WorldWideScience

Sample records for high oleic safflower

  1. Lack of promotion of colon carcinogenesis by high-oleic safflower oil.

    Science.gov (United States)

    Takeshita, M; Ueda, H; Shirabe, K; Higuchi, Y; Yoshida, S

    1997-04-15

    The nonpromoting effect of olive oil on colon carcinogenesis has been attributed to its high oleic acid content, whereas a positive association of monounsaturated fat in beef tallow with colon tumors has been reported. The effect of constituents other than fatty acids could not be neglected in these experiments. In order to minimize the effects of minor constituents in the oils, the authors compared conventional safflower oil with oil from a mutant strain of safflower that is rich in oleic acid. ICR mice were treated with 1,2-dimethylhydrazine (DMH, 20 mg/kg body weight every week for 12 weeks) and then were fed either a high-fat diet (23.5% by weight), containing safflower oil (HF-LA) or high-oleic safflower oil (HF-OA), or a low-fat diet (5% by weight), containing safflower oil (LF-LA) or high-oleic safflower oil (LF-OA). The test diets were continued until termination of the experiment at 30 weeks after the first administration of DMH. Fatty acid composition of colon phospholipids was determined by gas-liquid chromatography-mass spectrometry. Tumor multiplicity in animals fed the HF-OA diet was indistinguishable from that in animals fed LF-LA or LF-OA. In contrast, animals fed the HF-LA diet had a significantly higher incidence of colon tumors (mostly adenocarcinomas) than the other groups. Fatty acid profiles of colon phospholipids reflected those of the diet. Animals fed a HF-LA diet showed a marked decrease of nervonic acid (C24:1, n-9) in the colon sphingomyelin. These data indicate that oleic acid does not enhance DMH-induced colon carcinogenesis in mice, even when they are fed a high-fat diet.

  2. Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L. plants

    Directory of Open Access Journals (Sweden)

    Shijiang eCao

    2013-12-01

    Full Text Available Vegetable oils high in oleic acid are considered to be advantageous because of their better nutritional value and potential industrial applications. The oleic acid content in the classic safflower oil is normally 10-15% while a natural mutant (ol accumulates elevated oleic acid up to 70% in seed oil. As a part of our investigation into the molecular features of the high oleic (HO trait in safflower we have profiled the microRNA (miRNA populations in developing safflower seeds expressing the ol allele in comparison to the wild type high linoleic (HL safflower using deep sequencing technology. The small RNA populations of the mid-maturity developing embryos of homozygous ol HO and wild type HL safflower had a very similar size distribution pattern, however, only ~16.5% of the unique small RNAs were overlapping in these two genotypes. From these two small RNA populations we have found 55 known miRNAs and identified two candidate novel miRNA families to be likely unique to the developing safflower seeds. Target genes with conserved as well as novel functions were predicted for the conserved miRNAs. We have also identified 13 miRNAs differentially expressed between the HO and HL safflower genotypes. The results may lay a foundation for unravelling the miRNA-mediated molecular processes that regulate oleic acid accumulation in the HO safflower mutant and developmental processes in safflower embryos in general.

  3. Seed-specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability.

    Science.gov (United States)

    Wood, Craig C; Okada, Shoko; Taylor, Matthew C; Menon, Amratha; Mathew, Anu; Cullerne, Darren; Stephen, Stuart J; Allen, Robert S; Zhou, Xue-Rong; Liu, Qing; Oakeshott, John G; Singh, Surinder P; Green, Allan G

    2018-03-06

    Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed-specific hairpin-based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non-GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field-grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Formulation of Zero-Trans Crystalized Fats Produced from Palm Stearin and High Oleic Safflower Oil Blends

    Directory of Open Access Journals (Sweden)

    Nydia E. Buitimea-Cantúa

    2017-01-01

    Full Text Available High intake of trans fat is associated with several chronic diseases such as cardiovascular disease and cancer. Fat blends, produced by direct blending process of palm stearin (PS with high oleic safflower oil (HOSO in different concentrations, were investigated. The effects of the PS addition (50, 70, or 90% and the rate of agitation (RA (1000, 2000, or 3000 rpm on physical properties, fatty acid profile (FAP, trans fatty acids (TFA, crystal structure, and consistency were researched. The blend containing 50% of each sort of oil (50% PS/50% HOSO showed that melting point and features were similar to the control shortening. The saturated fatty acids (SFA were higher followed by monounsaturated (MUFA and polyunsaturated fatty acids (PUFA. Significant differences in the content of palmitic and oleic acids among blends were observed. The 50% PS/50% HOSO blend contained higher oleic acid (42.9% whereas the 90% PS/10% HOSO was higher in palmitic acid (56.9%. The blending of PS/HOSO promoted the β crystal polymorphic forms. The direct blending process of equal amounts of PS and HOSO was an adequate strategy to formulate a new zero-trans crystallized vegetable fats with characteristics similar to commercial counterparts with well-balanced fats rich in both omega 3 and omega 6 fatty acids.

  5. Effects of CD36 Genotype on Oral Perception of Oleic Acid Supplemented Safflower Oil Emulsions in Two Ethnic Groups: A Preliminary Study.

    Science.gov (United States)

    Burgess, Brenda; Melis, Melania; Scoular, Katelyn; Driver, Michael; Schaich, Karen M; Keller, Kathleen L; Tomassini Barbarossa, Iole; Tepper, Beverly J

    2018-05-01

    Previous studies demonstrate humans can detect fatty acids via specialized sensors on the tongue, such as the CD36 receptor. Genetic variation at the common single nucleotide polymorphism rs1761667 of CD36 has been shown to differentially impact the perception of fatty acids, but comparative data among different ethnic groups are lacking. In a small cohort of Caucasian and East Asian young adults, we investigated if: (1) participants could detect oleic acid (C18:1) added to safflower oil emulsions at a constant ratio of 3% (w/v); (2) supplementation of oleic acid to safflower oil emulsions enhanced perception of fattiness and creaminess; and (3) variation at rs1761667 influenced oleic acid detection and fat taste perception. In a 3-alternate forced choice test, 62% of participants detected 2.9 ± 0.7 mM oleic acid (or 0.08% w/v) in a 2.8% safflower oil emulsion. Supplementation of oleic acid did not enhance fattiness and creaminess perception for the cohort as a whole, though East Asians carrying the GG genotype perceived more overall fattiness and creaminess than their AA genotype counterparts (P < 0.001). No differences were observed for the Caucasians. These preliminary findings indicate that free oleic acid can be detected in an oil-in-water emulsion at concentrations found in commercial oils, but it does not increase fattiness or creaminess perception. Additionally, variation at rs1761667 may have ethnic-specific effects on fat taste perception. © 2018 The Authors Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  6. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    Science.gov (United States)

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Short communication. Estimation of cross-fertilization rate in safflower (Carthamus tinctorius L.)

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, L.; Fischer, M.; Fernandez-Martinez, J. M.

    2012-11-01

    Safflower is a promising oilseed crop for the production of specialty oils in the Mediterranean area. Oil quality traits such as high oleic acid content, high linoleic acid content, high saturated fatty acid content, or high gamma-tocopherol content have been developed in this crop. The traits are controlled by the genotype of the developing embryo and therefore they are influenced by the presence of foreign pollen. The objective of this research was to study the rate of cross-fertilization in safflower using the high oleic acid trait as a biochemical marker. An experiment in which each high oleic plant was surrounded by 24 low oleic acid plants was conducted over three environments in the same location at Cordoba, Spain. The average rate of cross-fertilization in the three environments was 5.7, 12.1, and 13.2%, though higher frequencies up to 35.9% were detected at the single-plant level and up to 58.3% at the single-head level. The low average out crossing frequencies identified in this research indicate no need for large isolation distances between conventional cultivars and cultivars with special oil characteristics. However, the occurrence of a significant out crossing rate should be taken into consideration if transgenic safflower is to be cultivated close to conventional safflower or in areas of distribution of wild Carthamus species. (Author) 21 refs.

  8. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet.

    Science.gov (United States)

    Takeuchi, H; Matsuo, T; Tokuyama, K; Shimomura, Y; Suzuki, M

    1995-04-01

    The objectives of the present study were to examine the effects of dietary fats differing in fatty acid composition on diet-induced thermogenesis, sympathetic activity in brown adipose tissue and body fat accumulation in rats. Rats were meal-fed for 12 wk an isoenergetic diet based on lard, high oleic acid safflower oil, safflower oil or linseed oil, and norepinephrine turnover rates in brown adipose tissue were then estimated. Whole-body oxygen consumption after the meal indicated that diet-induced thermogenesis was significantly lower in rats fed the lard diet than in those fed the other diets. The norepinephrine turnover rate in the interscapular brown adipose tissue was also significantly lower in the lard diet group than in the other diet groups. The carcass fat content was significantly higher in the lard diet group than in the other diet groups, whereas the abdominal adipose tissue weights were the same in all diet groups. These results suggest that the intake of animal fats rich in saturated fatty acids, compared with the intake of vegetable oils rich in monounsaturated or polyunsaturated fatty acids, decreases diet-induced thermogenesis by a decline of sympathetic activity in brown adipose tissue, resulting in the promotion of body fat accumulation.

  9. Research of qualitative indicators of safflower oil

    Directory of Open Access Journals (Sweden)

    Ye. Z. Mateyev

    2017-01-01

    Full Text Available Fatty acid composition of vegetable oils is the fundamental quality characteristics. To determine the fatty acid composition, the SP-2560 column and Chromotec 5000.1 gas chromatograph were used. As a result of the studies it was established that fatty acids of 18 and 16 groups prevail in safflower oil, the content of the remaining fatty acids in the total is 1.2%. In the test sample, the prevalence of omega-6 fatty acids (concentration of 80% of linoleic and ?-linolenic fatty acids is observed. Omega-6 fatty acids help the body burn excess fat, instead of postponing it for future use. Natural fatty acids are the bricks of human prostaglandins, mountain-monopodic substances that help normalize blood pressure, control muscle contractions and participate in the immune response of the body. The qualitative characteristics of vegetable oil are also physicochemical indicators. The acid number of safflower oil was 1.07 mgKOH/g, the peroxide number was 8.09 mmol/kgO2, the anisidine number of safflower oil was 3.25. Moisture of rapeseed oil is 0.03%. Safflower oil can be used as a biofuel, the lowest heat of its combustion is 36.978 MJ/kg; density – 913 kg/m3; kinematic viscosity 85.6 mm2/s. In comparison with rapeseed oil, the specific effective fuel consumption is reduced by 2.08%. The obtained fatty acid content of the analyzed sample of safflower oil is well correlated with the literature data, which indicates the high accuracy of the studies, the sample does not belong to the high oleic vegetable oils. The obtained values for qualitative characteristics indicate the prospects of using this type of oil directly in food, as well as for the production of oilseeds, such as mayonnaise, sauces, spreads.

  10. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    Cao Shijiang

    2013-01-01

    Full Text Available Abstract Background The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoyl phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the Δ12 position of an oleic acid on phosphatidylcholine and convert it to linoleic acid. The known plant FAD2 enzymes are encoded by small gene families consisting of 1-4 members. In addition to the classic oleate Δ12-desaturation activity, functional variants of FAD2 that are capable of undertaking additional or alternative acyl modifications have also been reported in a limited number of plant species. In this study, our objective was to identify FAD2 genes from safflower and analyse their differential expression profile and potentially diversified functionality. Results We report here the characterization and functional expression of an exceptionally large FAD2 gene family from safflower, and the temporal and spatial expression profiles of these genes as revealed through Real-Time quantitative PCR. The diversified functionalities of some of the safflower FAD2 gene family members were demonstrated by ectopic expression in yeast and transient expression in Nicotiana benthamiana leaves. CtFAD2-1 and CtFAD2-10 were demonstrated to be oleate desaturases specifically expressed in developing seeds and flower head, respectively, while CtFAD2-2 appears to have relatively low oleate desaturation activity throughout the plant. CtFAD2-5 and CtFAD2-8 are specifically expressed in root tissues, while CtFAD2-3, 4, 6, 7 are mostly expressed in the cotyledons and hypocotyls in young safflower seedlings. CtFAD2-9 was found to encode a novel desaturase operating on C16:1 substrate. CtFAD2-11 is a tri-functional enzyme able to introduce a carbon double bond in either cis or trans configuration, or a carbon triple (acetylenic bond

  11. Assesment of spineless safflower (Carthamus tinctorius, L.) mutant lines for seed oil content and fatty acid profiles

    International Nuclear Information System (INIS)

    Ragab, A.I.; Kassem, M.; Moustafa, H.A.M.

    2008-01-01

    This study was conducted to assess the new spineless mutants that previously induced through gamma radiation and hybridization techniques in the advanced generation for seed oil content and fatty acid profiles The obtained results cleared that oil percentages of all seven safflower mutants were increased than local variety Giza (1) and the new mutant hybrid 2 line (white petals) had the highest increase value of oil percentage (10%) but the mutant line M14 (dark red petals) had the lowest increase value of oil percentage (3.1 %) The mutant line M7 (yellow petals) had the highest value of total saturated fatty acid (40.38%), because it had the highest value of palmitic fatty acid (25.16%), comparing to 10.01% value for local variety Giza (1), followed by mutant line hybrid 2 (white petals) which had (39.88%) because it had the highest value of caprylic, capric, lauric, myristic and stearic fatty acids. All safflower mutant lines had higher value of oleic fatty acid than that of the local variety Giza (1) the two new safflower mutant lines M7 (yellow petals) and hybrid 2 (white petal) had the highest value of oleic fatty acid 41.22% and 39.88% respectively in comparison with 13.5% for local variety Giza (1), the obtained results are indicating to seed oil content negative correlation between oleic and linoleic acids

  12. In vitro synergistic efficacy of conjugated linoleic acid, oleic acid, safflower oil and taxol cytotoxicity on PC3 cells.

    Science.gov (United States)

    Kızılşahin, Sadi; Nalbantsoy, Ayşe; Yavaşoğlu, N Ülkü Karabay

    2015-01-01

    The aim of this study was to determine in vitro synergistic efficacy of conjugated linoleic acid (CLA), oleic acid (OLA), safflower oil and taxol (Tax) cytotoxicity on human prostate cancer (PC3) cell line. To determine synergistic efficacy of oil combinations, PC3 treated with different doses of compounds alone and combined with 10 μg/mL Tax. The MTT results indicated that OLA-Tax combinations exhibited cytotoxicity against PC3 at doses of 30 nM+10 μg-Tax, 15 nM+5 μg-Tax and 7.5 nM+2.5 μg-Tax. The treatment of OLA or Tax did not show significant inhibition on PC3, while OLA-Tax combinations showed effective cytotoxicity at treated doses. CLA-Tax combinations demonstrated the same effect on PC3 as combined form with 45.72% versus the alone form as 74.51% viability. Cytotoxic synergy between Tax, OLA and CLA shows enhanced cytotoxicity on PC3 which might be used in the therapy of prostate cancer.

  13. Safflower oil: an integrated assessment of phytochemistry, antiulcerogenic activity, and rodent and environmental toxicity

    Directory of Open Access Journals (Sweden)

    Walber Toma

    Full Text Available Gastric ulcers are a significant medical problem and the development of complications lead to significant mortality rates worldwide. In Brazil, Carthamus tinctorius L., Asteraceae, seeds essential oil, the safflower oil, is currently used as a thermogenic compound and as treatment for problems related to the cardiovascular system. In this study, by Raman spectroscopy, it was shown that oleic and linoleic acids are the compounds present in higher concentrations in the safflower oil. We demonstrated that safflower oil (750 mg/kg, p.o. decrease the ulcerogenic lesions in mice after the administration of hydrochloric acid-ethanol. The gastric ulcers induced by non-steroidal anti-inflammatory drug (NSAID in mice treated with cholinomimetics were treated with four different doses of safflower oil, of which, the dose of 187.5 mg/kg (p.o. showed significant antiulcerogenic properties (**p < 0.01. Moreover, the safflower oil at doses of 187.5 mg/kg (i.d. increased the pH levels, gastric volume (**p < 0.01 and gastric mucus production (***p < 0.001, and decreased the total gastric acid secretion (***p < 0.001. The acute toxicity tests showed that safflower oil (5.000 mg/kg, p.o. had no effect on mortality or any other physiological parameter. Ecotoxicological tests performed using Daphnia similis showed an EC50 at 223.17 mg/l, and therefore safflower oil can be considered “non-toxic” based on the directive 93/67/EEC on risk assessment for new notified substances by European legislation. These results indicate that the antiulcer activity of Safflower oil may be due to cytoprotective effects, which serve as support for new scientific studies related to this pathology.

  14. Reduced fat mass in rats fed a high oleic acid-rich safflower oil diet is associated with changes in expression of hepatic PPARalpha and adipose SREBP-1c-regulated genes.

    Science.gov (United States)

    Hsu, Shan-Ching; Huang, Ching-Jang

    2006-07-01

    PPARs and sterol regulatory element-binding protein-1c (SREPB-1c) are fatty acid-regulated transcription factors that control lipid metabolism at the level of gene expression. This study compared a high oleic acid-rich safflower oil (ORSO) diet and a high-butter diet for their effect on adipose mass and expressions of genes regulated by PPAR and SREPB-1c in rats. Four groups of Wistar rats were fed 30S (30% ORSO), 5S (5% ORSO), 30B (29% butter + 1% ORSO), or 5B (4% butter plus 1% ORSO) diets for 15 wk. Compared with the 30B group, the 30S group had less retroperitoneal white adipose tissue (RWAT) mass and lower mRNA expressions of lipoprotein lipase, adipocyte fatty acid-binding protein, fatty acid synthase, acetyl CoA carboxylase, and SREBP-1c in the RWAT, higher mRNA expressions of acyl CoA oxidase, carnitine palmitoyl-transferase 1A, fatty acid binding protein, and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in the liver (P 2 fold those of the 30B group (P < 0.05). These results suggested that the smaller RWAT mass in rats fed the high-ORSO diet might be related to the higher tissue 18:2(n-6) and 20:4(n-6). This in turn could upregulate the expressions of fatty acid catabolic genes through the activation of PPARalpha in the liver and downregulate the expressions of lipid storage and lipogenic gene through the suppression of SREBP-1c in the RWAT.

  15. Association Mapping for Important Agronomic Traits in Safflower (Carthamus tinctorius L. Core Collection Using Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Heena Ambreen

    2018-03-01

    Full Text Available Carthamus tinctorius L. (safflower is an important oilseed crop producing seed oil rich in unsaturated fatty acids. Scarcity of identified marker-trait associations is a major limitation toward development of successful marker-assisted breeding programs in safflower. In the present study, a safflower panel (CartAP comprising 124 accessions derived from two core collections was assayed for its suitability for association mapping. Genotyping of CartAP using microsatellite markers revealed significant genetic diversity indicated by Shannon information index (H = 0.7537 and Nei's expected heterozygosity (I = 0.4432. In Principal Coordinate Analysis, the CartAP accessions were distributed homogeneously in all quadrants indicating their diverse nature. Distance-based Neighbor Joining analysis did not delineate the CartAP accessions in consonance with their geographical origin. Bayesian analysis of population structure of CartAP demonstrated the unstructured nature of the association panel. Kinship analysis at population (Gij and individual level (Fij revealed absence of or weak relatedness between the CartAP accessions. The above parameters established the suitability of CartAP for association mapping. We performed association mapping using phenotypic data for eight traits of agronomic value (viz., seed oil content, oleic acid, linoleic acid, plant height, number of primary branches, number of capitula per plant, 100-seed weight and days to 50% flowering available for two growing seasons (2011–2012 and 2012–2013 through General Linear Model and Mixed Linear Model. Our study identified ninety-six significant marker-trait associations (MTAs; P < 0.05 of which, several MTAs with correlation coefficient (R2 > 10% were consistently represented in both models and in both seasons for traits viz., oil content, oleic acid content, linoleic acid content and number of primary branches. Several MTAs with high R2-values were detected either in a majority or in

  16. Association Mapping for Important Agronomic Traits in Safflower (Carthamus tinctorius L.) Core Collection Using Microsatellite Markers.

    Science.gov (United States)

    Ambreen, Heena; Kumar, Shivendra; Kumar, Amar; Agarwal, Manu; Jagannath, Arun; Goel, Shailendra

    2018-01-01

    Carthamus tinctorius L. (safflower) is an important oilseed crop producing seed oil rich in unsaturated fatty acids. Scarcity of identified marker-trait associations is a major limitation toward development of successful marker-assisted breeding programs in safflower. In the present study, a safflower panel (CartAP) comprising 124 accessions derived from two core collections was assayed for its suitability for association mapping. Genotyping of CartAP using microsatellite markers revealed significant genetic diversity indicated by Shannon information index ( H = 0.7537) and Nei's expected heterozygosity ( I = 0.4432). In Principal Coordinate Analysis, the CartAP accessions were distributed homogeneously in all quadrants indicating their diverse nature. Distance-based Neighbor Joining analysis did not delineate the CartAP accessions in consonance with their geographical origin. Bayesian analysis of population structure of CartAP demonstrated the unstructured nature of the association panel. Kinship analysis at population ( G ij ) and individual level ( F ij ) revealed absence of or weak relatedness between the CartAP accessions. The above parameters established the suitability of CartAP for association mapping. We performed association mapping using phenotypic data for eight traits of agronomic value ( viz ., seed oil content, oleic acid, linoleic acid, plant height, number of primary branches, number of capitula per plant, 100-seed weight and days to 50% flowering) available for two growing seasons (2011-2012 and 2012-2013) through General Linear Model and Mixed Linear Model. Our study identified ninety-six significant marker-trait associations (MTAs; P 10% were consistently represented in both models and in both seasons for traits viz ., oil content, oleic acid content, linoleic acid content and number of primary branches. Several MTAs with high R 2 -values were detected either in a majority or in some environments (models and/or seasons). Many MTAs were also

  17. Olive oil increases the magnitude of postprandial chylomicron remnants compared to milk fat and safflower oil.

    Science.gov (United States)

    Higashi, K; Ishikawa, T; Shige, H; Tomiyasu, K; Yoshida, H; Ito, T; Nakajima, K; Yonemura, A; Sawada, S; Nakamura, H

    1997-10-01

    The acute effects of olive oil, milk fat and safflower oil on postprandial lipemia and remnant lipoprotein metabolism were investigated. Eight Healthy male volunteers randomly underwent three types of oral fat-vitamin A loading tests. The test drink was a mixture of retinyl palmitate (RP)(50,000 IU of aqueous vitamin A/m2 body surface area) and one of the three types of oils (40 g of fat/m2 body surface area): olive oil (70.7% oleic acid of total fatty acids); milk fat (69.3% saturated fatty acid); safflower oil (74.2% linoleic acid). Olive oil significantly increased plasma triacylglycerol and RP concentrations 4 hours after fat loading, as compared to other fats. Increases of remnant like particle concentrations were higher after olive oil than after the other two fats. These results show that olive oil increases the magnitude of postprandial chylomicrons and chylomicron remnants compared to milk fat and safflower oil.

  18. Measurements of oleic acid among individual kernels harvested from test plots of purified runner and spanish high oleic seed

    Science.gov (United States)

    Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or kernels not meeting threshold could be immature a...

  19. Dietary high oleic canola oil supplemented with docosahexaenoic acid attenuates plasma proprotein convertase subtilisin kexin type 9 (PCSK9) levels in participants with cardiovascular disease risk: A randomized control trial.

    Science.gov (United States)

    Pu, Shuaihua; Rodríguez-Pérez, Celia; Ramprasath, Vanu Ramkumar; Segura-Carretero, Antonio; Jones, Peter J H

    2016-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a novel circulating protein which plays an important role in regulation of cholesterol metabolism by promoting hepatic LDL receptor degradation. However, the action of dietary fat composition on PCSK9 levels remains to be fully elucidated. The objective was to investigate the action of different dietary oils on circulating PCSK9 levels in the Canola Oil Multicenter Intervention Trial (COMIT). COMIT employed a double-blinded crossover randomized control design, consisting of five 30-d treatment periods. Diets were provided based on a 3000Kcal/d intake, including a 60g/d treatment of conventional canola oil (Canola), a high oleic canola/DHA oil blend (CanolaDHA), a corn/safflower oil blend (CornSaff), a flax/safflower oil blend (FlaxSaff) or a high oleic canola oil (CanolaOleic). Plasma PCSK9 levels were assessed using ELISA at the end of each phase. Lipid profiles (n=84) showed that CanolaDHA feeding resulted in the highest (P<0.05) serum total cholesterol (TC, 5.06±0.09mmol/L) and LDL-cholesterol levels (3.15±0.08mmol/L) across all five treatments. CanolaDHA feeding also produced the lowest (P<0.05) plasma PCSK9 concentrations (216.42±8.77ng/mL) compared to other dietary oil treatments. Plasma PCSK9 levels positively correlated (P<0.05) with serum TC, LDL-cholesterol, apolipoprotein A, and apolipoprotein B levels but did not correlate to HDL-cholesterol levels. Results indicate that post-treatment response in PCSK9 may be altered with the CanolaDHA diet. In conclusion, the elevated LDL-C levels from a DHA oil treatment may not be relevant for the observed decline in PCSK9 levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddy mice.

    Science.gov (United States)

    Yamazaki, Tomomi; Nakamori, Akiko; Sasaki, Eriko; Wada, Satoshi; Ezaki, Osamu

    2007-12-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). We analyzed the effects of dietary fish oil on fatty liver induced by sucrose, safflower oil, and butter in ddY mice. In experiment I, mice were fed a high-starch diet [70 energy% (en%) starch] plus 20% (wt/wt) sucrose in the drinking water or fed a high-safflower oil diet (60 en%) for 11 weeks. As a control, mice were fed a high-starch diet with drinking water. Fish oil (10 en%) was either supplemented or not. Mice supplemented with sucrose or fed safflower oil showed a 1.7-fold or 2.2-fold increased liver triglyceride content, respectively, compared with that of control mice. Fish oil completely prevented sucrose-induced fatty liver, whereas it exacerbated safflower oil-induced fatty liver. Sucrose increased SREBP-1c and target gene messenger RNAs (mRNAs), and fish oil completely inhibited these increases. In experiment II, mice were fed a high-safflower oil or a high-butter diet, with or without fish oil supplementation. Fish oil exacerbated safflower oil-induced fatty liver but did not affect butter-induced fatty liver. Fish oil increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and target CD36 mRNA in safflower oil-fed mice. These increases were not observed in sucrose-supplemented or butter-fed mice. The effects of dietary fish oil on fatty liver differ according to the cause of fatty liver; fish oil prevents sucrose-induced fatty liver but exacerbates safflower oil-induced fatty liver. The exacerbation of fatty liver may be due, at least in part, to increased expression of liver PPARgamma.

  1. Population dynamics of safflower capsule flies (Diptera: Tephritidae in Kohgiluyeh safflower farms of Iran

    Directory of Open Access Journals (Sweden)

    K. Saeidi

    2015-08-01

    Full Text Available Oilseeds such as flax, canola, safflower, soybean and sunflower, which are annual plants, provide the world’s major source of vegetable oils, although the highest oil yield comes from oil-bearing tree fruits. One of the most popular oil seeds is safflower (Carthamus tinctorius L., which belongs to the Asteraceae family. Due to the ability of this plant to grow in dry and semi-dry conditions, safflower oil has the potential to be a commercially profitable product in Iran. Seasonal populations of safflower capsule flies were studied in Kohgiluyeh safflower farms, Iran, from March to May in 2008 and 2009. Four yellow sticky traps were used to monitor populations of fruit flies in the safflower farms. Traps were checked once a week during the sampling period. The traps were emptied weekly into insect collection vials containing 70% ethanol. Data were analysed with a two-way ANOVA. The relation between abiotic factors and species abundance was analysed with multiple linear regression. The results emphasized that Acanthiophilus helianthi was the most serious pest of safflower under the ecological conditions found in Gachsaran, being present in the field throughout three months of the year (March to May. Chaetorellia carthami was present in safflower fields from March to May, but in significant numbers only during April and May. Terellia luteola was present in safflower fields from March to May and in significant numbers only in late April, it does not seem to be a serious pest in safflower farms under Gachsaran’s ecological conditions.

  2. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Falcone, Italia; Tsalouhidou, Sofia; Yepuri, Gayathri; Mougios, Vassilis; Dulloo, Abdul G; Liverini, Giovanna; Iossa, Susanna

    2012-09-01

    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.

  3. Supplemental safflower oil affects the fatty acid profile, including conjugated linoleic acid, of lamb.

    Science.gov (United States)

    Boles, J A; Kott, R W; Hatfield, P G; Bergman, J W; Flynn, C R

    2005-09-01

    The objective of this study was to determine whether increasing levels of dietary safflower oil would alter unsaturated fat (especially CLA) and tocopherol content of lamb, animal performance, carcass characteristics, or color stability of lamb muscle tissue. Targhee x Rambouillet wethers (n = 60) were assigned to one of three diets (four pens per treatment with five lambs per pen) in a completely random design. Diets were formulated with supplemental safflower oil at 0 (control), 3, or 6% (as-fed basis) of the diet. Diets containing approximately 80% concentrate and 20% roughage were formulated, on a DM basis, to be isocaloric and isonitrogenous and to meet or exceed NRC requirements for Ca, P, and other nutrients. A subsample of 12 wethers per treatment was selected based on average BW (54 kg) and slaughtered. Carcass data (LM area, fat thickness, and internal fat content) and wholesale cut weight (leg, loin, rack, shoulder, breast, and foreshank), along with fatty acid, tocopherol, and color analysis, were determined on each carcass. The LM and infraspinatus were sampled for fatty acid profile. Increasing safflower oil supplementation from 0 to 3 or 6% increased the proportion of linoleic acid in the diet from 49.93 to 55.32 to 62.38%, respectively, whereas the percentage of oleic acid decreased from 27.94 to 23.80 to 20.73%, respectively. The percentage of oil in the diet did not (P > or = 0.11) alter the growth and carcass characteristics of lambs, nor did it alter the tocopherol content or color stability of meat. Increasing levels of safflower oil in lamb diets decreased (P safflower oil, up to 6% of the diet, resulted in increasing levels of unsaturated fatty acids and CLA in the lean tissue, without adversely affecting growth performance, carcass characteristics, or color stability of lamb.

  4. Safflower and olive oil dietary treatments rescue aberrant embryonic arachidonic acid and nitric oxide metabolism and prevent diabetic embryopathy in rats.

    Science.gov (United States)

    Higa, R; White, V; Martínez, N; Kurtz, M; Capobianco, E; Jawerbaum, A

    2010-04-01

    Aberrant arachidonic acid and nitric oxide (NO) metabolic pathways are involved in diabetic embryopathy. Previous works have found diminished concentrations of PGE(2) and PGI(2) in embryos from diabetic rats, and that PGI(2) is capable of increasing embryonic PGE(2) concentrations through the activation of the nuclear receptor PPARdelta. PPARdelta activators are lipid molecules such as oleic and linoleic acids, present in high concentrations in olive and safflower oils, respectively. The aim of this study was to analyze the capability of dietary supplementation with either 6% olive or 6% safflower oils to regulate PGE(2), PGI(2) and NO concentrations in embryos and deciduas from control and diabetic rats during early organogenesis. Diabetes was induced by a single injection of streptozotocin (55 mg/kg) 1 week before mating. Animals were fed with the oil-supplemented diets from Days 0.5 to 10.5 of gestation. PGI(2) and PGE(2) were measured by EIA and NO through the evaluation of its stable metabolites nitrates-nitrites in 10.5 day embryos and deciduas. We found that the olive and safflower oil-supplemented treatments highly reduced resorption and malformation rates in diabetic animals, and that they were able to prevent maternal diabetes-induced alterations in embryonic and decidual PGI(2) and PGE(2) concentrations. Moreover, these dietary treatments prevented NO overproduction in embryos and deciduas from diabetic rats. These data indicate that in maternal diabetes both the embryo and the decidua benefit from the olive and safflower oil supplementation probably through mechanisms that involve the rescue of aberrant prostaglandin and NO generation and that prevent developmental damage during early organogenesis.

  5. Growing Safflower in Utah

    OpenAIRE

    Pace, M. G.; Israelsen, C. E.; Creech, E.; Allen, N.

    2015-01-01

    This fact sheet provides information on growing safflower in Utah. It has become popular on dryland farms in rotation with winter wheat. Safflower seed provides three products, oil, meal, and birdseed.

  6. Enhancement of oleic acid in butter oil by high oleic fraction of moringa oleifera oil

    International Nuclear Information System (INIS)

    Nadeem, M.; Ullah, R.

    2016-01-01

    Oleic acid in butter oil (BO) was enhanced by a high oleic acid fraction (HOF) of Moringa oleifera oil (MOO). HOF was blended with BO at four different concentrations i.e. 5%, 10 percent, 15% and 20% (HOF-5, HOF-10, HOF-15 and HOF-20, respectively), compared with a control (BO). The oleic acid in HOF increased from 71.55 percent to 80.25%. DPPH free radical scavenging activity and total flavonoid content of HOF was 76.88% and 34.52 mg/100 g. Supplementation of butter oil with 20% HOF, decreased the cholesterol from 224 to 177 mg/100 g. Peroxide value of three months stored HOF-20 was 1.18 (meqO/sub 2/ kg) as compared to control, 3.15 (meqO/sub 2/kg). Induction period of HOF-20 was 4.07 h greater than control. These results evidenced that oleic acid in butter oil can be substantially increased by HOF of MOO. (author)

  7. Population dynamics of safflower capsule flies (Diptera: Tephritidae) in Kohgiluyeh safflower farms of Iran

    OpenAIRE

    K. Saeidi; S. Mirfakhraei; F. Mehrkhou

    2015-01-01

    Oilseeds such as flax, canola, safflower, soybean and sunflower, which are annual plants, provide the world’s major source of vegetable oils, although the highest oil yield comes from oil-bearing tree fruits. One of the most popular oil seeds is safflower (Carthamus tinctorius L.), which belongs to the Asteraceae family. Due to the ability of this plant to grow in dry and semi-dry conditions, safflower oil has the potential to be a commercially profitable product in Iran. Seasonal populations...

  8. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  9. High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding

    International Nuclear Information System (INIS)

    Guan Chunyun; Liu Chunlin; Chen Sheyuan

    2006-01-01

    High oleic acid content rapeseed breeding has great significance, because high oleic acid oil is a healthy and nutritious oil, which is of a long shelflife and also propitious to producing biodiesel fuel. The high oleic acid content breeding materials of rapeseed (B. napus) were obtained by 80-100 kR ~(60)Co gamma ray ionizing radiation treatment of dry seeds and continuous selection. The results showed that the oleic acid contents of M (2), M (3) and M (4) progenies increased by different grades. Moreover, the oleic acid content of M (5) progeny increased greatly. The oleic acid contents were higher than 70% in the most of the plants and the highest one reached 93.5 %. The base G was transited by base A in fad (2) gene at the 270 site of high oleic acid mutation (M(6) 04-855). The location is at the beta folding area and conservative area of this protein. Base mutation at sites 1 044 and 1 062 also led to produce a stop condon. These changes in structure led to loss the function of fad (2). According to molecular mechanism of gene mutation, no matter what transvertion or transition happens, several replications are needed. That is to say several generations are needed. That was also the reason why high oleic acid content mutation occurred in later generations

  10. A safflower oil-based high fat/high-sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation

    DEFF Research Database (Denmark)

    Danneskiold-Samsøe, Niels Banhos; Andersen, Daniel; Radulescu, Ilinca Daria

    2017-01-01

    n-6 PUFA-rich diets are generally considered obesogenic in rodents. Here we examined how long-term intake of a high fat/high sucrose (HF/HS) diet based on safflower oil affected metabolism, inflammation and gut microbiota composition. We fed male C57BL/6J mice a HF/HS diet based on safflower oil...

  11. Effects of conjugated linoleic acid and high oleic acid safflower oil in the treatment of children with HPV-induced laryngeal papillomatosis: a randomized, double-blinded and crossover preliminary study.

    Science.gov (United States)

    Louw, Louise

    2012-10-12

    Surgery is the mainstay therapy for HPV-induced laryngeal papillomatosis (LP) and adjuvant therapies are palliative at best. Research revealed that conjugated-linoleic acid (CLA) may improve the outcome of virally-induced diseases. The effects of Clarinol™ G-80 (CLA) and high oleic safflower oil (HOSF) on children with LP (concomitant with surgery) were evaluated. A randomized, double-blinded, crossover and reference-oil controlled trial was conducted at a South African medical university. Study components included clinical, HPV type/load and lymphocyte/cytokine analyses, according to routine laboratory methods. Overall: ten children enrolled; eight completed the trial; five remained randomized; seven received CLA first; all treatments remained double-blinded. Children (4 to 12 years) received 2.5 ml p/d CLA (8 weeks) and 2.5 ml p/d HOSF (8 weeks) with a washout period (6 weeks) in-between. The one-year trial included a post-treatment period (30 weeks) and afterwards was a one-year follow-up period. Changes in numbers of surgical procedures for improved disease outcome, total/anatomical scores (staging system) for papillomatosis prevention/viral inhibition, and lymphocyte/cytokine counts for immune responses between baselines and each treatment/end of trial were measured. After each treatment all the children were in remission (no surgical procedures); after the trial two had recurrence (surgical procedures in post-treatment period); after the follow-up period three had recurrence (several surgical procedures) and five recovered (four had no surgical procedures). Effects of CLA (and HOSF to a lesser extent) were restricted to mildly/moderately aggressive papillomatosis. Children with low total scores (seven/less) and reduced infections (three/less laryngeal sub-sites) recovered after the trial. No harmful effects were observed. The number of surgical procedures during the trial (n6/available records) was significantly lower [(p 0.03) (95% CI 1.1; 0)]. Changes in

  12. Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop.

    Science.gov (United States)

    Pearl, Stephanie A; Burke, John M

    2014-10-01

    • Underutilized crops are potentially valuable resources for meeting increasing food demands. Safflower, an oilseed crop, is an example of one such underutilized crop that thrives in moisture-limited areas. Characterization of the genetic diversity maintained within the gene pools of underutilized crops such as safflower is an important step in their further development.• A total of 190 safflower individuals, including 134 USDA accessions, 48 breeding lines from two private North American safflower breeding companies, and eight wild safflower individuals, were genotyped using 133 single nucleotide polymorphism (SNP) markers. We then used the resulting data to assess the amount and distribution of genetic diversity within and among these collections of safflower.• Although just a modest reduction in gene diversity was observed in the commercial breeding lines (relative to the other safflower groupings), safflower domestication was accompanied by a significant decrease in allelic richness. Further, our results suggest that most safflower breeding lines originated from a single pool of diversity within the Old World safflower germplasm.• Taken together, our results suggest that both the safflower germplasm collection and related, wild species harbor previously undocumented genetic diversity that could help fuel future improvement efforts. Paired with analyses of functional diversity, the molecular resources described herein will be thus be useful in the continued development of safflower as an oilseed crop. © 2014 Botanical Society of America, Inc.

  13. Physico-chemical properties and performance of high oleic and palm-based shortenings.

    Science.gov (United States)

    Ramli, Muhamad Roddy; Lin, Siew Wai; Yoo, Cheah Kien; Idris, Nor Aini; Sahri, Miskandar Mat

    2008-01-01

    Solid fat from fractionation of palm-based products was converted into cake shortening at different processing conditions. High oleic palm stearin with an oleic content of 48.2 % was obtained from fractionation of high oleic palm oil which was produced locally. Palm product was blended with different soft oils at pre-determined ratio and further fractionated to obtain the solid fractions. These fractions were then converted into cake shortenings named as high oleic, N1 and N2 blends. The physico-chemical properties of the experimental shortenings were compared with those of control shortenings in terms of fatty acid composition (FAC), iodine value (IV), slip melting point (SMP), solid fat content (SFC) and polymorphic forms. Unlike the imported commercial shortenings as reported by other studies and the control, experimental shortenings were trans-free. The SMP and SFC of experimental samples, except for the N2 sample, fell within the ranges of commercial and control shortenings. The IV was higher than those of domestic shortenings but lower when compared to imported and control shortenings. They were also observed to be beta tending even though a mixture of beta and beta' was observed in the samples after 3 months of storage. The shortenings were also used in the making of pound cake and sensory evaluation showed the good performance of high oleic sample as compared to the other shortenings.

  14. Effects of conjugated linoleic acid and high oleic acid safflower oil in the treatment of children with HPV-induced laryngeal papillomatosis: a randomized, double-blinded and crossover preliminary study

    Directory of Open Access Journals (Sweden)

    Louw Louise

    2012-10-01

    Full Text Available Abstract Background Surgery is the mainstay therapy for HPV-induced laryngeal papillomatosis (LP and adjuvant therapies are palliative at best. Research revealed that conjugated-linoleic acid (CLA may improve the outcome of virally-induced diseases. The effects of Clarinol™ G-80 (CLA and high oleic safflower oil (HOSF on children with LP (concomitant with surgery were evaluated. Design A randomized, double-blinded, crossover and reference-oil controlled trial was conducted at a South African medical university. Study components included clinical, HPV type/load and lymphocyte/cytokine analyses, according to routine laboratory methods. Participants Overall: ten children enrolled; eight completed the trial; five remained randomized; seven received CLA first; all treatments remained double-blinded. Intervention Children (4 to 12 years received 2.5 ml p/d CLA (8 weeks and 2.5 ml p/d HOSF (8 weeks with a washout period (6 weeks in-between. The one-year trial included a post-treatment period (30 weeks and afterwards was a one-year follow-up period. Main outcome measures Changes in numbers of surgical procedures for improved disease outcome, total/anatomical scores (staging system for papillomatosis prevention/viral inhibition, and lymphocyte/cytokine counts for immune responses between baselines and each treatment/end of trial were measured. Findings After each treatment all the children were in remission (no surgical procedures; after the trial two had recurrence (surgical procedures in post-treatment period; after the follow-up period three had recurrence (several surgical procedures and five recovered (four had no surgical procedures. Effects of CLA (and HOSF to a lesser extent were restricted to mildly/moderately aggressive papillomatosis. Children with low total scores (seven/less and reduced infections (three/less laryngeal sub-sites recovered after the trial. No harmful effects were observed. The number of surgical procedures during the trial

  15. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo systems

    Science.gov (United States)

    Vassiliou, Evros K; Gonzalez, Andres; Garcia, Carlos; Tadros, James H; Chakraborty, Goutam; Toney, Jeffrey H

    2009-01-01

    Background Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-α in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. Methods The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-α and oleic acid treated cells was evaluated using flow cytometry. PPAR-γ translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. Results Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-α inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-α and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. Conclusion

  16. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems.

    Science.gov (United States)

    Vassiliou, Evros K; Gonzalez, Andres; Garcia, Carlos; Tadros, James H; Chakraborty, Goutam; Toney, Jeffrey H

    2009-06-26

    Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-alpha in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-alpha and oleic acid treated cells was evaluated using flow cytometry. PPAR-gamma translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-alpha inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-alpha and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. Oleic acid was found to

  17. Genetic Architecture and heritability of some Quantitative Characters,oil content and fatty.acid composition in safflower

    International Nuclear Information System (INIS)

    Ragab, A.I.; Fried, W.

    1992-01-01

    The nature of gene action for some quantitative, oil content and quality characters in safflower was studied in an F 1 diallel set involving 4 parents. Both additive and dominance genetic variance were important for most traits. The magnitude of non additive gene action was higher than of additive genetic variance for all traits, except for first branch height, palmitic and stearic acids. The distribution of positive and negative alleles in the parental populations was a symmetrical for all traits except for 100-seed weight. Most of dominant genes had positive effects in plant height, oil content and oleic acid. Dominance degree was over dominance for all traits except for flowering date and first branch height which showed partial dominance. The narrow sense heritability was 75%, 82%, and 89% for stearic acid, flowering date and first branch height, whears 50 to 67% were found for seed yield/plant, plant height, and oil content. Values of less than 50% were determined for other traits. The V r-W r graphical analysis showed partial dominance for flowering date, first branch height, no. of capitula/plant, palmitic and linoleic acids. Complete dominance for 100-seed weight and over dominance for plant height, seed yield, oil content and oleic acid. 2 fig., 2 tab

  18. The Impact of Virgin Coconut Oil and High-Oleic Safflower Oil on Body Composition, Lipids, and Inflammatory Markers in Postmenopausal Women.

    Science.gov (United States)

    Harris, Margaret; Hutchins, Andrea; Fryda, Lisa

    2017-04-01

    This randomized crossover study compared the impact of virgin coconut oil (VCO) to safflower oil (SO) on body composition and cardiovascular risk factors. Twelve postmenopausal women (58.8 ± 3.7 year) consumed 30 mL VCO or SO for 28 days, with a 28-day washout. Anthropometrics included body weight and hip and waist circumference. Fat percent for total body, android and gynoid, fat mass, and lean mass were measured using dual-energy X-ray absorptiometry. Women maintained their typical diet recording 28 days of food records during the study. Results were analyzed with SPSS v24 with significance at P ≤ .05. Comparisons are reported as paired t-test since no intervention sequence effect was observed. VCO significantly raised total cholesterol, TC (+18.2 ± 22.8 mg/dL), low-density lipoprotein (+13.5 ± 16.0 mg/dL), and high-density lipoprotein, HDL (+6.6 ± 7.5 mg/dL). SO did not significantly change lipid values. TC and HDL were significantly different between test oils. The TC/HDL ratio change showed a neutral effect of both VCO and SO. One person had adverse reactions to VCO and increased inflammation. VCO decreased IL-1β for each person who had a detected sample. The impact of VCO and SO on other cytokines varied on an individual basis. This was the first study evaluating the impact of VCO on body composition in Caucasian postmenopausal women living in the United States. Results are suggestive that individuals wishing to use coconut oil in their diets can do so safely, but more studies need to be conducted with larger sample sizes, diverse populations, and more specific clinical markers such as particle size.

  19. Pressurized liquid extraction and chemical characterization of safflower oil: A comparison between methods.

    Science.gov (United States)

    Conte, Rogério; Gullich, Letícia M D; Bilibio, Denise; Zanella, Odivan; Bender, João P; Carniel, Naira; Priamo, Wagner L

    2016-12-15

    This work investigates the extraction process of safflower oil using pressurized ethanol, and compares the chemical composition obtained (in terms of fatty acids) with other extraction techniques. Soxhlet and Ultrasound showed maximum global yield of 36.53% and 30.41%, respectively (70°C and 240min). PLE presented maximum global yields of 25.62% (3mLmin(-1)), 19.94% (2mLmin(-1)) and 12.37% (1mLmin(-1)) at 40°C, 100bar and 60min. Palmitic acid showed the lower concentration in all experimental conditions (from 5.70% to 7.17%); Stearic and Linoleic acid presented intermediate concentrations (from 2.93% to 25.09% and 14.09% to 19.06%, respectively); Oleic acid showed higher composition (from 55.12% to 83.26%). Differences between percentages of fatty acids, depending on method were observed. Results may be applied to maximize global yields and select fatty acids, reducing the energetic costs and process time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Inheritance of carthamin and carthamidin in safflower ( Carthamus ...

    Indian Academy of Sciences (India)

    The safflower (Carthamus tinctorius L.) is an oil seed crop from which the flowers is used as medicine and food colorants. The present investigation was undertaken to explore gene effects for safflower's pigments in flower including carthaminand carthamidin. Six generation including P1, P2, F1, F2, BC1 and BC2 that ...

  1. Combining ability and maternal effects for some agronomic and oil quality traits in safflower ( Carthamus Tinctorius, L. )

    International Nuclear Information System (INIS)

    Ragab, A.I.; Friedt, W.

    1992-01-01

    Combining ability and reciprocal effects for some agronomic and oil quality traits of safflower were studied in a diallel set of 4 parents. The used parents were local cultivar (Giza 1), exotic cultivar (A2sK1) and two induced gamma ray mutants (Mut. 1 and 2). General and specific combining ability and specific combining ability and reciprocal effects showed highly significant variances for most studied characters. Additive genetic variance was more important than non active for flowering date, first branch high, no.of capitula / plant, seed yield/plant, oil content and stearic acid. However, no.of branches/plant, 100-seed weight, palmitic acid, oleic and linoleic acids appeared to be under the control of epi static gene effect. Giza 1 (P 1) was the best general combiner for no.of branches and palmitic acid. Exotic cultivar 'A2sK1' (P 2) was the highest combiner for no.of capitula/plant and stearic acid. Mut.1 (P 3) was the best combiner for early flowering date, 100-seed weight and seed yield/plant. Mut.2 (P 4) was the highest combiner for oil content. 4 tab

  2. Improvement of Lipid Profile and Antioxidant Status of Hyperlipidaemic Albino Rats by Gamma-irradiated Safflower (Carthamus tinctorius L.)

    International Nuclear Information System (INIS)

    Hamza, R.G.; Farag, M.F.

    2011-01-01

    Hyper-Lipidemia is a dominant risk factor that contributes to the development and progression of atherosclerosis. Safflower is rich in the essential omega-6 and omega-3 polyunsaturated fatty acids and phenolic compounds which are known to be effective for the treatment of hyper- lipidemia. This study was performed to examine the efficacy of safflower to ameliorate the induced hyper-lipidemia in rats. The results obtained revealed that rats fed on high fat diet (HFD) significantly induced an increase in lipid profile, glucose and some liver enzymes as well as elevation of malondialdehyde (MDA) associated with a significant decrease in high density lipoprotein (HDL-C), glutathione (GSH) content and some antioxidant enzymes activity. However, when rats received HFD containing either raw or irradiated safflower (1% w/w), a significant improvement in the above mentioned parameters was seen. In conclusion, safflower supplementation in diet of rats pointed out to a promising role of safflower, a natural product, on antioxidant enzymes, liver function and lipid profile of hyper-lipidemic rats, regardless if it is irradiated or not

  3. DHA-enriched high–oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial123

    Science.gov (United States)

    Jones, Peter JH; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David JA; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Charest, Amélie; Baril-Gravel, Lisa; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; McCrea, Cindy E; Kris-Etherton, Penny M

    2014-01-01

    Background: It is well recognized that amounts of trans and saturated fats should be minimized in Western diets; however, considerable debate remains regarding optimal amounts of dietary n−9, n−6, and n−3 fatty acids. Objective: The objective was to examine the effects of varying n−9, n−6, and longer-chain n−3 fatty acid composition on markers of coronary heart disease (CHD) risk. Design: A randomized, double-blind, 5-period, crossover design was used. Each 4-wk treatment period was separated by 4-wk washout intervals. Volunteers with abdominal obesity consumed each of 5 identical weight-maintaining, fixed-composition diets with one of the following treatment oils (60 g/3000 kcal) in beverages: 1) conventional canola oil (Canola; n−9 rich), 2) high–oleic acid canola oil with docosahexaenoic acid (CanolaDHA; n−9 and n−3 rich), 3) a blend of corn and safflower oil (25:75) (CornSaff; n−6 rich), 4) a blend of flax and safflower oils (60:40) (FlaxSaff; n−6 and short-chain n−3 rich), or 5) high–oleic acid canola oil (CanolaOleic; highest in n−9). Results: One hundred thirty individuals completed the trial. At endpoint, total cholesterol (TC) was lowest after the FlaxSaff phase (P < 0.05 compared with Canola and CanolaDHA) and highest after the CanolaDHA phase (P < 0.05 compared with CornSaff, FlaxSaff, and CanolaOleic). Low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol were highest, and triglycerides were lowest, after CanolaDHA (P < 0.05 compared with the other diets). All diets decreased TC and LDL cholesterol from baseline to treatment endpoint (P < 0.05). CanolaDHA was the only diet that increased HDL cholesterol from baseline (3.5 ± 1.8%; P < 0.05) and produced the greatest reduction in triglycerides (−20.7 ± 3.8%; P < 0.001) and in systolic blood pressure (−3.3 ± 0.8%; P < 0.001) compared with the other diets (P < 0.05). Percentage reductions in Framingham 10-y CHD risk scores (FRS) from

  4. Evaluation of allelopathic potential of safflower genotypes (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    Motamedi Marzieh

    2016-12-01

    Full Text Available Forty safflower genotypes were grown under normal irrigation and drought stress. In the first experiment, the allelopathic potential of shoot residues was evaluated using the sandwich method. Each genotype residue (0.4 g was placed in a sterile Petri dish and two layers of agar were poured on that. Radish seeds were placed on agar medium. The radish seeds were cultivated without safflower residues as the controls. The length of the radicle, hypocotyl, and fresh biomass weight and seed germination percentages were measured. A pot experiment was also done on two genotypes with the highest and two with the lowest allelopathic activity selected after screening genotypes in the first experiment. Before entering the reproductive phase, irrigation treatments (normal irrigation and drought stress were applied. Shoots were harvested, dried, milled and mixed with the topsoil of new pots and then radish seeds were sown. The pots with safflower genotypes were used to evaluate the effect of root residue allelopathy. The shoot length, fresh biomass weight, and germination percentage were measured. Different safflower genotypes showed varied allelopathic potential. The results of the first experiment showed that Egypt and Iran-Khorasan genotypes caused maximum inhibitory responses and Australia and Iran-Kerman genotypes resulted in minimum inhibitory responses on radish seedling growth. Fresh biomass weight had the most sensitivity to safflower residues. The results of the pot experiment were consistent with the results of in vitro experiments. Residues produced under drought stress had more inhibitory effects on the measured traits. Safflower root residue may have a higher level of allelochemicals or different allelochemicals than shoot residue.

  5. Morphological traits based diversity in safflower (carthamus tinctorius L.)

    International Nuclear Information System (INIS)

    Shinwari, Z.K.; Rehman, H.

    2014-01-01

    Safflower (Carthamus tinctorius L.) one of the world minor oil crops originated in the Middle East. The breeding potential of the safflower genotypes held in the gene-bank of Plant Genetic Resources Institute (PGRI) has not been exploited to date. Present work was carried out to evaluate 122 genotypes collected from various eco-geographical regions/countries of the world. Observations were recorded for eleven quantitative and five qualitative characters to estimate substantial variation and relationship among the genotypes and identify promising accession(s) for traits of economic significance. A significant level of morphological diversity was noticed for a number of traits. The largest variation was recorded for capsules plant-1, seeds capsule-1, seed yield plant-1, plant height, days to flowering initiation and days to maturity. Relatively low level of variability was distinguished in 100-seed weight, capsule diameter, primary branches plant-1, days to flower completion, time of flowering, flower color, leaf shape and spininess. The correlation analysis indicated that seed diameter, capsules plant-1 and seeds capsule-1 had highly significant positive contribution to seed yield plant-1. Only one trait, time of flowering showed negative correlation with seed yield plant-1. Principal component (PC) analysis of 122 safflower germplasm displayed significant variation with PC1 having 26.02% of the total variation, 19.97% for PC2, 12.38% for PC3 and PC4 contributed 11.24% of the total variation and revealed that the characters that mainly distinguish the germplasm are: capsule diameter, capsules plant-1, seeds capsule-1, days to maturity, plant height and time of flowering. Cluster analysis recognized five major clusters. Our findings have an important application for safflower germplasm evaluation and preservation. (author)

  6. Dose response of fish oil versus safflower oil on graft arteriosclerosis in rabbit heterotopic cardiac allografts.

    Science.gov (United States)

    Yun, K L; Fann, J I; Sokoloff, M H; Fong, L G; Sarris, G E; Billingham, M E; Miller, D C

    1991-01-01

    With the advent of cyclosporin A, accelerated coronary arteriosclerosis has become the major impediment to the long-term survival of heart transplant recipients. Due to epidemiologic reports suggesting a salutary effect of fish oil, the dose response of fish oil on graft coronary arteriosclerosis in a rabbit heterotopic cardiac allograft model was assessed using safflower oil as a caloric control. Seven groups of New Zealand White rabbits (n = 10/group) received heterotropic heart transplants from Dutch-Belted donors and were immunosuppressed with low-dose cyclosporin A (7.5 mg/kg/day). Group 1 animals were fed a normal diet and served as control. Group 2, 3, and 4 animals received a daily supplement of low- (0.25 mL/kg/day), medium- (0.75 mL/kg/day), and high- (1.5 mL/kg/day) dose fish oil (116 mg n-3 polyunsaturated fatty acid/mL), respectively. Group 5, 6, and 7 animals were supplemented with equivalent dose of safflower oil (i.e., 0.25, 0.75, and 1.5 mL/kg/day). Oil-supplemented rabbits were pretreated for 3 weeks before transplantation and maintained on the same diet for 6 weeks after operation. The extent of graft coronary arteriosclerosis was quantified using computer-assisted, morphometric planimetry. When the animals were killed, cyclosporin A was associated with elevated plasma total cholesterol and triglyceride levels in the control group. While safflower oil prevented the increase in plasma lipids at all dosages, fish oil ameliorated the cyclosporin-induced increase in total cholesterol only with high doses. Compared to control animals, there was a trend for more graft vessel disease with increasing fish oil dose, as assessed by mean luminal occlusion and intimal thickness. A steeper trend was observed for increasing doses of safflower oil; compared to the high-dose safflower oil group, animals supplemented with low-dose safflower oil had less mean luminal occlusion (16.3% +/- 5.9% versus 41.4% +/- 7.6%, p less than 0.017) and intimal thickness (7

  7. Frying stability of high oleic sunflower oils as affected by composition of tocopherol isomers and linoleic acid content.

    Science.gov (United States)

    Aladedunye, Felix; Przybylski, Roman

    2013-12-01

    The influence of linoleic acid content and tocopherol isomeric composition on the frying performance of high oleic sunflower oil was evaluated during a 14-day restaurant style frying operation. At equal linoleic acid content, no significant difference was observed between high oleic sunflower oil containing only α-tocopherol and the sample containing a mixture of α-, γ-, and δ-isomers as measured by the amount of total polar components, oligomers, anisidine value, and free fatty acids. On the contrary, at similar tocopherol isomeric composition, high oleic sunflower oil containing lower amount of linoleic acid showed superior frying stability compared to the sample with a higher content of linoleic acid, suggesting that the frying performance of high oleic sunflower oil is dictated primarily by the level of linoleic acid, with the tocopherol isomeric composition of the oil having no significant influence. In all oil samples, the loss of γ-tocopherol was higher than the corresponding loss of α-tocopherol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean.

    Science.gov (United States)

    Kulkarni, Krishnanand P; Patil, Gunvant; Valliyodan, Babu; Vuong, Tri D; Shannon, J Grover; Nguyen, Henry T; Lee, Jeong-Dong

    2018-03-01

    The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.

  9. Site and extent of digestion, duodenal flow, and intestinal disappearance of total and esterified fatty acids in sheep fed a high-concentrate diet supplemented with high-linoleate safflower oil.

    Science.gov (United States)

    Atkinson, R L; Scholljegerdes, E J; Lake, S L; Nayigihugu, V; Hess, B W; Rule, D C

    2006-02-01

    Our objective was to determine duodenal and ileal flows of total and esterified fatty acids and to determine ruminal fermentation characteristics and site and extent of nutrient digestion in sheep fed an 80% concentrate diet supplemented with high-linoleate (77%) safflower oil at 0, 3, 6, and 9% of DM. Oil was infused intraruminally along with an isonitrogenous basal diet (fed at 2% of BW) that contained bromegrass hay, cracked corn, corn gluten meal, urea, and limestone. Four crossbred wethers (BW = 44.3 +/- 15.7 kg) fitted with ruminal, duodenal, and ileal cannulas were used in a 4 x 4 Latin square experiment, in which 14 d of dietary adaptation were followed by 4 d of duodenal, ileal, and ruminal sampling. Fatty acid intake increased (linear, P = 0.004 to 0.001) with increased dietary safflower oil. Digestibilities of OM, NDF, and N were not affected (P = 0.09 to 0.65) by increased dietary safflower oil. For total fatty acids (free plus esterified) and esterified fatty acids, duodenal flow of most fatty acids, including 18:2c-9,c-12, increased (P = 0.006 to 0.05) with increased dietary oil. Within each treatment, duodenal flow of total and esterified 18:2c-9,c-12 was similar (P = 0.32), indicating that duodenal flow of this fatty acid occurred because most of it remained esterified. Duodenal flow of esterified 18:1t-11 increased (P = 0.08) with increased dietary safflower oil, indicating that reesterification of ruminal fatty acids occurred. Apparent small intestinal disappearance of most fatty acids was not affected (P = 0.19 to 0.98) by increased dietary safflower oil, but increased (P = 0.05) for 18:2c-9,c-12, which ranged from 87.0 to 97.4%, and for 18:2c-9,t-11 (P = 0.03), which ranged from 37.9% with no added oil to 99.2% with supplemental oil. For esterified fatty acids, apparent small intestinal disappearance was from 80% for 18:3c-9,c-12,c-15 at the greatest level of dietary oil up to 100% for 18:1t-11 and 18:1c-12 with 0% oil. We concluded that

  10. Production of microbial oil with high oleic acid content by Trichosporon capitatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zong, Minhua [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640 (China); Li, Yuanyuan; Chen, Lei [School of Biosciences and Bioengineering, South China University of Technology, Guangzhou 510640 (China)

    2011-01-15

    Microbial oils with high unsaturated fatty acids content, especially oleic acid content, are good feedstock for high quality biodiesel production. Trichosporon capitatum was found to accumulate lipid with around 80% oleic acid and 89% total unsaturated fatty acids content on nitrogen-limited medium. In order to improve its lipid yield, effects of medium components and culture conditions on cell growth and lipid accumulation were investigated. Optimization of media resulted in a 61% increase in the lipid yield of T. capitatum after cultivation at 28 C and 160 rpm for 6 days. In addition, T. capitatum could grow well on cane molasses and afford a lipid yield comparable to that on synthetic nitrogen-limited medium. The biodiesel from the microbial oil produced by T. capitatum on cane molasses displayed a low cold filter plugging point (-15 C), and so T. capitatum might be a promising strain to provide lipid suitable for high quality biodiesel production. (author)

  11. Normal endothelial function after meals rich in olive or safflower oil previously used for deep frying.

    Science.gov (United States)

    Williams, M J; Sutherland, W H; McCormick, M P; Yeoman, D; de Jong, S A; Walker, R J

    2001-06-01

    Polyunsaturated fats are more susceptible to oxidation during heating than monounsaturated fats but their effects on endothelial function when heated are unknown. The aim of this study was to compare the effect of meals rich in heat-modified safflower and olive oils on postprandial flow-mediated endothelium-dependent dilation (EDD) in healthy men. Flow-mediated EDD and glyceryltrinitrate-induced endothelium-independent dilation of the brachial artery were investigated in 14 subjects before and 4 hours after meals rich in olive oil and safflower oil used hourly for deep-frying for 8 hours in a double-blind crossover study design. There were high levels of lipid oxidation products (peroxides and carbonyls) in both heated oils. Plasma triglycerides were markedly increased at 4 hours after heated olive oil (1.26 +/- 0.43 vs 2.06 +/- 0.97 mmol/L) and heated safflower oil (1.44 +/- 0.63 vs 1.99 +/- 0.88 mmol/L). There was no change in EDD between fasting and postprandial studies and the response during the postprandial period was not significantly (p = 0.51) different between the meals (heated olive oil: 4.9 +/- 2.2% vs 4.9 +/- 2.5%; heated safflower oil: 5.1 +/- 3.1% vs 5.6 +/- 3.4%). Meals rich in olive and safflower oils previously used for deep frying and containing high levels of lipid oxidation products increase postprandial serum triglycerides without affecting endothelial function. These findings suggest that relatively short-term use of these vegetable oils for frying may not adversely affect postprandial endothelial function when foods containing the heat-modified oils are consumed.

  12. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil.

    Science.gov (United States)

    Pham, Anh-Tung; Shannon, J Grover; Bilyeu, Kristin D

    2012-08-01

    High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.

  13. Development a method for producing vegetable oil from safflower seeds by pressing in the field of ultrasound

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2015-01-01

    Full Text Available The article shows the prospects of production in agriculture safflower seeds for food and extract biologically active components. The physicochemical composition of safflower, which is rich in unsaturated fatty acids. Safflower oil has a soothing and moisturizing effect, provides a barrier function of the skin, therefore, fatty oil is promising in terms of scientific evidence use in medical practice. In the article the task of developing a set of processes to extract oil from the seeds of safflower and effective use. The ways of processing safflower seed to obtain oil. It is the most productive and promising method for processing seeds of safflower scheme press extruder. Described compression step in the processing of safflower seeds scheme press extruder. Crucial processing technology safflower seeds have two fundamental rheological characteristics of viscosity and elasticity, which depend on the structure of the raw material, the molecular weight distribution, and processing conditions such as temperature, pressure and flow rate. The dependence of the density of its safflower cake moisture concluded that with humidity increase the particle density increases, due to the swelling of colloids grain. Furthermore, the dependence of shear stress and the effective viscosity versus shear rate, it is concluded that with increasing shear rate influence of temperature on the viscosity gradient weakens. The article shows the study of the prospects of the extrusion process in the presence of the ultrasound field and the creation of equipment that takes into account these properties. The use of ultrasound significantly reduces energy consumption and necessary to prevent the molding ion safflower seeds, improves product quality.

  14. A safflower oil based high-fat/high-sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation.

    Science.gov (United States)

    Danneskiold-Samsøe, Niels Banhos; Andersen, Daniel; Radulescu, Ilinca Daria; Normann-Hansen, Ann; Brejnrod, Asker; Kragh, Marie; Madsen, Tobias; Nielsen, Christian; Josefsen, Knud; Fretté, Xavier; Fjaere, Even; Madsen, Lise; Hellgren, Lars I; Brix, Susanne; Kristiansen, Karsten

    2017-05-01

    Omega-6 (n-6) PUFA-rich diets are generally considered obesogenic in rodents. Here, we examined how long-term intake of a high-fat/high-sucrose (HF/HS) diet based on safflower oil affected metabolism, inflammation, and gut microbiota composition. We fed male C57BL/6J mice a HF/HS diet based on safflower oil-rich in n-6 PUFAs-or a low-fat/low-sucrose diet for 40 wk. Compared to the low-fat/low-sucrose diet, intake of the safflower-based HF/HS diet only led to moderate weight gain, while glucose intolerance developed at week 5 prior to signs of inflammation, but concurrent with increased levels of linoleic acid and arachidonic acid in hepatic phospholipids. Intake of the HF/HS diet resulted in early changes in the gut microbiota, including an increased abundance of Blautia, while late changes coincided with altered inflammatory profiles and increased fasting plasma insulin. Analysis of immune cells in visceral fat and liver revealed no differences between diets before week 40, where the number of immune cells decreased in the liver of HF/HS-fed mice. We suggest that a diet-dependent increase in the n-6 to omega-3 (n-3) PUFA ratio in hepatic phospholipids together with gut microbiota changes contributed to early development of glucose intolerance without signs of inflammation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Prevention of diet-induced obesity by safflower oil: insights at the levels of PPARalpha, orexin, and ghrelin gene expression of adipocytes in mice.

    Science.gov (United States)

    Zhang, Zhong; Li, Qiang; Liu, Fengchen; Sun, Yuqian; Zhang, Jinchao

    2010-03-15

    The aim of this study was to investigate the prevention of diet-induced obesity by a high safflower oil diet and adipocytic gene expression in mice. Forty 3-week-old C57BL/6 mice were randomly divided into three groups: control group (CON, 5% lard + 5% safflower oil), high lard group (LAR, 45% lard + 5% safflower oil), and high safflower oil group (SAF, 45% safflower oil + 5% lard). After 10 weeks, 10 mice of the LAR group were switched to high safflower oil diet (LAR-SAF). Ten weeks later, glucose tolerance tests were performed by intraperitoneal injection of glucose. Circulating levels of lipid and insulin were measured and white adipose tissues were taken for gene chip and reverse transcriptase-polymerase chain reaction analysis. The LAR group showed higher body weight, adiposity index, insulin, and lipids than the CON group (P<0.05). The body weight in the LAR-SAF group decreased after dietary reversal. The plasma biochemical profiles decreased in the LAR-SAF and SAF groups (P<0.05) compared with those of the LAR group. The blood glucose level of the LAR-SAF group was reduced during intraperitoneal glucose tolerance test compared with that of the LAR group. The LAR-SAF group had lower levels of Orexin and Ghrelin gene expression, whereas the level of PPARalpha gene expression was significantly enhanced compared with that of the LAR group. So, the SAF diet can alter adipocytic adiposity-related gene expression and result in effective amelioration of diet-induced obesity.

  16. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage.

    Science.gov (United States)

    Higa, R; Kurtz, M; Mazzucco, M B; Musikant, D; White, V; Jawerbaum, A

    2012-05-01

    Maternal diabetes increases the risk of embryo malformations. Folic acid and safflower oil supplementations have been shown to reduce embryo malformations in experimental models of diabetes. In this study we here tested whether folic acid and safflower oil supplementations interact to prevent embryo malformations in diabetic rats, and analyzed whether they act through the regulation of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and nitric oxide (NO) and reactive oxygen species production. Diabetes was induced by streptozotocin administration prior to mating. From Day 0.5 of pregnancy, rats did or did not receive folic acid (15 mg/kg) and/or a 6% safflower oil-supplemented diet. Embryos and decidua were explanted on Day 10.5 of gestation for further analysis of embryo resorptions and malformations, MMP-2 and MMP-9 activities, TIMP-1 and TIMP-2 levels, NO production and lipid peroxidation. Maternal diabetes induced resorptions and malformations that were prevented by folic acid and safflower oil supplementation. MMP-2 and MMP-9 activities were increased in embryos and decidua from diabetic rats and decreased with safflower oil and folic acid supplementations. In diabetic animals, the embryonic and decidual TIMPs were increased mainly with safflower oil supplementation in decidua and with folic acid in embryos. NO overproduction was decreased in decidua from diabetic rats treated with folic acid alone and in combination with safflower oil. These treatments also prevented increases in embryonic and decidual lipid peroxidation. In conclusion, folic acid and safflower oil supplementations interact and protect the embryos from diabetes-induced damage through several pathways related to a decrease in pro-inflammatory mediators.

  17. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait

    Directory of Open Access Journals (Sweden)

    Pham Anh-Tung

    2010-09-01

    Full Text Available Abstract Background The alteration of fatty acid profiles in soybean [Glycine max (L. Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the

  18. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait.

    Science.gov (United States)

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2010-09-09

    The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation

  19. Effect of sucrose and safflower oil preloads on short term appetite and food intake of young men.

    Science.gov (United States)

    Woodend, D M; Anderson, G H

    2001-12-01

    The effects of carbohydrate and fat on satiety have been examined primarily through meal composition studies. The purpose of this study was to compare the effects of pure sucrose and safflower oil, isovolumetric beverage preloads, on appetite (measured every 15 minutes by visual analogue scales) and food intake 60 minutes later. Young men consumed 0, 418, 836 and 1254 kJ of sucrose in the first two experiments and these same doses of safflower oil in the third. Finally, the largest doses of sucrose and safflower oil were compared. Sucrose, but not safflower oil, suppressed average appetite compared with control. In experiment 2, food intake was reduced (psafflower oil significantly suppressed food intake by 480 kJ in the third experiment. When the 1254 kJ doses were compared directly, sucrose suppressed food intake by 653 kJ compared with control where as safflower oil did not. It is concluded that, in the short-term, sucrose produces a dose dependent reduction in appetite and food intake that is greater than that produced by safflower oil.

  20. Effect of Safflower Oil on Concentration of Conjugated Linoleic Acid of Kefir Prepared by Low-fat Milk.

    Science.gov (United States)

    Farsad-Naeimi, Alireza; Imani, Saeid; Arefhosseini, Seyed R; Alizadeh, Mohammad

    2015-01-01

    Conjugated linoleic acid (CLA) is a special fatty acid in dairy products with unique antioxidant and anti-cancerous effects. Kefir, a milk product, comprises normalized homogenized cow's milk, the fructose and lactulose syrup as well as a symbiotic starter which has improved probiotic characteristics. The study was aimed to discuss patents and to examine the effect of different safflower oil concentrations on CLA content of the kefir drink prepared by low-fat milk. Safflower oil was added at 0.1, 0.3 and 0.5% (V/V) to low-fat cow's milk and six formulations of kefir samples were prepared. The CLA content of the kefir products was measured at pH=6.0 and pH=6.8 by gas chromatography. Acid and bile tolerance of bacterial microenvironment in the products were also determined. Substitution of natural fat content of milk with safflower oil resulted in proportional increase in the CLA contents of kefir in a dose dependent manner. The highest concentration of CLA was found under 0.5% (V/V) of safflower oil at pH 6.0 and temperature of 37 °C. Adding the Safflower oil into milk used for kefir production, increased CLA content from 0.123 (g/100 g) in pure safflower free samples to 0.322 (g/100 g) in samples with 0.5% (V/V) of safflower oil. The current study revealed that substitution of safflower oil with natural fat of cow's milk may help the production of kefir samples with remarkable increase in CLA content of final product.

  1. Association Mapping for Important Agronomic Traits in Safflower (Carthamus tinctorius L.) Core Collection Using Microsatellite Markers

    OpenAIRE

    Heena Ambreen; Shivendra Kumar; Amar Kumar; Manu Agarwal; Arun Jagannath; Shailendra Goel

    2018-01-01

    Carthamus tinctorius L. (safflower) is an important oilseed crop producing seed oil rich in unsaturated fatty acids. Scarcity of identified marker-trait associations is a major limitation toward development of successful marker-assisted breeding programs in safflower. In the present study, a safflower panel (CartAP) comprising 124 accessions derived from two core collections was assayed for its suitability for association mapping. Genotyping of CartAP using microsatellite markers revealed sig...

  2. Cocoa butter and safflower oil elicit different effects on hepatic gene expression and lipid metabolism in rats.

    Science.gov (United States)

    Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra

    2009-11-01

    The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.

  3. Types of gene effects governing the inheritance of oleic and linoleic ...

    African Journals Online (AJOL)

    Oleic and linoleic acids are major fatty acids in peanut determining the quality and shelf-life of peanut products. A better understanding on the inheritance of these characters is an important for high-oleic breeding programs. The objective of this research was to determine the gene actions for oleic acid, linoleic acid, the ratio ...

  4. Combining ability × environment interaction and genetic analysis for agronomic traits in safflower (Carthamus tinctorius L.: biplot as a tool for diallel data

    Directory of Open Access Journals (Sweden)

    Pooran Golkar

    2017-09-01

    Full Text Available Combining ability × environment interaction is considerable to identify the effect of environment on the combining ability and gene action of the traits to select appropriate parents for safflower hybrid production. The 36 genotype (28 F2 progenies of eight-parent half-diallel crosses across 8 parental genotypes of safflower were studied to investigate the mentioned parameters across different geographical regions of Iran. The results indicated significant differences among parents for general and specific combining ability, except for seeds per capitulum across three environments. The overall results indicated that K21 and Mex.22-191 were excellent parents with greater general combining ability for the improvement of seed yield in safflower. The K21 × Mex.22-191 hybrid could be, therefore, employed for the production of high seed yield in safflower breeding. The estimates of genetic variance components recommended the importance of additive- dominance genetic effects that contributed to variation in yield per plant. Such gene action expression for seed yield needs auxiliary methods based on hybridization and selection for seed yield advancement in safflower.

  5. Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats.

    Science.gov (United States)

    Lo, Hui-Chen; Wang, Yao-Horng; Chiou, Hue-Ying; Lai, Shan-Hu; Yang, Yu

    2010-07-01

    Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-alpha and interferon-gamma and increased renal transforming growth factor-beta. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.

  6. Tellurium-123m-labeled isosteres of palmitoleic and oleic acids show high myocardial uptake

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.; Grigsby, R.A.; Irgolic, K.J.

    1979-01-01

    These studies were directed at determining if the telluro fatty acids prepared by the isosteric replacement of the Δ 9 -double bonds of oleic and palmitoleic acids with /sup 123m/Te would show heart uptake in rats. The isostere of palmitoleic acid, 9-tellurapentadecanoic acid(II), was prepared by basic hydrolysis of the product formed by the coupling of /sup 123m/Te-sodium hexyl tellurol with methyl-8-bromooctadecanoate. Similarly, the isostere of oleic acid, 9-telluraheptadecanoic acid(IV), was prepared by the same route beginning with the reaction of /sup 123m/Te-sodium octyl tellurol with methyl-8-bromooctadecanoate. Both /sup 123m/Te-(II) and /sup 123m/Te-(IV) showed remarkably high heart uptake in rats (2 to 3% dose/gm) ten minutes after intravenous administration, and the heart/blood ratios were high (20-30/1). Finally, the hearts of rats injected with /sup 123m/Te-(IV) have been clearly imaged with a rectilinear scanner

  7. Sds-page based genetic divergence in safflower (carthamus tinctorius l.)

    International Nuclear Information System (INIS)

    Shinwari, Z.K.; Rehman, H.; Rabbani, M.A.

    2014-01-01

    Safflower (Carthamus tinctorius L.) germplasm, comprising of 116 accessions was characterized using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) of seed storage proteins. The germplasm was acquired from different countries of the world. Total seed proteins were separated through electrophoresis polyacrylamide gels using standard protocols. Eighteen (60%) of the protein bands detected were polymorphic, the rest being monomorphic. Eight bands (14, 17, 18, 19, 20, 23, 24 and 25) were more than 80% common in all accessions. Similarity coefficients among the accessions ranged from 0.00 to 1.00. Accessions 16327 and 26752 were the most divergent genotypes having maximum dissimilarity with all the other accessions used. Unweighted Pair Group Method with Arithmetic averages (UPGMA) was used which is based on dissimilarity matrix. The dendrogram obtained separated all accessions into four main clusters (I, II, III and IV) and two independent individual genotypes. Four major clusters comprised of 23, 75, 8 and 8 accessions, respectively. This technique did not reveal genetic variability of significant value in safflower genotypes, hence advanced molecular and biochemical markers are recommended for further studies. This study will be helpful for the future breeding program of safflower accessions. (author)

  8. Development a method for producing vegetable oil from safflower seeds by pressing in the field of ultrasound

    OpenAIRE

    S. T. Antipov; S. V. Shakhov; A. N. Martekha; A. A. Berestovoy

    2015-01-01

    The article shows the prospects of production in agriculture safflower seeds for food and extract biologically active components. The physicochemical composition of safflower, which is rich in unsaturated fatty acids. Safflower oil has a soothing and moisturizing effect, provides a barrier function of the skin, therefore, fatty oil is promising in terms of scientific evidence use in medical practice. In the article the task of developing a set of processes to extract oil from the seeds of saf...

  9. Inheritance of carthamin and carthamidin in safflower (Carthamus ...

    Indian Academy of Sciences (India)

    reviewer

    as an important alternative to the synthetic dyes (Jadhav and Joshi 2015). ... Safflower carthamin is widely used as stain coloring in foods such as ice-cream, jelly and soup, and as an additive in beverages and cosmetics (Singh 2007, ...

  10. Effect of nitrogen on Safflower physiology and productivity ...

    African Journals Online (AJOL)

    , but its physiological response to agronomic inputs has yet to be fully evaluated. The effect of fertiliser on the physiology and production of Safflower grown in pots filled with standard grade perlite inside a semi-controlled glass house was ...

  11. Assay for the developmental toxicity of safflower (Carthamus tinctorius L. to zebrafish embryos/larvae

    Directory of Open Access Journals (Sweden)

    Qing Xia

    2017-01-01

    Conclusion: Safflower exhibits developmental toxicity for zebrafish embryos/larvae. The developing heart was speculated as the target organ of toxicity. Oxidative stress and increased apoptosis have roles in the developmental toxicity of safflower. This article provides a novel method to research the teratogenicity and possible mechanisms of toxicity of traditional Chinese medicines that are prohibited or contraindicated in pregnant women.

  12. CLA does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects.

    Science.gov (United States)

    Pfeuffer, Maria; Fielitz, Kerstin; Laue, Christiane; Winkler, Petra; Rubin, Diana; Helwig, Ulf; Giller, Katrin; Kammann, Julia; Schwedhelm, Edzard; Böger, Rainer H; Bub, Achim; Bell, Doris; Schrezenmeir, Jürgen

    2011-02-01

    Conjugated linoleic acid (CLA) showed a wide range of beneficial biological effects with relevance for cardiovascular health in animal models and humans. Most human studies used olive oil as a reference. This study assessed the effect of CLA as compared with safflower oil on endothelial function and markers of cardiovascular risk in overweight and obese men. Heated safflower oil and olive oil were given for additional descriptive control. Eighty-five overweight men (aged 45-68 years, body mass index 25-35 kg/m(2)) were randomized to receive 4.5 g/d of the CLA isomeric mixture, safflower oil, heated safflower oil, or olive oil in a 4-week double-blind study. Endothelial function was assessed by peripheral arterial tonometry (PAT) index determination in the fasting and postprandial state (i.e., 4 hours after consumption of a fat- and sucrose-rich meal). CLA as compared with safflower oil consumption did not impair fasting or postprandial PAT index but decreased body weight. CLA as compared with safflower oil did not change total, low-density lipoprotein (LDL), or high-density lipoprotein (HDL) cholesterol; triglycerides; insulin sensitivity indices; C-reactive protein; soluble adhesion molecules; oxidized LDL; lipoprotein a (Lp[a]); paraoxonase; or platelet-activating factor acetylhydrolase (PAF-AH) activity, but significantly reduced arylesterase activity and increased concentrations of the F(2)-isoprostane 8-iso-prostaglandin F (PGF)(2α). CLA did not impair endothelial function. Other parameters associated with metabolic syndrome and oxidative stress were not changed or were slightly improved. Results suggest that CLA does not increase cardiovascular risk. Increased F(2)-isoprostane concentrations in this context may not indicate increased oxidative stress.

  13. Impact of irrigation intervals, nitrogen fertilizer levels and heritability on spineless performance in safflower genotypes

    International Nuclear Information System (INIS)

    Ragab, A.I.; Kassem, M.

    2003-01-01

    The present study was conducted to study the impact of irrigation intervals, nitrogen fertilizer levels on spineless percentages, meanwhile, heritability and genetic gain were determind for further selection for eight safflower genotype, during 1998/1999-1999/2000 seasons, at nuclear research center-inshas. Concerning irrigation intervals, results showed that spineless percentages of safflower genotypes were markedly increased with the increasing of irrigation intervals, this eans that increase of drought conditions leds to increase the spineless percentages in all the genotypes. Regarding nitrogen fertilizer levels, results exhibited that spineless percentages were increased with the increasing of nitrogen fertilizer levels for all the studied genotypes. Combined analysis of variance chowed highly significant effect for irrigation intervals, fertilizer levels, years and genotypes for spineles trait. The first order interaction, second order interaction and third order interaction were highly significant suggesting that spineless trait was affected the environmental factors

  14. Drought Tolerance of Wild and Cultivated Species of Safflower and Assessment of Morphological Variation

    Directory of Open Access Journals (Sweden)

    R Shiravand

    2015-04-01

    Full Text Available Wild species of crop plants carry useful genes which can be used for breeding programs. This study was performed to investigate genetic variation of 46 genotypes from five Carthamus species and to evaluate their drought tolerance under field conditions (normal and deficit moisture environments during 2011at Isfahan university of technology research farm. Results indicated that safflower species had different response to drought stress. Results showed that drought stress significantly reduced seed yield in C. tinctorius and C. palaestinus. The wild species of C. palaestinus had higher seed yield, its component and oil percent compared other species in both moisture conditions. Drought tolerance indice (STI showed that C. palaestinus had the highest drought tolerance. Cluster analysis based on agro-morphological traits indicated that three species C. tinctorius, C palaestinu and C. oxyacanthus had the most similarity among studied species. Finally in respect to high hybridization of two main safflower relatives C. palaestinus (because high STI and C. oxyacanthus (because high stability under drought condition are suitable source for transferring drought tolerance genes to cultivated species.

  15. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    International Nuclear Information System (INIS)

    Bootello, M.A.; Garces, R.; Martinez-Force, E.; Salas, J.J.

    2016-01-01

    The composition and distribution of fatty acids in triacylglycerol (TAG) molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the Sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.

  16. Development of a method and technology for obtaining vegetable oil from safflower seeds

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2017-01-01

    Full Text Available The article is designed and engineered compact line for processing grain safflower, which used the equipment of the increased efficiency, implementing progressive processes with application of modern physical methods of treatment. This line includes bucket Elevator (Noria, a receiving hopper , the air-sieve separator , intermediate tank, Trier (osgoodby and qualitronic, stone-dividing machine and separator for separation of Caucalis lappula, screw conveyor, intermediate bunker, peeler, oil press machines, the device for the deposition of oil (the sump, pump, frame filter. The process of collapse in the grinding pilot plant, in which the destruction of the epithelial layer of the shell is due to the fact that the compression stress in the impact zone exceeds the limit of elastic deformation of the shell of the grain. Conducted sieve analysis, which was studied granulometric composition fed to the compression of the particles of safflower seed , in this case to characterize the granulometric composition of the raw material, consisting of particles of irregular shape, used the concept of equivalent diameter. As a result of the experiments was the dependence of the equivalent particle diameter from the diameter of the sieve. Since the degree of extraction of safflower seed are hugely influenced by the moisture source of the product, was therefore carried out experimental studies of compaction with different moisture content of the seeds , and with the addition of Luz-Ki. From the analysis of graphic dependences were established a range of optimum moisture safflower seed 8,5--10%, providing the lowest residual oil content and hence the greatest yield of oil. Also managed to significantly increase the efficiency of extraction of oil by adding safflower seed pre-milled husks, which allowed to obtain cake with a residual oil content of 12% when you multiply pre-pressing and to 6% at the final extraction

  17. Compact oleic acid in HAMLET.

    Science.gov (United States)

    Fast, Jonas; Mossberg, Ann-Kristin; Nilsson, Hanna; Svanborg, Catharina; Akke, Mikael; Linse, Sara

    2005-11-07

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.

  18. Rapid determination of volatile constituents in safflower from Xinjiang and Henan by ultrasonic-assisted solvent extraction and GC–MS

    Directory of Open Access Journals (Sweden)

    Ling-Han Jia

    2011-08-01

    Full Text Available The total volatile components were extracted from safflower by ultrasonic-assisted solvent extraction (USE and their chemical constituents were analyzed by gas chromatography–mass spectrometry (GC–MS to provide scientific basis for the quality control of safflower. Five different solvents (diethyl ether, ethanol, ethyl acetate, dichloromethane and acetone were used and compared in terms of number of volatile components extracted and the peak areas of these components in TIC. The results showed that USE could be used as an efficient and rapid method for extracting the volatile components from safflower. It also could be found that the number of components in the TIC of ethyl acetate extract was more than that in the TIC of other solvent ones. Meanwhile, the volatile components of safflower from Xinjiang Autonomous Region and Henan Province of China were different in chemical components and relative contents. It could be concluded that both the extraction solvents and geographical origin of safflower are responsible for these differences. The experimental results also indicated that USE/GC–MS is a simple, rapid and effective method to analyze the volatile oil components of safflower. Keywords: Safflower, Ultrasonic solvent extraction, Gas chromatography–mass spectrometry (GC–MS

  19. Effect of salinity on growth, biochemical parameters and fatty acid composition in safflower (carthamus tinctorius l.)

    International Nuclear Information System (INIS)

    Javed, S.; Bukhari, S.A.; Mahmood, S.; Iftikhar, T.

    2014-01-01

    The aim of the present project is to investigate the effect of salinity on growth, biochemical parameters and fatty acid composition in six varieties of safflower as well as identification of stress tolerant variety under saline (8 d Sm-1) condition. It was observed that salinity significantly decreased the dry weight and fresh weight of safflower varieties. Nitrate reductase (NRA) and nitrite reductase (NiRA) activities were also reduced in response to salinity in all safflower genotypes but Thori-78 and PI-387820 showed less reduction which could be a useful marker for selecting salt tolerant varieties. Under salinity stress, total free amino acids, reducing, non reducing sugars and total sugars increased in all varieties. Accumulation of sugars and total free amino acids might reflect a salt protective mechanism and could be a useful criterion for selecting salt tolerant variety. Comparison among safflower genotypes indicated that Thori-78 and PI-387820 performed better than the others and successful in maintaining higher NRA, NiRA and other metabolites thus were tolerant to salinity. Differential effect upon fatty acid synthesis was observed by different varieties under salinity stress but PI-170274 and PI-387821 varieties better maintained their fatty acid composition. It can be concluded from present studies that biochemical markers can be used to select salinity tolerant safflower varieties. (author)

  20. 7 CFR 457.125 - Safflower crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... substances or conditions that are identified by the Food and Drug Administration or other public health... to uninsured causes; or (3) Drying, handling, processing, or any other costs associated with normal harvesting, handling, and marketing of safflower. We may obtain values per pound from any buyer of our choice...

  1. Coconut oil enhances tomato carotenoid tissue accumulation compared to safflower oil in the Mongolian gerbil ( Meriones unguiculatus ).

    Science.gov (United States)

    Conlon, Lauren E; King, Ryan D; Moran, Nancy E; Erdman, John W

    2012-08-29

    Evidence suggests that monounsaturated and polyunsaturated fats facilitate greater absorption of carotenoids than saturated fats. However, the comparison of consuming a polyunsaturated fat source versus a saturated fat source on tomato carotenoid bioaccumulation has not been examined. The goal of this study was to determine the influence of coconut oil and safflower oil on tomato carotenoid tissue accumulation in Mongolian gerbils ( Meriones unguiculatus ) fed a 20% fat diet. Coconut oil feeding increased carotenoid concentrations among many compartments including total carotenoids in the serum (p = 0.0003), adrenal glandular phytoene (p = 0.04), hepatic phytofluene (p = 0.0001), testicular all-trans-lycopene (p = 0.01), and cis-lycopene (p = 0.006) in the prostate-seminal vesicle complex compared to safflower oil. Safflower oil-fed gerbils had greater splenic lycopene concentrations (p = 0.006) compared to coconut oil-fed gerbils. Coconut oil feeding increased serum cholesterol (p = 0.0001) and decreased hepatic cholesterol (p = 0.0003) compared to safflower oil. In summary, coconut oil enhanced tissue uptake of tomato carotenoids to a greater degree than safflower oil. These results may have been due to the large proportion of medium-chain fatty acids in coconut oil, which might have caused a shift in cholesterol flux to favor extrahepatic carotenoid tissue deposition.

  2. Medical uses of Carthamus tinctorius L. (Safflower): a comprehensive review from Traditional Medicine to Modern Medicine.

    Science.gov (United States)

    Delshad, Elahe; Yousefi, Mahdi; Sasannezhad, Payam; Rakhshandeh, Hasan; Ayati, Zahra

    2018-04-01

    Carthamus tinctorius L. , known as Kafesheh (Persian) and safflower (English) is vastly utilized in Traditional Medicine for various medical conditions, namely dysmenorrhea, amenorrhea, postpartum abdominal pain and mass, trauma and pain of joints. It is largely used for flavoring and coloring purposes among the local population. Recent reviews have addressed the uses of the plant in various ethnomedical systems. This review was an update to provide a summary on the botanical features, uses in Iranian folklore and modern medical applications of safflower. A main database containing important early published texts written in Persian, together with electronic papers was established on ethnopharmacology and modern pharmacology of C. tinctorius. Literature review was performed on the years from 1937 to 2016 in Web of Science, PubMed, Scientific Information Database, Google Scholar, and Scopus for the terms "Kafesheh", "safflower", "Carthamus tinctorius", and so forth. Safflower is an indispensable element of Iranian folklore medicine, with a variety of applications due to laxative effects. Also, it was recommended as treatment for rheumatism and paralysis, vitiligo and black spots, psoriasis, mouth ulcers, phlegm humor, poisoning, numb limbs, melancholy humor, and the like. According to the modern pharmacological and clinical examinations, safflower provides promising opportunities for the amelioration of myocardial ischemia, coagulation, thrombosis, inflammation, toxicity, cancer, and so forth. However, there have been some reports on its undesirable effects on male and female fertility. Most of these beneficial therapeutic effects were correlated to hydroxysafflor yellow A. More attention should be drawn to the lack of a thorough phytochemical investigation. The potential implications of safflower based on Persian traditional medicine, such as the treatment of rheumatism and paralysis, vitiligo and black spots, psoriasis, mouth ulcers, phlegm humor, poisoning, numb

  3. Investigation of the Effects of Irrigation and Nutrient Treatments on Biophysical and Biomechanical Properties of Safflower Seed

    Directory of Open Access Journals (Sweden)

    M Feyzollahzadeh

    2013-02-01

    Full Text Available Safflower is a strategic plant regarding to its valuable nutrition value (45% extractable oil and industrial uses. Due to massive import of edible oil to the country as well as high potential for safflower cultivation, the research on production of safflower for oil extrusion purpose is of remarkable importance. The design of various processing and oil extraction units and also their optimization which are in relation to seed attributes is essential. In this paper the effects of different irrigation and nutrient treatments on some important physical and mechanical properties of IL111 varieties of safflower seed were investigated. The measured properties included size, mass, volume, surface area, arithmetic and geometric mean diameter, sphericity, bulk and true densities, porosity, static and dynamic coefficient of friction, rupture force, deformation at rupture point, rupture energy, modulus of elasticity and seed hardness. The results indicated a significant effect of treatments on the biophysical and biomechanical properties at p ≤ 0.01. The maximum seed mass, geometric mean diameter and rupture energy were obtained when the (cg treatment applied i.e. “Cut-off irrigation at the growth stage and bio sulfur nutrition”. Seed mass was found to be 0.040 gr to 0.055 gr. Results also showed a significant effect of geometric mean diameter on mass and rupture energy and also mass on seed hardness. Direct correlations observed between seed mass and rupture energy, which indicates that for larger and heavier seeds, much more energy required for oil extraction. The maximum rupture energy was measured as 0.033 J.

  4. Overexpression of CtCHS1 Increases Accumulation of Quinochalcone in Safflower

    Directory of Open Access Journals (Sweden)

    Dandan Guo

    2017-08-01

    Full Text Available Carthami flos, the dried petal of safflower (Carthamus tinctorius L. has been widely used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases, in which quinochalcone glucosides such as hydrosafflower yellow A (HSYA, carthamin are uniquely present and have been identified as active compounds. In the present study, through sequencing of a safflower floret cDNA library and subsequent microarray analysis, we found 23 unigenes (5 PALs, 1 C4Hs, 5 4CLs, 6 CHSs, 2 CHIs, 2 DFRs, 2 FLSs involved in flavonoid pathway, of which 4 were up-regulated differentially during quinochalcone glucosides accumulation with the floret developing stage. The up-regulated genes were verified by PCR methods. Considering chalcone synthase are entry enzyme in flavonoid biosynthesis, CHS1 was focused on target gene to verify its function furtherly. Bioinformation analysis showed that CHS1 shared 86.94% conserved residues with CHS from other plants. Subcellular localization showed that CtCHS1 was localized in cytoplasm in onion epidermal cells. The transgenic safflower plant with overexpression CtCHS1 by Agrobacterium-mediated pollen-tube pathway method was firstly generated. The results present that expression of PAL2, PAL3, CHS1, CHS4, CHS6 increased and expression of CHI1 and CHI2 decreased in the transgenic plant floret. Meanwhile, the accumulation of quinochalcone glucosides increased by ∼20–30% and accumulation of quercetin-3-β-D-glucoside and quercetin decreased by 48 and 63% in the transgenic plant floret. These results suggested that CtCHS1 played an important role in quinochalcone glucosides biosynthesis rather than flavonol biosynthesis. These results also demonstrated that the pollen-tube pathway method was an efficient method for gene transformation in safflower. Our study will provide a deep understanding of potential synthetic genes involved in quinochalcone biosynthetic pathway.

  5. Transfer of oleic acid between albumin and phospholipid vesicles

    International Nuclear Information System (INIS)

    Hamilton, J.A.; Cistola, D.P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by 13 C NMR spectroscopy and 90% isotopically substituted [1- 13 C]oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles, the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with ≥80% of the oleic acid associated with albumin at pH 7.4; association was ≥90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The 13 C NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data

  6. Antioxidant enzymes as bio-markers for copper tolerance in safflower

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... tolerance in safflower (Carthamus tinctorius L.) Ali Ahmed1, Ammarah ... Values are mean of three replicates, bars indicate ± standard errors. .... The support from the Higher Education Commission,. Islamabad, Pakistan ...

  7. Approaches to the determination of antioxidant activity of extracts from bee bread and safflower leaves and flowers

    Directory of Open Access Journals (Sweden)

    Nataliia Hudz

    2017-01-01

    Full Text Available The main objective of this study was to develop approaches for the determination of total antioxidant activity of natural products (bee bread and safflower extracts using DPPH radical scavenging assay. Considering that analytical procedures and results related to this assay and reported by many authors are significally differed between each other and depend on many factors (the nature of tested extracts, the nature of solvents for extraction, a reaction time of DPPH with a sample, DPPH solvents and concentration, ratio between DPPH and an extract, etc., the methodology of the evaluation of antioxidant capacity of different origin extracts by DPPH radical scavenging assay was developed. Ascorbic acid (AA was used as standard antioxidant and the correlation between the percentage of DPPH scavenging and AA concentration was determined at two different initial absorbances of DPPH solution. Average concentration of AA which inhibited 50% of DPPH radicals (IC50 was equal to 156.0 - 171.26 µg.mL-1. The reaction kinetics of DPPH inhibition by bee bread and safflower extracts was described by the curves of the dependence of the total antioxidant activity on time with squared correlation coefficients (R2 in the range of 0.89 - 0.98. The reaction times for these extracts were from 40 to 70 min at the correct ratio of volumes between the tested extracts and a DPPH solution. These studies demonstrated that the extracts obtained from bee bread of 2016 year of pollen collection had significantly higher the total antioxidant activity compared with the extracts of bee bread of pollen collection of 2015 considering the ratio of bee bread and the solvent in the extracts and volume of the extract for the procedure. This fact is explained not only botanical origin bun also the time of the storage of bee bread before the preparation of extracts. There was not found significant differences in the total antioxidant activity of extracts from flowers of safflower sown

  8. Study of safflower on blood lactate concentration and exercise ...

    African Journals Online (AJOL)

    owner

    2011-08-17

    Aug 17, 2011 ... Effects of safflower extracts on anti-fatigue and exercise function of mice were studied in this paper. ... in the low-dose group was significantly longer (p < 0.05) when ... and humidity (50 ± 2%), and with a 12-h light–dark cycle.

  9. Enviromental Effects on Oleic Acid in Soybean Seed Oil of Plant Introductions with Elevated Oleic Concentration

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr.] oil with oleic acid content >500 g per kg is desirable for a broader role in food and industrial uses. Seed oil in commercially grown soybean genotypes averages about 230 g per kg oleic acid (18:1). Some maturity group (MG) II to V plant introductions (PIs) have el...

  10. Effects of extracts and isolated compounds from safflower on some index of promoting blood circulation and regulating menstruation.

    Science.gov (United States)

    Yao, Dong; Wang, Zheng; Miao, Li; Wang, Linyan

    2016-09-15

    Carthamus tinctorius is used as one of the Traditional Chinese Medicine (TCM) materials in prescriptions and composite to promote blood circulation to remove blood stasis, regulate menstruation and alleviate pain for over 2500 years. Modern pharmacological experiments have demonstrated that safflower has wide-reaching biological activities, including dilating coronary artery, modulating immune system, improving myocardial ischemia, anticoagulation and thromboprophylaxis, antioxidation, antihypoxic, antiaging, antifatigue, antiinflammation, anti-hepatic fibrosis, antitumor, analgesia, etc. Platelet aggregation of safflower extract and main constituents in safflower were determined by PAF-induced or ADP-induced platelet aggregation in vitro. Anticoagulation activity was measured by clotting assay of thrombin time (TT), prothrombin time (PT) and activated partial thromboplastin time (APTT) according to the methods provided by the biological reagents provider (Sun Biochemical). Antioxidant effects of safflower were assessed using DPPH radical-scavenging activity test, ABTS radical-scavenging activity test and ferric reducing antioxidant power test. In addition, rats ovary granulosa cell proliferation activity was used for the bio-activity index on regulate menstruation of safflower. Safflower extract at the concentration of 0.7g/mL (P<0.001) and 0.5g/mL (P<0.01) had significantly antagonistic effect on PAF-induced platelet aggregation, compared with negative control. And the anti-platelet aggregation of 0.7g/mL safflower extract was significantly stronger than that of positive control (P<0.001). 0.7g/mL of hydroxysafflor yellow A (P<0.01), anhydrosafflor yellow B (P<0.05), 6-hydroxykaempferol-3-O-rutinoside (P<0.05), keampferol-3-O-β-rutinoside (P<0.01) had significant effect on platelet aggregation compared with negative control. Safflower extract at the concentration of 0.5g/mL (P<0.001) and 0.125g/mL (P<0.01) could significantly inhibit ADP-induced platelet

  11. Safflower (Carthamus tinctorius L. yield as affected by nitrogen fertilization and different water regimes

    Directory of Open Access Journals (Sweden)

    Reginaldo Ferreira-Santos

    2018-04-01

    Full Text Available Due to its origin and hardiness, safflower is usually cultivated in low-fertility soils with few inputs and no irrigation. In Brazil, little is known about its response to nitrogen (N and irrigation. This study was carried out near the city of Engenheiro Coelho, SP, Brazil, in 2014, in order to determine the effect of increasing nitrogen application rates (0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550 and 600 kg ha-1 on safflower cultivation under irrigation and rainfed conditions. The use of irrigation during drought periods allowed stress reduction and significantly increased yield components and grain yield. Safflower yield was influenced by the interaction between water regimes and nitrogen rates. Grain yield may vary depending on several factors, however, maximum yield was achieved with rates of 208 and 214 kg N ha-1 under irrigation and rainfed conditions, respectively. For oil yield, 200 kg N ha-1 were sufficient, regardless of the water regime.

  12. Rumen microbial response in production of CLA and methane to safflower oil in association with fish oil or/and fumarate.

    Science.gov (United States)

    Li, Xiang Z; Long, Rui J; Yan, Chang G; Lee, Hong G; Kim, Young J; Song, Man K

    2011-06-01

    Supplementation effect of fish oil and/or fumarate on production of conjugated linoleic acid (CLA) and methane by rumen microbes was examined when incubated with safflower oil. One hundred and twenty milligrams of safflower oil (SO), safflower oil with 24 mg fish oil (SOFO), safflower oil with 24 mmol/L fumarate (SOFA), or safflower oil with 24 mg fish oil and 24 mmol/L fumarate (SOFOFA) were added to the 90 mL culture solution. The culture solution was also made without any supplements (control). The SOFA and SOFOFA increased pH and propionate (C3) compared to other treatments from 3 h incubation time. An accumulated amount of total methane (CH(4) ) for 12 h incubation was decreased by all the supplements compared to control. The concentrations of c9,t11CLA for all the incubation times were increased in the treatments of SOFO, SOFA and SOFOFA compared to SO. The highest concentration of c9,t11CLA was observed from SOFOFA among all the treatments at all incubation times. Overall data indicate that supplementation of combined fumarate and/or fish oil when incubated with safflower oil could depress CH(4) generation and increase production of C(3) and CLA under the condition of current in vitro study. © 2011 The Authors; Animal Science Journal © 2011 Japanese Society of Animal Science.

  13. A butter diet induces higher levels of n-3 PUFA and of n-3/n-6 PUFA ratio in rat serum and hearts than a safflower oil diet.

    Science.gov (United States)

    Hirai, K; Ozeki, Y; Nakano, T; Takezoe, R; Nakanishi, M; Asano, Y; Higuchi, H

    2001-01-01

    The effects of a 47-week diet of butter or safflower oil as fat in combination with casein or soy protein as protein were observed for the serum concentrations of lipids and fatty acid compositions in rat serum and heart. Serum total cholesterol (Chol) did not differ among the four experimental diet groups. In the butter groups, significantly higher low-density lipoprotein (LDL)-Chol and lower high-density lipoprotein (HDL)-Chol were observed than in the safflower oil groups (psafflower oil groups (psafflower oil groups, the butter groups showed higher n-3 polyunsaturated fatty acids (PUFA) contents and lower n-6 PUFA contents in serum and the hearts (psafflower oil groups of under 0.01 in serum and 0.02 and 0.03 in the hearts (safflower oil-casein diet and safflower oil-soy protein diet, respectively) (psafflower oil diet in rat serum and hearts over a long feeding period.

  14. Hymenopterous parasitoids attacking Acanthiophilus helianthi Rossi (Diptera: Tephritidae pupae in Kohgiluyeh Safflower farms of Iran

    Directory of Open Access Journals (Sweden)

    K. Saeidi

    2016-12-01

    Full Text Available The Safflower capsule fly (SCF, Acanthiophilus helianthi Rossi (Diptera: Tephritidae is the most destructive insect pest attacking the Safflower Carthamus tinctorius L. plant which are cultivated as an oil crop. It is mainly controlled through application of broad-spectrum insecticides, which can adversely affect safflower farms ecosystem and consequently human health. Since a first step in setting up an integrated pest management program is to assess the biological control agents within the ecosystem. Therefore, in this research work the pupal parasitoids of Safflower capsule fly a main insect pest attacking Safflower plants were identified. The impact of these parasitoids against this pest was evaluated on the varying pest generations and within different locations in Kohgiluyeh province during 2008-2009 seasons. Pupal parasitoid adults of SCF were recorded from fieldreared pupae, which had been collected from heavily infested small flower heads of the first generation as well from large flower heads of the second and third generations. Rate of parasitism on A. helianthi pupae was estimated as the number of parasitoids over the total count of parasitoids and flies. Ten hymenopterous species belonging to different families parasitizing insect pupae were screened as follows: Bracon hebetor (Spinola, 1808 and Bracon luteator (Spinola, 1808 (Braconidae; Isocolus tinctorious (Melika and Gharaei, 2006 (Cynipidae; Pronotalia carlinarum (Szelenyi and Erdos, 1951 (Eulophidae; Eurytoma acroptilae (Zerova, 1986 (Eurytomidae; Ormyrus orientalis (Walker, 1871 (Ormyridae; Colotrechnus viridis (Masi, 1921 and Pteromalus sp. (Walker, 1976 (Pteromalidae; and Antistrophoplex conthurnatus (Zerova, 2000 and Microdontomenus annulatus (Masi, 1899 (Torymidae. The average parasitization rate was 23±1 as revealed through the present study. The highest parasitization rate occurred during the first generation in all localities tested, as well as in years. Statistical

  15. Physiological response and productivity of safflower lines under water deficit and rehydration.

    Science.gov (United States)

    Bortolheiro, Fernanda P A P; Silva, Marcelo A

    2017-01-01

    Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L.), a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  16. Physiological response and productivity of safflower lines under water deficit and rehydration

    Directory of Open Access Journals (Sweden)

    FERNANDA P.A.P. BORTOLHEIRO

    2017-12-01

    Full Text Available ABSTRACT Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L., a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  17. Cercosporoid leaf pathogens from whorled milkweed and spineless safflower in California

    NARCIS (Netherlands)

    Koike, S.K.; Baameur, A.; Groenewald, J.Z.; Crous, P.W.

    2011-01-01

    Two cercosporoid species are respectively described from Mexican whorled milkweed (Asclepias fascicularis), and spineless safflower (Carthamus tinctorius) from California. Passalora californica represents a new pathogen on Asclepias fascicularis, while Ramularia cynarae is confirmed on Carthamus

  18. Effects of dietary coconut oil, butter and safflower oil on plasma lipids, lipoproteins and lathosterol levels.

    Science.gov (United States)

    Cox, C; Sutherland, W; Mann, J; de Jong, S; Chisholm, A; Skeaff, M

    1998-09-01

    The aim of this present study was to determine plasma levels of lathosterol, lipids, lipoproteins and apolipoproteins during diets rich in butter, coconut fat and safflower oil. The study consisted of sequential six week periods of diets rich in butter, coconut fat then safflower oil and measurements were made at baseline and at week 4 in each diet period. Forty-one healthy Pacific island polynesians living in New Zealand participated in the trial. Subjects were supplied with some foods rich in the test fats and were given detailed dietary advice which was reinforced regularly. Plasma lathosterol concentration (P safflower oil diets compared with butter diets. Plasma total cholesterol, HDL cholesterol and apoA-levels were also significantly (Psafflower oil compared with diets rich in butter and might be associated with lower production rates of apoB-containing lipoproteins.

  19. Protein quantity and quality of safflower seed improved by NP fertilizer and rhizobacteria (Azospirillum and Azotobacter spp.

    Directory of Open Access Journals (Sweden)

    Asia eNosheen

    2016-02-01

    Full Text Available Protein is an essential part of human diet. The aim of present study was to improve the protein quality of safflower seed by the application of plant growth promoting rhizobacteria (PGPR in combination with conventional nitrogen and phosphate (NP fertilizers. The seeds of two safflower cultivar Thori and Saif-32, were inoculated with Azospirillum and Azotobacter and grown under field conditions. Protein content and quality was assessed by crude protein, amino acid analysis and SDS-PAGE. Seed crude protein and amino acids (metheonine, phenylanine and glutamic acid showed significant improvement (55%–1250% by Azotobacter supplemented with quarter dose of fertilizers (BTQ at P≤0.05. Additional protein bands were induced in Thori and Saif-32 by BTQ and BTH (Azotobacter supplemented with half dose of fertilizers respectively. The Azospirillum in combination with half dose of fertilizers (SPH and BTQ enhanced the indole acetic acid (90% and gibberellic acid (23%–27% contents in safflower leaf. Taken together, these data suggest that Azospirillum and Azotobacter along with significantly reduced (up to 75% use of NP fertilizers improved the quality and quantity of safflower seed protein.

  20. Dietary treatments enriched in olive and safflower oils regulate seric and placental matrix metalloproteinases in maternal diabetes.

    Science.gov (United States)

    Martinez, N; Sosa, M; Higa, R; Fornes, D; Capobianco, E; Jawerbaum, A

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in placental development and function, although related to the pro-inflammatory environment when produced in excess. Previous studies have identified MMP-2 and MMP-9 overactivities in the placenta from diabetic rats. In this study, we aimed to determine whether diets supplemented with olive and safflower oil, enriched in natural PPAR ligands, are able to regulate MMP-2 and MMP-9 activities in the placenta and serum from diabetic rats. Diabetes was induced in rat neonates by streptozotocin administration (90mg/kg s.c.). Control and diabetic rats were fed with 6% olive oil- or 6% safflower oil-supplemented diets from days 0.5-13.5 of gestation. On day 13.5 of gestation, placentas and sera were isolated for further determination of matrix metalloproteinases (MMPs) 2 and 9 activities by zymography. Placental MMP-2 and MMP-9 protein concentration and immunolocalization were also determined. Sera from diabetic pregnant animals showed MMP-2 and MMP-9 overactivities when compared to controls. Serum MMP-9 activity was significantly decreased when the diabetic animals received the olive and safflower oil dietary treatments. Placentas from diabetic rats showed increased MMP-2 and MMP-9 activities and protein concentrations, and both were decreased when diabetic rats received the olive and safflower dietary treatments. This study demonstrates that both olive and safflower oil-supplemented diets were able to prevent MMPs overactivities in the placenta from diabetic rats, and that these beneficial effects are reflected in rat sera. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Sensory properties during storage of crisps and French fries prepared with sunflower oil and high oleic sunflower oil

    NARCIS (Netherlands)

    Gemert, L.J. van

    1996-01-01

    A selected and trained descriptive sensory panel has assessed samples of crisps and French fries prepared on an industrial scale with either sunflower oil (SO) or high oleic sunflower oil (HOSO). Furthermore, crisps have been fried in these oils with or without dimethyl polysiloxane (DMPS).

  2. Effect of incorporation of nutraceutical capsule waste of safflower oil in the mechanical characteristics of corn starch films

    Directory of Open Access Journals (Sweden)

    Camila de CAMPO

    2016-01-01

    Full Text Available Abstract Biodegradable films blends made of safflower oil nutraceutical capsules waste corn starch (20:4, 30:4, 40:4 and 50:4 were prepared. The objective of this study was to evaluate the influence of addition of different concentrations of safflower oil nutraceutical capsule waste in the mechanical properties (tensile strength, elongation at break, Young’s modulus and thickness of corn starch films. A decrease in tensile strength and Young’s modulus and an increase in elongation at break were observed with the increase in the content of the nutraceutical capsule waste. The results showed that the blends of safflower oil capsules waste-corn starch films demonstrated promising characteristics to form biodegradable films with different mechanical characteristics.

  3. Safflower oil consumption does not increase plasma conjugated linoleic acid concentrations in humans.

    Science.gov (United States)

    Herbel, B K; McGuire, M K; McGuire, M A; Shultz, T D

    1998-02-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid (LA) with conjugated double bonds. CLA has anticarcinogenic properties and has been identified in human tissues, dairy products, meats, and certain vegetable oils. A variety of animal products are good sources of CLA, but plant oils contain much less. However, plant oils are a rich source of LA, which may be isomerized to CLA by intestinal microorganisms in humans. To investigate the effect of triacylglycerol-esterified LA consumption on plasma concentrations of esterified CLA in total lipids, a dietary intervention (6 wk) was conducted with six men and six women. During the intervention period a salad dressing containing 21 g safflower oil providing 16 g LA/d was added to the subjects' daily diets. Three-day diet records and fasting blood were obtained initially and during dietary and postdietary intervention periods. Although LA intake increased significantly during the dietary intervention, plasma CLA concentrations were not affected. Plasma total cholesterol and LDL-cholesterol concentrations were significantly lower after addition of safflower oil to the diet. In summary, consumption of triacylglycerol-esterified LA in safflower oil did not increase plasma concentrations of esterified CLA in total lipids.

  4. Effects of safflower seed extract on arterial stiffness

    Directory of Open Access Journals (Sweden)

    Katsuya Suzuki

    2010-11-01

    Full Text Available Katsuya Suzuki1, Shigekazu Tsubaki2, Masami Fujita3, Naoto Koyama1, Michio Takahashi1, Kenji Takazawa41Research Institute for Health Fundamentals, Ajinomoto Co., Inc., Kawasaki; 2Samoncho Clinic, Tokyo; 3Shinanozaka Clinic, Tokyo; 4Tokyo Medical University Hachioji Medical Center, Tokyo, JapanAbstract: Safflower seed extract (SSE contains characteristic polyphenols and serotonin derivatives (N-(p-coumaroyl serotonin and N-feruloylserotonin, which are reported to inhibit oxidation of low-density lipoprotein (LDL, formation of atherosclerotic plaques, and improve arterial stiffness as assessed by pulse wave analysis in animal models. The effects of long-term supplementation with SSE on arterial stiffness in human subjects were evaluated. This double-blind, placebo-controlled study was conducted in 77 males (35–65 years and 15 postmenopausal females (55–65 years with high-normal blood pressure or mild hypertension who were not undergoing treatment. Subjects received SSE (70 mg/day as serotonin derivatives or placebo for 12 weeks, and pulse wave measurements, ie, second derivative of photoplethysmogram (SDPTG, augmentation index, and brachial-ankle pulse wave velocity (baPWV were conducted at baseline, and at weeks 4, 8, and 12. Vascular age estimated by SDPTG aging index improved in the SSE-supplemented group when compared with the placebo group at four (P = 0.0368 and 12 weeks (P = 0.0927. The trend of augmentation index reduction (P = 0.072 versus baseline was observed in the SSE-supplemented group, but reduction of baPWV by SSE supplementation was not observed. The SSE-supplemented group also showed a trend towards a lower malondialdehyde-modified-LDL autoantibody titer at 12 weeks from baseline. These results suggest long-term ingestion of SSE in humans could help to improve arterial stiffness.Keywords: safflower, serotonin derivatives, antioxidants, augmentation index, pulse wave velocity

  5. Safflower (Catharmus tinctorius L.) oil supplementation in overnourished rats during early neonatal development: effects on heart and liver function in the adult.

    Science.gov (United States)

    Costa, Laís Ribeiro; Macêdo, Patrícia Cavalcanti; de Melo, Janatar Stella Vasconcelos; Freitas, Cristiane Moura; Alves, Aiany Simoes; Barbosa, Humberto de Moura; Lira, Eduardo; Fernandes, Mariana Pinheiro; Batista-de-Oliveira-Hornsby, Manuella; Lagranha, Claudia

    2016-12-01

    Carthamus tinctorius L. (common name: safflower) is an herb whose extracted oil (safflower oil) has been employed in both alternative and conventional medicine in the treatment of disease. Overnutrition during early postnatal life can increase the lifetime risk of obesity and metabolic syndrome. Here we investigate the effect of safflower oil supplementation given during a critical early developmental stage on the eventual occurrence of metabolic disease in overnourished rats. Groups of overnourished or adequately nourished rats were randomly assigned into 2 additional groups for supplementation with either safflower oil (SF) or vehicle for 7 to 30 days. Murinometric data and weights were examined. Serum was collected for measurement of glucose, cholesterol, high-density lipoprotein cholesterol, and triglycerides. Heart and liver oxidative status were also measured. Overnutrition for 7-30 days induced a significant increase in body weight and in values for abdominal circumference, thoracic circumference, body length, and body mass index. SF supplementation did not attenuate the effect of overnutrition on any of these parameters. In addition, overnutrition increased levels of glucose, triglycerides, and very low-density lipid compared with normal controls, but SF supplementation had no effect on these parameters. Measures of oxidative status in heart or liver were not influenced by overnutrition. However, oxidative measures were altered by SF supplementation in both of these organs. The present study reveals that nutritional manipulation during early development induces detrimental effects on metabolism in the adult that are not ameliorated by supplemental SF.

  6. Effect of safflower oil on the protective properties of the in situ formed salivary pellicle.

    Science.gov (United States)

    Hannig, C; Wagenschwanz, C; Pötschke, S; Kümmerer, K; Kensche, A; Hoth-Hannig, W; Hannig, M

    2012-01-01

    The prevalence of dental erosion is still increasing. A possible preventive approach might be rinsing with edible oils to improve the protective properties of the pellicle layer. This was tested in the present in situ study using safflower oil. Pellicle formation was carried out in situ on bovine enamel slabs fixed buccally to individual upper jaw splints (6 subjects). After 1 min of pellicle formation subjects rinsed with safflower oil for 10 min, subsequently the samples were exposed in the oral cavity for another 19 min. Enamel slabs without oral exposure and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After pellicle formation in situ, slabs were incubated in HCl (pH 2; 2.3; 3) for 120 s, and kinetics of calcium and phosphate release were measured photometrically (arsenazo III, malachite green). Furthermore, the ultrastructure of the pellicles was evaluated by transmission electron microscopy (TEM). Pellicle alone reduced erosive calcium and phosphate release significantly at all pH values. Pellicle modification by safflower oil resulted in an enhanced calcium loss at all pH values and caused an enhanced phosphate loss at pH 2.3. TEM indicated scattered accumulation of lipid micelles and irregular vesicle-like structures attached to the oil-treated pellicle layer. Acid etching affected the ultrastructure of the pellicle irrespective of oil rinsing. The protective properties of the pellicle layer against extensive erosive attacks are limited and mainly determined by pH. The protective effects are modified and reduced by rinses with safflower oil. Copyright © 2012 S. Karger AG, Basel.

  7. Oleic Acid enhances all-trans retinoic Acid loading in nano-lipid emulsions.

    Science.gov (United States)

    Chinsriwongkul, Akhayachatra; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Sila-On, Warisada; Ruktanonchai, Uracha

    2010-01-01

    The aim of this study was to investigate the enhancement of all-trans retinoic acid (ATRA) loading in nano-lipid emulsions and stability by using oleic acid. The effect of formulation factors including initial ATRA concentration and the type of oil on the physicochemical properties, that is, percentage yield, percentage drug release, and photostability of formulations, was determined. The solubility of ATRA was increased in the order of oleic acid > MCT > soybean oil > water. The physicochemical properties of ATRA-loaded lipid emulsion, including mean particle diameter and zeta potential, were modulated by changing an initial ATRA concentration as well as the type and mixing ratio of oil and oleic acid as an oil phase. The particles of lipid emulsions had average sizes of less than 250 nm and negative zeta potential. The addition of oleic acid in lipid emulsions resulted in high loading capacity. The photodegradation rate was found to be dependent on the initial drug concentration but independent of the type of oily phase used in this study. The release rates were not affected by initial ATRA concentration but were affected by the type of oil, where oleic acid showed the highest release rate of ATRA from lipid emulsions.

  8. Comparative Analysis of the Effects of Hydroxysafflor Yellow A and Anhydrosafflor Yellow B in Safflower Series of Herb Pairs Using Prep-HPLC and a Selective Knock-Out Approach

    Directory of Open Access Journals (Sweden)

    Cheng Qu

    2016-11-01

    Full Text Available The flower of Carthamus tinctorius L. (Carthami Flos, safflower, important in traditional Chinese medicine (TCM, is known for treating blood stasis, coronary heart disease, hypertension, and cerebrovascular disease in clinical and experimental studies. It is widely accepted that hydroxysafflor yellow A (HSYA and anhydrosafflor yellow B (ASYB are the major bioactive components of many formulae comprised of safflower. In this study, selective knock-out of target components such as HSYA and ASYB by using preparative high performance liquid chromatography (prep-HPLC followed by antiplatelet and anticoagulation activities evaluation was used to investigate the roles of bioactive ingredients in safflower series of herb pairs. The results showed that both HSYA and ASYB not only played a direct role in activating blood circulation, but also indirectly made a contribution to the total bioactivity of safflower series of herb pairs. The degree of contribution of HSYA in the safflower and its series herb pairs was as follows: Carthami Flos-Ginseng Radix et Rhizoma Rubra (CF-GR > Carthami Flos-Sappan Lignum (CF-SL > Carthami Flos-Angelicae Sinensis Radix (CF-AS > Carthami Flos-Astragali Radix (CF-AR > Carthami Flos-Angelicae Sinensis Radix (CF-AS > Carthami Flos-Glycyrrhizae Radix et Rhizoma (CF-GL > Carthami Flos-Salviae Miltiorrhizae Radix et Rhizoma (CF-SM > Carthami Flos (CF, and the contribution degree of ASYB in the safflower and its series herb pairs: CF-GL > CF-PS > CF-AS > CF-SL > CF-SM > CF-AR > CF-GR > CF. So, this study provided a significant and effective approach to elucidate the contribution of different herbal components to the bioactivity of the herb pair, and clarification of the variation of herb-pair compatibilities. In addition, this study provides guidance for investigating the relationship between herbal compounds and the bioactivities of herb pairs. It also provides a scientific basis for reasonable clinical applications and new drug

  9. Enzymatic synthesizing of phytosterol oleic esters.

    Science.gov (United States)

    Pan, Xinxin; Chen, Biqiang; Wang, Juan; Zhang, Xinzhi; Zhul, Biyun; Tan, Tianwei

    2012-09-01

    A method of synthesizing the phytosterol esters from oleic acid and sterols was studied, using immobilized lipase Candida sp. 99-125 as catalyst. Molar ratio (oleic acid/phytosterols), temperature, reaction period, organic solvents, catalyst, and silica-gel drier were optimized, and the result showed that 93.4% of the sterols had been esterified under the optimal synthetic condition: the molar ratio of oleic acid/phytosterol is 1:1 in 10 mL iso-octane, immobilized lipase (w, 140% of the sterols), incubated in an orbital shaker (200 rpm) at a temperature of 45 °C for 24 h. The immobilized lipase could be reused for at least 13 times with limited loss of esterification activity. The conversion still maintained up to 86.6%. Hence, this developed process for synthesizing phytosterol esters could be considered as simple and low-energy consumption compared to existing chemical processes.

  10. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content.

    Science.gov (United States)

    Neschen, Susanne; Moore, Irene; Regittnig, Werner; Yu, Chun Li; Wang, Yanlin; Pypaert, Marc; Petersen, Kitt Falk; Shulman, Gerald I

    2002-02-01

    To examine the mechanism by which fish oil protects against fat-induced insulin resistance, we studied the effects of control, fish oil, and safflower oil diets on peroxisomal content, fatty acyl-CoA, diacylglycerol, and ceramide content in rat liver and muscle. We found that, in contrast to control and safflower oil-fed rats, fish oil feeding induced a 150% increase in the abundance of peroxisomal acyl-CoA oxidase and 3-ketoacyl-CoA thiolase in liver but lacked similar effects in muscle. This was paralleled by an almost twofold increase in hepatic peroxisome content (both P < 0.002 vs. control and safflower). These changes in the fish oil-fed rats were associated with a more than twofold lower hepatic triglyceride/diacylglycerol, as well as intramuscular triglyceride/fatty acyl-CoA, content. In conclusion, these data strongly support the hypothesis that n-3 fatty acids protect against fat-induced insulin resistance by serving as peroxisome proliferator-activated receptor-alpha ligands and thereby induce hepatic, but not intramuscular, peroxisome proliferation. In turn, an increased hepatic beta-oxidative capacity results in lower hepatic triglyceride/diacylglycerol and intramyocellular triglyceride/fatty acyl-CoA content.

  11. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    Science.gov (United States)

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  12. Employment of a novel ultrasonic method to investigate high pressure phase transitions in oleic acid

    Science.gov (United States)

    Rostocki, A. J.; Siegoczyński, R. M.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Zduniak, M.

    2011-06-01

    In this work, the variation of sound velocity with hydrostatic pressure for oleic acid is evaluated up to 350 MPa. During the measurement, we identified the phase transformation of oleic acid and the presence of the hysteresis of the dependence of sound velocity on pressure. From the performed measurements, it can be seen that the dependence of sound velocity on pressure can be used to investigate phase transformations in natural oils. Ultrasonic waves were excited and detected using piezoelectric LiNbO3(Y-36 cut) 5 MHz transducers. The phase velocity of the longitudinal ultrasonic waves was measured using a cross-correlation method to evaluate the time of flight.

  13. Neutron activation analysis of trace metallic elements eluted from molecular sieves in the dehydration process of safflower oil

    International Nuclear Information System (INIS)

    Takasago, Masahisa; Kobayashi, Koichi; Taru, Yasunori; Takaoka, Kyo

    1992-01-01

    Dissolved water in safflower oil affects the autoxidation of this oil significantly. Molecular sieves were used to remove the dissolved water from the oil. This method is much simpler than that of distillation, and dissolved water can be removed to the same extent as that by distillation. But, due to the elution of many kinds of trace metallic elements in the oil dehydrated with molecular sieves, these elements were analyzed by neutron activation analysis. For a data comparison trace amounts of metallic elements in the oil dehydrated by distillation were also analyzed. Since the intensity of the γ ray-photoelectric peak of nuclide 28 Al was largest among the detected elements, this element was analyzed quantitatively and the other elements qualitatively. In safflower oil dehydrated with molecular sieves, 14 kinds of the elements (I, Br, Al, Mg, Si, V, Cl, Nd, Ta, Cr, Sb, Cs, Co, Na) were detected. Also, I, Br, Cl, Cr, Ta, Sb, and Al elements were detected in the oil dehydrated by distillation. The intensity of the photoelectric peak of nuclide except 28 Al was essentially the same as that in the oil dehydrated by distillation, but the intensity of 28 Al in the oil with molecular sieves was about 28 times stronger than that in distillation oil. In the molecular sieves, 19 impure elements in addition to the original constituents (Na, K, Al, si, O) were detected. It was Al, Na, Si, Nd, Cs, and Co along with impure elements may possibly have been eluted in the oil. Al element in safflower oil dehydrated with molecular sieves was analyzed quantitatively. 0.91 ppm of Al was detected in safflower oil. The eluted amount of Al in safflower oil dehydrated by distillation was 0.032 ppm. A larger amount of Al element was thus eluted into the oil dehydrated with molecular sieves than by distillation. (author)

  14. Neuroprotective Effects of a Standardized Flavonoid Extract from Safflower against a Rotenone-Induced Rat Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Nuramatjan Ablat

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a major age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra par compacta (SNpc. Rotenone is a neurotoxin that is routinely used to model PD to aid in understanding the mechanisms of neuronal death. Safflower (Carthamus tinctorius. L. has long been used to treat cerebrovascular diseases in China. This plant contains flavonoids, which have been reported to be effective in models of neurodegenerative disease. We previously reported that kaempferol derivatives from safflower could bind DJ-1, a protein associated with PD, and that a flavonoid extract from safflower exhibited neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE was isolated from safflower and found to primarily contain flavonoids. The aim of the current study was to confirm the neuroprotective effects of SAFE in rotenone-induced Parkinson rats. The results showed that SAFE treatment increased body weight and improved rearing behavior and grip strength. SAFE (35 or 70 mg/kg/day treatment reversed the decreased protein expression of tyrosine hydroxylase, dopamine transporter and DJ-1 and increased the levels of dopamine and its metabolite. In contrast, acetylcholine levels were decreased. SAFE treatment also led to partial inhibition of PD-associated changes in extracellular space diffusion parameters. These changes were detected using a magnetic resonance imaging (MRI tracer-based method, which provides novel information regarding neuronal loss and astrocyte activation. Thus, our results indicate that SAFE represents a potential therapeutic herbal treatment for PD.

  15. Assessment of Changes in Weed Dry Weight and some Characteristics of Safflower (Carthamus tinctorius under Different Sources of Fertilizer and Intercropping

    Directory of Open Access Journals (Sweden)

    Saeid Heydarzadeh

    2017-04-01

    Full Text Available To study the effect of different organic and chemical fertilizers on weed biomass and some characteristics of safflower, a factorial experiment based on randomized complete block design with three replications was done at the Urmia University Reaearch Farm in 2013. Treatments consisted of growing of cover crops (red clover, grass pea, hairy, bitter vetch along with the safflower rows and two weed control treatments (with and without weed as a first factor and application of organic manure (cattle manure+biofertilizer and the different nitrogen and phosphuros fertilizer levels (100 % of recommended chemical fertilizer, 67 and 63 % of recommended N and P, 50 and 40 % of recommended N and P as second factor. Results showed that the biomass yield of broad and narrow leaf weeds affected by the combined treatments of cover crops and use of fertilizers. The biomass yield of broad and narrow leaf weeds were redused by 74.78, 82.22% under vetch cover crop when 50 and 40% of recommended N and P fertilizers were used, in comparison with sole culture of safflower and use of 100% of recommended chemical fertilizers. The maximum of seed yield (3431 kg.ha-1 and biological yield (8239 kg.ha-1 of safflower obtained from using 100% of recommended chemical fertilizers and without growing cover crops. Results, as a whole, showed that at higher levels of chemical fertilizers the competitive effects of weeds on safflower were higher than lower levels of fertilizers.

  16. Rapid determination of volatile constituents in safflower from Xinjiang and Henan by ultrasonic-assisted solvent extraction and GC–MS

    OpenAIRE

    Jia, Ling-Han; Liu, Yi; Li, Yu-Zhen

    2011-01-01

    The total volatile components were extracted from safflower by ultrasonic-assisted solvent extraction (USE) and their chemical constituents were analyzed by gas chromatographyâmass spectrometry (GCâMS) to provide scientific basis for the quality control of safflower. Five different solvents (diethyl ether, ethanol, ethyl acetate, dichloromethane and acetone) were used and compared in terms of number of volatile components extracted and the peak areas of these components in TIC. The results sh...

  17. Interactions between dietary oil treatments and genetic variants modulate fatty acid ethanolamides in plasma and body weight composition.

    Science.gov (United States)

    Pu, Shuaihua; Eck, Peter; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Jones, Peter J H

    2016-03-28

    Fatty acid ethanolamides (FAE), a group of lipid mediators derived from long-chain fatty acids (FA), mediate biological activities including activation of cannabinoid receptors, stimulation of fat oxidation and regulation of satiety. However, how circulating FAE levels are influenced by FA intake in humans remains unclear. The objective of the present study was to investigate the response of six major circulating FAE to various dietary oil treatments in a five-period, cross-over, randomised, double-blind, clinical study in volunteers with abdominal obesity. The treatment oils (60 g/12 552 kJ per d (60 g/3000 kcal per d)) provided for 30 d were as follows: conventional canola oil, high oleic canola oil, high oleic canola oil enriched with DHA, flax/safflower oil blend and corn/safflower oil blend. Two SNP associated with FAE degradation and synthesis were studied. Post-treatment results showed overall that plasma FAE levels were modulated by dietary FA and were positively correlated with corresponding plasma FA levels; minor allele (A) carriers of SNP rs324420 in gene fatty acid amide hydrolase produced higher circulating oleoylethanolamide (OEA) (P=0·0209) and docosahexaenoylethanolamide (DHEA) levels (P=0·0002). In addition, elevated plasma DHEA levels in response to DHA intake tended to be associated with lower plasma OEA levels and an increased gynoid fat mass. In summary, data suggest that the metabolic and physiological responses to dietary FA may be influenced via circulating FAE. Genetic analysis of rs324420 might help identify a sub-population that appears to benefit from increased consumption of DHA and oleic acid.

  18. Effect of 12 Weeks High Oleic Peanut Consumption on Cardio-Metabolic Risk Factors and Body Composition

    Directory of Open Access Journals (Sweden)

    Jayne A. Barbour

    2015-09-01

    Full Text Available Epidemiological evidence indicates an inverse association between nut consumption and obesity, inflammation, hyperlipidaemia and glucose intolerance. We investigated effects of high oleic peanut consumption vs. a nut free diet on adiposity and cardio-metabolic risk markers. In a randomised cross-over design, 61 healthy subjects (65 ± 7 years, body mass index (BMI 31 ± 4 kg/m2 alternated either high oleic peanuts (15%–20% of energy or a nut free diet for 12 weeks. Body composition and mass, waist circumference, C-reactive protein (CRP, lipids, glucose and insulin were assessed at baseline and after each phase. Repeated measures analysis of variance (ANOVA compared the two diets. Consistent with other nut studies, there were no differences in lipids, CRP, glucose and insulin with peanut consumption. In contrast, some reports have demonstrated benefits, likely due to differences in the study cohort. Energy intake was 10% higher (853 kJ, p < 0.05, following peanut consumption vs. control, attributed to a 30% increase in fat intake (p < 0.001, predominantly monounsaturated (increase 22 g, p < 0.05. Despite greater energy intake during the peanut phase, there were no differences in body composition, and less than predicted increase (0.5 kg in body weight for this additional energy intake, possibly due to incomplete nutrient absorption and energy utilisation.

  19. Cercosporoid leaf pathogens from whorled milkweed and spineless safflower in California.

    Science.gov (United States)

    Koike, Steven T; Baameur, Aziz; Groenewald, Johannes Z; Crous, Pedro W

    2011-06-01

    Two cercosporoid species are respectively described from Mexican whorled milkweed (Asclepias fascicularis), and spineless safflower (Carthamus tinctorius) from California. Passalora californica represents a new pathogen on Asclepias fascicularis, while Ramularia cynarae is confirmed on Carthamus tinctorius and Cynara cardunculus (Asteraceae), and an epitype designated. Pathogenicity is also established for both pathogens based on Koch's postulate.

  20. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    Science.gov (United States)

    Chen, Guo; Zhang, Bin; Zhao, Jun

    2015-01-01

    The cellulose sulfate (CS) is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  1. Comparison of growth, serum biochemistries and n–6 fatty acid metabolism in rats fed diets supplemented with high-gamma-linolenic acid safflower oil or borage oil for 90 days

    Science.gov (United States)

    Tso, Patrick; Caldwell, Jody; Lee, Dana; Boivin, Gregory P.; DeMichele, Stephen J.

    2015-01-01

    Recently, steps have been taken to further developments toward increasing gamma-linolenic acid (GLA) concentration and lowering costs in plant seed oils using transgenic technology. Through identification and expression of a fungal delta-6 desaturase gene in the high linoleic acid safflower plant, the seeds from this genetic transformation produce oil with >40% GLA (high GLA safflower oil (HGSO)). The aim of the study was to compare the effects of feeding HGSO to a generally recognized as safe source of GLA, borage oil, in a 90 day safety study in rats. Weanling male and female Sprague–Dawley rats were fed a semi-synthetic, fat free, pelleted diet (AIN93G) supplemented with a 10% (wt/wt) oil blend containing HGSO or borage oil, with equivalent GLA levels. Results demonstrated that feeding diets containing HGSO or borage oil for 90 days had similar biologic effects with regard to growth characteristics, body composition, behavior, organ weight and histology, and parameters of hematology and serum biochemistries in both sexes. Metabolism of the primary n–6 fatty acids in plasma and organ phospholipids was similar, despite minor changes in females. We conclude that HGSO is biologically equivalent to borage oil and provides a safe alternative source of GLA in the diet. PMID:22265940

  2. Comparison of growth, serum biochemistries and n-6 fatty acid metabolism in rats fed diets supplemented with high-gamma-linolenic acid safflower oil or borage oil for 90 days.

    Science.gov (United States)

    Tso, Patrick; Caldwell, Jody; Lee, Dana; Boivin, Gregory P; DeMichele, Stephen J

    2012-06-01

    Recently, steps have been taken to further developments toward increasing gamma-linolenic acid (GLA) concentration and lowering costs in plant seed oils using transgenic technology. Through identification and expression of a fungal delta-6 desaturase gene in the high linoleic acid safflower plant, the seeds from this genetic transformation produce oil with >40% GLA (high GLA safflower oil (HGSO)). The aim of the study was to compare the effects of feeding HGSO to a generally recognized as safe source of GLA, borage oil, in a 90 day safety study in rats. Weanling male and female Sprague-Dawley rats were fed a semi-synthetic, fat free, pelleted diet (AIN93G) supplemented with a 10% (wt/wt) oil blend containing HGSO or borage oil, with equivalent GLA levels. Results demonstrated that feeding diets containing HGSO or borage oil for 90 days had similar biologic effects with regard to growth characteristics, body composition, behavior, organ weight and histology, and parameters of hematology and serum biochemistries in both sexes. Metabolism of the primary n-6 fatty acids in plasma and organ phospholipids was similar, despite minor changes in females. We conclude that HGSO is biologically equivalent to borage oil and provides a safe alternative source of GLA in the diet. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Plant growth, development and change in GSH level in safflower (Carthamus tinctorius L. exposed to copper and lead

    Directory of Open Access Journals (Sweden)

    Li Shufen

    2015-01-01

    Full Text Available The effects of exposure to heavy metals, copper (Cu and lead (Pb in the soil, separately and in combination, were examined in Safflower (Carthamus tinctorius L.. Plant growth and development, GSH level and GSH2 expression at seedling, branching, and flowering stages were studied. Cu at lower concentrations had a stimulating effect on seedling height and root length. A significant positive correlation was observed between heavy metal concentrations and inhibition of plant growth. Plant height, root length and lateral root numbers decreased progressively with increasing concentrations of Cu and Pb. Except at the seedling stage, the metal mixture elicited a synergistic effect on safflower growth and development. The GSH content was significantly reduced in both safflower roots and leaves at increased concentrations of heavy metals, with the exception of the treatment with a low concentration of Cu that resulted in a slightl increase in GSH content at the seedling and branching stages. RT-PCR analysis revealed a negative correlation between GSH2 expression levels and metal concentration. Short exposure to low concentrations of Cu induce an increase in GSH synthesis to preserve normal plant growth, whereas prolonged exposure and large Cu and Pb concentrations affect the GSH metabolic chain, and are severely toxicity. The findings obtained in this study enhance our understanding of the role of the GSH pool in the response of plants to heavy metal-induced stress, and serve as a basis for improved cultivation of safflower.

  4. Pore Characteristics and Hydrothermal Stability of Mesoporous Silica: Role of Oleic Acid

    Directory of Open Access Journals (Sweden)

    Junhyun Choi

    2014-01-01

    Full Text Available Silicate mesoporous materials were synthesized with nonionic surfactant and their surfaces were modified by oleic acid adsorption. Infrared spectrometer, nitrogen adsorption-desorption isotherm, scanning electron microscopy, and thermogravimetric analyses were used to investigate the structure of oleic acid modified mesoporous material. The effects of heat treatment at various temperatures on oleic acid modified materials were also studied. Oleic acids on silica surfaces were found to be bonded chemically and/or physically and be capable of enduring up to 180°C. The adsorbed oleic acid improved the hydrothermal stability of mesoporous silica and assisted mesopore structure to grow more in hydrothermal treatment process by preventing the approach of water.

  5. Water solubilization and the dielectric permeability of isomolar solutions of oleic acid and triethanolamine soap of oleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Demchenko, P.A.; Novitskaya, L.D.

    The investigation of the dependence of water solubilization on the dielectric permeability of isomolar solutions of oleic acid and triethanolamine soap of oleic acid in benzene has shown that at certain acid additions, the solubilization effect can increase almost 6 times, as compared to the soap solution without acid additions. In some cases, electron donor-acceptor complexes are formed, which are more polar than the original components. This leads to a change in the molecular-disperse and micellar part of solution and affects significantly the structure and properties of micellar hydrocarbon solutions of surfactants.

  6. Differential effects of safflower oil versus fish oil feeding on insulin-stimulated glycogen synthesis, glycolysis, and pyruvate dehydrogenase flux in skeletal muscle: a 13C nuclear magnetic resonance study.

    Science.gov (United States)

    Jucker, B M; Cline, G W; Barucci, N; Shulman, G I

    1999-01-01

    To examine the effects of safflower oil versus fish oil feeding on in vivo intramuscular glucose metabolism and relative pyruvate dehydrogenase (PDH) versus tricarboxylic acid (TCA) cycle flux, rats were pair-fed on diets consisting of 1) 59% safflower oil, 2) 59% menhaden fish oil, or 3) 59% carbohydrate (control) in calories. Rates of glycolysis and glycogen synthesis were assessed by monitoring [1-(13)C]glucose label incorporation into [1-(13)C]glycogen, [3-(13)C]lactate, and [3-(13)C]alanine in the hindlimb of awake rats via 13C nuclear magnetic resonance (NMR) spectroscopy during a euglycemic (approximately 6 mmol/l) hyperinsulinemic (approximately 180 microU/ml) clamp. A steady-state isotopic analysis of lactate, alanine, and glutamate was used to determine the relative PDH versus TCA cycle flux present in muscle under these conditions. The safflower oil-fed rats were insulin resistant compared with control and fish oil-fed rats, as reflected by a markedly reduced glucose infusion rate (Ginf) during the clamp (21.4 +/- 2.3 vs. 31.6 +/- 2.8 and 31.7 +/- 1.9 mg x kg(-1) x min(-1) in safflower oil versus control and fish oil groups, respectively, P safflower oil group was associated with a lower rate of glycolysis (21.7 +/- 2.2 nmol x g(-1) x min(-1)) versus control (62.1 +/- 10.3 nmol x g(-1) x min(-1), P safflower oil, fish oil, and control, respectively) was detected. The intramuscular triglyceride (TG) content was increased in the safflower oil group (7.3 +/- 0.8 micromol/g) compared with the control group (5.2 +/- 0.8 micromol/g, P safflower oil (43 +/- 8%) versus the control (73 +/- 8%, P safflower oil feeding was a consequence of reduced glycolytic flux associated with an increase in relative free fatty acid/ketone oxidation versus TCA cycle flux, whereas fish oil feeding did not alter glucose metabolism and may in part be protective of insulin-stimulated glucose disposal by limiting intramuscular TG deposition.

  7. Neutron activation analysis of trace metallic elements eluted from molecular sieves in the dehydration process of safflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Takasago, Masahisa; Kobayashi, Koichi; Taru, Yasunori; Takaoka, Kyo (Musashi Inst. of Tech., Tokyo (Japan))

    1992-11-01

    Dissolved water in safflower oil affects the autoxidation of this oil significantly. Molecular sieves were used to remove the dissolved water from the oil. This method is much simpler than that of distillation, and dissolved water can be removed to the same extent as that by distillation. But, due to the elution of many kinds of trace metallic elements in the oil dehydrated with molecular sieves, these elements were analyzed by neutron activation analysis. For a data comparison trace amounts of metallic elements in the oil dehydrated by distillation were also analyzed. Since the intensity of the [gamma] ray-photoelectric peak of nuclide [sup 28]Al was largest among the detected elements, this element was analyzed quantitatively and the other elements qualitatively. In safflower oil dehydrated with molecular sieves, 14 kinds of the elements (I, Br, Al, Mg, Si, V, Cl, Nd, Ta, Cr, Sb, Cs, Co, Na) were detected. Also, I, Br, Cl, Cr, Ta, Sb, and Al elements were detected in the oil dehydrated by distillation. The intensity of the photoelectric peak of nuclide except [sup 28]Al was essentially the same as that in the oil dehydrated by distillation, but the intensity of [sup 28]Al in the oil with molecular sieves was about 28 times stronger than that in distillation oil. In the molecular sieves, 19 impure elements in addition to the original constituents (Na, K, Al, si, O) were detected. It was Al, Na, Si, Nd, Cs, and Co along with impure elements may possibly have been eluted in the oil. Al element in safflower oil dehydrated with molecular sieves was analyzed quantitatively. 0.91 ppm of Al was detected in safflower oil. The eluted amount of Al in safflower oil dehydrated by distillation was 0.032 ppm. A larger amount of Al element was thus eluted into the oil dehydrated with molecular sieves than by distillation. (author).

  8. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Emily A Clementi

    Full Text Available HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize

  9. Effect of safflower oil, flaxseed oil, monensin, and vitamin E on concentration of conjugated linoleic acid in bovine milk fat.

    Science.gov (United States)

    Bell, J A; Griinari, J M; Kennelly, J J

    2006-02-01

    Conjugated linoleic acid (CLA) refers to a mixture of conjugated octadecadienoic acids of predominantly ruminant origin. The main isomer in bovine milk fat is the cis-9, trans-11 CLA. Interest in CLA increased after the discovery of its health-promoting properties, including potent anticarcinogenic activity. Two experiments were conducted to evaluate dietary strategies aimed at increasing the concentration of CLA in bovine milk fat. Both experiments were organized as a randomized complete block design with a repeated measures treatment structure. In Experiment 1, 28 Holstein cows received either a control diet or one of 3 treatments for a period of 2 wk. The control diet consisted of 60% forage (barley silage, alfalfa silage, and alfalfa hay) and 40% concentrate on a dry matter (DM) basis, fed as a total mixed ration (TMR). The concentrate was partially replaced in the treatment groups with 24 ppm of monensin (MON), 6% of DM safflower oil (SAFF), or 6% of DM safflower oil plus 24 ppm of monensin (SAFF/M). Average cis-9, trans-11 CLA levels in milk fat after 2 wk of feeding were 0.45, 0.52, 3.36, and 5.15% of total fatty acids for control, MON, SAFF, and SAFF/M, respectively. In Experiment 2, 62 Holstein cows received either a control diet or one of 5 treatment diets for a period of 9 wk. The control diet consisted of 60% forage (barley silage, alfalfa silage, and alfalfa hay) and 40% concentrate on a DM basis, fed as a TMR. The concentrate was partially replaced in the treatment groups with 6% of DM safflower oil (SAFF), 6% of DM safflower oil plus 150 IU of vitamin E/kg of DM (SAFF/E), 6% of DM safflower oil plus 24 ppm of monensin (SAFF/M), 6% of DM safflower oil plus 24 ppm of monensin plus 150 IU of vitamin E/kg of DM (SAFF/ME), or 6% of DM flaxseed oil plus 150 IU of vitamin E/kg of DM (FLAX/E). Average cis-9, trans-11 CLA levels during the treatment period were 0.68, 4.12, 3.48, 4.55, 4.75, and 2.80% of total fatty acids for control, SAFF, SAFF/E, SAFF

  10. Microbial biodiversity of Sardinian oleic ecosystems.

    Science.gov (United States)

    Santona, Mario; Sanna, Maria Lina; Multineddu, Chiara; Fancello, Francesco; de la Fuente, Sara Audije; Dettori, Sandro; Zara, Severino

    2018-04-01

    The olives are rich in microorganisms that, during the extraction process may persist in the oils and can influence their physicochemical and sensory characteristics. In this work, and for the first time, we isolated and identified microbial species, yeast and bacteria, present during the production process in four Sardinian (Italy) oleic ecosystems. Among these varieties, we found that Nera di Gonnos was associated to the highest microbial biodiversity, which was followed by Bosana, Nocellara del Belice and Semidana. Among the different microbial species isolated, some are specific of olive ecological niches, such as Cryptococcus spp and Serratia spp; and others to olive oils such as Candida spp and Saccharomyces. Some other species identified in this work were not found before in oleic ecosystems. The enzymatic analyses of yeast and bacteria showed that they have good β-glucosidase activity and yeast also showed good β-glucanase activity. The majority of bacteria presented lipolytic and catalase activities while in yeast were species-specific. Interestingly, yeast and bacteria isolates presented a high resistance to bile acid, and about 65% of the yeast were able to resist at pH 2.5 for 2 h. Finally, bacteria showed no biofilm activity compared to yeast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil.

    Science.gov (United States)

    Demorest, Zachary L; Coffman, Andrew; Baltes, Nicholas J; Stoddard, Thomas J; Clasen, Benjamin M; Luo, Song; Retterath, Adam; Yabandith, Ann; Gamo, Maria Elena; Bissen, Jeff; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2016-10-13

    The ability to modulate levels of individual fatty acids within soybean oil has potential to increase shelf-life and frying stability and to improve nutritional characteristics. Commodity soybean oil contains high levels of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability - a problem that has been addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid (18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were introduced into FAD3A by directly delivering TALENs into fad2-1a fad2-1b soybean plants. Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b fad3a soybean lines were identified. The methods presented here provide an efficient means for using sequence-specific nucleases to stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and linolenic acid levels below 3 %.

  12. Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows.

    Science.gov (United States)

    Lopes, J C; Harper, M T; Giallongo, F; Oh, J; Smith, L; Ortega-Perez, A M; Harper, S A; Melgar, A; Kniffen, D M; Fabin, R A; Hristov, A N

    2017-02-01

    The objective of this study was to investigate the effect of 3 soybean sources differing in fatty acid profile and processing method on productivity, milk composition, digestibility, rumen fermentation, and enteric methane emission in lactating dairy cows. The soybean sources were conventional, high-linoleic-acid variety extruded soybean meal (ESBM; 8.7% ether extract with 15% oleic and 54% linoleic acids); extruded Plenish (DuPont Pioneer, Johnston, IA), high-oleic-acid variety soybean meal (EPSBM; 8.4% ether extract with 73% oleic and 8% linoleic acids); and whole, heated Plenish soybeans (WPSB; 20.2% ether extract). The study involved 15 Holstein cows in a replicated 3 × 3 Latin square design experiment with three 28-d periods. The inclusion rate of the soybean sources in the diet was (dry matter basis) 17.1, 17.1, and 7.4% for ESBM, EPSBM, and WPSB, respectively, which resulted in ether extract concentration of the diets of 3.99, 3.94, and 4.18%, respectively. Compared with ESBM, the Plenish diets tended to increase dry matter intake and decreased feed efficiency (but had no effect on energy-corrected milk feed efficiency). The Plenish diets increased milk fat concentration on average by 5.6% and tended to increase milk fat yield, compared with ESBM. The WPSB diet tended to increased milk true protein compared with the extruded soybean meal diets. Treatments had no effect on rumen fermentation and enteric methane or carbon dioxide emissions, except pH was higher for WPSB versus EPSBM. The Plenish diets decreased the prevalence of Ruminococcus and increased that of Eubacterium and Treponema in whole ruminal contents. Total-tract apparent digestibility of organic matter and crude protein were decreased by WPSB compared with ESBM and EPSBM. Compared with the other treatments, urinary N excretion was increased by EPSBM and fecal N excretion was greater for WPSB. Treatments had marked effects on milk fatty acid profile. Generally, the Plenish diets increased mono

  13. Study of Genetic Diversity of grain yield-associated traits in Iranian and Exotic Safflower (Carthamus tinctorius Germplasm

    Directory of Open Access Journals (Sweden)

    M. M. Majidi

    2015-09-01

    Full Text Available Safflower (Carthamus tinctorius L. is cultivated in a wide range of geographical conditions in the world from Africa to Europe, India and China. Previous studies have shown that diversity in indigenous Iranian germplasm is limited for some traits therefore germplasm collections from other origins need to be considered. An experiment was conducted to evaluate agronomic and morphological traits of 100 Iranian and exotic safflower genotypes during 2011- 2012 at the Research Farm of Isfahan University of Technology, Isfahan, Iran, using a simple lattice design of 10 × 10. The results of analysis of variance showed that the differences among genotypes were highly significant (p < 0.01 for days to flowering, seed yield, plant height, number of heads per plant, number of seeds per head, 1000-seed weight, oil content and harvest index, indicating high variability in the studied germplasm. The highest and lowest heritabilities were observed for 1000-seed weight and seed yield, respectively, indicating that indirect improving for seed yield would be more beneficial. Genetic and phenotypic correlation coefficients showed that number of heads per plant, number of seeds per head and harvest index had significantly positive correlations with seed yield. The results of stepwise regression and path analysis showed that number of heads per plant, number of seeds per head and 1000-seed weight are the most important components of seed yield, among which, number of heads per plant had the greatest direct positive effect on seed yield. These traits could be used as criteria for indirect selection in safflower breeding programs. Factor analysis recognized three factors which explained 72.56 percent of total variations. These factors were defined as phenological, physiological source and efficiency factors. Cluster analysis based on the agronomic and morphological traits grouped the genotypes into three clusters. Iranian accessions were clearly discriminated from

  14. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  15. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    Science.gov (United States)

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  16. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Reda Elkacmi

    2016-01-01

    Full Text Available The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country’s climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  17. Tracer studies on P use efficiency by mustard (Brassica juncea L.), safflower (Carthamus tinctorius L.) and chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Singh, S.; Kamath, M.B.

    1991-01-01

    Mustard and chickpea derived a large fraction of their P requirement from applied phosphate compared to safflower crop at flowering. Consequently mean per cent P utilization was maximum in mustard (17.7) followed by chickpea (13.0) and safflower (9.5). However, P uptake at maturity was higher for oilseeds than for the pulse. Grain yield response per kg of applied P was higher at lower rate of P application regardless of the crop. (author). 11 refs., 4 tabs., 2 figs

  18. Effects of Azotobacter and Azospirillum and Levels of Manure on Quantitative and Qualitative Traits of Safflower (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    maryam shahraki

    2016-07-01

    Full Text Available Introduction The demand for food and agricultural products are increasing in a line of population increasing in the world (Alexandratos, 2003. It is possible to increase the quality and quantity of agricultural products via extending the farms and producing more products (Astaaraei and Koocheki, 1995. Environmental problems caused by synthetic fertilizers and the high levels of producing and introducing such chemicals, have been encouraged the researchers to apply bio-fertilizers for increasing the production in a frame of sustainable agriculture (Rajendran and Devarj, 2004. In this study, the economical yield and agronomy index of Safflower (Carthamus tinctorius L. in manure and bio fertilizers treatments was studied. Materials and method This study was conducted in Agricultural Research Institute, University of Zabol during winter season, 2013. Safflower seeds were planted in sandy loam with pH 8.2. The experimental design was factorial in a frame on randomized completely blocks with three replications. The manure as a first factor had three levels, including no treatment (control, 20 and 30 t.ha-1, while second factor was bio-fertilizer treatment with 4 levels, including no treatment (control, Azosprilium (Azo, Azotobacter (Azt and combined treatment of Azo+Azt. The processed manure and bacteria obtained from local farmers were used in this study. Populations of 108 bacteria were prepared and 24 hours before sowing, seeds were soaked in bacteria. After land preparation, experimental plots were (2.5 × 2 m2 created and treated seeds were planted (40 plants.m-2 manually and plantation was watered immediately. In this study plant height, number of heads in bush, number of seeds per head, seed weight per head, seed weight, grain and biological yield, harvest index, leaf chlorophyll, protein and oil percent were studied. Economical yield and agronomy indices of Safflower were calculated at the end of the season and data were analyzed using SAS

  19. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Paula I.P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Laia, César A.T. [Laboratório Associado para a Química Verde (LAQV), REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, Alexandra [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Pereira, Laura C.J.; Coutinho, Joana T. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066 Bobadela LRS (Portugal); Ferreira, Isabel M.M., E-mail: imf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Novo, Carlos M.M. [Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT/UNL, 1349-008 Lisboa (Portugal); Borges, João Paulo, E-mail: jpb@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-10-15

    Highlights: • Superparamagnetic iron oxide nanoparticles were stabilized with oleic acid. • Maximum stabilization was achieved at neutral pH. • Magnetic resonance imaging and magnetic hyperthermia applications were tested. • The produced nanoparticles are viable for both biomedical applications. - Abstract: Iron oxide nanoparticles (Fe{sub 3}O{sub 4}, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of −120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  20. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    International Nuclear Information System (INIS)

    Soares, Paula I.P.; Laia, César A.T.; Carvalho, Alexandra; Pereira, Laura C.J.; Coutinho, Joana T.; Ferreira, Isabel M.M.; Novo, Carlos M.M.; Borges, João Paulo

    2016-01-01

    Highlights: • Superparamagnetic iron oxide nanoparticles were stabilized with oleic acid. • Maximum stabilization was achieved at neutral pH. • Magnetic resonance imaging and magnetic hyperthermia applications were tested. • The produced nanoparticles are viable for both biomedical applications. - Abstract: Iron oxide nanoparticles (Fe_3O_4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of −120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  1. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lan, E-mail: lwang322@yahoo.com.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Medical University, Harbin 150081 (China); Sun Xiudong, E-mail: xdsun@hit.edu.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu Wenjing [Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001 (China); Liu Bingyi [Laboratory Center for the School of Pharmacy, Harbin Medical University, Harbin 150081 (China)

    2010-03-15

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  2. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    International Nuclear Information System (INIS)

    Wang Lan; Sun Xiudong; Liu Wenjing; Liu Bingyi

    2010-01-01

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  3. Safflower bud inhibits RANKL-induced osteoclast differentiation and prevents bone loss in ovariectomized mice.

    Science.gov (United States)

    Choi, Joo-Hee; Lim, Seul-Ki; Kim, Dong-Il; Park, Min-Jung; Kim, Young-Kuk; Lee, An-Chul; Kim, Young-Min; Yang, Soo-Jin; Park, Jong-Hwan

    2017-10-15

    The powder and extract of safflower seeds are known to be effective in the prevention of bone loss in ovariectomized animals. However, the inhibitory effect and molecular mechanisms of safflower bud (SB), the germinated safflower, on bone destruction is unclear. The present study was designed to investigate the inhibitory effect and molecular mechanism of SB on osteoclastic differentiation and on bone loss in ovarietomized (OVX) mice. Osteoclastogenesis was determined by TRAP staining, F-actin ring formation, and bone resorption assay. NF-κB and MAPKs activation was analyzed by transfection assay and Western blot, respectively. Real-time PCR was performed to examine the expression of osteoclastogenesis-related genes. Histological changes, increases in TRAP-positive cells, and cathepsin K expression were examined in the metaphysis of OVX mice. Density of bone marrow was evaluated by µCT. SB inhibited the RANKL-induced differentiation of BMDMs into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by SB in RANKL-treated BMDMs. In addition, SB decreased the activation of NF-κB and MAPKs and the expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. Feeding of SB-included diet prevented bone loss in OVX mice. The number of TRAP-positive cells and level of protein expression of cathepsin K was reduced and bone mineral density was increased in the metaphysis of mice fed SB compared with OVX mice. These findings suggest that SB can be a preventive and therapeutic candidate for destructive bone diseases. Copyright © 2017. Published by Elsevier GmbH.

  4. New formulations of sunflower based bio-lubricants with high oleic acid content – VOSOLUB project

    Directory of Open Access Journals (Sweden)

    Leao J. D.

    2016-09-01

    Full Text Available VOSOLUB project is a demonstration project supported by Executive Agency for Small and Medium-sized Enterprises (EASME that aims at testing under real operating conditions new formulations of sunflower-based biolubricants with high oleic acid content. These biolubricant formulations (including hydraulic fluids, greases, and neat oil metal-working fluids will be tested in three European demonstrating sites. Their technical performance will be evaluated and compared to corresponding mineral lubricants ones. In order to cover the demand for the sunflower base oil, a European SMEs network will be established to ensure the supply of the base at a competitive market price. Results presented concerns the base oil quality confirmed to be in accordance with the specification required, in particular on Free Fatty acid content, Phosphorus content, rancimat induction time and oleic acid content (ITERG. The oil characteristics specific for lubricant application analyzed by BfB Oil Research under normalized methods, match with lubricant specifications requirement such as viscosity, cold & hot properties, surface properties, anti-oxidant properties and thermal stability, anti-wear and EP properties, anti-corrosion properties Performance of the new biolubricant have been assessed by formulators and TEKNIKER First results on the use of new lubricant on real condition for rail Grease (produced by RS CLARE and tested with Sheffield Supertram, Hydraulic oil (produced by BRUGAROLAS and cutting oil (produced by MOTUL TECH and tested with innovative machining, turning are described.

  5. Self-assembled structures and pKa value of oleic acid in systems of biological relevance.

    Science.gov (United States)

    Salentinig, Stefan; Sagalowicz, Laurent; Glatter, Otto

    2010-07-20

    In the human digestion process, triglycerides are hydrolyzed by lipases to monoglycerides and the corresponding fatty acids. Here we report the self-assembly of structures in biologically relevant, emulsified oleic acid-monoolein mixtures at various pH values and oleic acid concentrations. Small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering were used to investigate the structures formed, and to follow their transitions while these factors were varied. The addition of oleic acid to monoolein-based cubosomes was found to increase the critical packing parameter in the system. Structural transitions from bicontinuous cubosomes through hexosomes and micellar cubosomes (Fd3m symmetry) to emulsified microemulsions occur with increasing oleic acid concentration. At sufficiently high oleic acid concentration, the internal particle structure was also found to strongly depend on the pH of the aqueous phase: transformations from emulsified microemulsion through micellar cubosomes, hexosomes, and bicontinuous cubosomes to vesicles can be observed as a function of increasing pH. The reversible transition from liquid crystals to vesicles occurs at intestinal pH values (between pH 7 and 8). The hydrodynamic radius of the particles decreases from around 120 nm for internally structured particles to around 60 nm for vesicles. All transitions with pH are reversible. Finally, the apparent pK(a) for oleic acid in monoolein could be determined from the change of structure with pH. This value is within the physiological pH range of the intestine and depends somewhat on composition.

  6. Studies with a safflower oil emulsion in total parenteral nutrition.

    Science.gov (United States)

    Wong, K. H.; Deitel, M.

    1981-01-01

    The prevention of essential fatty acid deficiency and the provision of adequate amounts of energy are two major concerns in total parenteral nutrition. Since earlier preparations of fat emulsion used to supplement the usual regimen of hypertonic glucose and amino acids have widely varying clinical acceptability, a new product, a safflower oil emulsion available in two concentrations (Liposyn), was evaluated. In four clinical trials the emulsion was used as a supplement to total parenteral nutrition. In five surgical patients 500 ml of the 10% emulsion infused every third day prevented or corrected essential fatty acid deficiency; however, in some cases in infusion every other day may be necessary. In 40 patients in severe catabolic states the emulsion provided 30% to 50% of the energy required daily: 10 patients received the 10% emulsion for 14 to 42 days, 9 patients received each emulsion in turn for 7 days, and 21 patient received the 20% emulsion for 14 to 28 days. All the patients survived and tolerated the lipid well; no adverse clinical effects were attributable to the lipid infusions. Transient mild, apparently clinically insignificant abnormalities in the results of one or more liver function tests and eosinophilia were observed in some patients. Thus, the safflower oil emulsion, at both concentrations, was safe and effective as a source of 30% to 50% of the energy required daily by seriously ill patients. PMID:6799182

  7. Effect of unconventional oilseeds (safflower, poppy, hemp, camelina) on in vitro ruminal methane production and fermentation.

    Science.gov (United States)

    Wang, Shaopu; Kreuzer, Michael; Braun, Ueli; Schwarm, Angela

    2017-08-01

    Dietary supplementation with oilseeds can reduce methane emission in ruminants, but only a few common seeds have been tested so far. This study tested safflower (Carthamus tinctorius), poppy (Papaver somniferum), hemp (Cannabis sativa), and camelina (Camelina sativa) seeds in vitro using coconut (Cocos nucifera) oil and linseed (Linum usitatissimum) as positive controls. All the tested oilseeds suppressed methane yield (mL g -1 dry matter, up to 21%) compared to the non-supplemented control when provided at 70 g oil kg -1 dry matter, and they were as effective as coconut oil. Safflower and hemp were more effective than linseed (21% and 18% vs. 10%), whereas the effects of poppy and camelina were similar to linseed. When methane was related to digestible organic matter, only hemp and safflower seeds and coconut oil were effective compared to the non-supplemented control (up to 11%). The level of methanogenesis and the ratios of either the n-6:n-3 fatty acids or C 18 :2 :C 18 :3 in the seed lipids were not related. Unconventional oilseeds widen the spectrum of oilseeds that can be used in dietary methane mitigation. In vivo confirmation of their methane mitigating effect is still needed, and their effects on animal performance still must be determined. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Mechanosynthesis, structural, thermal and magnetic characteristics of oleic acid coated Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Marinca, T.F., E-mail: traian.marinca@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641 Cluj-Napoca (Romania); Chicinaş, H.F.; Neamţu, B.V. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641 Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Institut NEEL, 25 rue des Martyrs, BP166, F-38042 Grenoble (France); Pascuta, P. [Physics and Chemistry Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641 Cluj-Napoca (Romania); Lupu, N.; Stoian, G. [National Institute of Research & Development for Technical Physics, 47 Mangeron Boulevard, Iasi 700050 (Romania); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641 Cluj-Napoca (Romania)

    2016-03-01

    Oleic acid coated iron ferrite-magnetite nanoparticles (Fe{sub 3}O{sub 4}) have been synthesized via a new combined route, ceramic method and subsequent wet mechanical milling, starting from a stoichiometric mixture of the easily accessible Fe and Fe{sub 2}O{sub 3} precursors. In the first step, the magnetite has been obtained in well crystallised state by heat treatment of precursor's mixture. In the second step, the as obtained magnetite powder has been wet milled in a high energy planetary ball mill using oleic acid as process control agent. Using the same conditions dry milled magnetite samples have been obtained for comparison. The as obtained powders have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), magnetic measurements M = f(H), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). According to XRD analysis two different processing mechanisms are observed for dry and wet milling modes. The magnetite mean crystallite size is 19 nm according to XRD after 240 min of wet mechanical milling. The High Resolution SEM confirmed that the powder consists in nanoparticles that have particles with the size up to 30 nm. The bond of the oleic acid to the magnetite nanoparticles has been observed by FTIR and DSC investigations. The presence of free and bonded oleic acid is revealed and the free oleic acid can be removed controlled by heat treatment. The magnetisation of the milled samples is lower as compared to the magnetisation of the un-milled sample due to several causes such as disordered structure, finite size effect and powder contamination. A powder contamination with iron occurs during milling and this leads to the formation of a wüstite-FeO phase for the dry milled samples. In the case of the wet milled samples, due to an oleic acid layer the FeO phase formation is prevented. - Highlights: • Oleic acid coated magnetite has been synthetized by a new combined route. • XRD

  9. Production and characterization of ice cream with high content in oleic and linoleic fatty acids

    DEFF Research Database (Denmark)

    Marín-Suárez, Marta; García Moreno, Pedro Jesús; Padial-Domínguez, Marta

    2016-01-01

    Ice creams produced with unsaturated fats rich in oleic (OO, 70.7% of oleic) and linoleic (LO, 49.0% of linoleic) fatty acids, were compared to ice cream based on saturated coconut oil (CO, 50% of lauric acid). The globule size distribution of OO mix during aging (72 h at 4°C) followed a similar...... trend to CO mix, being stable after 48 h; whereas LO mix destabilized after 24 h. CO mix showed higher destabilization during ice cream production, but no significant differences among fats were observed in the particle size of the ice cream produced. The overrun was also lower for OO and LO ice creams...... (34.19 and 27.12%, respectively) compared to CO based ice cream (45.06%). However, an improved melting behavior, which gradually decreased from 88.69% for CO to 66.09% for LO ice cream, was observed....

  10. Oleic Acid Based Polyesters of Trimethylolpropane and Pentaerythritol for Bio lubricant Application

    International Nuclear Information System (INIS)

    Hamizah Ammarah Mahmud; Nadia Salih; Jumat Salimon

    2015-01-01

    The production of polyesters based on oleic acid and trimethylolpropane (TMP) or pentaerythritol (PE) as potential bio lubricant were carried out. The esterification processes between oleic acid with TMP or PE were carried out using sulfuric acid as a catalyst. The esterification process produced high yield between 92 %-94 % w/w respectively. The formation of polyesters was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The polyesters were analyzed for basic lubrication physicochemical properties. The results showed that polyesters of both TMP and PE having high viscosity index between 200-309, good pour points ranging from -42 to -59 degree Celsius and high flash points of 280 - 300 degree Celsius respectively. The polyesters also showed good thermal oxidative stability with TGA onset temperatures above 180 degree Celsius. In general both products are plausible to be used as bio lubricant for industrial application. (author)

  11. Synthesis of biodiesel fuel from safflower oil using various reaction parameters.

    Science.gov (United States)

    Meka, Pavan Kumar; Tripathi, Vinay; Singh, R P

    2006-01-01

    Biodiesel fuel is gaining more and more importance because of the depletion and uncontrollable prices of fossil fuel resources. The use of vegetable oil and their derivatives as alternatives for diesel fuel is the best answer and as old as Diesel Engine. Chemically biodiesel fuel is the mono alkyl esters of fatty acids derived from renewable feed stocks like vegetable oils and animal fats. Safflower oil contains 75-80% of linoleic acid; the presence of this unsaturated fatty acid is useful in alleviating low temperature properties like pour point, cloud point and cold filter plugging point. In this paper we studied the effect of various parameters such as temperature, molar ratio (oil to alcohol), and concentration of catalyst on synthesis of biodiesel fuel from safflower oil. The better suitable conditions of 1:6 molar ratio (oil to alcohol), 60 degrees C temperature and catalyst concentration of 2% (by wt. of oil) were determined. The finally obtained biodiesel fuel was analyzed for fatty acid composition by GLC and some other properties such as flash point, specific gravity and acid value were also determined. From the results it was clear that the produced biodiesel fuel was with in the recommended standards of biodiesel fuel with 96.8% yield.

  12. Chemical composition and sensory analysis of peanut pastes elaborated with high-oleic and regular peanuts from Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, C. G.; Mestrallet, M. G.; Nepote, V.; Grosso, N. R.

    2009-07-01

    The objective of this work was to determine the chemical composition, sensory attributes and consumer acceptance of peanut pastes prepared with the high-oleic cultivar, Granoleico (GO-P), in comparison with the regular cultivar, Tegua (T-P), of peanuts grown in Argentina. GO-P had higher oil contents (50.91%) than T-P (48.95%). GO-P and T-P did not show differences in ash and carbohydrate contents. T-P exhibit higher protein content (27.49%) than GO-P (26.68%). GO-P had significantly higher oleic and lower linoleic contents (78.50% and 4.60%, respectively) than T-P (45.80% and 33.30%, respectively). In addition, GO-P showed higher eicosenoic acid and lower palmitic acid percentages than TP. The consumer acceptance analysis did not show significant differences between samples of GO-P and T-P. In the descriptive analysis, GO-P showed a higher intensity rating in the oiliness texture attribute than in T-P. The other sensory attributes did not show significant variations between the peanut paste samples. GO-P and T-P have a significant difference in fatty acid composition. However, there were no differences in consumer acceptance and descriptive analysis between samples of peanut pastes except for the oiliness attribute. (Author) 32 refs.

  13. Yield and Yield Components of Safflower (Carthamus tinctorius L. as Affected by Micronutrient Application and Vermicompost in Two Kerman and Bardsir Regions

    Directory of Open Access Journals (Sweden)

    Alireza Karimi Gogheri

    2017-10-01

    Full Text Available Introduction Despite the importance of oily crops in development of Iran, there are few studies on nutrition with micronutrient in these crops, especially for safflower. Safflower, a deep rooted oilseed crop, is grown in many areas of world because it can be used as oil crop, vegetable, birdfeed and spices. To achieve the acceptable growth and yield of safflower, it needs the sufficient micro- and macronutrient, so that recently, there has been an increased interest in evaluation of nutrient role in quality and quantity of safflower. Application of vermicompost in oil crop production systems of Iran has been increased; which it can improve soil structure by increasing aggregate stability as well as increase in water holding capacity and aeration. On the other hand, micronutrients are nutrients required by plants in small quantities to organize a range of physiological functions. The deficiency micronutrients is widespread in many parts of the country due to cultivation of high yielding varieties, intensive agriculture and increasing use of sulphur free fertilizers in large quantities with concomitant decrease in use of organic manures. There is little information on interaction of vermicompost and micronutrients combination on safflower. thus, this study was conducted to evaluate the effect of combinations of three important micronutrient consisted of sulphur, zinc and boron on yield and yield components as well as dry forage production of safflower in different vermicompost treatments. Material and Methods In this research, the effect of micronutrient application and vermicompost was examined on yield and yield components of safflower in Agriculture and Natural Resources Research Center of Kerman Province in two Kerman and Bardsir regions. The treatments were included vermicompost factor at two levels (0 and 6 t ha-1 and micronutrients combinations at 12 levels (no use, 100 kg ha-1 S, 200 kg ha-1 S, 3 ml L-1 Zn, 2 ml L-1 B, four twofold and two

  14. Evaluation of Drought Tolerance in 16 Genotypes of Safflower(Carthamus tinctoriusL

    Directory of Open Access Journals (Sweden)

    s.M Azimzadeh

    2011-02-01

    Full Text Available Abstract In order to study drought tolerance of 16 genotypes of safflower an experiment was conducted in Research Farm of Shirvan Islamic Azad University during 2005 –2006 growing season. The experiment was performed as randomized complete block design with 4 replications in two separate irrigated and rainfed conditions. The seed rate was 20 seed per square meter, hand planted in each plot. During growing season some agronomic traits including number of grains per heads, grain yield of total head per plant, TKW and grain yield per hectare were recorded. To select drought tolerant genotypes 4 methods including stress tolerance index, stress susceptibility index, cell membrane stability and relative water content were applied. The results showed that two genotypes of LRV-51-51 and CW74 had the highest drought tolerance index and the lowest drought susceptibility index compared with the other genotypes. Grain yield of these two genotypes was 1520 and 1452 kg/ha, respectively which were more than other genotypes. According to these traits the genotypes LRV-51-51 and CW74 are recommended to plant in dry regions with low annual rainfall. Keywords: Safflower, Drought tolerance index, Drought susceptibility index, Yield

  15. Effect of Nitrogen, Potassium, Magnesium and Zinc Sulfates on Yield and Some Characteristics of Biodiesel Produced from Safflower

    Directory of Open Access Journals (Sweden)

    M. Ranjbar

    2012-08-01

    Full Text Available In order to evaluate the effect of different amounts of nitrogen fertilizer, potassium sulfate, magnesium sulfate and zinc sulfate on biodiesel produced from safflower, a field experiment was carried out as completely randomized blocks design with three replications, at Research Farm of Shahrekord University in 2010. Treatments included nitrogen fertilizer at three levels (150, 200 and 300 kg/ha, potassium, magnesium and zinc sulfates at 150, 100 and 50 kg/ha, respectively, and control (no fertilizer application. By nourishing the safflower plants, the seed yield and biodiesel traits such as density, iodine value and saponification value were measured. The results showed that the seed yield under treatment of 300 kg/ha nitrogen (913 kg/ha was greater than other treatments. Magnesium sulfate and potassium sulfate produced the highest oil percentage (32.84 and 32.5, respectively. The biodiesel production under utilization of potassium sulfate had greater density, iodine value and saponification value (867.25 kg/m3, 139.7 mg iodine per 100 g oil, and 190.6 mg sodium hydroxide per g oil, respectively compared to other treatments. In general, it was concluded that application of micronutrient fertilizers (especially potassium sulfate improves seed-oil and biodiesel characteristics of safflower.

  16. Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Okitsu, Kenji; Nishimura, Rokuro; Maeda, Yasuaki [Department of Applied Material Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2009-03-15

    Production of fatty acid ethyl ester (FAEE) from oleic acid (FFA) with short-chain alcohols (ethanol, propanol, and butanol) under ultrasonic irradiation was investigated in this work. Batch esterification of oleic acid was carried out to study the effect of: test temperatures of 10-60 C, molar ratios of alcohol to oleic acid of 1:1-10:1, quantity of catalysts of 0.5-10% (wt of sulfuric acid/wt of oleic acid) and irradiation times of 10 h. The optimum condition for the esterification process was molar ratio of alcohol to oleic acid at 3:1 with 5 wt% of H{sub 2}SO{sub 4} at 60 C with an irradiation time of 2 h. (author)

  17. Optimization of Alkali Catalyzed Transesterification of Safflower Oil for Production of Biodiesel

    Directory of Open Access Journals (Sweden)

    M. C. Math

    2016-01-01

    Full Text Available The Central Composite Design is used for the optimization of alkaline catalyzed transesterification parameters such as methanol quantity, catalytic concentration, and rotational speed by keeping the temperature and reaction time constant. The Central Composite Design method is employed to get the maximum safflower oil methyl ester yield. The combined effects of catalyst concentration, rotational speed, and molar ratio of alcohol to oil were investigated and optimized using response surface methodology. A statistical model has predicted the maximum yield of safflower oil methyl ester (94.69% volume of oil parameters such as catalyst concentration (0.6 grams, methanol amount (30 mL, rotational speed (600 rpm, and keeping constant reaction temperature (55°C to 65°C and reaction time (60 minutes. Experimental maximum yield of 91.66% was obtained at above parameters. XLSTAT is used to generate a linear model to predict the methyl ester yield as a function of methanol quantity, catalyst concentration, and rotational speed by keeping constant reaction temperature (55°C to 65°C and reaction time (60 minutes. MINITAB is used to draw the 3D response surface plot and 2D contour plot to predict the maximum biodiesel yield.

  18. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-02-01

    Full Text Available Abstract Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2 is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78% and a corresponding reduction in polyunsaturated fatty acids (Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60 in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha

  19. [The effect of palm oil and safflower oil in the feed of parent fattening hens on fertility, hatchability and growth of progeny].

    Science.gov (United States)

    Halle, I

    1999-01-01

    The aim of two experiments with broiler breeder hens was to evaluate the effect of diets containing palm butter or safflower oil (25 g and 50 g/kg feed, resp.) on fertility, hatchability and growth of progeny. Especially the incorporation of oleic and linoleic acid in egg yolk reflected the dietary fatty acid source. Eggs were collected and stored in the incubator at a hen age of 31, 40, 50, and 60 weeks. Hatched chicks were reared over 5 weeks. The number of fertile eggs (Experiment 1 and 2, 75 and 88%, resp.) differed between the experiments (P < or = 0.05). Neither embryonic mortality nor hatchability (Experiment 1 and 2, 76 and 78%, resp.) were significantly affected by fatty acid composition of yolk. No clear maternal dietary effect was recorded on chicken weight at hatching (Experiment 1 and 2, 43.3 g and 43.7 g, resp.) and at 35 days of age (Experimental 1 and 2, 1676 g and 1764 g, resp.) The fatty acid composition in the analysed egg yolk sac of chicks showed a different fatty level but corresponded to fatty acid composition of breeding eggs before incubation. According to a decreased level of docosahexaenoic acid in egg yolk due to increased incorporation of linoleic acid, the content of this fatty acid was also diminished in phospholipids of the brain of chicken on days 1 and 5 after hatching.

  20. Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS.

    Science.gov (United States)

    Chen, Hongjian; Cao, Peirang; Li, Bo; Sun, Dewei; Wang, Yong; Li, Jinwei; Liu, Yuanfa

    2017-04-15

    Promotion of water to the thermal oxidation of oleic acid was detected by the combination of EPR, SPME-GC-MS/MS and GC. Spin-trapping technique was used to identify and quantify the radical species formed during thermal oxidation of oleic acid by using DMPO as electron spin trap. The most abundant radical species were identified as DMPO-alkyl radical adducts. EPR intensity plateau of the samples with 5% water content was 140% higher than the samples without water. It implies oleic acid samples with high water content had high level of oxidation rates. The proportion of aldehydes of the samples with 2% water content was the maximum about 59.97%. Among the formed products, (E,E)-2,4-decadienal has genotoxic and cytotoxic effects, whose percentage was nearly twice comparing with that of 5-0% water content. This study demonstrated that higher water content in frying systems would contribute to seriously oxidation and degradation of oleic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of parenteral infusion with medium-chain triglycerides and safflower oil emulsions on hepatic lipids, plasma amino acids and inflammatory mediators in septic rats.

    Science.gov (United States)

    Yeh, S; Chao, C; Lin, M; Chen, W

    2000-04-01

    This study was designed to investigate the effects of preinfusion with total parenteral nutrition (TPN) using medium-chain triglycerides (MCT) versus safflower oil (SO) emulsion as fat sources on hepatic lipids, plasma amino acid profiles, and inflammatory-related mediators in septic rats. Normal rats, with internal jugular catheters, were divided into two groups and received TPN. TPN provided 300kcal/kg/day with 40% of the non-protein energy provided as fat. All TPN solutions were isonitrogenous and identical in nutrient composition except for the fat emulsion, which was made of SO or a mixture of MCT and soybean oil (9:1) (MO). After receiving TPN for 6 days, each group of rats was further divided into control and sepsis subgroups. Sepsis was induced by cecal ligation and puncture, whereas control rats received sham operation. All rats were classified into four groups as follows: MCT control group (MOC, n= 8), MCT sepsis group (MOS, n= 8), safflower oil control group (SOC, n= 8), and safflower oil sepsis group (SOS, n= 11). The results of the study demonstrated that the MOS group had lower hepatic lipids than did the SOS group. Plasma leucine and isoleucine levels were significantly lower in the SOS than in the SOC group, but no differences in these two amino acids were observed between the MOC and MOS groups. Plasma arginine levels were significantly lower in septic groups than in those without sepsis despite whether MCT or safflower oil was infused. Plasma glutamine and alanine levels, however, did not differ between septic and non-septic groups either in the SO or MO groups. No differences in interleukin-1b, interleukin-6, tumor necrosis factor-alpha, and leukotriene B(4)concentrations in peritoneal lavage fluid were observed between the two septic groups. These results suggest that catabolic reaction is septic rats preinfused MCT is not as obvious as those preinfused safflower oil. Compared with safflower oil, TPN with MCT administration has better effects on

  2. Anaerobic degradation of linoleic oleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Lalman, J.A.; Bagley, D.M.

    1999-07-01

    The anaerobic degradation of linoleic (C18:2) and oleic (C18:1) acids was examined in batch experiments. By-product distribution depended on both the type of long chain fatty acid added and initial substrate concentration. Major by-products were palmitic (C16), myristic (C14) and acetic acids. Trace quantities of palmitoleic (C16:1) and lauric (C12) acids were observed together with larger amounts of palmitic (C16), myristic (C14) and hexanoic (C6) acids in cultures incubated with 100 mg/L linoleic (C18:2) acid. Bio-hydrogenation of C18 fatty acids was not necessary for the {beta}-oxidation mechanism to proceed. Aceticlastic methanogenic inhibition was observed in cultures inoculated with greater than 50 mg/L linoleic (C18:2) acid. In cultures incubated with greater than 50 mg/L oleic (C18:1) acid, aceticlastic methanogenic inhibition was observed for a short time period.

  3. Comparison of chemical characteristics of high oleic acid fraction of moringa oleifera oil with some vegetable oils

    International Nuclear Information System (INIS)

    Rahman, F.; Nadeem, M.; Zahoor, Y.

    2014-01-01

    Chemical characteristics of High oleic acid fraction (HOF) of Moringa oleifera oil (MOO) was compared with sunflower, soybean and canola oils. HOF of MOO was obtained by dry fractionation at 0 degree C. Iodine value and C18:1 in HOF increased from 61.55 to 82.47 points and 70.29% to 81.15%, respectively. Cloud point of HOF was 1.1 degree C as compared to 10.2 degree C in MOO. The induction period of HOF was greater than all the vegetable oils tested in this investigation. HOF can be used as a source of edible oil with better health attributes and superior storage stability. (author)

  4. Technical feasibility assessment of oleic sunflower methyl ester utilisation in Diesel bus engines

    International Nuclear Information System (INIS)

    Silva, Fernando Neto da; Prata, Antonio Salgado; Teixeira, Jorge Rocha

    2003-01-01

    This paper describes the results obtained while testing the technical feasibility of using oleic sunflower methyl ester (SME) blended with Diesel fuel in proportions up to 30% in an unmodified Diesel bus engine. Vegetable oils methyl esters blended with Diesel oil are commonly used in compression ignition engines. However, R and D background information on the practical use of traditional sunflower oil derivatives is sparse. The present results include evaluation of the engine performance and fuel consumption and gaseous concentrations (CO and NO x ) in the exhaust gas. The exhaust gas opacity while using Diesel/SME blends and Diesel fuel was also compared. The collected data show that oleic SME utilisation did not lead to a deterioration of engine performance or to an increase in fuel consumption. Furthermore, significant increases of NO x and CO concentrations in the exhaust gas derived from SME utilisation were not detected. The smoke opacity was slightly reduced when SME was used in the proportion of 30%. The experimental testing seems to indicate that oleic SME is a suitable replacement for Diesel fuel and can be used safely in compression ignition engines in proportions as high as 30%. (Author)

  5. Technical feasibility assessment of oleic sunflower methyl ester utilisation in Diesel bus engines

    International Nuclear Information System (INIS)

    Neto da Silva, Fernando; Salgado Prata, Antonio; Rocha Teixeira, Jorge

    2003-01-01

    This paper describes the results obtained while testing the technical feasibility of using oleic sunflower methyl ester (SME) blended with Diesel fuel in proportions up to 30% in an unmodified Diesel bus engine. Vegetable oils methyl esters blended with Diesel oil are commonly used in compression ignition engines. However, R and D background information on the practical use of traditional sunflower oil derivatives is sparse. The present results include evaluation of the engine performance and fuel consumption and gaseous concentrations (CO and NO X ) in the exhaust gas. The exhaust gas opacity while using Diesel/SME blends and Diesel fuel was also compared. The collected data show that oleic SME utilisation did not lead to a deterioration of engine performance or to an increase in fuel consumption. Furthermore, significant increases of NO X and CO concentrations in the exhaust gas derived from SME utilisation were not detected. The smoke opacity was slightly reduced when SME was used in the proportion of 30%. The experimental testing seems to indicate that oleic SME is a suitable replacement for Diesel fuel and can be used safely in compression ignition engines in proportions as high as 30%

  6. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Science.gov (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  7. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    Directory of Open Access Journals (Sweden)

    Elaine Hatanaka

    Full Text Available The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  8. 75 FR 64733 - Arcadia Biosciences, Inc.; Filing of Food Additive Petition (Animal Use); Safflower Seed Meal

    Science.gov (United States)

    2010-10-20

    ...] Arcadia Biosciences, Inc.; Filing of Food Additive Petition (Animal Use); Safflower Seed Meal AGENCY: Food... announcing that Arcadia Biosciences, Inc., has filed a petition proposing that the food additive regulations..., Davis, CA 95618. The petition proposes to amend the food additive regulations in part 573 Food Additives...

  9. Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT

    Directory of Open Access Journals (Sweden)

    Shuaihua Pu

    2016-10-01

    Full Text Available Long-term dietary fatty acid intake is believed to induce changes in the human gut microbiome which might be associated with human health or obesity status; however, considerable debate remains regarding the most favorable ratios of fatty acids to optimize these processes. The objective of this sub-study of a double-blinded randomized crossover clinical study, the canola oil multi-center intervention trial (COMIT, was to investigate effects of five different novel oil blends fed for 30 days each on the intestinal microbiota in 25 volunteers with risk of metabolic syndrome. The 60 g treatments included three MUFA-rich diets: 1 conventional canola oil (Canola; 2 DHA-enriched high oleic canola oil (CanolaDHA; 3 high oleic canola oil (CanolaOleic; and two PUFA-rich diets: 4 a blend of corn/safflower oil (25:75 (CornSaff; and 5 a blend of flax/safflower oil (60:40 (FlaxSaff. Stool samples were collected at the end of each period. DNA was extracted and amplified for pyrosequencing. A total of 17 phyla and 187 genera were identified. While five novel oil treatments failed to alter bacterial phyla composition, obese participants produced a higher proportion of Firmicutes to Bacteroidetes than overweight or normal weight groups (P = 0.01. Similarly at the genus level, overall bacterial distribution was highly associated with subjects’ body mass index (BMI. Treatment effects were observed between MUFA- and PUFA-rich diets, with the three MUFA diets elevating Parabacteroides, Prevotella, Turicibacter, and Enterobacteriaceae (F’s populations, while the two PUFA-rich diets favored the abundance of Isobaculum. High MUFA content feedings also resulted in an increase of Parabacteroides and a decrease of Isobaculum in obese, but not overweight subjects. Data suggest that BMI is a predominant factor in characterization of human gut microbiota profiles, and that MUFA-rich and PUFA-rich diets impact the composition of gut microbiota at lower taxonomical levels

  10. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-08-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  11. Effects of different roasting conditions on the nutritional value and oxidative stability of high-oleic and yellow-seeded Brassica napus oils

    Directory of Open Access Journals (Sweden)

    Rękas, A.

    2015-09-01

    Full Text Available This study was conducted to evaluate the possibility of enhancing the nutritional value and oxidative stability of rapeseed oil obtained from seeds subjected to thermal treatment prior to pressing. The yellowseeded and high-oleic B. napus lines, harvested in Poland, were roasted prior to pressing for 1 h at 100 and 150 °C. This study highlighted how rapeseed breeding lines affect the quality profile of the oils obtained both before and after the roasting process. In principle, the high-oleic B. napus was accompanied by a nearly 2-fold increase in oxidative stability compared to the yellow-seeded B. napus, most likely due to a higher content of oxidation-resistant oleic fatty acids (~74.24% vs. ~60.76% and a decreased concentration of oxidizable PUFAs (~16.32% vs. ~31.09%. Similar to the case of roasting black-seeded rapeseed, the thermal pre-treatment of yellow-seeded and high-oleic B. napus prior to pressing did not alter the composition of their fatty acids. Based on the results obtained in this study, it can be concluded that roasting seeds prior to pressing does not reduce the amount of tocopherols in the oil; moreover, a slight increase in γ-tocopherol content was observed.Este estudio se realizó para evaluar la posibilidad de aumentar el valor nutritivo y la estabilidad oxidativa del aceite de colza obtenido a partir de semillas sometidas a tratamiento térmico antes del prensado. Las líneas de B. napus sembrados amarillos y alto oleico, cosechadas en Polonia, fueron tostadas antes de ser prensadas durante 1 hora a 100 y 150 °C. Este estudio pone de relieve cómo las líneas de colza mejoradas ven afectado el perfil de calidad de los aceites obtenidos antes y después del proceso de tostado. En principio, el alto oleico B. napus aumenta casi 2 veces la estabilidad a la oxidación en comparación con semilla amarilla B. napus, muy probablemente debido a un mayor contenido de ácido graso oleico resistente a la oxidación (~74,24% vs

  12. Antihemolytic Activities of Green Tea, Safflower, and Mulberry Extracts during Plasmodium berghei Infection in Mice

    Directory of Open Access Journals (Sweden)

    Suthin Audomkasok

    2014-01-01

    Full Text Available Malaria-associated hemolysis is associated with mortality in adult patients. It has been speculated that oxidative stress and inflammation induced by malaria parasite are involved in its pathophysiology. Hence, we aimed to investigate the antihemolytic effect of green tea, safflower, and mulberry extracts against Plasmodium berghei infection. Aqueous crude extracts of these plants were prepared using hot water method and used for oral treatment in mice. Groups of ICR mice were infected with 6 × 106 infected red blood cells of P. berghei ANKA by intraperitoneal injection and given the extracts (500, 1500, and 3000 mg/kg twice a day for 4 consecutive days. To assess hemolysis, hematocrit levels were then evaluated. Malaria infection resulted in hemolysis. However, antihemolytic effects were observed in infected mice treated with these extracts at dose-dependent manners. In conclusion, aqueous crude extracts of green tea, safflower, and mulberry exerted antihemolysis induced by malaria infection. These plants may work as potential source in the development of variety of herbal formulations for malarial treatment.

  13. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Spin-dependent transport properties of oleic acid molecule self-assembled La0.7Sr0.3MnO3 nanoparticles

    International Nuclear Information System (INIS)

    Xi, L.; Du, J.H.; Ma, J.H.; Wang, Z.; Zuo, Y.L.; Xue, D.S.

    2013-01-01

    Highlights: ► Spin-dependent transport property of LSMO/oleic acid nanoparticles is investigated. ► Transport properties and MR measured by Cu/nanoparticle assembly/elargol device. ► Non-linear I–V curve indicates a tunneling type transport properties. ► Tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting I–V curves. ► LFMR of LSMO/oleic acid molecules value reaches −18% with current of 0.1 μA at 10 K. - Abstract: Spin-dependent transport property through molecules is investigated using a monolayer of oleic acid molecule self-assembled half metallic La 0.7 Sr 0.3 MnO 3 (LSMO) nanoparticles, which was synthesized using a coprecipitation method. Fourier transform infrared spectroscopy was used to confirm that one-monolayer oleic acid molecules chemically bond to the LSMO nanoparticles. The transport properties and magnetoresistance (MR) effect of the oleic acid molecule coated LSMO nanoparticles were measured by a direct current four probes method using a Cu/nanoparticle assembly/elargol electrode sandwich device with various temperatures and bias voltages. The non-linear I–V curve indicates a tunneling type transport properties. The tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting the I–V curve according to the Simmons equation. The magnetoresistance curves can be divided to high-field MR and low-field MR (LFMR) parts. The former is ascribed to the influence of spin disorder or canting within the LSMO nanoparticle surface and the latter one with strong bias dependence is attributed to the spin-dependent tunneling effect through the insulating surface layer of LSMO and oleic acid molecules. The enhanced LFMR effect for oleic acid coated LSMO with respect to the bare LSMO was attributed to the enhanced tunneling transport and weak spin scattering in oleic acid molecule barrier.

  15. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid.

    Science.gov (United States)

    Wen, Shijie; Liu, Hao; Li, Xingyu; Chen, Xiaoping; Hong, Yanbin; Li, Haifen; Lu, Qing; Liang, Xuanqiang

    2018-05-01

    A first creation of high oleic acid peanut varieties by using transcription activator-like effecter nucleases (TALENs) mediated targeted mutagenesis of Fatty Acid Desaturase 2 (FAD2). Transcription activator like effector nucleases (TALENs), which allow the precise editing of DNA, have already been developed and applied for genome engineering in diverse organisms. However, they are scarcely used in higher plant study and crop improvement, especially in allopolyploid plants. In the present study, we aimed to create targeted mutagenesis by TALENs in peanut. Targeted mutations in the conserved coding sequence of Arachis hypogaea fatty acid desaturase 2 (AhFAD2) were created by TALENs. Genetic stability of AhFAD2 mutations was identified by DNA sequencing in up to 9.52 and 4.11% of the regeneration plants at two different targeted sites, respectively. Mutation frequencies among AhFAD2 mutant lines were significantly correlated to oleic acid accumulation. Genetically, stable individuals of positive mutant lines displayed a 0.5-2 fold increase in the oleic acid content compared with non-transgenic controls. This finding suggested that TALEN-mediated targeted mutagenesis could increase the oleic acid content in edible peanut oil. Furthermore, this was the first report on peanut genome editing event, and the obtained high oleic mutants could serve for peanut breeding project.

  16. Synthesis of hyper branched polyol from palm oil oleic acid

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohd Hilmi Mahmood

    2010-01-01

    Hyper branched polyol from oleic acid of palm oil has been synthesized by a two-step reaction. Dipentaerythritol was initially reacted with 2, 2-bis (hydroxymethyl) propionic acid in a solution medium aided by p-toluene sulfonic acid as a catalyst. This mixture was then used as core and reacted with the oleic acid. Optimization parameters such as processing temperature and reaction time, and chemical analysis (for example OHV, AV, FTIR, NMR and GPC) of the macromolecule synthesized is presented in this paper. (author)

  17. Pretreatment with oleic acid accelerates the entrance into the mitotic cycle of EGF-stimulated fibroblasts.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Eiras, A; Beiras, A; Casanueva, F F

    1995-07-01

    We have previously demonstrated that pretreatment of several cell lines with cis-unsaturated fatty acids, like oleic acid, blocks epidermal growth factor (EGF)-induced early ionic signals, and in particular the [Ca2+]i rise. In the present work we show that this blockade does not alter EGF-stimulated cellular proliferation evaluated by direct cell counting, but induces a powerful enhancement in the pulsed thymidine incorporation assay. The lack of effect of oleic acid on EGF-stimulated cellular proliferation was confirmed by repeated cell counts, cumulative thymidine incorporation, and protein synthesis, but a clear synergistic effect between oleic acid and EGF was again obtained by means of time course experiments with pulsed thymidine. Combined flow cytometry analysis and cell counts at earlier times in EGF-stimulated cells showed that oleic acids accelerates the entrance of cells into the replicative cycle leading to an earlier cell division. Afterward, these oleic acid-pretreated cells became delayed by an unknown compensatory mechanism in such a way that at 48 h post-EGF, the cell count in control and oleic acid-pretreated cells was equal. In conclusion (a) oleic acid accelerates or enhances the EGF mitogenic action and (b) in the long term cells compensate the initial perturbation with respect to untreated cells. As a side observation, the widely employed pulsed thymidine incorporation method as a measure of cell division could be extremely misleading unless experimental conditions are well controlled.

  18. Hypocholesterolemic impact of newly isolated sophorolipids produced by microbial conversion of safflower oil cake in rats fed high-fat and cholesterol diet

    International Nuclear Information System (INIS)

    Nooman, M.U.; Mahmoud, M.H.; Al-kashef, A.S.; Rashad, M. M.

    2017-01-01

    The present study aims to produce low cost sophorolipids, and to evaluate their potential hypocholesterolemic impact. Sophorolipids were produced by Candida bombicola grown on safflower oil cake, extracted by methanol followed by ethyl acetate with a yield of 24.4 and 48.3 g·100 g−1 mixed substrate, respectively. Their structure was confirmed by FTIR and 1H NMR and proven to be safe when subjected to an acute toxicity test. A biological experiment was done on 42 male albino rats classified into six groups for 4 weeks following an induction period for hypercholesterolemia of 8 weeks. The two extracts and their mixture were examined for their hypocholesterolemic effect compared to rosuvastatin. The results revealed a reduction in total cholesterol, low density lipoprotein cholesterol, atherogenic index, liver transaminases’ activity and malondialdehyde. They also revealed an elevation in high density lipoprotein cholesterol and antioxidant enzymes which was more efficient than rosuvastatin. Histopathological examination confirmed these results. In conclusion, the newly isolated sophorolipids are powerful hypocholesterolemic compounds which are even more efficient and safer than rosuvastatin. [es

  19. Hypocholesterolemic impact of newly isolated sophorolipids produced by microbial conversion of safflower oil cake in rats fed high-fat and cholesterol diet

    Directory of Open Access Journals (Sweden)

    M. U. Nooman

    2017-09-01

    Full Text Available The present study aims to produce low cost sophorolipids, and to evaluate their potential hypocholesterolemic impact. Sophorolipids were produced by Candida bombicola grown on safflower oil cake, extracted by methanol followed by ethyl acetate with a yield of 24.4 and 48.3 g·100 g-1 mixed substrate, respectively. Their structure was confirmed by FTIR and 1H NMR and proven to be safe when subjected to an acute toxicity test. A biological experiment was done on 42 male albino rats classified into six groups for 4 weeks following an induction period for hypercholesterolemia of 8 weeks. The two extracts and their mixture were examined for their hypocholesterolemic effect compared to rosuvastatin. The results revealed a reduction in total cholesterol, low density lipoprotein cholesterol, atherogenic index, liver transaminases’ activity and malondialdehyde. They also revealed an elevation in high density lipoprotein cholesterol and antioxidant enzymes which was more efficient than rosuvastatin. Histopathological examination confirmed these results. In conclusion, the newly isolated sophorolipids are powerful hypocholesterolemic compounds which are even more efficient and safer than rosuvastatin.

  20. Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol

    International Nuclear Information System (INIS)

    Han, Ying; Lv, Enmin; Ma, Lingling; Lu, Jie; Chen, Kexun; Ding, Jincheng

    2015-01-01

    Highlights: • The reactor coupling membrane pervaporation with a fixed-bed reactor was studied. • The factors effecting the esterification of oleic acid were investigated. • NaA zeolite membrane was used for dehydration in the coupled reactor. - Abstract: Process intensification through membrane pervaporation (PV) integrated with a fixed-bed reactor could be successfully applied to the esterification of oleic acid and ethanol, which is a crucial step in the biodiesel synthesis using waste oil and grease as resource. The properties of the NaA zeolite membrane such as structure, formulation and separation were investigated by scanning electronic microscopy–energy dispersive spectrometry (SEM–EDS), X-ray diffractometry (XRD) and PV dehydration. Results showed that the NaA zeolite membrane had good separating property for removing water from the organics mixture. The operating conditions were optimized as the ethanol to oleic acid molar ratio of 15:1, feedstock flow rate of 1.0 ml/min, reaction temperature of 80.0 °C and catalyst bed height of 132 mm. The final conversion of oleic acid increased from 84.23% to 87.18% by PV using the NaA zeolite membrane at 24.0 h of operation. The membrane showed good PV performance after used for eight successive runs in the PV-assisted esterification. The resin exhibited a much high catalytic activity and operation stability after used for 100 h in the consecutive single pass fixed-bed esterification.

  1. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    Science.gov (United States)

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  2. Improving tolerance of sunflower and safflower during growth stages to salinity through foliar spray of nutrient solutions

    International Nuclear Information System (INIS)

    Jabeen, N.; Ahmad, R.

    2012-01-01

    The effect of salinity and foliar application of nutrient solutions on sunflower and safflower in vegetative and reproductive phases of the growth were investigated in Bio saline Research Field, University of Karachi, Pakistan. The seeds were sown in pots under non saline condition and saline water irrigation was started at three leaf stage after germination. Different concentration of saline water were made by dissolving 3g and 6g sea salt per litre of tap water, equivalent to an EC of 4.8 and 8.6 dS/m respectively. Nutrient solution (KNO/sub 3 /, H/sub 3/ BO/sub 3/, Fe-EDTA or its mixture) was sprayed thrice, i.e., 45, 75 and 95 days after planting. KNO/sub 3/ was given at the rate 250 ppm and other H/sub 3/ BO/sub 3/ and Fe-EDTA was given at the rate 5 ppm. Salinity caused a significant reduction in nutrient uptake, height, biomass and yield of both sunflower and safflower. Foliar application of macro and micro nutrients (i.e. KNO/sub 3/, H/sub 3/BO/sub 3/, Fe-EDTA and mixture of KNO/sub 3/ + H/sub 3/BO/sub 3/ + Fe-EDTA) partially minimized the salt induced deficiency and showed significant increase in height, fresh and dry biomass, number and weight of seeds, and amount of oil per sunflower and safflower plant irrespective to their growth under non saline or saline conditions. Among the nutrient solutions, mixture of KNO/sub 3/+ H/sub 3/BO/sub 3/ + Fe-EDTA seemed to be the most effective followed by H/sub 3/ BO/sub 3/ and Fe-EDTA. These results suggested that foliar application of nutrients could be used to improve plant tolerance to salinity by alleviating the adverse effects of salinity on growth and reproductive yield. (author)

  3. Influence of different synthesis conditions on properties of oleic acid-coated-Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Aliakbari Atieh

    2015-03-01

    Full Text Available In the present paper, iron oxide nanoparticles coated by oleic acid have been synthesized in different conditions by coprecipitation method. For investigating the effect of time spent on adding the oleic acid to the precursor solution, two different processes have been considered. The as synthesized samples were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM and Fourier transform infrared spectroscopy (FT-IR. Magnetic measurement was carried out at room temperature using a vibrating sample magnetometer (VSM. The results show that the magnetic nanoparticles decorated with oleic acid decreased the saturation of magnetization. From the data, it can also be concluded that the magnetization of Fe3O4/oleic acid nanoparticles depends on synthesis conditions.

  4. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    Directory of Open Access Journals (Sweden)

    Bootello, M. A.

    2016-09-01

    Full Text Available The composition and distribution of fatty acids in triacylglycerol (TAG molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.La composición y distribución de los ácidos grasos en las moléculas de triglicéridos se consideran factores determinantes en las propiedades físicas de los aceites y grasas. La distribución de ácidos grasos en un determinado aceite o grasa puede caracterizarse mediante un coeficiente de asimetría α, calculado a partir de las composiciones de triglicéridos y de ácidos grasos en la posición sn-2 de la molécula de triglicérido mediante hidrólisis con lipasa. El aceite de girasol alto oleico-alto esteárico es una grasa estable y saludable, adecuada para reemplazar a los aceites vegetales hidrogenados y fracciones de palma en muchos productos alimentarios, como grasas plásticas y grasas de confitería. En el presente trabajo, se formularon diferentes aceites alto oleico-alto esteárico con diferente distribución de los ácidos grasos saturados en

  5. Effects on reproduction in female offspring from Sprague-Dawley rats fed 10% snakeweed (Gutierrezia microcephala) throughout pregnancy and concurrent treatment with safflower oil.

    Science.gov (United States)

    Staley, E C; Smith, G S; Greenberg, J A

    1995-10-01

    Previous studies determined that safflower oil administration provided protection against the embryotoxicity seen following ingestion of 10% snakeweed (Gutierrezia microcephala) throughout pregnancy. Sixty-two young primiparous female rats born in those studies were paired with adult male Sprague-Dawley rats. After 4 d they were removed and carried their litters to term. Observations were made of the presence and extent of reproductive effects attributable to the 10% snakeweed exposure and differences in fecundity that were attributable to dosing with safflower oil or normal saline during the snakeweed exposure. Of the 62 rats, 50 carried litters to term and approximated the reproductive efficiency of normal primiparous Sprague-Dawley rats. There was no significant difference between the fecundity of females born to rats fed the 10% snakeweed and dosed with safflower oil, those born of rats fed snakeweed dosed with normal saline, or those fed a snakeweed-free diet and dosed with normal saline. Regardless of the diet or treatment administered, dams carrying their litters to parturition gave birth to healthy, normo-reproductive offspring. While the toxic principles in Gutierrezia species plants may act as estrogenic or anti-estrogenic compounds, they did not impair fertility in the female offspring of dosed rats.

  6. Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction

    Science.gov (United States)

    de Barros Bouchet, Maria Isabel; Martin, Jean Michel; Avila, José; Kano, Makoto; Yoshida, Kentaro; Tsuruda, Takeshi; Bai, Shandan; Higuchi, Yuji; Ozawa, Nobuki; Kubo, Momoji; Asensio, Maria C.

    2017-04-01

    The achievement of the superlubricity regime, with a friction coefficient below 0.01, is the Holy Grail of many tribological applications, with the potential to have a remarkable impact on economic and environmental issues. Based on a combined high-resolution photoemission and soft X-ray absorption study, we report that superlubricity can be realized for engineering applications in bearing steel coated with ultra-smooth tetrahedral amorphous carbon (ta-C) under oleic acid lubrication. The results show that tribochemical reactions promoted by the oil lubrication generate strong structural changes in the carbon hybridization of the ta-C hydrogen-free carbon, with initially high sp3 content. Interestingly, the macroscopic superlow friction regime of moving mechanical assemblies coated with ta-C can be attributed to a few partially oxidized graphene-like sheets, with a thickness of not more than 1 nm, formed at the surface inside the wear scar. The sp2 planar carbon and oxygen-derived species are the hallmark of these mesoscopic surface structures created on top of colliding asperities as a result of the tribochemical reactions induced by the oleic acid lubrication. Atomistic simulations elucidate the tribo-formation of such graphene-like structures, providing the link between the overall atomistic mechanism and the macroscopic experimental observations of green superlubricity in the investigated ta-C/oleic acid tribological systems.

  7. Assessing the Effect of Planting Date on Safflower Cultivars Growth and Seed Yield in Rafsanjan Condition

    Directory of Open Access Journals (Sweden)

    F Khatib

    2015-09-01

    Full Text Available The use of appropriate cultivar and planting date is the most important principles of agronomy; therefore, the aim of the present study was to consider the growth indices of different safflower cultivars and their relationships with seed yield. For this purpose, an experiment was conducted as factorial in randomized block design with four replicates included three planting dates (4 April, 25 April and 16 May and four safflower cultivars (411, Sina, Local Esfahan and Sofeh. The maximum leaf area index (2.33 obtained in the first planting date that it was not significantly different with the second planting date but it decreased up to 70% in the third planting date. In the first planting date, the maximum LAI obtained for Local Esfahan and 411 cultivars. Maximum total dry matter was 124.2 g m-2 for the first planting date that it decreased up to 31 and 78% in the second and third planting dates, respectively. In this planting date Sina and Local Esfahan cultivars had the higher dry matter. Maximum crop growth rate for the first planting date was 38.84 g m-2d-1 that it decreased up to 41 and 66% in the second and third planting dates, respectively. In this planting date, the highest total dry matter obtained for the Local Esfahan cultivar. The results showed that the maximum value of seed yield dedicated to 411 and Local Esfahan cultivars that it had the high correlation with maximum total dry matter. In respect to the present study, it is suggested to use 411 or Local Esfahan cultivars in the first planting date.

  8. Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis

    International Nuclear Information System (INIS)

    Gyergyek, Sašo; Drofenik, Miha; Makovec, Darko

    2012-01-01

    Highlights: ► Synthesis of oleic-acid-coated CoFe 2 O 4 nanoparticles from an aqueous solution. ► During the co-precipitation of Co 2+ /Fe 3+ single-phase spinel forms. ► During the co-precipitation of Co 2+ /Fe 2+ , feroxyhyte forms in addition to spinel. ► Oleic acid increases the spinel formation temperature and limits particle growth. ► Colloidal suspensions of ferrimagnetic CoFe 2 O 4 were prepared. - Abstract: Oleic-acid-coated CoFe 2 O 4 nanoparticles were synthesized by co-precipitation and hydrothermal synthesis. The coprecipitation of the nanoparticles was achieved by the rapid addition of a strong base to an aqueous solution of cations in the presence of the oleic acid surfactant, or without this additive. The nanoparticles were also synthesized by a hydrothermal treatment of suspensions of the precipitates, coprecipitated at room temperature in the presence of the oleic acid, or without it. The influence of the synthesis conditions, such as the valence state of the iron cation in the starting aqueous solution, the temperature of the treatment and the presence of oleic acid, on the particles size was systematically studied. X-ray powder diffractometry (XRD) and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed that, although spinel forms at room temperature, a substantial amount of Co was incorporated within the secondary, feroxyhyte-like phase when the iron cation was in the 2+ state. In contrast, when iron was in the 3+ state, the spinel forms at elevated temperatures of approximately 60 °C. The presence of the oleic acid further increased the formation temperature for the stoichiometric spinel. Moreover, the oleic acid impeded the particles’ growth and enabled the preparation of colloidal suspensions of the nanoparticles in non-polar organic solvents. The nanoparticles’ size was successfully controlled by the temperature of the synthesis in the region where superparamagnetism

  9. Neutron scattering shows a droplet of oleic acid at the center of the BAMLET complex.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Gilbert, Elliot P; Doherty, Greg; Knott, Robert B; Church, W Bret

    2017-07-01

    The anti-cancer complex, Bovine Alpha-lactalbumin Made LEthal to Tumors (BAMLET), has intriguing broad-spectrum anti-cancer activity. Although aspects of BAMLET's anti-cancer mechanism are still not known, it is understood that it involves the oleic acid or oleate component of BAMLET being preferentially released into cancer cell membranes leading to increased membrane permeability and lysis. The structure of the protein component of BAMLET has previously been elucidated by small angle X-ray scattering (SAXS) to be partially unfolded and dramatically enlarged. However, the structure of the oleic acid component of BAMLET and its disposition with respect to the protein component was not revealed as oleic acid has the same X-ray scattering length density (SLD) as water. Employing the difference in the neutron SLDs of hydrogen and deuterium, we carried out solvent contrast variation small angle neutron scattering (SANS) experiments of hydrogenated BAMLET in deuterated water buffers, to reveal the size, shape, and disposition of the oleic acid component of BAMLET. Our resulting analysis and models generated from SANS and SAXS data indicate that oleic acid forms a spherical droplet of oil incompletely encapsulated by the partially unfolded protein component. This model provides insight into the anti-cancer mechanism of this cache of lipid. The model also reveals a protein component "tail" not associated with the oleic acid component that is able to interact with the tail of other BAMLET molecules, providing a plausible explanation of how BAMLET readily forms aggregates. Proteins 2017; 85:1371-1378. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds.

    Science.gov (United States)

    Banaś, Walentyna; Sanchez Garcia, Alicia; Banaś, Antoni; Stymne, Sten

    2013-06-01

    The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.

  11. The metabolism of tritiated oleic acid in the rat. A radiological protection study

    International Nuclear Information System (INIS)

    Jeanmaire, Lucien; Vernois, Yvette; Nazard, Raymonde.

    1979-04-01

    The metabolism of 3 H-labelled oleic acid has been studied in the rat during 600 days. The results of urinary and fecal excretions, of the retention of the total and fixed activities in 25 tissues or organs and the cumulative activity from day 4 to 616 are discussed. Oleic acid is more widely spread than other labelled molecules studied previously both as regard excretion or retention. During the first 4 days one can grossly admit that half the activity is fixed to water and half is stored in the adipose tissues which it leaves quickly first, then more slowly with a half-life of 200 days about. For some ten tissues, the cumulative activity due to the fixed fraction exceeds the cumulative activity due to tritiated water obtained by metabolism of oleic acid [fr

  12. Comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits

    Directory of Open Access Journals (Sweden)

    Koichi Ono

    2009-03-01

    Full Text Available Koichi Ono1, Tomonobu Koizumi2, Rikimaru Nakagawa1, Sumiko Yoshikawa2, Tetsutarou Otagiri11Department of Anesthesiology and Resuscitation; 2First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, JapanPurpose: The present study was designed to examine effects of different mean airway pressure (MAP settings during high-frequency oscillation (HFO on oxygenation and inflammatory responses to acute lung injury (ALI in rabbits.Methods: Anesthetized rabbits were mechanically ventilated with a conventional mechanical ventilation (CMV mode (tidal volume 6 ml/kg, inspired oxygen fraction [FIo2] of 1.0, respiratory rate [RR] of 30/min, positive end-expiratory pressure [PEEP] of 5 cmH2O. ALI was induced by intravenous administration of oleic acid (0.08 ml/kg and the animals were randomly allocated to the following three experimental groups; animals (n = 6 ventilated using the same mode of CMV, or animals ventilated with standard MAP (MAP 10 cmH2O, n = 7, and high MAP (15 cmH2O, n = 6 settings of HFO (Hz 15. The MAP settings were calculated by the inflation limb of the pressure-volume curve during CMV.Results: HFO with a high MAP setting significantly improved the deteriorated oxygenation during oleic acid-induced ALI and reduced wet/dry ratios, neutrophil counts and interleukin-8 concentration in bronchoalveolar lavage fluid, compared to those parameters in CMV and standard MAP-HFO.Conclusions: These findings suggest that only high MAP setting during HFO could contribute to decreased lung inflammation as well as improved oxygenation during the development of ALI.Keywords: lung protective ventilation, open lung ventilation, IL-8, neutrophil

  13. Characterization of high-oleic peanut natural mutants derived from an intersectional cross

    Directory of Open Access Journals (Sweden)

    Wang, X. Z.

    2015-09-01

    Full Text Available As compared with its normal oleate counterpart, high oleate peanuts have better storage quality and several health benefits, and are therefore preferred by peanut shellers and consumers. High oleate has now become one of the main breeding objectives of peanuts. Thus far, over 50 high oleate peanut cultivars have been registered. Yet high oleate peanut breeding relies heavily on a limited number of high oleate genotypes. In this paper, we reported, for the first time, high peanut oleate natural mutants with large seeds derived from an intersectional cross, which were identified with near infra-red spectroscopy and confirmed by gas chromatography. Sequencing of FAD2 from the high-oleic hybrids along with their normal oleate parents indicated that a 448G >A mutation in FAD2A coupled with a 441_442ins A or G in FAD2B together caused high oleate phenotypes in these peanut hybrids.En comparación con su homólogo con contenido normal de oleico, el maní alto oleato mantiene una mejor calidad durante la conservación y tiene beneficios para la salud, y de ahí que sea preferido por desgranadoras de maní y por los consumidores. El alto oleato se ha convertido actualmente en uno de los principales objetivos para la mejora del maní. Hasta el momento, más de 50 cultivares de maní alto oleato han sido registrados. Sin embargo, la reproducción de maní alto oleato se basa principalmente en un número limitado de genotipos alto oleato. En este trabajo se presentan por primera vez mutantes naturales de maní alto oleato con semillas derivadas de un cruce de intersecciones, que fue identificado mediante espectroscopia de infrarrojo cercano y se confirma me diante cromatografía de gases. La secuenciación de FAD2 de los híbridos de alto oleico junto con sus progenitores oleato normal, indicó que la mutación 448G >A en FAD2A unido a un 441_442ins A o G en FAD2B juntos da lugar a fenotipos alto oleato en estos híbridos de maní.

  14. Preference for safflower oil in rats exposed to a cold environment under free-feeding conditions.

    Science.gov (United States)

    Saitoh, Masaji; Ishii, Toshiaki; Takewaki, Tadashi; Nishimura, Masakazu

    2005-07-01

    There are several benefits to a high-fat diet for animals exposed to cold, including improved tolerance to severe cold conditions and increased survival rates in cold environments. It is therefore of interest to examine whether animals exposed to cold will selectively consume lipids. We examined the intake of safflower oil (SO) by rats exposed to cold (4 +/- 2 degrees C) under a feeding condition in which the rats were given free access to SO. Rats exposed to cold consumed more SO than those housed at 25 +/- 2 degrees C. This finding suggests that rats prefer SO in a cold environment. There was no significant difference in the ratio of calories of SO ingested to that of matter (standard laboratory chow plus SO) ingested between rats exposed to cold and those at 25 +/- 2 degrees C. The high SO intake also affected cold tolerance and metabolite kinetics in the rats. Factors that affected the SO intake of rats exposed to cold are also discussed.

  15. Alpha-fetoprotein (AFP) modulates the effect of serum albumin on brain development by restraining the neurotrophic effect of oleic acid.

    Science.gov (United States)

    García-García, Alejandro G; Polo-Hernández, Erica; Tabernero, Arantxa; Medina, José M

    2015-10-22

    We have previously shown that serum albumin controls perinatal rat brain development through the regulation of oleic acid synthesis by astrocytes. In fact, oleic acid synthesized and released by astrocytes promoted neurite growth, neuron migration and the arrangement of prospective synapses. In this work we show that alpha-fetoprotein (AFP) is also present in the brain during embryonic development, its concentrations peaking at E15.5 and at E19.5. However, after E19.5 AFP concentrations plummeted concurrently with a sharp increase in serum albumin concentrations. At E15.5, AFP is present in caudal regions of the brain, particularly in brain areas undergoing differentiation during this period, such as the thalamic reticular nucleus of the thalamus, the hypothalamus, the amygdala and the hippocampus. Albumin was not detected in the brain at E15.5 but stained brain cells substantially on day E19.5, showing a very similar distribution to that of AFP under the same circumstances. The concentrations of free oleic acid in the brain were inversely correlated with those of AFP, suggesting that the signals elicited by AFP and oleic acid can be inversely associated. GAP-43, a marker of axonal growth that is highly expressed by the presence of oleic acid, was not co-localized with AFP except in the marginal zone and areas delimiting the subplate. AFP prevented the increase in GAP-43 expression caused by the presence of oleic acid in neurons in primary culture in vitro and in organotypic cultures of embryonic rat brain ex vivo, suggesting that AFP may modulate the effect of serum albumin on brain development. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    Science.gov (United States)

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.

  17. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    Science.gov (United States)

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  18. Effect of eicosapentaenoic acid ethyl ester v. oleic acid-rich safflower oil on insulin resistance in type 2 diabetic model rats with hypertriacylglycerolaemia.

    Science.gov (United States)

    Minami, Asako; Ishimura, Noriko; Sakamoto, Sadaichi; Takishita, Eiko; Mawatari, Kazuaki; Okada, Kazuko; Nakaya, Yutaka

    2002-02-01

    The purpose of the present study was to test whether hyperlipidaemia and insulin resistance in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats can be improved by dietary supplementation with purified eicosapentaenoic acid (EPA) or oleic acid (OA). Male OLETF rats were fed powdered chow (510 g fat/kg) alone (n 8) or chow supplemented with 10 g EPA- (n 8) or OA- (n 8) rich oil/kg per d from 5 weeks until 30 weeks of age. An oral glucose tolerance test and hyperinsulinaemic euglycaemic clamp was performed at 25 and 30 weeks of age. EPA supplementation resulted in significantly (P<0.05) reduced plasma lipids, hepatic triacylglycerols, and abdominal fat deposits, and more efficient in vivo glucose disposal compared with OA supplementation and no supplementation. OA supplementation was associated with significantly increased insulin response to oral glucose compared with EPA supplementation and no supplementation. Inverse correlation was noted between glucose uptake and plasma triacylglycerol levels (r -086, P<0.001) and abdominal fat volume (r -0.80, P<0.001). The result of oral glucose tolerance test study showed that the rats fed EPA tended to improve glucose intolerance, although this was not statistically significant. Levels of plasma insulin at 60 min after glucose was significantly increased in rats fed OA compared with the other two groups. The results indicate that long-term feeding of EPA might be effective in preventing insulin resistance in diabetes-prone rats, at least in part, due to improving hypertriacylglycerolaemia.

  19. Guizotia abyssinica (L.f.) cass.: An untapped oilseed resource for the future

    International Nuclear Information System (INIS)

    Yadav, Sangita; Kumar, Sandeep; Hussain, Zakir; Suneja, Poonam; Yadav, Shiv K.; Nizar, M.A.; Dutta, M.

    2012-01-01

    Amongst minor oilseed crops, niger has not been given considerable importance as compared to the sunflower, safflower, linseed and sesame. A study on 35 niger genotypes was conducted to evaluate their potential in terms of oil quantity, quality and biodiesel traits. Oil quality was determined by fatty acid composition for two consecutive years and the results were compared with other minor oilseed crops. Niger oil has four major fatty acids namely palmitic, stearic, oleic and linoleic acid. Genotypes which showed consistent fatty acid profile for the 2 consecutive years were also reported. Oleic and linoleic fatty acids showed high variability ranging from 23.52 to 53.05% and 32.03–58.28%, respectively. High oleic (IC372586) and linoleic acid (IC211078, IC211080 and IC259393) containing genotypes were also identified. Total unsaturated fatty acid (81.79–85.06%) was found to be higher than total saturated fatty acid (14.94–18.21%). Based on saponification number (200.16–202.16) and Iodine value (105.69–126.7 g I 2 100 g −1 ) the niger oil finds its application in various industries while cetane number confirmed the use of it as biodiesel. -- Highlights: ► High variability in oil quality. ► TUSFA higher than TSFA. ► Niger oil- a biodiesel source.

  20. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    Science.gov (United States)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  1. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats.

    Science.gov (United States)

    Hanke, Danielle; Zahradka, Peter; Mohankumar, Suresh K; Clark, Jaime L; Taylor, Carla G

    2013-01-01

    This study investigated the efficacy of the plant-based n-3 fatty acid, α-linolenic acid (ALA), a dietary precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for modulating hepatic steatosis. Rats were fed high fat (55% energy) diets containing high oleic canola oil, canola oil, a canola/flax oil blend (C/F, 3:1), safflower oil, soybean oil, or lard. After 12 weeks, C/F and weight-matched (WM) groups had 20% less liver lipid. Body mass, liver weight, glucose and lipid metabolism, inflammation and molecular markers of fatty acid oxidation, synthesis, desaturation and elongation did not account for this effect. The C/F group had the highest total n-3 and EPA in hepatic phospholipids (PL), as well as one of the highest DHA and lowest arachidonic acid (n-6) concentrations. In conclusion, the C/F diet with the highest content of the plant-based n-3 ALA attenuated hepatic steatosis and altered the hepatic PL fatty acid profile. © 2013 Published by Elsevier Ltd.

  2. Efficacy of phytosterols and fish-oil supplemented high-oleic-sunflower oil rich diets in hypercholesterolemic growing rats.

    Science.gov (United States)

    Alsina, Estefania; Macri, Elisa V; Lifshitz, Fima; Bozzini, Clarisa; Rodriguez, Patricia N; Boyer, Patricia M; Friedman, Silvia M

    2016-06-01

    Phytosterols (P) and fish-oil (F) efficacy on high-oleic-sunflower oil (HOSO) diets were assessed in hypercholesterolemic growing rats. Controls (C) received a standard diet for 8 weeks; experimental rats were fed an atherogenic diet (AT) for 3 weeks, thereafter were divided into four groups fed for 5 weeks a monounsaturated fatty acid diet (MUFA) containing either: extra virgin olive oil (OO), HOSO or HOSO supplemented with P or F. The diets did not alter body weight or growth. HOSO-P and HOSO-F rats showed reduced total cholesterol (T-chol), non-high-density lipoprotein-cholesterol (non-HDL-chol) and triglycerides and increased HDL-chol levels, comparably to the OO rats. Total body fat (%) was similar among all rats; but HOSO-F showed the lowest intestinal, epididymal and perirenal fat. However, bone mineral content and density, and bone yield stress and modulus of elasticity were unchanged. Growing hypercholesterolemic rats fed HOSO with P or F improved serum lipids and fat distribution, but did not influence material bone quality.

  3. Registration of the sunflower oilseed maintainer genetic stocks HOLS1, HOLS2, HOLS3, and HOLS4, possessing genes for high oleic and low saturated fatty acids, and tolerance to imidazolinone herbicides

    Science.gov (United States)

    One of the primary goals for the oilseed sunflower industry is to provide novel oil products for human consumption. One oil profile of particular interest is high oleic/ low saturated fat, because it combines high oxidative stability of the oil with a reduction in the fatty acids that are detriment...

  4. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  5. Evaluation of late season drought effects on seed and oil yields in spring safflower genotypes

    OpenAIRE

    ESLAM, Bahman Pasban; MONIRIFAR, Hassan; GHASSEMI, Mastaneh Taher

    2014-01-01

    Seed and oil yields, their components, and the relationships among yield and related traits were measured in 5 spring safflower (Carthamus tinctorius L.) genotypes, Local Arak, Local Esfahan, Sina, KH23-57, and Goldasht, under nonstressed and water deficit conditions imposed from late flowering (80% flowering) to maturity. The studies were conducted in loam soil at the Research Center for Agriculture and Natural Resources of East Azarbaijan, Iran (46°2'E, 37°58'N) during 3 s...

  6. Lipoprotein profiles and serum peroxide levels of aged women consuming palmolein or oleic acid-rich sunflower oil diets.

    Science.gov (United States)

    Cuesta, C; Ródenas, S; Merinero, M C; Rodríguez-Gil, S; Sánchez-Muniz, F J

    1998-09-01

    To investigate the hypercholesterolemic effects of a dietary exchange between 16:0 and 18:1 while 18:2 was at relatively lower level (approximately 4%) in aged women with initially high total serum cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) values and with high intakes of dietary cholesterol. Subjects were assigned to two consecutive 28 d periods. In the first period all subjects followed an oleic acid-rich diet in the form of oleic acid-rich sunflower oil. This was followed by a second period rich in palmitic acid in the form of palmolein. Nutrient intakes, serum lipids, lipoproteins, antioxidant vitamins, peroxides and LDL-peroxides were measured at two dietary periods. Instituto de Nutrición y Bromatología (CSIC), Departamento de Nutrición y Bromatología I (Nutrición) and Sección Departamental de Quimica Analítica, Universidad Complutense, Madrid, Spain. The palmolein period led to an increase in TC (P or = 6.21 mmol/L or with TC 6.21 mmol/L than in women with TC < 6.21 mmol/L, but palmolein decreased serum and LDL-peroxide in hypercholesterolemics more than in the normocholesterolemics, resulting in serum and LDL-peroxide levels which theoretically are more adequate. Though palmolein increased LDL-C concentrations, it better protected LDL particles, mainly in women with high TC, against peroxidation than did oleic acid-rich sunflower oil.

  7. Oleic acid-associated bronchiolitis obliterans-organizing pneumonia in beagle dogs.

    Science.gov (United States)

    Li, X; Botts, S; Morton, D; Knickerbocker, M J; Adler, R

    2006-03-01

    Accidental intra-airway exposure of dogs with pure oleic acid produced bronchiolitis obliterans and bronchopneumonia. Pulmonary changes included multifocal to coalescing necrosis of bronchioles and adjacent alveoli, hemorrhage, inflammation, and exudation of fibrin. Hyperplasia of bronchiolar and alveolar epithelial cells and proliferation of loose fibrovascular connective tissue formed polyps or plugs of variable size and shape. Polyps in the airways primarily consisted of fibroblasts with loose or myxoid stroma and were variably covered with attenuated epithelial cells. Some polyps had prominent vasculature, mixed inflammatory cell infiltration, and/or necrosis. Polyps or plugs variably effaced bronchioles and adjacent alveoli. The changes closely resembled human bronchiolitis obliterans-organizing pneumonia (BOOP). Controlled intra-airway delivery of oleic acid in dogs may be a potential animal model of obstructive pulmonary diseases such as BOOP or bronchiolitis obliterans.

  8. Combined fish oil and high oleic sunflower oil supplements neutralize their individual effects on the lipid profile of healthy men.

    Science.gov (United States)

    Hlais, Sani; El-Bistami, Dunia; El Rahi, Berna; Mattar, Mélanie A; Obeid, Omar A

    2013-09-01

    Both n-3 and n-9 fatty acids share a common metabolic pathway and can potentially and individually improve cardiovascular disease risk factors. Dietary n-6 is known to weaken the efficacy of n-3 fatty acids due to competition for the same enzymes. Still unclear is whether a similar competition exists between n-3 and n-9 fatty acids. Thus, a 12-week intervention study was conducted to investigate the effect of different combinations of fish oil and high-oleic sunflower oil (OSO) on healthy subjects. Included were five groups (98 subjects): three groups received a fixed amount of n-9 (8 g/day) with varying amounts of n-3 (1, 2 or 4 g/day), one group was given n-3 fatty acids only (2 g/day) and another was given n-9 only (8 g/day). We found that fish oil supplement (2 g/day) was able to decrease TAG by about 13 %, this effect was diminished with the co-ingestion of n-9 (OSO). Intake of OSO (8 g/day) reduced both total and LDL cholesterol by about 10 %, this effect was reduced by the addition of fish oil. Both fish oil and OSO failed to have any significant effect on both glycemic and blood pressure parameters. In conclusion; the impact of oleic acid (n-9) on total and LDL cholesterol was altered by the addition fish oil (n-3). These effects may have been the result of enzymatic competition between the two types of fatty acids.

  9. Screening for Terminal Drought Tolerance in Iranian and Exotic Safflower Genotypes Using Drought Tolerance and Susceptibility Indices

    Directory of Open Access Journals (Sweden)

    R. Maleki Nejad

    2015-06-01

    Full Text Available This research was conducted to evaluate drought tolerance of safflower genotypes (Carthamus tinctorius L. at the research farm of Isfahan University of Technology, Isfahan, Iran during growing season of 2012. One hundred genotypes including 81 foreign genotypes along with 19 Iranian genotypes were evaluated under normal and moisture stress conditions according to a simple lattice design with two replications. Drought tolerance and sensitivity indices including mean productivity (MP, geometric mean productivity (GMP, stress tolerance index (STI, tolerance (TOL and stress susceptibility index (SSI were studied. Results of this study indicated that genotypes were significantly different for grain yield in both moisture conditions. Among all indices, MP, GMP and STI were identified as the best indices that can be used to determine tolerant genotypes. Based on MP, GMP and STI and also principal component analysis PI 369847 (Tajikistan, CART 56 (USA, PI 657820 (Jordan, PI 305527 (Soudan were determined as the most tolerant genotypes and PI 537652 (Mexico, CART 131 (Prague, PI 470942 (Bangladesh, PI 209286 (Romania and CART 32 (German as the most sensitive ones. Results also indicated that the biplot of principal component analysis is a powerful technique to discriminate genotypes based on the measured indices. The superior safflower genotypes can be used in future breeding programs.

  10. Safety Assessment of a New Pigmented Safflower Seed Coat (A82 by a Feeding Study on Rat

    Directory of Open Access Journals (Sweden)

    Soraya Karami

    2017-10-01

    Full Text Available ABSTRACT Safflower (Carthamus tinctorius L. is an annual herbaceous plant, cultivated mainly for the seed which is used for edible oil extraction and bird feeding. This study was designed to evaluate the safety of a new pigmented variety of safflower (A82 seeds. The results showed that oral administration of A82 seeds significantly increased the body weight of male rats in a dose-dependent manner (p<0.05. Biochemical tests showed that A82 seeds significantly increased the serum levels of AST (Aspartate aminotransferase (p<0.05, slightly reduced the serum levels of ALT (Alanine aminotransferase and significantly reduced ALP (p<0.05 levels in a dose dependent manner. BUN (Blood Urea Nitrogen and Cr (Creatinine were not significantly changed in A82 seed treated groups. Also, testosterone levels were not significantly changed by administration of different doses of A82. However, Johnson scoring showed slightly decrease in experimental groups. No organ weight or histological changes were observed in liver, kidney, spleen, heart and brain of A82 seed treated animals. These results indicate that A82 seeds have not any toxic effects in Wistar rats. Future studies are required to clarify the exact mechanism by which A82 seeds alter AST levels and body weight in rat.

  11. Radiochemical synthesis of copolymers of N-vinylpyrrolidone with undecylenic and oleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ushakova, V.N.; Panarin, E.F.; Denisov, V.M.; Kol' tsov, A.I.; Persinen, A.A.

    1988-11-01

    Radiation copolymerization of N-vinylpyrrolidone with undecylenic and oleic acids was studied. It was shown that the yield of polymer and the rate of copolymerization are essentially a function of the composition of the starting mixture. The maximum molar concentration of carbonyl units in the copolymer is 30%. A random copolymer in which there is nothing next to the standing carboxylic acid units is formed. The relative reactivity of the acids is equal to zero; the reactivities of N-vinylpyrrolidone - 0.61 < r < 0.94 for undecylenic and 0.90 < r < 1.31 for oleic acids - were calculated in consideration of the effect of the next-to-last unit.

  12. Radiation chemical synthesis of N-vinylpyrrolidone copolymers with undecylenic and oleic acids

    International Nuclear Information System (INIS)

    Ushakova, V.N.; Panarin, E.F.; Denisov, V.M.; Kol'tsov, A.I.; Persinen, A.A.

    1988-01-01

    Radiation copolymerization of N-vinylpyrrolidone with undecylenic and oleic acids is investigated. Irradiation was carried out at 320 and 300 K using γ-radiation with 0.23 and 0.04 Gy/s dose rate respectively. Polymer yield and copolimerization rate sufficiently depend on composition of initial mixture. Maximum molar concentration of carboxyl links in copolymer is 30 %. Statistic copolymer, which has no adjacent links of carboxylic acid, is formed. The relative reactivity of acids is equal to zero; reactivities of N-vinylpyrrolidone: 0.61< r<0.94 for undecylenic and 0.90 < r < 1.31 for oleic acid are calculated taking account of preterminal link effect

  13. Radiochemical synthesis of copolymers of N-vinylpyrrolidone with undecylenic and oleic acids

    International Nuclear Information System (INIS)

    Ushakova, V.N.; Panarin, E.F.; Denisov, V.M.; Kol'tsov, A.I.; Persinen, A.A.

    1988-01-01

    Radiation copolymerization of N-vinylpyrrolidone with undecylenic and oleic acids was studied. It was shown that the yield of polymer and the rate of copolymerization are essentially a function of the composition of the starting mixture. The maximum molar concentration of carbonyl units in the copolymer is 30%. A random copolymer in which there is nothing next to the standing carboxylic acid units is formed. The relative reactivity of the acids is equal to zero; the reactivities of N-vinylpyrrolidone - 0.61 < r < 0.94 for undecylenic and 0.90 < r < 1.31 for oleic acids - were calculated in consideration of the effect of the next-to-last unit

  14. Effect of Planting Date on Reducing Growth Period of Spring Safflower Cultivars in Tabriz Cold and Semi-arid Climate

    Directory of Open Access Journals (Sweden)

    B Pasban Eslam

    2018-02-01

    Full Text Available Introduction Safflower is a plant adaptable to areas with limited rainfall during winter and spring and dry air at flowering, seed filling and maturity stages, and tolerant to water deficit. The positive correlation coefficient observed between safflower seed yield with precipitation and low air temperature during seed germination to flowering and flowering to seed maturity. Furthermore, precipitation and low temperature during flowering to seed maturity significantly increased seed oil percentage. Therefore, it seems that, by adjusting the planting time can be adapted phenological stages of plant with appropriate weather conditions. The aims of this research were study the possibility reducing the growth period of safflower spring varieties with maintaining performance through delay in planting time, evaluate seed and oil yields at different planting times, and identify the best varieties for cold and semi-arid areas. Materials and Methods The experiment was conducted at the East Azarbaijan Agriculture and Natural Resources Research Center (46°2¢E, 37°58¢N, 1347 m a.s.l. during 2014-2015 growing season. According to Koppen climatic classification system, the area climate is semi-arid and cold. This study was carried out as factorial experiment based on randomized complete block design with three replications. Treatments were four planting dates (30 March, 9, 19 and 29 April and three safflower spring cultivars (Sina, Soffeh and Goldasht. Plant spacing between rows was 24 cm and final plant density was 70 plant per m2. Each plot consisted of 6 rows in 5 meters. Plants were harvested on the 11th and 14th of August in the first and second years of experiment, respectively. At the harvest time, in order to control boarder effects, plants from the sides of each plot were removed. Measured traits were plant height, capitulum diameter, seed yield, capitula number per plant, seed number per capitulum and 1000-seed weight. Ten plants in each plot

  15. Comparative scintigraphy in oleic acid pulmonary microvascular injury

    International Nuclear Information System (INIS)

    Sugerman, H.J.; Hirsch, J.I.; Tatum, J.L.; Strash, A.M.; Sharp, D.E.; Greenfield, L.J.

    1982-01-01

    Computerized gamma scintigraphy revealed a significant (p less than 0.001) rising lung:heart radioactivity ratio, which has been called ''slope of injury'' or ''slope index'', with both 99mTechnetium-tagged human serum albumin (99mTc-HSA) and 99mTechnetium-tagged red blood cells (99Tc-RBC) after 0.05 or 0.2 ml/kg iv oleic acid administration to dogs. This slope index was significantly greater with 99mTc-HSA than 99mTc-RBC (p less than 0.001). These findings verify that the scintigraphic 99mTc-HSA slope of injury is a result of a pulmonary capillary protein leak and not oleic acid induced changes in pulmonary blood or air volume. The leak of red blood cells noted with scintigraphy was confirmed by light microscopy and examination of the tracheal edema fluid. The leak of albumin, however, was much greater than the leak of red blood cells by microscopy and tracheal fluid examination, confirming the scintigraphic data. This study provides further evidence that computerized gamma scintigraphy will be of value for the diagnosis of permeability pulmonary edema and its response to treatment

  16. Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation

    Directory of Open Access Journals (Sweden)

    Marcio J. da Silva

    2008-09-01

    Full Text Available The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H2SO4 is the catalyst on the first step of this process. It must be said, however, that major drawbacks such as substantial reactor corrosion and the great generation of wastes, including the salts formed due to neutralization of the mineral acid, are negative and virtually unsurmountable aspects of this protocol. In this paper, tin(II chloride dihydrate (SnCl2·2H2O, an inexpensive Lewis acid, was evaluated as catalyst on the ethanolysis of oleic acid, which is the major component of several fat and vegetable oils feedstocks. Tin chloride efficiently promoted the conversion of oleic acid into ethyl oleate in ethanol solution and in soybean oil samples, under mild reaction conditions. The SnCl2 catalyst was shown to be as active as the mineral acid H2SO4. Its use has relevant advantages in comparison to mineral acids catalysts, such as less corrosion of the reactors and as well as avoiding the unnecessary neutralization of products. Herein, the effect of the principal parameters of reaction on the yield and rate of ethyl oleate production has been investigated. Kinetic measurements revealed that the esterification of oleic acid catalyzed by SnCl2·2H2O is first-order in relation to both FFAs and catalyst concentration. Experimentally, it was verified that the energy of activation of the esterification reaction of oleic acid catalyzed by SnCl2 was very close those reported for H2SO4.

  17. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms.

    Science.gov (United States)

    Cai, Jian-Na; Kim, Mi-A; Jung, Ji-Eun; Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2015-01-01

    Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentration levels, via microbiological and biochemical methods, confocal fluorescence microscopy, and real-time PCR. The combination of oleic acid with fluoride inhibited EPS formation more strongly than did fluoride or oleic acid alone. The superior inhibition of EPS formation was due to the combination of the inhibitory effects of oleic acid and fluoride against glucosyltransferases (GTFs) and GTF-related gene (gtfB, gtfC, and gtfD) expression, respectively. In addition, the combination of oleic acid with fluoride altered the bacterial biovolume of the biofilms without bactericidal activity. These results suggest that oleic acid may be useful for enhancing fluoride inhibition of EPS formation by S. mutans biofilms, without killing the bacterium.

  18. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake in a fixed-bed reactor: part 2. Structural characterization of pyrolysis bio-oils.

    Science.gov (United States)

    Sensöz, Sevgi; Angin, Dilek

    2008-09-01

    Biomass in the form of agricultural residues is becoming popular among new renewable energy sources, especially given its wide potential and abundant usage. Pyrolysis is the most important process among the thermal conversion processes of biomass. In this study, the various characteristics of bio-oils acquired under different pyrolysis conditions from safflower seed press cake (SPC) were identified. The elemental analyses and calorific values of the bio-oils were determined, and then the chemical compositions of the bio-oils were investigated using chromatographic and spectroscopic techniques such as column chromatography, (1)H NMR, FTIR and GC. The fuel properties of the bio-oil such as kinematic viscosity, flash point, density, water content and ASTM distillation were also determined. Chemical compositions of bio-oils showed that some quantities of hydrocarbons were present, while oxygenated and polar fractions dominated. The bio-oils obtained from safflower seed press cake were presented as an environmentally friendly feedstock candidate for biofuels and chemicals.

  19. Effect of Organic Fertilizers on Yield and Yield Components of Safflower (Carthamus tinctorious L.

    Directory of Open Access Journals (Sweden)

    S. M Azimzadeh

    2017-12-01

    Full Text Available Introduction Soil organic matters impose direct and indirect effect on crop production through providing of nutrients and also improvement of soil physical condition and stimulation of plant growth. It also seems that plant production based on application of organic fertilizers is more stable than application of chemical fertilizers. So, there has been lots of attention from agronomists, ecologists and consumers toward organic fertilizers. In organic farming, agricultural ecosystem is considered as a living thing and integrated totality, so in this system, soil, crop, microorganisms and micro-climate affect on each other and also are under the effect of each other. For better performance of this system, each component should be in its appropriate condition. Periodical reverse of organic matter to soil and crop rotation will improve biological and physical characteristics of soil. However, balance of nutrients in organic matter which is available for plant is important because causes less dependence to chemical fertilizers. Indeed, nutrients balance is more important than application of chemical fertilizers that can lead to water pollution and decreasing quality of food products. Application of chemical fertilizers caused considerable increasing of farmer's income in last decade. These fertilizers also imposed ecological and environmental problems. In Iran like most of the countries, overusing of chemical inputs like fertilizers has caused destruction of water and soil resources. In addition, leaching of soluble chemical fertilizers specially nitrogen fertilizers has caused pollution of drinking water and overfilling of the water of lakes and ponds in some regions. So researchers have done a lot of effort to replace organic and biological fertilizers with chemical one. The aim of this experiment was to study the effect of organic fertilizers on safflower production. Materials and Methods In order to evaluate the effect of organic fertilizers and

  20. Effect of Sowing Date and Sulfur on Yield, Oil Content and Grain Nitrogen of Safflower (Carthamus tinctorius L. in Autumn Cultivation

    Directory of Open Access Journals (Sweden)

    N Safara

    2016-12-01

    Full Text Available Introduction Nowadays oilseed crops are considered as the second most important sources of energy in the diet. In this regard, cultivation of oilseed crops such as safflower (Carthamus tinctorius L. is important due to quality of oil seed and medicinal properties. Different planting dates leads to adaptation of vegetative and reproductive growth of plant to temperature, day-length and various solar radiations and as a result affects plant’s development phase and yield. With delayed planting date , temperature and day length increases and development phase will accelerate. In this condition the crop yield will reduce due to crop growth and developmental period will shorten. Sulfur is an essential element for plant nutrition and its role is greater than Phosphorus. Using sulfur increases the heads per plant and grain yield. In order to investigate the effect of sulfur fertilizer under heat stress condition at the terminal growth stages and its role in reducing the negative effects of high temperature stress on safflower, this research was performed. Materials and Methods In order to study effect of planting date and sulfur manure on yield components, nitrogen and oil percent in safflower, a field experiment was carried out in a randomized complete blocks design with three replications in as split plot arrangement at Ramin Agriculture and Natural Resources University of Khuzestan during 2013-2014. The experimental treatments consisted of four planting dates of 30 November, 21 December, 22 January and 1st February were randomly placed in main plots and four levels of sulfur of 0, 200, 400 and 600 kg ha-1 performed randomly in subplots, Sulfur fertilizer was corporated to soil one week before each planting date. Harvest was performed from the mid-May to early-June, during physiological maturity. To measure the yield on maturity time after the removal of margins, Safflower plants were harvested from one m2 unit area. Nitrogen percent was determined

  1. Dietary non-esterified oleic Acid decreases the jejunal levels of anorectic N-acylethanolamines

    DEFF Research Database (Denmark)

    Diep, Thi Ai; Madsen, Andreas N; Krogh-Hansen, Sandra

    2014-01-01

    mice respond to dietary fat (olive oil) by reducing levels of anorectic NAEs, and 3) whether dietary non-esterified oleic acid also can decrease levels of anorectic NAEs in mice. We are searching for the fat sensor in the intestine, which mediates the decreased levels of anorectic NAEs. METHODS: Male...... of anorectic NAEs in mice. CONCLUSIONS: These results suggest that the down-regulation of the jejunal level of anorectic NAEs by dietary fat is not restricted to rats, and that the fatty acid component oleic acid, in dietary olive oil may be sufficient to mediate this regulation. Thus, a fatty acid sensor may...

  2. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masur, S., E-mail: sabrina.masur@uni-due.de; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle. - Highlights: • Monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer two electron spin resonance (ESR) signals. • We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  3. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor

    Directory of Open Access Journals (Sweden)

    Marya Aziz

    2015-01-01

    Full Text Available Commercial lipases, from porcine pancreas (PPL, Candida rugosa (CRL, and Thermomyces lanuginosus (Lipozyme TL IM, were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO for the liberation of free linoleic acid (LA, used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%, its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%. On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  4. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor.

    Science.gov (United States)

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  5. Deep sequencing shows microRNA involvement in bovine mammary gland adaptation to diets supplemented with linseed oil or safflower oil.

    Science.gov (United States)

    Li, Ran; Beaudoin, Frédéric; Ammah, Adolf A; Bissonnette, Nathalie; Benchaar, Chaouki; Zhao, Xin; Lei, Chuzhao; Ibeagha-Awemu, Eveline M

    2015-10-30

    Bovine milk fat composition is responsive to dietary manipulation providing an avenue to modify the content of fatty acids and especially some specific unsaturated fatty acid (USFA) isomers of benefit to human health. MicroRNAs (miRNAs) regulate gene expression but their specific roles in bovine mammary gland lipogenesis are unclear. The objective of this study was to determine the expression pattern of miRNAs following mammary gland adaptation to dietary supplementation with 5 % linseed or safflower oil using next generation RNA-sequencing. Twenty-four Canadian Holstein dairy cows (twelve per treatment) in mid lactation were fed a control diet (total mixed ration of corn:grass silages) for 28 days followed by a treatment period (control diet supplemented with 5 % linseed or safflower oil) of 28 days. Milk samples were collected weekly for fat and individual fatty acid determination. RNA from mammary gland biopsies harvested on day-14 (control period) and on days +7 and +28 (treatment period) from six randomly selected cows per treatment was subjected to small RNA sequencing. Milk fat percentage decreased significantly (P safflower oil treatments, respectively. Seven miRNAs including six up-regulated (bta-miR-199c, miR-199a-3p, miR-98, miR-378, miR-148b and miR-21-5p) and one down-regulated (bta-miR-200a) were found to be regulated (P < 0.05) by both treatments, and thus considered core differentially expressed (DE) miRNAs. The gene targets of core DE miRNAs have functions related to gene expression and general cellular metabolism (P < 0.05) and are enriched in four pathways of lipid metabolism (3-phosphoinositide biosynthesis, 3-phosphoinositide degradation, D-myo-inisitol-5-phosphate metabolism and the superpathway of inositol phosphate compounds). Our results suggest that DE miRNAs in this study might be important regulators of bovine mammary lipogenesis and metabolism. The novel miRNAs identified in this study will further enrich the bovine miRNome repertoire

  6. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    Directory of Open Access Journals (Sweden)

    J. O. Woo

    2014-01-01

    Full Text Available Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release.

  7. Application of hydrothermally produced TiO{sub 2} nanotubes in photocatalytic esterification of oleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manique, Márcia Cardoso, E-mail: marciamanique@yahoo.com.br; Silva, Aline Posteral; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2016-04-15

    Highlights: • A hydrothermal method was employed to synthesize TiO{sub 2} nanotubes. • TiO{sub 2} nanotubes were studied for photocatalytic esterification of oleic acid. • Optimum conditions were obtained at a concentration of 15% (w/w) and a molar ratio 3:1 (methanol:oleic acid). • The greater number of hydroxyl groups may have contributed to a low yield of ester versus P25. - Abstract: This study investigated the use of TiO{sub 2} nanotubes (TNTs) as photocatalysts in the esterification of fatty acids for biodiesel production. The TNTs were synthesized via a hydrothermal route and evaluated for their crystallinity, morphology, surface area and photocatalytic activity compared with a TiO{sub 2} P25 standard. Optimum photocatalytic conditions were obtained using a 15% concentration of catalyst (w/w) and a 3:1 molar ratio of methanol to oleic acid. The highest yield of methyl oleate obtained was 86.0% when P25 was used as a photocatalyst. The lowest band gap energy was obtained with the TNT sample synthesized at 110 °C for 48 h (E{sub g} = 3.08 eV), which also exhibited the highest rate of oleic acid esterification (59.3%) among all the investigated TNTs. We also observed that, in addition to the band gap, other factors such as the crystalline phase of the TNTs and their surface area were important in photocatalytic performance.

  8. High-fat meals rich in EPA plus DHA compared with DHA only have differential effects on postprandial lipemia and plasma 8-isoprostane F2α concentrations relative to a control high-oleic acid meal: a randomized controlled trial.

    Science.gov (United States)

    Purcell, Robert; Latham, Sally H; Botham, Kathleen M; Hall, Wendy L; Wheeler-Jones, Caroline P D

    2014-10-01

    Eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) supplementation has beneficial cardiovascular effects, but postprandial influences of these individual fatty acids are unclear. The primary objective was to determine the vascular effects of EPA + DHA compared with DHA only during postprandial lipemia relative to control high-oleic acid meals; the secondary objective was to characterize the effects of linoleic acid-enriched high-fat meals relative to the control meal. We conducted a randomized, controlled, double-blind crossover trial of 4 high-fat (75-g) meals containing 1) high-oleic acid sunflower oil (HOS; control), 2) HOS + fish oil (FO; 5 g EPA and DHA), 3) HOS + algal oil (AO; 5 g DHA), and 4) high-linoleic acid sunflower oil (HLS) in 16 healthy men (aged 35-70 y) with higher than optimal fasting triacylglycerol concentrations (mean ± SD triacylglycerol, 1.9 ± 0.5 mmol/L). Elevations in triacylglycerol concentration relative to baseline were slightly reduced after FO and HLS compared with the HOS control (P acids after a mixed meal was inhibited after AO (Δ 0-3 h, P DHA-rich fish oil compared with DHA-rich AO, but these differences were not associated with consistent effects on postprandial vascular function or lipemia. More detailed analyses of polyunsaturated fatty acid-derived lipid mediators are required to determine possible divergent functional effects of single meals rich in either DHA or EPA. This trial was registered at clinicaltrials.gov as NCT01618071.

  9. Synthesis of bulk ion-imprinted polymers (IIPs) embedded with oleic ...

    African Journals Online (AJOL)

    A selective and reliable method for the extraction of trace quantities of U(VI) by the use of a magnetic U(VI) ion-imprinted polymer (IIP) was developed. In this study, oleic acid (OA) coated magnetite nano-particles were incorporated into the cross-linked polymeric matrix of the selective sorbent, in order to gain the physical ...

  10. A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content.

    Science.gov (United States)

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2011-09-01

    The alteration of fatty acid profiles in soybean to improve soybean oil quality has been a long-time goal of soybean researchers. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other oils. In the lipid biosynthetic pathway, the enzyme fatty acid desaturase 2 (FAD2) is responsible for the conversion of oleic acid precursors to linoleic acid precursors in developing soybean seeds. Two genes encoding FAD2-1A and FAD2-1B were identified to be expressed specifically in seeds during embryogenesis and have been considered to hold an important role in controlling the seed oleic acid content. A total of 22 soybean plant introduction (PI) lines identified to have an elevated oleic acid content were characterized for sequence mutations in the FAD 2-1A and FAD2-1B genes. PI 603452 was found to contain a deletion of a nucleotide in the second exon of FAD2-1A. These important SNPs were used in developing molecular marker genotyping assays. The assays appear to be a reliable and accurate tool to identify the FAD 2-1A and FAD2-1B genotype of wild-type and mutant plants. PI 603452 was subsequently crossed with PI 283327, a soybean line that has a mutation in FAD2-1B. Interestingly, soybean lines carrying both homozygous insertion/deletion mutation (indel) FAD2-1A alleles and mutant FAD2-1B alleles have an average of 82-86% oleic acid content, compared to 20% in conventional soybean, and low levels of linoleic and linolenic acids. The newly identified indel mutation in the FAD2-1A gene offers a simple method for the development of high oleic acid commercial soybean varieties.

  11. Effects of Diets Differing in Composition of 18-C Fatty Acids on Adipose Tissue Thermogenic Gene Expression in Mice Fed High-Fat Diets

    Directory of Open Access Journals (Sweden)

    Sunhye Shin

    2018-02-01

    Full Text Available Dietary fatty acids play important roles in the regulation of fat accumulation or metabolic phenotype of adipocytes, either as brown or beige fat. However, a systematic comparison of effects of diets with different composition of 18-C fatty acids on browning/beiging phenotype has not been done. In this study, we compared the effects of different dietary fats, rich in specific 18-carbon fatty acids, on thermogenesis and lipid metabolism. Male C57BL/6 mice were fed a control diet containing 5.6% kcal fat from lard and 4.4% kcal fat from soybean oil (CON or high-fat diets (HFD containing 25% kcal from lard and 20% kcal fat from shea butter (stearic acid-rich fat; SHB, olive oil (oleic acid-rich oil; OO, safflower oil (linoleic acid-rich oil; SFO, or soybean oil (mixed oleic, linoleic, and α-linolenic acids; SBO ad libitum for 12 weeks, with or without a terminal 4-h norepinephrine (NE treatment. When compared to SHB, feeding OO, SFO, and SBO resulted in lower body weight gain. The OO fed group had the highest thermogenesis level, which resulted in lower body fat accumulation and improved glucose and lipid metabolism. Feeding SFO downregulated expression of lipid oxidation-related genes and upregulated expression of lipogenic genes, perhaps due to its high n-6:n-3 ratio. In general, HFD-feeding downregulated Ucp1 expression in both subcutaneous and epididymal white adipose tissue, and suppressed NE-induced Pgc1a expression in brown adipose tissue. These results suggest that the position of double bonds in dietary fatty acids, as well as the quantity of dietary fat, may have a significant effect on the regulation of oxidative and thermogenic conditions in vivo.

  12. Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E(2)P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump.

    Science.gov (United States)

    Mahmmoud, Yasser A; Christensen, S Brøgger

    2011-10-01

    Nigella sativa seed oil was found to contain a modulator of Na,K-ATPase. Separation analyses combined with (1)H NMR and GCMS identified the inhibitory fraction as a mixture of oleic and linoleic acids. These two fatty acids are specifically concentrated in several medicinal plant oils, and have particularly been implicated in decreasing high blood pressure. The ouabain binding site on Na,K-ATPase has also been implicated in blood pressure regulation. Thus, we aimed to determine how these two molecules modify pig kidney Na,K-ATPase. Oleic and linoleic acids did not modify reactions involving the E(1) (Na(+)) conformations of the Na,K-ATPase. In contrast, K(+) dependent reactions were strongly modified after treatment. Oleic and linoleic acids were found to stabilize a pump conformation that binds ouabain with high affinity, i.e., an ion free E(2)P form. Time-resolved binding assays using anthroylouabain, a fluorescent ouabain analog, revealed that the increased ouabain affinity is unique to oleic and linoleic acids, as compared with γ-linolenic acid, which decreased pump-mediated ATP hydrolysis but did not equally increase ouabain interaction with the pump. Thus, the dynamic changes in plasma levels of oleic and linoleic acids are important in the modulation of the sensitivity of the sodium pump to cardiac glycosides. Given the possible involvement of the cardiac glycoside binding site on Na,K-ATPase in the regulation of hypertension, we suggest oleic acid to be a specific chaperon that modulates interaction of cardiac glycosides with the sodium pump. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  13. Productivity, adaptability and stability of high-oleic peanut lines in the State of São Paulo

    Directory of Open Access Journals (Sweden)

    João Francisco dos Santos

    2018-04-01

    Full Text Available ABSTRACT Estimating stability and adaptability parameters of cultivars is a widely used study to access the genotype × environment interaction, in order to identify the best genotypes for each cultivation area. In this study, the adaptability and stability parameters were estimated in eight high-oleic lines and two peanut cultivars in 11 experiments in the State of São Paulo, Brazil, from 2008 to 2013, based on the data of the plots mean productivity (Kg·ha–1, with the objective of recommending the most productive genotypes in peanut producing regions in the State of São Paulo. The design used for these experiments was the randomized complete blocks, with four replications. Lines L. 599 and L. 551 were the best genotypes regarding overall adaptability and stability in yield, considering the methods of Eberhart and Russell and of Lin and Binns modified by Carneiro. Results produced by both methods were convergent as for the classification of the lines, and the use of one of them would not be detrimental to the recommendation of productive lines associated to production adaptability and stability. The overall adaptability in addition to the stability in the productivity of the lines here evaluated showed outstanding performance in relation to the cultivars IAC Caiapó and Runner IAC 886.

  14. Viscosity modification of high-oleic sunflower oil with polymeric additives for the design of new biolubricant formulations.

    Science.gov (United States)

    Quinchia, L A; Delgado, M A; Valencia, C; Franco, J M; Gallegos, C

    2009-03-15

    Although most common lubricants contain mineral or synthetic oils as basestocks, new environmental regulations are demanding environmentally friendly lubricants. In this sense, vegetable oils represent promising alternatives to mineral-based lubricants because of their high biodegradability, good lubricity, and low volatility. However, their poor thermooxidative stability and the small range of viscosity represent a clear disadvantage to be used as suitable biolubricants. The main objective of this work was to develop new environmentally friendly lubricant formulations with improved kinematic viscosity values and viscosity thermal susceptibility. With this aim, a high-oleic sunflower oil (HOSO) was blended with polymeric additives, such as ethylene vinyl acetate (EVA) and styrene-butadiene-styrene (SBS) copolymers, at different concentrations (0.5-5% w/w). Dynamic viscosity and density measurements were performed in a rotational rheometer and capillary densimeter, respectively, in a temperature range between 25 and 120 degrees C. An Arrhenius-like equation fits the evolution of viscosity with temperature fairly well. Both EVA and SBS copolymers may be satisfactorily used as additives to increase the viscosity of HOSO, thus improving the low viscosity values of this oil. HOSO viscosity increases with polymer concentration. Specifically, EVA/HOSO blends exhibit higher viscosity values, which are needed for applications such as lubrication of bearings and four-stroke engines. On the other hand, viscositythermal susceptibility of HOSO samples increases with EVA or SBS concentration.

  15. Damage of guinea pig heart and arteries by a trioleate-enriched diet and of cultured cardiomyocytes by oleic acid.

    Directory of Open Access Journals (Sweden)

    Josef Krieglstein

    2010-03-01

    Full Text Available Mono-unsaturated fatty acids (MUFAs like oleic acid have been shown to cause apoptosis of cultured endothelial cells by activating protein phosphatase type 2C alpha and beta (PP2C. The question arises whether damage of endothelial or other cells could be observed in intact animals fed with a trioleate-enriched diet.Dunkin-Hartley guinea pigs were fed with a trioleate-enriched diet for 5 months. Advanced atherosclerotic changes of the aorta and the coronary arteries could not be seen but the arteries appeared in a pre-atherosclerotic stage of vascular remodelling. However, the weight and size of the hearts were lower than in controls and the number of apoptotic myocytes increased in the hearts of trioleate-fed animals. To confirm the idea that oleic acid may have caused this apoptosis by activation of PP2C, cultured cardiomyocytes from guinea pigs and mice were treated with various lipids. It was demonstrable that oleic acid dose-dependently caused apoptosis of cardiomyocytes from both species, yet, similar to previous experiments with cultured neurons and endothelial cells, stearic acid, elaidic acid and oleic acid methylester did not. The apoptotic effect caused by oleic acid was diminished when PP2C alpha and beta were downregulated by siRNA showing that PP2C was causally involved in apoptosis caused by oleic acid.The glycerol trioleate diet given to guinea pigs for 5 months did not cause marked atherosclerosis but clearly damaged the hearts by activating PP2C alpha and beta. The diet used with 24% (wt/wt glycerol trioleate is not comparable to human diets. The detrimental role of MUFAs for guinea pig heart tissue in vivo is shown for the first time. Whether it is true for humans remains to be shown.

  16. Superiority of dietary safflower oil over olive oil in lowering serum cholesterol and increasing hepatic mRnas for the LDL receptor and cholesterol 7alpha-hydroxylase in exogenously hypercholesterolemic (exHC) rats.

    Science.gov (United States)

    Sato, M; Yoshida, S; Nagao, K; Imaizumi, K

    2000-06-01

    The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7alpha-hydroxylase (7alpha-hydroxylase) and 3-hydroxyl-3methylglutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7alpha-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7alpha-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of serum cholesterol.

  17. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L., E-mail: rodney.rouse@fda.hhs.gov

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  18. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    International Nuclear Information System (INIS)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-01-01

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  19. Effect of Different Methods of Chemical Weed Control Irrigation Regimes on Weed Biomass and Safflower Yield

    Directory of Open Access Journals (Sweden)

    M. Matinfar

    2011-06-01

    Full Text Available In order to investigate the effects of different weed control methods and moisture regimes on safflower (Carthamus tinctorius, a field split plot experiment based on randomized complete block design with 4 replications was conducted in Takestan Iran, during growing seasons of 2007-8. Three irrigations regimes (normal irrigation, restricted irrigation at stem elongation and restricted irrigation at  flowering stage were assigned to the main plots and nine chemical weed control method (complete hand weeding, treflan with 2 L/ha as pre plant herbicide, sonalan with 3 L/ha ad pre plant herbicide, estomp with 3 L/ha as pre plant herbicide, gallant super with 0/75 L/ha as post emergence herbicide, treflan with 2 L/ha as pre plant herbicide+ gallant super with 0/75 L/ha as post emergence herbicide, sonalan with 3 L/ha as pre plant herbicide + gallant super with 0/75 L/ha as post emergence herbicide estomp with 3 L/ha as pre plant herbicide + gallant super with 0/75 L/ha as post emergence herbicide and without hand weeding to sub- plots. At the end of growing period traits like number of head   per plant, number of seed per head, 1000 grain weight, percent of seed oil, yield of seed oil and grain yield were measured. Results indicated that treflan + gallant super treatment in restricted irrigation at stem elongation stage had the lowest dry weight of weeds. In this study maximum grain yield (2927 Kg/ha was achieved from hand weeding + usual irrigation treatments. In general treflan + gallant super treatment was the most effective treatment on safflower yield and weed control.

  20. Evaluation of Foliar Spraying of Zinc and Calcium Fertilizers on Yield and Physiological Traits of Safflower under Lead Stress

    Directory of Open Access Journals (Sweden)

    P Jamshidi

    2017-10-01

    Full Text Available Introduction In order to evaluate the effect of foliar spraying of zinc and calcium on yield and physiological traits of safflower under lead stress, a factorial experiment based on randomized complete block design was performed in Kerman agricultural and natural resource research and education center in 2014-2015 with three replications. The first factorial included three levels (control, and 0.5 and 1 μM lead spraying, whereas the second and third factorials were spraying zinc sulfate at three concentrations (zero, and 10 and 20 μM and spraying calcium chloride at two levels (zero and 20 μM, respectively. According to the results, grain yield, the 1000-grain weight, leaf dry weight, number of seeds per head, head weight and chlorophyll content decreased. On the other hand, a significant increase was observed in the activities of catalase and ascorbate peroxidase enzymes and amount of malondialdehyde in plants. Moreover, spraying zinc fertilizer in lead treatment resulted in a significant increase in activity of catalase enzyme, reduction of membrane lipid peroxidation, prevention of chlorophyll destruction and maintenance of grain yield. However, the effect of spraying calcium fertilize in lead treatment was only significant on chlorophyll content. According to the results of the research, it seems that spraying zinc fertilizer had more effects on improved growth of safflower under lead stress, compared to spraying calcium fertilizer. Therefore, in air pollution with heavy metals (lead, application of zinc sulfate fertilizer can be an effective approach to maintain the growth and production of plants. Among the various heavy metals, lead (Pb is a major anthropogenic pollutant that has been released to the environment since the industrial revolution and accumulated in different terrestrial and aquatic ecosystems These elements will transfer to leaves in polluted areas and will rapidly uptake and cause irreparable damages to the most

  1. Oleic acid and docosahexaenoic acid cause an increase in the paracellular absorption of hydrophilic compounds in an experimental model of human absorptive enterocytes

    International Nuclear Information System (INIS)

    Aspenstroem-Fagerlund, Bitte; Ring, Linda; Aspenstroem, Pontus; Tallkvist, Jonas; Ilbaeck, Nils-Gunnar; Glynn, Anders W.

    2007-01-01

    Surface active compounds present in food possibly have the ability to enhance the absorption of water soluble toxic agents. Therefore, we investigated whether fatty acids such as oleic acid and docosahexaenoic acid (DHA), both commonly present in food, negatively affect the integrity of tight junctions (TJ) in the intestinal epithelium and thereby increase the absorption of poorly absorbed hydrophilic substances. Caco-2 cells, which are derived from human absorptive enterocytes, were grown on permeable filters for 20-25 days. Differentiated cell monolayers were apically exposed for 90 min to mannitol in emulsions of oleic acid (5, 15 or 30 mM) or DHA (5, 15 or 30 mM) in an experimental medium with or without Ca 2+ and Mg 2+ . Absorption of 14 C-mannitol increased and trans-epithelial electrical resistance (TEER) decreased in cell monolayers exposed to oleic acid and DHA, compared to controls. Cytotoxicity, measured as leakage of LDH, was higher in groups exposed to 30 mM oleic acid and all concentrations of DHA. Morphology of the cell monolayers was studied by using fluorescence microscopy. Exposure of cell monolayers to 5 mM DHA for 90 min resulted in a profound alteration of the cell-cell contacts as detected by staining the cells for β-catenin. Oleic acid (30 mM) treatment also induced dissolution of the cell-cell contacts but the effect was not as pronounced as with DHA. Cell monolayers were also exposed for 180 min to 250 nM cadmium (Cd) in emulsions of oleic acid (5 or 30 mM) or DHA (1 or 5 mM), in an experimental medium with Ca 2+ and Mg 2+ . Retention of Cd in Caco-2 cells was higher after exposure to 5 mM oleic acid but lower after exposure to 30 mM oleic acid and DHA. Absorption of Cd through the monolayers increased after DHA exposure but not after exposure to oleic acid. Our results indicate that fatty acids may compromise the integrity of the intestinal epithelium and that certain lipids in food may enhance the paracellular absorption of poorly

  2. Oleic acid-assisted exfoliated few layer graphene films as counter electrode in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Liu, Jincheng; Wang, Yinjie; Sun, Darren Delai

    2012-01-01

    Highlights: ► Few layer graphene was obtained by liquid exfoliation in oleic acid (OLA). ► The concentration of exfoliated few layer graphene is as high as 1.3 mg/mL. ► OLA-assisted graphite (OLA-G) film has high catalytic activity. ► A power conversion efficiency of 3.56% can be gained by DSSCs with the counter electrode of OLA-G film. - Abstract: We have demonstrated a facile sonication method to exfoliate graphite into few layer graphene with a high concentration of 1.3 mg/mL in oleic acid (OLA). The exfoliations of natural graphite in oleylamine (OA) and trioctylphosphine (TOP) are investigated as a comparison. The few layer graphene dispersion in OLA and the graphite nanoparticles in OA are confirmed by transmission electron microscopy (TEM) observation. The exfoliated graphene dispersion in OLA (OLA-G) and graphite dispersion in OA (OA-G) are fabricated into a film on the FTO substrate by the doctor-blading method. The morphology and catalytic activity in the redox couple regeneration of all the graphite films are examined by field emission scanning electron microscopy and cyclic voltammograms. The OLA-G films on FTO glass with few layer graphene flakes shows better catalytic activity than the OA-G films. The energy conversion efficiency of the cell with the OLA-G film as counter electrode reached 3.56%, which is 70% of dye-sensitized solar cell (DSSC) with the sputtering-Pt counter electrode under the same experimental condition.

  3. Boron deprivation alters rat behaviour and brain mineral composition differently when fish oil instead of safflower oil is the diet fat source.

    Science.gov (United States)

    Nielsen, Forrest H; Penland, James G

    2006-01-01

    To determine whether boron deprivation affects rat behaviour and whether behavioural responses to boron deprivation are modified by differing amounts of dietary long-chain omega-3 fatty acids. Female rats were fed diets containing 0.1 mg (9 micromol)/kg boron in a factorial arrangement with dietary variables of supplemental boron at 0 and 3mg (278 micromol)/kg and fat sources of 75 g/kg safflower oil or 65 g/kg fish (menhaden) oil plus 10 g/kg linoleic acid. After 6 weeks, six females per treatment were bred. Dams and pups continued on their respective diets through gestation, lactation and after weaning. Between ages 6 and 20 weeks, behavioural tests were performed on 13-15 male offspring from three dams in each dietary treatment. The rats were euthanized at age 21 weeks for the collection of tissues and blood. At ages 6 and 19 weeks, auditory startle was evaluated with an acoustic startle system and avoidance behaviour was evaluated by using an elevated plus maze. At ages 7 and 20 weeks, spontaneous behaviour activity was evaluated with a photobeam activity system. A brightness discrimination test was performed on the rats between age 15 and 16 weeks. Brain mineral composition was determined by coupled argon plasma atomic emission spectroscopy. Plasma total glutathione was determined by HPLC and total cholesterol and 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) were determined by using commercially available kits. Boron-deficient rats were less active than boron-adequate rats when fed safflower oil based on reduced number, distance and time of horizontal movements, front entries, margin distance and vertical breaks and jumps in the spontaneous activity evaluation. Feeding fish oil instead of safflower oil attenuated the activity response to boron deprivation. In the plus maze evaluation, the behavioural reactivity of the boron-deficient rats fed fish oil was noticeably different than the other three treatments. They made more entries into both open and closed

  4. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells.

    Science.gov (United States)

    Yenuganti, Vengala Rao; Viergutz, Torsten; Vanselow, Jens

    2016-06-01

    After parturition, one of the major problems related to nutritional management that is faced by the majority of dairy cows is negative energy balance (NEB). During NEB, excessive lipid mobilization takes place and hence the levels of free fatty acids, among them oleic acid, increase in the blood, but also in the follicular fluid. This accumulation can be associated with serious metabolic and reproductive disorders. In the present study, we analyzed the effects of physiological concentrations of oleic acid on cell morphology, apoptosis, necrosis, proliferation and steroid production, and on the abundance of selected transcripts in cultured bovine granulosa cells. Increasing oleic acid concentrations induced intracellular lipid droplet accumulation, thus resulting in a foam cell-like morphology, but had no effects on apoptosis, necrosis or proliferation. Oleic acid also significantly reduced the transcript abundance of the gonadotropin hormone receptors, FSHR and LHCGR, steroidogenic genes STAR, CYP11A1, HSD3B1 and CYP19A1, the cell cycle regulator CCND2, but not of the proliferation marker PCNA. In addition, treatment increased the transcript levels of the fatty acid transporters CD36 and SLC27A1, and decreased the production of 17-beta-estradiol and progesterone. From these data it can be concluded that oleic acid specifically affects morphological and physiological features and gene expression levels thus altering the functionality of granulosa cells. Suggestively, these effects might be partly due to the reduced expression of FSHR and thus the reduced responsiveness to FSH stimulation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Correlation of soil microbes and soil micro-environment under long-term safflower (Carthamus tinctorius L.) plantation in China.

    Science.gov (United States)

    Lu, Shuang; Quan, Wang; Wang, Shao-Ming; Liu, Hong-Ling; Tan, Yong; Zeng, Guang-Ping; Zhang, Xia

    2013-04-01

    Microbial community structure and ecological functions are influenced by interactions between above and belowground biota. There is an urgent need for intensive monitoring of microbes feedback of soil micro-ecosystem for setting up a good agricultural practice. Recent researches have revealed that many soils characteristic can effect microbial community structure. In the present study factors affecting microbial community structure and soil in Carthamus tinctorius plantations in arid agricultural ecosystem of northern Xinjiang, China were identified. The result of the study revealed that soil type was the key factor in safflower yield; Unscientific field management resulted high fertility level (bacteria dominant) of soil to turn to low fertility level (fungi dominant), and Detruded Canonical Correspondence Analysis (DCCA) showed that soil water content, organic matter, available N, P and K were the dominant factors affecting distribution of microbial community. Soil water content showed a significant positive correlation with soil microbes quantity (P soil microbe quantity (P < 0.05).

  6. Molecular Mechanisms of the Cytotoxicity of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET) and Other Protein-Oleic Acid Complexes*

    Science.gov (United States)

    Nakamura, Takashi; Aizawa, Tomoyasu; Kariya, Ryusho; Okada, Seiji; Demura, Makoto; Kawano, Keiichi; Makabe, Koki; Kuwajima, Kunihiro

    2013-01-01

    Although HAMLET (human α-lactalbumin made lethal to tumor cells), a complex formed by human α-lactalbumin and oleic acid, has a unique apoptotic activity for the selective killing of tumor cells, the molecular mechanisms of expression of the HAMLET activity are not well understood. Therefore, we studied the molecular properties of HAMLET and its goat counterpart, GAMLET (goat α-lactalbumin made lethal to tumor cells), by pulse field gradient NMR and 920-MHz two-dimensional NMR techniques. We also examined the expression of HAMLET-like activities of complexes between oleic acid and other proteins that form a stable molten globule state. We observed that both HAMLET and GAMLET at pH 7.5 were heterogeneous, composed of the native protein, the monomeric molten globule-like state, and the oligomeric species. At pH 2.0 and 50 °C, HAMLET and GAMLET appeared in the monomeric state, and we identified the oleic acid-binding site in the complexes by two-dimensional NMR. Rather surprisingly, the binding site thus identified was markedly different between HAMLET and GAMLET. Furthermore, canine milk lysozyme, apo-myoglobin, and β2-microglobulin all formed the HAMLET-like complex with the anti-tumor activity, when the protein was treated with oleic acid under conditions in which their molten globule states were stable. From these results, we conclude that the protein portion of HAMLET, GAMLET, and the other HAMLET-like protein-oleic acid complexes is not the origin of their cytotoxicity to tumor cells and that the protein portion of these complexes plays a role in the delivery of cytotoxic oleic acid molecules into tumor cells across the cell membrane. PMID:23580643

  7. Molecular mechanisms of the cytotoxicity of human α-lactalbumin made lethal to tumor cells (HAMLET) and other protein-oleic acid complexes.

    Science.gov (United States)

    Nakamura, Takashi; Aizawa, Tomoyasu; Kariya, Ryusho; Okada, Seiji; Demura, Makoto; Kawano, Keiichi; Makabe, Koki; Kuwajima, Kunihiro

    2013-05-17

    Although HAMLET (human α-lactalbumin made lethal to tumor cells), a complex formed by human α-lactalbumin and oleic acid, has a unique apoptotic activity for the selective killing of tumor cells, the molecular mechanisms of expression of the HAMLET activity are not well understood. Therefore, we studied the molecular properties of HAMLET and its goat counterpart, GAMLET (goat α-lactalbumin made lethal to tumor cells), by pulse field gradient NMR and 920-MHz two-dimensional NMR techniques. We also examined the expression of HAMLET-like activities of complexes between oleic acid and other proteins that form a stable molten globule state. We observed that both HAMLET and GAMLET at pH 7.5 were heterogeneous, composed of the native protein, the monomeric molten globule-like state, and the oligomeric species. At pH 2.0 and 50 °C, HAMLET and GAMLET appeared in the monomeric state, and we identified the oleic acid-binding site in the complexes by two-dimensional NMR. Rather surprisingly, the binding site thus identified was markedly different between HAMLET and GAMLET. Furthermore, canine milk lysozyme, apo-myoglobin, and β2-microglobulin all formed the HAMLET-like complex with the anti-tumor activity, when the protein was treated with oleic acid under conditions in which their molten globule states were stable. From these results, we conclude that the protein portion of HAMLET, GAMLET, and the other HAMLET-like protein-oleic acid complexes is not the origin of their cytotoxicity to tumor cells and that the protein portion of these complexes plays a role in the delivery of cytotoxic oleic acid molecules into tumor cells across the cell membrane.

  8. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid: Growth profiles and catalase activities in relation to microbody proliferation

    OpenAIRE

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two oleic acid-grown A+-strains (A+T+ and A+T-) high catalase activities were found; catalase activity invariably remained low in the A-T+ strain and was never detected in the A-T- strain. The levels of β-...

  9. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  10. Rapid determination of saponification value and polymer content of vegetable and fish oils by terahertz spectroscopy.

    Science.gov (United States)

    Jiang, Feng Ling; Ikeda, Ikuo; Ogawa, Yuichi; Endo, Yasushi

    2012-01-01

    A rapid method for determining the saponification value (SV) and polymer content of vegetable and fish oils using the terahertz (THz) spectroscopy was developed. When the THz absorption spectra for vegetable and fish oils were measured in the range of 20 to 400 cm⁻¹, two peaks were seen at 77 and 328 cm⁻¹. The level of absorbance at 77 cm⁻¹ correlated well with the SV. When the THz absorption spectra of thermally treated high-oleic safflower oils were measured, the absorbance increased with heating time. The polymer content in thermally treated oil correlated with the absorbance at 77 cm⁻¹. These results demonstrate that the THz spectrometry is a suitable non-destructive technique for the rapid determination of the SV and polymer content of vegetable and fish oils.

  11. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study

    Science.gov (United States)

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath

    2012-08-01

    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  12. Effect of different concentrations of olive oil and oleic acid on the ...

    African Journals Online (AJOL)

    The main objective of this study was to investigate the effect of olive oil and oleic acid addition to albumin (egg white) through emulsification to produce films on mechanical properties. Plasticizer was necessary to maintain film and coating integrity and to avoid pores cracks. Edible composite films were prepared from ...

  13. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis

    Science.gov (United States)

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-01

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials.

  14. CLINICAL EXPERIENCE OF CANCER IMMUNOTHERAPY INTEGRATED WITH OLEIC ACID COMPLEXED WITH DE-GLYCOSYLATED VITAMIN D BINDING PROTEIN

    OpenAIRE

    Emma Ward; Rodney Smith; Jacopo J.V. Branca; David Noakes; Gabriele Morucci; Lynda Thyer

    2014-01-01

    Proteins highly represented in milk such as α-lactalbumin and lactoferrin bind Oleic Acid (OA) to form complexes with selective anti-tumor activity. A protein present in milk, colostrum and blood, vitamin D binding protein is the precursor of a potent Macrophage Activating Factor (GcMAF) and in analogy with other OA-protein complexes, we proposed that OA-GcMAF could demonstrate a greater immunotherapeutic activity than that of GcMAF alone. We describe a preliminary experience treating p...

  15. Preparation and characterization of magnetic nanoparticles (Fe_3O_4) coated with oleic acid at room temperature

    International Nuclear Information System (INIS)

    Souza, Marcio Nele de; Feuser, Paulo Emilio

    2010-01-01

    This work studied a method for preparation of Fe_3O_4 magnetic nanoparticles stabilized with acid oleic precipitating Fe"+"2 and Fe"+"3 (1:1) salts at room temperature. The method involved the coprecipitation of Fe_3O_4 in aqueous solution from FeCl_3·6H_2O and FeSO_4·7H_2O solutions using as NH_4OH (30%) precipitation agent. The final size of nanoparticles was 10nn with an initial pH of 0-1 and a final neutral pH, without addition of an acid and/ or hydroxide to adjust the pH of the material. The oleic acid coated nanoparticles were characterized by Ray-X of Diffraction (DRX), thermogravimetric analysis (TGA), scanning electron microscopy in field emission and dynamic light scattering (FEG-SEM). It is important to standardize the methods of preparation of Fe_3O_4 Magnetic Nanoparticles stabilized with oleic acid, to obtain a desired material for a given application it is in technology or Biomedical. (author)

  16. Evaluation of Yield, Yield Components and Growth Indices of Safflower (Carthamus tinctorius L. in Conventional and Organic Farming Systems

    Directory of Open Access Journals (Sweden)

    Mahdieh Hajghani

    2017-09-01

    Full Text Available Introduction Application of organic fertilizers in sustainable agriculture systems improves yield sustainability of field crop. Safflower (Carthamus tinctorius L. is native to Middle East and belongs to the Asteraceae family. It is resistant to saline conditions, water stress, and can reach the deep-lying water of soil. The humic acid (HA mentioned as an environmentally friendly, organic matter with low levels of hormonal-like compounds is useful in improving agriculture production (Samavat and Malakuti 2006. The HA influence on plant growth depends on the source, concentration and molecular weight of the substance. Vermicompost is produced by earthworms, mainly Eisenia foetida, it has higher levels of available nutrients compared to the original materials of composts produced by other methods. Recent evidences suggest that using different amounts of vermicompost increased vegetative traits and concentration of minerals in sunflower. However, there has been little discussion about organic farming of safflower. The main objectives of the present study were to determine the effect of organic treatments on yield, yield components, and growth indices of safflower and to compare it with conventional agriculture. Materials and methods This research was conducted in Agricultural and Natural Resources Research Station in Kerman, Iran during 2012–2013. It was carried out in a randomized complete block (RCB design and had three replications. The current research has been performed to investigate the effects of two different sources of organic fertilizer on spring safflower. Four levels of vermicompost (V: 0, 3, 6 and 9 t ha-1 were considered in the main plots. Liquid humic acid at four different concentrations (HA: 0, 1000, 2000 and 3000 ppm were examined and kept in the subplots. Humic acid as a foliar treatment on leaf surface was applied twice at the beginning of stem elongation and at flowering times. In this study, aimed to compare organic farming

  17. Chemical composition and resistance to oxidation of high-oleic rapeseed oil pressed from microwave pre-treated intact and de-hulled seeds

    International Nuclear Information System (INIS)

    Rękas, A.; Wroniak, M.; Siger, A.; Ścibisz, I.

    2017-01-01

    The influence of a microwave (MV) pre-treatment (3, 6, 9 min, 800W) on the physicochemical properties of high-oleic rapeseed oil prepared from intact (HORO) and de-hulled seeds (DHORO) was investigated in this study. A control DHORO contained higher levels of total tocopherols and carotenoids, while higher concentrations of total phenolic compounds and chlorophylls were detected in the HORO. The MV pre-treatment caused a decrease in the unsaturated fatty acids content that was more evident for the DHOROs. The microwaving time significantly affected phytochemical contents and the color of both types of oils. A vast increase in canolol concentration was noticeable following 9 min of microwaving, which increased 506- and 155-fold in the HORO and DHORO, respectively. At the same time, the antioxidant capacity of oil produced from MV pre-treated seeds for 9 min was nearly 4 times higher than that of the control oil for both types of oils. [es

  18. Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Fidlerová, Táňa; Vereščáková, Hana; Koudelka, Adolf; Rudolph, T.K.; Woodcock, S.R.; Freeman, B.A.; Kubala, Lukáš; Pekarová, Michaela

    2016-01-01

    Roč. 1860, č. 11 (2016), s. 2428-2437 ISSN 0304-4165 R&D Projects: GA ČR(CZ) GP13-40824P Institutional support: RVO:68081707 Keywords : Nitro-oleic acid * Endothelial cells * Macrophages Subject RIV: BO - Biophysics Impact factor: 4.702, year: 2016

  19. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils; Efecto de la distribución de los ácidos grasos saturados en los perfiles de fusión y cristalización de los aceites alto esteárico alto oleico

    Energy Technology Data Exchange (ETDEWEB)

    Bootello, M.A.; Garces, R.; Martinez-Force, E.; Salas, J.J.

    2016-07-01

    The composition and distribution of fatty acids in triacylglycerol (TAG) molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the Sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.

  20. γ-Dodecelactone production from safflower oil via 10-hydroxy-12(Z)-octadecenoic acid intermediate by whole cells of Candida boidinii and Stenotrophomonas nitritireducens.

    Science.gov (United States)

    Jo, Ye-Seul; An, Jung-Ung; Oh, Deok-Kun

    2014-07-16

    Candida boidinii was selected as a γ-dodecelactone producer because of the highest production of γ-dodecelactone from 10-hydroxy-12(Z)-octadecenoic acid among the 11 yeast strains tested. Under the reaction conditions of pH 5.5 and 25 °C with 5 g/L 10-hydroxy-12(Z)-octadecenoic acid and 30 g/L cells, whole C. boidinii cells produced 2.1 g/L γ-dodecelactone from 5 g/L 10-hydroxy-12(Z)-octadecenoic acid after 6 h, with a conversion yield of 64% (mol/mol) and a volumetric productivity of 350 mg/L/h. The production of γ-dodecelactone from safflower oil was performed by lipase hydrolysis reaction and two-step whole-cell biotransformation using Stenotrophomonas nitritireducens and C. boidinii. γ-Dodecelactone at 1.88 g/L was produced from 7.5 g/L safflower oil via 5 g/L 10-hydroxy-12(Z)-octadecenoic acid intermediate by these reactions after 8 h of reaction time, with a volumetric productivity of 235 mg/L/h and a conversion yield of 25% (w/w). To the best of the authors' knowledge, this is the highest volumetric productivity and conversion yield reported to date for the production of γ-lactone from natural oils.

  1. Characterizing time-dependent contact angles for sands hydrophobized with oleic and stearic acids

    DEFF Research Database (Denmark)

    Subedi, S; Kawamoto, K; Jayarathna, L

    2012-01-01

    -frequency precipitation. A potential solution is to alter soil grain surfaces to become water repellent by mixing or coating the soil cover material with hydrophobic agents (HAs). In this study, hydrophobic CBs comprised of sands mixed with environmentally friendly HAs (oleic acid [OA] and stearic acid [SA]) were studied...

  2. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting

    Science.gov (United States)

    Abd, Eman; Benson, Heather A. E.; Roberts, Michael S.; Grice, Jeffrey E.

    2018-01-01

    In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL) containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC), hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE) promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO) gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids. PMID:29370122

  3. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting

    Directory of Open Access Journals (Sweden)

    Eman Abd

    2018-01-01

    Full Text Available In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL, containing minoxidil (2% and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC, hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids.

  4. The Effect of Zinc Oxide Nanoparticles on Safflower Plant Growth and Physiology

    Directory of Open Access Journals (Sweden)

    Z. Hafizi

    2018-02-01

    Full Text Available In this paper, a study of the effect of ZnO nanoparticles on safflower growth and physiology was performed. Each of these elements plays a particular role in the plant life, the presence of these elements is necessary for plant’s life cycle and growth. Zinc deficiency causes the biggest problems in safflower’s production. Considering the importance of nanoparticles in today's world, this research investigated the effect of Zinc oxide nanoparticles on the concentration of guaiacol peroxidase, polypeptide oxidase, dehydrogenase and malondialdehyde in four plant sample groups in greenhouse and laboratory conditions. Results of showed that malondialdehyde enzyme increased with different treatments of various concentrations of Zinc oxide. The enzyme guaiacol oxidase increased at concentrations of 100 mg/L and polyphenol oxide at concentrations of 10 and 500 mg/L and dehydrogenase in 1000 mg/L and decreased in other treatments. In addition to showing the effect of nanoparticles in plants, these findings determine the beneficial concentrations of nanoparticles that have a positive effect on the level of enzymes in plants.

  5. Chemical composition and sensory analysis of peanut pastes elaborated with high-oleic and regular peanuts from Argentina

    Directory of Open Access Journals (Sweden)

    Nepote, V.

    2009-09-01

    Full Text Available The objective of this work was to determine the chemical composition, sensory attributes and consumer acceptance of peanut pastes prepared with the high-oleic cultivar, Granoleico (GO-P, in comparison with the regular cultivar, Tegua (T-P, of peanuts grown in Argentina. GO-P had higher oil contents (50.91% than T-P (48.95%. GO-P and T-P did not show differences in ash and carbohydrate contents. T-P exhibit higher protein content (27.49% than GO-P (26.68%. GO-P had significantly higher oleic and lower linoleic contents (78.50% and 4.60%, respectively than T-P (45.80% and 33.30%, respectively. In addition, GO-P showed higher eicosenoic acid and lower palmitic acid percentages than TP. The consumer acceptance analysis did not show significant differences between samples of GO-P and T-P. In the descriptive analysis, GO-P showed a higher intensity rating in the oiliness texture attribute than in T-P. The other sensory attributes did not show significant variations between the peanut paste samples. GO-P and T-P have a significant difference in fatty acid composition. However, there were no differences in consumer acceptance and descriptive analysis between samples of peanut pastes except for the oiliness attribute.El objetivo del trabajo fue determinar la composición química, atributos sensoriales y la aceptabilidad de pastas de cacahuete elaboradas a partir del cultivar alto oleico, Granoleico (GO-P, en comparación con el cultivar convencional, Tegua (T-P, de cacahuetes desarrollados en Argentina. GOP presentó mayor contenido de aceite (50.91% que T-P (48.95%. GO-P y T-P no mostraron diferencias en los contenidos de cenizas y carbohidratos. T-P presentó mayor contenido de proteínas (27.49% que GO-P (26.68%. GO-P mostró contenidos significativamente mayores de ácido oleico y menores de ácido linoleico (78.50% y 4.60%, respectivamente que T-P (45.80% y 33.30%, respectivamente. Además, GO-P mostró mayor porcentaje de ácido eicosenoico y

  6. Differential effect of walnut oil and safflower oil on the serum cholesterol level and lesion area in the aortic root of apolipoprotein E-deficient mice.

    Science.gov (United States)

    Iwamoto, Masako; Kono, Misaki; Kawamoto, Daisuke; Tomoyori, Hiroko; Sato, Masao; Imaizumi, Katsumi

    2002-01-01

    Walnut oil (WO) is a good source of alpha-linolenic acid. We compared the effects of WO and high-linoleic safflower oil (HLSO) on the serum lipid level and atherosclerosis development in male and female apolipoprotein (apo) E-deficient mice. The WO diet resulted in a higher level of serum cholesterol than with HLSO. Female mice fed on the WO diet had a greater lesion area in the aortic root than did those on the HLSO diet. There was no diet-dependent difference in the level of cholesterol and its oxidation products in the abdominal and thoracic aorta. These results suggest that the unpleasant effects of the WO diet on apo E-deficient mice may be attributable to alpha-linolenic acid.

  7. The Distant Double Bond Determines the Fate of the Carboxylic Group in the Dissociative Photoionization of Oleic Acid.

    Science.gov (United States)

    Heringa, Maarten F; Slowik, Jay G; Goldmann, Maximilian; Signorell, Ruth; Hemberger, Patrick; Bodi, Andras

    2017-12-15

    The valence threshold photoionization of oleic acid has been studied using synchrotron VUV radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. An oleic acid aerosol beam was impacted on a copper thermodesorber, heated to 130 °C, to evaporate the particles quantitatively. Upon threshold photoionization, oleic acid produces the intact parent ion first, followed by dehydration at higher energies. Starting at ca. 10 eV, a large number of fragment ions slowly rise suggesting several fragmentation coordinates with quasi-degenerate activation energies. However, water loss is the dominant low-energy dissociation channel, and it is shown to be closely related to the unsaturated carbon chain. In the lowest-barrier process, one of the four allylic hydrogen atoms is transferred to the carboxyl group to form the leaving water molecule and a cyclic ketone fragment ion. A statistical model to analyze the breakdown diagram and measured rate constants yields a 0 K appearance energy of 9.77 eV, which can be compared with the density functional theory result of 9.19 eV. Alternative H-transfer steps yielding a terminal C=O group are ruled out based on energetics and kinetics arguments. Some of the previous photoionization mass spectrometric studies also reported 2 amu and 26 amu loss fragment ions, corresponding to hydrogen and acetylene loss. We could not identify such peaks in the mass spectrum of oleic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. H3PO4/Al2O3 catalysts: characterization and catalytic evaluation of oleic acid conversion to biofuels and biolubricant

    Directory of Open Access Journals (Sweden)

    Lucia Regina Raddi de Araujo

    2006-06-01

    Full Text Available Al2O3 and H3PO4/Al2O3 catalysts were investigated in the conversion of oleic acid to biofuels and biolubricant at 1 atm and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor, using an oleic acid-catalyst ratio of 4 and N2 as the carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. N2 adsorption-desorption, X ray diffraction, 31P nuclear magnetic resonance and FT-IR spectroscopy were also employed to evaluate the textural, structural and acidic properties of the catalysts. The results showed that phosphoric acid impregnation improved the alumina decarboxylation activities, generating hydrocarbons in the range of gasoline, diesel oil and lubricant oil. The best catalytic performance was achieved with the highest surface area alumina impregnated with H3PO4, which was the solid that allied high total acidity with a large quantity of mesopores.

  9. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Hamizah Ammarah; Salimon, Jumat [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2014-09-03

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)

  10. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    VanDusen, W.J.; Jaworski, J.G.

    1986-01-01

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14 CO 2 . None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14 CO 2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  11. First study of correlation between oleic acid content and SAD gene polymorphism in olive oil samples through statistical and bayesian modeling analyses.

    Science.gov (United States)

    Ben Ayed, Rayda; Ennouri, Karim; Ercişli, Sezai; Ben Hlima, Hajer; Hanana, Mohsen; Smaoui, Slim; Rebai, Ahmed; Moreau, Fabienne

    2018-04-10

    Virgin olive oil is appreciated for its particular aroma and taste and is recognized worldwide for its nutritional value and health benefits. The olive oil contains a vast range of healthy compounds such as monounsaturated free fatty acids, especially, oleic acid. The SAD.1 polymorphism localized in the Stearoyl-acyl carrier protein desaturase gene (SAD) was genotyped and showed that it is associated with the oleic acid composition of olive oil samples. However, the effect of polymorphisms in fatty acid-related genes on olive oil monounsaturated and saturated fatty acids distribution in the Tunisian olive oil varieties is not understood. Seventeen Tunisian olive-tree varieties were selected for fatty acid content analysis by gas chromatography. The association of SAD.1 genotypes with the fatty acids composition was studied by statistical and Bayesian modeling analyses. Fatty acid content analysis showed interestingly that some Tunisian virgin olive oil varieties could be classified as a functional food and nutraceuticals due to their particular richness in oleic acid. In fact, the TT-SAD.1 genotype was found to be associated with a higher proportion of mono-unsaturated fatty acids (MUFA), mainly oleic acid (C18:1) (r = - 0.79, p SAD.1 association with the oleic acid composition of olive oil was identified among the studied varieties. This correlation fluctuated between studied varieties, which might elucidate variability in lipidic composition among them and therefore reflecting genetic diversity through differences in gene expression and biochemical pathways. SAD locus would represent an excellent marker for identifying interesting amongst virgin olive oil lipidic composition.

  12. Scrutinizing the combustion, performance and emissions of safflower biodiesel–kerosene fueled diesel engine used as power source for a generator

    International Nuclear Information System (INIS)

    Aydın, Hüseyin

    2016-01-01

    Highlights: • Effects of kerosene addition to biodiesel in a diesel engine were investigated. • S90&K10, S75&K25 and S50&K50 were tested and comparisons have been made with D2. • Patterns of combustion parameters have found be quite similar for blend fuels and D2. • The highest efficiency value is obtained for S50&K50 blend. • HC emissions a bit increased and NOx emissions were decreased. - Abstract: When neat biodiesel or its blends with diesel fuel that contain high amounts of biodiesel are used in diesel engines some operational problems such as poor injection, bad atomization and incomplete combustion occur mainly due to higher viscosity and surface tension. Engine problems with the use of biodiesel–fuel blends that contain higher percentages of biodiesel need to be solved in order to utilize the advantages of biodiesel in environmental and economical ways. The mentioned problems can also be solved by blending biodiesel with another low density or viscosity fuel such as kerosene. In present study biodiesel was produced from safflower oil. S90&K10, S75&K25 and S50&K50 were prepared by blending biodiesel with kerosene. A 4 cylinder diesel engine that was used to drive an electric generator was used to deeply investigate the similarity of combustion, performance and emission characteristics of the blend fuels to D2. All experiments were carried out at constant loads of 3.6, 7.2 and 10.8 kW generated powers. Patterns of combustion parameters found to be quite similar for blends and D2 fuel. NO_x emissions were considerably decreased with percentages of 68.2%, 56.9% and 55.1% for S50&K50, S75&K25 and S90&K10, respectively while unburned HC emissions were a bit increased. Mass fuel consumption and BSFC were slightly increased for S75&K25 and S90&K10, but they were decreased with an average increase in BTE by 3.84% for S50&K50 fuel when compared to D2. Eventually, it was concluded that high percentages of safflower oil biodiesel can be a potential

  13. Phenolation of vegetable oils

    Directory of Open Access Journals (Sweden)

    ZORAN S. PETROVIĆ

    2011-04-01

    Full Text Available Novel bio-based compounds containing phenols suitable for the syn­thesis of polyurethanes were prepared. The direct alkylation of phenols with different vegetable oils in the presence of superacids (HBF4, triflic acid as ca­talysts was studied. The reaction kinetics was followed by monitoring the de­crease of the double bond content (iodine value with time. In order to under­stand the mechanism of the reaction, phenol was alkylated with model com­pounds. The model compounds containing one internal double bond were 9-oc­tadecene and methyl oleate and those with three double bonds were triolein and high oleic safflower oil (82 % oleic acid. It was shown that the best structures for phenol alkylation are fatty acids with only one double bond (oleic acid. Fatty acids with two double bonds (linoleic acid and three double bonds (lino­lenic acid lead to polymerized oils by a Diels–Alder reaction, and to a lesser extent to phenol alkylated products. The reaction product of direct alkylation of phenol with vegetable oils is a complex mixture of phenol alkylated with poly­merized oil (30–60 %, phenyl esters formed by transesterification of phenol with triglyceride ester bonds (<10 % and unreacted oil (30 %. The phenolated vegetable oils are new aromatic–aliphatic bio-based raw materials suitable for the preparation of polyols (by propoxylation, ethoxylation, Mannich reactions for the preparation of polyurethanes, as intermediates for phenolic resins or as bio-based antioxidants.

  14. Effect of Chemical and Biological Phosphorus on Antioxidant Enzymes Activity and Some Biochemical Traits of Spring Safflower (Carthamus tinctorius L. under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    S. Heshmati

    2016-05-01

    Full Text Available To study the effects of biological and chemical phosphorus on antioxidant enzyme activity in safflower under water deficit conditions, an experiment was conducted in 2012 at the Research Field of the Faculty of Agriculture, Shahed University, Tehran, Iran. The experimental design was a split-factorial with three replicates. The main factor was the three levels of irrigation treatment: full irrigation (irrigation up to 50% soil moisture depletion relative to field capacity, water stress in the vegetative and flowering stages (irrigation up to 75% soil moisture depletion relative to field capacity. The sub-factor was the six treatments resulting from three levels of phosphate chemical fertilizer (0, 50, and 100 kg ha-1 Triple Super Phosphate, each at two levels of Barvar-2 bio-fertilizer (with and without inoculation with Barvar-2. According to the results of our experiment, antioxidant enzyme activity is affected by high levels of chemical phosphorus when there is no inoculation with biofertilizer (Barvar 2 under water stress in the vegetative and flowering stages. The results showed that inoculation with Barvar 2 in the absence of added chemical phosphorus increases the catalase activity and soluble protein concentration under drought stress in the vegetative and flowering stages. Also, using chemical phosphorus followed by Barvar 2 led to increase in the polyphenol oxidase activity and superoxide dismutase activity under these conditions. Inoculation with Barvar 2 in the absence of added chemical phosphorus significantly decreased the amount of malondialdehyde under stress condition at the flowering stage. It was demonstrated that inoculation with a biological fertilizer (Barvar 2 followed by application of a chemical phosphorus fertilizer under drought conditions could decrease the detrimental effects of drought stress on spring safflower.

  15. Effects of Nano Chelated Zinc and Mycorrhizal Fungi Inoculation on Some Agronomic and Physiological Characteristics of Safflower (Carthamus tinctorius L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    E Rezaei Chiyaneh

    2017-06-01

    Full Text Available Introduction Zinc is an essential element for plants and animals and plays an important role in plants metabolic system. This element activates enzymes and involved in protein, lipids, carbohydrates and nucleic acid metabolism. Zinc has a major role in cell defenses against ROS and as a protective factor against several chemical compositions of oxidation such as membrane lipids, protein, chlorophyll, and enzyme having sulfhydryl and DNA. Zinc is an essential micronutrient that plays many important roles in various physiological and metabolic processes in all living organisms. It functions as a cofactor for over 300 enzymes and proteins involved in cell division, nucleic acid metabolism and protein synthesis. Nanoparticles have received considerable attention due to their increased uptake and high rate of penetration in plants. Nanomaterials are classified as materials with at least one dimension less than 100 nm. Nonmaterial could to be applied in designing more soluble and diffusible sources of Zn fertilizer for increased plant productivity. Safflower (Carthamus tinctorius L. an oilseed crop is a member of the family Compositae or Asteraceae. Safflower, a multipurpose crop that has been grown for centuries in India for the orange-red dye (carthamin extracted from its brilliantly colored flowers and for its quality oil rich in polyunsaturated fatty acids (linoleic acid, 78%. Safflower flowers are known to have many medicinal properties for curing several chronic diseases, and they are widely used in Chinese herbal preparations. The mycorrhizal symbiosis is arguably the most important symbiosis on earth. The majority of these mycorrhizal interactions is mutually beneficial for both partners and is characterized by a bidirectional exchange of resources across the mycorrhizal interface. The mycorrhizal fungus provides the host plant with nutrients, such as phosphate and nitrogen, and increases the abiotic (drought, salinity and heavy metals and

  16. Effect of Alkaline Stress on Some Morphophysiologic Characteristics of Two Varieties of Safflower (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    Sh Bemany Golnabadi

    2016-12-01

    Full Text Available Introduction Safflower (Carthamus tinctorius L. is an important oilseed crop grown throughout the semiarid regions in many parts of the world. It has been cultivated for its oil and flowers and as a meal. Alkaline stress is caused by alkaline salts such as Na2CO3 or NaHCO3 in the soil. Alkaline stress, is widespread environmental constraint affecting crop productivity ,which can inhibit absorption of inorganic anions such as Cl–, NO3– and H2PO4–, greatly affect the selective absorption of K+-Na+, and break the ionic balance. However, under alkali stress, accumulation of compatible solutes, such as betaine, proline and soluble sugar into the vacuole are considered as the basic strategies for plant re-established cellular homeostasis. Some reports have clearly demonstrated that alkaline salts (NaHCO3 and Na2CO3 are more destructive to plants than neutral salts (NaCl and Na2SO4. Moreover, the salt-alkali stress can directly damage plant growth, alter the availability of nutrients and disrupt the balance of ions and mineral nutrition. The objective of this study was to investigate the effects of alkaline stress on growth and some physiological characteristics of safflower. Materials and Methods This study was conducted in a greenhouse in Vali-e-Asr University of Rafsanjan as factorial arrangement in completely randomized design with three replications. Experimental factors included alkaline stress in 7 levels (0, 10, 20, 30 , 40, 50 and 60 mM and two varieties of safflower (Sofeh and 411. Seeds were planted in pots filled with perlite and cocopite (1:1. The pots were irrigated with a nutrient solution with half strength Hoagland's solution. After the fourth true leaves appeared, alkaline stress in the pot was created by adding NaHCO3, to half strength Hoagland’s solution. Control plants were only irrigated with half strength Hoagland’s solution. Plants were harvested after 40 days of seed sowing. After forty days, shoot and root height

  17. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    Directory of Open Access Journals (Sweden)

    E. I. Howard

    2016-03-01

    Full Text Available Crystal diffraction data of heart fatty acid binding protein (H-FABP in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively. These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H...H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  18. Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults.

    Science.gov (United States)

    Voon, Phooi Tee; Ng, Tony Kock Wai; Lee, Verna Kar Mun; Nesaretnam, Kalanithi

    2011-12-01

    Dietary fat type is known to modulate the plasma lipid profile, but its effects on plasma homocysteine and inflammatory markers are unclear. We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults. A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets. No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a). Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.

  19. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Wei

    Full Text Available Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans.The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%. Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans.This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods.

  20. Optimization of Palmitic Acid Composition in Crude Oleic Acid to Provide Specifications of Titer and Cloud Point of Distillate Oleic Acid using a Flash Distiller

    OpenAIRE

    Muhammad Yusuf Ritonga

    2010-01-01

    Titer and cloud point Distilled Oleic Acid’s higher than standard on feed composition palmitic acid (C15H31COOH) or C16 11.2 %. Feed composition C16, top temperature precut and bottom main distiller column were optimized to produce DOA. A factorial design 3 independent variables 3 X 2 X 3, twice repeating’s applied to observe effects of feed composition C16 to quality parameters. On the optimum C16 feed composition at 5.20 % was produced DOA with titer 6.8 oC, cloud point 5.0 oC (inside it...

  1. Molecular simulation of the water-triolein-oleic acid mixture: Local structure and thermodynamic properties

    Science.gov (United States)

    Couallier, E.; Riaublanc, A.; David Briand, E.; Rousseau, B.

    2018-05-01

    An artificial oil-in-water emulsion analogous to those found in bioresources or food matrices is simulated and studied experimentally. It is composed of one of the major natural free fatty acids (the oleic acid, OA) and the corresponding triacylglyceride (trioleic glyceride, or triolein, GTO). Because of the large time and length scales involved, the molecular simulations are done with the Martini force field, a coarse-grained model. This allowed us to study the water-OA-GTO system at different compositions with more than 20 000 molecules and up to 2 μs. Interfacial tension was measured using the pendant drop method and compared with molecular simulation results. We observe very good agreement at high OA concentrations and deviations up to 15% at low OA concentrations. The water solubility in the lipid phase is in fair agreement with experiments, between 0.03 and 0.32 mol/l, rising with the OA content. The area occupied by OA and GTO at the interface between water and the pure product fitted with experimental data (AOA = 36.6 Å2 and AGTO = 152.1 Å2). The consistency between simulation and experimental results allowed a structural analysis of the interface. A bilayer structure of the lipids at the water/oil interface is proposed, containing preferentially oleic acid but also triolein. Through all these results, the usefulness of coarse-grained simulation for the description of water-oil interfacial organization is demonstrated. This method will be used later to bring local information on the organization of target compounds, necessary in biomass fractionation processes or food additive formulations, for example.

  2. Some aspects of lamellar structure in various green leaf particles, indicated by oleic acid effects

    NARCIS (Netherlands)

    Terpstra, Willem

    1. (1) The influence of oleic acid on “whole chloroplasts and large fragments”, isolated from spinach or endive leaves, was compared to that on Photosystem I (PS I) and PS I+II particles, probably stroma lamellae, isolated from the same leaves. 2. (2) Photochemical activity (Hill reaction and

  3. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s{sup −1} for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability. - Highlights: • Surfactants were employed to make adjustments of the hydrophobicity of particles. • Polar attractions between particles increased the viscosity considerably. • Loose and open flocculation was formed in CI/DA suspension. • The steric repulsion of oleic acid played a limited role in the stability.

  4. Effect of Size and Distribution of Ni Nanoparticles on γ-Al2O3 in Oleic Acid Hydrodeoxygenation to Produce n-Alkanes

    Directory of Open Access Journals (Sweden)

    Manuel Sánchez-Cárdenas

    2016-10-01

    Full Text Available To contribute to the search for an oxygen-free biodiesel from vegetable oil, a process based in the oleic acid hydrodeoxygenation over Ni/γ-Al2O3 catalysts was performed. In this work different wt % of Ni nanoparticles were prepared by wetness impregnation and tested as catalytic phases. Oleic acid was used as a model molecule for biodiesel production due to its high proportion in vegetable oils used in food and agro-industrial processes. A theoretical model to optimize yield of n-C17 was developed using size, distribution, and wt % of Ni nanoparticles (NPs as additional factors besides operational conditions such as temperature and reaction time. These mathematical models related to response surfaces plots predict a higher yield of n-C17 when physical parameters of Ni NPs are suitable. It can be of particular interest that the model components have a high interaction with operation conditions for the n-C17 yields, with the size, distribution, and wt % of Ni NPs being the most significant. A combination of these factors statistically pointed out those conditions that create a maximum yield of alkanes; these proved to be affordable for producing biodiesel from this catalytic environmental process.

  5. Fat Quality Influences the Obesogenic Effect of High Fat Diets

    Directory of Open Access Journals (Sweden)

    Raffaella Crescenzo

    2015-11-01

    Full Text Available High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids.

  6. Optimization of Palmitic Acid Composition in Crude Oleic Acid to Provide Specifications of Titer and Cloud Point of Distillate Oleic Acid using a Flash Distiller

    Directory of Open Access Journals (Sweden)

    Muhammad Yusuf Ritonga

    2010-11-01

    Full Text Available Titer and cloud point of Distilled Oleic Acid is higher than is the standard on feed composition palmitic acid (C15H31COOH or C16 11.2 %. Feed composition C16, top temperature precut and bottom main distiller column were optimized to produce DOA. A factorial design with 3 independent variables, 3 X 2 X 3, repeated twice as much, is applied to observe effects of feed composition C16 to quality parameters. In the optimum C16, feed composition at 5.20 % produced DOA with titer 6.8 oC, cloud point 5.0 oC (inside its specification.

  7. The Role of Oleic Acid: From Synthesis to Assembly of Perovskite Nanocuboid Two-Dimensional Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Linhua; Wang, Chuandao; Kennedy, Robert M.; Marks, Laurence D.; Poeppelmeier, Kenneth R. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2014-08-25

    Oleic acid, an 18-carbon chain fatty acid, has been widely used as a surfactant to fabricate colloidal nanocrystals. In previous work, we discovered a lamellar microemulsion strategy to fabricate sub-20 nm SrTiO3 nanocuboids using oleic acid and oleate species. Here, we demonstrate (i) the general synthesis with lamellar microemulsions of a family of compositionally varied BaxSr1–xTiO3 crystalline nanocuboids with uniform size, and (ii) subsequent assembly into two-dimensional arrays by nanoparticle-bound oleate in a nonpolar solvent. The measured interparticle distance (2.4 nm) of adjacent nanoparticles in an array is less than the length of a double oleate layer (~4 nm). On the basis of calculations of the interfacial free energy, we propose the hydrophobic, hydrocarbon-terminated groups of oleate from adjacent nanocuboids are situated closely but do not overlap. Lower aspect ratio nanocuboids are bordered by four adjacent nanocuboids which results in a uniform direction self-assembly array, whereas higher aspect ratio nanocuboids are bordered by five or six adjacent nanocuboids and can develop an arced local coordination.

  8. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2014-01-01

    Full Text Available The Delta-12 oleate desaturase gene (FAD2-1, which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71% and a reduction in palmitic acid (to <3% in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts.

  9. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    Science.gov (United States)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Comparative in vitro metabolism of 1-14C-oleic acid and 1-14C-erucic acid in liver, heart and skeletal muscles of rats

    International Nuclear Information System (INIS)

    Bhatia, I.S.; Sharma, A.K.; Ahuja, S.P.

    1978-01-01

    In vitro oxidation of 14 C-oleic and 1- 14 C-erucic acid and their incorporation into lipids by liver, heart and skeletal muscles from female albino rats were studied. These tissues were obtained from rats maintained for 120 days on low fat diet or diets containing 15% mustard oil or 15% groundnut oil. In all these tissues from rats on different types of diets, the oxidation of 1- 14 C-erucic acid was lower than that 1- 14 C-oleic acid. There was little accumulation of lipids in heart after 120 days of feeding mustard oil. Oxidation of 1- 14 C-erucic acid was enhanced in liver, heart and skeletal muscles of rats conditioned to the mustard oil diet supplying erucic acid. Oxidation of erucic acid was maximum in liver and least in heart, whereas there were no differences in the oxidation of 1- 14 C-oleic acid in these tissues. Incorporation of 1- 14 C-oleic acid into triglycerides and phospholipids was not affected by the type of diet or tissues Incorporation of 1- 14 C-erucic acid was mainly into triglycerides of heart and skeletal muscles of rats not accustomed to mustard oil diet whereas these tissues from rats accustomed to mustard oil diets incorporated 1- 14 C-erucic acid both into the triglycerides and phospholipids. (author)

  11. 针刺配合红花伸筋散外敷治疗46例急性踝关节扭伤%Acupuncture with Safflower Shenjin San External Application Treating 46 Cases of Acute Ankle Sprain

    Institute of Scientific and Technical Information of China (English)

    许海涛

    2013-01-01

    目的:观察针刺配合红花伸筋散外敷治疗急性踝关节扭伤的疗效。方法:46例患者均给予针刺养老、阳陵泉、太渊或膈腧穴处压痛点,行强刺激手法,配合患侧关节活动、行走,起针后给予患处红花伸筋散醋调外敷治疗。结果:46例患者治疗1~3次后,治愈43例,好转2例,无效1例,总有效率97.8%。结论:应用针刺配合红花伸筋散外敷治疗急性踝关节扭伤疗效显著,值得推广。%Objective:To observe the therapeutic effects of acupuncture with safflower shenjin san external application treating acute ankle sprain. Methods:46 patients were all acupunctured at Yanglao, Yanglingquan, Taiyuan or Geshu, the tenderness points, with strong stimulation, joint motion and walking of affected side, and safflower shenjin san mixing with vinegar was externally applied in affected area after acupuncturing. Results:Af-ter 1 or 3 times of therapy for 46 cases, 43 cases were cured, 2 cases improved, 1 case ineffective, the total efficiency of 97.8%. Conclusion:Acupunc-ture with safflower shenjin san external application treating acute ankle sprain is of significant efficacy, being worthy of promotion.

  12. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were

  13. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Science.gov (United States)

    2013-04-03

    ..., Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of castor oil, polymer with adipic acid, linoleic acid... pesticide formulation. Advance Polymer Technology submitted a petition to EPA under the Federal Food, Drug...

  14. Investigating 'Egusi' (citrullus colocynthis l.) seed oil as potential biodiesel feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Giwa, S.; Adam, N. M. [Alternative and Renewable Energy Laboratory, Institute of Advanced Technology (ITMA)/Mechanical and Manufacturing Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400, Serdang Darul Ehsan, Selangor (Malaysia); Abdullah, L. Ch. [Chemical and Environmental Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400, Serdang Darul Ehsan, Selangor (Malaysia); Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, 43400, Serdang Darul Ehsan, Selangor (Malaysia)

    2010-07-01

    Biodiesel's acceptance as a substitute for fossil-derived diesel has grown the world over. However, the food-fuel debate over conventional vegetable oils has rekindled research interest in exploring lesser known and minor oil crops. In this work, egusi melon seed oil was studied for the first time as a potential feedstock for biodiesel production. Crude egusi melon seed oil was transesterified using sodium methoxide as the catalyst at 60 {sup o}C and an oil/methanol ratio of 1:6 to produce its corresponding methyl esters. Egusi melon oil methyl ester (EMOME) yield was 82%. Gas chromatographic analysis of EMOME showed that it was composed mainly of palmitic, stearic, oleic, linoleic and linolenic esters, which is similar to the profile of sunflower, soybean and safflower oil. All the measured fuel properties of EMOME satisfied both the ASTM D6751 and the EN 14214 biodiesel standards. Fuel properties of EMOME were essentially identical with those of soybean, safflower and sunflower biodiesel. Remarkably, the kinematic viscosity of EMOME was measured to be 3.83 mm{sup 2}/s, a value lower than most biodiesel fuels reported in the literature. The potential of egusi melon seed oil as a biodiesel feedstock is clearly presented in this study. (author)

  15. Analysis of Chemical Compositions of 15 Different Cold-Pressed Oils Produced in Turkey: A Case Study of Tocopherol and Fatty Acid Analysis

    Directory of Open Access Journals (Sweden)

    Veysel U. Celenk

    2017-10-01

    Full Text Available Many people tend to prefer natural foods and supplements nowadays. Considering this tendency, this study assessed the most significant in quality and purity parameters tocopherol and fatty acid compositions of cold-pressed oils, namely black cumin, sesame, sunflower, poppy, pomegranate, nettle, pumpkin, grape, safflower, flax, canola seed, wheat germ, peanut, hazelnut, and walnut. This study deals with the sample preparation and validation of tocopherols using an HPLC-FLD method for simultaneous determination of α-β-γ-, and δ-tocopherols, and analysis of fatty acid methyl esters (FAME with using GC-FID. The validated HPLC method was applied for the tocopherols’ analysis and measurement uncertainty was calculated for tocopherols and some fatty acids. The obtained data were evaluated by using principal component analysis to show the relationship between quality parameters and seed oils. Wheat germ, hazelnut, safflower, and sunflower oils have the highest tocopherol contents respectively with a predominance of α-tocopherol. Seed oils’ fatty acid compositions were classified according to proportions of oleic, linoleic, and other fatty acids. This study shows that the evaluated seeds are valuable sources of natural antioxidants and some specific and polyunsaturated fatty acids. The applied method can also be helpful for the industry to obtain quality analysis approach.

  16. Investigating “Egusi” (Citrullus Colocynthis L. Seed Oil as Potential Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    Solomon Giwa

    2010-03-01

    Full Text Available Biodiesel’s acceptance as a substitute for fossil-derived diesel has grown the world over. However, the food-fuel debate over conventional vegetable oils has rekindled research interest in exploring lesser known and minor oil crops. In this work, egusi melon seed oil was studied for the first time as a potential feedstock for biodiesel production. Crude egusi melon seed oil was transesterified using sodium methoxide as the catalyst at 60 °C and an oil/methanol ratio of 1:6 to produce its corresponding methyl esters. Egusi melon oil methyl ester (EMOME yield was 82%. Gas chromatographic analysis of EMOME showed that it was composed mainly of palmitic, stearic, oleic, linoleic and linolenic esters, which is similar to the profile of sunflower, soybean and safflower oil. All the measured fuel properties of EMOME satisfied both the ASTM D6751 and the EN 14214 biodiesel standards. Fuel properties of EMOME were essentially identical with those of soybean, safflower and sunflower biodiesel. Remarkably, the kinematic viscosity of EMOME was measured to be 3.83 mm2/s, a value lower than most biodiesel fuels reported in the literature. The potential of egusi melon seed oil as a biodiesel feedstock is clearly presented in this study.

  17. Comparative effects of short- and long-term feeding of safflower oil and perilla oil on lipid metabolism in rats.

    Science.gov (United States)

    Ihara, M; Umekawa, H; Takahashi, T; Furuichi, Y

    1998-10-01

    Diets high in linoleic acid (20% safflower oil contained 77.3% linoleic acid, SO-diet) and alpha-linolenic acid (20% perilla oil contained 58.4% alpha-linolenic acid, PO-diet) were fed to rats for 3, 7, 20, and 50 days, and effects of the diets on lipid metabolism were compared. Levels of serum total cholesterol and phospholipids in the rats fed the PO-diet were markedly lower than those fed the SO-diet after the seventh day. In serum and hepatic phosphatidylcholine and phosphatidylethanolamine, the proportion of n-3 fatty acids showed a greater increase in the PO group than in the SO group in the respective feeding-term. At the third and seventh days after the commencement of feeding the experimental diets, expressions of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA were significantly higher in the SO group than those in the PO group, although the difference was not observed in the longer term. There were no significant differences in the LDL receptor mRNA levels between the two groups through the experimental term, except 3-days feeding. These results indicate that alpha-linolenic acid has a more potent serum cholesterol-lowering ability than linoleic acid both in short and long feeding-terms.

  18. Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Martíšková, Hana; Koudelka, A.; Ravekes, T.; Rudolph, T.K.; Klinke, A.; Rudolph, V.; Freeman, B.A.; Woodcock, S.R.; Kubala, Lukáš; Pekarová, Michaela

    2016-01-01

    Roč. 90, JAN 2016 (2016), s. 252-260 ISSN 0891-5849 R&D Projects: GA ČR(CZ) GP13-40824P Grant - others:GAAV(CZ) M200041208 Institutional support: RVO:68081707 Keywords : Nitro-fatty acids * Nitro-oleic acid * Macrophages Subject RIV: BO - Biophysics Impact factor: 5.606, year: 2016

  19. Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.M. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Aashuri, H. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of)

    2015-04-15

    Colloidal quantum dot solar cells have recently attracted significant attention due to their low-processing cost and surging photovoltaic performance. In this paper, a novel, reproducible, and simple solution-based process based on supercritical fluid toluene is presented for in situ growth and deposition PbS nanocrystals with oleic-acid passivation. A lead precursor containing sulfur was mixed with oleic acid in toluene and processed in a supercritical fluid condition at different temperatures of 140, 270 and 330 °C for 20 min. The quantum dots were deposited on a fluorine-doped tin oxide glass substrate inside the supercritical reactor. Transmission electron microscopy, X-ray diffraction, absorption and dynamic light scattering showed that the nanocrystals processed at the supercritical condition (330 °C) are fully crystalline with a narrow size distribution of ∼3 nm with an absorption wavelength of 915 nm (bandgap of 1.3 eV). Fourier transform infrared spectroscopy indicated that the PbS quantum dots are passivated by oleic acid molecules during the growth. Photovoltaic characteristics of Schottky junction solar cells showed an improvement over devices prepared by spin-coating. - Highlights: • Supercritical fluid processing and in situ deposition of PbS QDs are presented. • The prepared nanocrystals are mono-dispersed with an optical bandgap of 1.3 eV. • Photovoltaic performance of the in situ deposited nanocrystals is reported. • An improved PV performance compared to spin coated Schottky solar cells is shown.

  20. Comparison of safflower oil extraction kinetics under two characteristic moisture conditions: statistical analysis of non-linear model parameters

    Directory of Open Access Journals (Sweden)

    E. Baümler

    2014-06-01

    Full Text Available In this study the kinetics of oil extraction from partially dehulled safflower seeds under two moisture conditions (7 and 9% dry basis was investigated. The extraction assays were performed using a stirred batch system, thermostated at 50 ºC, using n-hexane as solvent. The data obtained were fitted to a modified diffusion model in order to represent the extraction kinetics. The model took into account a washing and a diffusive step. Fitting parameters were compared statistically for both moisture conditions. The oil yield increased with the extraction time in both cases, although the oil was released at different rates. A comparison of the parameters showed that both the portion extracted in the washing phase and the effective diffusion coefficient were moisture-dependent. The effective diffusivities were 2.81 10-12 and 8.06 10-13 m²s-1 for moisture contents of 7% and 9%, respectively.

  1. Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate

    Directory of Open Access Journals (Sweden)

    Wanessa Ximenes Ribeiro

    2015-10-01

    Full Text Available Zein oleic acid films added with 1, 2 and 3 % (w/w of nanocarbonate and 30 % glycerol as plasticizer, were produced and evaluated according to their structure and functional properties. Structural characteristics were analyzed by optical and scanning electron microscopy (SEM. Water solubility and mechanical properties were determined according to ASTM methods. The increase of nanocarbonate concentration increased water solubility and influenced the color and mechanical properties. Optical and SEM of film samples added with nanocarbonate, shown low amount of pores and great fat globules size.

  2. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate.

    Science.gov (United States)

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-11-19

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na⁺ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol-gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids' final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.

  3. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    Science.gov (United States)

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-01-01

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules. PMID:27869768

  4. Spectra study and size control of cobalt nanoparticles passivated with oleic acid and triphenylphosphine

    International Nuclear Information System (INIS)

    Su Yikun; Ouyang Xing; Tang Jiaoning

    2010-01-01

    This paper compares the performance of two surfactants-triphenylphosphine (TPP) and oleic acid (OA) as a pair of capping agents in the synthesis of magnetic Co nanoparticles (NPs). Magnetic colloids of cobalt NPs are prepared by reducing solute cobalt chloride in the presence of stabilizing agents at a high temperature and characterized by TEM. Infrared spectra reveal that a chemical bond can be formed between O of C=O band and Co atoms while a coordinate bond forms between P and Co atoms around the NPs on the surface. OA binds strongly to the particle surface during synthesis that hinders the particle from growing; the TPP reversibly coordinates neutral metal surface sites that favor rapid growth. We studied the influence of changing the TPP/OA concentration ratio on the particle size distribution and crystallinity of Co NPs. Our results indicate the presence of TPP/OA is able to control particle growth, stabilize the colloidal suspension and prevent the final product from oxidation by air.

  5. Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic and oleic acid.

    Science.gov (United States)

    Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L

    2006-07-01

    The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. (c) 2006 Wiley-Liss, Inc.

  6. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Science.gov (United States)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  7. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid : Evidence for Pore Mouth Catalysis

    NARCIS (Netherlands)

    Wiedemann, Sophie C. C.; Ristanovic, Zoran; Whiting, Gareth T.; Marthala, V. R. Reddy; Kaerger, Joerg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes).

  8. Ferrofluid synthesis using oleic acid coated Fe3O4 nanoparticles dispersed in mineral oil for heat transfer applications

    Science.gov (United States)

    Imran, Mohd; Rahman Ansari, Akhalakur; Hussain Shaik, Aabid; Abdulaziz; Hussain, Shahir; Khan, Afzal; Rehaan Chandan, Mohammed

    2018-03-01

    Ferrofluids are stable dispersion of iron oxide nanoparticles in a carrier fluid which find potential applications in heat transfer. Fe3O4 nanoparticles of mean size in the range of 5–10 nm were synthesized using conventional co-precipitation method. This work deals with the synthesis of ferrofluids using mineral oil as a carrier fluid and oleic acid coated Fe3O4 nanoparticles as dispersed phase. Morphology (shape and size) and crystallinity of the synthesized nanoparticle is captured using TEM and XRD. Oleic acid coating on nanoparticle is probed using FTIR for confirming the stability of ferrofluid. Thermal properties of mineral oil based ferrofluid with varying concentration of nanoparticles are evaluated in terms of thermal conductivity. It was found that the thermal conductivity of ferrofluid increases upto 2.5% (w/v) nanoparticle loading, where a maximum enhancement of ∼51% in thermal conductivity was recorded as compared to the base fluid.

  9. Detection Characteristics of Gamma-Irradiated Seeds by using PSL, TL, ESR and GC/MS

    International Nuclear Information System (INIS)

    Kim, K.H.; Shon, J.H.; Kang, Y.J.; Jo, T.Y.; Park, H.Y.; Kwak, J.Y.; Lee, J.H.; Park, Y.C.; Kim, J.I.; Lee, H.J.; Lee, S.J.; Han, S.B.

    2013-01-01

    In this study, we investigated the applicability of the photostimulated luminescence (PSL), thermoluminescence (TL), electron spin resonance (ESR) and gas chromatography/mass spectrometry (GC/MS) methods for 5 seeds which are not allowed to be irradiated in Korea. All 5 seeds including evening primrose seed, safflower seed, rape seed, sunflower seed and flax seed were analyzed. Samples were irradiated at 1~10 kGy using a 60 Co gamma-ray irradiator. In PSL study, the photon counts of all the unirradiated samples showed negative (lower than 700). The photon counts of irradiated (1, 5, 10 kGy) samples showed positive (higher than 5,000). In TL analysis, results showed that it is possible to apply TL method to all foods containing minerals. In ESR measurements, the ESR signal (single-line) intensity of irradiated foods was higher than non-irradiated foods. The hydrocarbons 1,7-hexadecadiene (C 16:2 ) and 8-heptadecene (C 17:1 ) from oleic acid were detected only in the irradiated samples before and after the treatment at doses ≥ 1 kGy, but they were not detected in non-irradiated samples before and after treatment. These two hydrocarbons could be used as markers to identify irradiated safflower seed, rape seed, Sunflower seed and flax seed. And then, the hydrocarbons 1,7,10-hexadecatriene (C 16:3 ) and 6,9-heptadecadiene (C 17:2 ) from linoleic acid were detected in the evening primrose seed, safflower seed and sunflower seed. According to the results, PSL, TL and GC/ MS methods were successfully applied to detect the irradiated foods. It is concluded that PSL, TL and GC/MS methods are suitable for detection of irradiated samples and a combined method is recommendable for enhancing the reliability of detection results. (author)

  10. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hain, D.; Valenzuela, A.; Branes, M. C.; Fuenzalida, M.; Videla, L. A.

    2012-07-01

    Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP), in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg1 of butyric acid esterified policosanol (BAEP), or 164 mg kg1 of oleic acid esterified policosanol (OAEP). Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red) phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05) in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis. (Author) 49 refs.

  11. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    Directory of Open Access Journals (Sweden)

    Catalin Ilie Spataru

    2016-11-01

    Full Text Available The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA and its alkaline salt (OLANa. Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA, with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1 required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG and differential scanning calorimetry (DSC (TG-DSC analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.

  12. A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide

    NARCIS (Netherlands)

    Coumans, A.E.; Hensen, E.J.M.

    We studied hydrodeoxygenation of model compounds for vegetable oil into diesel-range hydrocarbons on a sulfided NiMo/γ-Al2O3 catalyst under trickle-flow conditions. Methyl oleate (methyl ester of oleic acid, a C18 fatty acid with one unsaturated bond in the chain) represented the C18 alkyl esters in

  13. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    Science.gov (United States)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.

  14. Weed Control Efficiency of wild Safflower (Carthamus oxyacanthus M. Bieb in Replacement Series Technique of Barley (Hordeum vulgare L. and Common Vetch (Vicia sativa L.

    Directory of Open Access Journals (Sweden)

    abdolreza ahmadi

    2017-08-01

    Full Text Available Introduction In agronomy, natural outlook has been expressed in different forms which stable agriculture is an example. Stable agriculture is ascribed to the authentic management of agricultural resources, which in addition to fulfilling the ever-changing needs of humans, maintains the health of environment and capacity of water and soil resources. Application of herbicides, besides being costly, resulted in the selection of herbicide resistant weed species and has become an environmental contamination factor. However, reduction of herbicide consumption is one of the goals of modern agriculture, with several methods being suggested, including intercropping. In natural conditions of production, environment conservation of weed existence requires cost. One of the important preparations in weed control from the perspective of sustainable agriculture, is using intercropping system. The aim of this study was to determine the role of crop diversity on weed and crop production based on the beneficial effects of intercropping system than pure. Materials and methods In order to study effects of mixed and sole cropping of barley with common vetch on their biologic yield and utilization indices, an experiment was conducted in Agricultural college of the University of Lorestan, during the growing season of 2013-2014 with 24 treatments using the method of rows replacement series technique by the randomized complete block design in a factorial arrangement with three replications. First factor included 6 levels of intercropping: sole cropping of common vetch (100%, 55-45 (Common vetch-barley, 35-65, 45-55, 65-35 and sole cropping of barley and second factor included 4 levels of weed wild safflower, control, 10, 15 and 20 plants per m2. In this experiment WCE, LER and CR were measured. The data were subjected to analysis of variance (ANOVA using Mstat-C computer software. Mean comparisons were performed using Duncan’s multiple range test at two levels of

  15. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    International Nuclear Information System (INIS)

    Rogue, Alexandra; Anthérieu, Sébastien; Vluggens, Aurore; Umbdenstock, Thierry; Claude, Nancy; Moureyre-Spire, Catherine de la; Weaver, Richard J.; Guillouzo, André

    2014-01-01

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the control

  16. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    Energy Technology Data Exchange (ETDEWEB)

    Rogue, Alexandra [Inserm UMR 991, 35043 Rennes Cedex (France); Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex (France); Biologie Servier, Gidy (France); Anthérieu, Sébastien; Vluggens, Aurore [Inserm UMR 991, 35043 Rennes Cedex (France); Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex (France); Umbdenstock, Thierry [Technologie Servier, Orléans (France); Claude, Nancy [Institut de Recherches Servier, Courbevoie (France); Moureyre-Spire, Catherine de la; Weaver, Richard J. [Biologie Servier, Gidy (France); Guillouzo, André, E-mail: Andre.Guillouzo@univ-rennes1.fr [Inserm UMR 991, 35043 Rennes Cedex (France); Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex (France)

    2014-04-01

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the control

  17. The effects of dietary fish oil on inflammation, fibrosis and oxidative stress associated with obstructive renal injury in rats.

    Science.gov (United States)

    Peake, Jonathan M; Gobe, Glenda C; Fassett, Robert G; Coombes, Jeff S

    2011-03-01

    We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Three groups of Sprague-Dawley rats (n=16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n=4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-β expression, apoptosis, and tissue levels of arachidonic acid, MIP-1α, IL-1β, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  19. High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics.

    Science.gov (United States)

    Barre, Douglas E; Mizier-Barre, Kazimiera A; Griscti, Odette; Hafez, Kevin

    2008-01-01

    Type 2 diabetes is characterized partially by elevated fasting blood serum glucose and insulin concentrations and the percentage of hemoglobin as HbA1c. It was hypothesized that each of blood glucose and its co-factors insulin and HbA1c and would show a more favorable profile as the result of flaxseed oil supplementation. Patients were recruited at random from a population pool responding to a recruitment advertisement in the local newspaper and 2 area physicians. Completing the trial were 10 flaxseed oil males, 8 flaxseed oil females, 8 safflower (placebo) oil males and 6 safflower oil females. Patients visited on two pre-treatment occasions each three months apart (visits 1 and 2). At visit 2 subjects were randomly assigned in double blind fashion and in equal gender numbers to take flaxseed oil or safflower oil for three further months until visit 3. Oil consumption in both groups was approximately 10 g/d. ALA intake in the intervention group was approximately 5.5 g/d. Power was 0.80 to see a difference of 1 mmol of glucose /L using 12 subjects per group with a p < 0.05. Flaxseed oil had no impact on fasting blood serum glucose, insulin or HbA1c levels. It is concluded that high doses of flaxseed oil have no effect on glycemic control in type 2 diabetics.

  20. [The isozymes of stearil-coenzymeA-desaturase and insulin activity in the light of phylogenetic theory of pathology. Oleic fatty acid and realization of biologic functions of trophology and locomotion].

    Science.gov (United States)

    2013-11-01

    The formation of function of isozymes of stearil-coenzymeA-desaturases occured at the different stages of phylogeny under realization of biologic function of trophology (stearil-coenzymeA-desaturase 1) and biologic function of locomotion, insulin system (stearil-coenzymeA-desaturase 2) billions years later. The stearil-coenzymeA-desaturase 1 transforms in C 18:1 oleic fatty acid only exogenous C 16:0 palmitinic saturated fatty acid. The stearil-coenzymeA-desaturase 2 transforms only endogenic palmitinic saturated fatty acid, synthesized form glucose. The biologic role of insulin is in energy support of biologic function of locomotion. Insulin through expressing stearil-coenzymeA-desaturase 2 transforms energetically non-optimal palmitinic variation of metabolism of substrates into highly effective oleic variation for cells' groundwork of energy (saturated fatty acid and mono fatty acid). The surplus of palmitinic saturated fatty acid in food is enabled in pathogenesis of resistance to insulin and derangement of synthesis of hormone by beta-cells of islets. The resistance to insulin and diabetes mellitus are primarily the derangement of metabolism of saturated fatty acids with mono fatty acids, energy problems of organism and only afterwards the derangement of metabolism of carbohydrates. It is desirable to restrict food intake of exogenous palmitinic saturated fatty acid. The reasons are low expression of independent of insulin stearil-coenzymeA-desaturase 2, marked lipotoxicity of polar form of palmitinic saturated fatty acid and synthesis of non-optimal palmitinic triglycerides instead of physiologic and more energetically more effective oleic triglycerides.

  1. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection.

    Science.gov (United States)

    Jahanbani, Shahriar; Benvidi, Ali

    2016-11-15

    In this research, we have improved two aptasensors based on a modified carbon paste electrode (CPE) with oleic acid (OA), and a magnetic bar carbon paste electrode (MBCPE) with Fe3O4 magnetic nanoparticles and oleic acid (OA). After the immobilization process of anti-TET at the electrode surfaces, the aptasensors were named CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET respectively. In this paper, the detection of tetracycline is compared using CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET aptasensors. These modified electrodes were characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), UV-vis spectroscopy, and voltammetric methods. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-12)-1.0×10(-7)M and 3.0×10(-13)M respectively by EIS method. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-10)-1.0×10(-7)M with a limit of detection of 2.9×10(-11)M using differential pulse voltammetry (DPV) technique. The MBCPE/Fe3O4NPs/OA/anti-TET aptasensor was used for determination of TET, and a liner range of 1.0×10(-14)-1.0×10(-6)M with a detection limit of 3.8×10(-15)M was obtained by EIS method. Also, the linear range and detection limit of 1.0×10(-12)-1.0×10(-6)M and 3.1×10(-13)M respectively, were obtained for MBCPE/Fe3O4NPs/OA/anti-TET aptasensor using DPV. The proposed aptasensors were applied for determination of tetracycline in some real samples such as drug, milk, honey and blood serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Oleic acid capped PbS nanoparticles: Synthesis, characterization and tribological properties

    International Nuclear Information System (INIS)

    Chen Shuang; Liu Weimin

    2006-01-01

    Oleic acid (OA) capped PbS nanoparticles were chemically synthesized and characterized by means of Fourier transform-infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray electron diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The triboligical properties of the capped PbS nanoparticles as additive in liquid paraffin was investigated using a four-ball machine. The lubricating mechanisms were discussed along with the analyses results of XPS and scanning electron microscope (SEM). Results show that OA-capped PbS nanoparticles, with an average diameter of about 8 nm, are able to prevent water adsorption, oxidation and are capable of being dispersed stably in organic solvents or mineral oil. OA-capped PbS nanoparticles as an additive in liquid paraffin perform good antiwear and friction-reduction properties owing to the formation of a boundary film

  3. LDL-cholesterol lowering activity of a blend of rice bran oil and safflower oil (8:2) in patients with hyperlipidaemia: a proof of concept, double blind, controlled, randomised parallel group study.

    Science.gov (United States)

    Malve, Harshad; Kerkar, Prafulla; Mishra, Nidheesh; Loke, Sanjita; Rege, N N; Marwaha-Jaspal, Ankita; Jainani, Kiran J

    2010-11-01

    Cardiovascular diseases have emerged as major health burden worldwide in recent times. Low density lipoprotein cholesterol (LDL-C) serves as the primary marker for cardiovascular diseases. Reports suggest that rice bran oil has antihyperlipidaemic properties. However, current evidence suggests that no single oil can provide the recommended dietary fat ratio. Hence the present study was undertaken in patients with hyperlipidaemia to study effects of substitution of the cooking oil with a blend of 80% rice bran oil and 20% safflower oil on LDL-C levels. The selected patients (n = 73) were randomly assigned either to the study oil group (blend under study) or control oil group (the oil which the patient was using before). The lipid profile was monitored monthly in these patients for 3 months during which they consumed the oil as per the randomisation. At each follow up, LDL-C levels showed a significant reduction from baseline in the study oil group and reduction was more than that observed in the control group. It was also observed that the percentage of the respondents was higher in the study oil group. At the end of the study period, 82% patients from this group had LDL levels less than 150 mg% as against 57% in the control group. Thus, the substitution of usual cooking oil with a blend of rice bran oil and safflower oil (8:2) was found to exert beneficial effects on the LDL-C levels shifting them to low-risk lipid category.

  4. The relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    International Nuclear Information System (INIS)

    Takasago, Masahisa; Takaoka, Kyo

    1986-01-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 ∼ 1012 ppm, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 ∼ 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppm, nickel, 0.04 ppm and chromium, from 0.02 to 0.03 ppm. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppm. (author)

  5. Preparation of surface modified TiO2/rGO microspheres and application in the photocatalytic decomposition of oleic acid

    Science.gov (United States)

    Wu, Xin; Zeng, Min; Tong, Xiaoling; Li, Fuyun; Xu, Youyou

    2018-05-01

    The comprehensive utilization of waste cooking oil is an important research topic in food science. In this study, the surface modified mesoporous anatase TiO2/reduced graphene oxide (rGO) microspheres with a high specific surface area have been successfully synthesized, through hydrothermal routes and hydrazine reduced graphene oxide. The photocatalytic decomposition of waste rapeseed oil has also been studied using TiO2/rGO microspheres as photocatalyst. The result shows that the reduced graphene oxide in these nanocomposites can act as adsorbent and photocatalyst, and the temperature and the oxygen amount also are the most important factors affecting the oleic acid decomposition products. There interesting results not only helpful for the study of the mechanism of photocatalytic, but also useful for the rational use of waste cooking oil.

  6. THE EGG – FUNCTIONAL FOOD.COMPARATIVE STUDY ON VARIOUS NUTRITIONAL SOLUTIONS TO ENRICH THE EGG POLYUNSATURATED FATTY ACIDS. II YOLK FATTY ACIDS PROFILE RESULTING FROM THE DIETARY USE OF SAFFLOWER OIL AND FLAX SEEDS

    Directory of Open Access Journals (Sweden)

    CRISTE RODICA. D.

    2007-05-01

    Full Text Available The paper presents the results obtained in a study on the comparative evaluation of the effect of a diet with safflower oil and flax seeds compared to a control soybean oil diet given to layers on the bioproductive effects, egg characteristics and yolk fatty acids profile. The trial involved 32 Lowman Brown layers during the age period 23- 28 weeks (1 week of accommodation and 4 experimental weeks. The layers, assigned to 2 groups (16 layers/group, 4 layers/cage received diets based on corn, wheat and soybean meal. The diets differed by the source of fatty acids: soybean oil for the control group (SO; safflower oil and flax seeds for SSO+FS. The diets were supplemented with 250 ppm vitamin E. Twelve eggs per group were collected randomly 10 and 30 days, respectively, after the beginning of the experiment. The paper presents comparative data on the: average egg weight, egg component (egg shell, yolk, egg white weight, intensity of yolk colour (Hoffman – La Roche colour range, yolk protein, fat yolk pH (measured one week after collection, the eggs being kept at 50C and yolk fatty acids. All data show that the profile of yolk unsaturated fatty acids can be handled quite easily by the nature of the dietary fats, their level of inclusion and their dietary ratio.

  7. Clofibric Acid Increases the Formation of Oleic Acid in Endoplasmic Reticulum of the Liver of Rats

    OpenAIRE

    広瀬, 明彦; 山崎, 研; 坂本, 武史; 須永, 克佳; 津田, 整; 光本, 篤史; 工藤, なをみ; 川嶋, 洋一

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [14C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellul...

  8. Relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Takasago, Masahisa; Takaoka, Kyo

    1986-12-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 -- 1012 ppM, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 -- 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppM, nickel, 0.04 ppM and chromium, from 0.02 to 0.03 ppM. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppM.

  9. Changes of Chlorophyll Index (SPAD, Relative Water Content, Electrolyte Leakage and Seed Yield in Spring Safflower Genotypes under Irrigation Termination

    Directory of Open Access Journals (Sweden)

    B.E. Moosavifar

    2012-04-01

    Full Text Available In order to evaluate the effect of irrigation termination and genotype on chlorophyll index (SPAD, relative water content, electrolyte leakage and seed yield in spring safflower, an experiment was conducted, in a spilt plot arrangement based on randomized complete block design with four replications at Research Farm, Faculty of Agriculture, the University of Birjand, during 2008. Irrigation regimes (full irrigation (whole season irrigation, irrigation until grain filling, flowering and heading-bud and genotypes (Mahali Isfahan (a local variety, Isfahan28 and IL111 were arranged in main and subplots, respectively. Results showed chlorophyll content, relative water content, cell membrane stability and seed yield were influenced by irrigation termination. Provided that with terminating irrigation at an earlier stage, an increase in electrolyte leakage and reduction in relative water content and seed yield was observed in plants. There were negative relations between electrolyte leakage from plants leaf cells and seed yield. Plants which experienced irrigation termination in an earlier growth stage, suffered more damage to their cell membranes, leading to depression of their production potential. Based on the results, Mahali Isfahan and Isfahan28 can be introduced as drought resistant genotypes, because of their lower electrolyte leakage and higher relative water content. But, in general, Mahali Isfahan had the highest seed yield due to its nativeness and high adaptation to arid conditions southern of Khorasan, and therefore this genotype suggests for planting in the region.

  10. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves

    International Nuclear Information System (INIS)

    Roughan, G.; Nishida, I.

    1990-01-01

    Fatty acid synthesis from [1-14C]acetate by chloroplasts isolated from peas and amaranthus was linear for at least 15 min, whereas incorporation of the tracer into long-chain acyl-acyl carrier protein (ACP) did not increase after 2-3 min. When reactions were transferred to the dark after 3-5 min, long-chain acyl-ACPs lost about 90% of their radioactivity and total fatty acids retained all of theirs. Half-lives of the long-chain acyl-ACPs were estimated to be 10-15 s. Concentrations of palmitoyl-, stearoyl-, and oleoyl-ACP as indicated by equilibrium labeling during steady-state fatty acid synthesis, ranged from 0.6-1.1, 0.2-0.7, and 0.4-1.6 microM, respectively, for peas and from 1.6-1.9, 1.3-2.6, and 0.6-1.4 microM, respectively, for amaranthus. These values are based on a chloroplast volume of 47 microliters/mg chlorophyll and varied according to the mode of the incubation. A slow increase in activity of the fatty acid synthetase in safflower chloroplasts resulted in long-chain acyl-ACPs continuing to incorporate labeled acetate for 10 min. Upon re-illumination following a dark break, however, both fatty acid synthetase activity and acyl-ACP concentrations increased very rapidly. Palmitoyl-ACP was present at concentrations up to 2.5 microM in safflower chloroplasts, whereas those of stearoyl- and oleoyl-ACPs were in the lower ranges measured for peas. Acyl-ACPs were routinely separated from extracts of chloroplasts that had been synthesising long-chain fatty acids from labeled acetate by a minor modification of the method of Mancha et al. The results compared favorably with those obtained using alternative analytical methods such as adsorption to filter paper and partition chromatography on silicic acid columns

  11. Optimization of the process of pressing safflower seeds in an ultrasonic field

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2017-01-01

    Full Text Available The article gives a mathematical description of the process of pressing safflower seeds in an ultrasonic field in the form of a regression equation found by static methods on the basis of experiments and described by a polynomial of the second degree. As the main factors influencing the efficiency of the process, the ultrasound frequency, the amplitude of the ultrasound, the pressure and the press created in the green chamber were selected. And as a criterion for assessing the effect of the selected parameters, the residual oil content of the cake is used. To assess the adequacy of the mathematical model, the variance analysis (ANOVA of the experiment in the Design Expert v. 10 and the regression equation is obtained, the analysis of which allowed us to identify the factors that most influenced the process under consideration. Found that when the pressure in the press to a value higher than 14 MPa, a further increase in efficiency was observed together with increased values as the ultrasound frequency and its amplitude. The maximum and most effective value residual oil content in oil cake obtained in the frequency 35-40 Hz and amplitude of more than 40 mm and the pressure in the press from 10 to 11 MPa. which are obviously directly dependent on the behavior of grain and movement of its internal parts during the supply of the ultrasound. Graphical interpretation of the equation is represented by curves of equal values and response surfaces for input parameters. A numerical and graphical optimization procedure is also proposed to predict the optimal level of input factors and to obtain the maximum yield of oil relative to the mass of the original feed. To test the adequacy of the model, the results of a number of parallel experiments are presented that fall within the calculated confidence intervals for all quality criteria.

  12. Studies of UCP2 transgenic and knockout mice reveal that liver UCP2 is not essential for the antiobesity effects of fish oil.

    Science.gov (United States)

    Tsuboyama-Kasaoka, Nobuyo; Sano, Kayo; Shozawa, Chikako; Osaka, Toshimasa; Ezaki, Osamu

    2008-03-01

    Uncoupling protein 2 (UCP2) is a possible target molecule for energy dissipation. Many dietary fats, including safflower oil and lard, induce obesity in C57BL/6 mice, whereas fish oil does not. Fish oil increases UCP2 expression in hepatocytes and may enhance UCP2 activity by activating the UCP2 molecule or altering the lipid bilayer environment. To examine the role of liver UCP2 in obesity, we created transgenic mice that overexpressed human UCP2 in hepatocytes and examined whether UCP2 transgenic mice showed less obesity when fed a high-fat diet (safflower oil or lard). In addition, we examined whether fish oil had antiobesity effects in UCP2 knockout mice. UCP2 transgenic and wild-type mice fed a high-fat diet (safflower oil or lard) developed obesity to a similar degree. UCP2 knockout and wild-type mice fed fish oil had lower rates of obesity than mice fed safflower oil. Remarkably, safflower oil did not induce obesity in female UCP2 knockout mice, an unexpected phenotype for which we presently have no explanation. However, this unexpected effect was not observed in male UCP2 knockout mice or in UCP2 knockout mice fed a high-lard diet. These data indicate that liver UCP2 is not essential for fish oil-induced decreases in body fat.

  13. The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid

    KAUST Repository

    Crespo, Julian

    2015-10-02

    Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [AuAg(CF)(OEt)] in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

  14. The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid

    KAUST Repository

    Crespo, Julian; Ló pez-De-Luzuriaga, José M.; Monge, Miguel; Elena Olmos, M.; Rodrí guez-Castillo, Marí a; Cormary, Benoî t; Soulantica, Katerina; Sestu, Matteo; Falqui, Andrea

    2015-01-01

    Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [AuAg(CF)(OEt)] in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

  15. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... plasma total triacylglycerol (P = 0.0361), and higher plasma glucose (P = 0.033). Plasma HDL-cholesterol and insulin concentrations and activities of cholesterol ester transfer protein and phospholipid transfer protein did not differ significantly between the diets. Conclusions: Compared with fat high...

  16. Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB: oxidation of oleic acid by ozone

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2010-05-01

    Full Text Available We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB based on the PRA framework of gas-particle interactions (Pöschl-Rudich-Ammann, 2007. K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations.

    From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of ~10−11 cm2 s−1 for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

  17. Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes

    Directory of Open Access Journals (Sweden)

    Virginia Cádiz

    2010-10-01

    Full Text Available Nowadays, the utilization of raw materials derived from renewable feedstock is in the spotlight of the chemical industry, as vegetable oils are one of the most important platform chemicals due to their universal availability, inherent biodegradability and low price. Taking into account that polyurethanes are one of the most important industrial products exhibiting versatile properties suitable for use in many fields, our research is focused on exploiting fatty acids in the preparation of biobased polyols and polyurethanes. This review is organized as a function of the nature of the final polyurethane systems; hence we describe the preparation of linear thermoplastic and crosslinked polyurethanes derived from oleic and undecylenic acids-based diols and polyols, respectively.

  18. Preparation and characterization of alumina supported nickel-oxalate catalyst for the hydrodeoxygenation of oleic acid into normal and iso-octadecane biofuel

    International Nuclear Information System (INIS)

    Ayodele, O.B.; Togunwa, Olayinka S.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Preparation of nickel oxalate complex as catalyst precursor. • Incorporation of nickel oxalate complex into alumina support. • Characterization of the alumina supported nickel oxalate catalyst. • Hydrodeoxygenation of oleic acid with nickel oxalate catalyst. • Nickel oxalate catalyst reusability studies. - Abstract: In this study, nickel II oxalate complex (NiOx) was prepared by functionalization of nickel with oxalic acid (OxA) and incorporated into Al 2 O 3 to synthesize alumina supported nickel oxalate (NiOx/Al 2 O 3 ) catalyst for the hydrodeoxygenation (HDO) of oleic acid (OA) into biofuel. The synthesized NiOx/Al 2 O 3 was characterized and the X-ray fluorescence and elemental dispersive X-ray results showed that NiOx was successfully incorporated into the structure of Al 2 O 3 . The X-ray diffraction and Raman spectroscopy results confirmed that highly dispersed Ni species are present in the NiOx/Al 2 O 3 due to the functionalization with OxA. The catalytic activity of the NiOx/Al 2 O 3 on the HDO of OA produced a mixture of 21% iso-C18 and 72% n-C18 at a 360 °C, 20 bar, 30 mg NiOx/Al 2 O 3 loading pressure and gas flow rate of 100 mL/min. The presence of i-C 18 was ascribed to the OxA functionalization which increased the acidity of NiOx/Al 2 O 3 . The NiOx/Al 2 O 3 reusability study showed consistent HDO ability after 5 runs. These results are promising for further research into biofuel production for commercialization

  19. Perfluorodecanoic acid enhances the formation of oleic acid in rat liver.

    Science.gov (United States)

    Yamamoto, A; Kawashima, Y

    1997-01-01

    The feeding of perfluorodecanoic acid (PFDA) to male rats at a dietary concentration of 0.005% (w/w) for 7 days resulted in a marked increase in the activity of microsomal stearoyl-CoA desaturation in the liver. This increase in the overall desaturation activity was due to the induction of terminal desaturase among the components comprising the desaturation system. In contrast, PFDA inhibited desaturation in vitro, seemingly due to interference with electron transport through the desaturation system. Accordingly, PFDA can be an inducer and also an inhibitor of delta9-desaturation. PFDA feeding enhanced the conversion of radioactive stearic acid into oleic acid in the liver in vivo, indicating that the induction of delta9-desaturase by PFDA functions in vivo. PFDA feeding increased the mass of octadecenoic acid (C18:1) in the liver and the proportion of C18:1 in microsomal lipid. A highly significant linear correlation existed between the microsomal desaturase activity and the proportion of C18:1 in microsomal lipid when compared using rats in five different physiological states: control, PFDA-fed, p-chlorophenoxyisobutyric acid (clofibric acid)-fed, starved and starved/refed. These results suggest that the increase in the hepatic level of C18:1 caused by feeding of PFDA to rats can be explained by the common concept of regulation, i.e. the hepatic level of C18:1 is under the control of delta9-desaturase. The dietary administration of PFDA also increased the content of cytochrome P-450 and the activity of 7-ethoxycoumarin O-de-ethylase in the liver. PMID:9230124

  20. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity.

    Science.gov (United States)

    Wang, Qiao; Du, Xiuxiu; Ma, Ke; Shi, Ping; Liu, Wenbin; Sun, Jing; Peng, Min; Huang, Zhiwei

    2018-03-01

    Elongases FEN1/ELO2 and SUR4/ELO3 are important enzymes involved in the elongation of long-chain fatty acids (LCFAs) to very long-chain fatty acids (VLCFAs) in Saccharomyces cerevisiae. The molecular mechanism of the involvement of these elongases in lipotoxicity is unclear. In the present study, we investigated the role of VLCFA elongases in oleic acid-mediated yeast cytotoxicity. The spot test showed that yeast strains with the deletion of ELO2 or ELO3 were strikingly sensitive to oleic acid, while there was no change on the growth of strain with deleted ELO1 which was involved in the elongation of C 14 fatty acid (FA) to C 16 FA. By using GC-MS, the unsaturation index was increased in elo2△ and elo3△ mutants after treatment with oleic acid (OLA). However, the proportion of VLCFAs was increased in response to OLA in the wild-type strain. The growth inhibition of elo2△ and elo3△ could be partially rescued by two commonly used antioxidant agents N-acetyl cysteine (NAC) and Ascorbic acid (VC). The further study showed that exposure to excess OLA led to an increase in the levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), and a decline in the quantity of reduced glutathione (GSH) in both the wild type and mutant strains. However, the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) were increased in the wild type and elo1△ strains, while they were significantly decreased in the mutants of elo2△ and elo3△ after treated with excess OLA. Thus, oxidative damage mainly contributed to the cell death induced by OLA in ole2△ and ole3△. Taken together, although disruption of ELO2 or ELO3 did not affect the cellular lipid unsaturation, they altered the distribution and propotion of cellular VLCFAs, leading to the cell membrane impairment, which augmented the ability of OLA to permeabilize the plasma membrane. The data suggest that the very long-chain fatty acids elongases ELO2 and ELO3

  1. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil.

    Science.gov (United States)

    Weigand, Edgar; Egenolf, Jennifer

    2017-01-01

    The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each), were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ) and 22% cocoa butter (CB) or 22% safflower oil (SF) for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control). The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  2. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil

    Directory of Open Access Journals (Sweden)

    Edgar Weigand

    2017-01-01

    Full Text Available The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each, were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ and 22% cocoa butter (CB or 22% safflower oil (SF for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control. The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  3. The Profile of Anti-inflammatory Activity of Syzigium Aromaticum Volatile Oil in Lotion with Variation Composition of Oleic Acid and Propylene Glycol as Enhancer

    Directory of Open Access Journals (Sweden)

    Fitriah Ardiawijianti Iriani

    2017-08-01

    Full Text Available Essential oil of clove (Syzygium aromaticum containing eugenol has an anti-inflammatory activity. The study was aimed to develop the formulation of lotion by adding of oleic acid and propylene glycol as penetration enhancer. The effect of enhancer composition was also studied. Lotion was prepared with the composition of oleic acid (AO and propylene glycol (PG as follow: 1:0 (FI, 0,5:0,5 (FII, 0:1 (FIII. Capacity an anti-inflammatory of formulation based on parameters of the amount of cells with COX-2 expression, the number of inflammatory cells and the epidermis thickness was evaluated using male mouse strain BALb/C induced by crotton oil as inflammatory agents. The results showed that the increasing composition propylene glycol caused the decreasing of the amount of cells with COX-2 expression (p <0.05, the inflammatory cells (P <0.05 and the epidermis thickness (p <0.05

  4. Schistosoma mansoni: assessment of effects of oleic acid, cercarial age and water temperature on parasite-host attraction.

    Science.gov (United States)

    Lee, Vivien S T; Burgess, Jefferey L; Sterling, Charles R; Lutz, Eric A

    2013-09-01

    Although the lifecycle of Schistosoma spp. and pathophysiology of schistosomiasis have been established, the mechanism by which cercariae find their host is not well understood. Speculatively, host infection by random and accidental host contact is not as biologically plausible as a biochemical mechanism of mammalian attraction. A few studies have indicated that biochemical cues and temperature gradients may play a role in host identification, attraction and attachment triggers. This study aimed to elucidate these mechanisms more specifically through evaluation of biochemical, age and temperature influences leading to Schistosoma mansoni cercariae attraction and attachment behaviors. Oleic acid, a common unsaturated free fatty acid in the outer layer of human skin, was tested for cercariae attraction across biologically relevant concentrations. Influence of media type (beeswax, nail varnish and agar), age-dependent behavior variability and environmentally appropriate temperatures (22 and 30 °C) were also evaluated. Results indicated that oleic acid at concentrations of 0.3, 0.9 and 1.8 g/mL in beeswax significantly increased median attachment to media (median attachment of 7.50%, 4.20% and 3.71%, respectively, P0.05). Biochemical, age and environmental factors influencing cercarial host attraction and attachment behavior have been elucidated by this study. This information will inform further development of devices for environmental surveillance and potentially improve cercarial exposure prevention strategies. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    Science.gov (United States)

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  6. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid : Evidence for Pore Mouth Catalysis

    OpenAIRE

    Wiedemann, Sophie C. C.; Ristanovic, Zoran; Whiting, Gareth T.; Marthala, V. R. Reddy; Kaerger, Joerg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This lim...

  7. Stability of HAMLET--a kinetically trapped alpha-lactalbumin oleic acid complex.

    Science.gov (United States)

    Fast, Jonas; Mossberg, Ann-Kristin; Svanborg, Catharina; Linse, Sara

    2005-02-01

    The stability toward thermal and urea denaturation was measured for HAMLET (human alpha-lactalbumin made lethal to tumor cells) and alpha-lactalbumin, using circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Under all conditions examined, HAMLET appears to have the same or lower stability than alpha-lactalbumin. The largest difference is seen for thermal denaturation of the calcium free (apo) forms, where the temperature at the transition midpoint is 15 degrees C lower for apo HAMLET than for apo alpha-lactalbumin. The difference becomes progressively smaller as the calcium concentration increases. Denaturation of HAMLET was found to be irreversible. Samples of HAMLET that have been renatured after denaturation have lost the specific biological activity toward tumor cells. Three lines of evidence indicate that HAMLET is a kinetic trap: (1) It has lower stability than alpha-lactalbumin, although it is a complex of alpha-lactalbumin and oleic acid; (2) its denaturation is irreversible and HAMLET is lost after denaturation; (3) formation of HAMLET requires a specific conversion protocol.

  8. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  9. Catalytic upgrading of oleic acid into biofuel using Mo modified zeolite supported Ni oxalate catalyst functionalized with fluoride ion

    International Nuclear Information System (INIS)

    Ayodele, O.B.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Modification of zeolite with freshly prepared molybdenum oxalate. • Functionalization of Ni oxalate with HF and incorporation into Mo modified zeolite. • Characterization of synthesized Mo modified zeolite supported Ni oxalate catalyst. • Deoxygenation of oleic acid with the synthesized zeolite supported catalyst. • Reusability study on the synthesized zeolite supported catalyst. - Abstract: In this study, fluoride ion functionalized nickel oxalate supported on molybdenum modified zeolite (NiMoFOx/Zeol) catalyst was synthesized, characterized and tested on the hydrodeoxygenation (HDO) of oleic acid (OA) into paraffinic fuel. The NiMoFOx/Zeol characterization results confirmed the presence of both Ni and Mo as well as the formation of NiMoO 4 which is a highly HDO reactive specie at 2θ value of 43.6° according to the XRD result. NiMoFOx/Zeol also showed loss in crystallinity and reduction in the average particle size leading to increase in the pore volume and specific surface area due to the combined effects of fluoride ion presence, oxalic acid functionalization and calcination. The effect of temperature, pressure and NiMoFOx/Zeol loading studied showed that initial increase in their values increased the yield of the target fractions until some points where reduction was observed. The best observed experimental conditions to hydrodeoxygenate 40 g (∼45 mL) of OA into 75% n-C 18 and 23% i-C 18 were 360 °C, 30 mg NiMoFOx/Zeol loading and 20 bar using 100 mL H 2 /min. The presence of i-C 18 was due to the functionalization of the catalyst with fluoride ion. The catalyst reusability result displayed excellent qualities with marginal loss of only 2% in activity after third reuse due to the improved synthesis protocol that employed organometallic precursor. The results are strongly encouraging for further studies toward industrialization of HDO process

  10. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  11. Dietary High-Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n-3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil.

    Science.gov (United States)

    Elkin, Robert G; Kukorowski, Alexandra N; Ying, Yun; Harvatine, Kevin J

    2018-02-01

    Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-3) from α-linolenic acid (ALA; 18:3 n-3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n-6). In the present study, the influence of dietary high-oleic acid (OLA; 18:1 n-9) soybean oil (HOSO) on egg and tissue deposition of ALA and n-3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced-LNA base diet supplemented with high-ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long-chain (VLC; >20C) n-3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n-3 PUFA contents. Nine 51-week-old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n-3 and VLC n-3 PUFA contents in egg yolk by 9.4-fold and 2.2-fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n-3 PUFA, and total n-3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer-chain/more unsaturated n-3 PUFA derivatives. © 2018 AOCS.

  12. {sup 6}LiF oleic acid capped nanoparticles entrapment in siloxanes for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Carturan, S., E-mail: sara.carturan@lnl.infn.it; Maggioni, G., E-mail: Gianluigi.maggioni@lnl.infn.it [Department of Physics and Astronomy, University of Padova, Via Marzolo 8, 35100 Padova (Italy); INFN, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (Italy); Marchi, T.; Gramegna, F.; Cinausero, M. [INFN, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (Italy); Quaranta, A. [Department of Industrial Engineering, University of Trento, Trento (Italy); INFN, Tifpa, Trento (Italy); Palma, M. Dalla [INFN, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (Italy); Department of Industrial Engineering, University of Trento, Trento (Italy)

    2016-07-07

    The good light output of siloxane based scintillators as displayed under γ-rays and α particles has been exploited here to obtain clear and reliable response toward thermal neutrons. Sensitization towards thermal neutrons has been pursued by adding {sup 6}LiF, in form of nanoparticles. Aiming at the enhancement of compatibility between the inorganic nanoparticles and the low polarity, siloxane based surrounding medium, oleic acid-capped {sup 6}LiF nanoparticles have been synthesized by thermal decomposition of Li trifluoroacetate. Thin pellets siloxane scintillator maintained their optical transmittance up to weight load of 2% of {sup 6}Li. Thin samples with increasing {sup 6}Li concentration and thicker ones with fixed {sup 6}Li amount have been prepared and tested with several sources (α, γ-rays, moderated neutrons). Light output as high as 80% of EJ212 under α irradiation was measured with thin samples, and negligible changes have been observed as a result of {sup 6}LiF addition. In case of thick samples, severe light loss has been observed, as induced by opacity. Nevertheless, thermal neutrons detection has been assessed and the data have been compared with GS20, based on Li glass, taken as a reference material.

  13. Oleic Acid Induces Lung Injury in Mice through Activation of the ERK Pathway

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves-de-Albuquerque

    2012-01-01

    Full Text Available Oleic acid (OA can induce acute lung injury in experimental models. In the present work, we used intratracheal OA injection to show augmented oedema formation, cell migration and activation, lipid mediator, and cytokine productions in the bronchoalveolar fluids of Swiss Webster mice. We also demonstrated that OA-induced pulmonary injury is dependent on ERK1/2 activation, since U0126, an inhibitor of ERK1/2 phosphorylation, blocked neutrophil migration, oedema, and lipid body formation as well as IL-6, but not IL-1β production. Using a mice strain carrying a null mutation for the TLR4 receptor, we proved that increased inflammatory parameters after OA challenges were not due to the activation of the TLR4 receptor. With OA being a Na/K-ATPase inhibitor, we suggest the possible involvement of this enzyme as an OA target triggering lung inflammation.

  14. Effect of Foliar Application of Chitosan on Growth and Biochemical Characteristics of Safflower (Carthamus tinctorius L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    batool mahdavi

    2014-09-01

    Full Text Available In order to study the effects of water deficit stress and foliar application of chitosan in safflower (Carthamus tinctorius L., a pot experiment was conducted in 2009. Experimental design was a randomized complete block in factorial arrangement with three replications. Experimental factors were water deficit levels (unstressed (control and 70% available water depletion from soil (water deficit stress, chitosan concentrations (0, 0.05, 0.1%, all dissolved in 1% acetic acid along with an additional treatment of distilled water and foliar application times (before and during stem elongation. The results showed that water deficit stress reduced plant height, leaf area, shoot and root dry weight, root height and volume. Whereas, foliar application of chitosan increased mentioned traits. In addition, water deficit stress decreased chlorophyll fluorescence, chlorophyll concentration and relative water content. Carotenoid, proline and malondialdehyde (MDA content were increased in response to stress. Foliar application of chitosan increased chlorophyll fluorescence, relative water content (68.77% and chlorophyll b in the water deficit stressed plants, whereas decreased MDA content. The results of the present study indicate that application of chitosan can reduce the harmful effects of water deficit and improve plant growth.

  15. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  16. Some studies on the composition and surface properties of oil bodies from the seed cotyledons of safflower (Carthamus tinctorius) and linseed (Linum ustatissimum).

    Science.gov (United States)

    Slack, C R; Bertaud, W S; Shaw, B D; Holland, R; Browse, J; Wright, H

    1980-01-01

    1. The average oil-body diameter in intact cells of developing linseed (Linum usitatissimum) and safflower (Carthamus tinctorius) cotyledons was similar (about 1.4 micrometer), and there was little change in size after oil bodies were isolated and repeatedly washed. 2. The glycerolipid composition of washed oil bodies from both developing and mature cotyledons of the two species was similar; oil bodies from ten different batches of cotyledons contained 4.3 +/- 0.16 mumol of 3-sn-phosphatidylcholine and 25.2 +/- 1.7 mumol of diacylglycerol per 1000 mumol of triacylglycerol. During four successive washings of a once-washed oil-body preparation, the proportion of diacylglycerol to triacylglycerol remained constant and that of 3-sn-phosphatidylcholine to triacylglycerol decreased by only 20%. 3. The protein content of thrice-washed oil bodies from the two species was similar, about 2.4% of the weight of glycerolipids, and appeared to be independent of the stage of cotyledon maturity. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated that the protein of purified oil bodies from the two species consisted mainly of only four polypeptides and that two of the polypeptides from each species had apparent mol.wts. of 17500 and 15500. Similar patterns of polypeptides were obtained after the hydrolysis of the 15500-mol.wt. polypeptides from linseed and safflower oil bodies by Staphylococcus aureus V8 proteinase, whereas the proteolysis of the 17500-mol.wt. polypeptides from the two species produced different patterns of polypeptides. 4. The 3-sn-phosphatidylcholine in oil-body preparations was hydrolysed about 85% by bee-venom phospholipase A2 without any apparent coalescence of the oil bodies. Incubation with lipase from Rhizopus arrhizus caused rapid coalescence of the oil bodies, and this lipase appeared to initially hydrolyse diacylglycerols in preference to triacylglycerol. 5. Oil bodies from both species were almost completely dispersed in suspensions of

  17. Comparative effects of dietary corn oil, safflower oil, fish oil and palm oil on metabolism of ethanol and carnitine in the rat.

    Science.gov (United States)

    Sachan, Dileep S; Yatim, Ayub M; Daily, James W

    2002-06-01

    This study was launched to determine comparative effects of corn oil (CO), safflower oil (SO), fish oil (FO) and palm oil (PO) on carnitine status and ethanol metabolism in rats. Twenty-four male Sprague-Dawley rats (300 g bw) were randomly divided into four groups (n = 6) and fed a semisynthetic diets containing fat as oils listed above. Blood and 24 hour urine samples were collected before and after dietary treatment and acute ethanol administration. Samples were analyzed for blood-ethanol concentration (BEC) and carnitine species. The diets containing FO and PO retarded ethanol metabolism compared to the diets containing CO and SO. The effect of these dietary fats on carnitine species in plasma and urine was varied before and after dietary treatment and following a single oral ethanol dose. The liver carnitine content was higher in the PO group after dietary and ethanol treatment. It is concluded that attenuation of ethanol clearance was related to unique fatty acid makeup of the oils that in part may be attributed to the composite ratio of saturated to unsaturated fatty acids in the oils.

  18. Study the Effect of Different Phosphorus Fertilizers on Physiological Characteristic of Photosynthetic Pigments and Soluble Sugars of Safflower under Water Deficit Condition

    Directory of Open Access Journals (Sweden)

    S Heshmati

    2016-10-01

    Full Text Available Introduction Drought stress is one of the most important and effective factors in agricultural practices in arid and semi-arid regions of the world. The arid and semi-arid regions comprise more than 70% of the total area of Iran. Reduction in chlorophyll concentrations has been attributed to the increase in chlorophyll degradation in water deficit conditions and impairment in the enzymes activity responsible for the synthesis of photosynthetic pigments. Under drought stress, maintenance of photosynthetic capacities and leaf chlorophyll are physiological parameters which influence drought stress tolerant of crop. Phosphorus is one the most essential elements for plant growth after nitrogen. However, the availability of this nutrient for plants is limited by different chemical reactions especially in arid and semi-arid soils. Plant growth-promoting bacteria (PGPB are soil and rhizosphere bacteria that can benefit plant growth by different mechanisms. Given the negative environmental impact of chemical fertilizers and their increasing costs, the use of PGPB as natural fertilizers is advantageous for the development of sustainable agriculture. Inoculation of plants with native beneficial microorganisms may increase drought tolerance of plants growing in arid or semi-arid areas. Materials and Methods In order to study the effect of biologic and chemical phosphorous fertilizer on photosynthetic pigments of safflower cultivar (IL111, under water deficit condition, an experiment was conducted in 2012 at the Research Field of the Faculty of Agriculture, Shahed University. The experimental design was split-factorial arrangement in randomized complete block design with three replicates. The main factors were the three levels of irrigation treatment: full irrigation (irrigation up to 50% soil moisture depletion relative to field capacity, water stress in the vegetative and flowering stages (irrigation up to 75% soil moisture depletion relative to field

  19. Hepatoprotective and Hypolipidemic Effects of Carthamus tinctorius oil in Alloxan-induced Type 1 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Rahimi Parivash

    2014-04-01

    Full Text Available Introduction: Hepatoprotective and hypolipidemic effects of Carthamus tinctorius Linn.(Safflower seed oil was investigated in diabetic rats. Methods: Diabetes was induced by administration of 120 mg/kg alloxan monohydrate. The seed oil of safflower at dose of 200 mg/kg was administered as single dose per day to diabetic rats for a period of 28 days. The effect of oil on blood glucose level was measured in the diabetic rats. Serum lipid profile [total cholesterol (TC, triglycerides (TGs, low density (LDL and high density lipoprotein (HDL and enzymes such as alanine aminotransferase (ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP were also determined. Results: Levels of blood glucose, TC, TGs, LDL, ALT, AST and ALP decreased and HDL increased in alloxan induced diabetic rats after treatment with 200 mg/kg safflower seed oil for 28 days. Conclusion: The present study demonstrates that seed oil of safflower seems to be useful for the prevention of diabetes complications.

  20. Fish oil prevents excessive accumulation of subcutaneous fat caused by an adverse effect of pioglitazone treatment and positively changes adipocytes in KK mice

    Directory of Open Access Journals (Sweden)

    Yuzuru Iizuka

    Full Text Available Pioglitazone, a thiazolidinedione (TZD, is widely used as an insulin sensitizer in the treatment of type 2 diabetes. However, body weight gain is frequently observed in TZD-treated patients. Fish oil improves lipid metabolism dysfunction and obesity. In this study, we demonstrated suppression of body weight gain in response to pioglitazone administration by combination therapy of pioglitazone and fish oil in type 2 diabetic KK mice. Male KK mice were fed experimental diets for 8 weeks. In safflower oil (SO, safflower oil/low-dose pioglitazone (S/PL, and safflower oil/high-dose pioglitazone (S/PH diets, 20% of calories were provided by safflower oil containing 0%, 0.006%, or 0.012% (wt/wt pioglitazone, respectively. In fish oil (FO, fish oil/low-dose pioglitazone (F/PL, and fish oil/high-dose pioglitazone (F/PH diets, 20% of calories were provided by a mixture of fish oil and safflower oil. Increased body weight and subcutaneous fat mass were observed in the S/PL and S/PH groups; however, diets containing fish oil were found to ameliorate these changes. Hepatic mRNA levels of lipogenic enzymes were significantly decreased in fish oil-fed groups. These findings demonstrate that the combination of pioglitazone and fish oil decreases subcutaneous fat accumulation, ameliorating pioglitazone-induced body weight gain, through fish oil-mediated inhibition of hepatic de novo lipogenesis. Keywords: Fish oil, Pioglitazone, Adverse effect

  1. Preemptive hemodynamic intervention restricting the administration of fluids attenuates lung edema progression in oleic acid-induced lung injury.

    Science.gov (United States)

    Gil Cano, A; Gracia Romero, M; Monge García, M I; Guijo González, P; Ruiz Campos, J

    2017-04-01

    A study is made of the influence of preemptive hemodynamic intervention restricting fluid administration upon the development of oleic acid-induced lung injury. A randomized in vivo study in rabbits was carried out. University research laboratory. Sixteen anesthetized, mechanically ventilated rabbits. Hemodynamic measurements obtained by transesophageal Doppler signal. Respiratory mechanics computed by a least square fitting method. Lung edema assessed by the ratio of wet weight to dry weight of the right lung. Histological examination of the left lung. Animals were randomly assigned to either the early protective lung strategy (EPLS) (n=8) or the early protective hemodynamic strategy (EPHS) (n=8). In both groups, lung injury was induced by the intravenous infusion of oleic acid (OA) (0.133mlkg -1 h -1 for 2h). At the same time, the EPLS group received 15mlkg -1 h -1 of Ringer lactate solution, while the EPHS group received 30mlkg -1 h -1 . Measurements were obtained at baseline and 1 and 2h after starting OA infusion. After 2h, the cardiac index decreased in the EPLS group (p<0.05), whereas in the EPHS group it remained unchanged. Lung compliance decreased significantly only in the EPHS group (p<0.05). Lung edema was greater in the EPHS group (p<0.05). Histological damage proved similar in both groups (p=0.4). In this experimental model of early lung injury, lung edema progression was attenuated by preemptively restricting the administration of fluids. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  2. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  3. Enhanced Biodegradability, Lubricity and Corrosiveness of Lubricating Oil by Oleic Acid Diethanolamide Phosphate

    Directory of Open Access Journals (Sweden)

    Fang Jianhua

    2012-09-01

    Full Text Available Impacts of oleic acid diethanolamide phosphate (abbreviated as ODAP as an additive on biodegradability, anti-wear capacity, friction-reducing ability and corrosiveness of an unreadily biodegradable HVI 350 mineral lubricating oil was studied. The biodegradabilities of neat lubricating oil and its formulations with ODAP were evaluated on a biodegradation tester. Furthermore, the anti-wear and friction-reducing abilities and the corrosiveness of neat oil and the formulated oils were determined on a four-ball tribotester and a copper strip corrosion tester, respectively. The results indicated that ODAP markedly enhanced biodegradability as well as anti-wear and friction-reducing abilities of the lubricating oil. On the other hand, excellent color ratings of copper strips for both neat oil and the ODAP-doped oil were obtained in the corrosion tests, demonstrating that the corrosiveness of neat oil and the doped oil was negligible, although the latter seemed to provide slightly better anti-corrosion ability.

  4. Generation of drugs coated iron nanoparticles through high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Devi, A.; Murty, B. S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Chelvane, J. A. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  5. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Einarsdottir, E. S.

    2015-01-01

    in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic...... deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance...

  6. Effects of oleic acid and olive oil on gastric emptying, gut hormone secretion and appetite in lean and overweight or obese males

    DEFF Research Database (Denmark)

    Damgaard, Morten; Graff, Jesper; Fuglsang, Stefan

    2013-01-01

    lean subjects, free fatty acid (FFA) promotes gut hormone release, delays gastric emptying, and reduces appetite and energy intake more than an isocaloric load of triglyceride (TG). In obesity, the gastrointestinal sensitivity to lipids may be reduced. Therefore, we compared the effects of the FF...... oleic acid and the TG olive oil on gut hormone secretion, gastric emptying, appetite, and energy intake in lean and overweight/obese subjects....

  7. Growth and Development of Acanthiophilus helianthi (Diptera: Tephritidae Feeding on Safflower, Carthamus tinctorius

    Directory of Open Access Journals (Sweden)

    Karim SAEIDI

    2015-06-01

    Full Text Available Safflower fly, Acanthiophilus helianthi Rossi (Diptera: Tephritidae, undergoes four stages (egg, larva, pupa and adult during its growth and development. In this study, observation showed that the egg’s stage took 1.16 ± 0.00, larva’s stage took 12.02 ± 0.13 and pupa’s stage took 7.03 ± 0.08 days before the emergence of adults. The male adult survived for 21.97 ± 2.69 days, while the female lived 19.19 ± 1.50 days. It was observed that the eggs were laid in a cluster, with a range between 10 – 50 eggs per cluster. The length and width of the individual egg were 1.12 ± 0.03 mm and 0.20 ± 0.00 mm respectively. The percentages of the survived individual larva decreased from the first instar until third instar. In the experiment, the length and width of the larva reached 7.77 ± 0.08 mm and 1.84 ± 0.03 mm respectively. Pupae were observed changing in colour from pale white to dark brown. The length and the width of the pupae observed were 6.78 ± 0.16 mm and 2.90 ± 0.02 mm. The longevity of the adults Acanthiophilus helianthi Rossi was influenced by the diets they consumed, the presence of other individuals, wideness of the areas, differences in time taken within the life cycle (between different stages and temperature in the laboratory.

  8. Oleic Acid, deglycosylated vitamin D-binding protein, nitric oxide: a molecular triad made lethal to cancer.

    Science.gov (United States)

    Ruggiero, Marco; Ward, Emma; Smith, Rodney; Branca, Jacopo J V; Noakes, David; Morucci, Gabriele; Taubmann, Margit; Thyer, Lynda; Pacini, Stefania

    2014-07-01

    Oleic Acid (OA) has been shown to have anticancer properties mediated by interaction with proteins such as α-lactalbumin and lactoferrins. Therefore, we synthesized complexes of OA and Gc protein-derived macrophage activating factor (GcMAF) that inhibits per se cancer cell proliferation and metastatic potential. We hypothesised that OA-GcMAF complexes could exploit the anticancer properties of both OA and GcMAF in a synergistic manner. We postulated that the stimulating effects of GcMAF on macrophages might lead to release of nitric oxide (NO). Patients with advanced cancer were treated at the Immuno Biotech Treatment Centre with OA-GcMAF-based integrative immunotherapy in combination with a low-carbohydrate, high-protein diet, fermented milk products containing naturally-produced GcMAF, Vitamin D3, omega-3 fatty acids and low-dose acetylsalicylic acid. Measuring the tumour by ultrasonographic techniques, we observed a decrease of tumour volume of about 25%. These observations demonstrate that OA, GcMAF and NO can be properly combined and specifically delivered to advanced cancer patients with significant effects on immune system stimulation and tumour volume reduction avoiding harmful side-effects. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    International Nuclear Information System (INIS)

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai; Bai, Xianyong

    2013-01-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO 2 ), carbon dioxide tension, pH, and the PaO 2 /fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22 phox levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may enhance Cytokine

  10. Synthesis and characterization of nanometric magnetite coated by oleic acid and the surfactant CTAB

    Energy Technology Data Exchange (ETDEWEB)

    Celis, J. Almazán, E-mail: jony-jac-5@hotmail.com; Olea Mejía, O. F., E-mail: oleaoscar@yahoo.com [Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable UAEMéx-UNAM (Mexico); Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx; García-Sosa, I., E-mail: irma.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares (Mexico); Derat-Escudero, R., E-mail: escu@unam.mx [Instituto de Investigación de materiales de la UNAM (Mexico); Baggio Saitovitch, E. M., E-mail: esaitovitch@yahoo.com.br; Alzamora Camarena, M., E-mail: mariella.alzamora@gmail.com [Centro Brasileiro de Pesquizas Físicas (Brazil)

    2017-11-15

    Nanometric magnetite (nm-Fe{sub 3}O{sub 4}) particles were prepared by the reverse co-precipitation synthesis method, obtaining particle sizes that ranged from 4 to 8.5 nm. In their synthesis, the concentration of iron salts of ferric nitrate, Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O, and ferrous sulfate, FeSO{sub 4}⋅7H{sub 2}O, were varied relative to the chemical reaction volume and by using different surfactants such as oleic acid (OA) and hexadecyltrimethylammonium bromide (CTAB). The nm-Fe{sub 3}O{sub 4} particles were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), magnetic and X-ray diffraction (XRD) measurements. Typical asymmetrical and/or broad lines shapes appeared in all Mössbauer spectra of the as prepared samples suggesting strong magnetic inter-particle interactions, reducing these interactions to some extent by gentle mechanical grinding. For the smallest particles, maghemite instead of magnetite was the main preparation product as low temperature Mössbauer and magnetic measurements indicated. For the intermediate and largest particles a mixture of magnetite and maghemite phases were produced as the saturation magnetization values of M{sub S} ∼ 60 emu/g indicated; these values were measured for most samples, independently of the coating surfactant concentration, and according to the ZFC-FC curves the blocking temperatures were 225K and 275K for the smallest and largest magnetite nanoparticles, respectively. The synthesis method was highly reproducible.

  11. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  12. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    Science.gov (United States)

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.

  13. Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol.

    Science.gov (United States)

    Radzi, Salina Mat; Mohamad, Rosfarizan; Basri, Mahiran; Salleh, Abu Bakar; Ariff, Arbakariya; Rahman, Mohammad Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul

    2010-01-01

    The kinetics of wax ester synthesis from oleic acid and oleyl alcohol using immobilized lipase from Candida antartica as catalyst was studied with different types of impeller (Rushton turbine and AL-hydrofoil) to create different mixing conditions in 2l stirred tank reactor. The effects of catalyst concentration, reaction temperature, and impeller tip speed on the synthesis were also evaluated. Rushton turbine impeller exhibited highest conversion rate at lower impeller tip speed as compared to AL-hydrofoil impeller. A second-order reversible kinetic model from single progress curve for the prediction of fractional conversion at given reaction time was proposed and the corresponding kinetic parameter values were calculated by non-linear regression method. The results from the simulation using the proposed model showed satisfactory agreement with the experimental data. Activation energy shows a value of 21.77 Kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 21.15 Kcal/mol and 52.07 cal/mol.K, respectively.

  14. Biodiesel production and antioxidant capability from seeds of salicornia begelovii collected from al jubail, eastern province, saudi arabia

    International Nuclear Information System (INIS)

    Rashed, S.A.; Ibrahim, M.M.; Hatata, M.A.

    2016-01-01

    Salicornia begelovii Torr displays excessive biotechnological prospective as a salt-water irrigated crop. Qualitative and quantitative compositions of fatty acids were analyzed in the seeds of Salicornia begelovii collected from the eastern region, Al Jubail, Saudi Arabia. Hexane extraction of the seed oil from Salicornia begelovii yielded 29% of total lipids. The GC-MS (Gas Chromatography-Mass Spectroscopy) investigation of the hexane extracts revealed five major peaks for the seed oil: 72.5 wt.% linoleic-6 acid (18:2), 7.4 wt.% palmitic acid (16:0), 13.3 wt.% oleic acid (18:1), 2.14 wt.% stearic acid (18:0) and 2.3 wt.% linolenic-3 acid (18:3). The quantity of the both saturated palmitic and stearic acids amounted (9.18%) in S. begelovii seed oil. The antioxidant capability of S. begelovii seed oil were determined and expressed by hydroxyl radical scavenging assay, nitric oxide (NO) scavenging activity and radical scavenging effects of the extract on DPPH free radical were studied. The composition of the oil was nutritive and medical health value was high, in addition to, it's composition very similar to that of safflower oil. No unwanted fatty acid constituents were established in S. begelovii seed oil, and it could be suggested for biofuel fabrication. (author)

  15. Backbone and sidechain 1H, 13C and 15N resonance assignments of the human brain-type fatty acid binding protein (FABP7) in its apo form and the holo forms binding to DHA, oleic acid, linoleic acid and elaidic acid

    DEFF Research Database (Denmark)

    Oeemig, Jesper S; Jørgensen, Mathilde L; Hansen, Mikka S

    2009-01-01

    In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid.......In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid....

  16. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two

  17. Oleic acid is a key cytotoxic component of HAMLET-like complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Khasanova, Leysan M; Fadeev, Roman S; Zhadan, Andrei P; Roche-Hakansson, Hazeline; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2012-01-01

    HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.

  18. Parenteral safflower oil emulsion (Liposyn 10%): safety and effectiveness in treating or preventing essential fatty acid deficiency in surgical patients.

    Science.gov (United States)

    Bivins, B A; Rapp, R P; Record, K; Meng, H C; Griffen, W O

    1980-01-01

    The safety and effectiveness of a 10% safflower oil emulsion in treating or preventing essential fatty acid deficiency was tested in a prospective study of 15 surgical patients requiring total parenteral nutrition for two to four weeks. Three dosage regimens were evaluated including: Group I: 4% of calories as linoleate daily (five patients), Group II: 4% of calories as linoleate every other day (two patients), and Group III: 8% of calories every other day (eight patients). Patients were monitored for laboratory changes from baseline specifically in those areas where previous fat emulsions have caused serious deviations. No significant changes were noted in hematologic parameters, coagulation studies, cholesterol and triglyceride serum levels. Although there were sporadic mild deviations in liver function changes in several patients, no clinically significant adverse effects could be directly attributed to infusion of the fat emulsion. Three patients had baseline triene/tetraene ratios of 0.4 or greater, indicative of essential fatty/acid deficiency, and these ratios dropped to less than 0.4 within eight days of beginning therapy with the parenteral fat emulsion. The remaining 12 patients maintained a normal triene/tetraene ratio of less than 0.4 throughout the 28 day study period. All three dosage regimens were considered effective for treatment and prevention of essential fatty acid deficiency. Images Fig. 1. Fig. 2. Fig. 3. PMID:6767452

  19. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry.

    Science.gov (United States)

    Nistor, Cristina Lavinia; Ianchis, Raluca; Ghiurea, Marius; Nicolae, Cristian-Andi; Spataru, Catalin-Ilie; Culita, Daniela Cristina; Pandele Cusu, Jeanina; Fruth, Victor; Oancea, Florin; Donescu, Dan

    2016-01-05

    The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent's molar ratio. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  20. Computational study of cis-oleic acid adsorption on Ni(1 1 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Departamento de Fisica, IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Ulacco, S. [Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Brizuela, G.; Juan, A. [Departamento de Fisica, IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2012-05-15

    In the present work, the Atom Superposition and Electron Delocalization method has been applied in order to study the adsorption of cis-oleic acid on Ni(1 1 1) surface. This molecule presents two active functional groups, C=C (in the middle) and -COOH (at one end). Therefore, it is important to explore adsorption on the metal surface through the C=C bond in a geometry parallel to the surface and also in a vertical one with -COOH pointing at Ni atoms. Our results indicate that the parallel geometry is more stable than the vertical one and C=C bond adsorption dominates the process. Energetic results show a strong interaction with the metallic surface. Ni-Ni, C=C, and C-C bonds are weakened upon adsorption because of a bonding interaction between carbons and nickel surface. We found that Ni 5d{sub z}{sup 2} and 5d{sub yz} orbitals play an important role in the bonding between C p{sub x}, p{sub z} orbitals and surface, and the same happens with Ni 6p{sub x} and Ni 6p{sub z}. A small Ni-H interaction is also detected.

  1. Characteristics and Health Benefit of Highly Marbled Wagyu and Hanwoo Beef

    Science.gov (United States)

    Gotoh, Takafumi

    2016-01-01

    This review addresses the characteristics and health benefit of highly marbled Wagyu and Hanwoo beef. Marbling of Wagyu and Hanwoo beef has been increased in Japan and Korea to meet domestic consumer preferences. Wagyu and Hanwoo cattle have high potential of accumulating intramuscular fat (IMF) and producing highly marbled beef. The IMF content varies depending on the feeding of time, finishing diet, and breed type. IMF increases when feeding time is increased. The rate of IMF increase in grain-fed cattle is faster than that in pasture-fed cattle. Fatty acid composition are also different depending on breeds. Highly marbled Wagyu and Hanwoo beef have higher proportions of monounsaturated fatty acid (MUFA) due to higher concentrations of oleic acid. MUFAs have little effect on total cholesterol. They are heart-healthy dietary fat because they can lower low-density lipoprotein (LDL)-cholesterol while increasing high-density lipoprotein (HDL)-cholesterol. Clinical trials have indicated that highly marbled beef does not increase LDL-cholesterol. This review also emphasizes that high oleic acid beef such as Wagyu and Hanwoo beef might be able to reduce risk factors for cardiovascular disease. PMID:28115881

  2. Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells.

    Science.gov (United States)

    Liu, Ying; Cheng, Yajun; Li, Jinwei; Wang, Yuanpeng; Liu, Yuanfa

    2018-05-23

    In the present study, effects of cis-9,10-epoxy stearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including cytotoxicity, apoptosis, and oxidative stress, were investigated. Our results revealed that ESA decreased the cell viability and induced cell death. Cell cycle analysis with propidium iodide staining showed that ESA induced cell cycle arrest at the G0/G1 phase in HepG2 cells. Cell apoptosis analysis with annexin V and propidium iodide staining demonstrated that ESA induced HepG2 cell apoptotic events in a dose- and time-dependent manner; the apoptosis of cells after treated with 500 μM ESA for 12, 24, and 48 h was 32.16, 38.70, and 65.80%, respectively. Furthermore, ESA treatment to HepG2 cells resulted in an increase in reactive oxygen species and malondialdehyde (from 0.84 ± 0.02 to 8.90 ± 0.50 nmol/mg of protein) levels and a reduction in antioxidant enzyme activity, including superoxide dismutase (from 1.34 ± 0.27 to 0.10 ± 0.007 units/mg of protein), catalase (from 100.04 ± 5.05 to 20.09 ± 3.00 units/mg of protein), and glutathione peroxidase (from 120.44 ± 7.62 to 35.84 ± 5.99 milliunits/mg of protein). These findings provide critical information on the effects of ESA on HepG2 cells, particularly cytotoxicity and oxidative stress, which is important for the evaluation of the biosafety of the oxidative product of oleic acid.

  3. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  4. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry

    Directory of Open Access Journals (Sweden)

    Cristina Lavinia Nistor

    2016-01-01

    Full Text Available The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA. The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent’s molar ratio. Dynamic light scattering (DLS and scanning electron microscopy (SEM measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  5. Site-dependent modulating effects of conjugated fatty acids from safflower oil in a rat two-stage carcinogenesis model in female Sprague-Dawley rats.

    Science.gov (United States)

    Kimoto, N; Hirose, M; Futakuchi, M; Iwata, T; Kasai, M; Shirai, T

    2001-07-10

    Modifying effects of dietary administration of conjugated fatty acids from safflower oil (CFA-S), rich in conjugated linoleic acid, on major organs were examined in the post-initiation stage of a two-stage carcinogenesis model in female rats. Groups of 21 or 22 F344 female rats were treated sequentially with 2,2'-dihydroxy-di-n-propylnitosamine (intragastrically, i.g.), 7,12-dimethylbenz[a]anthracene (i.g.), 1,2-dimethylhydrazine (subcutaneously) and N-butyl-N-(4-hydroxybutyl)nitrosamine (in drinking water) during the first 3 weeks for initiation, and then administered diet containing 1 or 0.1% CFA-S for 33 weeks. Further groups of animals were treated with carcinogens or 1% CFA-S alone, or maintained as non-treated controls. All surviving animals were killed at week 36, and major organs were examined histopathologically for development of pre-neoplastic and neoplastic lesions. The 1 and 0.1% CFA-S treatment significantly decreased the incidence and multiplicity of mammary carcinomas, though a clear dose response was not observed. In the urinary bladder, the incidence of papillary or nodular hyperplasia but not tumors was significantly increased in the 1% CFA-S-treated group. The results indicate that low dose CFA-S may find application as a potent chemopreventor of mammary carcinogenesis.

  6. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-01-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid......% and 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol...... structure and composition (P = 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long...

  7. CD36 is involved in oleic acid detection by the murine olfactory system.

    Directory of Open Access Journals (Sweden)

    Sonja eOberland

    2015-09-01

    Full Text Available Olfactory signals influence food intake in a variety of species. To maximize the chances of finding a source of calories, an animal’s preference for fatty foods and triglycerides already becomes apparent during olfactory food search behavior. However, the molecular identity of both receptors and ligands mediating olfactory-dependent fatty acid recognition are, so far, undescribed. We here describe that a subset of olfactory sensory neurons expresses the fatty acid receptor CD36 and demonstrate a receptor-like localization of CD36 in olfactory cilia by STED microscopy. CD36-positive olfactory neurons share olfaction-specific transduction elements and project to numerous glomeruli in the ventral olfactory bulb. In accordance with the described roles of CD36 as fatty acid receptor or co-receptor in other sensory systems, the number of olfactory neurons responding to oleic acid, a major milk component, in Ca2+ imaging experiments is drastically reduced in young CD36 knock-out mice. Strikingly, we also observe marked age-dependent changes in CD36 localization, which is prominently present in the ciliary compartment only during the suckling period. Our results support the involvement of CD36 in fatty acid detection by the mammalian olfactory system.

  8. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    Science.gov (United States)

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-04

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves-de-Albuquerque

    Full Text Available Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA, a monounsaturated fatty acid (MUFA. We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP. OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A mRNA levels were increased, while uncoupling protein 2 (UCP2 liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA.

  10. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    Science.gov (United States)

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and

  11. Relationship between the effect of dietary fat on swimming endurance and energy metabolism in aged mice.

    Science.gov (United States)

    Zhang, Guihua; Shirai, Nobuya; Suzuki, Hiramitsu

    2011-10-01

    The aim of this study was to investigate the effect of different dietary fats on alterations in endurance, energy metabolism, and plasma levels of interleukin-6 (IL-6) and minerals in mice. Male mice (aged 58 weeks) were fed diets containing 6% safflower oil, fish oil, or lard for 12 weeks. Swimming time to exhaustion, energy metabolism, and plasma IL-6 levels were subsequently determined. Mice fed safflower oil exhibited a marked increase in swimming time compared to the baseline level. Mice fed lard exhibited a significant decrease in swimming time, while mice on a fish oil diet exhibited a small decrease in swimming time. The final swimming time of mice fed safflower oil was significantly longer than that of animals fed lard. This improvement in endurance with dietary safflower oil was accompanied by decreased accumulation of lactate and less glycogen depletion during swimming. In the safflower oil group, muscle carnitine palmitoyltransferase activity increased significantly after swimming, while the plasma non-esterified fatty acid concentration decreased significantly. A trend to increased plasma IL-6 levels was observed in sedentary animals on a safflower oil diet compared to those on a lard diet. These results suggest that dietary safflower oil improves the swimming endurance of aged mice to a greater extent than lard, and that this effect appears to involve glycogen sparing through increased fatty acid utilization. Copyright © 2011 S. Karger AG, Basel.

  12. Variability in oil tocopherol concentration and composition of traditional and high oleic sunflower hybrids (Helianthus annuus L. in the Pampean region (Argentina

    Directory of Open Access Journals (Sweden)

    Mateo, Carmen

    2006-09-01

    Full Text Available Tocopherols are natural antioxidants that increase the stability of food fat and fulfill an important biological requirement in humans. There are no previous studies on the variability of tocopherol concentration and composition in the oil of sunflower traditional hybrids (TH and high oleic sunflower hybrids (HOH from different environments in Argentina. The objective of this work was to detect and  examine that variability. Seed samples were obtained from i seven TH grown in four locations (Experiment I and, ii five hybrids (three HOH and two traditional ones grown in three locations (Experiment II. Concentrations of total tocopherol in oil ranged from 634 to 1054 μg g oil–1. α-tocopherol accounted for 90.8 to 97% of the total tocopherols. Total and α-tocopherol concentrations were highly genetically determined (more than 80%. In Experiment I, a significant, although low in value, interaction between hybrid and location was found for total and α-tocopherol concentrations. In Experiment II, mean values for total tocopherol concentration in HOH and in each environment were larger than in TH. Significant differences for total and α-tocopherol concentration were not found among HOH and environments. The variation of tocopherol concentration for each hybrid across environments was higher than the variation among hybrids in the same environment. To obtain oil with high tocopherol concentration, both hybrid and environment must be selected.Los tocoferoles son antioxidantes naturales que aumentan la estabilidad de los aceites y cumplen una importante actividad biológica en humanos. No son conocidos estudios sobre la variabilidad del contenido y composición de tocoferoles en el aceite de híbridos de girasol tradicionales (HT y “alto oleico” (HAO sembrados en diferentes ambientes en Argentina. El objetivo de este trabajo fue detectar y examinar esa variabilidad. Las semillas fueron obtenidas de a 7 HT sembrados en 4 localidades

  13. Etheno-DNA adduct formation in rats gavaged with linoleic acid, oleic acid and coconut oil is organ- and gender specific

    International Nuclear Information System (INIS)

    Fang Qingming; Nair, Jagadeesan; Sun Xin; Hadjiolov, Dimiter; Bartsch, Helmut

    2007-01-01

    Intake of linoleic acid (LA) increased etheno-DNA adducts induced by lipid peroxidation (LPO) in white blood cells (WBC) of female but not of male volunteers [J. Nair, C.E. Vaca, I. Velic, M. Mutanen, L.M. Valsta, H. Bartsch, High dietary ω-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA adducts in white blood cells of female subjects, Cancer Epidemiol. Biomarkers Prev. 6 (1997) 597-601]. Etheno-adducts were measured in rats gavaged with LA, oleic acid (OA) and saturated fatty acid rich coconut oil for 30 days. DNA from organs and total WBC was analyzed for 1, N 6 -ethenodeoxyadenosine (εdA) and 3, N 4 -ethenodeoxycytidine (εdC) by immunoaffinity/ 32 P-postlabeling. Colon was the most affected target with LA-treatment, where etheno-adducts were significantly elevated in both sexes. In WBC both adducts were elevated only in LA-treated females. Unexpectedly, OA treatment enhanced etheno-adduct levels in prostate 3-9 fold. Our results in rodents confirm the gender-specific increase of etheno-adducts in WBC-DNA, likely due to LPO induced by redox-cycling of 4-hydroxyestradiol. Colon was a target for LPO-derived DNA-adducts in both LA-treated male and female rats, supporting their role in ω-6 PUFA induced colon carcinogenesis

  14. Multicenter comparative study of conventional mechanical gas ventilation to tidal liquid ventilation in oleic acid injured sheep.

    Science.gov (United States)

    Wolfson, Marla R; Hirschl, Ronald B; Jackson, J Craig; Gauvin, France; Foley, David S; Lamm, Wayne J E; Gaughan, John; Shaffer, Thomas H

    2008-01-01

    We performed a multicenter study to test the hypothesis that tidal liquid ventilation (TLV) would improve cardiopulmonary, lung histomorphological, and inflammatory profiles compared with conventional mechanical gas ventilation (CMV). Sheep were studied using the same volume-controlled, pressure-limited ventilator systems, protocols, and treatment strategies in three independent laboratories. Following baseline measurements, oleic acid lung injury was induced and animals were randomized to 4 hours of CMV or TLV targeted to "best PaO2" and PaCO2 35 to 60 mm Hg. The following were significantly higher (p ventilation, physiologic shunt, plasma lactate, lung interleukin-6, interleukin-8, myeloperoxidase, and composite total injury score. No significant laboratories by treatment group interactions were found. In summary, TLV resulted in improved cardiopulmonary physiology at lower ventilatory requirements with more favorable histological and inflammatory profiles than CMV. As such, TLV offers a feasible ventilatory alternative as a lung protective strategy in this model of acute lung injury.

  15. Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid.

    Science.gov (United States)

    Ghasemlou, Mehran; Khodaiyan, Faramarz; Oromiehie, Abdulrasoul; Yarmand, Mohammad Saeid

    2011-10-01

    New edible composite films based on kefiran and oleic acid (OA) at the ratio of 15, 25, and 35% (w/w) were prepared using emulsification with the aim of improving their water vapour barrier and mechanical properties. Film-forming solutions were characterized in terms of rheological properties and particle-size distribution. The impact of the incorporation of OA into the film matrix was studied by investigating the physical, mechanical, and thermal properties of the films. The water vapour permeability (WVP) of the emulsified films was reduced by approximately 33% by adding OA. The mechanical properties of kefiran films were also affected by adding OA: tensile strength was diminished, and elongation increased considerably. Differential scanning calorimetry showed that the glass transition temperature (T(g)) of the kefiran film was -16°C and was not considerably affected by adding OA. Therefore, OA could be incorporated into these films for some food-technology applications that need a low affinity toward water. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Production of Medium Chain Length Polyhydroxyalkanoates From Oleic Acid Using Pseudomonas putida PGA1 by Fed Batch Culture

    Directory of Open Access Journals (Sweden)

    Sidik Marsudi

    2010-10-01

    Full Text Available Bacterial polyhydroxyalkanoates (PHAs are a class of p0lymers currently receiving much attention because of their potential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAs including Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl producers using fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 by continuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs also accumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until the nitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and roductivity were 30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.

  17. , , , , , and Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid

    Directory of Open Access Journals (Sweden)

    S. H. Choi

    2015-03-01

    Full Text Available We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC and intramuscular preadipocytes (IPA were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS/Dulbecco’s Modified Eagle Medium (DMEM and 1% antibiotics during the 3-d proliferation period. After proliferation, cells were treated for 3 d with 3% horse serum/DMEM (BSC or 5% FBS/DMEM (IPA with antibiotics. Media also contained 10 μg/mL insulin and 10 μg/mL pioglitazone. Subsequently, differentiating BSC and IPA were cultured in their respective media with 40 μM palmitic, stearic, oleic, or linoleic acid for 4 d. Finally, BSC and IPA were single- or co-cultured for an additional 2 h. All fatty acid treatments increased (p = 0.001 carnitine palmitoyltransferase-1 beta (CPT1β gene expression, but the increase in CPT1β gene expression was especially pronounced in IPA incubated with palmitic and stearic acid (6- to 17- fold increases. Oleic and linoleic acid decreased (p = 0.001 stearoyl-CoA desaturase (SCD gene expression over 80% in both BSC and IPA. Conversely, palmitic and stearic acid increased SCD gene expression three fold in co-cultured in IPA, and stearic acid increased AMPKα gene expression in single- and co-cultured BSC and IPA. Consistent with our hypothesis, saturated fatty acids, especially stearic acid, promoted adipogenic and lipogenic gene expression, whereas unsaturated fatty acids decreased expression of those genes associated with fatty acid metabolism.

  18. Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone.

    Science.gov (United States)

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-01-01

    To increase the production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing Nostoc punctiforme 10S-dioxygenase with the aid of a chaperone. The optimal conditions for 10S-hydroxy-8(E)-octadecenoic acid production by recombinant cells co-expressing chaperone plasmid were pH 9, 35 °C, 15 % (v/v) dimethyl sulfoxide, 40 g cells l -1 , and 10 g oleic acid l -1 . Under these conditions, recombinant cells co-expressing chaperone plasmid produced 7.2 g 10S-hydroxy-8(E)-octadecenoic acid l -1 within 30 min, with a conversion yield of 72 % (w/w) and a volumetric productivity of 14.4 g l -1 h -1 . The activity of recombinant cells expressing 10S-dioxygenase was increased by 200 % with the aid of a chaperone, demonstrating the first biotechnological production of 10S-hydroxy-8(E)-octadecenoic acid using recombinant cells expressing 10S-dioxygenase.

  19. Effect of oleic acid on the production of ethanol and fructose from glucose/fructose mixtures in an immobilized cell reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guenette, M E [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; [IOGEN Corp., Ottawa, ON (Canada); Duvnjak, Z [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; [IOGEN Corp., Ottawa, ON (Canada)

    1996-12-31

    Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l.h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h{sup -1}. (orig.)

  20. The effect of sowing date and plant density on yield and yield components of safflower (Carthamus tinctorious L. in Rokh plateau .

    Directory of Open Access Journals (Sweden)

    seyd fazel fazeli kakhaki

    2009-06-01

    Full Text Available To investigate the effect of sowing date and plant density on yield and yield components of safflower ( Carthamus tinctorious as well as evaluating the possibility of the second sowing of the plant in Torbat Heidariyeh , a field experiment was conducted in Rokh, Cold Season Cereal Research Station 2005 . The experiment was conducted in split plot arrangement in complete randomized block design with four replications . Main plots were sowing date in five levels including 9 April, 10 May, 31 May, 20 June, 11 July and sub plots were plant density in three levels including 300000, 400000, 500000 plants per hectar. Some charactristics such as the number of capitulum per square meter, seed number in capitulum, seed weight, harvest index and seed yeild was evaluated.The highest seed yield was obtained in first sowing date in 3347 kg/ha and a delay in sowing date resulted a decrease in yield. The cold weather in (05/11/2005 caused flower fertility not accured, consequently, sowing was not successful . Results showed that the effect of sowing date on yield depends on the number of capitulum per unit area and the number of grains per capitulum. These two characteristics in th first sowing date in respect of the other dates were higher. The effect of density on yield was significant resulted on yield increase due to capitulum increase in unit area. As a result, the first sowing date with the highest density is recommended. However, The third and fourth sowing date can be considered as the second planting in a sequeational cropping system .

  1. Facts about polyunsaturated fats

    Science.gov (United States)

    ... albacore tuna, and trout Corn oil Soybean oil Safflower oil To get the health benefits, you need to ... sunflower seeds to salads. Cook with corn or safflower oil instead of butter and solid fats.

  2. Etheno-DNA adduct formation in rats gavaged with linoleic acid, oleic acid and coconut oil is organ- and gender specific

    Energy Technology Data Exchange (ETDEWEB)

    Fang Qingming [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany); Nair, Jagadeesan [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany)], E-mail: j.nair@dkfz.de; Sun Xin [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany); Hadjiolov, Dimiter [National Oncological Centre, Sofia (Bulgaria); Bartsch, Helmut [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany)

    2007-11-01

    Intake of linoleic acid (LA) increased etheno-DNA adducts induced by lipid peroxidation (LPO) in white blood cells (WBC) of female but not of male volunteers [J. Nair, C.E. Vaca, I. Velic, M. Mutanen, L.M. Valsta, H. Bartsch, High dietary {omega}-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA adducts in white blood cells of female subjects, Cancer Epidemiol. Biomarkers Prev. 6 (1997) 597-601]. Etheno-adducts were measured in rats gavaged with LA, oleic acid (OA) and saturated fatty acid rich coconut oil for 30 days. DNA from organs and total WBC was analyzed for 1, N{sup 6}-ethenodeoxyadenosine ({epsilon}dA) and 3, N{sup 4}-ethenodeoxycytidine ({epsilon}dC) by immunoaffinity/{sup 32}P-postlabeling. Colon was the most affected target with LA-treatment, where etheno-adducts were significantly elevated in both sexes. In WBC both adducts were elevated only in LA-treated females. Unexpectedly, OA treatment enhanced etheno-adduct levels in prostate 3-9 fold. Our results in rodents confirm the gender-specific increase of etheno-adducts in WBC-DNA, likely due to LPO induced by redox-cycling of 4-hydroxyestradiol. Colon was a target for LPO-derived DNA-adducts in both LA-treated male and female rats, supporting their role in {omega}-6 PUFA induced colon carcinogenesis.

  3. The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Huijuan eZhu

    2016-05-01

    Full Text Available ObjectivesSafflower yellow (SY is the main effective ingredient of Carthamus tinctorius L. It has been reported that SY plays an important role in anti-inflammation, anti-platelet aggregation and inhibiting thrombus formation. In present study, we try to investigate the effects of SY on body weight, body fat mass, insulin sensitivity in high fat diet (HFD-induced obese mice. MethodsHFD-induced obese male ICR mice were intraperitoneally injected with SY (120 mg kg-1 daily. Eight weeks later, intraperitoneal insulin tolerance test (IPITT and intraperitoneal glucose tolerance test (IPGTT were performed, and body weight, body fat mass, serum insulin levels were measured. The expression of glucose and lipid metabolic related genes in white adipose tissue (WAT were determined by RT-qPCR and western blot technologies.ResultsThe administration obese mice with SY significantly reduced the body fat mass of HFD-induced obese mice (P<0.05. IPITT test showed that the insulin sensitivity of SY treated obese mice were evidently improved. The mRNA levels of insulin signaling pathway related genes including insulin receptor substrate 1(IRS1, PKB protein kinase (AKT, glycogen synthase kinase 3β (GSK3β and forkhead box protein O1(FOXO1 in mesenteric WAT of SY treated mice were significantly increased to 1.9, 2.8, 3.3 and 5.9 folds of that in HFD-induced control obese mice, respectively (P<0.05. The protein levels of AKT and GSK3β were also significantly increased to 3.0 and 5.2 folds of that in HFD-induced control obese mice, respectively (P<0.05. Meanwhile, both the mRNA and protein levels of peroxisome proliferator-activated receptorgamma coactivator 1α (PGC1α in inguinal subcutaneous WAT of SY group were notably increased to 2.5 and 3.0 folds of that in HFD-induced control obese mice (P<0.05.ConclusionsSY significantly reduce the body fat mass, fasting blood glucose and increase insulin sensitivity of HFD-induced obese mice. The possible mechanism is to

  4. Iron utilization and liver mineral concentrations in rats fed safflower oil, flaxseed oil, olive oil, or beef tallow in combination with different concentrations of dietary iron.

    Science.gov (United States)

    Shotton, Andrea D; Droke, Elizabeth A

    2004-03-01

    Diets with a higher proportion of polyunsaturated fatty acids (i.e., linoleic acid) have decreased iron absorption and utilization compared with diets containing a higher proportion of the saturated fatty acid stearic acid (e.g., beef tallow). However, less is known regarding the influence of other polyunsaturated or monounsaturated fatty acids, along with higher dietary iron, on iron absorption and utilization. The present study was conducted to compare the effects of dietary fat sources known to vary in (n-3), (n-6), and (n-9) fatty acids on iron utilization and liver mineral concentrations. Male weanling rats were fed a diet containing 10, 35, or 100 microg/g iron in combination with safflower oil, flaxseed oil, olive oil, or beef tallow for 8 wk. Indicators of iron status, iron utilization, and liver iron concentrations were unaffected by an interaction between the fat source and iron concentration. Plasma copper was the only variable affected by an interaction between the fat source and dietary iron. Findings of this study demonstrate that flaxseed oil and olive oil may alter tissue minerals and affect iron utilization. Further studies should be conducted to establish the effect of varying (n-3), (n-6), and (n-9) fatty acids on trace mineral status and iron utilization.

  5. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  6. Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E2P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed; Christensen, Søren Brøgger

    2011-01-01

    Nigella sativa seed oil was found to contain a modulator of Na,K-ATPase. Separation analyses combined with (1)H NMR and GCMS identified the inhibitory fraction as a mixture of oleic and linoleic acids. These two fatty acids are specifically concentrated in several medicinal plant oils, and have...

  7. Effects of surfactant addition and high-speed ball milling on magnetic powders based on Pr-Fe-B obtained by HDDR

    International Nuclear Information System (INIS)

    Santos, Patricia Brissi

    2011-01-01

    This work verified the effect caused by adding the surfactant in the high speed/energy milling in order to obtain Pr 12 Fe 65.9 Co 16 B 6 Nb 0.1 magnetic nano powders. The first part of this work involved the magnetic powder obtainment through the process of hydrogenation, disproportionation, desorption and recombination (HDDR). The pressure of H2 during the hydrogenation and disproportion steps was 930 mbar and the temperature of desorption and recombination was 840 deg C. Initially, the HDDR powders were subjected a high speed milling process at 900 rpm, with quantity variations of the milling medium (cyclohexane) and without the addition of oleic acid. Then, the HDDR powders were subjected to the milling process with the addition of oleic acid and with milling time variations. After the milling process, heat treatments of the powder were carried out at 700 deg C or 800 deg C for 30 minutes in order to obtain the crystallization of the powder. By performing the procedures, it was verified that the milling efficiency improved with the addition of 6.6 ml of cyclohexane as the milling medium and with the addition of oleic acid. It was determined that for the surfactant additions of 0.02 ml to 0.05 ml, with a milling time of up to 360 minutes, powder agglomeration does not occur in the milling pot and the milling efficiency is higher than 90%. The second stage of this work involved the magnetic powder's characterization obtained by using vibrating sample magnetometer, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Through the characterizations it was found that the powder's magnetic properties improved when the addition of oleic acid in a high-speed /energy milling occurred. It was also verified that the α-Fe phase, present in the powder, shows a crystallite size decrease (from 35 nm to ∼ 10 nm) when the time milling variation occurred; meanwhile, the crystallinity degree was lower in the Pr 2 Fe 14 B phase when the time

  8. Research Article

    African Journals Online (AJOL)

    2016-06-13

    Jun 13, 2016 ... Agricultural Research and Education Organization. 2 ... ornamental flowers, are important factors that shows necessity of extension of safflower ... neutral for seed yield and oil production, but when safflower is grown for the ...

  9. Effect of Plant Density, Rate and Split Application of Nitrogen Fertilizer on Quality Characteristics and Nitrogen Use Efficiency of Safflower under Weed Competition

    Directory of Open Access Journals (Sweden)

    M Fuladvand

    2015-09-01

    Full Text Available In order to evaluation of plant density, rate and method of nitrogen fertilizer split application on quality characteristics and nitrogen use efficiency of safflower (Sofeh variety under weed competition a field experiment was carried out in field research Yasouj University in 2013. This experiment was a factorial based on randomized complete block design with three replications. First factor was a two levels plant density (20 and 40 plants m-2 and second factor was nitrogen rate application on nine levels. That included; non nitrogen application and 75 and 150 kgN ha-1 nitrogen application that both used with four split method. Split methods were included; S1 (%50 in pre planting stage - %50 in stem elongation stage, S2 (%25 in pre planting stage - %75 in stem elongation stage, S3 (%25 in pre planting stage - %50 in stem elongation stage -%25 in flowering stage and S4 (%25 in pre planting stage - %25 in stem elongation stage - %25 in flowering stage. Also in this experiment, weed did not control. Results showed that whit increasing crop density, oil yield and protein grain yield increased by 20 percent and nitrogen utilization efficiency increased by 10 percent. The highest oil yield (50.25 g m-2 was obtained from 75 kg ha-1 nitrogen with three-stage split application (S4. Finally, results showed that increasing nitrogen fertilizer application decreased nitrogen utilization efficiency but three-stage split method application increased this trait.

  10. Dye sensitized solar cell of TiO{sub 2} nanoparticle/nanorod composites prepared via low-temperature synthesis in oleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S. [Department of Printed Electronics Engineering, Sunchon National University, Chonnam 540-742 (Korea, Republic of); Pyo, Myoungho, E-mail: mho@sunchon.ac.k [Department of Printed Electronics Engineering, Sunchon National University, Chonnam 540-742 (Korea, Republic of)

    2010-09-01

    Titania (TiO{sub 2}) nanorods (NRs) and nanoparticles (NPs) were synthesized using oleic acid as a surfactant and employed as photoanodes for dye sensitized solar cell (DSSC) fabrication. The synthesized NRs and NPs were characterized using transmission electron microscopy and X-ray diffraction. The photovoltaic performances were compared between NRs, NPs, and their composites. The results showed that the power conversion efficiencies ({eta}) of the composites depend on the relative compositions of NRs and NPs in photoanodes, reaching the greatest at 10% NR content. {eta} of the pure NRs DSSC was lower than that of the NPs DSSC. Electrochemical impedance spectroscopy revealed that the highest {eta} at 10% NRs is mainly due to reduced charge transport resistance at the TiO{sub 2}/dye/electrolyte interface and electrolyte diffusion resistance, overcoming the reduction of the number of adsorbed dye molecules.

  11. Dose response study of conjugated fatty acid derived from safflower oil on mammary and colon carcinogenesis pretreated with 7,12-dimethylbenz[a]anthracene (DMBA) and 1,2-dimethylhydrazine (DMH) in female Sprague-Dawley rats.

    Science.gov (United States)

    Cheng, Jing Lei; Futakuchi, Mitsuru; Ogawa, Kumiko; Iwata, Toshio; Kasai, Masaaki; Tokudome, Shinkan; Hirose, Masao; Shirai, Tomoyuki

    2003-07-10

    To clarify the chemopreventive effects of conjugated fatty acid derived from safflower oil (CFA-S), rich in conjugated linoleic acid (CLA), on mammary and colon carcinogenesis, 6 week old female Sprague-Dawley (SD) rats received diet containing 0.01, 0.05, 0.1, 1, or 2% CFA-S subsequent to five times subcutaneous injections of 1,2-dimethyl-hydrazine (DMH) at a dose of 40 mg/kg b.w. and a single 50 mg/kg b.w. intragastric application of 7,12-dimethylbenz[a]anthracene (DMBA) during the first 11 days. The experiment was terminated at week 36. Numbers of mammary tumors, colon aberrant crypt foci (ACF), and proliferative indices of mammary tumors, and colon epithelium were analyzed. The 1% dose was found to be optimal for suppression of carcinogenesis in both target organs, a good correlation being noted with between data for cell proliferation. These results suggest that a diet containing appropriate levels of CFA-S may be useful for prevention of mammary and colon cancer.

  12. physical, chemical, technological and biological properties of some mutant oil seeds induced by gamma radiation

    International Nuclear Information System (INIS)

    Ali, H.G.M.

    2003-01-01

    The present study has been undertaken to evaluated sesame, sunflower and safflower seeds induced by gamma rays, as plant breeding unit, plant research department, radioisotope application division, nuclear research center, atomic energy authority Inshas. the obtained results indicate the following : chemical composition of mutant seeds: the radiation mutation caused a significant increase in both oil and ash content total carbohydrates showed a significant decreased in sesame seeds. radiation mutation induced significant increase in oil and protein content of sunflower and safflower seeds. while the total carbohydrate showed a significant decrease. physiochemical properties of oils extracted mutant seeds: the radiation mutation had no real effect on the refractive index and A.V of oils extracted from control and mutant sesame, sunflower and safflower seeds. while it caused a slight increase in red color and P.V. of sesame oil, the thiobarbituric acid (TBA) value of mutant sesame oil was not alter upon radiation mutation, but it induced a slight decrease in TBA of mutant sunflower and safflower oils. the unsaponifiable matter percentage of oils extracted from mutant sesame, sunflower and safflower seeds were slightly increased by radiation mutation .radiation mutation of seeds had no real effect on the total SFA and USFA of sesame oil. however, radiation mutation induced a remarkable changes in fatty acid profiles of sunflower and safflower oil as total SFA decreased, while USFA increased. Uric acid was only detected in oil extracted from mutant sunflower seeds

  13. Electrostatic interactions play an essential role in the binding of oleic acid with α-lactalbumin in the HAMLET-like complex: a study using charge-specific chemical modifications.

    Science.gov (United States)

    Xie, Yongjing; Min, Soyoung; Harte, Níal P; Kirk, Hannah; O'Brien, John E; Voorheis, H Paul; Svanborg, Catharina; Hun Mok, K

    2013-01-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) and its analogs are partially unfolded protein-oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge-specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively-charged lysine residues to negatively-charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild-type α-lactalbumin-oleic acid complex. With the addition of OA, the wild-type and guanidinated α-lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α-lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively-charged basic groups on α-lactalbumin and the negatively-charged carboxylate groups on OA molecules play an essential role in the binding of OA to α-lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Copyright © 2012 Wiley Periodicals, Inc.

  14. Anti-Thrombotic Effect of Carthamus tinctorius Linn Extracts in Rats

    African Journals Online (AJOL)

    HP

    Safflower, Carthamus tinctorius Linne). Neurochem. Res. 2009; 34: 795–. 805. 8. Zhang SQ, Jiang LD. Effect of safflower injection on cardiac energy charge and anti-apoptosis gene bcl-2 in rats' heart.Chin. J. Integr. Tradit. West. Med. 2004;.

  15. Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus.

    Science.gov (United States)

    Norris, Leigh E; Collene, Angela L; Asp, Michelle L; Hsu, Jason C; Liu, Li-Fen; Richardson, Julia R; Li, Dongmei; Bell, Doris; Osei, Kwame; Jackson, Rebecca D; Belury, Martha A

    2009-09-01

    Weight loss may improve glucose control in persons with type 2 diabetes. The effects of fat quality, as opposed to quantity, on weight loss are not well understood. We compared the effects of 2 dietary oils, conjugated linoleic acid (CLA) and safflower oil (SAF), on body weight and composition in obese postmenopausal women with type 2 diabetes. This was a 36-wk randomized, double-masked, crossover study. Fifty-five obese postmenopausal women with type 2 diabetes received SAF or CLA (8 g oil/d) during two 16-wk diet periods separated by a 4-wk washout period. Subjects met monthly with the study coordinator to receive new supplements and for assessment of energy balance, biochemical endpoints, or anthropometric variables. Thirty-five women completed the 36-wk intervention. Supplementation with CLA reduced body mass index (BMI) (P = 0.0022) and total adipose mass (P = 0.0187) without altering lean mass. The effect of CLA in lowering BMI was detected during the last 8 wk of each 16-wk diet period. In contrast, SAF had no effect on BMI or total adipose mass but reduced trunk adipose mass (P = 0.0422) and increased lean mass (P = 0.0432). SAF also significantly lowered fasting glucose (P = 0.0343) and increased adiponectin (P = 0.0051). No differences were observed in dietary energy intake, total fat intake, and fat quality in either diet period for either intervention. Supplementation with CLA and SAF exerted different effects on BMI, total and trunk adipose mass, and lean tissue mass in obese postmenopausal women with type 2 diabetes. Supplementation with these dietary oils may be beneficial for weight loss, glycemic control, or both.

  16. Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy.

    Science.gov (United States)

    Younge, Noelle; Yang, Qing; Seed, Patrick C

    2017-02-01

    To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in infants with an enterostomy born premature. Infants with an enterostomy born premature were randomized to receive early enteral supplementation with a high-fat polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil vs standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene coexpression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. Sixteen infants were randomized to receive enteral HF-PUFA supplementation, and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified 4 microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. ClinicalTrials.gov:NCT01306838. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    Science.gov (United States)

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  18. Encapsulated specialty oils commercialized in São Paulo state, Brazil: evaluation of identity (fatty acid profile and compliance of fatty acids and Vitamin E contents with nutrition labeling

    Directory of Open Access Journals (Sweden)

    Karen Hirashima

    2013-03-01

    Full Text Available Encapsulated specialty oils commercialized in São Paulo state, Brazil, were evaluated for their identity (fatty acids profile and compliance with nutrition labeling (fatty acids and Vitamin E (alpha tocopherol contents. Twenty one samples [flaxseed oil (6, evening primrose (5, safflower (8, borage (1, and black currant (1] purchased from local markets or collected by the health surveillance agency were analyzed. The fatty acids and vitamin E contents were analyzed by gas chromatography with flame ionization detector and liquid chromatography with UV detector, respectively. Nine samples were adulterated (5 samples of safflower oil, 3 of flaxseed oil, and one of evening primrose. Among them, 3 flaxseed and 2 safflower oil samples were probably adulterated by the addition of soybean oil. Conjugated linoleic acid (CLA was found in two safflower oils samples although the sale of oils with conjugated linoleic acid (CLA is not permitted by the National Health Surveillance Agency in Brazil (ANVISA. Only two samples presented all values in compliance with nutrition labeling (one safflower oil sample and one borage oil sample. The results show that a continuous monitoring of encapsulated specialty oils commercialized in Brazil is necessary including a greater number of samples and sanitary surveillance.

  19. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  20. Oleic Acid and Hydroxytyrosol Inhibit Cholesterol and Fatty Acid Synthesis in C6 Glioma Cells

    Directory of Open Access Journals (Sweden)

    Paola Priore

    2017-01-01

    Full Text Available Recently, the discovery of natural compounds capable of modulating nervous system function has revealed new perspectives for a healthier brain. Here, we investigated the effects of oleic acid (OA and hydroxytyrosol (HTyr, two important extra virgin olive oil compounds, on lipid synthesis in C6 glioma cells. OA and HTyr inhibited both de novo fatty acid and cholesterol syntheses without affecting cell viability. The inhibitory effect of the individual compounds was more pronounced if OA and HTyr were administered in combination. A reduction of polar lipid biosynthesis was also detected, while triglyceride synthesis was marginally affected. To clarify the lipid-lowering mechanism of these compounds, their effects on the activity of key enzymes of fatty acid biosynthesis (acetyl-CoA carboxylase-ACC and fatty acid synthase-FAS and cholesterologenesis (3-hydroxy-3-methylglutaryl-CoA reductase-HMGCR were investigated in situ by using digitonin-permeabilized C6 cells. ACC and HMGCR activities were especially reduced after 4 h of 25 μM OA and HTyr treatment. No change in FAS activity was observed. Inhibition of ACC and HMGCR activities is corroborated by the decrease of their mRNA abundance and protein level. Our results indicate a direct and rapid downregulatory effect of the two olive oil compounds on lipid synthesis in C6 cells.

  1. Fatty acid profiling of four different peanut Fatty Acid Desaturase (FAD) 2 genotypes at five seed development stages

    Science.gov (United States)

    Peanut is one of the most important edible oilseed crops. The level of oleic acid in peanut seeds can significantly affect the oil quality. Consuming peanut product from high oleic acid seeds may positively contribute to improving human health. The level of oleic acid in peanut seeds is mainly contr...

  2. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    Directory of Open Access Journals (Sweden)

    Claudio Davet Gutiérrez-Lazos

    2014-06-01

    Full Text Available This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size. Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine (the tellurium reducing agent. The Raman spectrum exhibits two broad bands centered at 141.6 and 162.3 cm−1, which could be associated to the TO and LO modes of cubic CdTe nanocrystals, respectively. Additional peaks located in the 222 to 324 cm−1 range, agree fairly well with the wavenumbers reported for TO modes of octahedral Cd3P2.

  3. Results of breeding for modified C18-fatty acid composition in sunflower

    International Nuclear Information System (INIS)

    Schmidt, L.; Marquard, R.; Friedt, W.

    1990-01-01

    Full text: In an earlier experiment, KUEBLER was able to select sunflower lines with modified fatty acid composition after induced mutagenesis. From this material, genotypes with more than 80% linoleic acid content could be selected, whereas the highest level of oleic acid obtained was 30% under field conditions and up to 50% in the phytotron. Recently, inbred lines with up to 90% oleic acid could be selected from a progeny of the Russian cultivar Pervenets, which has high oleic acid content inherited by one major, partially dominant gene. The inheritance of oleic/linoleic acid content in our own material is not fully understood yet, but is highly heritable. (author)

  4. Volatile oil composition of Carthamus Tinctorius L. flowers grown in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Aknur Amanbekovna Turgumbayeva

    2018-03-01

    Volatile oil from the flowers of the Kazakhstan safflower species ‘Ak-Mai’ were investigated by GC/MS which allowed the detection of 20 compounds. Biologically active complex of the flower of the Kazakhstan safflower species ‘Ak-Mai’ was released for the first time by using this oil

  5. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  6. Role of oleic acid in immune system; mechanism of action: a review Papel del ácido oleico en el sistema inmune; mecanismo de acción: revisión científica

    OpenAIRE

    C. Carrillo; M.ª M. Cavia; S. Alonso-Torre

    2012-01-01

    Introduction: Although n-3 polyunsaturated fatty acids have been widely described as anti-inflammatory fats, little is known about the role of oleic acid in immune system. Aim: The aim of the present review is to join all the reports available in order to analyze where exactly the knowledge concerning this topic is and what the causes of the controversial data could be. Methods: We searched electronic databases and bibliographies of selected articles were inspected for further reference. Resu...

  7. Removal of copper(II) from some environmental samples by sorptive-flotation using powdered marble wastes as sorbents and oleic acid as surfactant.

    Science.gov (United States)

    Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M

    2004-11-01

    A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.

  8. Blood flow vs. venous pressure effects on filtration coefficient in oleic acid-injured lung.

    Science.gov (United States)

    Anglade, D; Corboz, M; Menaouar, A; Parker, J C; Sanou, S; Bayat, S; Benchetrit, G; Grimbert, F A

    1998-03-01

    On the basis of changes in capillary filtration coefficient (Kfc) in 24 rabbit lungs, we determined whether elevations in pulmonary venous pressure (Ppv) or blood flow (BF) produced differences in filtration surface area in oleic acid-injured (OA) or control (Con) lungs. Lungs were cyclically ventilated and perfused under zone 3 conditions by using blood and 5% albumin with no pharmacological modulation of vascular tone. Pulmonary arterial, venous, and capillary pressures were measured by using arterial, venous, and double occlusion. Before and during each Kfc-measurement maneuver, microvascular/total vascular compliance was measured by using venous occlusion. Kfc was measured before and 30 min after injury, by using a Ppv elevation of 7 cmH2O or a BF elevation from 1 to 2 l . min-1 . 100 g-1 to obtain a similar double occlusion pressure. Pulmonary arterial pressure increased more with BF than with Ppv in both Con and OA lungs [29 +/- 2 vs. 19 +/- 0.7 (means +/- SE) cmH2O; P Kfc (200 +/- 40 vs. 83 +/- 14%, respectively; P < 0.01) and microvascular/total vascular compliance ratio (86 +/- 4 vs. 68 +/- 5%, respectively; P < 0.01) increased more with BF than with Ppv. In conclusion, for a given OA-induced increase in hydraulic conductivity, BF elevation increased filtration surface area more than did Ppv elevation. The steep pulmonary pressure profile induced by increased BF could result in the recruitment of injured capillaries and could also shift downstream the compression point of blind (zone 1) and open injured vessels (zone 2).

  9. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    Science.gov (United States)

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Inverse association between serum phospholipid oleic acid and insulin resistance in subjects with primary dyslipidaemia.

    Science.gov (United States)

    Sala-Vila, A; Cofán, M; Mateo-Gallego, R; Cenarro, A; Civeira, F; Ortega, E; Ros, E

    2011-10-01

    Data on intake of oleic acid (OA) and insulin resistance (IR) are inconsistent. We investigated whether OA in serum phosphatidylcholine relates to surrogate measures of IR in dyslipidaemic subjects from a Mediterranean population. Cross-sectional study of 361 non-diabetic subjects (205 men, 156 women; mean age 44 and 46 y, respectively; BMI 25.7 kg/m(2)). IR was diagnosed by BMI and HOMA values using published criteria validated against the euglycemic clamp. Alternatively, IR was defined by the 75th percentile of HOMA-IR of our study population. The fatty acid composition of serum phosphatidylcholine was determined by gas-chromatography. The mean (±SD) proportion of OA was 11.7 ± 2.0%. Ninety-two subjects (25.5%) had IR. By adjusted logistic regression, including the proportions of other fatty acids known to relate to IR, the odds ratios (OR) (95% confidence intervals) for IR were 0.75 (0.62-0.92) for 1% increase in OA and 0.84 (0.71-0.99) for 1% increase in linoleic acid. Other fatty acids were unrelated to IR. When using the alternate definition of IR, OA remained a significant predictor (0.80 [0.65-0.99]). Higher phospholipid proportions of OA relate to less IR, suggesting an added benefit of increasing olive oil intake within the Mediterranean diet. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jana Orsavova

    2015-06-01

    Full Text Available Characterizations of fatty acids composition in % of total methylester of fatty acids (FAMEs of fourteen vegetable oils—safflower, grape, silybum marianum, hemp, sunflower, wheat germ, pumpkin seed, sesame, rice bran, almond, rapeseed, peanut, olive, and coconut oil—were obtained by using gas chromatography (GC. Saturated (SFA, monounsaturated (MUFA and polyunsaturated fatty acids (PUFA, palmitic acid (C16:0; 4.6%–20.0%, oleic acid (C18:1; 6.2%–71.1% and linoleic acid (C18:2; 1.6%–79%, respectively, were found predominant. The nutritional aspect of analyzed oils was evaluated by determination of the energy contribution of SFAs (19.4%–695.7% ERDI, PUFAs (10.6%–786.8% ERDI, n-3 FAs (4.4%–117.1% ERDI and n-6 FAs (1.8%–959.2% ERDI, expressed in % ERDI of 1 g oil to energy recommended dietary intakes (ERDI for total fat (ERDI—37.7 kJ/g. The significant relationship between the reported data of total fat, SFAs, MUFAs and PUFAs intakes (% ERDI for adults and mortality caused by coronary heart diseases (CHD and cardiovascular diseases (CVD in twelve countries has not been confirmed by Spearman’s correlations.

  12. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis.

    Science.gov (United States)

    Clara, Rosmarie; Langhans, Wolfgang; Mansouri, Abdelhak

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Menhaden oil, but not safflower or soybean oil, aids in restoring the polyunsaturated fatty acid profile in the novel delta-6-desaturase null mouse

    Science.gov (United States)

    2012-01-01

    Background Polyunsaturated fatty acids (PUFA) have diverse biological effects, from promoting inflammation to preventing cancer and heart disease. Growing evidence suggests that individual PUFA may have independent effects in health and disease. The individual roles of the two essential PUFA, linoleic acid (LA) and α-linolenic acid (ALA), have been difficult to discern from the actions of their highly unsaturated fatty acid (HUFA) downstream metabolites. This issue has recently been addressed through the development of the Δ-6 desaturase knock out (D6KO) mouse, which lacks the rate limiting Δ-6 desaturase enzyme and therefore cannot metabolize LA or ALA. However, a potential confounder in this model is the production of novel Δ-5 desaturase (D5D) derived fatty acids when D6KO mice are fed diets containing LA and ALA, but void of arachidonic acid. Objective The aim of the present study was to characterize how the D6KO model differentially responds to diets containing the essential n-6 and n-3 PUFA, and whether the direct provision of downstream HUFA can rescue the phenotype and prevent the production of D5D fatty acids. Methodology Liver and serum phospholipid (PL) fatty acid composition was examined in D6KO and wild type mice fed i) 10% safflower oil diet (SF, LA rich) ii) 10% soy diet (SO, LA+ALA) or iii) 3% menhaden oil +7% SF diet (MD, HUFA rich) for 28 days (n = 3-7/group). Results Novel D5D fatty acids were found in liver PL of D6KO fed SF or SO-fed mice, but differed in the type of D5D fatty acid depending on diet. Conversely, MD-fed D6KO mice had a liver PL fatty acid profile similar to wild-type mice. Conclusions Through careful consideration of the dietary fatty acid composition, and especially the HUFA content in order to prevent the synthesis of D5D fatty acids, the D6KO model has the potential to elucidate the independent biological and health effects of the parent n-6 and n-3 fatty acids, LA and ALA. PMID:22642787

  14. Menhaden oil, but not safflower or soybean oil, aids in restoring the polyunsaturated fatty acid profile in the novel delta-6-desaturase null mouse

    Directory of Open Access Journals (Sweden)

    Monteiro Jessica

    2012-05-01

    Full Text Available Abstract Background Polyunsaturated fatty acids (PUFA have diverse biological effects, from promoting inflammation to preventing cancer and heart disease. Growing evidence suggests that individual PUFA may have independent effects in health and disease. The individual roles of the two essential PUFA, linoleic acid (LA and α-linolenic acid (ALA, have been difficult to discern from the actions of their highly unsaturated fatty acid (HUFA downstream metabolites. This issue has recently been addressed through the development of the Δ-6 desaturase knock out (D6KO mouse, which lacks the rate limiting Δ-6 desaturase enzyme and therefore cannot metabolize LA or ALA. However, a potential confounder in this model is the production of novel Δ-5 desaturase (D5D derived fatty acids when D6KO mice are fed diets containing LA and ALA, but void of arachidonic acid. Objective The aim of the present study was to characterize how the D6KO model differentially responds to diets containing the essential n-6 and n-3 PUFA, and whether the direct provision of downstream HUFA can rescue the phenotype and prevent the production of D5D fatty acids. Methodology Liver and serum phospholipid (PL fatty acid composition was examined in D6KO and wild type mice fed i 10% safflower oil diet (SF, LA rich ii 10% soy diet (SO, LA+ALA or iii 3% menhaden oil +7% SF diet (MD, HUFA rich for 28 days (n = 3-7/group. Results Novel D5D fatty acids were found in liver PL of D6KO fed SF or SO-fed mice, but differed in the type of D5D fatty acid depending on diet. Conversely, MD-fed D6KO mice had a liver PL fatty acid profile similar to wild-type mice. Conclusions Through careful consideration of the dietary fatty acid composition, and especially the HUFA content in order to prevent the synthesis of D5D fatty acids, the D6KO model has the potential to elucidate the independent biological and health effects of the parent n-6 and n-3 fatty acids, LA and ALA.

  15. Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus1234

    Science.gov (United States)

    Norris, Leigh E; Collene, Angela L; Asp, Michelle L; Hsu, Jason C; Liu, Li-Fen; Richardson, Julia R; Li, Dongmei; Bell, Doris; Osei, Kwame; Jackson, Rebecca D

    2009-01-01

    Background: Weight loss may improve glucose control in persons with type 2 diabetes. The effects of fat quality, as opposed to quantity, on weight loss are not well understood. Objective: We compared the effects of 2 dietary oils, conjugated linoleic acid (CLA) and safflower oil (SAF), on body weight and composition in obese postmenopausal women with type 2 diabetes. Design: This was a 36-wk randomized, double-masked, crossover study. Fifty-five obese postmenopausal women with type 2 diabetes received SAF or CLA (8 g oil/d) during two 16-wk diet periods separated by a 4-wk washout period. Subjects met monthly with the study coordinator to receive new supplements and for assessment of energy balance, biochemical endpoints, or anthropometric variables. Results: Thirty-five women completed the 36-wk intervention. Supplementation with CLA reduced body mass index (BMI) (P = 0.0022) and total adipose mass (P = 0.0187) without altering lean mass. The effect of CLA in lowering BMI was detected during the last 8 wk of each 16-wk diet period. In contrast, SAF had no effect on BMI or total adipose mass but reduced trunk adipose mass (P = 0.0422) and increased lean mass (P = 0.0432). SAF also significantly lowered fasting glucose (P = 0.0343) and increased adiponectin (P = 0.0051). No differences were observed in dietary energy intake, total fat intake, and fat quality in either diet period for either intervention. Conclusions: Supplementation with CLA and SAF exerted different effects on BMI, total and trunk adipose mass, and lean tissue mass in obese postmenopausal women with type 2 diabetes. Supplementation with these dietary oils may be beneficial for weight loss, glycemic control, or both. PMID:19535429

  16. Environmental Compliance Assessment System (ECAS)

    Science.gov (United States)

    1993-09-01

    generators -open burning/open detonation -peak shaving generators -landfills -turbines -surface impoundments -landfarw r- bioremediation Petroleum Product...greater. Methidathion All formu- All uses Restricted Residue effects lations. except on avian species. stock, safflower, and sunflower . All formu...Nursery Unclassified lations. stock. safflower, and sunflower Methomyl As sole Nondomestic Restricted. Residue effects active in- outdoor on mammalian

  17. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    Science.gov (United States)

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The degree of saturation of fatty acids in dietary fats does not affect the metabolic response to ingested carbohydrate.

    Science.gov (United States)

    Radulescu, Angela; Hassan, Youssef; Gannon, Mary C; Nuttall, Frank Q

    2009-06-01

    We are interested in the metabolic response to ingested macronutrients, and the interaction between macronutrients in meals. Previously, we and others reported that the postprandial rise in serum glucose following ingestion of 50 g carbohydrate, consumed as potato, was markedly attenuated when butter was ingested with the carbohydrate, whereas the serum insulin response was little affected by the combination. To determine whether a similar response would be observed with three other dietary fats considerably different in fatty acid composition. Nine healthy subjects received lard, twelve received olive oil and eleven received safflower oil as a test meal. The subjects ingested meals of 25 g fat (lard, olive oil or safflower oil), 50 g CHO (potato), 25 g fat with 50 g CHO or water only. Glucose, C peptide, insulin, triacylglycerols and nonesterified fatty acids were determined. Ingestion of lard, olive oil or safflower oil with potato did not affect the quantitative glucose and insulin responses to potato alone. However, the responses were delayed, diminished and prolonged. All three fats when ingested alone modestly increased the insulin concentration when compared to ingestion of water alone. When either lard, olive oil or safflower oil was ingested with the potato, there was an accelerated rise in triacylglycerols. This was most dramatic with safflower oil. Our data indicate that the glucose and insulin response to butter is unique when compared with the three other fat sources varying in their fatty acid composition.

  19. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids.

    Science.gov (United States)

    Lecker, Jaime L; Matthan, Nirupa R; Billheimer, Jeffrey T; Rader, Daniel J; Lichtenstein, Alice H

    2011-10-21

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  20. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels.

    Science.gov (United States)

    Ayodele, Olumide Bolarinwa

    2017-08-30

    Achieving high degree of active metal dispersions at the highest possible metal loading and high reducibility of the metal remains a challenge in Fischer Tropsch synthesis (FTS) as well as in hydrogeoxygenation (HDO).This study therefore reports the influence of oxalic acid (OxA) functionalization on the metal dispersion, reducibility and activity of Co supported ZSM-5 catalyst in FTS and HDO of oleic acid into paraffin biofuel. The Brunauer-Emmett-Teller (BET) results showed that cobalt oxalate supported ZSM-5 catalyst (CoOx/ZSM-5) synthesized from the incorporation of freshly prepared cobalt oxalate complex into ZSM-5 displayed increase in surface area, pore volume and average pore size while the nonfunctionalized cobalt supported on ZSM-5 (Co/ZSM-5) catalyst showed reduction in those properties. Furthermore, both XRD and XPS confirmed the presence of Co° formed from the decomposition of CoOx during calcination of CoOx/ZSM-5 under inert atmosphere. The HRTEM showed that Co species average particle sizes were smaller in CoOx/ZSM-5 than in Co/ZSM-5, and in addition, CoOx/ZSM-5 shows a clear higher degree of active metal dispersion. The FTS result showed that at CO conversion over Co/ZSM-5 and CoOx/ZSM-5 catalysts were 74.28% and 94.23% and their selectivity to C 5+ HC production were 63.15% and 75.4%, respectively at 4 h TOS. The HDO result also showed that the CoOx/ZSM-5 has higher OA conversion of 92% compared to 59% over Co/ZSM-5. In addition CoOx/ZSM-5 showed higher HDO and isomerization activities compared to Co/ZSM-5.

  1. Allelopathic potential of macrofungi on germinating maize (Zea ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... fructose (96.85%), maltose (95.64%), oleic acid (97.50%) and linoleic acid ... HPLC,. High performance liquid chromatography; MF, macrofungi; MFE, ... Quantitative determination of oleic and linoleic acids was performed.

  2. Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Tian, Xiuli; Liu, Zhijun; Yu, Ting; Yang, Haitao; Feng, Linlin

    2018-03-01

    Acute lung injury (ALI) is associated with excessive mortality and lacks appropriate therapy. Ghrelin is a novel peptide that protects the lung against ALI. This study aimed to investigate whether endoplasmic reticulum stress (ERS) mediates the protective effect of ghrelin on ALI. We used a rat oleic acid (OA)-induced ALI model. Pulmonary impairment was detected by hematoxylin and eosin (HE) staining, lung mechanics, wet/dry weight ratio, and arterial blood gas analysis. Plasma and lung content of ghrelin was examined by ELISA, and mRNA expression was measured by quantitative real-time PCR. Protein levels were detected by western blot. Rats with OA treatment showed significant pulmonary injury, edema, inflammatory cellular infiltration, cytokine release, hypoxia and CO 2 retention as compared with controls. Plasma and pulmonary content of ghrelin was reduced in rats with ALI, and mRNA expression was downregulated. Ghrelin (10nmol/kg) treatment ameliorated the above symptoms, but treatment with the ghrelin antagonists D-Lys 3 GHRP-6 (1μmol/kg) and JMV 2959 (6mg/kg) exacerbated the symptoms. ERS induced by OA was prevented by ghrelin and augmented by ghrelin antagonist treatment. The ERS inducer, tunicamycin (Tm) prevented the ameliorative effect of ghrelin on ALI. The decreased ratio of p-Akt and Akt induced by OA was improved by ghrelin treatment, and was further exacerbated by ghrelin antagonists. Ghrelin protects against ALI by inhibiting ERS. These results provide a new target for prevention and therapy of ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Directory of Open Access Journals (Sweden)

    Haim, D.

    2012-10-01

    Full Text Available Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP, in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg–1 of butyric acid esterified policosanol (BAEP, or 164 mg kg–1 of oleic acid esterified policosanol (OAEP. Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05 in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis.

    Los Policosanoles están formados por una mezcla de alcoholes alifáticos de cadena larga y se obtienen de las ceras de la caña de azúcar. Más de cincuenta estudios indican que los policosanoles reducen el colesterol sérico, mientras que otros no logran reproducir este efecto. El objetivo de esta investigación fue evaluar la biodisponibilidad de policosanoles esterificados y no esterificados

  4. Gelatin capsule waste: new source of protein to develop a biodegradable film

    Directory of Open Access Journals (Sweden)

    Camila de Campo

    Full Text Available Abstract This work aimed to develop biodegradable films utilizing a new source of gelatin derived from the nutraceutical capsule manufacture waste of coconut with safflower oil, coconut oil and safflower oil. The mechanical, physicochemical, barrier, optical, biodegradation, thermal and morphological properties were evaluated. All films showed low water vapor permeability, intermediate water solubility and high elongation at break. In addition, the films exhibited excellent barrier ability to ultraviolet light. After 15 days of soil burial degradation, the films lost over 68% of initial weight. Scanning electron microscopy showed an appearance free of pores, cracks or bubbles. Furthermore the films showed similar characteristics independent of the waste utilized. The results demonstrated that all the biodegradable films prepared presented appropriate characteristics to be used as substitute to synthetic packaging.

  5. Formulation optimization of transdermal meloxicam potassium-loaded mesomorphic phases containing ethanol, oleic acid and mixture surfactant using the statistical experimental design methodology.

    Science.gov (United States)

    Huang, Chi-Te; Tsai, Chia-Hsun; Tsou, Hsin-Yeh; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2011-01-01

    Response surface methodology (RSM) was used to develop and optimize the mesomorphic phase formulation for a meloxicam transdermal dosage form. A mixture design was applied to prepare formulations which consisted of three independent variables including oleic acid (X(1)), distilled water (X(2)) and ethanol (X(3)). The flux and lag time (LT) were selected as dependent variables. The result showed that using mesomorphic phases as vehicles can significantly increase flux and shorten LT of drug. The analysis of variance showed that the permeation parameters of meloxicam from formulations were significantly influenced by the independent variables and their interactions. The X(3) (ethanol) had the greatest potential influence on the flux and LT, followed by X(1) and X(2). A new formulation was prepared according to the independent levels provided by RSM. The observed responses were in close agreement with the predicted values, demonstrating that RSM could be successfully used to optimize mesomorphic phase formulations.

  6. Characteristics and Composition of a High Oil Yielding Castor Variety from Pakistan.

    Science.gov (United States)

    Panhwar, Tarique; Mahesar, Sarfaraz Ahmed; Mahesar, Abdul Waheed; Kandhro, Aftab Ahmed; Talpur, Farah Naz; Laghari, Zahid Hussain; Chang, Abdul Sattar; Hussain Sherazi, Syed Tufail

    2016-01-01

    Keeping in view the versatile applications of castor oil in cosmetic, pharmaceutical and recently as renewable source, the present work is a step towards the commercialization of castor on large scale in Pakistan. The current study introduces a castor variety with high oil content. Initially seeds were physically examined for some physical parameters. Seed moisture, ash content and linear dimensions such as length, width and thickness were found to be 4.53%, 6.44%, 12.24 mm, 8.31 mm and 5.67 mm, respectively. For oil extraction, Soxhlet method was used which resulted in the high oil content 54.0%. For quality assessment of oil, physicochemical parameters were checked according to official standard AOCS methods and compared with ASTM specifications. The determined parameters were as follows; specific gravity 0.953 g/cm(-3), refractive index 1.431, viscosity 672.0 mPas.s, moisture content 0.32%, FFA 0.14%, IV 83.61 gI2/100 g, PV 2.25 meq/Kg and SV 186.0 mgKOH/g. Furthermore, fatty acid analysis of oil showed that, most abundant fatty acid was ricinoleic acid 94.59%, followed by palmitic 0.31%, linoleic 1.84%, oleic (n-9) 2.05%, oleic (n-10) 0.22%, stearic 0.45% and eicosenoic acid 0.53%. The detected fatty acids were compared with registered variety and varieties of other regions.

  7. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program.

    Science.gov (United States)

    Carrero, Juan Jesús; Fonollá, Juristo; Marti, José Luis; Jiménez, Jesús; Boza, Julio J; López-Huertas, Eduardo

    2007-02-01

    Certain nutrients have been shown to be effective in preventing coronary heart disease. We hypothesized that a daily intake of low amounts of a number of these nutrients would exert beneficial effects on risk factors and clinical variables in patients that suffered from myocardial infarction (MI) and were following a cardiac rehabilitation program. Forty male MI patients were randomly allocated into 2 groups. The supplemented group consumed 500 mL/d of a fortified dairy product containing eicosapentaenoic acid, docosahexaenoic acid, oleic acid, folic acid, and vitamins A, B-6, D, and E. The control group consumed 500 mL/d of semi-skimmed milk with added vitamins A and D. The patients received supervised exercise training, lifestyle and dietary recommendations, and they were instructed to consume the products in addition to their regular diet. Blood extractions and clinical examinations were performed after 0, 3, 6, 9, and 12 mo. Plasma concentrations of eicosapentaenoic acid, docosahexaenoic acid, oleic acid, folic acid, vitamin B-6, and vitamin E increased after supplementation (Preactive protein concentrations decreased in the supplemented group (Pprogram comprising regular exercise and the intake of a combination of dietary nutrients, reduced a variety of risk factors in MI patients, which supports the rationale for nutritional programs in the secondary prevention of coronary heart disease.

  8. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture.

    Science.gov (United States)

    Hagi, Akifumi; Nakayama, Mitsuo; Miura, Yutaka; Yagasaki, Kazumi

    2007-01-01

    Total parenteral nutrition containing a lipid emulsion is often employed after surgical tumor resection. This study investigated the effects of a fish oil-based infusion on rat hepatoma cell invasion. Rat ascites hepatoma cell line AH109A was precultured with a fish oil-based or safflower oil-based emulsion for 48 h. Changes in membranous fatty acid composition were evaluated by gas chromatography. The invasiveness of hepatoma cells was assessed by coculturing with mesentery-derived mesothelial cells. To examine ex vivo effects of the fish oil-based infusion on hepatoma invasion, sera were prepared from rats infused with fish oil- or safflower oil-based emulsion and the effects of these sera were assessed. To clarify the mechanism of inhibition of invasion by the fish oil-based emulsion, the effects of prostaglandin (PG) E(2) and PGE(3) on invasion were examined. Pretreatment with the fish oil-based emulsion reduced invasiveness without affecting growth compared with the safflower oil-based emulsion. Pretreatment with the sera from rats infused with the fish oil-based emulsion also reduced invasiveness compared with the sera from rats infused with the safflower oil-based emulsion. The addition of PGE(2) eliminated the inhibitory effect of the fish oil-based emulsion, and the addition of PGE(3) reduced the invasiveness of hepatoma cells pretreated with the safflower oil-based emulsion. These results suggest that the fish oil-based emulsion may have anti-invasive effects. Changes in the membranous fatty acid composition and consequent changes in the prostaglandins produced may be involved in this inhibitory effect.

  9. Who is Mr. HAMLET? Interaction of human alpha-lactalbumin with monomeric oleic acid.

    Science.gov (United States)

    Knyazeva, Ekaterina L; Grishchenko, Valery M; Fadeev, Roman S; Akatov, Vladimir S; Permyakov, Sergei E; Permyakov, Eugene A

    2008-12-09

    A specific state of the human milk Ca(2+) binding protein alpha-lactalbumin (hLA) complexed with oleic acid (OA) prepared using an OA-pretreated ion-exchange column (HAMLET) triggers several cell death pathways in various tumor cells. The possibility of preparing a hLA-OA complex with structural and cytotoxic properties similar to those of the HAMLET but under solution conditions has been explored. The complex was formed by titration of hLA by OA at pH 8.3 up to OA critical micelle concentration. We have shown that complex formation strongly depends on calcium, ionic strength, and temperature; the optimal conditions were established. The spectrofluorimetrically estimated number of OA molecules irreversibly bound per hLA molecule (after dialysis of the OA-loaded preparation against water followed by lyophilization) depends upon temperature: 2.9 at 17 degrees C (native apo-hLA; resulting complex referred to as LA-OA-17 state) and 9 at 45 degrees C (thermally unfolded apo-hLA; LA-OA-45). Intrinsic tryptophan fluorescence measurements revealed substantially decreased thermal stability of Ca(2+)-free forms of HAMLET, LA-OA-45, and OA-saturated protein. The irreversibly bound OA does not affect the Ca(2+) association constant of the protein. Phase plot analysis of fluorimetric and CD data indicates that the OA binding process involves several hLA intermediates. The effective pseudoequilibrium OA association constants for Ca(2+)-free hLA were estimated. The far-UV CD spectra of Ca(2+)-free hLA show that all OA-bound forms of the protein are characterized by elevated content of alpha-helical structure. The various hLA-OA complexes possess similar cytotoxic activities against human epidermoid larynx carcinoma cells. Overall, the LA-OA-45 complex possesses physicochemical, structural, and cytotoxic properties closely resembling those of HAMLET. The fact that the HAMLET-like complex can be formed in aqueous solution makes the process of its preparation more transparent and

  10. Dietary stearic acid leads to a reduction of visceral adipose tissue in athymic nude mice.

    Directory of Open Access Journals (Sweden)

    Ming-Che Shen

    Full Text Available Stearic acid (C18:0 is a long chain dietary saturated fatty acid that has been shown to reduce metastatic tumor burden. Based on preliminary observations and the growing evidence that visceral fat is related to metastasis and decreased survival, we hypothesized that dietary stearic acid may reduce visceral fat. Athymic nude mice, which are used in models of human breast cancer metastasis, were fed a stearic acid, linoleic acid (safflower oil, or oleic acid (corn oil enriched diet or a low fat diet ad libitum. Total body weight did not differ significantly between dietary groups over the course of the experiment. However visceral fat was reduced by ∼70% in the stearic acid fed group compared to other diets. In contrast total body fat was only slightly reduced in the stearic acid diet fed mice when measured by dual-energy x-ray absorptiometry and quantitative magnetic resonance. Lean body mass was increased in the stearic acid fed group compared to all other groups by dual-energy x-ray absorptiometry. Dietary stearic acid significantly reduced serum glucose compared to all other diets and increased monocyte chemotactic protein-1 (MCP-1 compared to the low fat control. The low fat control diet had increased serum leptin compared to all other diets. To investigate possible mechanisms whereby stearic acid reduced visceral fat we used 3T3L1 fibroblasts/preadipocytes. Stearic acid had no direct effects on the process of differentiation or on the viability of mature adipocytes. However, unlike oleic acid and linoleic acid, stearic acid caused increased apoptosis (programmed cell death and cytotoxicity in preadipocytes. The apoptosis was, at least in part, due to increased caspase-3 activity and was associated with decreased cellular inhibitor of apoptosis protein-2 (cIAP2 and increased Bax gene expression. In conclusion, dietary stearic acid leads to dramatically reduced visceral fat likely by causing the apoptosis of preadipocytes.

  11. Structured triacylglycerol containing behenic and oleic acids suppresses triacylglycerol absorption and prevents obesity in rats

    Directory of Open Access Journals (Sweden)

    Takamatsu Kiyoharu

    2010-07-01

    Full Text Available Abstract Background Dietary 1(3-behenoyl-2,3(1-dioleoyl-rac-glycerol (BOO has been reported to inhibit pancreatic lipase activity in vitro and suppress postprandial hypertriacylglycerolemia in humans. In the present study, the anti-obesity activities of BOO and its inhibitory effects on lymphatic triacylglycerol (TAG absorption were investigated in rats. Methods In Experiment 1, rats were fed either BOO or soybean oil (SO diet for 6 weeks. In the BOO diet, 20% of SO was replaced with an experimental oil rich in BOO. In Experiments 2 and 3, rats cannulated in the thoracic duct were administered an emulsions containing trioleoylglycerol (OOO or an oil mixture (OOO:BOO, 9:1. Tri[1-14C]oleoylglycerol (14C-OOO was added to the emulsions administered in Experiment 3. Results No observable differences were detected in food intake or body weight gain between the BOO and SO groups in Experiment 1. Plasma and liver TAG concentrations and visceral fat weights were significantly lower in the BOO group than in the SO group. The apparent absorption rate of fat was significantly lower in the BOO group than in the SO group. In Experiment 2, the lymphatic recovery of oleic and behenic acids was significantly lower at 5 and 6 h after BOO administration than after OOO administration. In Experiment 3, the lymphatic recovery of 14C-OOO was significantly lower at 5 and 6 h after BOO administration than after OOO administration. Conclusions These results suggest that BOO prevents deposition of visceral fat and hepatic TAG by lowering and delaying intestinal absorption of TAG.

  12. Depression, daily stressors and inflammatory responses to high-fat meals: when stress overrides healthier food choices.

    Science.gov (United States)

    Kiecolt-Glaser, J K; Fagundes, C P; Andridge, R; Peng, J; Malarkey, W B; Habash, D; Belury, M A

    2017-03-01

    Depression, stress and diet can all alter inflammation. This double-blind, randomized crossover study addressed the impact of daily stressors and a history of major depressive disorder (MDD) on inflammatory responses to high-fat meals. During two separate 9.5 h admissions, 58 healthy women (38 breast cancer survivors and 20 demographically similar controls), mean age 53.1 years, received either a high saturated fat meal or a high oleic sunflower oil meal. The Daily Inventory of Stressful Events assessed prior day stressors and the Structured Clinical Interview for DSM-IV evaluated MDD. As expected, for a woman with no prior day stressors, C-reactive protein (CRP), serum amyloid A (SAA), intercellular adhesion molecule-1 (sICAM-1) and vascular cell adhesion molecule-1 (sVCAM-1) were higher following the saturated fat meal than the high oleic sunflower oil meal after controlling for pre-meal measures, age, trunk fat and physical activity. But if a woman had prior day stressors, these meal-related differences disappeared-because the stressors heightened CRP, SAA, sICAM-1 and sVCAM-1 responses to the sunflower oil meal, making it look more like the responses to the saturated fat meal. In addition, women with an MDD history had higher post-meal blood pressure responses than those without a similar history. These data show how recent stressors and an MDD history can reverberate through metabolic alterations, promoting inflammatory and atherogenic responses.

  13. Changes in relative and absolute concentrations of plasma phospholipid fatty acids observed in a randomized trial of Omega-3 fatty acids supplementation in Uganda.

    Science.gov (United States)

    Song, Xiaoling; Diep, Pho; Schenk, Jeannette M; Casper, Corey; Orem, Jackson; Makhoul, Zeina; Lampe, Johanna W; Neuhouser, Marian L

    2016-11-01

    Expressing circulating phospholipid fatty acids (PLFAs) in relative concentrations has some limitations: the total of all fatty acids are summed to 100%; therefore, the values of individual fatty acid are not independent. In this study we examined if both relative and absolute metrics could effectively measure changes in circulating PLFA concentrations in an intervention trial. 66 HIV and HHV8 infected patients in Uganda were randomized to take 3g/d of either long-chain omega-3 fatty acids (1856mg EPA and 1232mg DHA) or high-oleic safflower oil in a 12-week double-blind trial. Plasma samples were collected at baseline and end of trial. Relative weight percentage and absolute concentrations of 41 plasma PLFAs were measured using gas chromatography. Total cholesterol was also measured. Intervention-effect changes in concentrations were calculated as differences between end of 12-week trial and baseline. Pearson correlations of relative and absolute concentration changes in individual PLFAs were high (>0.6) for 37 of the 41 PLFAs analyzed. In the intervention arm, 17 PLFAs changed significantly in relative concentration and 16 in absolute concentration, 15 of which were identical. Absolute concentration of total PLFAs decreased 95.1mg/L (95% CI: 26.0, 164.2; P=0.0085), but total cholesterol did not change significantly in the intervention arm. No significant change was observed in any of the measurements in the placebo arm. Both relative weight percentage and absolute concentrations could effectively measure changes in plasma PLFA concentrations. EPA and DHA supplementation changes the concentrations of multiple plasma PLFAs besides EPA and DHA.Both relative weight percentage and absolute concentrations could effectively measure changes in plasma phospholipid fatty acid (PLFA) concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L..

    Directory of Open Access Journals (Sweden)

    Ming Li Wang

    Full Text Available Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1 and linoleic acid (C18:2 accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0, stearic acid (C18:0, arachidic acid (C20:0, gadoleic acid (C20:1, behenic acid (C22:0, and lignoceric acid (C24:0 are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022' and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20' were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL analysis. As a result, a total of 164 main-effect (M-QTLs and 27 epistatic (E-QTLs QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE. Thirty four major QTLs (>10% of PVE mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.

  15. Effect of the rooster semen enrichment with oleic acid on the quality of semen during chilled storage.

    Science.gov (United States)

    Eslami, M; Ghaniei, A; Mirzaei Rad, H

    2016-06-01

    Liquid storage of avian spermatozoa is currently being employed in programs utilizing the artificial insemination to optimize the management of genetically superior males. It is mandatory to use efficient semen storage techniques in order to prevent the reduction of the fertilizing ability of stored semen. The present study was designated to evaluate the effect of oleic acid on rooster semen quality stored at 4°C for 48 h. Semen was collected from 10 roosters twice a week. Good quality ejaculates were pooled and after dilution, the semen was enriched with 0 (control), 0.125 (O 0.125), 0.25 (O 0.25), 0.5 (O 0.5), and 1 (O1) millimolar oleate. Forward progressive motility and viability of spermatozoa were evaluated at 0, 24, and 48 h. Moreover, malondialdehyde (MDA) and total antioxidant activity (AOA) levels were measured in seminal plasma and spermatozoa at the mentioned time points. Motility was 80.33 ± 1.45, 80.00 ± 2.08, and 66.00 ± 2.30% at 24 h and 56.33 ± 1.45, 57.33 ± 2.18, and 41.33 ± 2.02% at 48 h in O 0.125, O 0.25, and control, respectively (P semen enrichment with low doses of oleate would exert beneficial effects on the quality of semen during cooled storage. © 2016 Poultry Science Association Inc.

  16. Volatile oil composition of Carthamus Tinctorius L. flowers grown in Kazakhstan.

    Science.gov (United States)

    Turgumbayeva, Aknur Amanbekovna; Ustenova, Gulbaram Omargazieva; Yeskalieva, Balakyz Kymyzgalievna; Ramazanova, Bakyt Amanullovna; Rahimov, Kairolla Duysenbayevich; Aisa, Hajiakbar; Juszkiewicz, Konrad T

    2018-03-14

    Carthamus tinctorius L. is commonly known as Safflower. C. tinctorius extracts and oil are important in drug development with numerous pharmacological activities in the world. This plant is cultivated mainly for its seed which is used as edible oil. For a long time, C. tinctorius has been used in traditional medicines as a purgative, analgesic, antipyretic and an antidote to poisoning. It is a useful plant in painful menstrual problems, post-partum haemorrhage and osteoporosis. The subject of this study is the seeds of Kazakhstan species of 'Akmai' safflower, collected in the flowering stage in Southern Kazakhstan. Volatile oil was carry out to study the component composition of Kazakhstan 'AkMai' safflower flowers. Pale yellow oily extracts were obtain by varying the process parameters. The volatile oil obtained by hydrodistillation of the petals Carthamus tinctorius L. was analyzed by gas chromatography/mass spectrometry (GC/MS). The yield of the oil was 0.175 % (v/w). 20 compounds representing 99.81% of the oil were characterized. The volatile oil was found to be rich in undecanoic acid, octane, 2-nonen -1-ol, hexadecanal, dodecanal, dec-2-en-1-ol, nonanoic acid, tetradecanoic acid, 2 pentadecanone, 6,10,14-trimethyl, 1,2-benzenedicarboxylic acid, isobutyl-beta-phenylpropionate, 1.3-cyclohexadiene, myrtenoic acid, octadecanoic acid, heneicosanoic acid, 2(3H)-furanone, 4,4-dipropylheptane, hexcosane,1-eicosanol, as well as heptocosane. Volatile oil from the flowers of the Kazakhstan safflower species 'Ak-Mai' were investigated by GC/MS which allowed the detection of 20 compounds. Biologically active complex of the flower of the Kazakhstan safflower species 'Ak-Mai' was released for the first time by using this oil.

  17. Effectiveness of carthamus tinctorius L. in the restitution of lipid composition in irradiated rats

    International Nuclear Information System (INIS)

    Zahran, A.M.; Omran, M.F.; Mansour, S.Z.; Ibrahim, N.K.

    2007-01-01

    Lipid peroxidation is a well known example of oxidative damage in cell membranes, lipoproteins, and other lipid-containing structures. The degenerative process of lipid peroxidation is induced under conditions of oxidative stress. This study was designated to evaluate in one aspect, the susceptibility of blood and liver lipid fractions to oxidative stress under influence of whole body gamma irradiation (6.5 Gy). The other aspect was to investigate the compensatory role of the Safflower extract (Carthamus tinctorius L., Composite) a premier oil containing the highest levels of polyunsaturated fats (rich in n-6 PUFA) to maintain and restore the biological membranes from oxidative stress. Mixture of safflower essential oils and hydro-alcoholic extract was orally administered to Sprague Dawley rats by gavages vehicle (150 mg/ Kg body wt) for 21 successive days before exposure to y-rays and 7 days after irradiation. Exposure to y-rays resulted in significant increase in triacylglycerols, phospholipids, cholesterol indices and MDA contents. Meanwhile, the results show a significant decline in most fractionated unsaturated fatty acids concentrations. The administration of safflower essential oils and ethanolic extract exerted a noticeable compensation in the radiation-induced changes in most of the studied parameters. The results point out the promising role of safflower, a natural product, on oxidative damage and lipid composition

  18. A phenylalanine in DGAT is a key determinant of oil content and composition in maize.

    Science.gov (United States)

    Zheng, Peizhong; Allen, William B; Roesler, Keith; Williams, Mark E; Zhang, Shirong; Li, Jiming; Glassman, Kimberly; Ranch, Jerry; Nubel, Douglas; Solawetz, William; Bhattramakki, Dinakar; Llaca, Victor; Deschamps, Stéphane; Zhong, Gan-Yuan; Tarczynski, Mitchell C; Shen, Bo

    2008-03-01

    Plant oil is an important renewable resource for biodiesel production and for dietary consumption by humans and livestock. Through genetic mapping of the oil trait in plants, studies have reported multiple quantitative trait loci (QTLs) with small effects, but the molecular basis of oil QTLs remains largely unknown. Here we show that a high-oil QTL (qHO6) affecting maize seed oil and oleic-acid contents encodes an acyl-CoA:diacylglycerol acyltransferase (DGAT1-2), which catalyzes the final step of oil synthesis. We further show that a phenylalanine insertion in DGAT1-2 at position 469 (F469) is responsible for the increased oil and oleic-acid contents. The DGAT1-2 allele with F469 is ancestral, whereas the allele without F469 is a more recent mutant selected by domestication or breeding. Ectopic expression of the high-oil DGAT1-2 allele increases oil and oleic-acid contents by up to 41% and 107%, respectively. This work provides insights into the molecular basis of natural variation of oil and oleic-acid contents in plants and highlights DGAT as a promising target for increasing oil and oleic-acid contents in other crops.

  19. Sida rhomboidea.Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Influence of Poly(ethylenimine) on the Monolayer of Oleic Acid at the Air/Water Interface.

    Science.gov (United States)

    Hwan Ha, Tai; Kyu Kim, Dai; Choi, Myung-Un; Kim, Kwan

    2000-06-01

    The effect of poly(ethylenimine) (PEI) dissolved in water on the surface pressure-area isotherm of oleic acid (OA) at the air/water interface was investigated. On a concentrated PEI solution, the isotherm of the OA monolayers exhibited a noticeable difference as a function of subphase pH. PEI caused the collapse pressure of the OA monolayer to increase up to 45 mN/m, due to a stronger acid-base-type interaction occurring between the amine group of the PEI and the carboxyl group of OA; on a pure water subphase, the collapse pressure was;28 mN/m. On the other hand, owing to a stronger OA-PEI interaction, the OA monolayers favored a liquid-expanded state more on the PEI-containing water subphase than on the pure water. From the QCM measurement, each OA molecule appeared to interact, on average, with 4.3-5.8 ethylenimine repeating units at basic pHs. We also found that OA multilayers could be assembled on a hydrophilic substrate by a Z-type Langmuir-Blodgett (LB) deposition in a PEI-containing subphase at basic pHs. The ATR-IR spectral data revealed that, in a Z-type LB film, the headgroup of OA was mostly present as carboxylate, interacting in an ionic state with the protonated amine groups of PEI. In acidic conditions, neither a Y-type nor a Z-type deposition was really accomplished. Nonetheless, the ATR-IR spectral data suggested that OA molecules should exist in a monomeric state in a LB film assembled at acidic pHs without PEI while they would form intermolecular hydrogen bridges and/or dimers in the presence of PEI. Copyright 2000 Academic Press.

  1. Decreased production of interleukin-6 and prostaglandin E2 associated with inhibition of delta-5 desaturation of omega6 fatty acids in mice fed safflower oil diets supplemented with sesamol.

    Science.gov (United States)

    Chavali, S R; Forse, R A

    1999-12-01

    The differences in the immune responses in mice fed sesame oil diets and those fed sesamin may be attributed to the presence of other lignans in the non-fat portion of the oil. The fatty acid composition (mean +/- SD mol. %) of liver membrane phospholipids and the levels of endotoxin-induced prostaglandin (PG) E2, interleukin (IL)-6, IL-10, IL-12 and tumor necrosis factor (TNF)-alpha were determined in mice fed diets supplemented with 5% safflower oil (SO) in the absence or presence of 1% sesamol. The levels of dihomo-gamma-linolenic acid (20:3omega6) were markedly higher (P<0.025) in the livers from mice fed sesamol supplemented SO diets (1.6 +/- 0.1) compared to the controls (1.4 +/- 0.1). These data suggest that sesamol or its metabolite could inhibit the in vivo delta-5 desaturation of omega6 fatty acids. Further, in animals fed sesamol supplemented SO diets, the levels of PGE2 (228 +/- 41 pg/ml) were markedly lower (P<0.01) compared to those fed SO diet alone (1355 +/- 188 pg/ml). Concomitantly, the concentrations of IL-6 were also lower (P<0.01) in mice fed sesamol diet (63 +/- 11 ng/ml) compared to the controls (143 +/- 22 ng/ml). A marked reduction in the levels of PGE2 in animals fed sesamol diets suggests that sesamol or its metabolite could inhibit the activity of cyclooxygenase enzyme.

  2. Clofibric acid increases the formation of oleic acid in endoplasmic reticulum of the liver of rats.

    Science.gov (United States)

    Hirose, Akihiko; Yamazaki, Tohru; Sakamoto, Takeshi; Sunaga, Katsuyoshi; Tsuda, Tadashi; Mitsumoto, Atsushi; Kudo, Naomi; Kawashima, Yoichi

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [¹⁴C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellular organelles, microsomes, peroxisomes, and mitochondria, was estimated on the basis of correction utilizing the yields from homogenates of marker enzymes for these organelles. The radioactivity was mostly localized in microsomes and the radiolabeled fatty acids present in microsomes were significantly increased by the treatment of rats with clofibric acid. The formation of radiolabeled 18:1 in microsomes markedly increased and incorporations of the formed [¹⁴C]18:1 into PC and phosphatidylethanolamine in microsomes were augmented in response to clofibric acid. The [¹⁴C]18:1 incorporated into PC was mostly located at the C-2 position, but not the C-1 position, of PC, and the radioactivity in 18:1 at the C-2 position of PC was strikingly increased by clofibric acid. These results obtained from the in vivo experiments directly link the findings that clofibric acid treatment induces microsomal stearoyl-CoA desaturase and 1-acylglycerophosphocholine acyltransferase in the liver and the findings that the treatment with the drug elevated absolute mass and mass proportion of 18:1 at the C-2 position, but not the C-1 position, of PC in the liver together.

  3. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Rader Daniel J

    2011-10-01

    Full Text Available Abstract Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC n-3 polyunsaturated fatty acids (PUFA is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA or safflower oil (n-6 PUFA (both 10% [w/w] and either cholesterol-supplemented (0.1% cholesterol [w/w] or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]. Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL cholesterol and triglyceride concentrations (P Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  4. Condition-dependent pheromone signaling by male rock lizards: more oily scents are more attractive.

    Science.gov (United States)

    Martín, José; López, Pilar

    2010-05-01

    Pheromones of vertebrates are often a mixture of several chemicals with different properties and messages, and their production seems condition dependent. Thus, pheromones are a good, but little studied, example of multiple sexual signals. Femoral gland secretions of male rock lizards Iberolacerta cyreni contain steroids that may act as pheromones, but there are also many other lipids, such as oleic acid, whose allocation to secretions may be costly because it has to be diverted from body fat reserves. This suggests that oleic acid could also have some function in secretions. Chemical analyses showed that proportions of oleic acid in femoral secretions of males were positively related to body condition of males, suggesting that the oleic acid secreted may reflect the amount of body fat reserves of a male. Tongue-flick bioassays showed that females were able to detect by chemosensory cues alone differences in proportions of oleic acid in secretions of males. Scents of males with more oleic acid elicited stronger chemosensory responses by females. Further tests with chemical standards confirmed that females distinguished oleic acid, and changes in its concentration, from other chemicals that are naturally found in secretions of males. Moreover, choice trials of scent-marked substrates showed that females were more attracted to areas that were experimentally manipulated to increase the proportion of oleic acid in natural scent marks of males. We suggest that oleic acid in femoral secretions might be a reliable advertisement of a male's body condition, which females could use to select high-quality mates in conjunction with information provided by other chemicals. Alternatively, scent marks with more oleic acid might be simply more attractive to females if chemosensory responses of females to scent of males were originated by a preexisting sensory bias for food chemicals such as the oleic acid. Nevertheless, this sensory trap might have evolved into an honest signal

  5. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan.

    Science.gov (United States)

    Jabeen, Nusrat; Ahmad, Rafiq

    2013-05-01

    Salt tolerance is a complex trait which involves the coordinated action of many genes that perform a variety of functions, such as ion sequestration, metabolic adjustment, osmotic adjustment and antioxidative defence. In this article, the growth and the generation and scavenging of reactive oxygen species (ROS) under normal (ECiw [Electrical conductivity of irrigation water] = 0.5 dS m(-1)) and salt stress conditions (ECiw = 3.4, 6.1, 8.6 and 10.8 dS m(-1) ) in relation to the priming of seeds of the two important oil yielding crops, i.e. safflower and sunflower, with different concentrations of chitosan [0% (control), 0.25%, 0.50%, 0.75%] is discussed. Induced salinity stress significantly decreased germination percentage, germination rate, length and weight of root and shoot, and protein content. Proline content, malondialdehyde content (MDA), catalase (CAT) and peroxidase (POX) activity increased at 10.8 dS m(-1). Under control conditions there were no significant differences in germination percentage among different concentrations of chitosan, whereas CAT and POX activity were increased by low concentrations of chitosan. With increasing salt stress, low concentrations of chitosan increased germination percentage but decreased MDA and proline contents and CAT and POX activity. Generation of ROS seems to be unavoidable under normal conditions and the activity of antioxidant enzymes in plants varies in terms of ROS generation under salt stress. However, the data indicate that plants subjected to salt stress-induced oxidative stress and the low concentrations of chitosan exhibited positive effects on salt stress alleviation through the reduction of enzyme activity in both crops. © 2012 Society of Chemical Industry.

  6. Background diet and fat type alters plasma lipoprotein response but not aortic cholesterol accumulation in F1B Golden Syrian hamsters.

    Science.gov (United States)

    Dillard, Alice; Matthan, Nirupa R; Spartano, Nicole L; Butkowski, Ann E; Lichtenstein, Alice H

    2013-12-01

    Dietary modification alters plasma lipoprotein profiles and atherosclerotic lesion progression in humans and some animal models. Variability in response to diet induced atherosclerosis has been reported in hamsters. Assessed was the interaction between background diet composition and dietary fat type on aortic cholesterol accumulation, lipoprotein profiles, hepatic lipids and selected genes. F1B Golden Syrian hamsters (20/group) were fed (12 weeks) semi-purified or non-purified diets containing either 10 % (w/w) coconut oil or safflower oil and 0.15 % (w/w) cholesterol. The non-purified diets relative to semi-purified diets resulted in significantly higher TC (72 % [percent difference] and 38 %, coconut oil and safflower oil, respectively) and nHDL-C (84 and 61 %, coconut oil and safflower oil, respectively), and lower HDL-C (-47 and -45 %, coconut oil and safflower oil, respectively) concentrations. Plasma triacylglycerol concentrations in the hamsters fed the non-purified coconut oil-supplemented diets were three- to fourfold higher than non-purified safflower oil-supplemented, and both semi-purified diets. With the exception of HDL-C, a significant effect of fat type was observed in TC, nHDL-C and triacylglycerol (all P < 0.05) concentrations. Regardless of diet induced differences in lipoprotein profiles, there was no significant effect on aortic cholesterol accumulation. There was an inverse relationship between plasma nHDL-C and triacylglycerol, and hepatic cholesteryl ester content (P < 0.001). Diet induced differences in hepatic gene transcription (LDL receptor, apoB-100, microsomal transfer protein) were not reflected in protein concentrations. Although hamsters fed non-purified and/or saturated fatty acid-supplemented diets had more atherogenic lipoprotein profiles compared to hamsters fed semi-purified and/or polyunsaturated fatty acid-supplemented diets these differences were not reflected in aortic cholesterol accumulation.

  7. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1-40 in mice.

    Science.gov (United States)

    Hopperton, Kathryn E; Trépanier, Marc-Olivier; Giuliano, Vanessa; Bazinet, Richard P

    2016-09-29

    Neuroinflammation is a proposed mechanism by which Alzheimer's disease (AD) pathology potentiates neuronal death and cognitive decline. Consumption of omega-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of AD in human observational studies and exerts protective effects on cognition and pathology in animal models. These fatty acids and molecules derived from them are known to have anti-inflammatory and pro-resolving properties, presenting a potential mechanism for these protective effects. Here, we explore this mechanism using fat-1 transgenic mice and their wild type littermates weaned onto either a fish oil diet (high in n-3 PUFA) or a safflower oil diet (negligible n-3 PUFA). The fat-1 mouse carries a transgene that enables it to convert omega-6 to omega-3 PUFA. At 12 weeks of age, mice underwent intracerebroventricular (icv) infusion of amyloid-β 1-40. Brains were collected between 1 and 28 days post-icv, and hippocampal microglia, astrocytes, and degenerating neurons were quantified by immunohistochemistry with epifluorescence microscopy, while microglia morphology was assessed with confocal microscopy and skeleton analysis. Fat-1 mice fed with the safflower oil diet and wild type mice fed with the fish oil diet had higher brain DHA in comparison with the wild type mice fed with the safflower oil diet. Relative to the wild type mice fed with the safflower oil diet, fat-1 mice exhibited a lower peak in the number of labelled microglia, wild type mice fed with fish oil had fewer degenerating neurons, and both exhibited alterations in microglia morphology at 10 days post-surgery. There were no differences in astrocyte number at any time point and no differences in the time course of microglia or astrocyte activation following infusion of amyloid-β 1-40. Increasing brain DHA, through either dietary or transgenic means, decreases some elements of the inflammatory response to amyloid-β in a mouse model of AD. This supports the

  8. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    Science.gov (United States)

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  9. Structured triglycerides containing caprylic (8:0) and oleic (18:1) fatty acids reduce blood cholesterol concentrations and aortic cholesterol accumulation in hamsters.

    Science.gov (United States)

    Wilson, Thomas A; Kritchevsky, David; Kotyla, Timothy; Nicolosi, Robert J

    2006-03-01

    The effects of structured triglycerides containing one long chain fatty acid (oleic acid, C18:1) and one short chain saturated fatty acid (caprylic acid, 8:0) on lipidemia, liver and aortic cholesterol, and fecal neutral sterol excretion were investigated in male Golden Syrian hamsters fed a hypercholesterolemic regimen consisting of 89.9% commercial ration to which was added 10% coconut oil and 0.1% cholesterol (w/w). After 2 weeks on the HCD diet, the hamsters were bled, following an overnight fast (16 h) and placed into one of three dietary treatments of eight animals each based on similar plasma cholesterol levels. The hamsters either continued on the HCD diet or were placed on diets in which the coconut oil was replaced by one of two structured triglycerides, namely, 1(3),2-dicaproyl-3(1)-oleoylglycerol (OCC) or 1,3-dicaproyl-2-oleoylglycerol (COC) at 10% by weight. Plasma total cholesterol (TC) in hamsters fed the OCC and COC compared to the HCD were reduced 40% and 49%, respectively (Pstructured triglyceride oils had lower blood cholesterol levels and lower aortic accumulation of cholesterol compared to the control fed hamsters.

  10. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Wiese, Stefanie

    2016-01-01

    -glucosidase inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy (HR-bioassay/HPLC–HRMS–SPE–NMR). The results showed Ascophyllum nodosum and Fucus vesicolosus to be rich in antioxidants, equaling...... as fatty acids – with oleic acid, linoleic acid and eicosapentaenoic acid being the most potent with IC50 values of 0.069, 0.075 and 0.10 mM, respectively, and showing a mixed-type inhibition mode....

  11. The use of docosahexaenoic acid supplementation to ameliorate the hyperactivity of rat pups induced by in utero ethanol exposure

    OpenAIRE

    Furuya, Hiroyuki; Aikawa, Hiroyuki; Yoshida, Takahiko; Okazaki, Isao

    2000-01-01

    It has been demonstrated thatin utero ethanol (EtOH) exposure induces hyperactive behavior and learning disturbances in offspring. In order to investigate the effects of docosahexaenoic acid (DHA) on these neurobehavioral dysfunctions of rat pups induced byin utero EtOH exposure, pregnant Wistar rats were divided into four treatment groups depending on the type of oil added to the diet and drinking water as follows; (a) 5% safflower oil with tap water (TW/n-6), (b) 3% safflower oil and 2% DHA...

  12. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    Science.gov (United States)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  13. Clustering effects on postprandial insulin secretion and sensitivity in response to meals with different fatty acid compositions.

    Science.gov (United States)

    Bermudez, Beatriz; Ortega-Gomez, Almudena; Varela, Lourdes M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G; Lopez, Sergio

    2014-07-25

    Dietary fatty acids play a role in glucose homeostasis. The aim of this study was to assess the individual relationship between dietary saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids with postprandial β-cell function and insulin sensitivity in subjects with normal and high fasting triglycerides. We assessed postprandial β-cell function (by the insulinogenic index and the ratio of the insulin to glucose areas under the time-concentration curve) and insulin sensitivity (by the oral glucose and the minimal model insulin sensitivity indices) over four nonconsecutive, randomly assigned, high-fat meals containing a panel of SFA (palmitic and stearic acids), MUFA (palmitoleic and oleic acids) and PUFA (linoleic and α-linolenic acids) in 14 subjects with normal and in 14 subjects with high fasting triglycerides. The proportions of each fatty acid in the meals and the values for surrogate measures of postprandial β-cell function and insulin sensitivity were subjected to a Pearson correlation and hierarchical cluster analysis, which revealed two classes of dietary fatty acids for regulating postprandial glucose homeostasis. We successfully discriminated the adverse effects of SFA palmitic acid from the beneficial effects of MUFA oleic acid on postprandial β-cell function (r ≥ 0.84 for SFA palmitic acid and r ≥ -0.71 for MUFA oleic acid; P < 0.05) and insulin sensitivity (r ≥ -0.92 for SFA palmitic acid and r ≥ 0.89 for MUFA oleic acid; P < 0.001) both in subjects with normal and high fasting triglycerides. In conclusion, dietary MUFA oleic acid, in contrast to SFA palmitic acid, favours the tuning towards better postprandial glycaemic control in subjects with normal and high fasting triglycerides.

  14. Effects of dietary fat energy restriction and fish oil feeding on hepatic metabolic abnormalities and insulin resistance in KK mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Arai, Takeshi; Kim, Hyoun-ju; Hirako, Satoshi; Nakasatomi, Maki; Chiba, Hiroshige; Matsumoto, Akiyo

    2013-01-01

    We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets - LSO, FO2.5, FO12.5 or FO25 - containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Evaporative light scattering detector in normal-phase high-performance liquid chromatography determination of FAME oxidation products.

    Science.gov (United States)

    Morales, Arturo; Marmesat, Susana; Dobarganes, M Carmen; Márquez-Ruiz, Gloria; Velasco, Joaquín

    2012-09-07

    The use of an ELS detector in NP-HPLC for quantitative analysis of oxidation products in FAME obtained from oils is evaluated in this study. The results obtained have shown that the ELS detector enables the quantitative determination of the hydroperoxides of oleic and linoleic acid methyl esters as a whole, and connected in series with a UV detector makes it possible to determine both groups of compounds by difference, providing useful complementary information. The limits of detection (LOD) and quantification (LOQ) found for hydroperoxides were respectively 2.5 and 5.7 μg mL⁻¹ and precision of quantitation expressed as coefficient of variation was lower than 10%. Due to a low sensitivity the ELS detector shows limitations to determine the low contents of secondary oxidation products in the direct analysis of FAME oxidized at low or moderate temperature. Analysis of FAME samples obtained either from high linoleic sunflower oil (HLSO) or high oleic sunflower oil (HOSO) and oxidized at 80 °C showed that only ketodienes formed from methyl linoleate can be determined in samples with relatively high oxidation, being the LOD and LOQ 0.2 and 0.4 mg/g FAME, respectively, at the analytical conditions applied. The ELS detector also enabled the determination of methyl cis-9,10-epoxystearate and methyl trans-9,10-epoxystearate, which were resolved at the chromatographic conditions applied. Results showed that these compounds, which are formed from methyl oleate, were not detected in the high-linoleic sample, but occurred at non-negligible levels in the oxidized FAME obtained from HOSO. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Protective Effects of Alpha-Lipoic Acid on Oleic Acid-Induced Acute Lung Injury in Rats

    Directory of Open Access Journals (Sweden)

    Funda Gülcü Bulmuş

    2013-09-01

    Full Text Available Background: Oxidative stress is believed to be an important factor in the pathogenesis of acute lung injury (ALI. Aims: The aim of this study was to investigate the possible protective role of alpha-lipoic acid (α-LA on oleic acid (OA-induced ALI in rats. Study Design: Animal experiment. Methods: A total of thirty-five rats were divided into five groups in the study. Group 1 served as a control group. Rats in Group 2 (α-LA were administered α-LA intraperitoneally at a dose of 100 mg/kg body weight (BW. Rats in Group 3 (OA were administered OA intravenously at a dose of 100 mg/kg BW. In Group 4 (pre-OA-α-LA, α-LA was given 15 minutes prior to OA infusion, and in Group 5 (post-OA-α-LA, α-LA was given two hours after OA infusion. Four hours after the OA infusion, rats were decapitated. Blood samples were collected to measure serum levels of malondialdehyde (MDA and glutathione (GSH, and the levels of activity for superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GSH-Px. Lung tissue samples were taken for histopathological examination. Results: Exposure to OA resulted in increases in serum MDA levels (p<0.001, as well as histopathological lesions in lung tissue, and decreases in CAT (p<0.05, GSH-Px (p<0.05 activities and GSH (p<0.05 levels. On the other hand, MDA levels were decreased significantly (p<0.001, while CAT (p<0.05, GSH-Px (p<0.01 activities and GSH (p<0.05 levels were increased significantly in the pre-OA-α-LA group compared with the OA group. Conclusion: α-LA was found to lessen oxidative stress and to have positive effects on antioxidants in cases of OA-induced ALI. In conclusion, α-LA appears to have protective effects against ALI and potential for the prevention of ALI.

  17. Microstructure and thermal and functional properties of biodegradable films produced using zein

    Directory of Open Access Journals (Sweden)

    Crislene Barbosa de Almeida

    2018-03-01

    Full Text Available Abstract Research is being conducted in an attempt to produce biodegradable packaging to replace plastic products, thereby reducing solid waste disposal. In this work, zein films were produced from vegetable oils (macadamia, olive and buriti and from pure oleic acid. The surface of zein-based films made using oleic acid has a good lipid distribution. The high content of oleic acid produced a film with the greatest elongation at break (8.08 ± 2.71% due to the greater homogeneity of the protein matrix. The different oils did not affect the glass transition temperature (Tg. Tg curves of films with fatty acids showed a reduction in mass at between 50 and 120 °C due to water evaporation. At 120 °C the weight loss was 3-5% and above this temperature further weight loss was observed with the highest loss being seen in the film made using pure oleic acid. In conclusion, although biodegradable films were produced using the four different oils, the film made from pure oleic acid has the best characteristics.

  18. Using Raman Spectroscopy in Studying the Effect of Propylene Glycol, Oleic Acid, and Their Combination on the Rat Skin.

    Science.gov (United States)

    Atef, Eman; Altuwaijri, Njoud

    2018-01-01

    The permeability enhancement effect of oleic acid (OA) and propylene glycol (PG) as well as their (1:1 v/v) combined mixture was studied using rat skin. The percutaneous drug administration is a challenge and an opportunity for drug delivery. To date, there is limited research that illustrates the mechanism of penetration enhancers and their combinations on the skin. This project aims to explore the skin diffusion and penetration enhancement of PG, OA, and a combination of PG-OA (1:1 v/v) on rat skin and to identify the potential synergistic effect of the two enhancers utilizing Raman spectroscopy. Dissected dorsal skin was treated with either PG or OA or their combination for predetermined time intervals after which the Raman spectra of the treated skin were collected with the enhancer. A spectrum of the wiped and the washed skin were also collected. The skin integrity was tested before and after exposure to PG. The skin histology proved that the skin integrity has been maintained during experiments and the results indicated that OA disrupted rat skin lipid as evident by changes in the lipid peak. The results also showed that PG and OA improved the diffusion of each other and created faster, yet reversible changes of the skin peaks. In conclusion, Raman spectroscopy is a potential tool for ex vivo skin diffusion studies. We also concluded that PG and OA have potential synergistic reversible effect on the skin.

  19. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine

    NARCIS (Netherlands)

    Wit, de N.J.W.; Derrien, M.; Bosch-Vermeulen, H.; Oosterink, E.; Keshtkar, S.; Duval, C.N.C.; Vogel-van den Bosch, de H.M.; Kleerebezem, M.; Muller, M.R.; Meer, van der R.

    2012-01-01

    We studied the effect of dietary fat type, varying in polyunsaturated-to-saturated fatty acid ratios (P/S), on development of metabolic syndrome. C57Bl/6J mice were fed purified high-fat diets (45E% fat) containing palm oil (HF-PO; P/S 0.4), olive oil (HF-OO; P/S 1.1), or safflower oil (HF-SO; P/S

  20. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine

    NARCIS (Netherlands)

    Wit, de Nicole; Oosterink, Els; Bosch-Vermeulen, Hanneke; Keshtkar, Shohreh; Duval, C.N.C.; Vogel-van den Bosch, de Johan; Muller, Michael; Meer, van der Roelof

    2012-01-01

    We studied the effect of dietary fat type, varying in polyunsaturated/saturated fatty acid ratio's (P/S) on development of metabolic syndrome. C57Bl/6J mice were fed purified high-fat diets (45E% fat) containing palm oil (HF-PO; P/S 0.4), olive oil (HF-OO; P/S 1.1) or safflower oil (HF-SO; P/S 7.8)

  1. High oleic sunflower biodiesel: quality control and different purification methods

    Directory of Open Access Journals (Sweden)

    Pighinelli, Anna L.M.T.

    2011-06-01

    Full Text Available The objective of the present work is to evaluate the production of biodiesel using ethanol and sunflower oil. The extraction of the sunflower oil was evaluated first. An experimental design was used to estimate the influence of the independent variables grain temperature (25º to 110ºC and expeller rotation (85 to 119rpm on the crude oil. The best result obtained was 68.38%, achieved with a rotation from 100 to 115rpm, grain temperature ranging from 25º to 30ºC and moisture content of around 7%. The next study consisted of transesterification, evaluating the influence of the ethanol, oil molar ratio and the catalyst concentration (sodium methylate on the ester-rich phase yield. The highest yield was 98.39% obtained with a molar ratio of 9:1 and 3% catalyst. An experiment was then carried out on a small reactor and the biodiesel produced was purified by three different methods: acidified water, silica and distillation. The quality aspects of the purified biodiesel samples were evaluated according to the Brazilian specifications for biodiesel, and distillation was shown to be the best method of purification.

    El objetivo del presente trabajo es evaluar la producción de biodiesel usando etanol y aceite de girasol. La extracción del aceite de girasol fue evaluada primero. Un diseño experimental fue usado para estimar la influencia de las variables independientes: temperatura del grano (25º a 110ºC y rotación del expeller (85 a 119 rpm en la obtención del aceite crudo. El mejor resultado obtenido fue un 68,38%, conseguido con una rotación de 100 a 115 rpm, una temperatura del grano de 25º a 30ºC y un contenido de humedad de alrededor del 7%. El siguiente estudio mediante transesterificación, evaluó la influencia de la relación molar etanol: aceite y concentración de catalizador (metilato sódico en el rendimiento de la fase rica en esteres. El rendimiento más alto fue 98,39% obtenido con una relación molar de 9.1 y 3% de catalizador. Un experimento fue entonces realizado en un pequeño reactor, y el biodiesel producido fue purificado por tres métodos diferentes: agua ácida, sílica y destilación. Los aspectos de calidad de las muestras de biodiesel purificadas fueron evaluados de acuerdo a las especificaciones brasileñas para biodiesel, y la destilación mostro ser el mejor método de purificación.

  2. Investigation of wettability to evaluate the morphology and surface tension wood filler

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2017-01-01

    Full Text Available In this paper, we propose a new scheme of a highly efficient line for preparing safflower grains for processing consisting of an air-sieve separator, a magnetic separator, an ovary, a puppet, and a stone picker. The new after vortex separator is a vibroseparator for separating the products close in physical properties, grinding Machine with a duo-aspirator, a photoseparator and a device for moisture-thermal treatment. Advantages of the proposed line for preparation of safflower grain for processing are that an additional plant in front of the photocarerator of the grinding machine and duo-espirator allows the crest to separate and remove or refine the shell of the seed in the form of a shell layer for more efficient subsequent spectral point analysis, which determines the grain composition for the purpose of sorting it On the basis of chemical composition and color in the photo separator, and sequential placement after the stone separator of a vibro separator for separation of products close in physical properties, a grinding machine with a duo-aspirator, a photoseparator and a device for moisture-thermal treatment, provides an intensification of the technological process of efficient separation of safflower from impurities and its preparation for further processing and Due to the rational layout of equipment.A highly efficient photocell separator is also provided, the advantages of which are that the installation of a storage and vibrating feeder in relation to the slanting tray from the back side and the execution of a smooth curved transition to the vibrating feeder in the upper part of the pitcher allows improving the separation of grain products by reducing the amplitude of grain oscillations, Caused by a rebound from the surface of the tray during the loading of the sorted material from the vibrating feeder.

  3. Transesterification of linoleic and oleic sunflower oils to biodiesel using CaO as a solid base catalyst

    Directory of Open Access Journals (Sweden)

    Predojević Zlatica

    2012-01-01

    Full Text Available The purpose of this work is to characterize biodiesel (i.e. methyl esters, MEs produced from linoleic and oleic sunflower oils (LSO and OSO, respectively by alkali transesterification with methanol and CaO as a heterogeneous catalyst under different reaction parameters. The parameters investigated were the methanol/oil molar ratio (4.5:1, 6:1, 7.5:1, 9:1 and 12:1 and the mass ratio of CaO to oil (2% and 3%. The physical and chemical properties of the feedstocks and MEs, like density at 15oC, kinematic viscosity at 40oC, acid value, iodine value, saponification value, cetane index, fatty acid (methyl ester composition, were determined in order to investigate the effects of LSO and OSO properties and reaction parameters on the product characteristics, yields and purity. The properties of feedstock had decisive effect on the physical and chemical properties of MEs as majority of them did not differ significantly under studied reaction conditions. The MEs produced generally met the criteria required for commercial biodiesel; in fact, the only exception was in the case of iodine value of ME produced from LSO. The product yields only slightly changed with the applied conditions; the highest yield (99.22% was obtained for ME-LSO produced at 6 mol% methanol to oil ratio, while the lowest one (93.20% was for ME-OSO produced under the lowest methanol/oil molar ratio (4.5:1. The applied catalyst amounts had similar influence on the oil conversion to biodiesel. The yields of ME-LSOs were in general somewhat higher than those obtained for ME-OSOs under the same conditions, which was attributed to the influence of the respective feedstocks' acid value and viscosity.

  4. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    Science.gov (United States)

    Nemashkalova, Ekaterina L; Kazakov, Alexei S; Khasanova, Leysan M; Permyakov, Eugene A; Permyakov, Sergei E

    2013-09-10

    HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.

  5. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    Science.gov (United States)

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia. © 2015 Wiley Periodicals, Inc.

  6. Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system.

    Science.gov (United States)

    He, Meng; Huang, Peng; Zhang, Chunlei; Ma, Jiebing; He, Rong; Cui, Daxiang

    2012-05-07

    Herein, we introduce a facile, user- and environmentally friendly (n-octanol-induced) oleic acid (OA)/ionic liquid (IL) two-phase system for the phase- and size-controllable synthesis of water-soluble hexagonal rare earth (RE = La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (size are discussed in detail. More importantly, the mechanism of the (n-octanol-induced) OA/IL two-phase system, the formation of the RE fluoride nanocrystals, and the distinctive size- and morphology-controlling capacity of the system are presented. BmimPF(6) is versatile in term of crystal-phase manipulation, size and shape maintenance, and providing water solubility in a one-step reaction. The luminescent properties of Er(3+)-, Ho(3+)-, and Tm(3+)-doped LaF(3), NaGdF(4), and NaYF(4) nanocrystals were also studied. It is worth noting that the as-prepared products can be directly dispersed in water due to the hydrophilic property of Bmim(+) (cationic part of the IL) as a capping agent. This advantageous feature has made the IL-capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF(4):Yb,Er nanocrystals before and after silica coating was conducted for further biological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Measurement of hepatic sterol synthesis in the Mongolian gerbil in vivo using [3H]water: diurnal variation and effect of type of dietary fat

    International Nuclear Information System (INIS)

    Mercer, N.J.; Holub, B.J.

    1981-01-01

    The hepatic synthesis of sterol was measured in the male Mongolian gerbil (Meriones unguiculatus) in vivo following the administration of [ 3 H]water by monitoring the incorporation of radioactivity into digitonin-precipitable sterol. A diurnal rhythm in cholesterol synthesis was exhibited under conditions of ad libitum feeding with alternating 12-hour periods of light (0200 to 1400 hr) and dark (1400 to 0200 hr). The zenith was reached between 1500 and 2100 hr and the nadir approximately 10-12 hours later between 0200 and 0400 hr, which provided a zenith/nadir ratio of 9.6 to 1.0. The in vivo rates of hepatic sterol synthesis and plasma cholesterol levels were measured in gerbils fed semi-purified diets containing either 19.5% beef tallow + 0.5% safflower, 20% lard, or 20% safflower oil and widely differing ratios of polyunsaturated: saturated fatty acids. All diets were equalized to contain 0.01% cholesterol and 0.05% plant sterol. After 3 days on the experimental diets, the mean rates of cholesterol synthesis (nmol/g liver per hr) were 41.5, 26.6, and 13.8 for animals fed the diets containing beef tallow, lard, and safflower oil, respectively. After 7 and 14 days, synthetic rates were lowest in the gerbils fed safflower oil as were also the plasma cholesterol levels. These results indicate that the type of dietary lipid can significantly influence the in vivo rate of sterol biosynthesis in gerbil liver. This response may contribute, at least in part, to the observed differences in plasma cholesterol levels

  8. Genetic variability in Cynara cardunculus L. domestic and wild types for grain oil production and fatty acids composition

    International Nuclear Information System (INIS)

    Raccuia, Salvatore Antonino; Piscioneri, Ilario; Sharma, Neeta; Melilli, Maria Grazia

    2011-01-01

    This paper aimed to study the genetic variability within different types of Cynara cardunculus L., domestic and wild types, for their grain oil amount and oil fatty acid composition. The grain oils were extracted from 8 domestic cardoons and 4 wild cardoons, by Soxhlet method, and obtained oils were characterized for palmitic, stearic, oleic and linoleic acids by gas chromatography. The oil amount, resulted on average of accessions 216 g kg -1 DM with a good range of variability (CV = 11.7%). Unsaturated acids (oleic and linoleic) predominated over saturated ones (stearic and palmitic acids), the chemical characterization of extracted oil, showed the main compound (as % of analysed fatty acids), averaged for all populations, was linoleic acid (44.5%), followed by oleic acid (42.6%), palmitic acid (9.8%) and stearic acid (3.1%). In particular referring the oleic acid wild cardoon populations showed a mean value of 289 g kg -1 oil, against a mean value of 472 g kg -1 oil showed by domestic cardoon accessions. Three of the studied domestic cardoon ('DC1', 'DC3' and 'DC7') showed values higher than 795 g kg -1 oil, while all the other accessions had concentration lower than 370 g kg -1 oil. The three types of domestic cardoon 'DC1', 'DC3' and 'DC7' showed a fatty acids profile similar to genetic modified sunflower oil, representing new genetic material that potentially could be used for high quality biodiesel production, characterised by a low Iodine Number. -- Highlights: → The grain oils from 12 cardoons were characterized for fatty acids composition. → The oil amount, resulted on average of accessions 216 g kg -1 DM. → Oleic and linoleic acids predominated over stearic and palmitic acids. → Three domestic cardoons grain oil showed high oleic acid content (795 g kg -1 oil). → This oil could be used for high quality biodiesel production, with a low IN.

  9. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.

    Science.gov (United States)

    Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng

    2016-06-01

    The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking.

  10. Conserved Function of ACYL–ACYL CARRIER PROTEIN DESATURASE 5 on Seed Oil and Oleic Acid Biosynthesis between Arabidopsis thaliana and Brassica napus

    Directory of Open Access Journals (Sweden)

    Changyu Jin

    2017-07-01

    Full Text Available Previous studies have shown that several ACYL–ACYL CARRIER PROTEIN DESATURASE (AtAAD members in Arabidopsis thaliana are responsible for oleic acid (C18:1 biosynthesis. Limited research has been conducted on another member, AtAAD5, and its paralog BnAAD5 in the closely related and commercially important plant, Brassica napus. Here, we found that AtAAD5 was predominantly and exclusively expressed in developing embryos at the whole seed developmental stages. The aad5 mutation caused a significant decrease in the amounts of oil and C18:1, and a considerable increase in the content of stearic acid (C18:0 in mature seeds, suggesting that AtAAD5 functioned as an important facilitator of seed oil biosynthesis. We also cloned the full-length coding sequence of BnAAD5-1 from the A3 subgenome of the B. napus inbred line L111. We showed that ectopic expression of BnAAD5-1 in the A. thaliana aad5-2 mutant fully complemented the phenotypes of the mutant, such as lower oil content and altered contents of C18:0 and C18:1. These results help us to better understand the functions of AAD members in A. thaliana and B. napus and provide a promising target for genetic manipulation of B. napus.

  11. Efeitos dos óleos de amendoim, açafrão e oliva na composição corporal, metabolismo energético, perfil lipídico e ingestão alimentar de indivíduos eutróficos normolipidêmicos The effects of peanut, safflower, and olive oil on body composition, energy metabolism, lipid profile and food intake of eutrophic, normolipidemic subjects

    Directory of Open Access Journals (Sweden)

    Regiane Lopes Sales

    2005-08-01

    Full Text Available OBJETIVOS: O presente trabalho visou avaliar os efeitos do consumo dos óleos de amendoim, açafrão e oliva no perfil lipídico, composição corporal, metabolismo energético e ingestão alimentar em indivíduos eutróficos normolipidêmicos. MÉTODOS: Foram selecionados 32 indivíduos, divididos aleatoriamente em quatro grupos, tendo quatro mulheres e quatro homens em cada grupo, com idade entre 18 e 50 anos. Foi oferecido um milk shake aos voluntários no desjejum, veiculando uma quantidade equivalente a 30% da sua energia basal na forma de óleo (amendoim, açafrão ou oliva, por um período de oito semanas, exceto para o grupo-controle, que não recebeu o shake. Foram realizadas avaliações dos valores de colesterol total e frações, triacilgliceróis, composição corporal, taxa de metabolismo basal, termogênese induzida pela dieta e ingestão alimentar dos indivíduos nas semanas basal, 4ª e 8ª. RESULTADOS: Não foi observada diferença significante no perfil lipídico e na saciedade, no entanto, o grupo que recebeu óleo de açafrão apresentou valores de lipídios plasmáticos mais reduzidos. A ingestão dos óleos levou ao aumento do ganho de peso, sendo que o óleo de oliva proporcionou maior circunferência do quadril. CONCLUSÃO: A adição dos óleos na dieta levou ao aumento da deposição de gordura corporal sem provocar alterações no perfil lipídico e ingestão dietética, ao contrário do relatado na literatura. O uso dos óleos em substituição a outros nutrientes energéticos da dieta, o maior número de voluntários e um período maior de intervenção devem ser investigados em estudos futuros.OBJECTIVE: The present study aimed at evaluating the effects of peanut, safflower and olive oils on the lipid profile, body composition and satiety of eutrophic, normolipidemic subjects. METHODS: Thirty-two 18 to 50 year-old subjects were recruited and randomly divided into four groups, each with 4 men and 4 women. One group

  12. Effects of three different formulae of Gamisoyosan on lipid accumulation induced by oleic acid in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Hiroe Go

    2017-12-01

    Full Text Available Background: Gamisoyosan (GSS is an herbal formula which has been used to treat women’s diseases for several hundred years in Korea. GSS is one of the three most common prescriptions among women and is used to treat menopausal symptoms. Fatty liver disease is also common in postmenopausal women and can precede more severe diseases, such as steatohepatitis. The present study compared the effects of GSS on fatty liver using three different formulae, Dongui-Bogam (KIOM A, Korean Pharmacopeia (KIOM B and Korean National Health Insurance (KIOM C. Methods: In oleic acid-induced HepG2 fatty liver cells, cellular lipid accumulation, triglycerides and total cholesterol were measured after treatment with three GSS formulae and simvastatin as a positive control. To investigate the phytoestrogen activity of GSS, MCF-7 cells were treated with GSS, and hormone levels were quantified. Also, qualitative analysis was performed with UPLC. Results: All types of GSS decreased cellular lipid accumulation. KIOM A was slightly less effective than the other two GSS formulae. KIOM B and KIOM C decreased cellular triglycerides more effective than simvastatin, but KIOM A did not affect cellular triglycerides. Cellular total cholesterol was decreased by all GSS and simvastatin. GSS showed phytoestrogen activity in MCF-7 cells. From the UPLC analysis data, geniposide, paeoniflorin and glycyrrhizin were detected form three GSS formulae. Conclusion: These results suggest that all GSS formulae have a beneficial effect on fatty liver disease during menopause and that differences of formula have no effect on the efficacy of the prescription. Keywords: fatty liver, Gamisoyosan, menopause, phytoestrogen

  13. A novel submicron emulsion system loaded with vincristine–oleic acid ion-pair complex with improved anticancer effect: in vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Zhang T

    2013-03-01

    Full Text Available Ting Zhang,1 Yong Zheng,2 iang Peng,3 Xi Cao,1 Tao Gong,1 Zhirong Zhang11Key Laboratory of Drug Targeting and Drug Delivery Systems, Sichuan University, Chengdu, People’s Republic of China; 2Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China; 3State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, People’s Republic of ChinaBackground: Vincristine (VCR, which is a widely used antineoplastic drug, was integrated with a submicron-emulsion drug-delivery system to enhance the anticancer effect.Methods: After the formation of a VCR–oleic acid ion-pair complex (VCR-OA, the VCR-OA-loaded submicron emulsion (VCR-OA-SME, prepared by classical high-pressure homogenization, was characterized and its in vitro anticancer effects were evaluated.Results: The submicron-emulsion formulation exhibited a homogeneous round shape. The mean particle size, zeta potential, and encapsulation efficiency were 157.6 ± 12.6 nm, −26.5 ± 5.0 mV and 78.64% ± 3.44%, respectively. An in vitro release study of the VCR-OA-SME revealed that 12.4% of the VCR was released within the first 2 hours (initial burst-release phase and the rest of the drug was detected in the subsequent sustained-release phase. Compared with VCR solution, the pharmacokinetic study of VCR-OA-SME showed relatively longer mean residence time (mean residence time [0–∞] increased from 187.19 to 227.56 minutes, higher maximum concentration (from 252.13 ng/mL to 533.34 ng/mL, and greater area under the curve (area under the curve [0–∞] from 11,417.77 µg/L/minute to 17,164.34 µg/L/minute. Moreover, the VCR-OA-SME exhibited higher cytotoxicity (P < 0.05 on tumor cells by inducing cell arrest in the G2/M phase or even apoptosis (P < 0.05.Conclusion: The VCR-OA-SME formulation in our study displayed great potential for an anticancer effect for VCR.Keywords: ion-pair complex, submicron emulsion, cytotoxicity, apoptosis, cell uptake

  14. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome.

    Science.gov (United States)

    Hagawane, T N; Gaikwad, R V; Kshirsagar, N A

    2016-05-01

    Despite advances in therapy and overall medical care, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) management remains a problem. Hence the objective of this study was to develop a rat model that mimics human ALI/ARDS. Four groups of Wistar rats, 48 per group were treated with (i) intratracheal (IT) lipopolysaccharide (LPS) (5 mg/kg) dissolved in normal saline (NS), (ii) intravenous (iv) oleic acid (OA) (250 μl/kg) suspension in bovine serum albumin (BSA), (iii) dual hit: IT LPS (2 mg/kg) dissolved in NS and iv OA (100 μl/kg) and (iv) control group: IT NS and iv BSA. From each group at set periods of time various investigations like chest x-rays, respiratory rate (RR), tidal volume (TV), total cell count, differential cell count, total protein count and cytokine levels in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio and histopathological examination were done. It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α) levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6) levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals) group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury.

  15. Applications of site-specific labeling to study HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    Science.gov (United States)

    Mercer, Natalia; Ramakrishnan, Boopathy; Boeggeman, Elizabeth; Qasba, Pradman K

    2011-01-01

    Alpha-lactalbumin (α-LA) is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA) acquires tumoricidal activity. Such a complex made from human α-LA (hLA) is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells), and its tumoricidal activity has been well established. In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA) alone is also included in the present study. We have engineered these proteins with a 17-amino acid C-terminal extension (hLA-ext and αD-hLA-ext). A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose) using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules. We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity.

  16. Orally administered conjugated linoleic acid ameliorates allergic dermatitis induced by repeated applications of oxazolone in mice.

    Science.gov (United States)

    Nakanishi, Tomonori; Tokunaga, Yuzo; Yamasaki, Masao; Erickson, Laurie; Kawahara, Satoshi

    2016-12-01

    Conjugated linoleic acid (CLA) is one of the constituents of animal products with possible health benefits such as anti-carcinogenic and anti-obesity effects. In this study, we investigated the immunomodulatory effects of CLA using a mouse model of allergic dermatitis. Mice were orally administered either a CLA mixture containing equal amounts of 9c, 11 t-CLA and 10 t, 12c-CLA, or high linoleic acid safflower oil, and allergic dermatitis was induced on the ear by repeated topical applications of oxazolone. Oral administration of the CLA mixture but not the high linoleic safflower oil attenuated the symptoms of allergic dermatitis in both ear weights and clinical scores. This effect was associated with decreased levels of ear interleukin-4 (IL-4) and plasma immunoglobulin E. The immunomodulatory effects of the CLA isomers were compared by an in vitro cytokine production assay. The results showed that 9c, 11 t-CLA, the most predominant isomer in animal products, significantly inhibited IL-4 and interferon-γ production from mouse splenocytes with similar potency to 10 t, 12c-CLA. These findings suggest that CLA, a constituent of animal products, has a potentially beneficial effect for amelioration of allergic dermatitis. © 2016 Japanese Society of Animal Science.

  17. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material

    International Nuclear Information System (INIS)

    Sciancalepore, C; Agostiano, A; Cassano, T; Valentini, A; Curri, M L; Striccoli, M; Mecerreyes, D; Tommasi, R

    2008-01-01

    Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO 2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO 2 /PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO 2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO 2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region

  18. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material

    Science.gov (United States)

    Sciancalepore, C.; Cassano, T.; Curri, M. L.; Mecerreyes, D.; Valentini, A.; Agostiano, A.; Tommasi, R.; Striccoli, M.

    2008-05-01

    Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO2/PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region.

  19. High oleic sunflower bio diesel: quality control and different purification methods

    Energy Technology Data Exchange (ETDEWEB)

    Pighlinelli, A. L. M. T.; Ferrari, R. A.; Miguel, A. M. R. O.; Park, K. J.

    2011-07-01

    The objective of the present work is to evaluate the production of bio diesel using ethanol and sunflower oil. The extraction of the sunflower oil was evaluated first. An experimental design was used to estimate the influence of the independent variables grain temperature (25 degree centigrade to 110 degree centigrade) and expelled rotation (85 to 119rpm) on the crude oil. The best result obtained was 68.38%, achieved with a rotation from 100 to 115rpm, grain temperature ranging from 25 degree centigrade to 30 degree centigrade and moisture content of around 7%. The next study consisted of transesterification, evaluating the influence of the ethanol, oil molar ratio and the catalyst concentration (sodium methylate) on the ester-rich phase yield. The highest yield was 98.39% obtained with a molar ratio of 9:1 and 3% catalyst. An experiment was then carried out on a small reactor and the bio diesel produced was purified by three different methods: acidified water, silica and distillation. The quality aspects of the purified bio diesel samples were evaluated according to the Brazilian specifications for bio diesel, and distillation was shown to be the best method of purification. (Author) 28 refs.

  20. Beneficial effect of an omega-6 PUFA-rich diet in non-steroidal anti-inflammatory drug-induced mucosal damage in the murine small intestine.

    Science.gov (United States)

    Ueda, Toshihide; Hokari, Ryota; Higashiyama, Masaaki; Yasutake, Yuichi; Maruta, Koji; Kurihara, Chie; Tomita, Kengo; Komoto, Shunsuke; Okada, Yoshikiyo; Watanabe, Chikako; Usui, Shingo; Nagao, Shigeaki; Miura, Soichiro

    2015-01-07

    To investigate the effect of a fat rich diet on non-steroidal anti-inflammatory drug (NSAID)-induced mucosal damage in the murine small intestine. C57BL6 mice were fed 4 types of diets with or without indomethacin. One group was fed standard laboratory chow. The other groups were fed a fat diet consisting of 8% w/w fat, beef tallow (rich in SFA), fish oil, (rich in omega-3 PUFA), or safflower oil (rich in omega-6 PUFA). Indomethacin (3 mg/kg) was injected intraperitoneally from day 8 to day 10. On day 11, intestines and adhesions to submucosal microvessels were examined. In the indomethacin-treated groups, mucosal damage was exacerbated by diets containing beef tallow and fish oil, and was accompanied by leukocyte infiltration (P safflower oil diet than in mice fed the beef tallow or fish oil diet (P safflower oil significantly decreased monocyte and platelet recruitment (P < 0.05). A diet rich in SFA and omega-3 PUFA exacerbated NSAID-induced small intestinal damage via increased leukocyte infiltration. Importantly, a diet rich in omega-6-PUFA did not aggravate inflammation as monocyte migration was blocked.