State Enabled Quantum Key Distribution Systems

    OpenAIRE

    Mailloux, Logan O.; Grimaila, Michael R.; Hodson, Douglas D.; Ryan Engle; Colin McLaughlin; Gerald Baumgartner

    2017-01-01

    Quantum Key Distribution (QKD) systems exploit the laws of quantum mechanics to generate secure keying material for cryptographic purposes. To date, several commercially viable decoy state enabled QKD systems have been successfully demonstrated and show promise for high-security applications such as banking, government, and military environments. In this work, a detailed performance analysis of decoy state enabled QKD systems is conducted through model and simulation of several common decoy s...

  20. Noise performance of PbS colloidal quantum dot photodetectors

    Science.gov (United States)

    De Iacovo, A.; Venettacci, C.; Colace, L.; Scopa, L.; Foglia, S.

    2017-11-01

    We report on the noise characterization of photoconductors based on PbS colloidal quantum dots. The devices operate in the near infrared region with peak responsivity exceeding 70 A/W at 1.3 μm at low optical intensity and low voltage bias. The large responsivity, combined with the low dark current of high resistance devices, provides a specific detectivity D* as large as 1011 cm Hz1/2 W-1. The noise characteristics are investigated using noise current spectra measured at different biases both in dark and under optical excitation. The analysis revealed that the noise is clearly dominated by the flicker component up to 100 kHz. The noise performance is investigated at different optical intensities and for different device dimensions and voltage biases.

  1. Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells

    Directory of Open Access Journals (Sweden)

    A Bianconi

    2006-09-01

    Full Text Available   The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.

  2. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  3. On-chip generation of high-dimensional entangled quantum states and their coherent control

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-01

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  4. Responsive design high performance

    CERN Document Server

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  5. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries

    OpenAIRE

    Chengling Zhu; Shenmin Zhu; Kai Zhang; Zeyu Hui; Hui Pan; Zhixin Chen; Yao Li; Di Zhang; Da-Wei Wang

    2016-01-01

    Construction of metal oxide nanoparticles as anodes is of special interest for next-generation lithium-ion batteries. The main challenge lies in their rapid capacity fading caused by the structural degradation and instability of solid-electrolyte interphase (SEI) layer during charge/discharge process. Herein, we address these problems by constructing a novel-structured SnO2-based anode. The novel structure consists of mesoporous clusters of SnO2 quantum dots (SnO2 QDs), which are wrapped with...

  6. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    Science.gov (United States)

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb(2+)) with trivalent antimony (Sb(3+)) to synthesize stable and brightly luminescent Cs3Sb2Br9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs3Sb2X9) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  7. Quantum creep in a highly crystalline two-dimensional superconductor

    Science.gov (United States)

    Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu

    Conventional studies on quantum phase transitions, especially on superconductor-insulator or superconductor-metal-insulator transitions have been performed in deposited metallic thin films such as Bismuth or MoGe. Although the techniques of thin films deposition have been considerably improved, unintentional disorder such as impurities and deficiencies, generating the pinning centers, seems to still exist in such systems. The mechanical exfoliated highly crystalline two-dimensional material can be a good candidate to realize a less-disordered 2D superconductor with extremely weak pinning, combined with transfer method or ionic-liquid gating. We report on the quantum metal, namely, magnetic-field-induced metallic state observed in an ion-gated two-dimensional superconductor based on an ultra-highly crystalline layered band insulator, ZrNCl. We found that the superconducting state is extremely fragile against external magnetic fields; that is, zero resistance state immediately disappears, once an external magnetic field switches on. This is because the present system is relatively clean and the pinning potential is extremely weak, which cause quantum tunneling and flux flow of vortices, resulting in metallic ground state.

  8. Optimizing Decoy State Enabled Quantum Key Distribution Systems to Maximize Quantum Throughput and Detect Photon Number Splitting Attacks with High Confidence

    OpenAIRE

    Mailloux, Logan O.; Grimaila, Michael R.; Hodson, Douglas D.; Engle, Ryan D.; McLaughlin, Colin V.; Gerald B. Baumgartner

    2016-01-01

    Quantum Key Distribution (QKD) is an innovative quantum communications protocol which exploits the laws of quantum mechanics to generate unconditionally secure cryptographic keying material between two geographically separated parties. The unique nature of QKD shows promise for high-security applications such as those found in banking, government, and military environments. However, QKD systems contain implementation non-idealities which can negatively impact their performance and security.In...

  9. Performance of Continuous Quantum Thermal Devices Indirectly Connected to Environments

    Directory of Open Access Journals (Sweden)

    J. Onam González

    2016-04-01

    Full Text Available A general quantum thermodynamics network is composed of thermal devices connected to environments through quantum wires. The coupling between the devices and the wires may introduce additional decay channels which modify the system performance with respect to the directly-coupled device. We analyze this effect in a quantum three-level device connected to a heat bath or to a work source through a two-level wire. The steady state heat currents are decomposed into the contributions of the set of simple circuits in the graph representing the master equation. Each circuit is associated with a mechanism in the device operation and the system performance can be described by a small number of circuit representatives of those mechanisms. Although in the limit of weak coupling between the device and the wire the new irreversible contributions can become small, they prevent the system from reaching the Carnot efficiency.

  10. Solution-Processed Metal-Oxide p-n Charge Generation Junction for High-Performance Inverted Quantum-Dot Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Hyo-Min; Kim, Jeonggi; Cho, Sin-Young; Jang, Jin

    2017-11-08

    We report solution-processed metal-oxide p-n junction, Li-doped CuO (Li:CuO) and Li-doped ZnO (Li:ZnO), as a charge generation junction (CGJ) in quantum-dot light-emitting diode (QLED) at reverse bias. Efficient charge generation is demonstrated in a stack of air-annealed Li:CuO and Li:ZnO layers in QLEDs. Air annealing of Li:ZnO on Li:CuO turns out to be a key process to decrease oxygen vacancy (Vo) and increase the copper (II) oxide (CuO) fraction at the Li:CuO/Li:ZnO interface for efficient charge generation. Green QLEDs incorporating Li:CuO/Li:ZnO CGJ show the maximum current and power efficiencies of 35.4 cd/A and 33.5 lm/W, respectively.

  11. High-Temperature Luminescence Quenching of Colloidal Quantum Dots

    NARCIS (Netherlands)

    Zhao, Y.|info:eu-repo/dai/nl/355358352; Riemersma, C.; Pietra, F|info:eu-repo/dai/nl/355358395; de Mello Donega, C.|info:eu-repo/dai/nl/125593899; Meijerink, A.|info:eu-repo/dai/nl/075044986

    2012-01-01

    Thermal quenching of quantum dot (QD) luminescence is important for application in luminescent devices. Systematic studies of the quenching behavior above 300 K are, however, lacking. Here, high-temperature (300–500 K) luminescence studies are reported for highly efficient CdSe core–shell quantum

  12. Quantum effects in condensed matter at high pressure

    CERN Document Server

    Stishov, S M

    2001-01-01

    Experimental data on the influence of quantum effects on the equation of state and melting at high pressure are reviewed. It is shown that quantum isotopic effects tend to increase upon compression of substances with predominately Coulomb interaction, whereas compression of the van der Waals substances reveals the opposite trend. The cold melting of Coulomb substances at high pressure is discussed

  13. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy......Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur...... efficient to operate and valuable for building communities. Herein discussed are two successful examples of low energy prefabricated housing projects built in Copenhagen Denmark, which embraced both the constraints and possibilities offered by prefabrication....

  14. High-efficiency "green" quantum dot solar cells.

    Science.gov (United States)

    Pan, Zhenxiao; Mora-Seró, Iván; Shen, Qing; Zhang, Hua; Li, Yan; Zhao, Ke; Wang, Jin; Zhong, Xinhua; Bisquert, Juan

    2014-06-25

    Semiconductor quantum dots (QDs) are extremely interesting materials for the development of photovoltaic devices, but currently the present the drawback is that the most efficient devices have been prepared with toxic heavy metals of Cd or Pb. Solar cells based on "green" QDs--totally free of Cd or Pb--present a modest efficiency of 2.52%. Herein we achieve effective surface passivation of the ternary CuInS2 (CIS) QDs that provides high photovoltaic quality core/shell CIS/ZnS (CIS-Z) QDs, leading to the development of high-efficiency green QD solar cells that surpass the performance of those based on the toxic cadmium and lead chalcogenides QDs. Using wide absorption range QDs, CIS-Z-based quantum dot sensitized solar cell (QDSC) configuration with high QD loading and with the benefit of the recombination reduction with type-I core/shell structure, we boost the power conversion efficiency of Cd- and Pb-free QDSC to a record of 7.04% (with certified efficiency of 6.66%) under AM 1.5G one sun irradiation. This efficiency is the best performance to date for QDSCs and also demonstrates that it is possible to obtain comparable or even better photovoltaic performance from green CIS QDs to the toxic cadmium and lead chalcogenides QDs.

  15. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  16. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  17. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  18. High performance AC drives

    CERN Document Server

    Ahmad, Mukhtar

    2010-01-01

    This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN

  19. Demonstration of deterministic and high fidelity squeezing of quantum information

    DEFF Research Database (Denmark)

    Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.

    2007-01-01

    , and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum...

  20. High Spin Baryons in Quantum Mechanical Chromodynamics

    Science.gov (United States)

    Kirchbach, M.; Compean, C. B.

    2009-04-01

    A framework of quantum mechanical chromodynamics (QMCD) is developed with the aim to place the description of the nucleon on a comparable footing with Schrödinger's quantum mechanical treatment of the hydrogen atom. Such indeed turns out to be possible upon replacing the (e--p) by a (q-qq) system, on the one hand, and the Coulomb potential by the recently reported by us exactly solvable trigonometric extension of the Cornell (TEC) potential, on the other. The TEC potential translates the inverse distance potential in ordinary flat space to a space of constant positive curvature, the 3D hypersphere, a reason for which both potentials have the SO(4) and SO(2, 1) symmetries in common. In effect, the nucleon spectrum, inclusive its Δ branch, acquire the degeneracy patterns of the electron excitations with spin in 1H without copying them, however. There are two essential differences between the N(Δ) and H atom spectra. The first concerns the parity of the states which can be unnatural for the N and Δ excitations due to compositeness of the diquark, the second refers to the level splittings in the baryon spectra which contain besides the Balmer term also its inverse of opposite sign. Our scheme reproduces the complete number of states (except the hybrid Δ(1600)), predicts a total of 33 new resonances, and explains the splittings of the N and Δ levels containing high-spin resonances. It also describes accurately the proton electric charge form factor. We here calculate the potential in momentum space (instantaneous effective gluon propagator) as a Fourier transform of the TEC potential and show that the concept of curvature allows to avoid the integral divergences suffered by schemes based on power potentials. We find a propagator that is finite at origin, likely to produce confinement. The advocated new potential picture allows for deconfinement too as effect of space flattening in the limit of infinite radius of the 3D hypersphere. The potential's SO(4)/SO(2, 1

  1. High-Performance Networking

    CERN Document Server

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  2. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    Science.gov (United States)

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

  3. The optimal performance of a quantum refrigeration cycle working with harmonic oscillators

    CERN Document Server

    Lin Bi Hong; Hua Ben

    2003-01-01

    The cycle model of a quantum refrigeration cycle working with many non-interacting harmonic oscillators and consisting of two isothermal and two constant-frequency processes is established. Based on the quantum master equation and semi-group approach, the general performance of the cycle is investigated. Expressions for some important performance parameters, such as the coefficient of performance, cooling rate, power input, and rate of the entropy production, are derived. Several interesting cases are discussed and, especially, the optimal performance of the cycle at high temperatures is discussed in detail. Some important characteristic curves of the cycle, such as the cooling rate versus coefficient of performance curves, the power input versus coefficient of performance curves, the cooling rate versus power input curves, and so on, are presented. The maximum cooling rate and the corresponding coefficient of performance are calculated. Other optimal performances are also analysed. The results obtained here ...

  4. Quantum Performance Analysis of an EMCCD-based X-ray Detector Using Photon Transfer Technique

    OpenAIRE

    Qu, Bin; Kuhls-Gilcrist, Andrew T.; Huang, Ying; Wang, Weiyuan; Cartwright, Alexander N.; Titus, Albert H.; Bednarek, Daniel R; Rudin, Stephen

    2010-01-01

    The low electronic noise, high resolution, and good temporal performance of electron-multiplying CCDs (EMCCDs) are ideally suited for applications traditionally served by x-ray image intensifiers. In order to improve an expandable clinical detector’s field-of-view and have full control of the system performance, we have successfully built a solid-state x-ray detector. The photon transfer technique was used to quantify the EMCCD quantum performance in terms of sensitivity (or camera gain const...

  5. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  6. High Performance Liquid Chromatography

    Science.gov (United States)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  7. Experimental ladder proof of Hardy's nonlocality for high-dimensional quantum systems

    Science.gov (United States)

    Chen, Lixiang; Zhang, Wuhong; Wu, Ziwen; Wang, Jikang; Fickler, Robert; Karimi, Ebrahim

    2017-08-01

    Recent years have witnessed a rapidly growing interest in high-dimensional quantum entanglement for fundamental studies as well as towards novel applications. Therefore, the ability to verify entanglement between physical qudits, d -dimensional quantum systems, is of crucial importance. To show nonclassicality, Hardy's paradox represents "the best version of Bell's theorem" without using inequalities. However, so far it has only been tested experimentally for bidimensional vector spaces. Here, we formulate a theoretical framework to demonstrate the ladder proof of Hardy's paradox for arbitrary high-dimensional systems. Furthermore, we experimentally demonstrate the ladder proof by taking advantage of the orbital angular momentum of high-dimensionally entangled photon pairs. We perform the ladder proof of Hardy's paradox for dimensions 3 and 4, both with the ladder up to the third step. Our paper paves the way towards a deeper understanding of the nature of high-dimensionally entangled quantum states and may find applications in quantum information science.

  8. Performance of a quantum heat engine at strong reservoir coupling.

    Science.gov (United States)

    Newman, David; Mintert, Florian; Nazir, Ahsan

    2017-03-01

    We study a quantum heat engine at strong coupling between the system and the thermal reservoirs. Exploiting a collective coordinate mapping, we incorporate system-reservoir correlations into a consistent thermodynamic analysis, thus circumventing the usual restriction to weak coupling and vanishing correlations. We apply our formalism to the example of a quantum Otto cycle, demonstrating that the performance of the engine is diminished in the strong coupling regime with respect to its weakly coupled counterpart, producing a reduced net work output and operating at a lower energy conversion efficiency. We identify costs imposed by sudden decoupling of the system and reservoirs around the cycle as being primarily responsible for the diminished performance, and we define an alternative operational procedure which can partially recover the work output and efficiency. More generally, the collective coordinate mapping holds considerable promise for wider studies of thermodynamic systems beyond weak reservoir coupling.

  9. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...... present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  10. High Efficiency Quantum Well Waveguide Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term objective of this program is to develop flexible, lightweight, single-junction solar cells using quantum structured designs that can achieve ultra-high...

  11. High-Temperature Luminescence Quenching of Colloidal Quantum Dots

    OpenAIRE

    Zhao, Y.; Riemersma, C.; Pietra, F; de Mello Donega, C.; Meijerink, A.

    2012-01-01

    Thermal quenching of quantum dot (QD) luminescence is important for application in luminescent devices. Systematic studies of the quenching behavior above 300 K are, however, lacking. Here, high-temperature (300–500 K) luminescence studies are reported for highly efficient CdSe core–shell quantum dots (QDs), aimed at obtaining insight into temperature quenching of QD emission. Through thermal cycling (yoyo) experiments for QDs in polymer matrices, reversible and irreversible luminescence quen...

  12. High-dimensional quantum state transfer through a quantum spin chain

    Science.gov (United States)

    Qin, Wei; Wang, Chuan; Long, Gui Lu

    2013-01-01

    In this paper, we investigate a high-dimensional quantum state transfer protocol. An arbitrary unknown high-dimensional state can be transferred with high fidelity between two remote registers through an XX coupling spin chain of arbitrary length. The evolution of the state transfer is determined by the natural dynamics of the chain without external modulation and coupling strength engineering. As a consequence, entanglement distribution with a high efficiency can be achieved. Also the strong field and high spin quantum number can partly counteract the effect of finite temperature to ensure the high fidelity of the protocol when the quantum data bus is in the thermal equilibrium state under an external magnetic field.

  13. Development of a photomultiplier tube with high quantum efficiency

    CERN Document Server

    Shima, T

    1999-01-01

    We propose a new method to significantly increase the quantum efficiency of a photomultiplier tube by employing a multi-photocathode and a mirror to produce photoelectrons by reusing photons transmitted by a single photocathode. In order to estimate the expected performance of the new photomultiplier, we studied the spectral responses of the reflectance, transmittance, and quantum efficiency of a K sub 2 CsSb photocathode as a function of the wavelength of incident light. A large enhancement of the quantum efficiency is expected in the regions between lambda=280 and 650 nm. (author)

  14. Ultrafast, high repetition rate, ultraviolet, fiber based laser source: application towards Yb+ fast quantum-logic

    OpenAIRE

    Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D. B.; Taylor, Richard L.; Carvalho, Andre R. R.; Hope, Joseph J.; Streed, Erik W.; Lobino, Mirko; Kielpinski, David

    2016-01-01

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The la...

  15. Modeling, Simulation, and Performance Analysis of Decoy State Enabled Quantum Key Distribution Systems

    Directory of Open Access Journals (Sweden)

    Logan O. Mailloux

    2017-02-01

    Full Text Available Quantum Key Distribution (QKD systems exploit the laws of quantum mechanics to generate secure keying material for cryptographic purposes. To date, several commercially viable decoy state enabled QKD systems have been successfully demonstrated and show promise for high-security applications such as banking, government, and military environments. In this work, a detailed performance analysis of decoy state enabled QKD systems is conducted through model and simulation of several common decoy state configurations. The results of this study uniquely demonstrate that the decoy state protocol can ensure Photon Number Splitting (PNS attacks are detected with high confidence, while maximizing the system’s quantum throughput at no additional cost. Additionally, implementation security guidance is provided for QKD system developers and users.

  16. The optimal performance of a quantum refrigeration cycle working with harmonic oscillators

    Science.gov (United States)

    Lin, Bihong; Chen, Jincan; Hua, Ben

    2003-02-01

    The cycle model of a quantum refrigeration cycle working with many non-interacting harmonic oscillators and consisting of two isothermal and two constant-frequency processes is established. Based on the quantum master equation and semi-group approach, the general performance of the cycle is investigated. Expressions for some important performance parameters, such as the coefficient of performance, cooling rate, power input, and rate of the entropy production, are derived. Several interesting cases are discussed and, especially, the optimal performance of the cycle at high temperatures is discussed in detail. Some important characteristic curves of the cycle, such as the cooling rate versus coefficient of performance curves, the power input versus coefficient of performance curves, the cooling rate versus power input curves, and so on, are presented. The maximum cooling rate and the corresponding coefficient of performance are calculated. Other optimal performances are also analysed. The results obtained here are compared with those of an Ericsson or Stirling refrigeration cycle using an ideal gas as the working substance. Finally, the optimal performance of a harmonic quantum Carnot refrigeration cycle at high temperatures is derived easily.

  17. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.

    Science.gov (United States)

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S; Schmidt, Oliver G; Rastelli, Armando; Trotta, Rinaldo

    2017-05-26

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski-Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.

  18. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

    Science.gov (United States)

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S.; Schmidt, Oliver G.; Rastelli, Armando; Trotta, Rinaldo

    2017-01-01

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. PMID:28548081

  19. Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid

    Science.gov (United States)

    Zhao, Zhichao; Xie, Yibing

    2017-01-01

    Carbon quantum dots-polyaniline (CQDs-PANI) hybrid was developed as supercapacitor electorde material by incorporating CQDs into PANI. PANI nanowires were grown vertically on carbon fiber substrate to form an interconnected network structure. Meanwhile, CQDs were uniformly distributed in the interior and on the surface of well-established net-like PANI nanowires. High specific capacitance of 738.3 F g-1 at 1.0 A g-1 was obtained for CQDs-PANI compared to that of 432.5 F g-1 for pure PANI. The capacitance retention after 1000 cycles of CQDs-PANI and PANI is 78.0% and 68.0% at 5.0 A g-1, respectively. The high capacitance and reasonable cycle stability were ascribed to the incorporation of CQDs into PANI, which improved the conductivity and alleviated the volume change of the CQDs-PANI electrode during the charge/discharge process. In addition, a flexible solid-state CQDs-PANI supercapacitor was constructed using carbon paper as current collector and polyvinyl alcohol gel electrolyte, exhibiting the stable capacitive performance at planar and bending state. The specific capacitance, energy and power density were determined to be 169.2 mF cm-2, 33.8 μWh cm-2 and 0.3 mW cm-2 at a potential window of 1.2 V and a current density of 1.0 mA cm-2. CQDs-PANI presented the promising application in flexible energy-related device.

  20. QSPIN: A High Level Java API for Quantum Computing Experimentation

    Science.gov (United States)

    Barth, Tim

    2017-01-01

    QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.

  1. High Performance Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jesse E [Los Alamos National Laboratory

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  2. R high performance programming

    CERN Document Server

    Lim, Aloysius

    2015-01-01

    This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.

  3. High performance pulse generator

    Science.gov (United States)

    Grothaus, Michael G.; Moran, Stuart L.; Hardesty, Leonard W.

    1992-06-01

    The device is a compact Marx-type generator capable of producing a high-voltage burst of pulses having risetimes less than 10 nanoseconds at repetition rates up to 10 kHz. High-pressure hydrogen switches are used as the switching elements to achieve high rep-rate. A small coaxial design provides low inductance and a fast risetime. The device may be used as a high-rep-rate high-voltage trigger generator, or as a high-voltage pulse source capable of producing up to 1 MV pulses at high repetition rates.

  4. Performance analysis of a micro-scaled quantum Stirling refrigeration cycle

    Science.gov (United States)

    Lin, Bihong; Huang, Zhifu; Chen, Jincan

    2012-09-01

    The cycle model of a general micro-scaled regenerative quantum refrigerator working with an ideal Bose or Fermi gas is established. The combined effects of quantum boundary and degeneracy on the performance of the cycle are investigated based on the thermodynamic properties of a confined ideal Bose or Fermi gas. The inherent regenerative losses of the cycle are analyzed and calculated. Expressions for several important performance parameters, such as the refrigeration load, work input, and coefficient of performance (COP), are derived under the cases of the gas degeneracy, weak gas degeneracy, high temperature limit, and thermodynamic limit. The curves of the refrigeration load and coefficient of performance versus the volume and surface area ratios of the cycle and the refrigeration load versus the coefficient of performance are represented. The effects of the size effect on the refrigeration load and coefficient of performance are discussed. The general performance characteristics of the cycle are revealed. It is found that both the refrigeration load and coefficient of performance of the micro-scaled quantum Stirling refrigeration cycle depend on the surface area of the cyclic system besides the temperature of the heat reservoirs, the volume of cyclic system, and other parameters, while those of the macro-scaled refrigerator are independent of the surface area of a cyclic system. The results obtained here are more general and significant than those in the current literature.

  5. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  6. Nuclear Forces and High-Performance Computing: The Perfect Match

    Energy Technology Data Exchange (ETDEWEB)

    Luu, T; Walker-Loud, A

    2009-06-12

    High-performance computing is now enabling the calculation of certain nuclear interaction parameters directly from Quantum Chromodynamics, the quantum field theory that governs the behavior of quarks and gluons and is ultimately responsible for the nuclear strong force. We briefly describe the state of the field and describe how progress in this field will impact the greater nuclear physics community. We give estimates of computational requirements needed to obtain certain milestones and describe the scientific and computational challenges of this field.

  7. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation

    Science.gov (United States)

    Ge, Jiechao; Lan, Minhuan; Zhou, Bingjiang; Liu, Weimin; Guo, Liang; Wang, Hui; Jia, Qingyan; Niu, Guangle; Huang, Xing; Zhou, Hangyue; Meng, Xiangmin; Wang, Pengfei; Lee, Chun-Sing; Zhang, Wenjun; Han, Xiaodong

    2014-08-01

    Clinical applications of current photodynamic therapy (PDT) agents are often limited by their low singlet oxygen (1O2) quantum yields, as well as by photobleaching and poor biocompatibility. Here we present a new PDT agent based on graphene quantum dots (GQDs) that can produce 1O2 via a multistate sensitization process, resulting in a quantum yield of ~1.3, the highest reported for PDT agents. The GQDs also exhibit a broad absorption band spanning the UV region and the entire visible region and a strong deep-red emission. Through in vitro and in vivo studies, we demonstrate that GQDs can be used as PDT agents, simultaneously allowing imaging and providing a highly efficient cancer therapy. The present work may lead to a new generation of carbon-based nanomaterial PDT agents with overall performance superior to conventional agents in terms of 1O2 quantum yield, water dispersibility, photo- and pH-stability, and biocompatibility.

  8. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation

    Science.gov (United States)

    Ge, Jiechao; Lan, Minhuan; Zhou, Bingjiang; Liu, Weimin; Guo, Liang; Wang, Hui; Jia, Qingyan; Niu, Guangle; Huang, Xing; Zhou, Hangyue; Meng, Xiangmin; Wang, Pengfei; Lee, Chun-Sing; Zhang, Wenjun; Han, Xiaodong

    2014-01-01

    Clinical applications of current photodynamic therapy (PDT) agents are often limited by their low singlet oxygen (1O2) quantum yields, as well as by photobleaching and poor biocompatibility. Here we present a new PDT agent based on graphene quantum dots (GQDs) that can produce 1O2 via a multistate sensitization process, resulting in a quantum yield of ~1.3, the highest reported for PDT agents. The GQDs also exhibit a broad absorption band spanning the UV region and the entire visible region and a strong deep-red emission. Through in vitro and in vivo studies, we demonstrate that GQDs can be used as PDT agents, simultaneously allowing imaging and providing a highly efficient cancer therapy. The present work may lead to a new generation of carbon-based nanomaterial PDT agents with overall performance superior to conventional agents in terms of 1O2 quantum yield, water dispersibility, photo- and pH-stability, and biocompatibility. PMID:25105845

  9. Strained-graphene-based highly efficient quantum heat engine operating at maximum power

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2017-09-01

    A strained graphene monolayer is shown to operate as a highly efficient quantum heat engine delivering maximum power. The efficiency and power of the proposed device exceeds that of recent proposals. The reason for these excellent characteristics is that strain enables complete valley separation in transmittance through the device, implying that increasing strain leads to very high Seebeck coefficient as well as lower conductance. In addition, since time-reversal symmetry is unbroken in our system, the proposed strained graphene quantum heat engine can also act as a high-performance refrigerator.

  10. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, F.; Wang, Y. L.; Yang, Y. Z., E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-11-23

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation light source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.

  11. Python high performance programming

    CERN Document Server

    Lanaro, Gabriele

    2013-01-01

    An exciting, easy-to-follow guide illustrating the techniques to boost the performance of Python code, and their applications with plenty of hands-on examples.If you are a programmer who likes the power and simplicity of Python and would like to use this language for performance-critical applications, this book is ideal for you. All that is required is a basic knowledge of the Python programming language. The book will cover basic and advanced topics so will be great for you whether you are a new or a seasoned Python developer.

  12. Quantum dot amplifiers with high output power and low noise

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    Quantum dot semiconductor optical amplifiers have been theoretically investigated and are predicted to achieve high saturated output power, large gain, and low noise figure. We discuss the device dynamics and, in particular, show that the presence of highly inverted barrier states does not limit...

  13. Quantum emitters coupled to circular nanoantennas for high-brightness quantum light sources

    Science.gov (United States)

    Abudayyeh, Hamza A.; Rapaport, Ronen

    2017-09-01

    Engineering the directionality and emission rate of quantum light sources is essential in the development of modern quantum applications. In this work we use numerical calculations to optimise the brightness of a broadband quantum emitter positioned in a hybrid metal-dielectric circular periodic nanoantenna. The optimised structure features a photon collection efficiency of 74 % (82 % ) and a photon flux enhancement of over 10 (6) into a numerical aperture of 0.22 (0.50), respectively, corresponding to a direct coupling into two types of multi-mode fibres. To enhance the emission rate, we present a new circular nanoantenna design where a quantum emitter is attached to a silver nanocone at the centre of the antenna. After optimisation, we find a collection efficiency of 61 % (78 % ) into a numerical aperture of 0.22 (0.50), giving a brightness enhancement of 1000 (600) for an unpolarised emitter. The enhancements in both structures are broadband due to the low-quality factor of the device and are therefore ideal for room-temperature sources. This type of a scalable design can be utilised towards on-chip, high-brightness quantum light sources operating at room temperature.

  14. NGINX high performance

    CERN Document Server

    Sharma, Rahul

    2015-01-01

    System administrators, developers, and engineers looking for ways to achieve maximum performance from NGINX will find this book beneficial. If you are looking for solutions such as how to handle more users from the same system or load your website pages faster, then this is the book for you.

  15. High-NOON states by mixing quantum and classical light.

    Science.gov (United States)

    Afek, Itai; Ambar, Oron; Silberberg, Yaron

    2010-05-14

    Precision measurements can be brought to their ultimate limit by harnessing the principles of quantum mechanics. In optics, multiphoton entangled states, known as NOON states, can be used to obtain high-precision phase measurements, becoming more and more advantageous as the number of photons grows. We generated "high-NOON" states (N = 5) by multiphoton interference of quantum down-converted light with a classical coherent state in an approach that is inherently scalable. Super-resolving phase measurements with up to five entangled photons were produced with a visibility higher than that obtainable using classical light only.

  16. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available High fluorescence quantum yield graphene quantum dots (GQDs have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications.

  17. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study

    Science.gov (United States)

    Jiang, Dan; Chen, Yunping; Li, Na; Li, Wen; Wang, Zhenguo; Zhu, Jingli; Zhang, Hong; Liu, Bin; Xu, Shan

    2015-01-01

    High fluorescence quantum yield graphene quantum dots (GQDs) have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm) and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL) GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications. PMID:26709828

  18. Full quantum trajectories resolved high-order harmonic generation.

    Science.gov (United States)

    Ye, Peng; He, Xinkui; Teng, Hao; Zhan, Minjie; Zhong, Shiyang; Zhang, Wei; Wang, Lifeng; Wei, Zhiyi

    2014-08-15

    We use a carrier-envelope-phase stabilized sub-2-cycle laser pulse to generate high-order harmonics and study how the two-dimensional spectrum of harmonics, with the resolutions in temporal frequency and spatial frequency, is shaped by the laser phase. An arrowlike spectrum obtained experimentally when the gas cell is located in front of the laser focus point shows a resolution of full quantum trajectories; i.e., harmonics from different trajectories stand on different positions in this spectrum. In particular, due to the laser phase combined with the classical-like action, the harmonics from short and long trajectories differ maximally in their curvatures of wave fronts in the generation area, and so occupy very different ranges of spatial frequency at the far field. The result directly gives a full map of quantum trajectories in high-order harmonic generation. The conclusion is supported by an analytical model and quantum mechanics simulations.

  19. High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy.

    Science.gov (United States)

    Basso Basset, Francesco; Bietti, Sergio; Reindl, Marcus; Esposito, Luca; Fedorov, Alexey; Huber, Daniel; Rastelli, Armando; Bonera, Emiliano; Trotta, Rinaldo; Sanguinetti, Stefano

    2018-01-10

    Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route toward quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared with previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.

  20. High-capacity quantum Fibonacci coding for key distribution

    Science.gov (United States)

    Simon, David S.; Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca; Sergienko, Alexander V.

    2013-03-01

    Quantum cryptography and quantum key distribution (QKD) have been the most successful applications of quantum information processing, highlighting the unique capability of quantum mechanics, through the no-cloning theorem, to securely share encryption keys between two parties. Here, we present an approach to high-capacity, high-efficiency QKD by exploiting cross-disciplinary ideas from quantum information theory and the theory of light scattering of aperiodic photonic media. We propose a unique type of entangled-photon source, as well as a physical mechanism for efficiently sharing keys. The key-sharing protocol combines entanglement with the mathematical properties of a recursive sequence to allow a realization of the physical conditions necessary for implementation of the no-cloning principle for QKD, while the source produces entangled photons whose orbital angular momenta (OAM) are in a superposition of Fibonacci numbers. The source is used to implement a particular physical realization of the protocol by randomly encoding the Fibonacci sequence onto entangled OAM states, allowing secure generation of long keys from few photons. Unlike in polarization-based protocols, reference frame alignment is unnecessary, while the required experimental setup is simpler than other OAM-based protocols capable of achieving the same capacity and its complexity grows less rapidly with increasing range of OAM used.

  1. Performance analysis of irreversible quantum Stirling cryogenic refrigeration cycles and their parametric optimum criteria

    Science.gov (United States)

    Lin, Bihong; Chen, Jincan

    2006-08-01

    The influence of both the quantum degeneracy and the finite-rate heat transfer between the working substance and the heat reservoirs on the optimal performance of an irreversible Stirling cryogenic refrigeration cycle using an ideal Fermi or Bose gas as the working substance is investigated, based on the theory of statistical mechanics and thermodynamic properties of ideal quantum gases. The inherent regeneration losses of the cycle are analysed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. In particular, the optimal performance of the cycle in the strong and weak gas degeneracy cases and the high temperature limit are discussed in detail. The analytic expressions of some optimized parameters are derived. Some optimum criteria are given. The distinctions and connections between the Stirling refrigeration cycles working with the ideal quantum and classical gases are revealed.

  2. Towards Implementation of a Generalized Architecture for High-Level Quantum Programming Language

    Science.gov (United States)

    Ameen, El-Mahdy M.; Ali, Hesham A.; Salem, Mofreh M.; Badawy, Mahmoud

    2017-08-01

    This paper investigates a novel architecture to the problem of quantum computer programming. A generalized architecture for a high-level quantum programming language has been proposed. Therefore, the programming evolution from the complicated quantum-based programming to the high-level quantum independent programming will be achieved. The proposed architecture receives the high-level source code and, automatically transforms it into the equivalent quantum representation. This architecture involves two layers which are the programmer layer and the compilation layer. These layers have been implemented in the state of the art of three main stages; pre-classification, classification, and post-classification stages respectively. The basic building block of each stage has been divided into subsequent phases. Each phase has been implemented to perform the required transformations from one representation to another. A verification process was exposed using a case study to investigate the ability of the compiler to perform all transformation processes. Experimental results showed that the efficacy of the proposed compiler achieves a correspondence correlation coefficient about R ≈ 1 between outputs and the targets. Also, an obvious achievement has been utilized with respect to the consumed time in the optimization process compared to other techniques. In the online optimization process, the consumed time has increased exponentially against the amount of accuracy needed. However, in the proposed offline optimization process has increased gradually.

  3. High performance steam development

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  4. High performance polymer concrete

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2007-06-01

    Full Text Available This paper studies the performance of concrete whose chief components are natural aggregate and an organic binder —a thermosetting polyester resin— denominated polymer concrete or PC. The material was examined macro- and microscopically and its basic physical and mechanical properties were determined using mercury porosimetry, scanning electron microscopy (SEM-EDAX, X-ray diffraction (XRD and strength tests (modulus of elasticity, stress-strain curves and ultimate strengths. According to the results of these experimental studies, the PC exhibited a low density (4.8%, closed pore system and a concomitantly continuous internal microstructure. This would at least partially explain its mechanical out-performance of traditional concrete, with average compressive and flexural strength values of 100 MPa and over 20 MPa, respectively. In the absence of standard criteria, the bending test was found to be a useful supplement to compressive strength tests for establishing PC strength classes.Este trabajo de investigación aborda el estudio de un hormigón de altas prestaciones, formado por áridos naturales y un aglomerante orgánico constituido por una resina termoestable poliéster, denominado hormigón polimérico HP. Se describe el material a nivel microscópico y macroscópico, presentando sus propiedades físicas y mecánicas fundamentales, mediante diferentes técnicas experimentales, tales como: porosimetría de mercurio, microscopía electrónica (SEM-EDAX, difracción de rayos X (DRX y ensayos mecánicos (módulo de elasticidad, curvas tensión- deformación y resistencias últimas. Como consecuencia del estudio experimental llevado a cabo, se ha podido apreciar cómo el HP está formado por porosidad cerrada del 4,8%, proporcionando una elevada continuidad a su microestructura interna, lo que justifica, en parte, la mejora de propiedades mecánicas respecto al hormigón tradicional, con unos valores medios de resistencia a compresión de 100

  5. High-dimensional quantum channel estimation using classical light

    CSIR Research Space (South Africa)

    Mabena, Chemist M

    2017-11-01

    Full Text Available A method is proposed to characterize a high-dimensional quantum channel with the aid of classical light. It uses a single nonseparable input optical field that contains correlations between spatial modes and wavelength to determine the effect...

  6. Rapid single flux quantum logic in high temperature superconductor technology

    NARCIS (Netherlands)

    Shunmugavel, K.

    2006-01-01

    A Josephson junction is the basic element of rapid single flux quantum logic (RSFQ) circuits. A high operating speed and low power consumption are the main advantages of RSFQ logic over semiconductor electronic circuits. To realize complex RSFQ circuits in HTS technology one needs a reproducible

  7. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  8. Performance analysis of quantum Diesel heat engines with a two-level atom as working substance

    Science.gov (United States)

    Huang, X. L.; Shang, Y. F.; Guo, D. Y.; Yu, Qian; Sun, Qi

    2017-07-01

    A quantum Diesel cycle, which consists of one quantum isobaric process, one quantum isochoric process and two quantum adiabatic processes, is established with a two-level atom as working substance. The parameter R in this model is defined as the ratio of the time in quantum isochoric process to the timescale for the potential width movement. The positive work condition, power output and efficiency are obtained, and the optimal performance is analyzed with different R. The effects of dissipation, the mixed state in the cycle and the results of other working substances are also discussed at the end of this analysis.

  9. High threshold distributed quantum computing with three-qubit nodes

    Science.gov (United States)

    Li, Ying; Benjamin, Simon C.

    2012-09-01

    In the distributed quantum computing paradigm, well-controlled few-qubit ‘nodes’ are networked together by connections which are relatively noisy and failure prone. A practical scheme must offer high tolerance to errors while requiring only simple (i.e. few-qubit) nodes. Here we show that relatively modest, three-qubit nodes can support advanced purification techniques and so offer robust scalability: the infidelity in the entanglement channel may be permitted to approach 10% if the infidelity in local operations is of order 0.1%. Our tolerance of network noise is therefore an order of magnitude beyond prior schemes, and our architecture remains robust even in the presence of considerable decoherence rates (memory errors). We compare the performance with that of schemes involving nodes of lower and higher complexity. Ion traps, and NV-centres in diamond, are two highly relevant emerging technologies: they possess the requisite properties of good local control, rapid and reliable readout, and methods for entanglement-at-a-distance.

  10. Nontrivial transition of transmission in a highly open quantum point contact in the quantum Hall regime

    Science.gov (United States)

    Hong, Changki; Park, Jinhong; Chung, Yunchul; Choi, Hyungkook; Umansky, Vladimir

    2017-11-01

    Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we report the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge (e*=e /3 ). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.

  11. High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation

    Science.gov (United States)

    House, Matthew; Bartlett, Ian; Pakkiam, Prasanna; Koch, Matthias; Peretz, Eldad; van der Heijden, Joost; Kobayashi, Takashi; Rogge, Sven; Simmons, Michelle

    We report the development of a high sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead, designed to minimize the geometric requirements of a charge sensor for scalable quantum computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single electron transistor (rf-SET) with which to make a comparison of the charge detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1, compared with an integration time of 55 ns for the rf-SET. This level of sensitivity is suitable for fast (Communication Technology (Project No. CE110001027) and the U.S. Army Research Office under Contract No. W911NF-13-1-0024.

  12. A high performance microfabricated surface ion trap

    Science.gov (United States)

    Lobser, Daniel; Blain, Matthew; Haltli, Raymond; Hollowell, Andrew; Revelle, Melissa; Stick, Daniel; Yale, Christopher; Maunz, Peter

    2017-04-01

    Microfabricated surface ion traps present a natural solution to the problem of scalability in trapped ion quantum computing architectures. We address some of the chief concerns about surface ion traps by demonstrating low heating rates, long trapping times as well as other high-performance features of Sandia's high optical access (HOA-2) trap. For example, due to the HOA's specific electrode layout, we are able to rotate principal axes of the trapping potential from 0 to 2 π without any change in the secular trap frequencies. We have also achieved the first single-qubit gates with a diamond norm below a rigorous fault tolerance threshold, and a two-qubit Mølmer-Sørensen gate with a process fidelity of 99.58(6). Here we present specific details of trap capabilities, such as shuttling and ion reordering, as well as details of our high fidelity single- and two-qubit gates.

  13. High Performance Computing at NASA

    Science.gov (United States)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  14. High-performance sports medicine

    National Research Council Canada - National Science Library

    Speed, Cathy

    2013-01-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition...

  15. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  16. High Performance Space Pump Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PDT is proposing a High Performance Space Pump based upon an innovative design using several technologies. The design will use a two-stage impeller, high temperature...

  17. Performance tuning for high performance computing systems

    OpenAIRE

    Pahuja, Himanshu

    2017-01-01

    A Distributed System is composed by integration between loosely coupled software components and the underlying hardware resources that can be distributed over the standard internet framework. High Performance Computing used to involve utilization of supercomputers which could churn a lot of computing power to process massively complex computational tasks, but is now evolving across distributed systems, thereby having the ability to utilize geographically distributed computing resources. We...

  18. High mobility and quantum well transistors design and TCAD simulation

    CERN Document Server

    Hellings, Geert

    2013-01-01

    For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Qu...

  19. Vibration-induced coherence enhancement of the performance of a biological quantum heat engine.

    Science.gov (United States)

    Chen, Hong-Bin; Chiu, Pin-Yi; Chen, Yueh-Nan

    2016-11-01

    Photosynthesis has been a long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also have inspired attention from a thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results provide insights into the photosynthetic processes and a design principle mimicking natural organisms.

  20. Vibration-induced coherence enhances the performance of a biological quantum heat engine

    CERN Document Server

    Chen, Hong-Bin; Chen, Yueh-Nan

    2016-01-01

    Photosynthesis has been the long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also inspire attention from thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results suggest new insights into the photosynthetic processes and a design principle mimicking natural organisms.

  1. High Quantum Efficiency OLED Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  2. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  3. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  4. High Performance Flexible Thermal Link

    Science.gov (United States)

    Sauer, Arne; Preller, Fabian

    2014-06-01

    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  5. Progress in quantum electrodynamics theory of highly charged ions

    OpenAIRE

    Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.

    2013-01-01

    Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...

  6. Dynamics of quantum liquids at high momentum

    Energy Technology Data Exchange (ETDEWEB)

    Tanatar, B.; Talbot, E.F.; Glyde, H.R.

    1987-12-01

    The dynamic form factor S(Q,..omega..) in liquid /sup 3/He and /sup 4/He is evaluated in the wave-vector transfer range 3less than or equal toQless than or equal to15 A/sup -1/. The input is the pair interatomic potential, developed by Aziz et al. The S(Q,..omega..) is calculated within the random-phase approximation (RPA) which becomes valid when h-dash-barQ is much larger than the average momentum in the liquid. A T-matrix approximation represents the interaction appearing in the RPA. The aim is to explore how well S(Q,..omega..) can be described for 3less than or equal toQless than or equal to15 A/sup -1/ from first principles. In /sup 3/He, we find S(Q,..omega..) is a broad, nearly Gaussian function, centered just below the recoil frequency having a width and shape that agrees well with experiment. It does, however, have tails at high frequency which make important contributions to its moments. In /sup 4/He, S(Q,..omega..) is a more sharply peaked function which also agrees quite well with experiment. We are able to reproduce the oscillations in the peak position and in the width of S(Q,..omega..) with Q in liquid /sup 4/He observed by Martel et al. In the present model, these oscillations originate from oscillations in the magnitude of the T-matrix interaction with Q. The corresponding oscillations are predicted to be very small and probably unobservable in liquid /sup 3/He.

  7. Quantum Dot Spectrum Converters for Enhanced High Efficiency Photovoltaics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to enhance solar cell efficiency, radiation resistance and affordability. The Quantum Dot Spectrum Converter (QDSC) disperses quantum dots...

  8. Tomography of the quantum state of photons entangled in high dimensions

    CSIR Research Space (South Africa)

    Agnew, M

    2011-12-01

    Full Text Available Systems entangled in high dimensions have recently been proposed as important tools for various quantum information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is therefore important to have...

  9. Ultrafast, high repetition rate, ultraviolet, fiber based laser source: application towards Yb+ fast quantum-logic

    CERN Document Server

    Hussain, Mahmood Irtiza; Bentley, Christopher D B; Taylor, Richard L; Carvalho, Andre R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-01-01

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb$^+$ ions faster than the trap period and with fidelity above 99%.

  10. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  11. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  12. High quantum yield graphene quantum dots decorated TiO{sub 2} nanotubes for enhancing photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ailan, E-mail: qal67@163.com; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-07-01

    Highlights: • High concentration yellow GQDs and TiO{sub 2} nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO{sub 2} nanotube. • The catalytic performance of GQDs/TiO{sub 2} depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO{sub 2} was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO{sub 2} nanotubes (GQDs/TiO{sub 2} NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO{sub 2} NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO{sub 2} nanotubes (TiO{sub 2} NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO{sub 2} NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO{sub 2} NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO{sub 2} composite.

  13. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  14. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  15. High-power arrays of quantum cascade laser master-oscillator power-amplifiers.

    Science.gov (United States)

    Rauter, Patrick; Menzel, Stefan; Goyal, Anish K; Wang, Christine A; Sanchez, Antonio; Turner, George; Capasso, Federico

    2013-02-25

    We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.

  16. High performance flexible heat pipes

    Science.gov (United States)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  17. The High Performance Computing Initiative

    Science.gov (United States)

    Holcomb, Lee B.; Smith, Paul H.; Macdonald, Michael J.

    1991-01-01

    The paper discusses NASA High Performance Computing Initiative (HPCI), an essential component of the Federal High Performance Computing Program. The HPCI program is designed to provide a thousandfold increase in computing performance, and apply the technologies to NASA 'Grand Challenges'. The Grand Challenges chosen include integrated multidisciplinary simulations and design optimizations of aerospace vehicles throughout the mission profiles; the multidisciplinary modeling and data analysis of the earth and space science physical phenomena; and the spaceborne control of automated systems, handling, and analysis of sensor data and real-time response to sensor stimuli.

  18. Solving Quantum Number Problems: An Examination of Novice Performance in Terms of Conceptual Base Requirements

    Science.gov (United States)

    Ardac, Dilek

    2002-04-01

    Novices possess a highly fragmented and incoherent knowledge base with several inconsistencies and gaps that seriously limit problem-solving performance. The problem-solving process carried out by 55 freshman students in a general chemistry course as they attempted to solve low- and high-demand problems on quantum numbers was scrutinized, revealing that the students filled in the gaps in their knowledge base with a number of self-generated rules that were analogous to some basic principles, but also showed notable logical and conceptual discrepancies. These self-generated rules guided students' decisions during problem solving and gave meaning to material that was highly symbolic. However, once these students were given the opportunity to reflect on their problem solving through a tutorial session, they were quick to recognize the inconsistencies. The reformulation of the erroneously established rules was expeditious, as evidenced by the significant (p < .001) improvements in performance after the tutorials.

  19. A high-temperature quantum spin liquid with polaron spins

    Science.gov (United States)

    Klanjšek, Martin; Zorko, Andrej; Žitko, Rok; Mravlje, Jernej; Jagličić, Zvonko; Biswas, Pabitra Kumar; Prelovšek, Peter; Mihailovic, Dragan; Arčon, Denis

    2017-11-01

    The existence of a quantum spin liquid (QSL) in which quantum fluctuations of spins are sufficiently strong to preclude spin ordering down to zero temperature was originally proposed theoretically more than 40 years ago, but its experimental realization turned out to be very elusive. Here we report on an almost ideal spin liquid state that appears to be realized by atomic-cluster spins on the triangular lattice of a charge-density wave state of 1T-TaS2. In this system, the charge excitations have a well-defined gap of ~0.3 eV, while nuclear quadrupole resonance and muon-spin-relaxation experiments reveal that the spins show gapless QSL dynamics and no long-range magnetic order at least down to 70 mK. Canonical T2 power-law temperature dependence of the spin relaxation dynamics characteristic of a QSL is observed from 200 K to Tf = 55 K. Below this temperature, we observe a new gapless state with reduced density of spin excitations and high degree of local disorder signifying new quantum spin order emerging from the QSL.

  20. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  1. Room-temperature synthesis of Cu(2-x)E (E = S, Se) nanotubes with hierarchical architecture as high-performance counter electrodes of quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Chen, Xin Qi; Li, Zhen; Bai, Yang; Sun, Qiao; Wang, Lian Zhou; Dou, Shi Xue

    2015-01-12

    Copper chalcogenide nanostructures (e.g. one-dimensional nanotubes) have been the focus of interest because of their unique properties and great potential in various applications. Their current fabrications mainly rely on high-temperature or complicated processes. Here, with the assistance of theoretical prediction, we prepared Cu(2-x)E (E = S, Se) micro-/nanotubes (NTs) with a hierarchical architecture by using copper nanowires (Cu NWs), stable sulfur and selenium powder as precursors at room temperature. The influence of reaction parameters (e.g. precursor ratio, ligands, ligand ratio, and reaction time) on the formation of nanotubes was comprehensively investigated. The resultant Cu(2-x)E (E = S, Se) NTs were used as counter electrodes (CE) of quantum-dot-sensitized solar cells (QDSSCs) to achieve a conversion efficiency (η) of 5.02 and 6.25%, respectively, much higher than that of QDSSCs made with Au CE (η = 2.94%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-performance pure and Fe{sup 3+}-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Khani, Omid [Electroceramics Research Center, Malek-Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Vatanpour, Vahid [Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of)

    2013-04-15

    Highlights: ► Synthesis of ultra-small ZnS and ZnS:Fe QDs in aqueous media. ► Characterization of QDs by TEM, XRD, FAAS and UV–vis absorption techniques. ► The new report on the photocatalytic behavior of QDs on removal of MG. ► Effective degrade of dye by novel modified QDs up to 98%. -- Abstract: The heterogeneous photocatalysis using UV-radiation and quantum dots (QDs) is an interesting method for the treatment of water polluted with the organic substances. In this study, ZnS QDs, as a pure and doped with Fe{sup 3+}, were prepared for photodecolorization of malachite green (MG) as a model dye. The synthesis of QDs was carried out using a chemical precipitation method in aqueous solution, in the presence of 2-mercaptoethanol as a capping agent. The XRD patterns indicated that the doped nanoparticles are crystalline, with cubic zinc blend structure. The effects of dopant content, pH, nanophotocatalyst amount, irradiation time, and initial dye concentration on the removal efficiency of MG were studied. Results showed that the QDs presented high MG decolorization efficiency, and doping with Fe{sup 3+} promoted the dye removal. The maximum removal of dyes was obtained at 80 mg/L of photocatalyst as an optimum value for the dosage of photocatalyst in pH of 8.0.

  3. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    –4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire...

  4. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  5. Quantum Performance Analysis of an EMCCD-based X-ray Detector Using Photon Transfer Technique.

    Science.gov (United States)

    Qu, Bin; Kuhls-Gilcrist, Andrew T; Huang, Ying; Wang, Weiyuan; Cartwright, Alexander N; Titus, Albert H; Bednarek, Daniel R; Rudin, Stephen

    2010-10-30

    The low electronic noise, high resolution, and good temporal performance of electron-multiplying CCDs (EMCCDs) are ideally suited for applications traditionally served by x-ray image intensifiers. In order to improve an expandable clinical detector's field-of-view and have full control of the system performance, we have successfully built a solid-state x-ray detector. The photon transfer technique was used to quantify the EMCCD quantum performance in terms of sensitivity (or camera gain constant, K), read noise (RN), full-well capacity (FW), and dynamic range (DR). Measured results show the system maintains a K of 11.3 ± 0.9 e(-)/DN at unit gain, with a read noise of 71.5±6.0 e(-)rms at gain 1, which decreases proportionally with higher gains. The full well capacity was measured to be 31.3±2.7 ke(-), providing a dynamic range of 52.8±0.7 dB using the chip manufacturer specified clocking scheme. Similar performance was measured with other commercial camera systems. The manufacturer data sheet indicates a dynamic range of 66 dB is plausible with improved read noise and full well capacity. Different clocking schemes are under investigation to assess their impact on improving performance towards idealized values. EMCCD driver clock voltage levels were adjusted individually to check the influence on quantum performance. The clocks work to transfer charge from the image area to readout amplifier through the storage area, horizontal and multiplication registers. Results indicate that the clock that contributes to lateral overflow drain bias is essential to the system performance in terms of dynamic range and full well capacity. The serial register clocks used for transporting charge stored in the pixels of the memory lines to the output amplifier had the largest effect on RN, while others had less of an impact. Initial adjustment of these clocks resulted in a variability of 16% in the performance of dynamic range, 38% in read noise and 56% in full well capacity

  6. High quantum efficiency S-20 photocathodes in photon counting detectors

    Science.gov (United States)

    Orlov, D. A.; DeFazio, J.; Duarte Pinto, S.; Glazenborg, R.; Kernen, E.

    2016-04-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors, which is demonstrated with an MCP photomultiplier tube for single and multi-photoelectron detection.

  7. Quantum Key Distribution with High Loss: Toward Global Secure Communication

    Science.gov (United States)

    Hwang, Won-Young

    2003-08-01

    We propose a decoy-pulse method to overcome the photon-number-splitting attack for Bennett-Brassard 1984 quantum key distribution protocol in the presence of high loss: A legitimate user intentionally and randomly replaces signal pulses by multiphoton pulses (decoy pulses). Then they check the loss of the decoy pulses. If the loss of the decoy pulses is abnormally less than that of signal pulses, the whole protocol is aborted. Otherwise, to continue the protocol, they estimate the loss of signal multiphoton pulses based on that of decoy pulses. This estimation can be done with an assumption that the two losses have similar values. We justify that assumption.

  8. Gain in a quantum wire laser of high uniformity

    OpenAIRE

    Akiyama, Hidefumi; Pfeiffer, Loren N.; Yoshita, Masahiro; Pinczuk, Aron; Littlewood, Peter B.; West, Ken W.; Matthews, Manyalibo J.; Wynn, James

    2002-01-01

    A multi-quantum wire laser operating in the 1-D ground state has been achieved in a very high uniformity structure that shows free exciton emission with unprecedented narrow width and low lasing threshold. Under optical pumping the spontaneous emission evolves from a sharp free exciton peak to a red-shifted broad band. The lasing photon energy occurs about 5 meV below the free exciton. The observed shift excludes free excitons in lasing and our results show that Coulomb interactions in the 1-...

  9. Quantum Transport Simulation of High-Power 4.6-μm Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    Olafur Jonasson

    2016-06-01

    Full Text Available We present a quantum transport simulation of a 4.6- μ m quantum cascade laser (QCL operating at high power near room temperature. The simulation is based on a rigorous density-matrix-based formalism, in which the evolution of the single-electron density matrix follows a Markovian master equation in the presence of applied electric field and relevant scattering mechanisms. We show that it is important to allow for both position-dependent effective mass and for effective lowering of very thin barriers in order to obtain the band structure and the current-field characteristics comparable to experiment. Our calculations agree well with experiments over a wide range of temperatures. We predict a room-temperature threshold field of 62 . 5 kV/cm and a characteristic temperature for threshold-current-density variation of T 0 = 199 K . We also calculate electronic in-plane distributions, which are far from thermal, and show that subband electron temperatures can be hundreds to thousands of degrees higher than the heat sink. Finally, we emphasize the role of coherent tunneling current by looking at the size of coherences, the off-diagonal elements of the density matrix. At the design lasing field, efficient injection manifests itself in a large injector/upper lasing level coherence, which underscores the insufficiency of semiclassical techniques to address injection in QCLs.

  10. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  11. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  12. Nonlocal quantum macroscopic superposition in a high-thermal low-purity state.

    Science.gov (United States)

    Brezinski, Mark E; Liu, Bin

    2008-12-16

    Quantum state exchange between light and matter is an important ingredient for future quantum information networks as well as other applications. Photons are the fastest and simplest carriers of information for transmission but in general, it is difficult to localize and store photons, so usually one prefers choosing matter as quantum memory elements. Macroscopic superposition and nonlocal quantum interactions have received considerable interest for this purpose over recent years in fields ranging from quantum computers to cryptography, in addition to providing major insights into physical laws. However, these experiments are generally performed either with equipment or under conditions that are unrealistic for practical applications. Ideally, the two can be combined using conventional equipment and conditions to generate a "quantum teleportation"-like state, particularly with a very small amount of purity existing in an overall highly mixed thermal state (relatively low decoherence at high temperatures). In this study we used an experimental design to demonstrate these principles. We performed optical coherence tomography (OCT) using a thermal source at room temperatures of a specifically designed target in the sample arm. Here, position uncertainty (i.e., dispersion) was induced in the reference arm. In the sample arm (target) we placed two glass plates separated by a different medium while altering position uncertainty in the reference arm. This resulted in a chirped signal between the glass plate reflective surfaces in the combined interferogram. The chirping frequency, as measured by the fast Fourier transform (FFT), varies with the medium between the plates, which is a nonclassical phenomenon. These results are statistically significant and occur from a superposition between the glass surface and the medium with increasing position uncertainty, a true quantum-mechanical phenomenon produced by photon pressure from two-photon interference. The differences in

  13. Architecture Framework for Trapped-Ion Quantum Computer based on Performance Simulation Tool

    Science.gov (United States)

    Ahsan, Muhammad

    The challenge of building scalable quantum computer lies in striking appropriate balance between designing a reliable system architecture from large number of faulty computational resources and improving the physical quality of system components. The detailed investigation of performance variation with physics of the components and the system architecture requires adequate performance simulation tool. In this thesis we demonstrate a software tool capable of (1) mapping and scheduling the quantum circuit on a realistic quantum hardware architecture with physical resource constraints, (2) evaluating the performance metrics such as the execution time and the success probability of the algorithm execution, and (3) analyzing the constituents of these metrics and visualizing resource utilization to identify system components which crucially define the overall performance. Using this versatile tool, we explore vast design space for modular quantum computer architecture based on trapped ions. We find that while success probability is uniformly determined by the fidelity of physical quantum operation, the execution time is a function of system resources invested at various layers of design hierarchy. At physical level, the number of lasers performing quantum gates, impact the latency of the fault-tolerant circuit blocks execution. When these blocks are used to construct meaningful arithmetic circuit such as quantum adders, the number of ancilla qubits for complicated non-clifford gates and entanglement resources to establish long-distance communication channels, become major performance limiting factors. Next, in order to factorize large integers, these adders are assembled into modular exponentiation circuit comprising bulk of Shor's algorithm. At this stage, the overall scaling of resource-constraint performance with the size of problem, describes the effectiveness of chosen design. By matching the resource investment with the pace of advancement in hardware technology

  14. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing

    Science.gov (United States)

    Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.; Odele, Ogaga D.; Leaird, Daniel E.; Weiner, Andrew M.; Lougovski, Pavel

    2018-01-01

    We report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.999 98 ±0.000 03 ), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530-1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3 ×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelity 0.9989 ±0.0004 . These gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.

  15. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. High Performance Tools And Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  17. Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Imam, Neena [ORNL; Humble, Travis S. [ORNL; McCaskey, Alex [ORNL; Schrock, Jonathan [ORNL; Hamilton, Kathleen E. [ORNL

    2017-09-01

    A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recall accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.

  18. High-fidelity quantum state preparation using neighboring optimal control

    Science.gov (United States)

    Peng, Yuchen; Gaitan, Frank

    2017-10-01

    We present an approach to single-shot high-fidelity preparation of an n-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produce single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two-qubit Bell state |β _{01}\\rangle = (1/√{2})[ |01\\rangle + |10\\rangle ] with an error probability ɛ ˜ 10^{-6} (10^{-5}) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state |\\overline{β }_{01}\\rangle.

  19. Performance analysis and parametric optimum criteria of a quantum Otto heat engine with heat transfer effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hao [Department of Physics, Nanchang University, Nanchang 330031 (China)], E-mail: ncu.wh@163.com; Liu Sanqiu; He Jizhou [Department of Physics, Nanchang University, Nanchang 330031 (China)

    2009-03-15

    The influence of both the quantum degeneracy and the finite rate heat transfer between the working substance and the cylinder wall on the optimal performance of an Otto engine cycle is investigated. Expressions for several important parameters such as the power output and efficiency are derived. By using numerical solutions, the curves of the power output and efficiency varying with the compression ratio of two isochoric processes are presented. It is found that there are optimal values of the compression ratio at which the power output and efficiency attain their maximum. In particular, the optimal performance of the cycle in strong and weak gas degeneracy and the high temperature limit are discussed in detail. The distinctions and connections between the quantum Otto engine and the classical are revealed. Moreover, the maximum power output and efficiency and the corresponding relevant parameters are calculated, and consequently, the optimization criteria of some important parameters such as the power output, efficiency and compression ratio of the working substance are obtained.

  20. Neo4j high performance

    CERN Document Server

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  1. High-performance sports medicine.

    Science.gov (United States)

    Speed, Cathy

    2013-02-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  2. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-12-15

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  3. Experimental Minimum-Error Quantum-State Discrimination in High Dimensions.

    Science.gov (United States)

    Solís-Prosser, M A; Fernandes, M F; Jiménez, O; Delgado, A; Neves, L

    2017-03-10

    Quantum mechanics forbids perfect discrimination among nonorthogonal states through a single shot measurement. To optimize this task, many strategies were devised that later became fundamental tools for quantum information processing. Here, we address the pioneering minimum-error (ME) measurement and give the first experimental demonstration of its application for discriminating nonorthogonal states in high dimensions. Our scheme is designed to distinguish symmetric pure states encoded in the transverse spatial modes of an optical field; the optimal measurement is performed by a projection onto the Fourier transform basis of these modes. For dimensions ranging from D=2 to D=21 and nearly 14 000 states tested, the deviations of the experimental results from the theoretical values range from 0.3% to 3.6% (getting below 2% for the vast majority), thus showing the excellent performance of our scheme. This ME measurement is a building block for high-dimensional implementations of many quantum communication protocols, including probabilistic state discrimination, dense coding with nonmaximal entanglement, and cryptographic schemes.

  4. Experimental Minimum-Error Quantum-State Discrimination in High Dimensions

    Science.gov (United States)

    Solís-Prosser, M. A.; Fernandes, M. F.; Jiménez, O.; Delgado, A.; Neves, L.

    2017-03-01

    Quantum mechanics forbids perfect discrimination among nonorthogonal states through a single shot measurement. To optimize this task, many strategies were devised that later became fundamental tools for quantum information processing. Here, we address the pioneering minimum-error (ME) measurement and give the first experimental demonstration of its application for discriminating nonorthogonal states in high dimensions. Our scheme is designed to distinguish symmetric pure states encoded in the transverse spatial modes of an optical field; the optimal measurement is performed by a projection onto the Fourier transform basis of these modes. For dimensions ranging from D =2 to D =21 and nearly 14 000 states tested, the deviations of the experimental results from the theoretical values range from 0.3% to 3.6% (getting below 2% for the vast majority), thus showing the excellent performance of our scheme. This ME measurement is a building block for high-dimensional implementations of many quantum communication protocols, including probabilistic state discrimination, dense coding with nonmaximal entanglement, and cryptographic schemes.

  5. High-performing physician executives.

    Science.gov (United States)

    Brown, M; Larson, S R; McCool, B P

    1988-01-01

    Physician leadership extends beyond traditional clinical disciplines to hospital administration, group practice management, health policy making, management of managed care programs, and many business positions. What kind of person makes a good physician executive? What stands out as the most important motivations, attributes, and interests of high-performing physician executives? How does this compare with non-physician health care executives? Such questions have long been high on the agenda of executives in other industries. This article builds on existing formal assessments of leadership attributes of high-performing business, government, and educational executives and on closer examination of health care executives. Previous studies looked at the need for innovative, entrepreneurial, energetic, community-oriented leaders for positions throughout health care. Traits that distinguish excellence and leadership were described by Brown and McCool.* That study characterized successful leaders in terms of physical strengths (high energy, good health, and propensity for hard work), mental strengths (creativity, intuition, and innovation), and organizational strengths (mission orientation, vision, and entrepreneurial spirit). In this investigation, a subset of health care executives, including physician executives, was examined more closely. It was initially assumed that successful physician executives exhibit many of the same positive traits as do nonphysician executives. This assumption was tested with physician leaders in a range of administrative and managerial positions. We also set out to identify key differences between physician and nonphysician executives. Even with our limited exploration, it seems to us that physician executives probably do differ from nonphysician executives.

  6. Highly Photoluminescent and Stable Aqueous ZnS Quantum Dots

    Science.gov (United States)

    Li, Hui; Shih, Wan Y.; Shih, Wei-Heng

    2009-01-01

    We report an all-aqueous synthesis of highly photoluminescent and stable ZnS quantum dots (QDs) with water as the medium, i.e. first synthesizing ZnS QDs with 3-mercaptopropionic acid (MPA) as the capping molecule, followed by replacing some of MPA with (3-mercaptopropyl) trimethoxysilane (MPS). The resultant MPS-replaced ZnS QDs were about 5 nm in size with a cubic zinc blende crystalline structure, and had both MPA and MPS on the surface as confirmed by the Fourier Transform Infrared (FTIR) spectroscopy. They exhibited blue trap-state emissions around 415 nm and a quantum yield (QY) of 75% with Rhodamine 101 as the reference, and remained stable for more than 60 days under the ambient conditions. Through the capping molecule replacement procedure, the MPS-replaced ZnS QDs avoided the shortcomings of both the MPA-ZnS QDs and the MPS-ZnS QDs, and acquired the advantages of strong photoluminescence and good stability, which are important to the QDs’ applications especially for bioimaging. PMID:21954321

  7. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  8. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths.

    Science.gov (United States)

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P

    2015-06-10

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.

  9. High Performance Proactive Digital Forensics

    Science.gov (United States)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  10. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng

    2015-11-18

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  11. Storing single photons emitted by a quantum memory on a highly excited Rydberg state.

    Science.gov (United States)

    Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues

    2017-01-19

    Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon-photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories.

  12. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    in a standard CMOS technology, they can be designed to yield 100 dB performance at 10 times oversampling. The proposed scaled-element mismatch-shaping D/A converters are well suited for use as the feedback stage in oversampled delta-sigma quantizers. It is, however, not easy to make full use of their potential...... this problem. This way, the delta-sigma quantizer's feedback signal is obtained by a multiple-stage quantization, where the loop quantizer (low-resolution and minimum-delay) implements only the last-stage quantization. Hence, high-speed, high-resolutiondelta-sigma quantization is feasible without using complex...... circuitry. An improved version of the MASH topology is also proposed. A delta-sigma quantizer is used to quantize the input signal into an oversampled digital representation of low-to-moderate resolution. The delta-sigma quantizer'struncation error is estimated either directly, or as the first...

  13. High power and single mode quantum cascade lasers.

    Science.gov (United States)

    Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome

    2016-05-16

    We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.

  14. Film quantum yields of EUV& ultra-high PAG photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  15. Highly luminescent metal-organic frameworks through quantum dot doping.

    Science.gov (United States)

    Buso, Dario; Jasieniak, Jacek; Lay, Matthew D H; Schiavuta, Piero; Scopece, Paolo; Laird, Jamie; Amenitsch, Heinz; Hill, Anita J; Falcaro, Paolo

    2012-01-09

    The incorporation of highly luminescent core-shell quantum dots (QDs) within a metal-organic framework (MOF) is achieved through a one-pot method. Through appropriate surface functionalization, the QDs are solubilized within MOF-5 growth media. This permits the incorporation of the QDs within the evolving framework during the reaction. The resulting QD@MOF-5 composites are characterized using X-ray fluorescence, cross-sectional confocal microscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and small-angle X-ray scattering. The synergistic combination of luminescent QDs and the controlled porosity of MOF-5 in the QD@MOF-5 composites is harnessed within a prototype molecular sensor that can discriminate on the basis of molecular size. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  17. Emerging technologies for high performance infrared detectors

    Directory of Open Access Journals (Sweden)

    Tan Chee Leong

    2018-01-01

    Full Text Available Infrared photodetectors (IRPDs have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III–V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.

  18. Emerging technologies for high performance infrared detectors

    Science.gov (United States)

    Tan, Chee Leong; Mohseni, Hooman

    2018-01-01

    Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III-V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.

  19. Examination of China's performance and thematic evolution in quantum cryptography research using quantitative and computational techniques.

    Science.gov (United States)

    Olijnyk, Nicholas V

    2018-01-01

    This study performed two phases of analysis to shed light on the performance and thematic evolution of China's quantum cryptography (QC) research. First, large-scale research publication metadata derived from QC research published from 2001-2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China's QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China's performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China's performance indicators (i.e., Publication Frequency, citation score, H-index) are growing. China's H-index (a normalized indicator) has surpassed all other countries' over the last several years. The second phase of analysis shows how China's main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures); some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state), while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation). Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China's QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology policy researchers

  20. Complex quantum transport in a modulation doped strained Ge quantum well heterostructure with a high mobility 2D hole gas

    Science.gov (United States)

    Morrison, C.; Casteleiro, C.; Leadley, D. R.; Myronov, M.

    2016-09-01

    The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.

  1. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    DEFF Research Database (Denmark)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld

    2017-01-01

    -dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling......Quantum key distribution provides an efficient means to exchange information in an unconditionally secure way. Historically, quantum key distribution protocols have been based on binary signal formats, such as two polarization states, and the transmitted information efficiency of the quantum key...... is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually...

  2. High Performance Perovskite Solar Cells

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  3. High Performance Perovskite Solar Cells.

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  4. Enhanced photocatalytic performance of g-C{sub 3}N{sub 4} with BiOCl quantum dots modification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chun-zhi, E-mail: zcz72009@163.com; Zhang, Chun-yong, E-mail: 1067179591@qq.com; Zhang, Guo-hua, E-mail: 290191480@qq.com; Zhao, De-jian, E-mail: ylk290191480@yahoo.com.cn; Wang, Ya-zhen, E-mail: 1250840818@qq.com

    2014-07-01

    Highlights: • Novel BiOCl quantum dots modified g-C{sub 3}N{sub 4} photocatalyst was synthesized. • BiOCl-g-C{sub 3}N{sub 4} showed much higher photocatalytic activity than pure g-C{sub 3}N{sub 4} and BiOCl. • High separation efficiency of photoinduced carriers results in the enhanced performance. - Abstract: Novel BiOCl quantum dots modified g-C{sub 3}N{sub 4} photocatalyst was synthesized by a one-step chemical bath method at low temperature. The photocatalyst was characterized using X-ray diffraction, high-resolution transmission microscopy UV–visible light diffusion reflectance spectrometry, and photoluminescence spectroscopy. The results indicated that BiOCl quantum dots were dispersed on g-C{sub 3}N{sub 4} to form heterojunction structures with high specific surface area. BiOCl-g-C{sub 3}N{sub 4} showed much higher photocatalytic activity than pure g-C{sub 3}N{sub 4} and BiOCl for rhodamine B degradation. The enhanced performance was induced by the high separation efficiency of photoinduced carriers.

  5. Highly luminescent water-soluble CdTe quantum dots

    NARCIS (Netherlands)

    Wuister, SF; Swart, A.N.; van Driel, F; Hickey, SG; Donega, CD; Swart, Ingmar|info:eu-repo/dai/nl/304837652

    Colloidal CdTe quantum dots prepared in TOP/DDA (trioctylphosphine/dodecylamine) are transferred into water by the use of aminoethanethiol.HCl (AET) or mercaptopropionic acid (MPA). This results in an increase in the photoluminescence quantum efficiency and a longer exciton lifetime. For the first

  6. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has dev...

  7. Ionization effects on spectral signatures of quantum-path interference in high-harmonic generation.

    Science.gov (United States)

    Holler, M; Zaïr, A; Schapper, F; Auguste, T; Cormier, E; Wyatt, A; Monmayrant, A; Walmsley, I A; Gallmann, L; Salières, P; Keller, U

    2009-03-30

    The interference between the emission originating from the short and long electron quantum paths is intrinsic to the high harmonic generation process. We investigate the universal properties of these quantum-path interferences in various generation media and discuss how ionization effects influence the observed interference structures. Our comparison of quantum-path interferences observed in xenon, argon, and neon demonstrates that our experimental tools are generally applicable and should also allow investigating more complex systems such as molecules or clusters.

  8. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun

    2016-08-16

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  9. High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser.

    Science.gov (United States)

    Hangauer, Andreas; Spinner, Georg; Nikodem, Michal; Wysocki, Gerard

    2014-09-22

    Both intensity- (IM) and frequency-modulation (FM) behavior of a directly modulated quantum cascade laser (QCL) are measured from 300 Hz to 1.7 GHz. Quantitative measurements of tuning coefficients has been performed and the transition from thermal- to electronic-tuning is clearly observed. A very specific FM behavior of QCLs has been identified which allows for optical quasi single sideband (SSB) modulation through current injection and has not been observed in directly modulated semiconductor lasers before. This predestines QCLs in applications where SSB is required, such as telecommunication or high speed spectroscopy. The experimental procedure and theoretical modeling for data extraction is discussed.

  10. Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels

    Science.gov (United States)

    Goodenough, K.; Elkouss, D.; Wehner, S.

    2016-06-01

    One of the most sought-after goals in experimental quantum communication is the implementation of a quantum repeater. The performance of quantum repeaters can be assessed by comparing the attained rate with the quantum and private capacity of direct transmission, assisted by unlimited classical two-way communication. However, these quantities are hard to compute, motivating the search for upper bounds. Takeoka, Guha and Wilde found the squashed entanglement of a quantum channel to be an upper bound on both these capacities. In general it is still hard to find the exact value of the squashed entanglement of a quantum channel, but clever sub-optimal squashing channels allow one to upper bound this quantity, and thus also the corresponding capacities. Here, we exploit this idea to obtain bounds for any phase-insensitive Gaussian bosonic channel. This bound allows one to benchmark the implementation of quantum repeaters for a large class of channels used to model communication across fibers. In particular, our bound is applicable to the realistic scenario when there is a restriction on the mean photon number on the input. Furthermore, we show that the squashed entanglement of a channel is convex in the set of channels, and we use a connection between the squashed entanglement of a quantum channel and its entanglement assisted classical capacity. Building on this connection, we obtain the exact squashed entanglement and two-way assisted capacities of the d-dimensional erasure channel and bounds on the amplitude-damping channel and all qubit Pauli channels. In particular, our bound improves on the previous best known squashed entanglement upper bound of the depolarizing channel.

  11. High quantum efficiency of Nd{sup 3+} ions in a phosphate glass system using the Judd-Ofelt Theory

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Noelio Oliveira; Serqueira, Elias Oliveira; Silva, Anielle Christine Almeida, E-mail: noelio@ufu.br [Universidade Federal de Uberlandia (LNMIS/UFU), MG (Brazil). Instituto de Fisica. Lab. de Novos Materiais Isolantes e Semicondutores; Andrade, Acacio Aparecido de [Universidade Federal de Uberlandia (GPOTM/UFU), MG (Brazil). Instituto de Fisica. Grupo de Propriedades Opticas e Termicas de Materiais; Lourenco, Sidney Alves [Universidade Tecnologica Federal do Parana (UTFPR), Londrina, PR (Brazil)

    2013-08-15

    The optical properties of trivalent neodymium embedded in a P{sub 2}O{sub 5}-Al{sub 2}O{sub 3}-Na{sub 2}O-K{sub 2}O phosphate glass system, synthesized by the fusion method, are studied. Absorption, luminescence, lifetime, and Raman spectroscopy measurements were performed and the Judd-Ofelt theory was applied to determine optical parameters such as the quantum efficiency and the stimulated emission cross section of the Nd{sup 3+}-doped glass system. This structure has high quantum efficiency at low Nd{sup 3+} concentrations, comparable to the efficiency of a commercial YAG:Nd{sup 3+} crystal. We discuss the mechanisms responsible for the high quantum efficiency observed in the proposed phosphate glass system. (author)

  12. Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs

    KAUST Repository

    Haverinen, Hanna

    2012-05-23

    Recently, an intriguing solution to obtain better color purity has been to introduce inorganic emissive quantum dots (QDs) into an otherwise OLED structure. The emphasis of this chapter is to present a simple discussion of the first attempts to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors that have to be considered in order to achieve the desired accuracy and printing quality. The successful operation of the RGB printed devices indicates the potential of the inkjet printing approach in the fabrication of full-color QDLEDs for display application. However, further optimization of print quality is still needed in order to eliminate the formation of pinholes, thus maximizing energy transfer from organic layers to the QDs and in turn increasing the performance of the devices. Controlled Vocabulary Terms: ink jet printing; LED displays; LED lamps; organic light emitting diodes; quantum dots

  13. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots

    Science.gov (United States)

    Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena; Carulli, Francesco; Mauri, Michele; Bruni, Francesco; Simonutti, Roberto; Kortshagen, Uwe; Brovelli, Sergio

    2017-02-01

    Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

  14. Storing quantum information in spins and high-sensitivity ESR.

    Science.gov (United States)

    Morton, John J L; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.

  15. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  16. Highly Efficient Inverted Structural Quantum Dot Solar Cells.

    Science.gov (United States)

    Wang, Ruili; Wu, Xun; Xu, Kaimin; Zhou, Wenjia; Shang, Yuequn; Tang, Haoying; Chen, Hao; Ning, Zhijun

    2018-01-08

    Highly efficient PbS colloidal quantum dot (QD) solar cells based on an inverted structure have been missing for a long time. The bottlenecks are the construction of an effective p-n heterojunction at the illumination side with smooth band alignment and the absence of serious interface carrier recombination. Here, solution-processed nickel oxide (NiO) as the p-type layer and lead sulfide (PbS) QDs with iodide ligand as the n-type layer are explored to build a p-n heterojunction at the illumination side. The large depletion region in the QD layer at the illumination side leads to high photocurrent. Interface carrier recombination at the interface is effectively prohibited by inserting a layer of slightly doped p-type QDs with 1,2-ethanedithiol as ligands, leading to improved voltage of the device. Based on this graded device structure design, the efficiency of inverted structural heterojunction PbS QD solar cells is improved to 9.7%, one time higher than the highest efficiency achieved before. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Performance of quantum Monte Carlo for calculating molecular bond lengths

    Science.gov (United States)

    Cleland, Deidre M.; Per, Manolo C.

    2016-03-01

    This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10-3 Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10-3 Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.

  18. Theoretical Study of Operational Limits of High-Speed Quantum Dot Lasers

    Science.gov (United States)

    2012-09-09

    strained -layer InGaAs quantum - well improvement of an InAs quantum dot AlGaAs –GaAs– InGaAs –InAs... AlGaAs –GaAs– InGaAs heterostructure diode laser operation Appl. Phys. Lett. 80 1126–8 [20] Walter G, Chung T and Holonyak N 2002 Coupled-stripe quantum - well ...8] Tokranov V, Yakimov M, van Eisden J and Oktyabrsky S 2006 Tunnel quantum well -on-dots InGaAs –InAs high-gain medium for laser diodes Proc.

  19. Engineering two-photon high-dimensional states through quantum interference.

    Science.gov (United States)

    Zhang, Yingwen; Roux, Filippus S; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew

    2016-02-01

    Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits.

  20. Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning.

    Science.gov (United States)

    Li, X H; Shao, C L; Liu, Y C; Chu, X Y; Wang, C H; Zhang, B X

    2008-09-21

    Highly dispersed ZnO quantum dots (QDs) in polyvinylpyrrolidone (PVP) nanotubes have been prepared by a single capillary electrospinning. The structure and optical properties characterizations were performed by x-ray diffraction, scanning and transmission electron microscopy, absorption, photoluminescence, and resonant Raman spectra. In the composites, PVP molecules passivate the surface defects of ZnO QDs and prevent the aggregations of ZnO QDs. As a result, the composites exhibit narrower band edge emissions and less laser thermal effects. Blueshifted band gap, enlarged exciton energy, and less exciton-longitudinal optical (LO) phonon interaction due to the quantum confinement effect have also been observed.

  1. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes.

    Science.gov (United States)

    Wang, Zifei; Yuan, Fanglong; Li, Xiaohong; Li, Yunchao; Zhong, Haizheng; Fan, Louzhen; Yang, Shihe

    2017-10-01

    Red emissive carbon quantum dots (R-CQDs) with quantum yield of 53% is successfully prepared. An ultraviolet (UV)-pumped CQD phosphors-based warm white light-emitting diode (WLED) is realized for the first time and achieves a color rendering index of 97. This work provides a new avenue for the exploration of low cost, environment-friendly, and high-performance CQD phosphors-based warm WLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    Science.gov (United States)

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  3. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-04-25

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  4. Performance analysis of fault-tolerant quantum error correction against non-Clifford errors

    Science.gov (United States)

    Sugiyama, Takanori; Fujii, Keisuke; Nagata, Haruhisa; Tanaka, Fuyuhiko

    As error rates of quantum gates implemented in recent experiments approach a fault-tolerant threshold of a 2D planer surface code against a depolarizing noise model, it becomes more important to investigate performance of quantum error correction codes against more general and realistic noise models. A brute-force simulation for the investigation on a classical computer requires an exponential amount of memory, and we need alternative methods for the purpose. The standard approach assuming depolarizing (or Clifford) error models, which is not realistic, can overestimate the performance, and it is not valid to apply the results to experiments. On the other hand, a rigorous approach with the diamond norm is applicable to realistic error models but greatly underestimates the performance and is not practical. Here we propose a new theoretical framework for evaluating performances of quantum error correction, which is practical and applicable to a wider class of error models. We apply the method to a quantum 1D repetition code, and numerically evaluate the performance. This work was supported by the JSPS Research Fellowships for Young Scientists (PD) (No.27-276) and the Grant-in-Aid for Young Scientists (B) (No. 24700273).

  5. Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers.......Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers....

  6. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging.

    Science.gov (United States)

    Kuo, Wen-Shuo; Chen, Hua-Han; Chen, Shih-Yao; Chang, Chia-Yuan; Chen, Pei-Chi; Hou, Yung-I; Shao, Yu-Ting; Kao, Hui-Fang; Lilian Hsu, Chih-Li; Chen, Yi-Chun; Chen, Shean-Jen; Wu, Shang-Rung; Wang, Jiu-Yao

    2017-03-01

    Reactive oxygen species is the main contributor to photodynamic therapy. The results of this study show that a nitrogen-doped graphene quantum dot, serving as a photosensitizer, was capable of generating a higher amount of reactive oxygen species than a nitrogen-free graphene quantum dot in photodynamic therapy when photoexcited for only 3 min of 670 nm laser exposure (0.1 W cm -2 ), indicating highly improved antimicrobial effects. In addition, we found that higher nitrogen-bonding compositions of graphene quantum dots more efficiently performed photodynamic therapy actions than did the lower compositions that underwent identical treatments. Furthermore, the intrinsically emitted luminescence from nitrogen-doped graphene quantum dots and high photostability simultaneously enabled it to act as a promising contrast probe for tracking and localizing bacteria in biomedical imaging. Thus, the dual modality of nitrogen-doped graphene quantum dots presents possibilities for future clinical applications, and in particular multidrug resistant bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of quantum coupling on the performance of metal-oxide ...

    Indian Academy of Sciences (India)

    Based on the analysis of the three-dimensional Schrödinger equation, the effects of quantum coupling between the transverse and the longitudinal components of channel electron motion on the performance of ballistic MOSFETs have been theoretically investigated by self-consistently solving the coupled ...

  8. Improving Performance in Quantum Mechanics with Explicit Incentives to Correct Mistakes

    Science.gov (United States)

    Brown, Benjamin R.; Mason, Andrew; Singh, Chandralekha

    2016-01-01

    An earlier investigation found that the performance of advanced students in a quantum mechanics course did not automatically improve from midterm to final exam on identical problems even when they were provided the correct solutions and their own graded exams. Here, we describe a study, which extended over four years, in which upper-level…

  9. High Performance InAs/In0.53Ga0.23Al0.24As/InP Quantum Dot 1.55 um Tunnel Injection Laser

    KAUST Repository

    Bhowmick, Sishir

    2014-01-01

    The characteristics of 1.55 ? InAs self-organized quantum-dot lasers, grown on (001) InP substrates by molecular beam epitaxy, have been investigated. Modulation doping of the dots with holes and tunnel injection of electrons have been incorporated in the design of the active (gain) region of the laser heterostructure. Large values of To=227 K (5 °C ? T ?45 °C) and 100 K (45 °C ? T ? 75 °C) were derived from temperature dependent measurements of the light-current characteristics. The modal gain per dot layer is 14.5 cm -1 and the differential gain derived from both light-current and small-signal modulation measurements is 0.8}\\times 10-15 cm}2. The maximum measured 3 rm dB small-signal modulation bandwidth is 14.4 GHz and the gain compression factor is 5.4\\times 10-17 cm}2. The lasers are characterized by a chirp of 0.6 AA for a modulation frequency of 10 GHz and a near zero ?-parameter at the peak of the laser emission. These characteristics are amongst the best from any 1.55 ? edge-emitting semiconductor laser. © 1965-2012 IEEE.

  10. High-speed linear optics quantum computing using active feed-forward.

    Science.gov (United States)

    Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton

    2007-01-04

    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

  11. High Efficiency Quantum Dot III-V Multijunction Solar Cell for Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quantum dots are nanoscale materials that have already improved the performance of optical sensors, lasers, and light emitting diodes. The unique properties of these...

  12. High Efficiency Quantum Dot III-V Thermophotovoltaic Cell for Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quantum dots are nanoscale materials that have already improved the performance of optical sensors, lasers, light emitting diodes and solar cells. The unique...

  13. Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator.

    Science.gov (United States)

    He, Ling Yan; Wang, Tie-Jun; Wang, Chuan

    2016-07-11

    High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator. In our scheme, the required number of interaction times between the photon and solid state system reduce greatly compared with the traditional method which decomposes the high-dimensional Hilbert space into 2-dimensional quantum space, and it is on a shorter temporal scale for the experimental realization. Moreover, we discuss the performance and feasibility of our hybrid CF gate, concluding that it can be easily extended to a 2n-dimensional case and it is feasible with current technology.

  14. Solving Problems in Various Domains by Hybrid Models of High Performance Computations

    Directory of Open Access Journals (Sweden)

    Yurii Rogozhin

    2014-03-01

    Full Text Available This work presents a hybrid model of high performance computations. The model is based on membrane system (P~system where some membranes may contain quantum device that is triggered by the data entering the membrane. This model is supposed to take advantages of both biomolecular and quantum paradigms and to overcome some of their inherent limitations. The proposed approach is demonstrated through two selected problems: SAT, and image retrieving.

  15. A new switching characteristics of highly doped multi-quantum well

    CERN Document Server

    Song, C K

    1999-01-01

    A new type of hysteretic current-voltage characteristics, which switched from a low conductance off-state into a high conductance on-state at a threshold voltage and the high conductance state was sustained even when the bias voltage reduced below the threshold voltage, was experimentally observed for the highly doped multi-quantum well structure. The characteristics were attributed to confinement of electrons and impact ionization of the confined electrons out of the quantum wells. The test devices employing 10 periods of quantum wells were fabricated by using AlGaAs/GaAs semiconductor heterostructure and I-V characteristics were examined.

  16. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments

    Science.gov (United States)

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-01

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  17. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.

    Science.gov (United States)

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-03

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  18. Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots.

    Science.gov (United States)

    Dutta Chowdhury, Ankan; Doong, Ruey-An

    2016-08-17

    The good stability, low cytotoxicity, and excellent photoluminescence property of graphene quantum dots (GQDs) make them an emerging class of promising materials in various application fields ranging from sensor to drug delivery. In the present work, the dopamine-functionalized GQDs (DA-GQDs) with stably bright blue fluorescence were successfully synthesized for low level Fe(3+) ions detection. The as-synthesized GQDs are uniform in size with narrow-distributed particle size of 4.5 ± 0.6 nm and high quantum yield of 10.2%. The amide linkage of GQDs with dopamine, confirmed by using XPS and FTIR spectra, results in the specific interaction between Fe(3+) and catechol moiety of dopamine at the interfaces for highly sensitive and selective detection of Fe(3+). A linear range of 20 nM to 2 μM with a detection limit of 7.6 nM is obtained for Fe(3+) detection by DA-GQDs. The selectivity of DA-GQDs sensing probe is significantly excellent in the presence of other interfering metal ions. In addition, the reaction mechanism for Fe(3+) detection based on the complexation and oxidation of dopamine has been proposed and validated. Results obtained in this study clearly demonstrate the superiority of surface functionalized GQDs to Fe(3+) detection, which can pave an avenue for the development of high performance and robust sensing probes for detection of metal ions and other organic metabolites in environmental and biomedical applications.

  19. Quantum-limit spectroscopy

    CERN Document Server

    Ficek, Zbigniew

    2017-01-01

    This book covers the main ideas, methods, and recent developments of quantum-limit optical spectroscopy and applications to quantum information, resolution spectroscopy, measurements beyond quantum limits, measurement of decoherence, and entanglement. Quantum-limit spectroscopy lies at the frontier of current experimental and theoretical techniques, and is one of the areas of atomic spectroscopy where the quantization of the field is essential to predict and interpret the existing experimental results. Currently, there is an increasing interest in quantum and precision spectroscopy both theoretically and experimentally, due to significant progress in trapping and cooling of single atoms and ions. This progress allows one to explore in the most intimate detail the ways in which light interacts with atoms and to measure spectral properties and quantum effects with high precision. Moreover, it allows one to perform subtle tests of quantum mechanics on the single atom and single photon scale which were hardly eve...

  20. High Performance Torso Cooling Garment

    Science.gov (United States)

    Conger, Bruce; Makinen, Janice

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  1. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  2. Learning Apache Solr high performance

    CERN Document Server

    Mohan, Surendra

    2014-01-01

    This book is an easy-to-follow guide, full of hands-on, real-world examples. Each topic is explained and demonstrated in a specific and user-friendly flow, from search optimization using Solr to Deployment of Zookeeper applications. This book is ideal for Apache Solr developers and want to learn different techniques to optimize Solr performance with utmost efficiency, along with effectively troubleshooting the problems that usually occur while trying to boost performance. Familiarity with search servers and database querying is expected.

  3. Toward High-Performance Organizations.

    Science.gov (United States)

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  4. High-Performance Composite Chocolate

    Science.gov (United States)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  5. Nano-patterned superconducting surface for high quantum efficiency cathode

    Science.gov (United States)

    Hannon, Fay; Musumeci, Pietro

    2017-03-07

    A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.

  6. Photovoltaic infrared photoresponse of the high-mobility graphene quantum Hall system due to cyclotron resonance

    Science.gov (United States)

    Masubuchi, Satoru; Onuki, Masahiro; Arai, Miho; Yamaguchi, Takehiro; Watanabe, Kenji; Taniguchi, Takashi; Machida, Tomoki

    2013-09-01

    We report on the infrared photoresponse of high-mobility graphene in high magnetic fields. Two types of photoresponse signals were observed that were due to photovoltaic and bolometric effects. The photovoltaic signal was observed in the quantum Hall regime, whereas the bolometric signal was dominant in the quantum Hall transition regime. The photovoltaic effect, which was induced by cyclotron resonance, was observable up to 180 K. The polarity of the photovoltaic photoresponse was shown to be systematically reversed on reversal of the applied magnetic field direction and measurement geometry, suggesting that the photovoltage signals were generated along the quantum Hall edge channel.

  7. Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism

    Science.gov (United States)

    2016-06-09

    AFRL-AFOSR-VA-TR-2016-0204 Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism Jose Rodriguez CALIFORNIA...TITLE AND SUBTITLE Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism 5a.  CONTRACT NUMBER 5b.  GRANT...SUBJECT TERMS quantum magnetism , HTS, superconductivity 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF       ABSTRACT UU 18.  NUMBER        OF

  8. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  9. High Quantum Efficiency Type II SLS FPAs for Space-Based Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposes to develop high quantum efficiency (QE) and low dark current infrared epitaxy materials based on Type II Strained Layer Superlattice (SLS)...

  10. High Efficiency Quantum Dot III-V Multijunction Solar Cell for Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to utilize quantum dots to develop a super high-efficiency multijunction III-V solar cell for space. In metamorphic triple junction space solar...

  11. High Quantum Efficiency Type II SLS FPAs for Space-Based Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR proposes to develop high quantum efficiency (QE) and low dark current infrared epitaxy materials based on Type II Strained Layer Superlattice...

  12. High Quantum Efficiency 1024x1024 Longwave Infrared SLS FPA and Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a high quantum efficiency (QE) 1024x1024 longwave infrared focal plane array (LWIR FPA) and CAMERA with ~ 12 micron cutoff wavelength made from...

  13. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  14. Functional High Performance Financial IT

    DEFF Research Database (Denmark)

    Berthold, Jost; Filinski, Andrzej; Henglein, Fritz

    2011-01-01

    auditability of financial institutions, including their software systems. To top it off, increased product variety and customisation necessitates shorter software development cycles and higher development productivity. In this paper, we report about HIPERFIT, a recently etablished strategic research center...... at the University of Copenhagen that attacks this triple challenge of increased performance, transparency and productivity in the financial sector by a novel integration of financial mathematics, domain-specific language technology, parallel functional programming, and emerging massively parallel hardware. HIPERFIT...

  15. High-Performance Heat Pipe

    Science.gov (United States)

    Alario, J. P.; Kosson, R.; Haslett, R.

    1985-01-01

    Single vapor channel and single liquid channel joined by axial slot. New design, permits high heat-transport capacity without excessively reducing heat-transfer efficiency. Contains two large axial channels, one for vapor and one for liquid, permitting axial transport and radial heat-transfer requirements met independently. Heat pipe has capacity of approximately 10 to sixth power watt-inches (2.5 X 10 to sixth power watt-cm) orders of magnitude greater than heat capacity of existing heat pipes. Design has high radial-heat-transfer efficiency, structurally simple, and has large liquid and vapor areas.

  16. High-performance solar collector

    Science.gov (United States)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  17. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

    Science.gov (United States)

    Liu, Feng; Zhang, Yaohong; Ding, Chao; Kobayashi, Syuusuke; Izuishi, Takuya; Nakazawa, Naoki; Toyoda, Taro; Ohta, Tsuyoshi; Hayase, Shuzi; Minemoto, Takashi; Yoshino, Kenji; Dai, Songyuan; Shen, Qing

    2017-10-24

    Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI2 (TOP-PbI2) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

  18. Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement

    Science.gov (United States)

    Liu, Weijian; Li, Chun; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Wang, Jinping

    2017-12-01

    In this article, fresh tomatoes are explored as a low-cost source to prepare high-performance carbon dots by using microwave-assisted pyrolysis. Given that amino groups might act as nucleophiles for cleaving covalent bridging ester or ether in the crosslinked macromolecules in the biomass bulk, ethylenediamine (EDA) and urea with amino groups were applied as nucleophiles to modulate the chemical composites of the carbon nanoparticles in order to tune their fluorescence emission and enhance their quantum yields. Very interestingly, the carbon dots synthesized in the presence of urea had a highly crystalline nature, a low-degree amorphous surface and were smaller than 5 nm. Moreover, the doped N contributed to the formation of a cyclic form of core that resulted in a strong electron-withdrawing ability within the conjugated C plane. Therefore, this type of carbon dot exhibited marked quantum confinement, with the maximum fluorescence peak located in the UV region. Carbon nanoparticles greater than 20 nm in size, prepared using pristine fresh tomato and in the presence of EDA, emitted surface state controlled fluorescence. Additionally, carbon nanoparticles synthesized using fresh tomato pulp in the presence of EDA and urea were explored for bioimaging of plant pathogenic fungi and the detection of vanillin.

  19. Highly sensitive polymerase chain reaction-free quantum dot-based quantification of forensic genomic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Yu Kyung; Kim, Won Young; Kim, Min Jung; Han, Eunyoung [College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Myun Soo; Kim, Jong Jin [Forensic DNA Center, National Forensic Service, Seoul 158-707 (Korea, Republic of); Kim, Wook [Department of Biological Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Jong Eun [DNA Link, VICHEN CITY Building 3F, Seoul 121-850 (Korea, Republic of); Song, Joon Myong, E-mail: jmsong@snu.ac.kr [College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Genomic DNA quantification were performed using a quantum dot-labeled Alu sequence. Black-Right-Pointing-Pointer This probe provided PCR-free determination of human genomic DNA. Black-Right-Pointing-Pointer Qdot-labeled Alu probe-hybridized genomic DNAs had a 2.5-femtogram detection limit. Black-Right-Pointing-Pointer Qdot-labeled Alu sequence was used to assess DNA samples for human identification. - Abstract: Forensic DNA samples can degrade easily due to exposure to light and moisture at the crime scene. In addition, the amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. The accurately quantified extracted genomic DNA is then used as a DNA template in polymerase chain reaction (PCR) amplification for short tandem repeat (STR) human identification. Accordingly, highly sensitive and human-specific quantification of forensic DNA samples is an essential issue in forensic study. In this work, a quantum dot (Qdot)-labeled Alu sequence was developed as a probe to simultaneously satisfy both the high sensitivity and human genome selectivity for quantification of forensic DNA samples. This probe provided PCR-free determination of human genomic DNA and had a 2.5-femtogram detection limit due to the strong emission and photostability of the Qdot. The Qdot-labeled Alu sequence has been used successfully to assess 18 different forensic DNA samples for STR human identification.

  20. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots

    Science.gov (United States)

    Chen, Caiyun; Qiao, Hong; Lin, Shenghuang; Man Luk, Chi; Liu, Yan; Xu, Zaiquan; Song, Jingchao; Xue, Yunzhou; Li, Delong; Yuan, Jian; Yu, Wenzhi; Pan, Chunxu; Ping Lau, Shu; Bao, Qiaoliang

    2015-01-01

    Molybdenum disulphide (MoS2), which is a typical semiconductor from the family of layered transition metal dichalcogenides (TMDs), is an attractive material for optoelectronic and photodetection applications because of its tunable bandgap and high quantum luminescence efficiency. Although a high photoresponsivity of 880–2000 AW−1 and photogain up to 5000 have been demonstrated in MoS2-based photodetectors, the light absorption and gain mechanisms are two fundamental issues preventing these materials from further improvement. In addition, it is still debated whether monolayer or multilayer MoS2 could deliver better performance. Here, we demonstrate a photoresponsivity of approximately 104 AW−1 and a photogain of approximately 107 electrons per photon in an n-n heterostructure photodetector that consists of a multilayer MoS2 thin film covered with a thin layer of graphene quantum dots (GQDs). The enhanced light-matter interaction results from effective charge transfer and the re-absorption of photons, leading to enhanced light absorption and the creation of electron-hole pairs. It is feasible to scale up the device and obtain a fast response, thus making it one step closer to practical applications. PMID:26137854

  1. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  2. High Performance JavaScript

    CERN Document Server

    Zakas, Nicholas

    2010-01-01

    If you're like most developers, you rely heavily on JavaScript to build interactive and quick-responding web applications. The problem is that all of those lines of JavaScript code can slow down your apps. This book reveals techniques and strategies to help you eliminate performance bottlenecks during development. You'll learn how to improve execution time, downloading, interaction with the DOM, page life cycle, and more. Yahoo! frontend engineer Nicholas C. Zakas and five other JavaScript experts -- Ross Harmes, Julien Lecomte, Steven Levithan, Stoyan Stefanov, and Matt Sweeney -- demonstra

  3. Two High-Dimensional Cartesian Bases for Quantum Key Distribution

    NARCIS (Netherlands)

    Tentrup, Tristan Bernhard Horst; Luiten, Willemijn; Hooijschuur, Peter; van der Meer, Reinier; Pinkse, Pepijn W.H.

    2017-01-01

    Quantum Key Distribution (QKD) provides a secure way of generating shared cryptographic keys between a sender (Alice) and a receiver (Bob). The original BB84 protocol uses a two-dimensional polarization basis, limiting the information content of a single photon to 1 bit. Using the transverse

  4. High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures.

    Science.gov (United States)

    Wong, Joeson; Jariwala, Deep; Tagliabue, Giulia; Tat, Kevin; Davoyan, Artur R; Sherrott, Michelle C; Atwater, Harry A

    2017-07-25

    We report experimental measurements for ultrathin (van der Waals heterostructures exhibiting external quantum efficiencies exceeding 50% and show that these structures can achieve experimental absorbance >90%. By coupling electromagnetic simulations and experimental measurements, we show that pn WSe 2 /MoS 2 heterojunctions with vertical carrier collection can have internal photocarrier collection efficiencies exceeding 70%.

  5. High-order noise filtering in nontrivial quantum logic gates

    CSIR Research Space (South Africa)

    Green, T

    2012-07-01

    Full Text Available that must be accounted for in order to understand total average error rates. We develop a treatment based on effective Hamiltonian theory that allows us to efficiently model the effect of classical noise on nontrivial single-bit quantum logic operations...

  6. Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots.

    Science.gov (United States)

    Huang, Yaxin; Cheng, Huhu; Shi, Gaoquan; Qu, Liangti

    2017-11-08

    A high-performance moisture triggered nanogenerator is fabricated by using graphene quantum dots (GQDs) as the active material. GQDs are prepared by direct oxidation and etching of natural graphite powder, which have small sizes of 2-5 nm and abundant oxygen-containing functional groups. After the treatment by electrochemical polarization, the GQDs-based moisture triggered nanogenerator can deliver a high voltage up to 0.27 V under 70% relative humidity variation, and a power density of 1.86 mW cm-2 with an optimized load resistor. The latter value is much higher than the moisture-electric power generators reported previously. The GQD moisture triggered nanogenerator is promising for self-power electronics and miniature sensors.

  7. High efficiency quantum dot and organic LEDs with a back-cavity and a high index substrate

    Science.gov (United States)

    Liang, Haowen; Luo, Zhenyue; Zhu, Ruidong; Dong, Yajie; Lee, Jiun-Haw; Zhou, Jianying; Wu, Shin-Tson

    2016-04-01

    We report a back-cavity design to enhance the optical efficiency of a quantum dot light-emitting diode (QLED) or an organic light-emitting diode (OLED) for display and lighting applications. Our simulation results show that the back-cavity design exhibits two major advantages: (1) the transparent electrode helps to increase the transmittance of backward light despite using a semi-transparent metal electrode, and (2) the thickness of the low index optical buffer layer can be optimized to modify the proportion of each optical channel. The proposed back-cavity also helps to lower the refractive index of the high-index substrate from ~2.0 to ~1.8 for achieving high optical efficiency. Finally, the introduced back-cavity does not degrade the color performance of the QLED/OLED.

  8. High-performance hierarchical fracturing

    Science.gov (United States)

    Cobb, Nicolas B.; Zhang, Weidong

    2002-07-01

    We describe in more detail a mask data preparation (MDP) flow previously proposed. The focus on this paper is a performance comparison of hierarchical fracturing techniques compared to standard fracturing. Our flow uses GDSII data as input, including a GDSII-based job deck description. The output is maximally compacted, trapezoidal mask writer (MW) formatted data. Our flow takes advantage of hierarchy explicit in the GDSII file(s). This allows optimal determination of 'cover cells', which are repeatable groups of patterns within the data. The use of cover cells allows a reduction of fracturing runtime. In one case, a 21 GB MEBES file was fractured in 30 hours using the standard technique and 53 minutes using the hierarchical cover cell technique.

  9. Free-Space Quantum Key Distribution with a High Generation Rate KTP Waveguide Photon-Pair Source

    Science.gov (United States)

    Wilson, J.; Chaffee, D.; Wilson, N.; Lekki, J.; Tokars, R.; Pouch, J.; Lind, A.; Cavin, J.; Helmick, S.; Roberts, T.; hide

    2016-01-01

    NASA awarded Small Business Innovative Research (SBIR) contracts to AdvR, Inc to develop a high generation rate source of entangled photons that could be used to explore quantum key distribution (QKD) protocols. The final product, a photon pair source using a dual-element periodically- poled potassium titanyl phosphate (KTP) waveguide, was delivered to NASA Glenn Research Center in June of 2015. This paper describes the source, its characterization, and its performance in a B92 (Bennett, 1992) protocol QKD experiment.

  10. The donor-supply electrode enhances performance in colloidal quantum dot solar cells

    KAUST Repository

    Maraghechi, Pouya

    2013-07-23

    Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the sun\\'s broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry - one based on a donor-supply electrode (DSE) - that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance. © 2013 American Chemical Society.

  11. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  12. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  13. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  14. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  15. Type II InAs/GaAsSb quantum dots: Highly tunable exciton geometry and topology

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, J. M.; Wewior, L.; Cardozo de Oliveira, E. R.; Alén, B., E-mail: benito.alen@csic.es [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Ulloa, J. M.; Utrilla, A. D.; Guzmán, A.; Hierro, A. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2015-11-02

    External control over the electron and hole wavefunctions geometry and topology is investigated in a p-i-n diode embedding a dot-in-a-well InAs/GaAsSb quantum structure with type II band alignment. We find highly tunable exciton dipole moments and largely decoupled exciton recombination and ionization dynamics. We also predicted a bias regime where the hole wavefunction topology changes continuously from quantum dot-like to quantum ring-like as a function of the external bias. All these properties have great potential in advanced electro-optical applications and in the investigation of fundamental spin-orbit phenomena.

  16. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  17. High-response hybrid quantum dots- 2D conductor phototransistors: recent progress and perspectives

    Science.gov (United States)

    Sablon, Kimberly A.; Sergeev, Andrei; Najmaei, Sina; Dubey, Madan

    2017-03-01

    Having been inspired by the tremendous progress in material nanoscience and device nanoengineering, hybrid phototransistors combine solution processed colloidal semiconductor quantum dots (QDs) with graphene or two-dimensional (2D) semiconductor materials. Novel detectors demonstrate ultrahigh photoconductive gain, high and selective photoresponse, low noise, and very high responsivity in visible- and near-infrared ranges. The outstanding performance of phototransistors is primarily due to the strong, selective, and size tunable absorption of QDs and fast charge transfer in 2D high mobility conductors. However, the relatively small mobility of QD nanomaterials was a technological barrier, which limited the operating rate of devices. Very recent innovations in detector design and significant progress in QD ligand engineering provide effective tools for further qualitative improvements. This article reviews the recent progress in material science, nanophysics, and device engineering related to hybrid phototransistors. Detectors based on various QD nanomaterials and several 2D conductors are compared, and advantages and disadvantages of various nanomaterials for applications in hybrid phototransistors are identified. We also benchmark the experimental characteristics with model results that establish interrelations and tradeoffs between detector characteristics, such as responsivity, dark and noise currents, the photocarrier lifetime, response, and noise bandwidths. We have shown that the most recent phototransistors demonstrate performance limited by the fundamental generation recombination noise in high gain devices. Interrelation between the dynamic range of the detector and the detector sensitivity is discussed. The review is concluded with a brief discussion of the remaining challenges and possible significant improvements in the performance of hybrid phototransistors.

  18. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.

    Science.gov (United States)

    Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene

    2015-07-27

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

  19. Quantum theoretical study of hydrogen under high pressure

    CERN Document Server

    Biermann, S

    2001-01-01

    In the first chapter we will review our knowledge of the phase diagram of hydrogen. Chapter 2 is a summary of the standard density functional and molecular dynamics methods and shows how these are combined in the Car-Parrinello method. Here the nuclei are still treated as classical particles obeying Newtonian mechanics. In chapter 3 we drop this approximation. The path integral description of quantum statistics is added on top of the classical Car-Parrinello method and yields a formalism that includes quantum effects due to the finite de Broglie wavelength of the nuclei. Some technical aspects, namely the parallel implementation of the Path Integral Car-Parrinello (PICP) method, are discussed in chapter 4. In chapter 5 we present the results of our PICP calculations and compare them with prior calculations using the classical Car-Parrinello method as described in chapter 2.

  20. Enhanced Performance of Quantum Dot-Based Light-Emitting Diodes with Gold Nanoparticle-Doped Hole Injection Layer

    Science.gov (United States)

    Chen, Fei; Lin, Qingli; Wang, Hongzhe; Wang, Lei; Zhang, Fengjuan; Du, Zuliang; Shen, Huaibin; Li, Lin Song

    2016-08-01

    In this paper, the performance of quantum dot-based light-emitting diodes (QLEDs) comprising ZnCdSe/ZnS core-shell QDs as an emitting layer were enhanced by employing Au-doped poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) hole injection layer (HIL). By varying the concentration and dimension of Au nanoparticle (NP) dopants in PEDOT:PSS, the optimal devices were obtained with ~22-nm-sized Au NP dopant at the concentration with an optical density (OD) of 0.21. Highly bright green QLEDs with a maximum external quantum efficiency (EQE) of 8.2 % and a current efficiency of 29.1 cd/A exhibit 80 % improvement compared with devices without Au NP dopants. The improved performance may be attributed to the significant increase in the hole injection rate as a result of the introduction of Au NPs and the good matching between the resonance frequency of the localized surface plasmon resonance (LSPR) generated by the Au NPs and the emission band of QD layer, as well as the suppressed Auger recombination of QD layer due to the LSPR-induced near-field enhanced radiative recombination rate of excitons. These results are helpful for fabricating high-performance QD-based applications, such as full-color displays and solid-state lighting.

  1. High quantum yield Ag2S quantum dot@polypeptide-engineered hybrid nanogels for targeted second near-infrared fluorescence/photoacoustic imaging and photothermal therapy.

    Science.gov (United States)

    Zhao, Dong-Hui; Yang, Jie; Xia, Rui-Xue; Yao, Ming-Hao; Jin, Rui-Mei; Zhao, Yuan-Di; Liu, Bo

    2018-01-11

    A high quantum yield (4.3%) hybrid nanogel system based on engineered polypeptides and Ag2S quantum dots has been developed as a multifunctional diagnostic and therapeutic agent for targeted second near-infrared fluorescence, photoacoustic imaging, and photothermal therapy.

  2. High-fidelity quantum state evolution in imperfect photonic integrated circuits

    Science.gov (United States)

    Mower, Jacob; Harris, Nicholas C.; Steinbrecher, Gregory R.; Lahini, Yoav; Englund, Dirk

    2015-09-01

    We propose and analyze the design of a programmable photonic integrated circuit for high-fidelity quantum computation and simulation. We demonstrate that the reconfigurability of our design allows us to overcome two major impediments to quantum optics on a chip: it removes the need for a full fabrication cycle for each experiment and allows for compensation of fabrication errors using numerical optimization techniques. Under a pessimistic fabrication model for the silicon-on-insulator process, we demonstrate a dramatic fidelity improvement for the linear optics controlled-not and controlled-phase gates and, showing the scalability of this approach, the iterative phase estimation algorithm built from individually optimized gates. We also propose and simulate an experiment that the programmability of our system would enable: a statistically robust study of the evolution of entangled photons in disordered quantum walks. Overall, our results suggest that existing fabrication processes are sufficient to build a quantum photonic processor capable of high-fidelity operation.

  3. High-resolution hard x-ray spectroscopy of high-temperature plasmas using an array of quantum microcalorimeters.

    Science.gov (United States)

    Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L

    2008-10-01

    Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV.

  4. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  5. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes

    Science.gov (United States)

    Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.; Luther, Joseph M.; Lin, Lih Y.

    2017-11-01

    Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot (QD) light-emitting diode (LED) with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21% at a bias of 6 V and outstanding operational stability, with a L 70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under a constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 QDs for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.

  6. An Associate Degree in High Performance Manufacturing.

    Science.gov (United States)

    Packer, Arnold

    In order for more individuals to enter higher paying jobs, employers must create a sufficient number of high-performance positions (the demand side), and workers must acquire the skills needed to perform in these restructured workplaces (the supply side). Creating an associate degree in High Performance Manufacturing (HPM) will help address four…

  7. High-Rate Field Demonstration of Large-Alphabet Quantum Key Distribution

    Science.gov (United States)

    2017-05-22

    Public Release ∗To whom correspondence should be addressed; E-mail: englund@mit.edu. May 22, 2017 A central goal of quantum information science is to...distribution field test, using photons encoded in a high-dimensional alphabet to increase the secure information yield per de- 1 tected photon. By adjusting the...fiber networks. Introduction Quantum key distribution (QKD) allows two parties, Alice and Bob, to establish provably se- cure encryption keys at a

  8. High Efficiency Quantum Dot Solar Cells Based on Multiple Exciton Generation

    Energy Technology Data Exchange (ETDEWEB)

    Breeze, Alison [Solexant Corp., San Jose, CA (United States)

    2011-04-15

    The objective of this project was to demonstrate that efficient multiple exciton generation observed in quantum dot materials could be harvested in nanostructured solar cells to dramatically improve the maximum power efficiency obtainable in photovoltaic modules. This proposal aimed to develop a high efficiency solar cell through a combination of quantum dot materials, nanostructured surfaces and atomic layer deposition for fabricating conformal and ultrathin films.

  9. Quantum non-demolition and high-efficiency detection of traveling microwave photons - part 1

    Science.gov (United States)

    Royer, Baptiste; Grimsmo, Arne L.; Bourassa, Jerome; Didier, Nicolas; Blais, Alexandre

    Optical photon detectors are indispensable tools for quantum optics experiments. Realizing their microwave counterparts has, however, remained an elusive task due in part to the energy scale difference between the two frequency ranges. In this talk, we will present a possible solution to this problem by adapting a scheme for qubit readout to allow high-efficiency measurement of traveling photons. Having such photon detectors would enable a wide variety of applications ranging from quantum information processing to mesoscopic physics.

  10. Heterostructures and quantum devices

    CERN Document Server

    Einspruch, Norman G

    1994-01-01

    Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical en

  11. HiFi-MBQC High Fidelitiy Measurement-Based Quantum Computing using Superconducting Detectors

    Science.gov (United States)

    2016-04-04

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) UNIVERSITT WIEN, DR.- KARL -LUEGER-RING 1, WIEN, , 1010, AT 8. PERFORMING ORGANIZATION REPORT NUMBER 9...server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated

  12. High performance computing and communications program

    Science.gov (United States)

    Holcomb, Lee

    1992-01-01

    A review of the High Performance Computing and Communications (HPCC) program is provided in vugraph format. The goals and objectives of this federal program are as follows: extend U.S. leadership in high performance computing and computer communications; disseminate the technologies to speed innovation and to serve national goals; and spur gains in industrial competitiveness by making high performance computing integral to design and production.

  13. High Performance Spaceflight Computing (HPSC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In 2012, the NASA Game Changing Development Program (GCDP), residing in the NASA Space Technology Mission Directorate (STMD), commissioned a High Performance...

  14. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  15. High pressure fracturing in Colombia: a quantum leap

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Juan C. [BP Exploration (United Kingdom); Gutierrez, Jim; Ham, Ernesto; Castro, Alberto [BJ Services Company (United States)

    2004-07-01

    Fracturing has become one of the most common stimulation and well completion techniques in petroleum production. Due to the deeper depths and high frac gradients encountered in some areas, various treatments have resulted in early screen outs or aborted operations due to insufficient rate limited by the available treating pressures. A state of the art technology and high pressure equipment including the largest frac pumps (rated at 2,700 hhp) in the world, were used in Colombian fields to overcome these limitations. The reliability of this equipment has allowed the treatment of these wells to operating pressures of up to 18,000 psi and rates in excess of 40 bpm, placing up to 400,000 lbs of bauxite. Bottom hole treating pressures of 25,000 psi also were reached. This paper describes the development of the fracture campaign and relates the jobs performed to date, including the results and lessons learned (author)

  16. High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface.

    Science.gov (United States)

    Tang, Ruikai; Li, Xiongjie; Wu, Wenjie; Pan, Haifeng; Zeng, Heping; Wu, E

    2015-04-20

    The orbital angular momentum (OAM) of light shows great potential in quantum communication. The transmission wavelength for telecom is usually around 1550 nm, while the common quantum information storage and processing devices based on atoms, ions or NV color centers are for photons in visible regime. Here we demonstrate a quantum information interface based on the frequency upconversion for photons carrying OAM states from telecom wavelength to visible regime by sum-frequency generation with high quantum conversion efficiency. The infrared photons at 1558 nm carrying different OAM values were converted to the visible regime of 622.2 nm, and the OAM value of the signal photons was well preserved in the frequency upconversion process with pump beam in Gaussian profile.

  17. High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport

    Science.gov (United States)

    Kaufmann, Peter; Gloger, Timm F.; Kaufmann, Delia; Johanning, Michael; Wunderlich, Christof

    2018-01-01

    A promising scheme for building scalable quantum simulators and computers is the synthesis of a scalable system using interconnected subsystems. A prerequisite for this approach is the ability to faithfully transfer quantum information between subsystems. With trapped atomic ions, this can be realized by transporting ions with quantum information encoded into their internal states. Here, we measure with high precision the fidelity of quantum information encoded into hyperfine states of a Yb171 + ion during ion transport in a microstructured Paul trap. Ramsey spectroscopy of the ion's internal state is interleaved with up to 4000 transport operations over a distance of 280 μ m each taking 12.8 μ s . We obtain a state fidelity of 99.9994 (-7+6) % per ion transport.

  18. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid.

    Science.gov (United States)

    Yamashita, Minoru; Nakata, Norihito; Senshu, Yoshinori; Nagata, Masaki; Yamamoto, Hiroshi M; Kato, Reizo; Shibauchi, Takasada; Matsuda, Yuji

    2010-06-04

    The nature of quantum spin liquids, a novel state of matter where strong quantum fluctuations destroy the long-range magnetic order even at zero temperature, is a long-standing issue in physics. We measured the low-temperature thermal conductivity of the recently discovered quantum spin liquid candidate, the organic insulator EtMe3Sb[Pd(dmit)2]2. A sizable linear temperature dependence term is clearly resolved in the zero-temperature limit, indicating the presence of gapless excitations with an extremely long mean free path, analogous to excitations near the Fermi surface in pure metals. Its magnetic field dependence suggests a concomitant appearance of spin-gap-like excitations at low temperatures. These findings expose a highly unusual dichotomy that characterizes the low-energy physics of this quantum system.

  19. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Directory of Open Access Journals (Sweden)

    Simone Borri

    2016-02-01

    Full Text Available The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  20. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    Science.gov (United States)

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-02-17

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  1. Provably secure and high-rate quantum key distribution with time-bin qudits.

    Science.gov (United States)

    Islam, Nurul T; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J

    2017-11-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.

  2. Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Le, Quyet Van [School; Kim, Jong Beom [Department; Kim, Soo Young [School; Lee, Byeongdu [X-ray; Lee, Dong Ryeol [Department

    2017-08-15

    We have investigated the effect of reaction temperature of hot-injection method on the structural properties of CsPbX3 (X: Br, I, Cl) perovskite nanocrystals (NCs) using the small- and wide-angle X-ray scattering. It is confirmed that the size of the NCs decreased as the reaction temperature decreased, resulting stronger quantum confinement. The cubic-phase perovskite NCs were formed despite the reaction temperatures increased from 140 to 180 °C. However, monodispersive NC cubes which are required for densely packing self-assembly film were only formed at lower temperatures. From the X-ray scattering measurements, the spin-coated film from more monodispersive perovskite nanocubes synthesized at lower temperatures resulted in more preferred orientation. This dense-packing perovskite film with preferred orientation yielded efficient light-emitting diode (LED) performance. Thus, the dense-packing structure of NC assemblies formed after spin-coating should be considered for high-efficient LEDs based on perovskite quantum dots in addition to quantum confinement effect of the quantum dots.

  3. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  4. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  5. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials.

    Science.gov (United States)

    Nadarajah, A; Smith, T; Könenkamp, R

    2012-12-07

    We report a nanowire-quantum-dot-polymer solar cell consisting of a chemically treated CdSe quantum dot film deposited on n-type ZnO nanowires. The electron and hole collecting contacts are a fluorine-doped tin-oxide/zinc oxide layer and a P3HT/Au layer. This device architecture allows for enhanced light absorption and an efficient collection of photogenerated carriers. A detailed analysis of the chemical treatment of the quantum dots, their deposition, and the necessary annealing processes are discussed. We find that the surface treatment of CdSe quantum dots with pyridine, and the use of 1,2-ethanedithiol (EDT) ligands, critically improves the device performance. Annealing at 380 °C for 2 h is found to cause a structural conversion of the CdSe from its initial isolated quantum dot arrangement into a polycrystalline film with excellent surface conformality, thereby resulting in a further enhancement of device performance. Moreover, long-term annealing of 24 h leads to additional increases in device efficiency. Our best conversion efficiency reached for this type of cell is 3.4% under 85 mW cm(-2) illumination.

  6. Turning High-Poverty Schools into High-Performing Schools

    Science.gov (United States)

    Parrett, William H.; Budge, Kathleen

    2012-01-01

    If some schools can overcome the powerful and pervasive effects of poverty to become high performing, shouldn't any school be able to do the same? Shouldn't we be compelled to learn from those schools? Although schools alone will never systemically eliminate poverty, high-poverty, high-performing (HP/HP) schools take control of what they can to…

  7. Preparation of carbon quantum dots based high photostability luminescent membranes.

    Science.gov (United States)

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2017-06-01

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm-1 disappeared but there was strong vibration at1687cm-1 which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Segmented phosphors: MEMS-based high quantum efficiency detectors for megavoltage x-ray imaging.

    Science.gov (United States)

    Sawant, Amit; Antonuk, Larry E; El-Mohri, Youcef; Li, Yixin; Su, Zhong; Wang, Yi; Yamamoto, Jin; Zhao, Qihua; Du, Hong; Daniel, Jurgen; Street, Robert

    2005-02-01

    Current electronic portal imaging devices (EPIDs) based on active matrix flat panel imager (AMFPI) technology use a metal plate+phosphor screen combination for x-ray conversion. As a result, these devices face a severe trade-off between x-ray quantum efficiency (QE) and spatial resolution, thus, significantly limiting their imaging performance. In this work, we present a novel detector design for indirect detection-based AMFPI EPIDs that aims to circumvent this trade-off. The detectors were developed using micro-electro-mechanical system (MEMS)-based fabrication techniques and consist of a grid of up to approximately 2 mm tall, optically isolated cells of a photoresist material, SU-8. The cells are dimensionally matched to the pixels of the AMFPI array, and packed with a scintillating phosphor. In this paper, various design considerations for such detectors are examined. An empirical evaluation of three small-area (approximately 7 x 7 cm2) prototype detectors is performed in order to study the effects of two design parameters--cell height and phosphor packing density, both of which are important determinants of the imaging performance. Measurements of the x-ray sensitivity, modulation transfer function (MTF) and noise power spectrum (NPS) were performed under radiotherapy conditions (6 MV), and the detective quantum efficiency (DQE) was determined for each prototype SU-8 detector. In addition, theoretical calculations using Monte Carlo simulations were performed to determine the QE of each detector, as well as the inherent spatial resolution due to the spread of absorbed energy. The results of the present studies were compared with corresponding measurements published in an earlier study using a Lanex Fast-B phosphor screen coupled to an indirect detection array of the same design. The SU-8 detectors exhibit up to 3 times higher QE, while achieving spatial resolution comparable or superior to Lanex Fast-B. However, the DQE performance of these early prototypes is

  9. Failure analysis of high performance ballistic fibers

    OpenAIRE

    Spatola, Jennifer S

    2015-01-01

    High performance fibers have a high tensile strength and modulus, good wear resistance, and a low density, making them ideal for applications in ballistic impact resistance, such as body armor. However, the observed ballistic performance of these fibers is much lower than the predicted values. Since the predictions assume only tensile stress failure, it is safe to assume that the stress state is affecting fiber performance. The purpose of this research was to determine if there are failure mo...

  10. Probabilistic performance-based design for high performance control systems

    Science.gov (United States)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  11. High performance computing at Sandia National Labs

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, R.M.; Noe, J.P.; Vandevender, W.H.

    1995-10-01

    Sandia`s High Performance Computing Environment requires a hierarchy of resources ranging from desktop, to department, to centralized, and finally to very high-end corporate resources capable of teraflop performance linked via high-capacity Asynchronous Transfer Mode (ATM) networks. The mission of the Scientific Computing Systems Department is to provide the support infrastructure for an integrated corporate scientific computing environment that will meet Sandia`s needs in high-performance and midrange computing, network storage, operational support tools, and systems management. This paper describes current efforts at SNL/NM to expand and modernize centralized computing resources in support of this mission.

  12. Quantum Cryptography Beyond Quantum Key Distribution

    OpenAIRE

    Broadbent, A.; Schaffner, C

    2015-01-01

    textabstractQuantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries—including the ...

  13. The performance of quantum dots-based white light-emitting diodes

    Science.gov (United States)

    Chen, Kuan-Lin; Chung, Shu-Ru

    2017-08-01

    Recently, the investigation of quantum dots (QDs) as a color converter for white light-emitting diodes (WLEDs) application has attracted a great deal of attention. Because the narrow emission wavelength of QDs can be controlled by their particle sizes and compositions, which is facilitated to improve the color gamut of display as well as color rendering index (CRI) and the correlated color temperature (CCT) of WLEDs. In a typical commercially available LCD display, the color gamut is approximately to 75 % which is defined by the National Television System Committee (NTSC). In order to enhance NTSC, the full width at half-maximum (FWHM) of color converter should be less than 30 nm. Therefore, the QDs are the best choice for display application due to the FWHM of QDs is meet the demand of display application. In this study, the hot injection method with one-pot process is used to synthesis of colloidal ternary ZnCdSe green (G-) and red-emission (R-) QDs with a narrow emission wavelength around 537 and 610 nm. By controlling the complex reagents-stearic acid (SA) and lauric acid (LA), high performance of G- and R-QDs can be prepared. The quantum yields (QYs), particle sizes and FWHM for G- and R-QDs are 70, 30 %, 3.2 +/- 0.5, 4.1 +/- 0.5 nm and 25, 26 nm, respectively. In order to explore the performance of QDs-based WLEDs, mixing ratios effect between G-QD and R-QD are studied and the WLED is packed as conformal-type. Different ratios of R-QD and G-QD (1:10, 1:20 and 1:30) are mixed and fill up the 3020 SMD blue-InGaN LED, and named as LED-10, LED-20 and LED-30. After that, UV curable gel is deposited on the top of QD layer to form WLED and named as LED-10*, LED-20* and LED-30*. The results show that the Commission International d'Eclairage (CIE) chromaticity coordinates, color rendering index (CRI), luminous efficacy of LED-10*, LED-20* and LED-30* are (0.27, 0.21), 53, 1.9 lm/W, (0.29, 0.30), 72, 3.3 lm/W and (0.25, 0.34), 45, 6.8 lm/W, respectively. We can find

  14. (Nanotechnology Initiative) Revision of Quantum Engineering of Nanostructures for Optoelectronic Devices with Optimum Performance

    Science.gov (United States)

    2011-10-11

    based on Quantum Dots and Resonant- Tunneling Diodes Coupled with Conductive Polymers Growth and Properties of Tin Oxide Nanowires and the Effect...Physical Limit for Nanoscale Optoelectronic Device Three-color Photodetector based on Quantum Dots and Resonant- tunneling Diodes coupled with...Bottleneck Effects in Rectangular Graphene Quantum Dots Interface Optical Phonon Modes in Wurtzite Quantum Heterostructures Multi-Color Photodetector

  15. Improving performance in quantum mechanics with explicit incentives to correct mistakes

    Directory of Open Access Journals (Sweden)

    Benjamin R. Brown

    2016-03-01

    Full Text Available An earlier investigation found that the performance of advanced students in a quantum mechanics course did not automatically improve from midterm to final exam on identical problems even when they were provided the correct solutions and their own graded exams. Here, we describe a study, which extended over four years, in which upper-level undergraduate students in a quantum physics course were given four identical problems in both the midterm exam and final exam. Approximately half of the students were given explicit incentives to correct their mistakes in the midterm exam. In particular, they could get back up to 50% of the points lost on each midterm exam problem. The solutions to the midterm exam problems were provided to all students in both groups but those who corrected their mistakes were provided the solution after they submitted their corrections to the instructor. The performance on the same problems on the final exam suggests that students who were given incentives to correct their mistakes significantly outperformed those who were not given an incentive. The incentive to correct the mistakes had greater impact on the final exam performance of students who had not performed well on the midterm exam.

  16. Highly Luminescent Carbon-​Nanoparticle-​Based Materials: Factors Influencing Photoluminescence Quantum Yield

    NARCIS (Netherlands)

    Qu, S.; Shen, D.; Liu, X.; Jing, P.; Zhang, L.; Ji, W.; Zhao, H.; Fan, X.; Zhang, H.

    2014-01-01

    Unravelling the factors influencing photoluminescence (PL) quantum yield of the carbon nanoparticles (CNPs) is the prerequisite for prepg. highly luminescent CNP-​based materials. In this work, an easy and effective method is reported for prepg. highly luminescent CNP-​based materials. Water-​sol.

  17. Engineering two-photon high-dimensional states through quantum interference

    CSIR Research Space (South Africa)

    Zhang, YI

    2016-02-01

    Full Text Available problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase...

  18. High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers

    Science.gov (United States)

    Cañas, G.; Vera, N.; Cariñe, J.; González, P.; Cardenas, J.; Connolly, P. W. R.; Przysiezna, A.; Gómez, E. S.; Figueroa, M.; Vallone, G.; Villoresi, P.; da Silva, T. Ferreira; Xavier, G. B.; Lima, G.

    2017-08-01

    Multiplexing is a strategy to augment the transmission capacity of a communication system. It consists of combining multiple signals over the same data channel and it has been very successful in classical communications. However, the use of enhanced channels has only reached limited practicality in quantum communications (QC) as it requires the manipulation of quantum systems of higher dimensions. Considerable effort is being made towards QC using high-dimensional quantum systems encoded into the transverse momentum of single photons, but so far no approach has been proven to be fully compatible with the existing telecommunication fibers. Here we overcome such a challenge and demonstrate a secure high-dimensional decoy-state quantum key distribution session over a 300-m-long multicore optical fiber. The high-dimensional quantum states are defined in terms of the transverse core modes available for the photon transmission over the fiber, and theoretical analyses show that positive secret key rates can be achieved through metropolitan distances.

  19. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  20. Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.; Zhang, Y. G., E-mail: ygzhang@mail.sim.ac.cn; Chen, X. Y.; Xi, S. P.; Du, B.; Ma, Y. J. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-23

    We report the effect of Bi surfactant on the properties of highly strained InAs/InGaAs triangular quantum wells grown on InP substrates. Reduced surface roughness, improved heterostructure interfaces and enhanced photoluminescence intensity at 2.2 μm are observed by moderate Bi-mediated growth. The nonradiative processes are analysed based on temperature-dependent photoluminescence. It is confirmed that Bi incorporation is insignificant in the samples, whereas excessive Bi flux during the growth results in deteriorated performance. The surfactant effect of Bi is promising to improve InP-based highly strained structures while the excess of Bi flux needs to be avoided.

  1. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, P. Ben [Massachusetts Institute of Technology (MIT); Murphy, Ryan [Lincoln Laboratory, Massachusetts Institute of Technology (MIT); Rosenberg, Danna [Massachusetts Institute of Technology (MIT); Grein, Matthew E. [Massachusetts Institute of Technology (MIT); Stelmakh, Veronika [Massachusetts Institute of Technology (MIT); Bennink, Ryan S [ORNL; Wong, Franco N. C. [Massachusetts Institute of Technology (MIT)

    2015-01-01

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  2. Quantum state engineering, purification, and number-resolved photon detection with high-finesse optical cavities

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Muschik, Christine A.; Giedke, Geza

    2010-01-01

    We propose and analyze a multifunctional setup consisting of high-finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does...... not only provide the possibility to conditionally generate highly entangled photon number states as resource for quantum information protocols but also allows one to test and hence purify this type of quantum states in a communication scenario, which is of great practical importance. The scheme...

  3. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  4. An enhanced high-speed multi-digit BCD adder using quantum-dot cellular automata

    Science.gov (United States)

    Ajitha, D.; Ramanaiah, K. V.; Sumalatha, V.

    2017-02-01

    The advent of development of high-performance, low-power digital circuits is achieved by a suitable emerging nanodevice called quantum-dot cellular automata (QCA). Even though many efficient arithmetic circuits were designed using QCA, there is still a challenge to implement high-speed circuits in an optimized manner. Among these circuits, one of the essential structures is a parallel multi-digit decimal adder unit with significant speed which is very attractive for future environments. To achieve high speed, a new correction logic formulation method is proposed for single and multi-digit BCD adder. The proposed enhanced single-digit BCD adder (ESDBA) is 26% faster than the carry flow adder (CFA)-based BCD adder. The multi-digit operations are also performed using the proposed ESDBA, which is cascaded innovatively. The enhanced multi-digit BCD adder (EMDBA) performs two 4-digit and two 8-digit BCD addition 50% faster than the CFA-based BCD adder with the nominal overhead of the area. The EMDBA performs two 4-digit BCD addition 24% faster with 23% decrease in the area, similarly for 8-digit operation the EMDBA achieves 36% increase in speed with 21% less area compared to the existing carry look ahead (CLA)-based BCD adder design. The proposed multi-digit adder produces significantly less delay of (N -1) + 3.5 clock cycles compared to the N* One digit BCD adder delay required by the conventional BCD adder method. It is observed that as per our knowledge this is the first innovative proposal for multi-digit BCD addition using QCA.

  5. High performance resonant tunnelling structures on GaAs substrates

    Science.gov (United States)

    Riechert, H.; Bernklau, D.; Reithmaier, J.-P.; Schnell, R. D.

    1990-03-01

    GaAs-based resonant tunneling structures of high quality were grown by molecular beam epitaxy. Room temperature peak-to-valley ratios of 4.8 for a GaAs/AlGaAs double barrier quantum well, 4.1 for GaAs/AlGaAs with InGaAs quantum well and 5.9 for GaAs/AlGaAs with adjacent InGaAs 'prewell' were obtained, in connection with reasonable peak current densities.

  6. Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber

    Directory of Open Access Journals (Sweden)

    K. A. Patel

    2012-11-01

    Full Text Available Quantum key distribution (QKD uniquely allows the distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With a high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10-Gbit Ethernet, QKD is a significant step closer toward wide-scale deployment in fiber networks.

  7. High-response hybrid quantum dots- 2D conductor phototransistors: recent progress and perspectives

    Directory of Open Access Journals (Sweden)

    Sablon Kimberly A.

    2017-03-01

    Full Text Available Having been inspired by the tremendous progress in material nanoscience and device nanoengineering, hybrid phototransistors combine solution processed colloidal semiconductor quantum dots (QDs with graphene or two-dimensional (2D semiconductor materials. Novel detectors demonstrate ultrahigh photoconductive gain, high and selective photoresponse, low noise, and very high responsivity in visible- and near-infrared ranges. The outstanding performance of phototransistors is primarily due to the strong, selective, and size tunable absorption of QDs and fast charge transfer in 2D high mobility conductors. However, the relatively small mobility of QD nanomaterials was a technological barrier, which limited the operating rate of devices. Very recent innovations in detector design and significant progress in QD ligand engineering provide effective tools for further qualitative improvements. This article reviews the recent progress in material science, nanophysics, and device engineering related to hybrid phototransistors. Detectors based on various QD nanomaterials and several 2D conductors are compared, and advantages and disadvantages of various nanomaterials for applications in hybrid phototransistors are identified. We also benchmark the experimental characteristics with model results that establish interrelations and tradeoffs between detector characteristics, such as responsivity, dark and noise currents, the photocarrier lifetime, response, and noise bandwidths. We have shown that the most recent phototransistors demonstrate performance limited by the fundamental generation recombination noise in high gain devices. Interrelation between the dynamic range of the detector and the detector sensitivity is discussed. The review is concluded with a brief discussion of the remaining challenges and possible significant improvements in the performance of hybrid phototransistors.

  8. Highly efficient visual detection of trace copper(II) and protein by the quantum photoelectric effect.

    Science.gov (United States)

    Wang, Peng; Lei, Jianping; Su, Mengqi; Liu, Yueting; Hao, Qing; Ju, Huangxian

    2013-09-17

    This work presented a photocurrent response mechanism of quantum dots (QDs) under illumination with the concept of a quantum photoelectric effect. Upon irradiation, the photoelectron could directly escape from QDs. By using nitro blue tetrazolium (NBT) to capture the photoelectron, a new visual system was proposed due to the formation of an insoluble reduction product, purple formazan, which could be used to visualize the quantum photoelectric effect. The interaction of copper(II) with QDs could form trapping sites to interfere with the quantum confinement and thus blocked the escape of photoelectron, leading to a "signal off" visual method for sensitive copper(II) detection. Meanwhile, by using QDs as a signal tag to label antibody, a "signal on" visual method was also proposed for immunoassay of corresponding protein. With meso-2,3-dimercaptosuccinic-capped CdTe QDs and carcino-embryonic antigen as models, the proposed visual detection methods showed high sensitivity, low detection limit, and wide detectable concentration ranges. The visualization of quantum photoelectric effect could be simply extended for the detection of other targets. This work opens a new visual detection way and provides a highly efficient tool for bioanalysis.

  9. Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance

    Science.gov (United States)

    Senokos, E.; Reguero, V.; Palma, J.; Vilatela, J. J.; Marcilla, Rebeca

    2016-02-01

    In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m2 g-1, high electrical conductivity (3.5 × 105 S m-1) and mechanical properties in the high-performance range including toughness (35 J g-1) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg-1 and 14 Wh kg-1, respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10 000 cycles of charge-discharge at 3.5 V.In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through

  10. Radiation Hard High Performance Optoelectronic Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance, radiation-hard, widely-tunable integrated laser/modulator chip and large-area avalanche photodetectors (APDs) are key components of optical...

  11. High Performance Methane Thrust Chamber (HPMTC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a High-Performance Methane Thrust Chamber (HPMRE) to meet the demands of advanced chemical propulsion systems for deep-space mission...

  12. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  13. High Performance Liquid Chromatography Method for the ...

    African Journals Online (AJOL)

    High Performance Liquid Chromatography Method for the Determination of Anethole in Rat Plasma. ... Journal Home > Vol 13, No 5 (2014) > ... Results: GC determination showed that anethole in the essential oil of star anise exhibited a ...

  14. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  15. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  16. Charge Transfer across Quantum Dot-Oxide Interfaces for High-Efficiency Photovoltaics

    Science.gov (United States)

    Bonn, Mischa

    Metal oxides constitute robust and relatively cheap semiconductor materials that are finding increasing applications in opto-electronics, but their band gaps are typically prohibitively wide for the generation of free charges through the absorption of visible light. Several approaches have been developed to circumvent this drawback. Specifically, the sensitization of mesoporous oxides by semiconductor quantum dot (QD) nanocrystals represents a promising route for the development of low-cost photovoltaics in QD sensitized solar cells. In addition to their tuneable band gap, QDs have the ability to generate multiple charge carriers from single photons by a process called carrier multiplication (CM), which potentially provides a means towards high-efficiency photovoltaics. Although CM has been widely interrogated in colloidal QDs in solution, the collection of those multiple charge carriers at oxide electrodes has not been clearly elucidated. The contribution of CM towards the overall device performance is ultimately determined by a competition between transfer to the electrode material and charge recombination within the QDs. We report interfacial electron transfer dynamics from quantum dots grown directly onto mesoporous oxide films. Such systems are well-suited for achieving efficient multiple charge transfer by CM, as electron transfer from QD-to-oxide is substantially faster than charge recombination. However, despite CM occurring in the QD, only one electron is transferred to the oxide. This seemingly counterintuitive result can be understood by noting that efficient hot electron transfer at the QD-oxide interface can compete with CM within the QDs. Hot electron transfer is observed to occur on sub-100 fs timescales, nulling the CM efficiency. Implications of these results for solar energy conversion are discussed.

  17. High quality factor photonic resonators for nitride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, T. [Universite Montpellier 2, Laboratoire Charles Coulomb UMR 5221, 34095 Montpellier (France); Mexis, M.; Rennesson, S.; Brimont, C.; Bretagnon, T.; Gil, B. [Universite Montpellier 2, Laboratoire Charles Coulomb UMR 5221, 34095 Montpellier (France); CNRS, Laboratoire Charles Coulomb UMR 5221, 34095 Montpellier (France); Sergent, S. [CRHEA-CNRS, Valbonne 06560 (France); Universite de Nice Sophia Antipolis, Parc Valrose, Nice 06102 Cedex 2 (France); Neel, D.; David, S.; Checoury, X.; Boucaud, P. [Institut d' Electronique Fondamentale, CNRS - Universite Paris Sud 11, 91405 Orsay (France); Sam-Giao, D.; Gayral, B. [CEA-INAC, 17 rue des Martyrs, 38054 Grenoble (France); Semond, F.; Leroux, M. [CRHEA-CNRS, Valbonne 06560 (France)

    2012-03-15

    We report the realization and the optical study of nitride photonic resonators dedicated to the blue and UV spectral range. Microdisks and photonic crystal (PC) cavities are investigated containing GaN/AlN quantum dots (QDs) embedded in an AlN waveguide. The PC cavities are fabricated through the conformal growth of nitrides on a patterned Si substrate, and present delocalized and confined cavity modes in their microphotoluminescence spectra, that are compared to simulations. A large quality factor of 1800 is reached for a modified L3 cavity. In the case of microdisks, which are fabricated through a classical top-down approach, the series of whispering gallery modes (WGMs) with large quality factors (up to 7300) are observed and analysed. Scanning electron micrograph and microphotoluminescence spectrum of a 2 {mu}m AlN microdisk embedding GaN QDs; the WGMs appear as sharp peaks, with quality factors up to 5000. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. High performance computing in Windows Azure cloud

    OpenAIRE

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  19. Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope.

    Science.gov (United States)

    Cutler, Patrick J; Malik, Michael D; Liu, Sheng; Byars, Jason M; Lidke, Diane S; Lidke, Keith A

    2013-01-01

    Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope (HSM) to perform single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs) at 27 frames per second. The distinct emission spectra of the QDs allows localization with ∼10 nm precision even when the probes are clustered at spatial scales below the diffraction limit. The capabilities of the HSM are demonstrated here by application of multi-color single particle tracking to observe membrane protein behavior, including: 1) dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers; 2) resolving antigen induced aggregation of the high affinity IgE receptor, FcεR1; 3) four color QD tracking while simultaneously visualizing GFP-actin; and 4) high-density tracking for fast diffusion mapping.

  20. Comparing Dutch and British high performing managers

    NARCIS (Netherlands)

    Waal, A.A. de; Heijden, B.I.J.M. van der; Selvarajah, C.; Meyer, D.

    2016-01-01

    National cultures have a strong influence on the performance of organizations and should be taken into account when studying the traits of high performing managers. At the same time, many studies that focus upon the attributes of successful managers show that there are attributes that are similar

  1. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots.

    Science.gov (United States)

    Lim, Jaehoon; Park, Myeongjin; Bae, Wan Ki; Lee, Donggu; Lee, Seonghoon; Lee, Changhee; Char, Kookheon

    2013-10-22

    We demonstrate bright, efficient, and environmentally benign InP quantum dot (QD)-based light-emitting diodes (QLEDs) through the direct charge carrier injection into QDs and the efficient radiative exciton recombination within QDs. The direct exciton formation within QDs is facilitated by an adoption of a solution-processed, thin conjugated polyelectrolyte layer, which reduces the electron injection barrier between cathode and QDs via vacuum level shift and promotes the charge carrier balance within QDs. The efficient radiative recombination of these excitons is enabled in structurally engineered InP@ZnSeS heterostructured QDs, in which excitons in the InP domain are effectively passivated by thick ZnSeS composition-gradient shells. The resulting QLEDs record 3.46% of external quantum efficiency and 3900 cd m(-2) of maximum brightness, which represent 10-fold increase in device efficiency and 5-fold increase in brightness compared with previous reports. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of QDs provides a reasonable guideline for practical realization of environmentally benign, high-performance QLEDs in the future.

  2. Comparison of the noise performance of 10 GHz repetition rate quantum-dot and quantum well monolithic mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Carpintero, G.; Thompson, M. G.; Yvind, Kresten

    2011-01-01

    Mode-locked lasers are commonly used in carrier-wave signal generation systems because of their excellent phase noise performance. Owing to the importance of this key parameter, this study presents a like-for-like comparison of the noise performance of the passive mode-locked regime of two devices...... fabricated with different material gain systems, one quantum well and the other quantum dot (QD), both with a monolithic all-active two-section mode-locked structure. Two important factors are identified as having a significant effect on the noise performance, the RF linewidth of the first harmonic...... and the shape of the noise pedestals, both depending on the passive mode-locked bias conditions. Nevertheless, the dominant contribution of the RF linewidth to the phase noise, which is significantly narrower for the QD laser, makes this material more suitable for optical generation of low-noise millimetre...

  3. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish

    OpenAIRE

    Jing-Hui Zhang; Aping Niu; Jing Li; Jian-Wei Fu; Qun Xu; De-Sheng Pei

    2016-01-01

    Carbon quantum dots (CDs) were widely investigated because of their tunable fluorescence properties and low toxicity. However, so far there have been no reports on in vivo functional studies of hair and skin derived CDs. Here, hair derived CDs (HCDs) and skin derived CDs (SCDs) were produced by using human hair and pig skin as precursors. The quantum yields (QYs) of HCDs and SCDs were quite high, compared to citric acid derived CDs (CCDs). HCDs and SCDs possess optimal photostability, hypotox...

  4. Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance

    KAUST Repository

    Kirmani, Ahmad R.

    2014-06-04

    The absorbing layer in state-of-the-art colloidal quantum-dot solar cells is fabricated using a tedious layer-by-layer process repeated ten times. It is now shown that methanol, a common exchange solvent, is the main culprit, as extended exposure leaches off the surface halide passivant, creating carrier trap states. Use of a high-dipole-moment aprotic solvent eliminates this problem and is shown to produce state-of-the-art devices in far fewer steps. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of nanocrystal size on the quantum dots sensitized solar cells’ performance with low temperature synthesized CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bing; Shen, Chao; Yuan, Shuanglong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Bo [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Mengya [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Yang, Yunxia, E-mail: yangyunxia@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-05

    Highlights: • Avoiding use of phosphine contained solvent makes the preparation of the CdSe QDs green. • The absorption range of the QDs plays an important role in the cell's performance. • Cu{sub 2}S is more suitable than Pt as the counter electrode. - Abstract: The CdSe quantum dots (QDs) were synthesized with ethanol and glycerol under 50–160 °C in the present work. The reaction temperature is lower than the traditional solvent thermal method to fabricate the CdSe QDs around 250–350 °C. What’s more, the avoiding of the use of phosphine contained solvent make the whole reaction environmental friendly. Then 3-Mercaptopropionic (MPA) was used to exchange the CdSe QDs’ ligand of olic acid. After that, the MPA-capped CdSe QDs were tethered onto the TiO{sub 2}’s substrate, which guarantee the high coverage of the CdSe QDs on the TiO{sub 2} photoanode and the absorption range of 450–560 nm of light harvest. Furthermore, through the results of the CdSe QD’s size for the cells’ performance, we compared the significance of the QDs’ absorption range, the electron injection from the conduction band of CdSe QDs’ to TiO{sub 2}’s and polysulfide to the valance band of the CdSe QDs in the cells’ performance and discuss the mechanism to improve the efficiency of the QDSCs. Finally, the QDSCs with polysulfide solution and Cu{sub 2}S as counter electrode show excellent cell performance with open-circuit voltage (V{sub oc}) of 0.6 V, short-circuit current density (J{sub sc}) of 10.58 mA/cm{sup 2}, fill factor (FF) of 0.564, and PCE of 3.7%.

  6. The effect of tin sulfide quantum dots size on photocatalytic and photovoltaic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghizade, Mohsen [Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Jamali-Sheini, Farid, E-mail: faridjamali@iauahvaz.ac.ir [Advanced Surface Engineering and Nano Materials Research Center, Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Yousefi, Ramin [Department of Physics, Masjed-Soleiman Branch, Islamic Azad University (I.A.U), Masjed-Soleiman (Iran, Islamic Republic of); Niknia, Farhad [Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Mahmoudian, Mohammad Reza [Department of Chemistry, Shahid Sherafat, University of Farhangian, 15916, Tehran (Iran, Islamic Republic of); Sookhakian, Mehran [Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2017-07-01

    In the current study, tin sulfide Quantum Dots (QDs) was successfully synthesized through sonochemical synthesis method by applying sonication times of 10, 15, and 20 min. Structural studies showed an orthorhombic phase of SnS and Sn{sub 2}S{sub 3}, and hexagonal phase of SnS{sub 2}. The particle size of tin sulfide QDs prepared through sonication time of 20 min was smaller than other QDs. According to TEM images, an increase in sonication time resulted in smaller spherical shaped particles. According to the results of Raman studies, five Raman bands and a shift towards the lower frequencies were observed by enhancing the sonication time. Based on the outcomes of photocatalytic activity, higher this property was observed for tin sulfide QDs, which are prepared through longer sonication time. Solar cell devices manufactured using tin sulfide QDs have a greater performance for the samples with more sonication time. Considering the obtained outcomes, the sonication time seems probable to be a factor affecting synthesis process of SnS QDs as well as its optical and electrical, photocatalytic, and photovoltaic conversion features. - Highlights: • Tin sulfide quantum dots (QDs) synthesized using a sonication method. • The sonication time was selected as a synthesis parameter. • The photocatalytic and photovoltaic performance were depended on synthesis parameter.

  7. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  8. Photonic quantum technologies (Presentation Recording)

    Science.gov (United States)

    O'Brien, Jeremy L.

    2015-09-01

    The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.

  9. High Performance Work Systems for Online Education

    Science.gov (United States)

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  10. Teacher Accountability at High Performing Charter Schools

    Science.gov (United States)

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  11. Fault-tolerant, high-level quantum circuits: form, compilation and description

    Science.gov (United States)

    Paler, Alexandru; Polian, Ilia; Nemoto, Kae; Devitt, Simon J.

    2017-06-01

    Fault-tolerant quantum error correction is a necessity for any quantum architecture destined to tackle interesting, large-scale problems. Its theoretical formalism has been well founded for nearly two decades. However, we still do not have an appropriate compiler to produce a fault-tolerant, error-corrected description from a higher-level quantum circuit for state-of the-art hardware models. There are many technical hurdles, including dynamic circuit constructions that occur when constructing fault-tolerant circuits with commonly used error correcting codes. We introduce a package that converts high-level quantum circuits consisting of commonly used gates into a form employing all decompositions and ancillary protocols needed for fault-tolerant error correction. We call this form the (I)initialisation, (C)NOT, (M)measurement form (ICM) and consists of an initialisation layer of qubits into one of four distinct states, a massive, deterministic array of CNOT operations and a series of time-ordered X- or Z-basis measurements. The form allows a more flexible approach towards circuit optimisation. At the same time, the package outputs a standard circuit or a canonical geometric description which is a necessity for operating current state-of-the-art hardware architectures using topological quantum codes.

  12. A quantum galvanometer with high-energy resolution based on a superconducting interferometer circuit

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, P.A.; Makhov, V.I.; Masalov, V.V.; Sretenskii, V.N.; Tyablikov, A.V.; Vasenkov, A.A.

    1985-07-01

    The authors make a comprehensive analysis of principles of constructing measurement systems based on the superconducting quantum interferometer (SQUID) implemented in integrated form. They note trends of promising applications for galvanometric measurement systems. They describe the two types of SQUID, one-junction and two junction. They analyze the processing and formation of superconducting ion chemical signals and structures. And they present their results in a series of charts and diagrams. They conclude that quantum galvanometry using superconducting microcircuits allows one to propose new experimental studies in microelectronics, the techniques of high-precision measurements, and equipment for metrological work.

  13. High Efficiency Hybrid Solar Cells Using Nanocrystalline Si Quantum Dots and Si Nanowires.

    Science.gov (United States)

    Dutta, Mrinal; Thirugnanam, Lavanya; Trinh, Pham Van; Fukata, Naoki

    2015-07-28

    We report on an efficient hybrid Si nanocrystal quantum dot modified radial p-n junction thinner Si solar cell that utilizes the advantages of effective exciton collection by energy transfer from nanocrystal-Si (nc-Si) quantum dots to underlying radial p-n junction Si nanowire arrays with excellent carrier separation and propagation via the built-in electric fields of radial p-n junctions. Minimization of recombination, optical, and spectrum losses in this hybrid structure led to a high cell efficiency of 12.9%.

  14. Controlled Alternate Quantum Walks based Quantum Hash Function.

    Science.gov (United States)

    Li, Dan; Yang, Yu-Guang; Bi, Jing-Lin; Yuan, Jia-Bin; Xu, Juan

    2018-01-09

    Through introducing controlled alternate quantum walks, we present controlled alternate quantum walks (CAQW) based quantum hash function. CAQW based quantum hash function have excellent security, outstanding statistical performance and splendid expansibility. Furthermore, due to the structure of alternate quantum walks, implementing CAQW based quantum hash function significantly reduces the resources necessary for its feasible experimental realization than implementing other quantum hash functions.

  15. Visualization of plasma membrane compartmentalization by high-speed quantum dot tracking

    DEFF Research Database (Denmark)

    Clausen, M. P.; Lagerholm, B. C.

    2013-01-01

    In this study, we have imaged plasma membrane molecules labeled with quantum dots in live cells using a conventional wide-field microscope with high spatial precision at sampling frequencies of 1.75 kHz. Many of the resulting single molecule trajectories are sufficiently long (up to several...

  16. High-frequency EPR and ENDOR spectroscopy on semiconductor quantum dots

    NARCIS (Netherlands)

    Baranov, P.G.; Orlinskii, S.B.; de Mello Donega, C.|info:eu-repo/dai/nl/125593899; Schmidt, J.

    2010-01-01

    It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast

  17. Theory of macroscopic quantum tunnelling and dissipation in high-Tc Josephson junctions

    NARCIS (Netherlands)

    Kawabata, S.; Kawabata, Shiro; Kashiwaya, Satoshi; Asano, Yasuhiro; Tanaka, Yukio; Kato, Takeo; Kato, T.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We have investigated macroscopic quantum tunnelling (MQT) in in-plane high-Tc superconductor Josephson junctions and the influence of the nodal-quasiparticle and zero energy bound states (ZES) on MQT. We have shown that the presence of ZES at the interface between the insulator and the

  18. Testing quantum chromodynamics in electron-positron annihilation at high energies. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.S.

    1979-01-01

    Various measures of the distribution of hadronic energy produced in high energy electron-positron annihilation provide precise tests of the promising fundamental theory of hadronic physics, quantum chromodynamics. Recent work at the University of Washington on such energy cross sections is reviewed.

  19. Compensation of high order harmonic long quantum-path attosecond chirp

    Science.gov (United States)

    Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.

    2017-12-01

    We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time–frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.

  20. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...

  1. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes

    Science.gov (United States)

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-03-01

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.

  2. Biomolecular Structure Information from High-Speed Quantum Mechanical Electronic Spectra Calculation.

    Science.gov (United States)

    Seibert, Jakob; Bannwarth, Christoph; Grimme, Stefan

    2017-08-30

    A fully quantum mechanical (QM) treatment to calculate electronic absorption (UV-vis) and circular dichroism (CD) spectra of typical biomolecules with thousands of atoms is presented. With our highly efficient sTDA-xTB method, spectra averaged along structures from molecular dynamics (MD) simulations can be computed in a reasonable time frame on standard desktop computers. This way, nonequilibrium structure and conformational, as well as purely quantum mechanical effects like charge-transfer or exciton-coupling, are included. Different from other contemporary approaches, the entire system is treated quantum mechanically and neither fragmentation nor system-specific adjustment is necessary. Among the systems considered are a large DNA fragment, oligopeptides, and even entire proteins in an implicit solvent. We propose the method in tandem with experimental spectroscopy or X-ray studies for the elucidation of complex (bio)molecular structures including metallo-proteins like myoglobin.

  3. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.

    Science.gov (United States)

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-25

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.

  4. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED

    Science.gov (United States)

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-01

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326

  5. A Room-Temperature High-Speed Quantum Dot Infrared Photodetector with High Photodetectivity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The STTR Phase I proposal aims to develop innovative device concepts and fabrication techniques that enable the construction of high-performance uncooled long-wave...

  6. Scanning gate microscopy of ultra clean carbon nanotube quantum dots

    OpenAIRE

    Xue, Jiamin; Dhall, Rohan; Cronin, Stephen B.; LeRoy, Brian J.

    2015-01-01

    We perform scanning gate microscopy on individual suspended carbon nanotube quantum dots. The size and position of the quantum dots can be visually identified from the concentric high conductance rings. For the ultra clean devices used in this study, two new effects are clearly identified. Electrostatic screening creates non-overlapping multiple sets of Coulomb rings from a single quantum dot. In double quantum dots, by changing the tip voltage, the interactions between the quantum dots can b...

  7. High temperature radio-frequency superconducting quantum interference device system for detection of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pretzell, Alf

    2012-07-01

    This doctoral thesis was aimed at establishing a set-up with high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference device (SQUID) technology for the detection of magnetic nanoparticles and in particular for testing applications of magnetic nanoparticle immunoassays. It was part of the EU-project ''Biodiagnostics'' running from 2005 to 2008. The method of magnetic binding assays was developed as an alternative to other methods of concentration determination like enzyme linked immunosorbent assay (ELISA), or fluorescent immunoassay. The ELISA has sensitivities down to analyte-concentrations of pg/ml. Multiple incubation and washing steps have to be performed for these techniques, the analyte has to diffuse to the site of binding. The magnetic assay uses magnetic nanoparticles as markers for the substance to be detected. It is being explored by current research and shows similar sensitivity compared to ELISA but in contrast - does not need any washing and can be read out directly after binding - can be applied in solution with opaque media, e.g. blood or muddy water - additionally allows magnetic separation or concentration - in combination with small magnetoresistive or Hall sensors, allows detection of only a few particles or even single beads. For medical or environmental samples, maybe opaque and containing a multitude of substances, it would be advantageous to devise an instrument, which allows to be read out quickly and with high sensitivity. Due to the mentioned items the magnetic assay might be a possibility here.

  8. Enhanced performance of NiMoO4 nanoparticles and quantum dots and reduced nanohole graphene oxide hybrid for supercapacitor applications

    Science.gov (United States)

    Jinlong, Lv; Meng, Yang; Tongxiang, Liang

    2017-10-01

    NiMoO4 nanoparticles and quantum dots were uniformly distributed on the surface of reduced nanohole graphene oxide (rNHGO). NiMoO4@rNHGO exhibited a higher specific capacitance and better cycling stability than NiMoO4@reduced graphene oxide (rGO), which were attributed to the large surface area and high electrical conductivity. NiMoO4 nanoparticles and quantum dots (QDs) had high surface to volume ratio, which would not result in change in volume during the electro-chemical operation and induced better supercapacitor performance. Moreover, synergistic effect between NiMoO4 and the rNHGO also improved undoubtedly high specific capacitance and cycle stability.

  9. Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities

    Science.gov (United States)

    Miyazawa, T.; Takemoto, K.; Nambu, Y.; Miki, S.; Yamashita, T.; Terai, H.; Fujiwara, M.; Sasaki, M.; Sakuma, Y.; Takatsu, M.; Yamamoto, T.; Arakawa, Y.

    2016-09-01

    We have demonstrated highly pure single-photon emissions from an InAs/InP quantum dot at the wavelength of 1.5 μm. By applying quasi-resonant excitation, one exciton is deterministically generated in an excited state, which then relaxes to the exciton ground state before recombining to emit a single photon. The photon-correlation function of the emission from the exciton ground state exhibits a record g(2)(0) value of (4.4 ± 0.2) × 10-4 measured using high-performance super-conducting single-photon detectors, without any background subtraction. This single-photon source with extremely low multi-photon emission probability paves the way to realize long distance quantum key distribution and low error-rate quantum computation.

  10. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  11. Highly polarized electrically driven single-photon emission from a non-polar InGaN quantum dot

    Science.gov (United States)

    Kocher, C. C.; Puchtler, T. J.; Jarman, J. C.; Zhu, T.; Wang, T.; Nuttall, L.; Oliver, R. A.; Taylor, R. A.

    2017-12-01

    Nitride quantum dots are well suited for the deterministic generation of single photons at high temperatures. However, this material system faces the challenge of large in-built fields, decreasing the oscillator strength and possible emission rates considerably. One solution is to grow quantum dots on a non-polar plane; this gives the additional advantage of strongly polarized emission along one crystal direction. This is highly desirable for future device applications, as is electrical excitation. Here, we report on electroluminescence from non-polar InGaN quantum dots. The emission from one of these quantum dots is studied in detail and found to be highly polarized with a degree of polarization of 0.94. Single-photon emission is achieved under excitation with a constant current giving a g(2 )(0 ) correlation value of 0.18. The quantum dot electroluminescence persists up to temperatures as high as 130 K.

  12. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr......Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...... in industrial refrigeration systems....

  13. Towards High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr......Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...... in industrial refrigeration systems....

  14. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  15. Quantum Key Distribution with High Order Fibonacci-like Orbital Angular Momentum States

    Science.gov (United States)

    Pan, Ziwen; Cai, Jiarui; Wang, Chuan

    2017-08-01

    The coding space in quantum communication could be expanded to high-dimensional space by using orbital angular momentum (OAM) states of photons, as both the capacity of the channel and security are enhanced. Here we present a novel approach to realize high-capacity quantum key distribution (QKD) by exploiting OAM states. The innovation of the proposed approach relies on a unique type of entangled-photon source which produces entangled photons with OAM randomly distributed among high order Fiboncci-like numbers and a new physical mechanism for efficiently sharing keys. This combination of entanglement with mathematical properties of high order Fibonacci sequences provides the QKD protocol immunity to photon-number-splitting attacks and allows secure generation of long keys from few photons. Unlike other protocols, reference frame alignment and active modulation of production and detection bases are unnecessary.

  16. Nanoparticles for high performance concrete (HPC)

    OpenAIRE

    Torgal, Fernando Pacheco; Miraldo, Sérgio; Ding, Yining; J.A. Labrincha

    2013-01-01

    According to the 2011 ERMCO statistics, only 11% of the production of ready-mixed concrete relates to the high performance concrete (HPC) target. This percentage has remained unchanged since at least 2001 and appears a strange choice on the part of the construction industry, as HPC offers several advantages over normal-strength concrete, specifically those of high strength and durability. It allows for concrete structures requiring less steel reinforcement and offers a longer serviceable life...

  17. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect......% rejection for urea and a water permeability around 10 L/(m2h) with 2M NaCl as draw solution. Our results demonstrate the feasibility of using aquaporin proteins in biomimetic membranes for technological applications....

  18. Quantum interference and multielectron effects in high-harmonic spectra of polar molecules

    OpenAIRE

    Rupenyan A.; Kraus P. M.; Schneider J.; Woerner H. J.

    2013-01-01

    We experimentally and theoretically analyze the manifestations of quantum interference and multiple ionization channels (multiple orbitals) in high harmonic spectra of aligned N2O molecules. Increasing the probe wavelength from 1.17 micrometer to 1.46 micrometer we demonstrate the gradual disappearance of multi electron effects and quantitatively explain the observation through calculations. We thus identify a minimum in the high harmonic spectrum of N2O caused only by its structure. By compa...

  19. High Efficient Secret Key Distillation for Long Distance Continuous Variable Quantum Key Distribution

    OpenAIRE

    Zhao, Yi-bo; Han, Zheng-fu; Chen, Jin-jian; Gui, You-zhen; Guo, Guang-can

    2006-01-01

    The continuous variable quantum key distribution is expected to provide high secret key rate without single photon source and detector, but the lack of the secure and effective key distillation method makes it unpractical. Here, we present a secure single-bit-reverse-reconciliation protocol combined with secret information concentration and post-selection, which can distill the secret key with high efficiency and low computational complexity. The simulation results show that this protocol can...

  20. Quantum Communication with a High-Rate Entangled Photon Source

    Science.gov (United States)

    Wilson, Nathaniel C.; Chaffee, Dalton W.; Lekki, John D.; Wilson, Jeffrey D.

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  1. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.

    Science.gov (United States)

    Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli

    2012-08-01

    We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).

  2. Strategy Guideline: Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  3. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  4. An Introduction to High Performance Fortran

    Directory of Open Access Journals (Sweden)

    John Merlin

    1995-01-01

    Full Text Available High Performance Fortran (HPF is an informal standard for extensions to Fortran 90 to assist its implementation on parallel architectures, particularly for data-parallel computation. Among other things, it includes directives for specifying data distribution across multiple memories, and concurrent execution features. This article provides a tutorial introduction to the main features of HPF.

  5. Debugging a high performance computing program

    Science.gov (United States)

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  6. Supervising the highly performing general practice registrar.

    Science.gov (United States)

    Morgan, Simon

    2014-02-01

    There is extensive literature on the poorly performing learner. In contrast, there is very little written on supervising the highly performing registrar. Outstanding trainees with high-level knowledge and skills can be a challenge for supervisors to supervise and teach. Narrative review and discussion. As with all learners, a learning-needs analysis is fundamental to successful supervision. The key to effective teaching of the highly performing registrar is to contextualise clinical knowledge and skills with the wisdom of accumulated experience. Moreover, supervisors must provide a stimulating learning environment, with regular opportunities for intellectual challenge. The provision of specific, constructive feedback is essential. There are potential opportunities to extend the highly performing registrar in all domains of general practice, namely communication skills and patient-centred care, applied knowledge and skills, population health, professionalism, and organisation and legal issues. Specific teaching strategies include role-play, video-consultation review, random case analysis, posing hypothetical clinical scenarios, role modelling and teaching other learners. © 2014 John Wiley & Sons Ltd.

  7. Optimization and validation of high performance liquid ...

    African Journals Online (AJOL)

    Optimization and validation of high performance liquid chromatography-ultra violet method for quantitation of metoprolol in rabbit plasma: application to ... Methods: Mobile phase of methanol and 50 mM ammonium dihydrogen phosphate solution (50:50) at pH 3.05 was used for separation of metoprolol on BDS hypersil ...

  8. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  9. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  10. Gradient High Performance Liquid Chromatography Method ...

    African Journals Online (AJOL)

    Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid dosage form. Methods: HPLC determination was carried out on an Agilent XDB C-18 column (4.6 x 150mm, 5 μ particle size) with a gradient ...

  11. Technology Leadership in Malaysia's High Performance School

    Science.gov (United States)

    Yieng, Wong Ai; Daud, Khadijah Binti

    2017-01-01

    Headmaster as leader of the school also plays a role as a technology leader. This applies to the high performance schools (HPS) headmaster as well. The HPS excel in all aspects of education. In this study, researcher is interested in examining the role of the headmaster as a technology leader through interviews with three headmasters of high…

  12. High Performance Computing and Communications Panel Report.

    Science.gov (United States)

    President's Council of Advisors on Science and Technology, Washington, DC.

    This report offers advice on the strengths and weaknesses of the High Performance Computing and Communications (HPCC) initiative, one of five presidential initiatives launched in 1992 and coordinated by the Federal Coordinating Council for Science, Engineering, and Technology. The HPCC program has the following objectives: (1) to extend U.S.…

  13. High Performance Liquid Chromatographic Determination of ...

    African Journals Online (AJOL)

    Purpose: To develop a simple, precise and rapid high-performance liquid chromatographic technique coupled with photodiode array detection (DAD) method for the simultaneous determination of rutin, quercetin, luteolin, genistein, galangin and curcumin in propolis. Methods: Ultrasound-assisted extraction was applied to ...

  14. Rapid high performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    Rapid high performance liquid chromatographic determination of chlorpropamide in human plasma. MTB Odunola, IS Enemali, M Garba, OO Obodozie. Abstract. Samples were extracted with dichloromethane and the organic layer evaporated to dryness. The residue was dissolved in methanol, and 25 ìl aliquot injected ...

  15. High Performance Liquid Chromatography Method for the ...

    African Journals Online (AJOL)

    chromatography (HPLC) technique with UV-VIS detection method was developed for the determination of the compound in rat ... Keywords: Anethole, High performance liguid chromatography, Star anise, Essential oil, Rat plasma,. Illicium verum Hook. .... solution of anethole. Plasma proteins were precipitated by adding 0.3.

  16. Complex performance during exposure to high temperatures.

    Science.gov (United States)

    1969-06-01

    The effects of high temperature on psychomotor performance and physiological function were studied on male pilots (age 30-51) holding a current medical certificate. A total of 41 runs were made at neutral (23.8C (75F), or hot (60.0C (140F), 71.1C (16...

  17. High-performance computing reveals missing genes

    OpenAIRE

    Whyte, Barry James

    2010-01-01

    Scientists at the Virginia Bioinformatics Institute and the Department of Computer Science at Virginia Tech have used high-performance computing to locate small genes that have been missed by scientists in their quest to define the microbial DNA sequences of life.

  18. Performance analysis of memory hierachies in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Yogesh, Agrawel [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    This thesis studies memory bandwidth as a performance predictor of programs. The focus of this work is on computationally intensive programs. These programs are the most likely to access large amounts of data, stressing the memory system. Computationally intensive programs are also likely to use highly optimizing compilers to produce the fastest executables possible. Methods to reduce the amount of data traffic by increasing the average number of references to each item while it resides in the cache are explored. Increasing the average number of references to each cache item reduces the number of memory requests. Chapter 2 describes the DLX architecture. This is the architecture on which all the experiments were performed. Chapter 3 studies memory moves as a performance predictor for a group of application programs. Chapter 4 introduces a model to study the performance of programs in the presence of memory hierarchies. Chapter 5 explores some compiler optimizations that can help increase the references to each item while it resides in the cache.

  19. Catastrophic degradation in high-power InGaAs-AlGaAs strained quantum well lasers and InAs-GaAs quantum dot lasers

    Science.gov (United States)

    Sin, Yongkun; LaLumondiere, Stephen; Foran, Brendan; Ives, Neil; Presser, Nathan; Lotshaw, William; Moss, Steven C.

    2013-03-01

    Reliability and degradation processes in broad-area InGaAs-AlGaAs strained quantum well (QW) lasers are under investigation because these lasers are indispensible as pump lasers for fiber lasers and amplifiers that have found an increasing number of industrial applications in recent years. Extensive efforts by a number of groups to develop InAs-GaAs quantum dot (QD) lasers have recently led to significant improvement in performance characteristics, but due to a short history of commercialization, high power QD lasers lacks studies in reliability and degradation processes. For the present study, we investigated reliability and degradation processes in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers as well as in MBE-grown broad-area InAs-GaAs QD lasers using various failure mode analysis (FMA) techniques. Dots for the QD lasers were formed via a self-assembly process during MBE growth. We employed two different methods to degrade lasers during accelerated life-testing: commercial lifetester and our newly developed time-resolved electroluminescence (TR-EL) set-up. Our TR-EL set-up allows us to observe formation of a hot spot and subsequent formation and progression of dark spots and dark lines through windowed n-contacts during entire accelerated life-tests. Deep level transient spectroscopy (DLTS) and time resolved photoluminescence (TR-PL) techniques were employed to study trap characteristics and carrier dynamics in pre- and post-stressed QW and QD lasers to identify the root causes of catastrophic degradation processes in these lasers. We also employed electron beam induced current (EBIC), focused ion beam (FIB), and high resolution TEM to study dark line defects and crystal defects in post-aged QW and QD lasers at different stages of degradation.

  20. High-Performance, Low Environmental Impact Refrigerants

    Science.gov (United States)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  1. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  2. High temperature superconducting thin films and quantum interference devices (SQUIDs) for gradiometers

    CERN Document Server

    Graf zu Eulenburg, A

    1999-01-01

    the best balance and gradient sensitivity at 1kHz were 3x10 sup - sup 3 and 222fT/(cm sq root Hz))) respectively. The measured spatial response to a current carrying wire was in good agreement with a theoretical model. A significant performance improvement was obtained with the development of a single layer gradiometer with 13mm baseline, fabricated on 30x10mm sup 2 bicrystals. For such a device, the gradient sensitivity at 1kHz was 50fT/(cm sq root Hz)) and the gradiometer was used successfully for unshielded magnetocardiography. A parasitic effective area compensation scheme was employed with two neighbouring SQUIDs coupled in an opposite sense to the same gradiometer loop. This improved the balance from the intrinsic value of 10 sup - sup 3 to 3x10 sup - sup 5. This thesis describes several aspects of the development of gradiometers using high temperature Superconducting Quantum Interference Devices (SQUID). The pulsed laser deposition of thin films of YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO) on Sr...

  3. Effect of polarization on the performance of ZnO/MgZnO quantum cascade detector

    Science.gov (United States)

    Li, Zhaoling; Wang, Ping; He, Jingfang; Chen, Hongyan; Cheng, Jingsi

    2017-11-01

    The impact of polarization effect on the performance of ZnO/MgZnO quantum cascade detector (QCD) is investigated with different scattering mechanisms taken into account. The energy band structure and wave functions are achieved by self-consistent calculation of Schrodinger-Poisson equations considering the spontaneous and piezoelectric polarization effects. The polarization field in the well or barrier of the QCD is obtained by assuming continuity of the displacement vector and the electronic transport is determined by piezoelectric polarization induced piezoelectric scattering, LO-phonon scattering and some other scattering mechanisms. The results show that the polarization charges at the interface make a significant contribution to the confining potential, which reduces the dark current, and increases the detectivity. The peak responsivity drops only 6.37% from 57 to 400 K without apparent redshift and the detectivity can be significantly improved by increasing doping concentration. This work is beneficial for the ZnO/MgZnO QCD design.

  4. Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource.

    Science.gov (United States)

    Silva, Ralph; Manzano, Gonzalo; Skrzypczyk, Paul; Brunner, Nicolas

    2016-09-01

    Multilevel autonomous quantum thermal machines are discussed. In particular, we explore the relationship between the size of the machine (captured by Hilbert space dimension) and the performance of the machine. Using the concepts of virtual qubits and virtual temperatures, we show that higher dimensional machines can outperform smaller ones. For instance, by considering refrigerators with more levels, lower temperatures can be achieved, as well as higher power. We discuss the optimal design for refrigerators of a given dimension. As a consequence we obtain a statement of the third law in terms of Hilbert space dimension: Reaching absolute zero temperature requires infinite dimension. These results demonstrate that Hilbert space dimension should be considered a thermodynamic resource.

  5. RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Dhiyauddin Ahmad Fauzi

    2017-05-01

    Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.

  6. Plasmon assisted synthesis of highly fluorescing silver quantum cluster/polymer composites for biochemical sensing

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J. P.; Mogensen, K. B.

    2014-01-01

    Plasmonics is combined with polymer synthesis for rapid fabrication of highly fluorescing silver quantum cluster/polymer composites inside microfluidic channels. UV-light assisted synthesis of polymers has been investigated by a number of groups previously [1], however, plasmon assisted synthesis...... has not been presented before. This should allow highly localized fabrication of porous polymers that are defined by the location of the nanoplasmonic metal film. Silver quantum clusters (AgQCs) consisting of 2-10 atoms can be highly fluorescing in the visible wavelength range and possess a greater...... oil-immersion microscopy through a ∼100 μm thick glass lid of the chip, while the bottom substrate contains the plasmonic silver nanoparticle film....

  7. Progress in high-power continuous-wave quantum cascade lasers [Invited].

    Science.gov (United States)

    Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy

    2017-11-01

    Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.

  8. Developments in lattice quantum chromodynamics for matter at high ...

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... cific to QCD but appears in many lattice theories with a mismatch in particle densities, which makes it relevant from a ... Developments in lattice QCD for matter at high temparature and density potential (μ) axis, transitions to ..... [33] J C Osborn, K Splittorff and J J M Verbaarschot, Phys. Rev. Lett. 94, 202001 ...

  9. Architecting Web Sites for High Performance

    Directory of Open Access Journals (Sweden)

    Arun Iyengar

    2002-01-01

    Full Text Available Web site applications are some of the most challenging high-performance applications currently being developed and deployed. The challenges emerge from the specific combination of high variability in workload characteristics and of high performance demands regarding the service level, scalability, availability, and costs. In recent years, a large body of research has addressed the Web site application domain, and a host of innovative software and hardware solutions have been proposed and deployed. This paper is an overview of recent solutions concerning the architectures and the software infrastructures used in building Web site applications. The presentation emphasizes three of the main functions in a complex Web site: the processing of client requests, the control of service levels, and the interaction with remote network caches.

  10. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  11. NINJA: Java for High Performance Numerical Computing

    Directory of Open Access Journals (Sweden)

    José E. Moreira

    2002-01-01

    Full Text Available When Java was first introduced, there was a perception that its many benefits came at a significant performance cost. In the particularly performance-sensitive field of numerical computing, initial measurements indicated a hundred-fold performance disadvantage between Java and more established languages such as Fortran and C. Although much progress has been made, and Java now can be competitive with C/C++ in many important situations, significant performance challenges remain. Existing Java virtual machines are not yet capable of performing the advanced loop transformations and automatic parallelization that are now common in state-of-the-art Fortran compilers. Java also has difficulties in implementing complex arithmetic efficiently. These performance deficiencies can be attacked with a combination of class libraries (packages, in Java that implement truly multidimensional arrays and complex numbers, and new compiler techniques that exploit the properties of these class libraries to enable other, more conventional, optimizations. Two compiler techniques, versioning and semantic expansion, can be leveraged to allow fully automatic optimization and parallelization of Java code. Our measurements with the NINJA prototype Java environment show that Java can be competitive in performance with highly optimized and tuned Fortran code.

  12. Fast and simple high-capacity quantum cryptography with error detection.

    Science.gov (United States)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A

    2017-04-13

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  13. Fast and simple high-capacity quantum cryptography with error detection

    Science.gov (United States)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-04-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  14. A Linux Workstation for High Performance Graphics

    Science.gov (United States)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  15. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  16. High performance HRM: NHS employee perspectives.

    Science.gov (United States)

    Hyde, Paula; Sparrow, Paul; Boaden, Ruth; Harris, Claire

    2013-01-01

    The purpose of this paper is to examine National Health Service (NHS) employee perspectives of how high performance human resource (HR) practices contribute to their performance. The paper draws on an extensive qualitative study of the NHS. A novel two-part method was used; the first part used focus group data from managers to identify high-performance HR practices specific to the NHS. Employees then conducted a card-sort exercise where they were asked how or whether the practices related to each other and how each practice affected their work. In total, 11 high performance HR practices relevant to the NHS were identified. Also identified were four reactions to a range of HR practices, which the authors developed into a typology according to anticipated beneficiaries (personal gain, organisation gain, both gain and no-one gains). Employees were able to form their own patterns (mental models) of performance contribution for a range of HR practices (60 interviewees produced 91 groupings). These groupings indicated three bundles particular to the NHS (professional development, employee contribution and NHS deal). These mental models indicate employee perceptions about how health services are organised and delivered in the NHS and illustrate the extant mental models of health care workers. As health services are rearranged and financial pressures begin to bite, these mental models will affect employee reactions to changes both positively and negatively. The novel method allows for identification of mental models that explain how NHS workers understand service delivery. It also delineates the complex and varied relationships between HR practices and individual performance.

  17. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  18. Fracture toughness of ultra high performance concrete by flexural performance

    Directory of Open Access Journals (Sweden)

    Manolova Emanuela

    2016-01-01

    Full Text Available This paper describes the fracture toughness of the innovative structural material - Ultra High Performance Concrete (UHPC, evaluated by flexural performance. For determination the material behaviour by static loading are used adapted standard test methods for flexural performance of fiber-reinforced concrete (ASTM C 1609 and ASTM C 1018. Fracture toughness is estimated by various deformation parameters derived from the load-deflection curve, obtained by testing simple supported beam under third-point loading, using servo-controlled testing system. This method is used to be estimated the contribution of the embedded fiber-reinforcement into improvement of the fractural behaviour of UHPC by changing the crack-resistant capacity, fracture toughness and energy absorption capacity with various mechanisms. The position of the first crack has been formulated based on P-δ (load- deflection response and P-ε (load - longitudinal deformation in the tensile zone response, which are used for calculation of the two toughness indices I5 and I10. The combination of steel fibres with different dimensions leads to a composite, having at the same time increased crack resistance, first crack formation, ductility and post-peak residual strength.

  19. High-Threshold Low-Overhead Fault-Tolerant Classical Computation and the Replacement of Measurements with Unitary Quantum Gates

    Science.gov (United States)

    Cruikshank, Benjamin; Jacobs, Kurt

    2017-07-01

    von Neumann's classic "multiplexing" method is unique in achieving high-threshold fault-tolerant classical computation (FTCC), but has several significant barriers to implementation: (i) the extremely complex circuits required by randomized connections, (ii) the difficulty of calculating its performance in practical regimes of both code size and logical error rate, and (iii) the (perceived) need for large code sizes. Here we present numerical results indicating that the third assertion is false, and introduce a novel scheme that eliminates the two remaining problems while retaining a threshold very close to von Neumann's ideal of 1 /6 . We present a simple, highly ordered wiring structure that vastly reduces the circuit complexity, demonstrates that randomization is unnecessary, and provides a feasible method to calculate the performance. This in turn allows us to show that the scheme requires only moderate code sizes, vastly outperforms concatenation schemes, and under a standard error model a unitary implementation realizes universal FTCC with an accuracy threshold of p <5.5 %, in which p is the error probability for 3-qubit gates. FTCC is a key component in realizing measurement-free protocols for quantum information processing. In view of this, we use our scheme to show that all-unitary quantum circuits can reproduce any measurement-based feedback process in which the asymptotic error probabilities for the measurement and feedback are (32 /63 )p ≈0.51 p and 1.51 p , respectively.

  20. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter DB (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > DB (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than DB show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  1. Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency

    Science.gov (United States)

    Larsson, Anders; Cody, Jeffrey; Lang, Robert J.

    1989-01-01

    Low threshold current density strained-layer In(0.2)Ga(0.8)As/GaAs/AlGaAs single quantum well lasers, emitting at 980 nm, have been grown by molecular beam epitaxy. Contrary to what has been reported for broad-area lasers with pseudomorphic InGaAs active layers grown by metalorganic chemical vapor deposition, these layers exhibit a high internal quantum efficiency (about 90 percent). The maximum external differential quantum efficiency is 70 percent, limited by an anomalously high internal loss possibly caused by a large lateral spreading of the optical mode. In addition, experimental results supporting the theoretically predicted strain-induced reduction of the valence-band nonparabolicity and density of states are presented.

  2. Highly Parallel Computing Architectures by using Arrays of Quantum-dot Cellular Automata (QCA): Opportunities, Challenges, and Recent Results

    Science.gov (United States)

    Fijany, Amir; Toomarian, Benny N.

    2000-01-01

    There has been significant improvement in the performance of VLSI devices, in terms of size, power consumption, and speed, in recent years and this trend may also continue for some near future. However, it is a well known fact that there are major obstacles, i.e., physical limitation of feature size reduction and ever increasing cost of foundry, that would prevent the long term continuation of this trend. This has motivated the exploration of some fundamentally new technologies that are not dependent on the conventional feature size approach. Such technologies are expected to enable scaling to continue to the ultimate level, i.e., molecular and atomistic size. Quantum computing, quantum dot-based computing, DNA based computing, biologically inspired computing, etc., are examples of such new technologies. In particular, quantum-dots based computing by using Quantum-dot Cellular Automata (QCA) has recently been intensely investigated as a promising new technology capable of offering significant improvement over conventional VLSI in terms of reduction of feature size (and hence increase in integration level), reduction of power consumption, and increase of switching speed. Quantum dot-based computing and memory in general and QCA specifically, are intriguing to NASA due to their high packing density (10(exp 11) - 10(exp 12) per square cm ) and low power consumption (no transfer of current) and potentially higher radiation tolerant. Under Revolutionary Computing Technology (RTC) Program at the NASA/JPL Center for Integrated Space Microelectronics (CISM), we have been investigating the potential applications of QCA for the space program. To this end, exploiting the intrinsic features of QCA, we have designed novel QCA-based circuits for co-planner (i.e., single layer) and compact implementation of a class of data permutation matrices, a class of interconnection networks, and a bit-serial processor. Building upon these circuits, we have developed novel algorithms and QCA

  3. Improving the light output power of DUV-LED by introducing an intrinsic last quantum barrier interlayer on the high-quality AlN template

    Science.gov (United States)

    Tsai, Chia-Lung; Liu, Hsueh-Hsing; Chen, Jun-Wei; Lu, Chien-Pin; Ikenaga, Kazutada; Tabuchi, Toshiya; Matsumoto, Koh; Fu, Yi-Keng

    2017-12-01

    We demonstrate that the light output power of deep ultraviolet light-emitting diodes (DUV-LEDs) can be improved by introducing an intrinsic last quantum barrier interlayer to a high quality AlN template. The light output power of the DUV-LEDs can be doubled by substituting the last quantum barrier with an intrinsic last quantum barrier (u-LQB)/Mg-doped LQB for only pure u-LQB in the same thickness with a 35 A/cm2 injection current. It is believed that the improved performance of the DUV LED could be attributed to the decreased diffusion of Mg tunneling into MQW and the reduction of sub-band parasitic emissions.

  4. Blind Quantum Signature with Blind Quantum Computation

    Science.gov (United States)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2017-04-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  5. ENERGY LEVEL DETERMINATION AND PERFORMANCE ANALYSIS OF QUANTUM DOT PHOTO DETECTOR

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2013-09-01

    Full Text Available The theoretical estimation of dark and illumination characteristics of InGaAs quantum dot photo detector is developed and presented in this paper. The exact potential and energy profile of the Quantum Dot is computed by obtaining the solution of 3D Poisson and Schrodinger equations using Homotopy analysis. The dark current, photo current, responsivity, detectivity and efficiency of the model are calculated by considering the structural parameters Quantum Dot density, applied voltage, length of quantum dot array, number of quantum dot array, light intensity and temperature. The results obtained show that the dark current and photo current are strongly influenced by Quantum Dot density and applied voltage. The developed model is purely physics based one and overcomes the limitations of the existing analytical models. The model is validated by comparing the results obtained with the existing models.

  6. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    Directory of Open Access Journals (Sweden)

    Mohammad H. Bitarafan

    2017-07-01

    Full Text Available For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  7. Cyclotron-resonance-induced photovoltaic effect in high-mobility graphene in the quantum Hall regime

    Science.gov (United States)

    Masubuchi, Satoru; Onuki, Masahiro; Arai, Miho; Watanabe, Kenji; Taniguchi, Takashi; Machida, Tomoki

    2013-03-01

    We have investigated the infrared photoinduced voltage ΔV in high-mobility graphene on hexagonal boron nitride in the quantum Hall regime. We observed ΔV of up to several μV at ν = +/- 2 quantum Hall states under the cyclotron resonance conditions. The dependence of ΔV on the bias current indicates that ΔV signals derive from the photovoltaic effect rather than the bolometric effect. The dependence of ΔV on magnetic field direction and measurement geometry suggest the edge channel transport as an origin of photovoltaic effect. ΔV signals were robust up to T = 180 K, indicating that ΔV signals can be used for developing novel terahertz photodetectors operating at high temperatures.

  8. "High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires"

    Energy Technology Data Exchange (ETDEWEB)

    GARGAS, DANIEL; GAO, HANWEI; WANG, HUNGTA; PEIDONG, YANG

    2010-12-01

    External quantum efficiency (EQE) of photoluminescence as high as 20 percent from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.

  9. Playa: High-Performance Programmable Linear Algebra

    Directory of Open Access Journals (Sweden)

    Victoria E. Howle

    2012-01-01

    Full Text Available This paper introduces Playa, a high-level user interface layer for composing algorithms for complex multiphysics problems out of objects from other Trilinos packages. Among other features, Playa provides very high-performance overloaded operators implemented through an expression template mechanism. In this paper, we give an overview of the central Playa objects from a user's perspective, show application to a sequence of increasingly complex solver algorithms, provide timing results for Playa's overloaded operators and other functions, and briefly survey some of the implementation issues involved.

  10. High performance cloud auditing and applications

    CERN Document Server

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  11. Toward a theory of high performance.

    Science.gov (United States)

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  12. High performance FDTD algorithm for GPGPU supercomputers

    Science.gov (United States)

    Zakirov, Andrey; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari

    2016-10-01

    An implementation of FDTD method for solution of optical and other electrodynamic problems of high computational cost is described. The implementation is based on the LRnLA algorithm DiamondTorre, which is developed specifically for GPGPU hardware. The specifics of the DiamondTorre algorithms for staggered grid (Yee cell) and many-GPU devices are shown. The algorithm is implemented in the software for real physics calculation. The software performance is estimated through algorithms parameters and computer model. The real performance is tested on one GPU device, as well as on the many-GPU cluster. The performance of up to 0.65 • 1012 cell updates per second for 3D domain with 0.3 • 1012 Yee cells total is achieved.

  13. High Performance Computing Operations Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Cupps, Kimberly C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  14. High-Power AlGaAs Quantum-Well Lasers On Si Substrates

    Science.gov (United States)

    Kim, Jae-Hoon; Lang, Robert J.; Radhakrishnan, Gouri; Katz, Joseph

    1991-01-01

    AlxGa1-xAs lasers of graded-index-of-refraction, separate-confinement-heterostructure, single-quantum-well type fabricated on silicon substrates by migration-enhanced molecular-beam epitaxy followed by metalorganic vapor-phase epitaxy. They are intermediate products of continuing effort to develop low-threshold-current, high-efficiency lasers for parallel optical interconnections between large-scale optoelectronic integrated circuits.

  15. 4W high performance 1470 nm InGaAsAs lasers

    Science.gov (United States)

    Qiu, Bocang; Wang, Weimin; Liu, Wenbin; Zhao, Chuzhong; Kuang, Langxing; Miao, Chunyu; Ho, James; Hu, H. Martin

    2016-11-01

    We report on our design and fabrication of 1470 nm high power InGaAlAs quantum well lasers. It is found that the 2-mm-long-cavity devices with aperture size of 96 μm can reach maximum power of around 4.2 W. The threshold is around 500 mA, and slope efficiency is about 0.42 W/A. Apart from the excellent external quantum efficiency and thermal performance, devices also show reduced beam divergence which is about 30°. Accelerated life-time test has also been performed to determine the reliability performance. Thus far more than 9000 life-test-hour has been accumulated, and there is no detectable sign of the power degradation, indicating our devices are extremely reliable.

  16. Quantum-Relay-Assisted Key Distribution over High Photon Loss Channels

    OpenAIRE

    Zhang, An-Ning; Chen, Yu-Ao; Lu, Chao-Yang; Zhou, Xiao-Qi; Zhao, Zhi; ZHANG, QIANG; Yang, Tao; Pan, Jian-Wei

    2005-01-01

    The maximum distance of quantum communication is limited due to the photon loss and detector noise. Exploiting entanglement swapping, quantum relay could offer ways to extend the achievable distance by increasing the signal to noise ratio. In this letter we present an experimental simulation of long distance quantum communication, in which the superiority of quantum relay is demonstrated. Assisted by quantum relay, we greatly extend the distance limit of unconditional secure quantum communica...

  17. High Performance High-Tc Superconducting Wires

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sukill [ORNL; Goyal, Amit [ORNL; Li, Jing [ORNL; Gapud, Albert Agcaoili [ORNL; Martin, Patrick M [ORNL; Heatherly Jr, Lee [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; List III, Frederick Alyious [ORNL; Paranthaman, Mariappan Parans [ORNL; Lee, Dominic F [ORNL

    2006-01-01

    We demonstrated short segments of a superconducting wire that meets or exceeds performance requirements for many large-scale applications of high-temperature superconducting materials, especially those requiring a high supercurrent and/or a high engineering critical current density in applied magnetic fields. The performance requirements for these varied applications were met in 3-micrometer-thick YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films epitaxially grown via pulsed laser ablation on rolling assisted biaxially textured substrates. Enhancements of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film. These columnar defects are highly effective in pinning the superconducting vortices or flux lines, thereby resulting in the substantially enhanced performance of this wire.

  18. High Performance with Prescriptive Optimization and Debugging

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo

    Parallel programming is the dominant approach to achieve high performance in computing today. Correctly writing efficient and fast parallel programs is a big challenge mostly carried out by experts. We investigate optimization and debugging of parallel programs. We argue that automatic paralleliz......Parallel programming is the dominant approach to achieve high performance in computing today. Correctly writing efficient and fast parallel programs is a big challenge mostly carried out by experts. We investigate optimization and debugging of parallel programs. We argue that automatic...... analysis and vectorizer in GCC. Automatic optimizations often fail for theoretical and practical reasons. When they fail we argue that a hybrid approach can be effective. Using compiler feedback, we propose to use the programmer’s intuition and insight to achieve high performance. Compiler feedback...... the prescriptive debugging model, which is a user-guided model that allows the programmer to use his intuition to diagnose bugs in parallel programs. The model is scalable, yet capable enough, to be general-purpose. In our evaluation we demonstrate low run time overhead and logarithmic scalability. This enable...

  19. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  20. Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: unraveling the essential roles of graphene quantum dots

    KAUST Repository

    Lei, Yonggang

    2017-05-23

    It have been recognized that the coupling of graphene quantum dots (GQDs) with semiconductor photocatalysts endow the resulting nanocomposites with enhanced photocatalytic performances, however, the essential roles of GQDs have not been clearly revealed yet. Herein, we report that a high efficiency of the photocatalytic H2 evolution was achieved using strongly coupled nanohybrids of CdS with GQDs (CdS/GQDs) as visible-light-driven photocatalysts. CdS/GQDs nanohybrids were synthesized by a facile hydrothermal method in which the crystallization of CdS precursor and coupling of GQDs could be accomplished in one-step. GQDs are firmly decorated on the surface of CdS nanoparticles, forming “dot-on-particle” heterodimer structures. GQDs have no significant influence on the crystallite structure of CdS but render the nanohybrids with strong light absorption at the wavelength beyond the band edge of CdS. Under visible light irradiation (≥420nm), CdS/GQDs nanohybrids reach the highest H2 production rate of 95.4μmol·h−1, about 2.7 times higher than that of pure CdS nanoparticles, at GQDs content of 1.0wt %, and the apparent quantum efficiency (AQE) was determined to be 4.2% at 420nm. Incident light-wavelength dependent experiments reveal that the light absorption of CdS dominated the performance of nanohybrids, and the excess light absorption coming from GQDs hardly contributes to the observed higher activity. Photocurrent response, steady-state and time-resolved PL, and EIS measurements suggest that the high activity of CdS/GQDs is attributed predominantly to the graphene-like nature of GQDs, which can act as an efficient electron acceptor to induce an efficient charge separation. This work clearly reveals that GQDs mainly played a role of electron acceptor instead of a photosensitizer in enhancing the photocatalytic H2 evolution performances of CdS/GQDs nanohybrids, which offers a new insight to understand the essential roles of GQDs in semiconductor

  1. Effect of carrier relaxation lifetime on the performance of InAs/InP quantum-dash lasers

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2011-12-01

    The effect of carrier relaxation process into the quantum dash (Qdash) ground state (GS) is examined theoretically by carrier-photon rate equation model incorporating the inhomogeneous broadening. Increase in the relaxation time and the inhomogeneous broadening degrades the threshold current density. Moreover, our results show that a relaxation time of less than 2 ps gives optimum laser performance. © 2011 IEEE.

  2. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  3. High-temperature quantum oscillations of the Hall resistance in bulk Bi2Se3.

    Science.gov (United States)

    Busch, Marco; Chiatti, Olivio; Pezzini, Sergio; Wiedmann, Steffen; Sánchez-Barriga, Jaime; Rader, Oliver; Yashina, Lada V; Fischer, Saskia F

    2018-01-11

    Helically spin-polarized Dirac fermions (HSDF) in protected topological surface states (TSS) are of high interest as a new state of quantum matter. In three-dimensional (3D) materials with TSS, electronic bulk states often mask the transport properties of HSDF. Recently, the high-field Hall resistance and low-field magnetoresistance indicate that the TSS may coexist with a layered two-dimensional electronic system (2DES). Here, we demonstrate quantum oscillations of the Hall resistance at temperatures up to 50 K in nominally undoped bulk Bi2Se3 with a high electron density n of about 2·1019 cm-3. From the angular and temperature dependence of the Hall resistance and the Shubnikov-de Haas oscillations we identify 3D and 2D contributions to transport. Angular resolved photoemission spectroscopy proves the existence of TSS. We present a model for Bi2Se3 and suggest that the coexistence of TSS and 2D layered transport stabilizes the quantum oscillations of the Hall resistance.

  4. Quantum cryptography beyond quantum key distribution

    NARCIS (Netherlands)

    Broadbent, A.; Schaffner, C.

    2016-01-01

    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation,

  5. Quantum cryptography beyond quantum key distribution

    NARCIS (Netherlands)

    A. Broadbent (Anne); C. Schaffner (Christian)

    2016-01-01

    textabstractQuantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness

  6. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform.

    Science.gov (United States)

    Qian, Zhaosheng; Ma, Juanjuan; Shan, Xiaoyue; Feng, Hui; Shao, Linxiang; Chen, Jianrong

    2014-02-17

    The doping of carbon quantum dots with nitrogen provides a promising direction to improve fluorescence performance and broaden their applications in sensing systems. Herein we report a one-pot solvothermal synthesis of N-doped carbon quantum dots (NCQDs) and the synthesis of a series of NCQDs with different nitrogen contents. The as-prepared NCQDs were compared with carbon quantum dots (CQDs); the introduction of nitrogen atoms largely increased the quantum yield of NCQDs and highest emission efficiency is up to 36.3 %. The fluorescence enhancement may originate from more polyaromatic structures induced by incorporated nitrogen atoms and protonation of nitrogen atoms on dots. It was found that NCQDs can act as a multifunctional fluorescence sensing platform because they can be used to detect pH values, Ag(I), and Fe(III) in aqueous solution. The fluorescence intensity of NCQDs is inversely proportional to pH values across a broad range from 5.0 to 13.5, which indicates that NCQDs can be devised as an effective pH indicator. Selective detection of Ag(I) and Fe(III) was achieved based on their distinctive fluorescence influence because Ag(I) can significantly enhance the fluorescence whereas Fe(III) can greatly quench the fluorescence. The quantitative determination of Ag(I) can be accomplished with NCQDs by using the linear relationship between fluorescence intensity of NCQDs and concentration of Ag(I). The sensitive detection of H2O2 was developed by taking advantage of the distinct quenching ability of Fe(III) and Fe(II) toward the fluorescence of NCQDs. Cellular toxicity test showed NCQDs still retain low toxicity to cells despite the introduction of a great deal of nitrogen atoms. Moreover, bioimaging experiments demonstrated that NCQDs have stronger resistance to photobleaching than CQDs and more excellent fluorescence labeling performance. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High Performance Database Management for Earth Sciences

    Science.gov (United States)

    Rishe, Naphtali; Barton, David; Urban, Frank; Chekmasov, Maxim; Martinez, Maria; Alvarez, Elms; Gutierrez, Martha; Pardo, Philippe

    1998-01-01

    The High Performance Database Research Center at Florida International University is completing the development of a highly parallel database system based on the semantic/object-oriented approach. This system provides exceptional usability and flexibility. It allows shorter application design and programming cycles and gives the user control via an intuitive information structure. It empowers the end-user to pose complex ad hoc decision support queries. Superior efficiency is provided through a high level of optimization, which is transparent to the user. Manifold reduction in storage size is allowed for many applications. This system allows for operability via internet browsers. The system will be used for the NASA Applications Center program to store remote sensing data, as well as for Earth Science applications.

  8. High Performance OLED Panel and Luminaire

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC, Rochester, NY (United States)

    2017-02-20

    In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementary light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.

  9. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Uran, Can; Erdem, Talha; Guzelturk, Burak [Department of Electrical and Electronics Engineering, Department of Physics, and UNAM - National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Perkgöz, Nihan Kosku [Department of Electrical and Electronics Engineering, Department of Physics, and UNAM - National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Department of Electrical and Electronics Engineering, Faculty of Engineering, Anadolu University, Eskisehir 26555 (Turkey); Jun, Shinae; Jang, Eunjoo [Inorganic Material Laboratory, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Demir, Hilmi Volkan, E-mail: volkan@stanfordalumni.org [Department of Electrical and Electronics Engineering, Department of Physics, and UNAM - National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Luminous Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore, Singapore 639798 (Singapore)

    2014-10-06

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  10. Dislocation Reduction and Stress Relaxation of GaN and InGaN Multiple Quantum Wells with Improved Performance via Serpentine Channel Patterned Mask.

    Science.gov (United States)

    Ji, Qingbin; Li, Lei; Zhang, Wei; Wang, Jia; Liu, Peichi; Xie, Yahong; Yan, Tongxing; Yang, Wei; Chen, Weihua; Hu, Xiaodong

    2016-08-24

    The existence of high threading dislocation density (TDD) in GaN-based epilayers is a long unsolved problem, which hinders further applications of defect-sensitive GaN-based devices. Multiple-modulation of epitaxial lateral overgrowth (ELOG) is used to achieve high-quality GaN template on a novel serpentine channel patterned sapphire substrate (SCPSS). The dislocation blocking brought by the serpentine channel patterned mask, coupled with repeated dislocation bending, can reduce the dislocation density to a yet-to-be-optimized level of ∼2 × 10(5) to 2 × 10(6) cm(-2). About 80% area utilization rate of GaN with low TDD and stress relaxation is obtained. The periodical variations of dislocation density, optical properties and residual stress in GaN-based epilayers on SCPSS are analyzed. The quantum efficiency of InGaN/GaN multiple quantum wells (MQWs) on it can be increased by 52% compared with the conventional sapphire substrate. The reduced nonradiative recombination centers, the enhanced carrier localization, and the suppressed quantum confined Stark effect, are the main determinants of improved luminous performance in MQWs on SCPSS. This developed ELOG on serpentine shaped mask needs no interruption and regrowth, which can be a promising candidate for the heteroepitaxy of semipolar/nonpolar GaN and GaAs with high quality.

  11. New high performance nanoadditives for photocatalytic concrete: synthesis and study

    Directory of Open Access Journals (Sweden)

    FALIKMAN Vyacheslav Ruvimovich

    2015-02-01

    Full Text Available Nanotechnologies open up broad prospects for the creation of nanocatalysts, which are being more and more used in solving many problems associated with the protection of environment. Their behavior is directly related to the unique physical and chemical properties that are provided by quantum size effects, as well as the large specific surface area. It is known that the presence of photo catalysts in the construction segment of nanomaterials is becoming more prominent. One of the most significant achievements of the last years are photo catalytic active cement composites, including cements and concretes produced with the use of nanoparticles of titanium dioxide TiO₂ sensibilized through a nanotechnology . Currently they are widely used in practice to produce selfcleaning structures and to make clean an air of megacities. Further research in the field of development of new high-performance photo catalysts based on TiO₂ nanoparticles seems to be very relevant, because such R&D could significantly improve the technical characteristics of photo catalytic cements and concrete. In this paper an improved method to produce photo catalysts has been proposed. New synthesized products are based on TiO₂ nanoparticles applied on different inert carriers, including nanosilica. It was showed that these products can be used as a high performance photo catalyst in cement and cement-gypsum composites suitable for the onversion processes of nitric oxide and volatile organic substances, and air purification. It was determined that performance of the cementitious composites containing synthesized samples is 1,5…3,0 times higher than that for the commercial sample of the nanotitanium dioxide. The use of mechanical mixture of nanotitanium dioxide and inert supports is less effective and subjected to the «dilution law», in general.

  12. Hybrid ventilation systems and high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Utzinger, D.M. [Wisconsin Univ., Milwaukee, WI (United States). School of Architecture and Urban Planning

    2009-07-01

    This paper described hybrid ventilation design strategies and their impact on 3 high performance buildings located in southern Wisconsin. The Hybrid ventilation systems combined occupant controlled natural ventilation with mechanical ventilation systems. Natural ventilation was shown to provide adequate ventilation when appropriately designed. Proper control integration of natural ventilation into hybrid systems was shown to reduce energy consumption in high performance buildings. This paper also described the lessons learned from the 3 buildings. The author served as energy consultant on all three projects and had the responsibility of designing and integrating the natural ventilation systems into the HVAC control strategy. A post occupancy evaluation of building energy performance has provided learning material for architecture students. The 3 buildings included the Schlitz Audubon Nature Center completed in 2003; the Urban Ecology Center completed in 2004; and the Aldo Leopold Legacy Center completed in 2007. This paper included the size, measured energy utilization intensity and percentage of energy supplied by renewable solar power and bio-fuels on site for each building. 6 refs., 2 tabs., 6 figs.

  13. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  14. Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction

    Energy Technology Data Exchange (ETDEWEB)

    Du, Fang-Fang; Li, Tao; Long, Gui-Lu, E-mail: gllong@tsinghua.edu.cn

    2016-12-15

    Hyperentanglement, defined as the entanglement in multiple degrees of freedom (DOFs) of a photonic quantum system, has attracted much attention recently as it can improve the channel capacity of quantum communication largely. Here we present a refined hyperentanglement purification protocol (hyper-EPP) for two-photon systems in mixed hyperentangled states in both the spatial-mode and polarization DOFs, assisted by cavity quantum electrodynamics. By means of the spatial (polarization) quantum state transfer process, the quantum states that are discarded in the previous hyper-EPPs can be preserved. That is, the spatial (polarization) state of a four-photon system with high fidelity can be transformed into another four-photon system with low fidelity, not disturbing its polarization (spatial) state, which makes this hyper-EPP take the advantage of possessing a higher efficiency.

  15. Elliptical polarization favors long quantum orbits in high-order above-threshold ionization of noble gases.

    Science.gov (United States)

    Lai, XuanYang; Wang, ChuanLiang; Chen, YongJu; Hu, ZiLong; Quan, Wei; Liu, XiaoJun; Chen, Jing; Cheng, Ya; Xu, ZhiZhan; Becker, Wilhelm

    2013-01-25

    We demonstrate the significant role of long quantum orbits in strong-field atomic processes by investigating experimentally and theoretically the above-threshold ionization spectra of noble gases in intense elliptically polarized laser pulses. With increasing laser ellipticity, the yields of different energy regions of the measured electron spectrum in high-order above-threshold ionization drop at different rates. The experimental features can be reproduced by a theoretical simulation based on quantum-orbit theory, revealing that increasing ellipticity favors the contributions of the long quantum orbits in the high-order above-threshold ionization process.

  16. Performance Optimization of Tensor Contraction Expressions for Many-Body Methods in Quantum Chemistry

    Science.gov (United States)

    Hartono, Albert; Lu, Qingda; Henretty, Thomas; Krishnamoorthy, Sriram; Zhang, Huaijian; Baumgartner, Gerald; Bernholdt, David E.; Nooijen, Marcel; Pitzer, Russell; Ramanujam, J.; Sadayappan, P.

    2009-09-01

    Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations, such as minimization of cache misses and utilization of multimedia vector instructions, are discussed. A library for efficient index permutation of multidimensional tensors is described, and experimental performance data is provided that demonstrates its effectiveness.

  17. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts

    Science.gov (United States)

    Qu, Dan; Zheng, Min; Du, Peng; Zhou, Yue; Zhang, Ligong; Li, Di; Tan, Huaqiao; Zhao, Zhao; Xie, Zhigang; Sun, Zaicheng

    2013-11-01

    A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively.A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively. Electronic supplementary information (ESI) available: More XPS and UV-Vis spectra. See DOI: 10.1039/c3nr04402e

  18. Origin of high photoluminescence efficiencies in CdSe quantum belts.

    Science.gov (United States)

    Liu, Yi-Hsin; Wayman, Virginia L; Gibbons, Patrick C; Loomis, Richard A; Buhro, William E

    2010-01-01

    CdSe quantum belts (QBs) having lengths of 0.5-1.5 microm and thicknesses of 1.5-2.0 nm exhibit high photoluminescence (PL) efficiencies of approximately 30%. Epifluorescence studies establish the PL spectra to be uniform along single QBs, and nearly the same from QB to QB. Photogenerated excitons are shown to be effectively delocalized over the entire QBs by position-selective excitation. Decoration of the QBs with gold nanoparticles indicates a low density of surface-trap sites, located primarily on the thin belt edges. The high PL efficiencies and effective exciton delocalization are attributed to the minimization of defective {1100} edge surface area or edge-top/bottom (face) line junctions in QBs relative to quantum wires having roughly isotropic cross sections, for which very low PL quantum efficiencies have been reported. The results suggest that trap sites can be minimized in pseudo-one-dimensional nanocrystals, such that the facile transport of energy and charge along their long axes becomes possible.

  19. Aqueous synthesis of high-fluorescence CdZnTe alloyed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jingwei; Li, Dongmei, E-mail: dmli@mail.shu.edu.cn; Cheng, Tao; Ren, Bing; Wang, Gang; Li, Jie

    2014-03-15

    Highlights: • We have synthesized the CdZnTe QDs with a Zn/Cd molar ratio from 1 to 7. • The reaction was happened in weak acid condition. • The fluorescence emitting peak was continuously tunable from 490 nm to 660 nm. • The maximum quantum yield of our synthesized CdZnTe QDs has reached 78.97%. • Our sample showed excellent stability against time. -- Abstract: High luminescent CdZnTe quantum dots (QDs) were synthesized by a one-step aqueous method using 3-mercapto propionic acid (MPA) as a stabilizer. The as-prepared samples are in good homogeneity and dispersity with an average particle size of 5 nm. Accordingly, the size and composition-dependent fluorescent emission wavelength of the resultant CdZnTe alloyed QDs can be continuously tuned from 490 to 660 nm. Compared with the difficult acquisition of CdZnTe QDs with a high Zn/Cd molar ratio in alkaline condition, CdZnTe QDs with a Zn/Cd molar ratio from 1 to 7 has been obtained in weak acid condition by adjusting the pH value of precursor solution. The maximum quantum yield has reached nearly 80% without any post-treatment. And it also showed excellent stability against time.

  20. Building Trust in High-Performing Teams

    Directory of Open Access Journals (Sweden)

    Aki Soudunsaari

    2012-06-01

    Full Text Available Facilitation of growth is more about good, trustworthy contacts than capital. Trust is a driving force for business creation, and to create a global business you need to build a team that is capable of meeting the challenge. Trust is a key factor in team building and a needed enabler for cooperation. In general, trust building is a slow process, but it can be accelerated with open interaction and good communication skills. The fast-growing and ever-changing nature of global business sets demands for cooperation and team building, especially for startup companies. Trust building needs personal knowledge and regular face-to-face interaction, but it also requires empathy, respect, and genuine listening. Trust increases communication, and rich and open communication is essential for the building of high-performing teams. Other building materials are a shared vision, clear roles and responsibilities, willingness for cooperation, and supporting and encouraging leadership. This study focuses on trust in high-performing teams. It asks whether it is possible to manage trust and which tools and operation models should be used to speed up the building of trust. In this article, preliminary results from the authors’ research are presented to highlight the importance of sharing critical information and having a high level of communication through constant interaction.

  1. The high performance solar array GSR3

    Science.gov (United States)

    Mamode, A.; Bartevian, J.; Bastard, J. L.; Auffray, P.; Plagne, A.

    A foldout solar array for communication satellites was developed. A wing composed of 4 panels of 1.6 x 1.5 m and a Y-shaped yoke, and a wing with 3 panels of 2.4 x 2.4 m were made. End of life performance goal is greater than 35 W/kg with BSR 180 micron solar cells, and 50 W/kg using 50 micron BSFR cells. Analysis shows that all identified requirements can be covered with current skin made of open weave very high modulus carbon fiber; reinforcements of unidirectional carbon fiber; honeycomb in current section; hold-down inserts made of wound carbon fibers; titanium hinge fitting; and Kapton foil (25 or 50 micron thickness). Tests confirm performance predictions.

  2. High-performance arrayed waveguide grating

    Science.gov (United States)

    Fondeur, Bart; Sala, Anca; Thekdi, Sanjay; Gopinathan, Niranjan; Nakamoto, David; Aghel, Masoud; Brainard, Bob; Vaidyanathan, Anant

    2004-06-01

    Planar technology and design have evolved significantly in the past decade, both in terms of performance and yield, reducing the cost/performance advantage of thin-film filters (TFF) over Array-Waveguide Grating (AWG) devices. This evolution is primarily due to two reasons. One of the reasons for this is the adoption of the latest in semi-conductor fabrication techniques with respect to wafer scale, process equipment automation, and yield engineering. The other reason is the many advancements made in the Planar Light Circuit (PLC) design front which have resulted in lower optical insertion loss, reduced crosstalk, increased channel bandwidth, decreased channel spacing, and minimal chromatic dispersion. We demonstrate here how such state-of-the-art fabrication technology in combination with advanced PLC designs can be effectively used to engineer the filter shape (ripple, bandwidth, and flatness) and chromatic dispersion of AWG's to match or exceed that of their thin-film counterparts. Low passband ripple is critical for cascading multiple nodes in ring network architecture whereas minimal chromatic dispersion (CD) is desired in high rate data systems to avoid signal distortion. The AWG device presented here has a 1dB bandwidth that exceeds 80% of the channel spacing awhile exhibiting a high flatness (25dB/1dB ratio < 1.7), both of which are at least a 50% improvement over generic flat-top AWG designs available in the market and are equivalent in performance to TFF devices. At 100 GHz spacing, AWG's have intrinsic low-dispersion, but narrowing the spacing to 50GHz leads to a four fold increase in the CD. Here, we have successfully overcome this limitation and have been able to design and fabricate a 50GHz wide-band AWG with less than 1ps/nm chromatic dispersion, which exceeds TFF performance.

  3. High-amplitude THz and GHz strain waves, generated by ultrafast screening of piezoelectric fields in InGaN/GaN multiple quantum wells

    DEFF Research Database (Denmark)

    Porte, Henrik; van Capel, P.J.S.; Turchinovich, Dmitry

    2010-01-01

    Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening.......Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening....

  4. Chemical Reactivity Dynamics and Quantum Chaos in Highly Excited Hydrogen Atoms in an External Field: A Quantum Potential Approach

    Directory of Open Access Journals (Sweden)

    B. Maiti

    2002-04-01

    Full Text Available Abstract: Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, electrophilicity and nucleophilicity indices is studied within a quantum fluid density functional framework for the interactions of a hydrogen atom in its ground electronic state (n = 1 and an excited electronic state (n = 20 with monochromatic and bichromatic laser pulses. Time dependent analogues of various electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities of the generated higher order harmonics on the color of the external laser field are obtained. The quantum signature of chaos in hydrogen atom has been studied using a quantum theory of motion and quantum fluid dynamics. A hydrogen atom in the electronic ground state (n = 1 and in an excited electronic state ( n = 20 behaves differently when placed in external oscillating monochromatic and bichromatic electric fields. Temporal evolutions of Shannon entropy, quantum Lyapunov exponent and Kolmogorov – Sinai entropy defined in terms of the distance between two initially close Bohmian trajectories for these two cases show marked differences. It appears that a larger uncertainty product and a smaller hardness value signal a chaotic behavior.

  5. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    Science.gov (United States)

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  6. The monogroove high performance heat pipe

    Science.gov (United States)

    Alario, J.; Haslett, R.; Kosson, R.

    1981-06-01

    The development of the monogroove heat pipe, a fundamentally new high-performance device suitable for multi-kilowatt space radiator heat-rejection systems, is reported. The design separates heat transport and transfer functions, so that each can be separately optimized to yield heat transport capacities on the order of 25 kW/m. Test versions of the device have proven the concept of heat transport capacity control by pore dimensions and the permeability of the circumferential wall wick structure, which together render it insensitive to tilt. All cases tested were for localized, top-side heat input and cooling and produced results close to theoretical predictions.

  7. High Performance Piezoelectric Actuated Gimbal (HIERAX)

    Energy Technology Data Exchange (ETDEWEB)

    Charles Tschaggeny; Warren Jones; Eberhard Bamberg

    2007-04-01

    This paper presents a 3-axis gimbal whose three rotational axes are actuated by a novel drive system: linear piezoelectric motors whose linear output is converted to rotation by using drive disks. Advantages of this technology are: fast response, high accelerations, dither-free actuation and backlash-free positioning. The gimbal was developed to house a laser range finder for the purpose of tracking and guiding unmanned aerial vehicles during landing maneuvers. The tilt axis was built and the test results indicate excellent performance that meets design specifications.

  8. High performance channel injection sealant invention abstract

    Science.gov (United States)

    Rosser, R. W.; Basiulis, D. I.; Salisbury, D. P. (Inventor)

    1982-01-01

    High performance channel sealant is based on NASA patented cyano and diamidoximine-terminated perfluoroalkylene ether prepolymers that are thermally condensed and cross linked. The sealant contains asbestos and, in its preferred embodiments, Lithofrax, to lower its thermal expansion coefficient and a phenolic metal deactivator. Extensive evaluation shows the sealant is extremely resistant to thermal degradation with an onset point of 280 C. The materials have a volatile content of 0.18%, excellent flexibility, and adherence properties, and fuel resistance. No corrosibility to aluminum or titanium was observed.

  9. Portability Support for High Performance Computing

    Science.gov (United States)

    Cheng, Doreen Y.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    While a large number of tools have been developed to support application portability, high performance application developers often prefer to use vendor-provided, non-portable programming interfaces. This phenomena indicates the mismatch between user priorities and tool capabilities. This paper summarizes the results of a user survey and a developer survey. The user survey has revealed the user priorities and resulted in three criteria for evaluating tool support for portability. The developer survey has resulted in the evaluation of portability support and indicated the possibilities and difficulties of improvements.

  10. Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory.

    Science.gov (United States)

    Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues

    2017-05-26

    The generation and distribution of quantum correlations between photonic qubits is a key resource in quantum information science. For applications in quantum networks and quantum repeaters, it is required that these quantum correlations be stored in a quantum memory. In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a scheme combining a correlated photon-pair source and a quantum memory in atomic gases, which has enabled fast progress towards elementary quantum networks. In this Letter, we demonstrate a solid-state source of correlated photon pairs with embedded spin-wave quantum memory, using a rare-earth-ion-doped crystal. We show strong quantum correlations between the photons, high enough for performing quantum communication. Unlike the original DLCZ proposal, our scheme is inherently multimode thanks to a built-in rephasing mechanism, allowing us to demonstrate storage of 11 temporal modes. These results represent an important step towards the realization of complex quantum networks architectures using solid-state resources.

  11. Parallel Algebraic Multigrid Methods - High Performance Preconditioners

    Energy Technology Data Exchange (ETDEWEB)

    Yang, U M

    2004-11-11

    The development of high performance, massively parallel computers and the increasing demands of computationally challenging applications have necessitated the development of scalable solvers and preconditioners. One of the most effective ways to achieve scalability is the use of multigrid or multilevel techniques. Algebraic multigrid (AMG) is a very efficient algorithm for solving large problems on unstructured grids. While much of it can be parallelized in a straightforward way, some components of the classical algorithm, particularly the coarsening process and some of the most efficient smoothers, are highly sequential, and require new parallel approaches. This chapter presents the basic principles of AMG and gives an overview of various parallel implementations of AMG, including descriptions of parallel coarsening schemes and smoothers, some numerical results as well as references to existing software packages.

  12. High performance visual display for HENP detectors

    CERN Document Server

    McGuigan, M; Spiletic, J; Fine, V; Nevski, P

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactiv...

  13. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp

    Energy Technology Data Exchange (ETDEWEB)

    Thambiraj, S. [Nano-Bio Materials and Sensors Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu (India); Ravi Shankaran, D., E-mail: dravishankaran@hotmail.com [Nano-Bio Materials and Sensors Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu (India); National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu (India)

    2016-12-30

    Graphical abstract: Schematic representation of CQDs from sugarcane bagasse carbon. - Highlights: • CQDs were synthesised from sugarcane bagasse waste with top down approaches. • Synthesis method is green, simple and efficient process. • CQDs possess high quantum yield, good stability and highly fluorescent in nature. • The morphological and topographical study of CQDs was done by HR-TEM and AFM and was observed that the average size is 4.1 ± 0.17 nm and surface thickness is 5 nm. - Abstract: Carbon quantum dots (CQDs) have great potential due to its advantageous characteristics of highly fluorescent nature and good stability. In this study, we aimed to develop a simple and efficient method for the green synthesis of fluorescent CQDs from sugarcane bagasse, a renewable and sustainable resource. The process involves the top down approach of chemical oxidation followed by exfoliation of sugarcane carbon. The synthesized CQDs was characterized by UV–vis absorption spectroscopy, Spectrofluorophotometry, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photon spectroscopy (XPS), Atomic force microscopy (AFM) and High-resolution transmission electron microscopy (HR-TEM). The synthesized CQDs possess stable fluorescent properties, good bio-compatibility and high quantum yield. The CQDs are highly crystalline with longitudinal dimensions of 4.1 ± 0.17 nm with an average roughness of around 5 nm. The XRD and TEM analysis indicates that the synthesized CQDs possess face centred cubic crystal structure. The results suggest that the proposed CQDs could be utilized for bio-sensor, bio-imaging and drug delivery applications.

  14. High-performance laboratories and cleanrooms

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-07-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

  15. Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school

    Directory of Open Access Journals (Sweden)

    Massimiliano Malgieri

    2017-01-01

    Full Text Available In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman’s sum over paths approach in the Italian high school. Our study focuses on students’ understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent research reporting the fragmentation of students’ mental models of quantum concepts after initial instruction, we collected and analyzed data using the assessment tools provided by knowledge integration theory. Our results on the group of n=14 students who performed the final test indicate that the functional explanation of wave particle duality provided by the sum over paths approach may be effective in leading students to build consistent mental models of quantum objects, and in providing them with a unified perspective on both the photon and the electron. Results on the uncertainty principle are less clear cut, as the improvements over traditional instruction appear less significant. Given the low number of students in the sample, this work should be interpreted as a case study, and we do not attempt to draw definitive conclusions. However, our study suggests that (i the sum over paths approach may deserve more attention from researchers and educators as a possible route to introduce basic concepts of quantum physics in high school, and (ii more research should be focused not only on the correctness of students’ mental models on individual concepts, but also on the ability of students to connect different ideas and experiments related to quantum theory in an organized whole.

  16. Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school

    Science.gov (United States)

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2017-06-01

    In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent research reporting the fragmentation of students' mental models of quantum concepts after initial instruction, we collected and analyzed data using the assessment tools provided by knowledge integration theory. Our results on the group of n =14 students who performed the final test indicate that the functional explanation of wave particle duality provided by the sum over paths approach may be effective in leading students to build consistent mental models of quantum objects, and in providing them with a unified perspective on both the photon and the electron. Results on the uncertainty principle are less clear cut, as the improvements over traditional instruction appear less significant. Given the low number of students in the sample, this work should be interpreted as a case study, and we do not attempt to draw definitive conclusions. However, our study suggests that (i) the sum over paths approach may deserve more attention from researchers and educators as a possible route to introduce basic concepts of quantum physics in high school, and (ii) more research should be focused not only on the correctness of students' mental models on individual concepts, but also on the ability of students to connect different ideas and experiments related to quantum theory in an organized whole.

  17. Floodlight quantum key distribution: Demonstrating a framework for high-rate secure communication

    Science.gov (United States)

    Zhang, Zheshen; Zhuang, Quntao; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2017-01-01

    Floodlight quantum key distribution (FL-QKD) is a radically different QKD paradigm that can achieve gigabit-per-second secret-key rates over metropolitan area distances without multiplexing [Q. Zhuang et al., Phys. Rev. A 94, 012322 (2016), 10.1103/PhysRevA.94.012322]. It is a two-way protocol that transmits many photons per bit duration and employs a high-gain optical amplifier, neither of which can be utilized by existing QKD protocols, to mitigate channel loss. FL-QKD uses an optical bandwidth that is substantially larger than the modulation rate and performs decoding with a unique broadband homodyne receiver. Essential to FL-QKD is Alice's injection of photons from a photon-pair source—in addition to the light used for key generation—into the light she sends to Bob. This injection enables Alice and Bob to quantify Eve's intrusion and thus secure FL-QKD against collective attacks. Our proof-of-concept experiment included 10 dB propagation loss—equivalent to 50 km of low-loss fiber—and achieved a 55 Mbit/s secret-key rate (SKR) for a 100 Mbit/s modulation rate, as compared to the state-of-the-art system's 1 Mbit/s SKR for a 1 Gbit/s modulation rate [M. Lucamarini et al., Opt. Express 21, 24550 (2013), 10.1364/OE.21.024550], representing ˜500 -fold and ˜50 -fold improvements in secret-key efficiency (bits per channel use) and SKR (bits per second), respectively.

  18. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Muthalif, Mohammed Panthakkal Abdul [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Lee, Young-Seok [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Sunesh, Chozhidakath Damodharan [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Kim, Hee-Je [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Choe, Youngson, E-mail: choe@pusan.ac.kr [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of)

    2017-02-28

    Highlights: • Cu-doped CdS QDs were deposited on TiO{sub 2} by SILAR method. • Cu-doped CdS electrodes contributes reduction of charge recombination and longer electron lifetime. • A promising power conversion efficiency of 3% is obtained for the Cu-doped CdS Quantum dot sensitized solar cell. - Abstract: In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including J{sub SC} = 9.40 mA cm{sup −2}, V{sub OC} = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, J{sub SC} = 7.12 mA cm{sup −2}, V{sub OC} = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV–vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  19. Convergence of high order perturbative expansions in open system quantum dynamics.

    Science.gov (United States)

    Xu, Meng; Song, Linze; Song, Kai; Shi, Qiang

    2017-02-14

    We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.

  20. High-performance computing for airborne applications

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Heather M [Los Alamos National Laboratory; Manuzzato, Andrea [Los Alamos National Laboratory; Fairbanks, Tom [Los Alamos National Laboratory; Dallmann, Nicholas [Los Alamos National Laboratory; Desgeorges, Rose [Los Alamos National Laboratory

    2010-06-28

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.