WorldWideScience

Sample records for high nuclearity poms

  1. Nuclear pore complex assembly and maintenance in POM121- and gp210-deficient cells

    Stavru, Fabrizia; Nautrup-Pedersen, Gitte; Cordes, Volker C

    2006-01-01

    So far, POM121 and gp210 are the only known anchoring sites of vertebrate nuclear pore complexes (NPCs) within the lipid bilayer of the nuclear envelope (NE) and, thus, are excellent candidates for initiating the NPC assembly process. Indeed, we demonstrate that POM121 can recruit several...... as depletion of POM121 from human fibroblasts, which do not express gp210, further suggest that NPCs can assemble or at least persist in a POM121- and gp210-free form. This points to extensive redundancies in protein-protein interactions within NPCs and suggests that vertebrate NPCs contain additional membrane...

  2. The nuclear pore complex protein ALADIN is anchored via NDC1 but not via POM121 and GP210 in the nuclear envelope

    Kind, Barbara, E-mail: barbara.kind@uniklinikum-dresden.de [Children' s Hospital, Technical University Dresden, D-01307 Dresden (Germany); Koehler, Katrin, E-mail: katrin.koehler@uniklinikum-dresden.de [Children' s Hospital, Technical University Dresden, D-01307 Dresden (Germany); Lorenz, Mike, E-mail: mlorenz@mpi-cbg.de [Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden (Germany); Huebner, Angela, E-mail: angela.huebner@uniklinikum-dresden.de [Children' s Hospital, Technical University Dresden, D-01307 Dresden (Germany)

    2009-12-11

    The nuclear pore complex (NPC) consists of {approx}30 different proteins and provides the only sites for macromolecular transport between cytoplasm and nucleus. ALADIN was discovered as a new member of the NPC. Mutations in ALADIN are known to cause triple A syndrome, a rare autosomal recessive disorder characterized by adrenal insufficiency, alacrima, and achalasia. The function and exact location of the nucleoporin ALADIN within the NPC multiprotein complex is still unclear. Using a siRNA-based approach we downregulated the three known membrane integrated nucleoporins NDC1, GP210, and POM121 in stably expressing GFP-ALADIN HeLa cells. We identified NDC1 but not GP210 and POM121 as the main anchor of ALADIN within the NPC. Solely the depletion of NDC1 caused mislocalization of ALADIN. Vice versa, the depletion of ALADIN led also to disappearance of NDC1 at the NPC. However, the downregulation of two further membrane-integral nucleoporins GP210 and POM121 had no effect on ALADIN localization. Furthermore, we could show a direct association of NDC1 and ALADIN in NPCs by fluorescence resonance energy transfer (FRET) measurements. Based on our findings we conclude that ALADIN is anchored in the nuclear envelope via NDC1 and that this interaction gets lost, if ALADIN is mutated. The loss of integration of ALADIN in the NPC is a main pathogenetic aspect for the development of the triple A syndrome and suggests that the interaction between ALADIN and NDC1 may be involved in the pathogenesis of the disease.

  3. Elongational viscosity of multiarm (Pom-Pom) polystyrene

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Almdal, Kristoffer

    2006-01-01

    -Pom was estimated to have 2.5 arms on average, while the estimate is 3.3 for the asymmetric star. The molar mass of each arm is about 27 kg/mol. The melts were characterized in the linear viscoelastic regime and in non-linear elongational rheometry. The transient elongational viscosity for the Pom-Pom molecule...... it corresponds well with an estimate of the maximum stretchability of the backbone. Time-strain separability was not observed for the 'Asymmetric star' molecule at the elongation rates investigated. The transient elongational viscosity for the 'Pom-Pom' molecule went through a reproducible maximum...... in the viscosity at the highest elongational rate....

  4. Modifying the pom-pom model for extensional viscosity overshoots

    Hawke, L. D. G.; Huang, Qian; Hassager, Ole

    2015-01-01

    We have developed a variant of the pom-pom model that qualitatively describes two surprising features recently observed in filament stretching rheometer experiments of uniaxial extensional flow of industrial branched polymer resins: (i) Overshoots of the transient stress during steady flow and (i...

  5. Thermodynamic admissibility of the extended Pom-Pom model for branched polymers

    Soulages, J.; Hütter, M.; Öttinger, H.C.

    2006-01-01

    The thermodynamic consistency of the eXtended Pom-Pom (XPP) model for branched polymers of Verbeeten et al. [W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model, J. Rheol. 45 (4) (2001) 823–843; W.M.H. Verbeeten, G.W.M.

  6. Preparation of mesoporous Cs-POM@MOF-199@MCM-41 under two different synthetic methods for a highly oxidesulfurization of dibenzothiophene.

    Li, Si-Wen; Li, Jia-Rong; Jin, Qi-Ping; Yang, Zhi; Zhang, Rong-Lan; Gao, Rui-Min; Zhao, Jian-She

    2017-09-05

    Two different synthetic methods, the direct method and the substitution method, were used to synthesize the Cs-POM@MOF-199@MCM-41 (Cs-PMM), in which the modified heteropolyacid with cesium salt has been encapsulated into the pores with the mixture of MOF and MCM-41. The structural properties of the as-prepared catalysts were characterized using various analytical techniques: powder X-ray diffraction, FT-IR, SEM, TEM, XPS and BET, confirming that the Cs-POM active species retained its Keggin structure after immobilization. The substitution method of Cs-PMM exhibited more excellent catalytic performance for oxidative desulfurization of dibenzothiophene in the presence of oxygen. Under optimal conditions, the DBT conversion rate reached up to 99.6% and could be recycled 10 times without significant loss of catalytic activity, which is mainly attributed to the slow leaching of the active heteropolyacid species from the strong fixed effect of the mixture porous materials. Copyright © 2017. Published by Elsevier B.V.

  7. High level nuclear wastes

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  8. Efficient heterogeneous and environmentally friendly degradation of nerve agents on a tungsten-based POM

    Mizrahi, Dana M., E-mail: danami@iibr.gov.il [Department of Organic Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100 (Israel); Saphier, Sigal; Columbus, Ishay [Department of Organic Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100 (Israel)

    2010-07-15

    Common (chemical warfare agent) CWA decontaminants exhibit harsh and corrosive characteristics, and are harmful to the environment. In the course of our quest for active sorbents as efficient decontaminants, Keggin-type polyoxometalate (POM) (NH{sub 4}){sub 3}PW{sub 12}O{sub 40} was tested for oxidative degradation of CWAs. Although oxidation did not take place, sarin (GB) and VX were smoothly decontaminated to non-toxic products within 1 and 10 days, respectively. Degradation was carried out directly on the powder, eliminating the need for solvents. Mustard gas (HD), whose degradation is highly dependent on oxidation, was not decontaminated by this POM. Solid state MAS NMR ({sup 31}P and {sup 13}C) was utilized both for POM characterization and for decontamination studies monitoring.

  9. Efficient heterogeneous and environmentally friendly degradation of nerve agents on a tungsten-based POM

    Mizrahi, Dana M.; Saphier, Sigal; Columbus, Ishay

    2010-01-01

    Common (chemical warfare agent) CWA decontaminants exhibit harsh and corrosive characteristics, and are harmful to the environment. In the course of our quest for active sorbents as efficient decontaminants, Keggin-type polyoxometalate (POM) (NH 4 ) 3 PW 12 O 40 was tested for oxidative degradation of CWAs. Although oxidation did not take place, sarin (GB) and VX were smoothly decontaminated to non-toxic products within 1 and 10 days, respectively. Degradation was carried out directly on the powder, eliminating the need for solvents. Mustard gas (HD), whose degradation is highly dependent on oxidation, was not decontaminated by this POM. Solid state MAS NMR ( 31 P and 13 C) was utilized both for POM characterization and for decontamination studies monitoring.

  10. High energy nuclear excitations

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  11. N-terminally truncated POM121C inhibits HIV-1 replication.

    Hideki Saito

    Full Text Available Recent studies have identified host cell factors that regulate early stages of HIV-1 infection including viral cDNA synthesis and orientation of the HIV-1 capsid (CA core toward the nuclear envelope, but it remains unclear how viral DNA is imported through the nuclear pore and guided to the host chromosomal DNA. Here, we demonstrate that N-terminally truncated POM121C, a component of the nuclear pore complex, blocks HIV-1 infection. This truncated protein is predominantly localized in the cytoplasm, does not bind to CA, does not affect viral cDNA synthesis, reduces the formation of 2-LTR and diminished the amount of integrated proviral DNA. Studies with an HIV-1-murine leukemia virus (MLV chimeric virus carrying the MLV-derived Gag revealed that Gag is a determinant of this inhibition. Intriguingly, mutational studies have revealed that the blockade by N-terminally-truncated POM121C is closely linked to its binding to importin-β/karyopherin subunit beta 1 (KPNB1. These results indicate that N-terminally-truncated POM121C inhibits HIV-1 infection after completion of reverse transcription and before integration, and suggest an important role for KPNB1 in HIV-1 replication.

  12. High energy nuclear physics

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  13. Nuclear power flies high

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  14. High energy nuclear collisions

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  15. High-spin nuclear spectroscopy

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given

  16. POM Pulses: Characterizing the Physical and Chemical Properties of Particulate Organic Matter (POM) Mobilized by Large Storm Events and its Influence on Receiving Fluvial Systems

    Johnson, E. R.; Rowland, R. D.; Protokowicz, J.; Inamdar, S. P.; Kan, J.; Vargas, R.

    2016-12-01

    Extreme storm events have tremendous erosive energy which is capable of mobilizing vast amounts of material from watershed sources into fluvial systems. This complex mixture of sediment and particulate organic matter (POM) is a nutrient source, and has the potential to impact downstream water quality. The impact of POM on receiving aquatic systems can vary not only by the total amount exported but also by the various sources involved and the particle sizes of POM. This study examines the composition of POM in potential sources and within-event POM by: (1) determining the amount and quality of dissolved organic matter (DOM) that can be leached from coarse, medium and fine particle classes; (2) assessing the C and N content and isotopic character of within-event POM; and (3) coupling physical and chemical properties to evaluate storm event POM influence on stream water. Storm event POM samples and source sediments were collected from a forested headwater catchment (second order stream) in the Piedmont region of Maryland. Samples were sieved into three particle classes - coarse (2mm-1mm), medium (1mm-250µm) and fine (solid state event and source material. Future work will include examination of microbial communities associated with POM particle size classes. Physical size class separation of within-event POM exhibited differences in C:N ratios, δ15N composition, and extracted DOM lability. Smaller size classes exhibited lower C:N ratios, more enriched δ15N and more recalcitrant properties in leached DOM. Source material had varying C:N ratios and contributions to leached DOM. These results indicate that both source and size class strongly influence the POM contribution to fluvial systems during large storm events.

  17. AN EMPIRICAL STUDY OF PRODUCTION AND OPERATIONS MANAGEMENT (POM) TEACHING IN TURKEY

    Çekiç, Bülent; Ömürgönülşen, Mine

    2017-01-01

    The purpose of this study is to evaluate theteaching and assessment methods of POM academicians in Business AdministrationDepartments of Turkey. First of all, the profile (the academic position, numberetc.) of POM academicians has been introduced. Then, via using a questionnaire,the chapters of POM course, textbooks and assessment methods during POMteaching have been asked and the results have been analyzed with chi-squaretest. Another purpose of this study is to present the difficulties enco...

  18. Development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Clemens, D F

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt% on sedimentation ratios, drain times and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  19. The development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Clemens, D F; Evans, G O; Harrell, P A; Whitehurst, B M

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents, and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt.% on sedimentation ratios, drain times, and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  20. Where is high technology taking nuclear medicine

    Veall, N.

    1985-01-01

    The question is posed as to whether high technology in nuclear medicine might lead to the nuclear medicine practitioner possibly finishing up working for the machine rather than the improvement of health care in its widest sense. A brief examination of some pros and cons of high technology nuclear medicine is given. (U.K.)

  1. Studies of lignin transformation in polyoxometalate (POM) bleaching of kraft pulp

    Biljana Bujanovic; Richard S. Reiner; Kolby C. Hirth; Sally A. Ralph; Rajai H. Atalla

    2005-01-01

    In order to elucidate changes occurring in lignin during polyoxometalate delignification of kraft pulp, residual lignins of a series of POM- delignified kraft pulps of decreasing kappa number were isolated and characterized. Oxidative treatment of commercial unbleached kraft pulp was performed using complex POM solutions containing the active [SiVW11O40]anion. For...

  2. Development of high burnup nuclear fuel technology

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  3. High education and nuclear energy

    Ghitescu, Petre; Prisecaru, Ilie; Stefanescu, Petre

    1998-01-01

    The Faculty of Energy of the University 'Politecnica' in Bucharest is the only faculty in Romania in the field of nuclear energy education. With an experience of more than 29 years, the Faculty of Energy offers the major 'Nuclear Power Plants', which students graduate after a 5-year education as engineers in the Nuclear Power Plant major. Among the principal objectives of the development and reshape of the Romanian education system was mentioned the upgrading of organizational forms by introducing the transfer credit system, and starting in the fall '97 by accrediting Radioprotection and Nuclear Safety Master education. As a result of co-operation and assistance offered by TEMPUS-SENECA program, the new major is shaped and endowed with a modern curriculum harmonized with UE and IAEA requirements and a modern and performing laboratory. This way the Romanian higher education offers a fully correct and concordant structure with UE countries education. (authors)

  4. Interferometry of high energy nuclear collisions

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  5. Perspectives in high energy nuclear collisions

    Rafelski, J.

    1983-08-01

    This report gives an overview of some aspects of hadronic physics relevant for the conception of a research facility devoted to the study of high energy nuclear collisions. Several concepts to be studied in nuclear collisions are selected, with emphasis placed on the properties and nature of the quark-gluon plasma, the formation of the plasma state in the central region and its anticipated lifetime, and the observability, through strangeness content of this new form of nuclear matter. (orig.)

  6. Nuclear superdeformation at high spins

    Dudek, J.

    1991-01-01

    The newly discovered forms of nuclear behavior at exotic shape configurations are discussed from the theoretical point of view. The main emphasis is set on superdeformed nuclei and the strange mechanisms influencing their properties. In particular the feeding properties, alignment, pairing properties and the problem of anomalous degeneracies are discussed

  7. Nuclear emulsion and high-energy physics

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  8. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  9. ASPECTOS HIDROLOGICOS DE LAS LAGUNAS DE ATASTA Y POM, MEXICO

    Alejandro Ruiz-Marín

    2009-01-01

    Full Text Available Las lagunas de Pom y Atasta forman parte del área natural protegida de flora y fauna laguna de Términos en la región de Campeche, México. Esta es una  importante área ecológica ya que es el habitad de muchas especies nativas y migratorias. Estas lagunas han sido afectadas por actividades industriales y por descargas de aguas residuales. Monitoreo de nitrógeno, fósforo y coliformes fecales en agua superficial fueron realizados a lo largo de ambas lagunas durante las temporadas de seca, lluvia y nortes durante un año. Las altas temperaturas en verano (31 ºC y mínimas en nortes (25ºC fueron asociadas con valores de oxigeno disuelto (5.1 y 6.3 mg l-1, respectivamente indicando también una probable relación con la actividad fitoplanctonica. El pH (8.0-8.2 y la salinidad (0.32 - 3.48 UPS no mostraron variación significativa entre las tres temporadas climáticas. El nivel de amonio no fue mayor a los valores sugeridos para el control de eutroficación (0.1 mg l-1, mientras que los niveles de fósforo fueron de mayor concentración (2.0-3.5 mg l-1 que aquellos considerados seguros (0.01-0.125 mg l-1 para el medio ambiente. Las más altas concentraciones de N y P cerca de las áreas habitadas sugiere un importante contribución de nutrientes provenientes de aguas de desecho, asociado con la descomposición de material orgánico. La concentración de coliformes fecales durante la temporada de lluvias y nortes (8.0-26.0 MPN 100 ml-1 fue mayor que durante la temporada de seca (1.3-3.5 MPN 100 ml-1 sugiriendo un importante acceso por escurrimiento pluvial y aguas residuales no tratadas proveniente de las áreas cercanas al lago habitadas. La deforestación de manglares y la descontrolada actividad de agricultura afectaran la calidad del agua en ambos lagos en el futuro.

  10. Nuclear fuels for very high temperature applications

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  11. Structural characterization of POM6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion.

    Baral, Pravas Kumar; Swayampakula, Mridula; Aguzzi, Adriano; James, Michael N G

    2018-05-01

    Conversion of the cellular prion protein PrP C into its pathogenic isoform PrP S c is the hallmark of prion diseases, fatal neurodegenerative diseases affecting many mammalian species including humans. Anti-prion monoclonal antibodies can arrest the progression of prion diseases by stabilizing the cellular form of the prion protein. Here, we present the crystal structure of the POM6 Fab fragment, in complex with the mouse prion protein (moPrP). The prion epitope of POM6 is in close proximity to the epitope recognized by the purportedly toxic antibody fragment, POM1 Fab also complexed with moPrP. The POM6 Fab recognizes a larger binding interface indicating a likely stronger binding compared to POM1. POM6 and POM1 exhibit distinct biological responses. Structural comparisons of the bound mouse prion proteins from the POM6 Fab:moPrP and POM1 Fab:moPrP complexes reveal several key regions of the prion protein that might be involved in initiating mis-folding events. The structural data of moPrP:POM6 Fab complex are available in the PDB under the accession number www.rcsb.org/pdb/search/structidSearch.do?structureId=6AQ7. © 2018 Federation of European Biochemical Societies.

  12. High performance nuclear fuel element

    Mordarski, W.J.; Zegler, S.T.

    1980-01-01

    A fuel-pellet composition is disclosed for use in fast breeder reactors. Uranium carbide particles are mixed with a powder of uraniumplutonium carbides having a stable microstructure. The resulting mixture is formed into fuel pellets. The pellets thus produced exhibit a relatively low propensity to swell while maintaining a high density

  13. Supernovae and high density nuclear matter

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs

  14. High Momentum Probes of Nuclear Matter

    Fries, R.

    2009-07-24

    We discuss how the chemical composition of QCD jets is altered by final state interactions in surrounding nuclear matter. We describe this process through conversions of leading jet particles. We find that conversions lead to an enhancement of kaons at high transverse momentum in Au+Au collisions at RHIC, while their azimuthal asymmetry v{sub 2} is suppressed.

  15. Supernovae and high density nuclear matter

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  16. Nuclear and quark matter at high temperature

    Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)

    2017-03-15

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)

  17. Activities in nuclear and high energy physics

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  18. High performance structural ceramics for nuclear industry

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  19. Disposal of high-activity nuclear wastes

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  20. Physics of high spin nuclear states

    Wyss, R [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States); [MSI, Frescativ, Stockholm (Sweden)

    1992-08-01

    High spin physics is a vast topic addressing the variety of nuclear excitation modes. In the present paper, some general aspects related to recent highlights of nuclear spectroscopy are discussed. The relation between signature splitting and shape changes in the unique parity orbitals is elucidated. The relevance of the Pseudo SU(3) symmetry in the understanding of rotational band structure is addressed. Specific features of rotational bands of intruder configurations are viewed as a probe of the neutron-proton interaction. (author). 36 refs., 5 figs.

  1. The Profile of Mood State (POMS) questionnaire as an indicator of ...

    The overtraining syndrome (OTS) is largely a diagnosis of exclusion. The aim of this study was to investigate the compact Profile of Mood State (POMS) questionnaire as an early and accurate indicator for the diagnosis of OTS and the reliability of such findings in a group of athletes diagnosed with OTS, in comparison with a ...

  2. Intermediate/high energy nuclear physics

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  3. Nuclear structure at high and very high spin theoretical description

    Szymanski, Z.

    1983-11-01

    When the existence of nuclear shell structure is ignored and nuclear motion is assumed to be classical we may expect that the nuclear rotation resembles that of a liquid drop. Energy of the nucleus can be thus considered as a sum of three terms: surface energy, Coulomb energy and rotational energy. Nuclear moment of inertia is assumed to be that of a rigid-body. The results of a calculation of the energy surfaces in rotating nuclei by Cohen, Plasil and Swiatecki are discussed. Cranking procedure is analysed as a tool to investigate nucleonic orbits in a rotating nuclear potential. Some predictions concerning the possible onset of a superdeformed phase are given. The structure of nuclear rotation is examined in the presence of the short-range pairing forces that generate the superfluid correlations in the nucleus. Examples of the Bengtsson-Frauendorf plots (quasiparticle energies versus angular velocity of rotation) are given and discussed. The backbending phenomenon is analysed in terms of band crossing. The dependence of the crossing frequency on the pairing-force strength is discussed. Possibilities of the role of new components in the two-body force (quadrupole-pairing) are considered. Possibilities of the phase transition from superfluid to normal states in the nucleus are analysed. The role of the second (dynamic) moment of inertia I(2) in this analysis is discussed. In spherical weekly deformed nuclei (mostly oblate) angular momentum is aligned parallel to the nuclear symmetry axis. Rotation is of non collective origin in this case. Examples of the analysis of nuclear spectra in this case (exhibiting also the isomeric states called yrast (traps)) are given. Possible forms of the collective excitations superimposed on top of the high-spin states are discussed. In particular, the giant resonance excitations formed on top of the high-spin states are considered and their properties discussed

  4. [Size structure, gonadic development and diet of the fish Diapterus rhombeus (Gerreidae) in the Pom-Atasta fluvial-deltaic system, Campeche, Mexico].

    Aguirre-León, Arturo; Díaz-Ruiz, Silvia

    2006-06-01

    The fish Diapterus rhombeus was studied during an annual cycle from 1992 to 1993 in the fluvial-deltaic Pom-Atasta system associated with Terminos Lagoon, Campeche, Mexico. It is a dominant species in the system, based on its numeric abundance, weight, high frequency and wide distribution. A total of 745 individuals were obtained, with a weigth of 2 890.2 g and length ranging from 3.0 to 16.7 cm. The annual variation of the allometric coefficient b was from 2.71 to 3.345. The condition factor varied from 0.711 to 0.934. The statistical analysis shows significant differences (p < 0.05) between the seasons of the year and the habitats of the system for the weight, the longitude and the condition factor K, which reflects the space-temporal utilization of the system for the species. The population present at Pom-Atasta, consists mainly by juvenile and few preadults individuals in gonadal stages I, II, and III, and more females than males were recorded. This species utilizes the system as a nursery area, growth and feeding area. It has a varied trophic spectrum, and consumes at least eight different groups. Its principal food items are undetermined organic matter, foraminifers, ostracods and tanaidaceans. It is a first order consumer. The Pom-Atasta system is located in a zone of intense fishing and oil activity, so it is important to advance in the knowledge of its fishing resources.

  5. High speed imaging system for nuclear diagnostics

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  6. High speed imaging system for nuclear diagnostics

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  7. High-level nuclear waste disposal

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  8. Nuclear propulsion in high yield vessels

    Vergara Aimone, Julio

    2000-01-01

    Current developments in advanced ship design brings high-speed maritime transportation closer to reality, aiming to create new markets and to recover a fraction of the high value goods now shipped only by air. High-speed transport is growing at a rate of 15% per year, higher than air transport and at a fraction of air tariffs. Although such growth rate is restricted to passengers and automobiles, there is a potential for high-speed cargo in some routes. A recent proposal is Fast Ship, a 260 m long, 40 m wide concept designed to cruise from Philadelphia to Cherbourg in less that 4 days, for a door-to-door timely cargo delivery of 7 days, thanks to an advanced hull design, and a high power propulsion plant to compensate for weather-related delays. However, almost 40% of the total operation cost would be fuel. This appears to be a natural application for nuclear power, in a similar way to the golden age of this technology. A nuclear Fast Ship would save almost 5000 tons of a fuel per trip, and about half of such spare might be available for additional cargo. Furthermore, operation costs would be smaller and very stable to resource price fluctuation, plus a few other advantages. For other ocean markets, such as the Asia-America route, nuclear power would become a much better choice. This paper discusses the reactor type and layout suitable for such application. The ship designer is aware of the current proposal, although the power pack is not readily available today and its political aspects have not been dealt with. The economy of our nation relies on exports and almost 90% of such flow goes by sea. It is also possible that in the future, Mercosur might have a dependency on such high-speed transport mode and propulsion system (au)

  9. Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM)

    Sciare, J.; Sarda-Esteve, R.; Favez, O.; Cachier, H.; Aymoz, G.; Laj, P.

    2008-01-01

    Real-time analyzers of selected chemical components (sulfate, nitrate, Black Carbon) and integrative aerosol parameters (particulate matter and light scattering coefficient) were implemented for a 2-week campaign (November-December 2005) in a suburban area of Clermont-Ferrand (France) in order to document fast changes in the chemical composition of submicron aerosols. Measurements of particulate organic matter (POM) were not available in the field but were indirectly estimated from time-resolved (3-min) reconstruction of the light scattering coefficient. This methodology offered the opportunity to investigate almost real-time and artifact-free POM concentrations even at low concentrations (typically below 0.1 mu g m(-3)). The overall uncertainties associated with this POM calculation were of the order of 20%, which are comparable to those commonly referred in literature for POM calculation or measurements. A chemical mass balance (CMB) of PM1 was performed using the derived POM concentrations and showed a very good correlation (slope = 0.93; r(2) = 0.91, N = 663) with real-time PM1 measurements obtained from R and P TEOM-FDMS, demonstrating the consistency of our approach. Important diurnal variations were observed in POM concentrations, with a dominant contribution of POM from fossil fuel origin during daytime and a dominant contribution of POM from residential wood burning at night. POM was calculated to contribute as much as 70% of PM1 during our study, pointing out the major role of carbonaceous aerosols at this period of the year at our residential area. (authors)

  10. High temperature nuclear heat for isothermal reformer

    Epstein, M.

    2000-01-01

    High temperature nuclear heat can be used to operate a reformer with various feedstock materials. The product synthesis gas can be used not only as a source for hydrogen and as a feedstock for many essential chemical industries, such as ammonia and other products, but also for methanol and synthetic fuels. It can also be burnt directly in a combustion chamber of a gas turbine in an efficient combined cycle and generate electricity. In addition, it can be used as fuel for fuel cells. The reforming reaction is endothermic and the contribution of the nuclear energy to the calorific value of the final product (synthesis gas) is about 25%, compared to the calorific value of the feedstock reactants. If the feedstock is from fossil origin, the nuclear energy contributes to a substantial reduction in CO 2 emission to the atmosphere. The catalytic steam reforming of natural gas is the most common process. However, other feedstock materials, such as biogas, landfill gas and CO 2 -contaminated natural gas, can be reformed as well, either directly or with the addition of steam. The industrial steam reformers are generally fixed bed reactors, and their performance is strongly affected by the heat transfer from the furnace to the catalyst tubes. In top-fired as well as side-fired industrial configurations of steam reformers, the radiation is the main mechanism of heat transfer and convection heat transfer is negligible. The flames and the furnace gas constitute the main sources of the heat. In the nuclear reformers developed primarily in Germany, in connection with the EVA-ADAM project (closed cycle), the nuclear heat is transferred from the nuclear reactor coolant gas by convection, using a heating jacket around the reformer tubes. In this presentation it is proposed that the helium in a secondary loop, used to cool the nuclear reactor, will be employed to evaporate intermediate medium, such as sodium, zinc and aluminum chloride. Then, the vapors of the medium material transfer

  11. Models of high energy nuclear collisions

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  12. Proposal for a High Energy Nuclear Database

    Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews

  13. High nitrogen stainless steels for nuclear industry

    Kamachi Mudali, U.

    2016-01-01

    Nitrogen alloying in stainless steels (SS) has myriad beneficial effects, including solid solution strengthening, precipitation effects, phase control and corrosion resistance. Recent years have seen a rapid development of these alloys with improved properties owing to advances in processing technologies. Furthermore, unlimited demands for high-performance advanced steels for special use in advanced applications renewed the interest in high nitrogen steels (HNS). The combination of numbers of attractive properties such as strength, fracture toughness, wear resistance, workability, magnetic properties and corrosion resistance of HNS has given a unique advantage and offers a number of prospective applications in different industries. Based on extensive studies carried out at IGCAR, nitrogen alloyed type 304LN SS and 316LN SS have been chosen as materials of construction for many engineering components of fast breeder reactor (FBR) and associated reprocessing plants. HNS austenitic SS alloys are used as structural/reactor components, i.e., main vessel, inner vessel, control plug, intermediate heat exchanger and main sodium piping for fast breeder reactor. HNS type 304LN SS is a candidate material for continuous dissolver, nuclear waste storage tanks, pipings, etc. for nitric acid service under highly corrosive conditions. Recent developments towards the manufacturing and properties of HNS alloys for application in nuclear industry are highlighted in the presentation. (author)

  14. A high-energy nuclear database proposal

    Brown, D.A.; Vogt, R.; UC Davis, CA

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  15. Proposal for a High Energy Nuclear Database

    Brown, D A; Vogt, R

    2005-01-01

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews

  16. Kinetic analysis of polyoxometalate (POM) oxidation of non-phenolic lignin model compound

    Tomoya Yokoyama; Hou-min Chang; Ira A. Weinstock; Richard S. Reiner; John F. Kadla

    2003-01-01

    Kinetic and reaction mechanism of non-phenolic lignin model compounds under anaerobic polyoxometalate (POM), Na5(+1.9)[SiV1(-0.1)MoW10(+0.1) 40], bleaching conditions were examined. Analyses using a syringyl type model, 1-(3,4,5-trimethoxyphenyl)ethanol (1), a guaiacyl type, 1-(3,4- imethoxyphenyl)ethanol (2), and 1- (4-ethoxy-3,5-dimethoxyphenyl)ethanol (3) suggest...

  17. The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes.

    Magdalini Polymenidou

    Full Text Available PrP(Sc, a misfolded and aggregated form of the cellular prion protein PrP(C, is the only defined constituent of the transmissible agent causing prion diseases. Expression of PrP(C in the host organism is necessary for prion replication and for prion neurotoxicity. Understanding prion diseases necessitates detailed structural insights into PrP(C and PrP(Sc. Towards this goal, we have developed a comprehensive collection of monoclonal antibodies denoted POM1 to POM19 and directed against many different epitopes of mouse PrP(C. Three epitopes are located within the N-terminal octarepeat region, one is situated within the central unstructured region, and four epitopes are discontinuous within the globular C-proximal domain of PrP(C. Some of these antibodies recognize epitopes that are resilient to protease digestion in PrP(Sc. Other antibodies immunoprecipitate PrP(C, but not PrP(Sc. A third group was found to immunoprecipitate both PrP isoforms. Some of the latter antibodies could be blocked with epitope-mimicking peptides, and incubation with an excess of these peptides allowed for immunochromatography of PrP(C and PrP(Sc. Amino-proximal antibodies were found to react with repetitive PrP(C epitopes, thereby vastly increasing their avidity. We have also created functional single-chain miniantibodies from selected POMs, which retained the binding characteristics despite their low molecular mass. The POM collection, thus, represents a unique set of reagents allowing for studies with a variety of techniques, including western blotting, ELISA, immunoprecipitation, conformation-dependent immunoassays, and plasmon surface plasmon resonance-based assays.

  18. High energy nuclear collisions: theory review

    Fries, Rainer J.

    2009-01-01

    Full text: High Energy Nuclear Collisions are studied at the Relativistic Heavy Ion Collider (RHIC) and, starting next year, also at the Large Hadron Collider (LHC) to study the formation and properties of quark gluon plasma (QGP). This effort is driven by the prediction that above a certain critical temperature quarks and gluons are deconfined. For the past ten years of running RHIC has performed marvelously. Data from RHIC has answered many initial questions, but it has also provided new, more challenging problems to understand the nature of quark gluon plasma and the dynamics of heavy ion collisions. In this talk I review some of the basic concepts of high energy nuclear collisions and quark gluon plasma formation. We also discuss some of the novel and open questions that we are faced with. We discuss recent predictions on properties of hot quantum chromodynamics, emerging signatures for the color glass condensate, the fascinating idea of local P and CP violation in QCD, as well as ongoing research on hard probes and electromagnetic signatures

  19. HIGH SERVE '90 - nuclear engineering services

    Bauer, K.G.

    1991-01-01

    Nuclear engineering services do not start only with maintenance or repair, but already with the early detection of imminent problems long before they become problems. Services concerning the decommissioning of plants also belong to it. A selection of the extraordinary services rendered nowadays is presented in more than 20 papers in this booklet. These papers may roughly be divided into three groups of subjects: monitoring and operational management; maintenance, repair and improvements; radioactive waste treatment and management. The first group of subjects, in particular, covers papers dealing with early detection, monitoring and diagnosing systems, using highly advanced hard- and software technologies. Modernization of instrumentation and control systems and exchange of process computer systems is another task this service has to accomplish. Process computers of the past have developed into high performance process information systems. (orig./DG) [de

  20. Evolution of nuclear shapes at high spins

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  1. Reliability and validity of the Pragmatics Observational Measure (POM): a new observational measure of pragmatic language for children.

    Cordier, Reinie; Munro, Natalie; Wilkes-Gillan, Sarah; Speyer, Renée; Pearce, Wendy M

    2014-07-01

    There is a need for a reliable and valid assessment of childhood pragmatic language skills during peer-peer interactions. This study aimed to evaluate the psychometric properties of a newly developed pragmatic assessment, the Pragmatic Observational Measure (POM). The psychometric properties of the POM were investigated from observational data of two studies - study 1 involved 342 children aged 5-11 years (108 children with ADHD; 108 typically developing playmates; 126 children in the control group), and study 2 involved 9 children with ADHD who attended a 7-week play-based intervention. The psychometric properties of the POM were determined based on the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) taxonomy of psychometric properties and definitions for health-related outcomes; the Pragmatic Protocol was used as the reference tool against which the POM was evaluated. The POM demonstrated sound psychometric properties in all the reliability, validity and interpretability criteria against which it was assessed. The findings showed that the POM is a reliable and valid measure of pragmatic language skills of children with ADHD between the age of 5 and 11 years and has clinical utility in identifying children with pragmatic language difficulty. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Nuclear fuels with high burnup: safety requirements

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  3. [Intermediate/high energy nuclear physics

    1987-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. We have solved a non-trivial model field theory in the strong coupling regime using a discretized light front quantization (DLFQ) scheme. The method we developed expands upon the method of Pauli and Brodsky by incorporating a dynamical treatment of the vacuum. This is a major result since we have shown directly that the light-cone vacuum is not structureless as has been traditionally claimed by some particle theorists. We have thus succeeded in elucidating the consequences of spontaneous symmetry breaking in light-cone quantization. We now propose to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We will complete our analysis of the SLAC NE3 data to explicate the degree to which they confirm the QCM prediction of ''steps'' in the ratio of nuclear structure functions when Bjorken x exceeds unity. In another effort, we will perform a search for narrow resonances in electron-positron interactions high in the continuum using the Bethe-Salpeter equation. We have completed our development of microscopic effective Hamiltonians for nuclear structure which include the explicit treatment of delta resonances. These effective Hamiltonians were successfully used in constrained mean field calculations evaluating conditions for nuclei to undergo a transition from nucleon matter to delta matter. 73 refs

  4. Storage of High Level Nuclear Waste in Germany

    Dietmar P. F. Möller

    2007-01-01

    Full Text Available Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms what can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. The electrical energy generated in nuclear power plants does not produce polluting combustion gases but a renewable energy, an important fact that could play a key role helping to reduce global greenhouse gas emissions and tackling global warming especially as the electricity energy demand rises in the years ahead. This could be assumed as an ideal win-win situation, but the reverse site of the medal is that the production of high-level nuclear waste outweighs this advantage. Hence the paper attempt to highlight the possible state-of-art concepts for the safe and sustaining storage of high-level nuclear waste in Germany.

  5. Nuclear data for the high-spin community

    Firestone, R B [Lawrence Berkeley Lab., CA (United States); Singh, B [McMaster Univ., Hamilton, ON (Canada). Tandem Accelerator Lab.

    1992-08-01

    The Isotopes Project at Berkeley is developing the Evaluated High-Spin Data File, a subset of the Evaluated Nuclear Structure Data File (ENSDF). The following products were under development at the time of the conference: eighth edition of the Table of Isotopes, electronic table of isotopes, data bases, nuclear charts, nuclear wallet cards, nuclear CD-ROM, FAX data services, on-line data services.

  6. Two-component injection moulding simulation of ABS-POM micro structured surfaces

    Tosello, Guido; Hansen, Hans Nørgaard; Islam, Aminul

    2013-01-01

    Multi-component micro injection moulding (μIM) processes such as two-component (2k) μIM are the key technologies for the mass fabrication of multi-material micro products. 2k-μIM experiments involving a miniaturized test component with micro features in the sub-mm dimensional range and moulding...... a pair of thermoplastic materials (ABS and POM) were conducted. Three dimensional process simulations based on the finite element method have been performed to explore the capability of predicting filling pattern shape at component-level and surface micro feature-level in a polymer/polymer overmoulding...

  7. Effects of electron beam irradiation on tribological and physico-chemical properties of Polyoxymethylene copolymer (POM-C)

    Rahman, Md. Shahinur; Shaislamov, Ulugbek; Yang, Jong-Keun [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Kim, Jong-Kuk [Plasma Processing Laboratory, Division of Surface Technology, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-Gu, Changwon, Kyungnam 641-010 (Korea, Republic of); Yu, Young Hun [Department of Physics, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Choi, Sooseok [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Lee, Heon-Ju, E-mail: hjlee@jejunu.ac.kr [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of)

    2016-11-15

    Highlights: • Electron beam dose irradiation effect on tribology of POM-C was investigated. • Raman and FTIR-ATR spectra confirm the chemical structural modification. • 1 MeV, 100 kGy dose irradiation induced well suited carbonization and hydrophobicity. • Well suited carbonization and hydrophobicity reduced friction coefficient. - Abstract: Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 kGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using pin on disk tribometer, Raman spectroscopy, FTIR-ATR, gel content analysis, SEM-EDS (scanning electron microscopy-energy dispersive spectroscopy), surface profiler and contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in decrease of the friction coefficient of POM-C block due to well suited carbonization, cross-linking, free radicals formation and partial physical modification. It also showed the lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation dose at 200 kGy resulted in increase of friction coefficient due to less effective cross-linking, but the irradiation doses at 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The degree of improvement for tribological attribute relies on the electron beam surface dose delivered (energy and dose rate).

  8. Nuclear shell effects at high temperatures

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  9. Transparency in high-energy nuclear collisions

    Karol, P.J.

    1992-01-01

    Problems associated with transparency schemes based on sharp cutoff models are discussed. The soft spheres model of hadron-nucleus and nucleus-nucleus collisions has been used to explore the influence of the realistic nuclear density geometry on transparency. An average nuclear transparency and an average reaction transparency are defined and their dependence on target and projectile dimensions and on the hadron-nucleon collision cross section are described. The results are expected to be valid for projectile energies above several hundred MeV/nucleon through the ultrarelativistic regime. For uniform (hard sphere) nuclear profiles, methods for obtaining effective total transparencies are suggested

  10. Nuclear science experiments in high schools

    Lowenthal, G.C.

    1990-01-01

    This paper comments on the importance of nuclear science experiments and demonstrations to science education in secondary schools. It claims that radiation protection is incompletly realised unless supported by some knowledge about ionizing radiations. The negative influence of the NHMRC Code of Practice on school experiments involving ionizing radiation is also outlined. The authors offer some suggestions for a new edition of the Code with a positive approach to nuclear science experiments in schools. 7 refs., 4 figs

  11. High quality, high efficiency welding technology for nuclear power plants

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  12. High temperature heat exchange: nuclear process heat applications

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  13. [Intermediate/high energy nuclear physics

    1989-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. The effort in quantum field theory provides theoretical results to test or replace assumed ingredients of the QCM. By the explicit example of a scalar field theory in 2D we have solved the long-standing problem of how to treat the dynamics of the vacuum in light-front quantization. We now propose to solve the same problem for simple Fermion field theories in 2D such as the Gross-Neveu model. We propose in subsequent years to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We have completed our analysis of the SLAC E101 and E133 experiments on Deuterium to elucidate the degree to which a six-quark cluster contribution is admissable in the Bjorken x > 1 data. We have completed our development of a parameterized thermal liquid drop model for light nuclei. In addition we have completed a set of predictions for the formation of a ''nuclear stratosphere'' in nuclei created by intermediate energy heavy ion interactions. These results motivate a new investigation of the temperature dependence of the ion-ion potential with particular emphasis on the thermal dependence of the barrier height and radius. We have also shown that a consistent treatment of relativistic effects is important for a theoretical description of the elastic magnetic form factor of 17 O. 85 refs

  14. High Resolution Sensor for Nuclear Waste Characterization

    Kanai Shah; William Higgins; Edgar V. Van Loef

    2006-01-01

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr 3 :Ce remains a very promising scintillator with high light yield and fast response. CeBr 3 is attractive because it is very similar to LaBr 3 :Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr 3 also shows slightly higher light yield at higher temperatures than LaBr 3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBr x I 3-x :Ce is lower and the difference in crystal structure of the binaries (LaBr 3 and LaI 3 ) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBr x I 3-x :Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr 3 and LaCl 3 ) are very similar. Overall, its scintillation properties are very similar to those for LaBr 3 :Ce. While the gamma-ray stopping efficiency of LaBr x I 3-x :Ce is lower than that for LaBr 3 :Ce (primarily because the density of LaCl 3 is lower than that of LaBr 3 ), it may be easier to grow large crystals of LaBr x I 3-x :Ce than LaBr 3 :Ce since in some instances (for example, Cd x Zn 1-x Te), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu 2+ and Pr 3+ , tried in LaBr 3 host crystals, the Eu 2+ doped samples exhibited

  15. Theoretical interpretation of high-energy nuclear collisions

    Fai, G.

    1991-07-01

    Nuclear collision data are interpreted theoretically. The nuclear equation of state is investigated with particular emphasis on momentum-dependent mean field effects. Subnucleonic degrees of freedom are invoked at high energies and densities, and a short length-scales. A nontopological soliton model for baryons is studied in which effective meson fields are generated from extended quark-antiquark pairs. The major objective of this nuclear theory project is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  16. Theoretical interpretation of high-energy nuclear collisions

    Fai, G.

    1992-06-01

    Nuclear collisions are interpreted theoretically. The nuclear equation of state is studied in a wide energy range. Subnucleonic degrees of freedom are invoked at high energy densities and at short length-scales. Questions of dynamical collision simulations are investigated. Direct support is provided for experiment in the form of collaborative projects. The major objective of this nuclear theory program is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  17. High energy nuclear collisions: Theory overview

    Fries, R.J.

    2010-08-01

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  18. Nuclear structure at high excitation energies

    Average nuclear shape; giant dipole resonance; static path approximation; linear re- ... On the other hand if the nucleus is already spherical in the ground state ... this approach to study the structural properties as well as level densities of some ... (1) is modeled by a harmonic vibration along the three principal axes and then.

  19. Kinematics of high-energy nuclear processes

    Sanchez del Rio, C.

    1972-01-01

    This report is the first draft of one of the chapters of a book being prepared under the title:Topics on Practical Nuclear Physics. It is published as a report because of its immediate educational value and in order to include in its final draft the suggestions of the readers. (Author)

  20. Materials Science of High-Level Nuclear Waste Immobilization

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  1. Micro injection moulding process optimization of an ultra-small POM three-dimensional component

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    Replication-based manufacturing processes are a cost effective method for producing complex and net-shaped components [1]. Micro injection moulding has a prominent place among them for its capability of accurately and precisely produce micro plastic parts in large production scale [2], [3......]. In this study, the optimization of the micro injection moulding process of an ultra-small (volume: 0.07 mm3; mass: 0.1 mg) three-dimensional Polyoxymethylene (POM) micro component for medical applications (see Figure 1) is presented. Preliminary experiments highlighted the need for venting channels in order...... with respect to design specifications, the flash areal size was utilized as quality indicator. A design of the experiments approach was carried out in order to study the effects of melt temperature, mould temperature, holding pressure and injection speed. For this task, a two-level full factorial design...

  2. On The compatibility and dynamic vulcanization of Pom/Nbr blends

    Mortezaee, M.; Naveed Family, M.H.; Mehrabzadeh, M.

    2001-01-01

    Polymer blends based on polyacetal butadiene rubber were prepared by melt blending technique. The mixing parameters such ad temperature, time and speed of mixing were varied to obtain a wide range of properties. The mixing parameters were optimized by evaluating the mechanical properties of the blend over a wide range of mixing conditions. The morphology of the blend indicated a two-phase structure. This study describes an attempt to improve the tensile strength of Pom/Nbr blends by means of compatibility and dynamic vulcanization. A commercial compatibility, maleic anhydride (Ma), has been used to control the phase morphology of the blend system. Dicumyl peroxide is used to dynamically vulcanize the Nbr elastomer in the blend. The tensile strength of the compatibility systems showed improvement. Dynamic vulcanization raises elastic recovery and tensile modulus of the blends, but the elongation at break decreases

  3. Effect of flexible fuels on mechanical properties of reinforced polyoxymethylenes (POM

    M. Gómez-Mares

    2014-08-01

    Full Text Available The use of flexible fuels has been increased during the last years making essential to run compatibility tests with those materials exposed to them. In this work the effect of the flexible fuels M15A (Volume Mixture of 85% fuel C and 15 % Aggressive methanol and M30A (Volume mixture of 70% fuel C and 30 % Aggressive methanol on the mechanical properties of some polymers of the Polyoxymethylene (POM family is assessed. The polymers chosen had different levels of glass fiber filler (0, 10 and 25%. The samples were immersed on fuel and kept on a chamber at 80°C during 1008h. The results showed that the properties of polymers with filler are more affected than the ones of the polymers without it. Tensile stress at break and Tensile stress at yield diminished with the fuel exposure. The most aggressive fuel was found to be M30A, due to the higher methanol concentration.

  4. Answers to your questions on high-level nuclear waste

    1987-11-01

    This booklet contains answers to frequently asked questions about high-level nuclear wastes. Written for the layperson, the document contains basic information on the hazards of radiation, the Nuclear Waste Management Program, the proposed geologic repository, the proposed monitored retrievable storage facility, risk assessment, and public participation in the program

  5. Theoretical interpretation of data from high-energy nuclear collisions

    Fai, G.

    1988-09-01

    Nuclear collision data at energies ranging from medium to relativistic are interpreted theoretically. The major objective is a better understanding of high-energy heavy-ion collisions, with particular emphasis on the properties of excited nuclear matter. Further progress towards a satisfactory description of excited subsaturation nuclear matter is achieved. The mean free path of a nucleon in nuclear matter, which is a critical parameter in assessing the applicability of certain nuclear collision models, is investigated. Experimental information is used together with theoretical concepts in collaborations with experimentalists in order to learn about the reaction mechanism and about excited nuclear matter properties. In the framework of a more strictly theoretical program development, subnuclear degrees of freedom and nonlinear phenomena in model field theories are studied

  6. Survey of high-temperature nuclear heat application

    Kirch, N.; Schaefer, M.

    1984-01-01

    Nuclear heat application at high temperatures can be divided into two areas - use of high-temperature steam up to 550 deg. C and use of high-temperature helium up to about 950 deg. C. Techniques of high-temperature steam and heat production and application are being developed in several IAEA Member States. In all these countries the use of steam for other than electricity production is still in a project definition phase. Plans are being discussed about using steam in chemical industries, oil refineries and for new synfuel producing plants. The use of nuclear generated steam for oil recovery from sands and shale is also being considered. High-temperature nuclear process heat production gives new possibilities for the application of nuclear energy - hard coals, lignites, heavy oils, fuels with problems concerning transport, handling and pollution can be converted into gaseous or liquid energy carriers with no loss of their energy contents. The main methods for this conversion are hydrogasification with hydrogen generated by nuclear heated steam reformers and steam gasification. These techniques will allow countries with large coal resources to replace an important part of their natural gas and oil consumption. Even countries with no fossil fuels can benefit from high-temperature nuclear heat - hydrogen production by thermochemical water splitting, nuclear steel making, ammonia production and the chemical heat-pipe system are examples in this direction. (author)

  7. Role of high technology in the nuclear industry

    Cain, D.G.

    1986-01-01

    A discussion of high technology identifies the characteristics which distinguish it from conventional technologies, and the impact high technology will have in the nuclear power industry in the near future. The basic theme is that high technology is an ensemble of competing technological developments that shifts with time and technological innovation. The attributes which current distinguish high technology are compactness, plasticity, convergence, and intelligence. These high technology attributes are presented as a prelude to some examples of high technology developments which are just beginning to penetrate the nuclear industry. Concluding remarks address some of the challenges which must be faced in order to assure that high technology is successfully adapted and used

  8. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  9. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  10. Investigation of counterface surface topography effects on the wear and transfer behaviour of a POM-20% PTFE composite

    Franklin, S.E.; de Kraker, A.

    2003-01-01

    In order to gain greater insight into the relation between the wear rate, counterface surface topography and the characteristics of the transfer layer formed, a series of wear experiments have been performed with a commercial POM-20% PTFE composite sliding against hardened tool steel counterfaces in

  11. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  12. Artificial intelligence - applications in high energy and nuclear physics

    Mueller, U. E-mail: mueller@whep.uni-wuppertal.de

    2003-04-21

    In the parallel sessions at ACAT2002 different artificial intelligence applications in high energy and nuclear physics were presented. I will briefly summarize these presentations. Further details can be found in the relevant section of these proceedings.

  13. Comparison of models of high energy nuclear collisions

    Gyulassy, M.

    1978-01-01

    The treatment of high energy nuclear reaction models covers goals of such collisions, the choice of theoretical framework, the zoo of models (p inclusive), light composites, models versus experiment, conclusions drawn, needed experiments, and pion production. 30 diagrams

  14. Nuclear magnetic resonance studies at high pressures

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  15. High cost of nuclear power plants

    Bassett, C.

    1978-01-01

    Retroactive safety standards were found to account for over half the costs of a nuclear power plant and point up the need for an effective cost-benefit analysis of changes made by the Nuclear Regulatory Commission after construction has started. The author compared the Davis-Besse Unit No. 1 construction-cost estimates with the final-cost increases during a rate-case investigation in Ohio. He presents data furnished for ten of the largest construction contracts to illustrate the cost increases involving fixed hardware and intensive labor. The situation was found to repeat with other utilities across the country even though safeguards against irresponsible low bidding were introduced. Low bidding was found to continue, encouraged by the need for retrofitting to meet regulation changes. The average cost per kilowatt of major light-water reactors is shown to have increased from $171 in 1970 to $555 in 1977, while construction duration increased from 43.4 to 95.6 months during the same period

  16. Managing the high level waste nuclear regulatory commission licensing process

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  17. Management of the high-level nuclear power facilities

    Preda, Marin

    2003-05-01

    This thesis approaches current issues in the management of the high power nuclear facilities and as such it appears to be important particularly for nuclear power plant operation topics. Of special interest are the failure events entailing possible catastrophic situations. The contents is structured onto ten chapters. The first chapter describes the operation regimes of the nuclear high power facilities. Highlighted here are the thesis scope and the original features of the work. The second chapter deals with operational policies developed in order to ensure the preventive maintenance of the nuclear installations. Also managing structures are described devoted to practical warranting the equipment safety function of non-classical power stations. In the third chapter cases of nuclear accidents are analyzed especially stressing the probabilistic risk and the operation regimes having in view the elimination of catastrophic events. In the fourth and fifth chapters the control of nuclear radiation emission is treated focusing the quality issue of nuclear installations required to avoid hazardous effects at level of nuclear reactor operation stage. At the same time set of operational measures is given here for preventing risks, catastrophes and chaotic situations. The chapter five presents both theoretical and practical approaches of the nuclear reactor core management concerning particularly the fuel testing, the water primary system and the quality of the involved equipment. In the sixth and seventh chapters issues of risk-quality correlations are approached as well as the structure of expert systems for monitoring the operational regimes of nuclear facilities. The efficiency of the power systems with nuclear injection is discussed and some original ideas developed in this work are evidenced in the eighth and ninth chapters. Presented are here both the operational principles and models of raising the efficiency of the interconnected nuclear stations and prices' policy

  18. High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.

    2000-01-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ϵ) close to thermal equilibrium, ϵ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer...... is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin–lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin–lattice relaxation time (T1n......). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin–lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective...

  19. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  20. High pressure sealing systems for nuclear reactors

    Garam, E. de

    1993-01-01

    TIA is the FRAMATOME Division in charge of design, manufacture maintenance and improvement of reactor core instrumentation. In the course of its activities, TIA was rapidly confronted with problems of leakage occurring in PWR in-core instrumentation, both in the neutron flux measurement system (flux thimbles and thimble guide tubes) and in the equipment used for core temperature sensing. TIA has likewise placed emphasis, in setting objectives for its operations, on improving instrumentation reliability, reducing maintenance costs and limiting the radiation doses sustained during maintenance. The very satisfactory results achieved by TIA in all of these areas have led us to look to the future with confidence. The purpose of this presentation is to describe the various improvements devised by TIA over the years and to take inventory of the experience gained by the Division with instrumentation for all types of nuclear power plants. (author)

  1. Nuclear stopping power at high energies

    Date, S.; Gyulassy, M.; Sumiyoshi, H.

    1985-03-01

    Recent p + A → p + X data are analyzed within the context of the multi-chain and additive quark models. We deduce the average energy loss of a baryon as a function of distance traversed in nuclear matter. Consistency of the multi-chain model is checked by comparing the predictions for p + A → π +- + X with data. We discuss the space-time development of baryon stopping and show how longitudinal growth limits the energy deposition per unit length. Predictions are made for the proton spectra to be measured in nucleus-nucleus collisions at CERN and BNL. Finally, we conclude that the stopping domain for central collisions of heavy ions extends up to center of mass kinetic energies KEsub(em) asymptotically equals 3 +- 1 AGev. (author)

  2. Response of high Tc superconducting Josephson junction to nuclear radiation

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  3. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  4. Future of high intensity accelerators in nuclear energy

    Schriber, S.O.; Fraser, J.S.; Tunnicliffe, P.R.

    1977-08-01

    A possible application for a high mean current, intermediate-energy proton linear accelerator is the ''electrical breeding'' of fuel for nuclear electrical power stations. The possible role of the spallation breeder in the context of a Canadian nuclear power economy and its relationship to nuclear fuel resources are discussed. The production of fissile material using the spallation process in a target containing actinide elements appears desirable and feasible from engineering and economic considerations. Current development work in Canada and some of the outstanding problems are discussed. (author)

  5. High temperature nuclear process heat systems for chemical processes

    Jiacoletti, R.J.

    1976-01-01

    The development planning and status of the very high temperature gas cooled reactor as a source of industrial process heat is presented. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system offers a unique combination of the two that is environmentally and economically attractive and technically sound. Conceptual studies of several energy-intensive processes coupled to a nuclear heat source are presented

  6. [Nuclear medicine in Spain: high technology 2013].

    Soriano Castrejón, A M; Prats Rivera, E; Alonso Farto, J C; Vallejo Casas, J A; Rodriguez Gasen, A; Setoain Perego, J; Arbizu Lostao, J

    2014-01-01

    This article details the high technology equipment in Spain obtained through a survey sent to the three main provider companies of equipment installed in Spain. The geographical distribution of high technology by Autonomous Communities and its antiquity have been analyzed. Copyright © 2014 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  7. Nuclear science summer school for high scholl students

    Foster, D.E.; Stone, C.A.

    1997-01-01

    We have developed a two-week summer lecture and laboratory course that introduces hihg school students to concepts in nuclear science. The program has operated at the San Jose State University Nuclear Science Facility for two years. Experienced high school science teachers run the summer scholl, assisted by other science teachers. Students consider the program to be effective. Its popularity is shown by numerous requests for reservations and the necessity to offer multiple sections in 1997. (author)

  8. Monotonous braking of high energy hadrons in nuclear matter

    Strugalski, Z.

    1979-01-01

    Propagation of high energy hadrons in nuclear matter is discussed. The possibility of the existence of the monotonous energy losses of hadrons in nuclear matter is considered. In favour of this hypothesis experimental facts such as pion-nucleus interactions (proton emission spectra, proton multiplicity distributions in these interactions) and other data are presented. The investigated phenomenon in the framework of the hypothesis is characterized in more detail

  9. Technological improvements to high temperature thermocouples for nuclear reactor applications

    Schley, R.; Leveque, J.P.

    1980-07-01

    The specific operating conditions of thermocouples in nuclear reactors have provided an incentive for further advances in high temperature thermocouple applications and performance. This work covers the manufacture and improvement of existing alloys, the technology of clad thermocouples, calibration drift during heat treatment, resistance to thermal shock and the compatibility of insulating materials with thermo-electric alloys. The results lead to specifying improved operating conditions for thermocouples in nuclear reactor media (pressurized water, sodium, uranium oxide) [fr

  10. Microstructure ion Nuclear Spectra at High Excitation

    Ericson, T.E.O.

    1969-01-01

    The statistical microstructure of highly excited systems is illustrated by the distribution and fluctuations of levels, widths and cross-sections of nuclei both for the case of sharp resonances and the continuum case. The coexistence of simple modes of excitation with statistical effects in terms of strength functions is illustrated by isobaric analogue states. The analogy is made with similar phenomena for coherent light, is solid-state physics and high-energy physics. (author)

  11. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  12. Estructura de tallas, madurez gonádica y alimentación del pez Diapterus rhombeus (Gerreidae en el sistema fluvio-deltaico Pom-Atasta, Campeche, México

    Arturo Aguirre-León

    2006-06-01

    Full Text Available Se estudió el pez D. rhombeus en el sistema fluviodeltaico Pom-Atasta, asociado a la Laguna de Términos Campeche, en un ciclo anual de 1992 a 1993. Esta especie es dominante en el sistema por su abundancia numérica, peso, frecuencia y amplia distribución. Se obtuvieron 745 individuos con un peso total de 2 890.2 g y un intervalo de longitud total de 3.0 a 16.7 cm. La variación anual del coeficiente alométrico b fue de 2.71 a 3.45. El factor de condición varió de 0.711 a 0.934. Fueron obtenidas diferencias significativas (pSize structure, gonadic development and diet of the fish Diapterus rhombeus (Gerreidae in the Pom-Atasta fluvial-deltaic system, Campeche, Mexico. The fish Diapterus rhombeus was studied during an annual cycle from 1992 to 1993 in the fluvial-deltaic Pom-Atasta system associated with Terminos Lagoon, Campeche, Mexico. It is a dominant species in the system, based on its numeric abundance, weight, high frequency and wide distribution. A total of 745 individuals were obtained, with a weigth of 2 890.2 g and length ranging from 3.0 to 16.7 cm. The annual variation of the allometric coefficient b was from 2.71 to 3.345. The condition factor varied from 0.711 to 0.934. The statistical analysis shows significant differences (p< 0.05 between the seasons of the year and the habitats of the system for the weight, the longitude and the condition factor K, which reflects the space-temporal utilization of the system for the species. The population present at Pom-Atasta, consists mainly by juvenile and few preadults individuals in gonadal stages I, II, and III, and more females than males were recorded. This species utilizes the system as a nursery area, growth and feeding area. It has a varied trophic spectrum, and consumes at least eight different groups. Its principal food items are undetermined organic matter, foraminifers, ostracods and tanaidaceans. It is a first order consumer. The Pom-Atasta system is located in a zone of

  13. High voltage fast switches for nuclear applications

    Chatroux, D.; Lausenaz, Y.; Villard, J.F.; Lafore, D.

    1999-01-01

    SILVA process consists in a selective ionization of the 235 uranium isotope, using laser beams generated by dye lasers pumped by copper vapour laser (C.V.L.). SILVA involves power electronic for 3 power supplies: - copper vapour laser power supply, - extraction power supply to generate the electric field in the vapour, and - electron beam power supply for vapour generation. This article reviews the main switches that are proposed on the market or are on development and that could be used in SILVA power supplies. The SILVA technical requirements are: high power, high voltage and very short pulses (200 ns width). (A.C.)

  14. Nuclear moments of inertia at high spin

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  15. Nuclear structure at high-spin and large-deformation

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  16. MIT nuclear reactor laboratory high school teaching program

    Olmez, I.

    1991-01-01

    For the last 6 years, the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory's academic and scientific staff a have been conducting evening seminars for precollege science teachers, parents, and high school students from the New England area. These seminars, as outlined in this paper, are intended to give general information on nuclear technologies with specific emphasis on radiation physics, nuclear medicine, nuclear chemistry, and ongoing research activities at the MIT research reactor. The ultimate goal is to create interest or build on the already existing interest in science and technology by, for example, special student projects. Several small projects have already been completed ranging from environmental research to biological reactions with direct student involvement. Another outcome of these seminars was the change in attitudes of science teachers toward nuclear technology. Numerous letters have been received from the teachers and parents stating their previous lack of knowledge on the beneficial aspects of nuclear technologies and the subsequent inclusion of programs in their curriculum for educating students so that they may also develop a more positive attitude toward nuclear power

  17. High energy physics and nuclear structure

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  18. High temperature applications of nuclear energy

    1994-08-01

    The meeting was organized to review industry/user needs designs, status of technology and the associated economics for high temperature applications. It was attended by approximately 100 participants from nine countries. The participants presented 17 papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  19. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  20. High temperature gas cooled nuclear reactor

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  1. The study for the high qualification of international nuclear training

    Noh, Byong Chull; Kim, Hyun Jin

    2012-12-01

    It is suggested how to reach high qualification of KAERI international nuclear training and how to play a leading role for new paradigm on the international training on the world. 1. The formulation of the core nuclear training framework- The systematic formulation of nuclear training framework based on the existing turning course design 2. Planning and operation of KAERI- Excellent Technology Series training course- The advertisement for KAERI Excellent Technology through the continuous international training and the future market development on the world for the nuclear technology 3. e-Learning training contents development- e-Learning training contents development to play a leading role for new training paradigm on the world and to overcome the limit of time/spacy

  2. High temperature reactor and application to nuclear process heat

    Schulten, R; Kugeler, K [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)

    1976-01-01

    The principle of high temperature nuclear process heat is explained and the main applications (hydrogasification of coal, nuclear chemical heat pipe, direct reduction of iron ore, coal gasification by steam and water splitting) are described in more detail. The motivation for the introduction of nuclear process heat to the market, questions of cost, of raw material resources and environmental aspects are the next point of discussion. The new technological questions of the nuclear reactor and the status of development are described, especially information about the fuel elements, the hot gas ducts, the contamination and some design considerations are added. Furthermore the status of development of helium heated steam reformers, the main results of the work until now and the further activities in this field are explained.

  3. The study for the high qualification of international nuclear training

    Noh, Byong Chull; Kim, Hyun Jin

    2012-12-15

    It is suggested how to reach high qualification of KAERI international nuclear training and how to play a leading role for new paradigm on the international training on the world. 1. The formulation of the core nuclear training framework- The systematic formulation of nuclear training framework based on the existing turning course design 2. Planning and operation of KAERI- Excellent Technology Series training course- The advertisement for KAERI Excellent Technology through the continuous international training and the future market development on the world for the nuclear technology 3. e-Learning training contents development- e-Learning training contents development to play a leading role for new training paradigm on the world and to overcome the limit of time/spacy.

  4. Nuclear reactor application for high temperature power industrial processes

    Dollezhal', N.A.; Zaicho, N.D.; Alexeev, A.M.; Baturov, B.B.; Karyakin, Yu.I.; Nazarov, E.K.; Ponomarev-Stepnoj, N.N.; Protzenko, A.M.; Chernyaev, V.A.

    1977-01-01

    This report gives the results of considerations on industrial heat and technology processes (in chemistry, steelmaking, etc.) from the point of view of possible ways, technical conditions and nuclear safety requirements for the use of high temperature reactors in these processes. Possible variants of energy-technological diagrams of nuclear-steelmaking, methane steam-reforming reaction and other processes, taking into account the specific character of nuclear fuel are also given. Technical possibilities and economic conditions of the usage of different types of high temperature reactors (gas cooled reactors and reactors which have other means of transport of nuclear heat) in heat processes are examined. The report has an analysis of the problem, that arises with the application of nuclear reactors in energy-technological plants and an evaluation of solutions of this problem. There is a reason to suppose that we will benefit from the use of high temperature reactors in comparison with the production based on high quality fossil fuel [ru

  5. PARADIGM: A BIBLIOMETRIC ANALYSIS OF PAPERS PRESENTED AT THE CONFERENCES OF THE POMS FROM 2000 TO 2010

    João Almeida Santos

    2014-01-01

    Full Text Available This study presents bibliometrics on Paradigm in papers presented at the Production and Operation Management Society (POMS from 2000 to 2010, and establishes the profile of the authors and the theoretical relationships present in those papers’ content. The portal of the Production and Operation Management Society and the abstracts contained in each of the events of the period were used, seeking to highlight the concept of Paradigm and its approaches. As a result, the articles presented at the POMS from 2000 to 2010, at least three out of the four hundred papers had the concept in its title or abstract, besides being within the central arguments of these same items analyzed by this study.

  6. High energy photons production in nuclear reactions

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  7. Transient state-dependent fluctuations in anxiety measured using STAI, POMS, PANAS or VAS: a comparative review

    Rossi, Valentina; Pourtois, Gilles

    2012-01-01

    Several psychometric instruments can be used to measure state-dependent variations in anxiety, including the State-Trait Anxiety Inventory (STAI), the Profile of Mood States (POMS), the Positive and Negative Affect Schedule (PANAS) and the Visual Analog Scales (VAS). Each of these instruments rests on specific theoretical assumptions about the construct of state anxiety, and has been widely used for this purpose in different research domains. However, it remains difficult to determine what ma...

  8. Nuclear structure at high angular momentum

    Stephens, F.S.

    1976-08-01

    There is considerable interest in high angular-momentum states of nuclei, and some recent progress in three areas is discussed. Part I considers transitional nuclei, where two types of rotational bands--decoupled and strongly coupled--are found to occur very frequently. These can be described by several collective models, but the required potential-energy surfaces seem to differ somewhat from those calculated microscopically. In Part II the processes that might cause backbending (irregularities in the rotational levels of certain nuclei) are discussed, and alignment of individual nucleons now seems to be the cause in most cases. The mixing of the ground band with this aligned band can be studied in some detail using Coulomb excitation with very heavy ions. Part III deals with the very high-spin states where effective moments of inertia have been obtained for spins up to 50h. Also structure has been seen in the spectra around these spin values which can be tentatively related to calculated shell effects. 74 references, 61 figures

  9. Nuclear graphite for high temperature reactors

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  10. Networking for High Energy and Nuclear Physics

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data

  11. Task force for integral test of High Energy nuclear data

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  12. QCD and high-energy nuclear collisions

    CERN. Geneva

    2007-01-01

    Six years ago, Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  13. Nuclear moments of inertia at high spins

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  14. A new tool for long-term studies of POM-bacteria interactions: overcoming the century-old Bottle Effect

    Ionescu, Danny; Bizic-Ionescu, Mina; Khalili, Arzhang; Malekmohammadi, Reza; Morad, Mohammad Reza; de Beer, Dirk; Grossart, Hans-Peter

    2015-01-01

    Downward fluxes of particulate organic matter (POM) are the major process for sequestering atmospheric CO2 into aquatic sediments for thousands of years. Budget calculations of the biological carbon pump are heavily based on the ratio between carbon export (sedimentation) and remineralization (release to the atmosphere). Current methodologies determine microbial dynamics on POM using closed vessels, which are strongly biased towards heterotrophy due to rapidly changing water chemistry (Bottle Effect). We developed a flow-through rolling tank for long term studies that continuously maintains POM at near in-situ conditions. There, bacterial communities resembled in-situ communities and greatly differed from those in the closed systems. The active particle-associated community in the flow-through system was stable for days, contrary to hours previously reported for closed incubations. In contrast to enhanced respiration rates, the decrease in photosynthetic rates on particles throughout the incubation was much slower in our system than in traditional ones. These results call for reevaluating experimentally-derived carbon fluxes estimated using traditional methods. PMID:26435525

  15. Very-high-energy nuclear physics

    Frankel, S.

    1983-06-01

    In 1980 we carried out an extensive series of experiments on alpha-alpha collisions in the ISR. The purpose of the experiment was to discover something new for example, to search for some evidence of new correlated behaviour, and, in particular, to search for the existence of the formation of a quark-gluon plasma. The reason for this hope lay in the fact that the ISR experiments were to be carried out at ultrarelativistic energies of 1000 GeV/c in the alpha cm. This is a region where it is known that the mean pion multiplicities are very large and it is possible to sample events with event multiplicities of at least 200. Another important feature was the fact that remarkable spectrometers existed at the ISR to make definitive studies of the whole event structure. The apparatus of the AFS had the capability of detecting 50 charged particles in an apparatus covering 85% of the total solid angle. The momentum of each particle could be measured with high accuracy and protons, kaons, pions and their antiparticles could be identified, along with neutral lambdas and kaons. The ability to handle large multiplicities was important in the study of violent collisions. To describe the results of these experiments we shall list below the titles of papers published, in press, or in preparation which will have been completed by the end of this fiscal year, commenting on the results and their significance

  16. Nuclear reactions induced by high-energy alpha particles

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  17. High-Frequency Gravitational Wave Induced Nuclear Fusion

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-01

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials

  18. Experimental validation on the effect of material geometries and processing methodology of Polyoxymethylene (POM)

    Hafizzal, Y.; Nurulhuda, A.; Izman, S.; Khadir, AZA

    2017-08-01

    POM-copolymer bond breaking leads to change depending with respect to processing methodology and material geometries. This paper present the oversights effect on the material integrity due to different geometries and processing methodology. Thermo-analytical methods with reference were used to examine the degradation of thermomechanical while Thermogravimetric Analysis (TGA) was used to judge the thermal stability of sample from its major decomposition temperature. Differential Scanning Calorimetry (DSC) investigation performed to identify the thermal behaviour and thermal properties of materials. The result shown that plastic gear geometries with injection molding at higher tonnage machine more stable thermally rather than resin geometries. Injection plastic gear geometries at low tonnage machine faced major decomposition temperatures at 313.61°C, 305.76 °C and 307.91 °C while higher tonnage processing method are fully decomposed at 890°C, significantly higher compared to low tonnage condition and resin geometries specimen at 398°C. Chemical composition of plastic gear geometries with injection molding at higher and lower tonnage are compare based on their moisture and Volatile Organic Compound (VOC) content, polymeric material content and the absence of filler. Results of higher moisture and Volatile Organic Compound (VOC) content are report in resin geometries (0.120%) compared to higher tonnage of injection plastic gear geometries which is 1.264%. The higher tonnage of injection plastic gear geometry are less sensitive to thermo-mechanical degradation due to polymer chain length and molecular weight of material properties such as tensile strength, flexural strength, fatigue strength and creep resistance.

  19. A nuclear standard high-efficiency adsorber for iodine

    Wang Jianmin; Qian Yinge

    1988-08-01

    The structure of a nuclear standard high-efficiency adsorber, adsorbent and its performance are introduced. The performance and structure were compared with the same kind product of other firms. The results show that the leakage rate is less than 0.005%

  20. Non-combustible nuclear radiation shields with high hydrogen content

    Hall, W.C.; Peterson, J.M.

    1978-01-01

    The invention relates to compositions, methods of production, and uses of non-combustible nuclear radiation shields, with particular emphasis on those containing a high concentration of hydrogen atoms, especially effective for moderating neutron energy by elastic scatter, dispersed as a discontinuous phase in a continuous phase of a fire resistant matrix

  1. PARTON SATURATION, PRODUCTION, AND EQUILIBRATION IN HIGH ENERGY NUCLEAR COLLISIONS

    VENUGOPALAN, R.

    1999-01-01

    Deeply inelastic scattering of electrons off nuclei can determine whether parton distributions saturate at HERA energies. If so, this phenomenon will also tell us a great deal about how particles are produced, and whether they equilibrate, in high energy nuclear collisions

  2. Nuclear based diagnostics in high-power laser applications

    Guenther, Marc; Sonnabend, Kerstin; Harres, Knut; Otten, Anke; Roth, Markus [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Vogt, Karsten; Bagnoud, Vincent [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2010-07-01

    High-power lasers allow focused intensities of >10{sup 18} W/cm{sup 2}. During the laser-solid interaction, an intense relativistic electron current is injected from the plasma into the target. One challenge is to characterize the electron dynamic close to the interaction region. Moreover, next generation high-power laser proton acceleration leads to high proton fluxes, which require novel, nuclear diagnostic techniques. We present an activation-based nuclear pyrometry for the investigation of electrons generated in relativistic laser-solid interactions. We use novel activation targets consisting of several isotopes with different photo-neutron disintegration thresholds. The electrons are decelerated inside the target via bremsstrahlung processes. The high-energy bremsstrahlung induces photo-nuclear reactions. In this energy range no disturbing low energy effects are important. Via the pyrometry the Reconstruction of the absolute yield, spectral and spatial distribution of the electrons is possible. For the characterization of proton beams we present a nuclear activation imaging spectroscopy (NAIS). The diagnostic is based on proton-neutron disintegration reactions of copper stacked in consecutive layers. An autoradiography of copper layers leads to spectrally and spatially reconstruction of the beam profile.

  3. Introduction to the nuclear physics at very high energy

    Kodama, T.

    1985-01-01

    An introduction to the nuclear physics at very high energies on the basis of relativistic nucleus-nucleus, hadron-nucleus and hadron-hadron collisions is made. Some theoretical models used nowadays to explain the experimental data, such as Quantum Chromodynamics, String Model, etc... are presented. (L.C.) [pt

  4. CSR of Lanzhou and nuclear physics at high densities

    Zhuang Pengfei; Zhao Weiqin

    1999-01-01

    The possibility to produce highly dense nuclear matter at CSR of Lanzhou and the corresponding signals at final state are discussed. Especially, the maximum baryon density reached at CSR is estimated, and the subthreshold production and hadronic flow risen from the partial restoration of chiral symmetry at CSR energies are analyzed

  5. Nuclear

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  6. Nuclear diagnostics of high intensity laser plasma interactions

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  7. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  8. Mesonic atom production in high-energy nuclear collisions

    Wakai, M.; Bando, H.; Sano, M.

    1987-08-01

    The production probability of π-mesonic atom in high-energy nuclear collisions is estimated by a coalescence model. The production cross section is calculated for p + Ne and Ne + Ne systems at 2.1 GeV/A and 5.0 GeV/A beam energy. It is shown that nuclear fragments with larger charge numbers have the advantage in the formation of π-mesonic atoms. The cross section is proportional to Z 3 and of the order of magnitude of 1 ∼ 10 μb in all the above cases. The production cross sections of K-mesonic atoms are also estimated. (author)

  9. Nuclear forces and high-performance computing: The perfect match

    Luu, T; Walker-Loud, A

    2009-01-01

    High-performance computing is now enabling the calculation of certain hadronic interaction parameters directly from Quantum Chromodynamics, the quantum field theory that governs the behavior of quarks and gluons and is ultimately responsible for the nuclear strong force. In this paper we briefly describe the state of the field and show how other aspects of hadronic interactions will be ascertained in the near future. We give estimates of computational requirements needed to obtain these goals, and outline a procedure for incorporating these results into the broader nuclear physics community.

  10. High-level nuclear waste disposal: Ethical considerations

    Maxey, M.N.

    1985-01-01

    Popular skepticism about, and moral objections to, recent legislation providing for the management and permanent disposal of high-level radioactive wastes have derived their credibility from two major sources: government procrastination in enacting waste disposal program, reinforcing public perceptions of their unprecedented danger and the inflated rhetoric and pretensions to professional omnicompetence of influential scientists with nuclear expertise. Ethical considerations not only can but must provide a mediating framework for the resolution of such a polarized political controversy. Implicit in moral objections to proposals for permanent nuclear waste disposal are concerns about three ethical principles: fairness to individuals, equitable protection among diverse social groups, and informed consent through due process and participation

  11. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Zhou, Kai; Dai, Wei; Xu, Nu; Zhuang, Pengfei

    2016-01-01

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  12. High intensity proton linear accelerator development for nuclear waste transmutation

    Mizumoto, M.; Hasegawa, K.; Oguri, H.; Ito, N.; Kusano, J.; Okumura, Y.; Murata, H.; Sakogawa, K.

    1997-01-01

    A high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 10 mA has been proposed for various engineering tests for the transmutation system of nuclear waste by JAERI. The conceptual and optimization studies for this accelerator performed for a proper choice of operating frequency, high b structure, mechanical engineering considerations and RF source aspects are briefly described

  13. HIGH SERVE - service for nuclear technology. Buyers' guide

    1986-01-01

    The Deutsches Atomforum e.V. (German Atomic Forum) has organised a specialist conference with the title 'HIGH SERVE - service for nuclear technology' for October 1986. In parallel with the conference, an exhibition will make it possible for interested firms to present their service and product ranges. The experience gained in the preparation of this exhibition has been used to produce the 'HIGH SERVE - buyers guide'. The intention is to make the market more comprehensible. (orig./HP) [de

  14. Application of high strength steel to nuclear reactor containment vessel

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  15. Seven principle of highly effective Nuclear Energy Programs

    Ferguson, Ch.D.; Reed, Ph.D.

    2010-01-01

    This paper presents seven principles that demand consideration for any country using a nuclear power program or wanting to acquire such a program. These principles are assessing the overall energy system, determining effective use of financial resources for energy development, ensuring high safety standards, implementing best security practices, preventing the spread of nuclear weapons, managing radioactive waste in a safe and secure manner, and enacting a legal framework that encompasses the other principle areas. The paper applies management methods that underscore development of strong independent national capabilities integrated within an interdependent international system. The paper discusses the individual responsibilities of states in all seven principles and offers recommendations for how states can benefit from greater international cooperation in nuclear energy development

  16. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  17. High acceptance of nuclear power by youngsters in Slovenia

    Stritar, Andrej; Istenic, Radko

    2001-01-01

    This is a regular report at PIME about the development of public opinion in Slovenia. Nuclear Training Centre Milan Copic at the Jozef Stefan Institute in Ljubljana is performing extensive public information activities. All the elementary and high schools in Slovenia are invited to visit our permanent exhibition and attend the lecture about the nuclear energy or radioactive waste disposal. Every year we are also trying to update picture about the perception of Slovenian young public to nuclear energy. In the spring 2000 altogether 845 visitors of our Information Centre were polled. They are answering before they listen to the lecture or visit the exhibition. In that way we are trying to obtain their opinion based on the knowledge they get in everyday life. We are maintaining the same set of questions every year in order to facilitate tracking of changes. Questions are based on early public opinion research done by Faculty of Social Sciences more than ten years ago. Conclusions: Public opinion about nuclear energy in Slovenia, at least of the young generation, remains to be quite favourable. - Number of people that support operation of NPP Krsko until the end of its life time has increased from 70,49% last year to 73,14% this year. If we add to that also those that would be willing to accept another NPP, we come to the 82,49% of full supporters (78,14% last year). At the same time percentage of people, that would stop NPP Krsko immediately is dropping steadily (from 12,28% in 1993 to 3,79% this year). - It is interesting to note that this year environmental friendliness of nuclear power was better recognised (question about reasons for the use of nuclear energy). - There is a lot of misunderstanding evident about the contents of the waste in the low level radioactive waste repository and danger of radioactive waste to the environment. - Disposal of waste remains to be considered as a major disadvantage of nuclear energy, bigger than possibility of an accident

  18. Nuclear Physics in High School: what are the previous knowledge?

    Pombo, F. de O.

    2017-11-01

    Nuclear physics is a branch of physics that about a century occupies an important space in the theoretical, experimental and scientific fields. Currently, its relevance in application is concentrated in several areas such as energy production, diagnostic processes and medical treatment and nuclear bombs, high destructive power. Whereas, according to legal regulations, the teaching of physics must make the student competent in the understanding of the world and assuming the perspective of Paulo Freire (2011) that education is not done on the subject, but together with him, in dialogue with his point of departure, his prior knowledge, we established the general objective of raising students prior knowledge of the third year of high School at Nair Ferreira Neves school, in São Sebastião-SP, about nuclear physics. We concluded that the school has not fulfilled its role in relation to nuclear physics, because students have information from other means of information and these knowledge are stereotyped and mistaken, damaging the world's reading and exercising full citizenship.

  19. Characterization of highly enriched uranium in a nuclear forensic exercise

    Nascimento, Marcos R.L. do; Quinelato, Antonio L.; Silva, Nivaldo C. da, E-mail: pmarcos@cnen.gov.br [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil); Sarkis, Jorge E.S., E-mail: jesarkis@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the characterization of two metal samples of highly enriched uranium as a contribution of Pocos de Caldas Laboratory, LAPOC, a branch of Brazilian National Commission for Nuclear Energy, CNEN, to the Round Robin 3, R R3, coordinated by the Nuclear Forensics International Technical Working Group. A scenario was constructed in which two separate seizures of nuclear material occurred and forensics analysis was requested to help discern whether these incidents were related and whether these incidents exceeded country statutes. Laboratories were instructed to submit assessment reports in 24 hours, one week, and two month time frames. Besides preliminary evaluations for categorization of the material, our laboratory applied high resolution gamma spectrometry, optical emission spectrometry by inductively coupled plasma, and potentiometric titration for quantitative characterization of the samples. Concerning our technical reports answers for the three main forensics questions formulated by R R3, one of them was inconclusive, considering that LAPOC does not yet have all essential equipment for a fully satisfactory forensics nuclear analysis. (author)

  20. Characterization of highly enriched uranium in a nuclear forensic exercise

    Nascimento, Marcos R.L. do; Quinelato, Antonio L.; Silva, Nivaldo C. da; Sarkis, Jorge E.S.

    2011-01-01

    This paper presents the characterization of two metal samples of highly enriched uranium as a contribution of Pocos de Caldas Laboratory, LAPOC, a branch of Brazilian National Commission for Nuclear Energy, CNEN, to the Round Robin 3, R R3, coordinated by the Nuclear Forensics International Technical Working Group. A scenario was constructed in which two separate seizures of nuclear material occurred and forensics analysis was requested to help discern whether these incidents were related and whether these incidents exceeded country statutes. Laboratories were instructed to submit assessment reports in 24 hours, one week, and two month time frames. Besides preliminary evaluations for categorization of the material, our laboratory applied high resolution gamma spectrometry, optical emission spectrometry by inductively coupled plasma, and potentiometric titration for quantitative characterization of the samples. Concerning our technical reports answers for the three main forensics questions formulated by R R3, one of them was inconclusive, considering that LAPOC does not yet have all essential equipment for a fully satisfactory forensics nuclear analysis. (author)

  1. Application on electrochemistry measurement of high temperature high pressure condition in PWR nuclear power plants

    Li Yuchun; Xiao Zhongliang; Jiang Ya; Yu Xiaowei; Pang Feifei; Deng Fenfang; Gao Fan; Zhou Nianguang

    2011-01-01

    High temperature high pressure electrochemistry testing system was comprehensively analyzed in this paper, according to actual status for supervision in primary and secondary circuits of PWR nuclear power plants. Three research methods were reviewed and discussed for in-situ monitor system. By combination with ECP realtime measurement it was executed for evaluation and water chemistry optimization in nuclear power plants. It is pointed out that in-situ electrochemistry measurement has great potential application for water chemistry evaluation in PWR nuclear power plants. (authors)

  2. High energy gamma-ray production in nuclear reactions

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  3. Progress report 1986. Laboratory of high energy nuclear physics

    1987-01-01

    A study of hadron structure using neutrino interactions; high energy photon interactions; a search for gluinos; a spectrometer for the study of quark fusion and structure functions; measurement of the real part of the pp - scattering amplitude at 546 GeV; measurement of photon production in the fragmentation region of pp - interactions at 630 GeV; investigation of very high energy nucleus-nucleus interactions: the quagma; an experience on nucleon stability; as well as high energy nuclear physics research facilities are described [fr

  4. Nuclear heat for high temperature fossil fuel processing

    Walton, G.N.

    1981-01-01

    This is a report of a one-day symposium held at the Royal Institution, London, on 28 April 1981. It was organized by the Institute of Energy (London and Home Counties section) under the chairmanship of Dr A M Brown with the assistance of the Institute of Energy's Nuclear Special Interest Group. The following five papers were presented (available as a booklet, from the Institute of Energy, price Pound12.00): 1) The Dragon project and the High Temperature Reactor (HTR) position. Dr L Shepherd, UKAEA, Winfrith. 2) Coal gasification technology. Dr M St J Arnold, NCB, Stoke Orchard Laboratories. 3) The utilization of nuclear energy for coal gasification. Dr K H van Heek, G Hewing, R Kirchhoff and H J Schroter, Bergbau Forschung, Essen, West Germany. 4) The hydrogen economy. K F Langley, Energy Technology Support Unit, Harwell. 5) Economic perspectives and high temperature reactors. J D Thorn, director, Technical Services and Planning, UKAEA. (author)

  5. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  6. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-01-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R and D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion

  7. The 1989 progress report: High Energy Nuclear Physics

    Meyer, J.

    1989-01-01

    The 1989 progress report of the laboratory of High-Energy Nuclear Physics, of the Polytechnic School (France) is presented. The investigations are performed in the fields of: bosons (W + , W - , Z 0 gauge and Higgs), supersymmetrical particles, new quarks and leptons, quark-gluon plasma, nucleon instability, the neutrino's mass. The 1989 most important event was the LEP start-up. New techniques for accelerating charged particles are studied. The published papers, the conferences and the Laboratory staff are listed [fr

  8. Electrocatalytic properties of three new POMs-based inorganic–organic frameworks with flexible zwitterionic dicarboxylate ligands

    Ren, Yanli; Li, Ling; Mu, Bao; Li, Changxia; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    2017-05-15

    Three POMs–based inorganic–organic frameworks, namely, [Cu{sub 2}(L){sub 2}(SiW{sub 12}O{sub 40})(H{sub 2}O){sub 2}]·6H{sub 2}O (1), [Co{sub 2}(L){sub 2}(SiW{sub 12}O{sub 40})(H{sub 2}O){sub 8}]·8H{sub 2}O (2) and [Ni{sub 2}(L){sub 2}(SiW{sub 12}O{sub 40})(H{sub 2}O){sub 8}]·6H{sub 2}O (3), (L=1,1′-(1,4-phenylene-bis(methylene))-bis(pyridine-3-carboxylic acid)), have been synthesized and characterized by elemental analyses, IR, XRPD, TG, and single crystal X-ray diffraction. Compound 1 contains 1D double chains decorated by (Cu{sub 2}(L){sub 4}(H{sub 2}O){sub 2}) units and the 1D chains and POMs are stacked to yield 2D frameworks. Compound 2 displays a 2D network constructed from 1D zigzag chains and POMs arranged in ABAB mode. Compound 3 consists of big square girds and the POMs are dispersed in the middle of the two adjacent girds, forming 2D networks. Compounds 1–3 all show structural integrity in aqueous solutions at different pH values and in common organic solvents. Additionally, the fluorescence and electrochemical properties of compounds 1–3 are also investigated. Compounds 1–3 exhibit good electrocatalytic activities for the reduction of NaNO{sub 2} and H{sub 2}O{sub 2}. - Highlights: • Compound 1–3 all contain different 1D chains. The noncovalent interaction of metal–organic moieties from compounds 1–3 and POMs to construct three new host–guest supramolecular compounds. • Compounds 1–3 show good electrocatalytic activities towards the reduction of NaNO{sub 2} and H{sub 2}O{sub 2}. • Compounds 1–3 all show structural integrity in aqueous solutions at different pH values and in common organic solvents. • Compounds 1–3 may be promising luminescent materials due to their luminescent properties.

  9. Protein and carbohydrate in P-POM collected from the fishing ground in Minnan-Taiwan Bank

    Su, Yongquan; Zhang, Huan

    1992-06-01

    The analysis of the protein and carbohydrate in P-POM (Plankton and Particulate Organic Matter) samples collected from the fishing ground in Minnan-Taiwan Bank in five voyages (April, June, July, August and November, 1988) shows that the protein and carbohydrate contents and amounts in samples from four stations (501, 401, 301, 201) along the coast and another four stations (404, 304, 403, 204) south and southeast of the shoal were higher than those in April and November, indicating that this phenomenon is related to the upwelling in the two regions in summer.

  10. Final disposal of high levels waste and spent nuclear fuel

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  11. Immobilisation of high level nuclear reactor wastes in SYNROC

    Ringwood, A E; Kesson, S E; Ware, N G; Hibberson, W; Major, A [Australian National Univ., Canberra. Inst. of Advanced Studies

    1979-03-15

    It is stated that the elements occurring in high-level nuclear reactor wastes can be safely immobilised by incorporating them within the crystal lattices of the constituent minerals of a synthetic rock (SYNROC). The preferred form of SYNROC can accept up to 20% of high level waste calcine to form dilute solid solutions. The constituent minerals, or close structural analogues, have survived in a wide range of geochemical environments for periods of 20 to 2,000 Myr whilst immobilising the same elements present in nuclear wastes. SYNROC is unaffected by leaching for 24 hours in pure water or 10 wt % NaCl solution at high temperatures and pressure whereas borosilicate glasses completely decompose in a few hours in much less severe hydrothermal conditions. The combination of these leaching results with the geological evidence of long-term stability indicates that SYNROC would be vastly superior to glass in its capacity to safely immobilise nuclear wastes, when buried in a suitable geological repository. A dense, compact, mechanically strong form of SYNROC suitable for geological disposal can be produced by a process as economical as that which incorporates radioactive waste in borosilicate glasses.

  12. Large angle tracking and high discriminating tracking in nuclear emulsion

    Matsuo, Tomokazu; Shibuya, Hiroshi; Ogawa, Satoru; Fukuda, Tsutomu; Mikado, Shoji

    2015-01-01

    Nuclear emulsion is a high resolution and re-analyzable detector. Conventional “Track Selector” which have angle acceptance |tan θ|<0.6 are widely used to find tracks in emulsion. We made a new track selector “Fine Track Selector” (FTS) which has large angle acceptance and high discriminating ability. The FTS reduces fake tracks using new algorithms, navigation etc. FTS also keeps finding efficiency of tracks around 90% in an angle range of |tan θ| < 3.5. FTS was applied to the τ candidate in OPERA and no additional tracks found. FTS will be useful to our new J-PARC emulsion experiment.

  13. High current proton linear accelerators and nuclear power

    Tunnicliffe, P.R.; Chidley, B.G.; Fraser, J.S.

    1976-01-01

    This paper outlines a possible role that high-current proton linear accelerators might play as ''electrical breeders'' in the forthcoming nuclear-power economy. A high-power beam of intermediate energy protons delivered to an actinide-element target surrounded by a blanket of fertile material may produce fissile material at a competitive cost. Criteria for technical performance and, in a Canadian context, for costs are given and the major problem areas outlined not only for the accelerator and its associated rf power source but also for the target assembly. (author)

  14. High energy nuclear database: a test-bed for nuclear data information technology

    Brown, D.A.; Vogt, R.; Beck, B.; Pruet, J.; Vogt, R.

    2008-01-01

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a test-bed for the further development of an object-oriented nuclear data format and database system. By using 'off-the-shelf' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a 'Grand Unified Nuclear Format' encapsulating data types used in the ENSDF, Endf/B, EXFOR, NSR and other formats, including processed data formats. (authors)

  15. High Energy Nuclear Database: A Testbed for Nuclear Data Information Technology

    Brown, D A; Vogt, R; Beck, B; Pruet, J

    2007-01-01

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a testbed for the further development of an object-oriented nuclear data format and database system. By using ''off-the-shelf'' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a ''Grand Unified Nuclear Format'' encapsulating data types used in the ENSDF, ENDF/B, EXFOR, NSR and other formats, including processed data formats

  16. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  17. High-spin nuclear structure studies with radioactive ion beams

    Baktash, C.

    1992-01-01

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies

  18. High vacuum general purpose scattering chamber for nuclear reaction study

    Suresh Kumar; Ojha, S.C.

    2003-01-01

    To study the nuclear reactions induced by beam from medium energy accelerators, one of the most common facility required is a scattering chamber. In the scattering chamber, projectile collides with the target nucleus and the scattered reaction products are detected with various type of nuclear detector at different angles with respect to the beam. The experiments are performed under high vacuum to minimize the background reaction and the energy losses of the charged particles. To make the chamber general purpose various requirement of the experiments are incorporated into it. Changing of targets, changing angle of various detectors while in vacuum are the most desired features. The other features like ascertaining the beam spot size and position on the target, minimizing the background counts by proper beam dump, accurate positioning of the detector as per plan etc. are some of the important requirements

  19. Issues of high-burnup fuel for advanced nuclear reactors

    Belac, J.; Milisdoerfer, L.

    2004-12-01

    A brief description is given of nuclear fuels for Generation III+ and IV reactors, and the major steps needed for a successful implementation of new fuels in prospective types of newly designed power reactors are outlined. The following reactor types are discussed: gas cooled fast reactors, heavy metal (lead) cooled fast reactors, molten salt cooled reactors, sodium cooled fast reactors, supercritical water cooled reactors, and very high temperature reactors. The following are regarded as priority areas for future investigations: (i) spent fuel radiotoxicity; (ii) proliferation volatility; (iii) neutron physics characteristics and inherent safety element assessment; technical and economic analysis of the manufacture of advanced fuels; technical and economic analysis of the fuel cycle back end, possibilities of spent nuclear fuel reprocessing, storage and disposal. In parallel, work should be done on the validation and verification of analytical tools using existing and/or newly acquired experimental data. (P.A.)

  20. High-temperature turbopump assembly for space nuclear thermal propulsion

    Overholt, David M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications.

  1. High-temperature turbopump assembly for space nuclear thermal propulsion

    Overholt, D.M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications

  2. Benzoate-Induced High-Nuclearity Silver Thiolate Clusters.

    Su, Yan-Min; Liu, Wei; Wang, Zhi; Wang, Shu-Ao; Li, Yan-An; Yu, Fei; Zhao, Quan-Qin; Wang, Xing-Po; Tung, Chen-Ho; Sun, Di

    2018-04-03

    Compared with the well-known anion-templated effects in shaping silver thiolate clusters, the influence from the organic ligands in the outer shell is still poorly understood. Herein, three new benzoate-functionalized high-nuclearity silver(I) thiolate clusters are isolated and characterized for the first time in the presence of diverse anion templates such as S 2- , α-[Mo 5 O 18 ] 6- , and MoO 4 2- . Single-crystal X-ray analysis reveals that the nuclearities of the three silver clusters (SD/Ag28, SD/Ag29, SD/Ag30) vary from 32 to 38 to 78 with co-capped tBuS - and benzoate ligands on the surface. SD/Ag28 is a turtle-like cluster comprising a Ag 29 shell caging a Ag 3 S 3 trigon in the center, whereas SD/Ag29 is a prolate Ag 38 sphere templated by the α-[Mo 5 O 18 ] 6- anion. Upon changing from benzoate to methoxyl-substituted benzoate, SD/Ag30 is isolated as a very complicated core-shell spherical cluster composed of a Ag 57 shell and a vase-like Ag 21 S 13 core. Four MoO 4 2- anions are arranged in a supertetrahedron and located in the interstice between the core and shell. Introduction of the bulky benzoate changes elaborately the nuclearity and arrangements of silver polygons on the shell of silver clusters, which is exemplified by comparing SD/Ag28 and a known similar silver thiolate cluster. The three new clusters emit luminescence in the near-infrared (NIR) region and show different thermochromic luminescence properties. This work presents a flexible approach to synthetic studies of high-nuclearity silver clusters decorated by different benzoates, and structural modulations are also achieved. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structure and properties of highly oriented polyoxymethylene produced by hot stretching

    Zhao Xiaowen; Ye Lin

    2011-01-01

    Research highlights: → Highly oriented POM was fabricated through solid hot stretching technology → Tensile strength and modulus of POM increased remarkably with draw ratio. → The crystal structure of POM changed from spherulite to mat texture by drawing. → Crystallinity and orientation factor of POM increased remarkably by drawing. → The mechanical structure model of microfibril of POM was established. - Abstract: Highly oriented self-reinforced polyoxymethylene (POM) was successfully fabricated through solid phase hot stretching technology. The tensile strength and modulus increased with draw ratio, which reached 900 MPa and 12 GPa, respectively at a high draw ratio of 900% without remarkable drop of the elongation at break. The structure and morphology of the drawn products were studied and the mechanical structure model of microfibril of POM was established. Raman spectral exhibited a low-frequency shift, which indicated two types of molecular chains with different response to the stress. During drawing, the spherulitic structure of POM was broken up and the mat texture crystals were formed. With the increase of draw ratio, the melting peak moved to high temperature and an additional shoulder peak ascribed to melting of highly chain-extended and oriented crystalline blocks was observed. X-ray diffraction showed that the crystallinity and orientation factor increased, while the grain size perpendicular to (1 0 0) crystal plane of POM decreased by drawing. The α relaxation peak corresponding to the glass transition temperature of POM (T g ) moved to high temperature with draw ratio. The section morphology of drawn POM exhibited a fibrillar structure which contributed to the significantly high tensile strength and modulus of the product.

  4. Progress in high energy physics and nuclear safety : Proceedings of the NATO Advanced Research Workshop on Safe Nuclear Energy

    Polański, Aleksander; Begun, Viktor

    2009-01-01

    The book contains recent results on the progress in high-energy physics, accelerator, detection and nuclear technologies, as well as nuclear safety in high-energy experimentation and in nuclear industry, covered by leading experts in the field. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments are highlighted. Most of the current high-energy experiments and their physical motivation are analyzed. Various nuclear energy safety aspects, including progress in the production of new radiation-resistant materials, new and safe nuclear reactor designs, such as the slowly-burning reactor, as well as the use of coal-nuclear symbiotic methods of energy production can be found in the book.

  5. High-resolution nuclear magnetic resonance studies of proteins.

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  6. High temperature electrolysis for hydrogen production using nuclear energy

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  7. Nuclear rockets: High-performance propulsion for Mars

    Watson, C.W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development

  8. Lead corrosion evaluation in high activity nuclear waste container (Argentina)

    Guasp, R.; Lanzani, L.; Bruzzoni, P.; Cufre, W.; Semino, C.J.

    2000-01-01

    This report describes a study of high activity nuclear waste canister corrosion in a deep geological disposal. In this canister design, the vitrified nuclear waste stainless steel container is shielded by a 100 mm thick lead wall. For mechanical resistance, the canister will also have a thin carbon steel external liner. Experimental and mathematical modeling studies are aimed to asses the corrosion kinetics of the carbon steel liner in first instance and then, once this liner has been corroded away, the corrosion kinetics of the main lead barrier. Being that oxygen reduction is the main cathodic reaction that supports the anodic oxidation of iron, a model is described predicting the rate of oxygen consumption in a sealed deep nuclear waste disposal vault as a result of the canister corrosion. Oxidation processes other than container corrosion, and that can account also for oxygen depletion, are not taken into consideration. Corrosion experimental studies on lead and its alloys in groundwater are also reported. These experiments are aimed to improve the corrosion resistance of commercial lead in groundwater. (author)

  9. Study on nuclear analysis method for high temperature gas-cooled reactor and its nuclear design (Thesis)

    Goto, Minoru

    2015-03-01

    An appropriate configuration of fuel and reactivity control equipment in a nuclear reactor core, which allows the design of the nuclear reactor core for low cost and high performance, is performed by nuclear design with high accuracy. The accuracy of nuclear design depends on a nuclear data library and a nuclear analysis method. Additionally, it is one of the most important issues for the nuclear design of a High Temperature Gas-cooled Reactor (HTGR) that an insertion depth of control rods into the reactor core should be retained shallow by reducing excess reactivity with a different method to keep fuel temperature below its limitation thorough a burn-up period. In this study, using experimental data of the High Temperature engineering Test Reactor (HTTR), which is a Japan's HTGR with 30 MW of thermal power, the following issues were investigated: applicability of nuclear data libraries to nuclear analysis for HTGRs; applicability of the improved nuclear analysis method for HTGRs; and effectiveness of a rod-type burnable poison on HTGR reactivity control. A nuclear design of a small-sized HTGR with 50 MW of thermal power (HTR50S) was performed using these results. In the nuclear design of the HTR50S, we challenged to decrease the kinds of the fuel enrichments and to increase the power density compared with the HTTR. As a result, the nuclear design was completed successfully by reducing the kinds of the fuel enrichment to only three from twelve of the HTTR and increasing the power density by 1.4 times as much as that of the HTTR. (author)

  10. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  11. Azimuthal asymmetry of slow particles in high energy nuclear interaction

    Sarkar, Subir; Goswami, T.D.

    2002-01-01

    An asymmetry in the angular distribution of slow particles in the azimuthal plane has been observed during high energy nuclear disintegration of photo emulsion nuclei exposed to 1.8 GeV/c k - and 20 GeV/c protons. The mechanism of disintegration is not in accordance with the cascade-evaporation model, which is based on isotropic emission of slow particles. Deviation from isotropy indicates that some of the slow particles might be emitted well before the thermal equilibrium is reached in the disintegrating system. (author)

  12. Nuclear hyperfine interactions and chemical bonding in high TC superconductors

    Danon, J.

    1987-01-01

    Nuclear quadrupole resonances of Cu 63 and Fe 57 Moessbauer spectroscopy of the high temperature superconductor YBa 2 Cu 3 O 7-γ e described together with synchrotron radiation studies of the copper oxidation states in this material. The Moessbauer spectra of 57 Fe in the two distinct crystallographic sites of the Cu atoms in YBa 2 Cu 3 O 7-γ are very similar from the quadrupole coupling point of view although exhibiting markedly different values for the isomer shift. The role of oxygen vacancies in the hyperfine interactions is discussed. (author) [pt

  13. Knowledge management for assuring high standards in nuclear safety

    Hahn, L.

    2004-01-01

    The primary incentives for introducing knowledge management in organisations active in the nuclear field are the impending loss of knowledge due to an ageing workforce and the necessity to transfer knowledge to the next generation. However, knowledge management may reach much further, and it is shown that ultimately, the goals of knowledge management are congruent with establishing, maintaining and further developing high standards of safety. Knowledge-based activities to reach these goals are discussed, and examples given for producing, utilising and sharing knowledge in organisations and in national and international networks. (author)

  14. Applications of super - high intensity lasers in nuclear engineering

    Salomaa, R.; Hakola, A.; Santala, M.

    2007-01-01

    Laser-plasma interactions arising when a super intense ultrashort laser pulse impinges a solid target creates intense partly collimated and energy resolved photons, high energy electron and protons and neutrons. In addition the plasma plume can generate huge magnetic and electric fields. Also ultra short X-ray pulses are created. We have participated in some of such experiments at Rutherford and Max-Planck Institute and assessed the applications of such kind as laser-driven accelerators. This paper discusses applications in nuclear engineering (neutron sources, isotope separation, fast ignition and transmutation, etc). In particular the potential for extreme time resolution and to partial energy resolution are assessed

  15. Electromagnetic coupling of high-altitude, nuclear electromagnetic pulses

    Anon.

    1984-01-01

    We have used scale models to measure the predicted coupling of electromagnetic fields simulating the effects of high-altitude nuclear electromagnetic pulses (HEMP) on the interior surfaces of electronic components. Predictive tools for exterior coupling are adequate. For interior coupling, however, such tools are in their infancy. Our methodological approach combines analytical, computational, and laboratory techniques in a complementary way to take advantage of their separate strengths. Computer models are a promising tool, as they can be used to treat complex objects with arbitrary shapes, dielectrics, and cables, and multiple apertures. Laboratory tests can expand the domain of investigation even further

  16. Neutron analysis of the fuel of high temperature nuclear reactors

    Bastida O, G. E.; Francois L, J. L.

    2014-10-01

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  17. Static and dynamic high power, space nuclear electric generating systems

    Wetch, J.R.; Begg, L.L.; Koester, J.K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references

  18. High technology supporting nuclear power industry in CRIEPI

    Ueda, Nobuyuki

    2009-01-01

    As a central research institute of electric power industry, Central Research Institute of Electric Power Industry (CRIEPI) has carried out R and D on broad range of topics such as power generation, power transmission, power distribution, power application and energy economics and society, aiming to develop prospective and advanced technologies, fundamental reinforce technologies and next-generation core technologies. To realize low-carbon society to cope with enhancement of global environmental issues, nuclear power is highly recommended as large-scale power with low-carbon emission. At the new start of serial explanation on advanced technologies, R and D on electric power industry was outlined. (T. Tanaka)

  19. Laboratory for Nuclear Science. High Energy Physics Program

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  20. Proposal for a high-energy nuclear database

    Brown, D.A.; Vogt, R.

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  1. High performance sealing - meeting nuclear and aerospace requirements

    Wensel, R.; Metcalfe, R.

    1994-11-01

    Although high performance sealing is required in many places, two industries lead all others in terms of their demand-nuclear and aerospace. The factors that govern the high reliability and integrity of seals, particularly elastomer seals, for both industries are discussed. Aerospace requirements include low structural weight and a broad range of conditions, from the cold vacuum of space to the hot, high pressures of rocket motors. It is shown, by example, how a seal can be made an integral part of a structure in order to improve performance, rather than using a conventional handbook design. Typical processes are then described for selection, specification and procurement of suitable elastomers, functional and accelerated performance testing, database development and service-life prediction. Methods for quality assurance of elastomer seals are summarized. Potentially catastrophic internal dejects are a particular problem for conventional non-destructive inspection techniques. A new method of elastodynamic testing for these is described. (author)

  2. Development of nuclear quality high pressure valve bellows in Canada

    Janzen, P.; Astill, C.J.

    1978-06-01

    Concurrent with the decision to use bellows stem sealed nuclear valves where feasible in commercial-scale CANDU plants, AECL undertook to develop an indigenous high pressure valve bellows technology. This program included developing the capability to fabricate improved high pressure valve bellows in conjunction with a Canadian manufacturer. This paper describes the evolution of a two-stage bellows fabrication process involving: (1) manufacture of discrete lengths of precision thin wall telescoping tubes - from preparation of strip blanks through edge grinding and edge forming to longitudinal welding; (2) forming of bellows from tube assemblies using a novel combination of mechanical inward forming followed by hydraulic outward forming. Bellows of Inconel 600 and Inconel 625 have been manufactured and evaluated. Test results indicate comparable to improved performance over alternative high quality bellows. (author)

  3. Initial angular momentum and flow in high energy nuclear collisions

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  4. High resolution spectroscopy in solids by nuclear magnetic resonance

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  5. Very high temperature measurements: Applications to nuclear reactor safety tests

    Parga, Clemente-Jose

    2013-01-01

    This PhD dissertation focuses on the improvement of very high temperature thermometry (1100 deg. C to 2480 deg. C), with special emphasis on the application to the field of nuclear reactor safety and severe accident research. Two main projects were undertaken to achieve this objective: - The development, testing and transposition of high-temperature fixed point (HTFP) metal-carbon eutectic cells, from metrology laboratory precision (±0.001 deg. C) to applied research with a reasonable degradation of uncertainties (±3-5 deg. C). - The corrosion study and metallurgical characterization of Type-C thermocouple (service temp. 2300 deg. C) prospective sheath material was undertaken to extend the survivability of TCs used for molten metallic/oxide corium thermometry (below 2000 deg. C)

  6. The high efficiency steel filters for nuclear air cleaning

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs

  7. High efficiency steel filters for nuclear air cleaning

    Bergman, W.; Conner, J.; Larsen, G.; Lopez, R.; Turner, C.; Vahla, G.; Violet, C.; Williams, K.

    1991-01-01

    The authors have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiently particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing steel filters, they first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, prototype filters were then built for venting compressed gases and evaluated in their automated filter tester

  8. Disoriented Chiral Condensates in High-Energy Nuclear Collisions

    Randrup, Jorgen

    2000-10-18

    This brief lecture series discusses how our current understanding of chiral symmetry may be tested more globally in high-energy nuclear collisions by suitable extraction of pionic observables. After briefly recalling the general features of chiral symmetry, we focus on the SU(2) linear sigma model and show how a semi-classical mean-field treatment makes it possible to calculate its statistical properties, including the chiral phase diagram. Subsequently, we consider scenarios of relevance to high-energy collisions and discuss the features of the ensuing non-equilibrium dynamics and the associated characteristic signals. Finally, we illustrate how the presence of vacuum fluctuations or the inclusion of strangeness may affect the results quantitatively.

  9. Symposium on the development of nuclear waste policy: Siting the high-level nuclear waste repository

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) attempted to formulate a viable national policy for managing the disposal of high-level nuclear wastes. The NWPA authorized the selection of two repository sites: the first to be constructed in the West and a second site developed in the eastern United States. A detailed process for site selection was outlined in the NWPA. In addition, the NWPA authorized open-quotes the development of a waste transportation system; required the Department of Energy (DOE) to submit a proposal to construct a facility for monitored retrievable storage (MRS) after conducting a study of the need for, and feasibility of such a facility; and required the President to evaluate the use of the repositories ... for the disposal of high-level waste resulting from defense activitiesclose quotes (DOE, 1988, p. 1). A series of provisions granting oversight participation to states and Indian tribes, as well as a compensation package for the ultimate host state were also included. Responsibility for implementing the NWPA was assigned to DOE

  10. A High Integrity Can Design for Degraded Nuclear Fuel

    Holmes, P.A.

    1999-01-01

    A high integrity can (HIC), designed to meet the ASME Boiler and Pressure Vessel Code (Section III, Div. 3, static conditions) is proposed for the interim storage and repository disposal of Department of Energy (DOE) spent nuclear fuel. The HIC will be approximately 5 3/8 inches (134.38mm) in outside diameter with 1/4 inch (6.35mm) thick walls, and have a removable lid with a metallic seal that is capable of being welded shut. The opening of the can is approximately 4 3/8 inches (111.13mm). The HIC is primarily designed to contain items in the DOE SNF inventory that do not meet acceptance standards for direct disposal in a geologic repository. This includes fuel in the form of particulate dusts, sectioned pieces of fuel, core rubble, melted or degraded (non-intact) fuel elements, unclad uranium alloys, metallurgical specimens, and chemically reactive fuel components. The HIC is intended to act as a substitute cladding for the spent nuclear fuel, further isolate problematic materials, provide a long-term corrosion barrier, and add an extra internal pressure barrier to the waste package. The HIC will also delay potential fission product release and maintain geometry control for extended periods of time. For the entire disposal package to be licensed by the Nuclear Regulatory Commission, a HIC must effectively eliminate the disposal problems associated with problem SNF including the release of radioactive and/or reactive material and over pressurization of the HIC due to chemical reactions within the can. Two HICs were analyzed to envelop a range of can lengths between 42 and 101 inches. Using Abacus software, the HIC's were analyzed for end, side, and corner drops. Hastelloy C-22 was chosen based upon structural integrity, corrosion resistance, and neutron adsorption properties

  11. Nuclear data generation for cryogenic moderators and high temperature moderators

    Petriw, Sergio

    2007-01-01

    The commonly used processing codes for nuclear data only allow the generation of cross section data for a limited number of materials and physical conditions.At present, one of the most used computer codes for the generation of neutron cross sections is N J O Y, which is based on a phonon expansion of the scattering function starting from the frequency spectrum.Therefore, the information related to the system's density of states is crucial to produce the required data of interest. In this work the formalism of the Synthetic Model for Molecular Solids (S M M S) was implemented, which is in turn based on the Synthetic Frequency Spectrum (S F S) concept.The synthetic spectrum is central in the present work, and it is built from simple, relevant parameters of the moderator, thus conforming an alternative tool when no information on the actual frequency spectrum of the moderator material is available.S F S 's for several material of interest where produced in this work, for both cryogenic and high temperature moderators.We studied some materials of special interest, like solid methane, ice, methyl clathrate and two which are of special interest in the nuclear industry: graphite and beryllium.The libraries generated in the present work for the materials considered, in spite of their synthetic origin, are able to produce results that are even in better agreement with available information [es

  12. Management of high level nuclear waste - the nordic approach

    Engstrom, S.; Aikas, T.

    2000-01-01

    Both the Swedish and the Finnish nuclear waste programmes are aimed at disposal of encapsulated spent nuclear fuel into the crystalline bedrock. In both countries research and development work have been performed since the 1970's. The focus of the programme in both countries is now shifting to practical demonstration of encapsulation technology. In parallel a site-selection programme is being carried out. Finland has selected a site at Eurajoki and is currently waiting for the Government to agree to the choice of the site. In Sweden, at least two sites will be selected by year 2001 with the goal, after performed drillings, to select one of them around 2008. Site selection for the deep repository is probably the most difficult and most sensitive part of the whole programme. The repository will be sited at a suitable place in Sweden respectively Finland where high safety requirements will be met with the consent of the concerned municipality. If there is a Nordic approach to tackle this issue that would probably be: - A stepwise approach in which the disposal is implemented in gradually each step having a decision making stage leading to a commitment of various parties involved to the following stage. -A total transparency of the work performed and the decision making process. - A genuine will from the industry to establish a dialogue with the public in the involved communities. - A will to take the time and the patience necessary to establish a constructive working relationship with the communities participating in the site selection. (authors)

  13. Applications of Nuclear Analytical Methods for High Tech Industry

    Hossain, T.

    2013-01-01

    Silicon based semiconductor chip manufacturing is a worldwide high technology industry with numerous measurement issues. One of the major concerns in the semiconductor manufacturing is contamination such as the trace metal impurities. This concern is vividly illustrated by the fact that the manufacturing in this industry is done in ultra clean environment where the entire manufacturing facility or “Fab” is a clean room facility or each and every manufacturing tool is enclosed in a mini-environment Although semiconductor devices are fabricated on the surface of the Si wafers contamination in the bulk material is a major concern. Nuclear methods of analysis are uniquely suited for the contamination analysis in such a matrix. Many opportunities in the semiconductor manufacturing field exist for the nuclear methods to provide support services. Contamination analysis by NAA, depth profiles by NDP and prompt gamma analysis of H in thin films are a few examples. These needs are on-going and require commitment from the lab so that a manufacturing operation can rely on the delivery of these services when required

  14. Constituent quark model for nuclear stopping in high energy nuclear collisions

    Choi, T.K.; Maruyama, M.; Takagi, F.

    1997-01-01

    We study nuclear stopping in high energy nuclear collisions using the constituent quark model. It is assumed that wounded nucleons with a different number of interacted quarks hadronize in different ways. The probabilities of having such wounded nucleons are evaluated for proton-proton, proton-nucleus, and nucleus-nucleus collisions. After examining our model in proton-proton and proton-nucleus collisions and fixing the hadronization functions, it is extended to nucleus-nucleus collisions. It is used to calculate the rapidity distribution and the rapidity shift of final-state protons in nucleus-nucleus collisions. The computed results are in good agreement with the experimental data on 32 S+ 32 S at E lab =200A GeV and 208 Pb+ 208 Pb at E lab =160A GeV. Theoretical predictions are also given for proton rapidity distribution in 197 Au+ 197 Au at √(s)=200A GeV (BNL-RHIC). We predict that the nearly baryon-free region will appear in the midrapidity region and the rapidity shift is left-angle Δy right-angle=2.24

  15. High field nuclear magnetic resonance application to polysaccharide chemistry

    Vincendon, Marc

    1972-01-01

    Nuclear magnetic resonance has been applied to polysaccharide chemistry using time averaging technique and high fields (100 and 250 MHz). The three methyl signals of methyl cellulose and cellulose triacetate are separated, and the C-6 substituent has been identified. Biosynthesis of bacterial cellulose has been performed using deuterium labelled D-glucose and Acetobacter xylinum. Per-acetylated derivative of bacterial cellulose has been studied by NMR; this study permitted us to determine the quantity of deuterium on each position of the anhydro-glucose unit in the polymer. NMR has also been used to see the anomeric end chain of cellulose and amylose derivatives and to show the fixation of bromine and t-butyl group on the free anomeric end chain of cellulose triacetate. (author) [fr

  16. The disposal of high level nuclear waste in the oceans

    Vilks, Gustavs

    1976-01-01

    A report is given on a meeting held at Woods Hole, Massachusetts to consider the feasibility of using the sea bed as a disposal site for highly radioactive nuclear waste. Some disadvantages are explained, the chief being that ocean water alone, regardless of depth, is a poor barrier. Some delegates discussed emplacement of vitrified waste on the ocean floor, and others its burial in rock or sediment below the floor. The most suitable sites are the mid-plate/mid-gyse localities of abyssal hills. Some engineering work on submarine burial has been done by Sandia Labs., in the U.S.A. Ocean disposal is particularly interesting to Britain and Japan. Data on biological transport rates are needed. (author)

  17. Geology of high-level nuclear waste disposal

    Roxburgh, I.S.

    1988-01-01

    The concept of geological disposal is set out by describing the major rock types in terms of their ability to isolate high-level nuclear waste. The advantages and problems posed by particular rock formations are explored and the design and construction of geological repositories is considered, along with the methods used to estimate their safety. It gives special consideration to the use of sea-covered rock and sediment as well as the on-land situation. Throughout the book the various principles and problems inherent in geological disposal are explained and illustrated by reference to a multitude of European and North American case studies, backed up by a large number of tables, figures and an extensive bibliography

  18. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    Petrosky, L.J.; Disney, R.K.; Mangus, J.D.; Gunn, S.A.; Zweig, H.R.

    1993-01-01

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements

  19. Investigation of Rare Particle Production in High Energy Nuclear Collisions

    Crawford, Henry J.; Engelage, Jon M.

    1999-01-01

    Our program is an investigation of the hadronization process through measurement of rare particle production in high energy nuclear interactions. Such collisions of heavy nuclei provide an environment similar in energy density to the conditions in the Big Bang. We are currently involved in two major experiments to study this environment, E896 at the AGS and STAR at RHIC. We have completed our physics running of E896, a search for the H dibaryon and measurement of hyperon production in AuAu collisions, and are in the process of analyzing the data. We have produced the electronics and software for the STAR trigger and will begin to use these tools to search for anti-nuclei and strange hadrons when RHIC turns on later this year

  20. High-energy nuclear reaction mechanisms - fission, fragmentation and spallation

    Kaufman, S.B.

    1987-01-01

    Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments

  1. High-energy nuclear optics of polarized particles

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  2. Problems on shipping high-enriched nuclear materials

    Ganzha, V.V.; Demko, N.A.; Deryavko, I.I.; Zelenski, D.I.; Kolbaenkov, A.N.; Pivovarov, O.S.; Storozhenko, A.N.; Chernyad'ev, V.V.; Yakovlev, V.V.; Gorin, N.V.; Prokhod'ko, A.I.; Sherbina, A.N.; Barsanov, V.I.; Dyakov, E.K.; Tishenko, M.F.; Khlystov, A.I.; Vasil'ev, A.P.; Smetannikov, V.P.

    1998-01-01

    In 1996-1998 all Russian nuclear materials were taken out of the Institute of Atomic Energy of Kazakhstan National Nuclear Centre (IAE NNC RK). In this report there are basic tasks related to the performance of this work. They are: 1) Preparation of Russian nuclear materials (NM) kept at IAE NNC RK for transportation; 2) accounting and control of Russian nuclear materials kept at IAE NNC RK; 3) arrangement of permit papers for NM transportation; 4) NM transportation from IAE NNC RK to the enterprises of Russian MINATOM; 5) provision of nuclear and radiation safety in the course of operations with NM; 6) provision of physical protection for Russian NM

  3. High committee for nuclear safety transparency and information. November 20, 2009 meeting of the High Committee

    2009-11-01

    The high committee for the nuclear safety transparency and information (HCTISN) is an information, consultation and debate authority devoted to the assessment of the risks linked with nuclear activities and to the analysis of their impact on public health, on the environment and on nuclear safety. Each year, the HCTISN organizes several ordinary meetings in order to analyze some specific topics of the moment, and, depending on the events, some extraordinary meetings. This document is the proceedings of an extraordinary meeting about the information and transparency in relation with the management of nuclear materials and wastes at all stages of the fuel cycle. The reason of this meeting is a request from the French Minister of ecology, energy, sustainable development and sea (MEEDDM) after the broadcast of a TV documentary entitled 'wastes: the nuclear industry nightmare' and the publication of a press article affirming that 'our nuclear wastes are hidden in Siberia'. The Minister expressed his wish to have the question of the international trade of nuclear materials examined by the HCTISN. The document is organized as follows: a first part presents the hearings of the general direction of energy and climate (DGEC), of the nuclear safety authority (ASN), of EdF, of Areva, of the CEA, of the senior official for the defense and security of the MEEDDM, of Rosatom company and of Greenpeace organisation. A second part examines the incident which took place in October 2009 at the plutonium technology workshop (ATPu) of Cadarache, where about 22 to 39 kg of plutonium powder were discovered in the gloveboxes of this facility, decommissioned in 2005 and undergoing dismantlement today. This part presents the hearings of the CEA, of AREVA, of the Institute of radiation protection and nuclear safety (IRSN), of the ASN, of the hygiene, safety and labour conditions committee (CHSCT) of Areva and CEA, and of the local information commission (CLI) of Cadarache, in relation with

  4. Crystallization and preliminary X-ray diffraction analysis of prion protein bound to the Fab fragment of the POM1 antibody

    Baral, Pravas Kumar; Wieland, Barbara; Swayampakula, Mridula; Polymenidou, Magdalini; Aguzzi, Adriano; Kav, Nat N. V.; James, Michael N. G.

    2011-01-01

    The complex of MoPrP(120–232) and Fab POM1 has been crystallized (space group C2, unit-cell parameters a = 83.68, b = 106.9, c = 76.25 Å, β = 95.6°). Diffraction data to 2.30 Å resolution have been collected using synchrotron radiation. Prion diseases are neurodegenerative diseases that are characterized by the conversion of the cellular prion protein PrP c to the pathogenic isoform PrP sc . Several antibodies are known to interact with the cellular prion protein and to inhibit this transition. An antibody Fab fragment, Fab POM1, was produced that recognizes a structural motif of the C-terminal domain of mouse prion protein. To study the mechanism by which Fab POM1 recognizes and binds the prion molecule, the complex between Fab POM1 and the C-terminal domain of mouse prion (residues 120–232) was prepared and crystallized. Crystals of this binary complex belonged to the monoclinic space group C2, with unit-cell parameters a = 83.68, b = 106.9, c = 76.25 Å, β = 95.6°

  5. High Temperature Electro-Mechanical Devices For Nuclear Applications

    Robertson, D.

    2010-01-01

    Nuclear power plants require a number of electro-mechanical devices, for example, Control Rod Drive Mechanisms (CRDM's) to control the raising and lowering of control rods and Reactor Coolant Pumps (RCP's) to circulate the primary coolant. There are potential benefits in locating electro-mechanical components in areas of the plant with high ambient temperatures. One such benefit is the reduced need to make penetrations in pressure vessels leading to simplified plant design and improved inherent safety. The feature that limits the ambient temperature at which most electrical machines may operate is the material used for the electrical insulation of the machine windings. Conventional electrical machines generally use polymer-based insulation that limits the ambient temperature they can operate in to below 200 degrees Celsius. This means that when a conventional electrical machine is required to operate in a hot area it must be actively cooled necessitating additional systems. This paper presents data gathered during investigations undertaken by Rolls-Royce into the design of high temperature electrical machines. The research was undertaken at Rolls-Royce's University Technology Centre in Advanced Electrical Machines and Drives at Sheffield University. Rolls- Royce has also been investigating high temperature wire and encapsulants and latterly techniques to provide high temperature insulation to terminations. Rolls-Royce used the experience gained from these tests to produce a high temperature electrical linear actuator at sizes representative of those used in reactor systems. This machine was tested successfully at temperatures equivalent to those found inside the reactor vessel of a pressurised water reactor through a full series of operations that replicated in service duty. The paper will conclude by discussing the impact of the findings and potential electro-mechanical designs that may utilise such high temperature technologies. (authors)

  6. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  7. Novel High Transverse Momentum Phenomena in Hadronic and Nuclear Collisions

    Brodsky, Stanley J.; /SLAC

    2009-04-10

    I discuss a number of novel phenomenological features of QCD in high transverse momentum reactions. The presence of direct higher-twist processes, where a proton is produced directly in the hard subprocess, can explain the 'baryon anomaly' - the large proton-to-pion ratio seen at RHIC in high centrality heavy ion collisions. Direct hadronic processes can also account for the deviation from leading-twist PQCD scaling at fixed x{sub T} = 2 p{sub T}/{radical}s. I suggest that the 'ridge' --the same-side long-range rapidity correlation observed at RHIC in high centrality heavy ion collisions is due to the imprint of semihard DGLAP gluon radiation from initial-state partons which have transverse momenta biased toward the trigger. A model for early thermalization of the quark-gluon medium is also outlined. Rescattering interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing--all leading-twist dynamics not incorporated in the light-front wavefunctions of the target computed in isolation. Anti shadowing is shown to be quark flavor specific and thus different in charged and neutral deep inelastic lepton-nucleus scattering. I also discuss other aspects of quantum effects in heavy ion collisions, such as tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and the important consequences of color-octet intrinsic heavy quark distributions in the proton for particle and Higgs production at high x{sub F}. I also discuss how the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories allows one to compute the analytic form of frame-independent light

  8. Aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers

    Prelas, M.A.; Boody, F.P.; Zediker, M.S.

    1987-01-01

    An aerosol core reactor concept can overcome the efficiency and/or chemical activity problems of other fuel-reactant interface concepts. In the design of a laser using the nuclear energy for a photon-intermediate pumping scheme, several features of the aerosol core reactor concept are attractive. First, the photon-intermediate pumping concept coupled with photon concentration methods and the aerosol fuel can provide the high power densities required to drive high energy/power lasers efficiently (about 25 to 100 kW/cu cm). Secondly, the intermediate photons should have relatively large mean free paths in the aerosol fuel which will allow the concept to scale more favorably. Finally, the aerosol core reactor concept can use materials which should allow the system to operate at high temperatures. An excimer laser pumped by the photons created in the fluorescer driven by a self-critical aerosol core reactor would have reasonable dimensions (finite cylinder of height 245 cm and radius of 245 cm), reasonable laser energy (1 MJ in approximately a 1 millisecond pulse), and reasonable mass (21 kg uranium, 8280 kg moderator, 460 kg fluorescer, 450 kg laser medium, and 3233 kg reflector). 12 references

  9. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  10. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  11. Present status of Radiation and Nuclear Education at High School in Japan

    Kudo, Kazuhiko

    1999-01-01

    A special committee for 'Radiation and Nuclear Education' made an investigation into textbooks for social and science courses at high school in 1996. The committee concluded that descriptions of subjects related to energy, radiation and nuclear power in textbooks should be more substantial . In textbooks for social course, nuclear power was described from the point of view of resource, energy and environment. Some of the textbooks described that Chernobyl power plant's accident and nuclear weapons testing contaminated and destructed the earth environment. Descriptions about nuclear power were perceptional and one-sided . In textbooks for science course, subjects related to radiation, nucleus, nuclear reactor and nuclear power plant were described in detail to a certain extent . Descriptions about radiation hazard and radiation utilization were objective and balanced. In order that high school students can understand objectively nuclear power as a energy resource and conservation of the earth environment, the committee recommended the government course guidelines to be revised. (M. Suetake)

  12. High energy nuclear beams at Berkeley: present and future possibilities

    Schroeder, L.S.

    1984-01-01

    The primary goal of the Bevalac research program continues to be the study of nuclear matter at extreme conditions of temperature and baryon density while still addressing more conventional aspects of nuclear physics. Future plans are for a colliding beam machine in the energy range of 20 GeV/n. The conceptual design and basin requirements for such a relativistic nuclear collider (RNC) are outlined. In addition the central physics themes to be addressed by an RNC are briefly discussed

  13. On the nuclear fragmentation mechanisms in nuclear collisions at intermediate and high energies

    Jipa, Al; Besliu, C.; Felea, D.

    2004-01-01

    The nuclear fragmentation mechanisms can be discussed by taking into account different scales related to the fragment sizes. Considering two fragmentation mechanisms of the nuclei at the same incident energy an analysis of the experimental results obtained was done. Goldhaber formula was improved by analyzing the discrepancies between data and theories concerning the projectile fragmentation. We implied that the projectile fragmentation process would be governed by the distribution of nucleon momenta in the projectile after the collision occurred. We used in our analysis protons from the 4 He + 7 Li at 4.5 GeV/c per nucleon incident momentum, as well as from 40 Ar + 12 C at 213 AMeV bombarding energy. We proved that in order to proceed in analyzing the projectile fragmentation process at intermediate and high energies one has to consider the dependence σ 0 on the apparent temperature of projectile nucleus after the collision took place. The generalized Bertsch correction for light projectile nuclei and fragments was used and the number of spatial correlations between identical nucleons having anticorrelated momenta was found. Thus we found apparent temperature values close to the separation energies of the considered fragments per number of fragments. The temperatures associated to kinetic energy spectra of the projectile fragments were calculated following two methods. The results from Bauer's method were compared with those obtained by fitting the kinetic energy distributions of the projectile fragments in the rest frame of the projectile with a Maxwellian curve. We also accomplished the comparison of the experimental results with similar events simulated with RQMD 2.4. All the results obtained suggested two nuclear fragmentation mechanisms: a sudden fragmentation by explosive mechanisms, like shock waves and a slow fragmentation by the 'fission' of the spectator regions, mainly because of the interactions with the particles or fragments emitted from the

  14. HEND: A Database for High Energy Nuclear Data

    Brown, D; Vogt, R

    2007-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. The database will be searchable and cross-indexed with relevant publications, including published detector descriptions. It should eventually contain all published data from older heavy-ion programs such as the Bevalac, AGS, SPS and FNAL fixed-target programs, as well as published data from current programs at RHIC and new facilities at GSI (FAIR), KEK/Tsukuba and the LHC collider. This data includes all proton-proton, proton-nucleus to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of experiments. To enhance the utility of the database, we propose periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support

  15. Synroc - a multiphase ceramic for high level nuclear waste immobilisation

    Reeve, K.D.; Vance, E.R.; Hart, K.P.; Smith, K.L.; Lumpkin, G.R.; Mercer, D.J.

    1992-01-01

    Many natural minerals - particularly titanates - are very durable geochemically, having survived for millions of years with very little alteration. Moreover, some of these minerals have quantitatively retained radioactive elements and their daughter products over this time. The Synroc concept mimics nature by providing an all-titanate synthetic mineral phase assemblage to immobilise high level waste (HLW) from nuclear fuel reprocessing operations for safe geological disposal. In principle, many chemically hazardous inorganic wastes arising from industry could also be immobilised in highly durable ceramics and disposed of geologically, but in practice the cost structure of most industries is such that lower cost waste management solutions - for example, the development of reusable by-products or the use of cements rather than ceramics - have to be devised. In many thousands of aqueous leach tests at ANSTO, mostly at 70-90 deg C, Synroc has been shown to be exceptionally durable. The emphases of the recent ANSTO program have been on tailoring of the Synroc composition to varying HLW compositions, leach testing of Synroc containing radioactive transuranic actinides, study of leaching mechanisms by SEM and TEM, and the development and costing of a conceptual fully active Synroc fabrication plant design. A summary of recent results on these topics will be presented. 29 refs., 4 figs

  16. Department of Nuclear Equipment 'High Technology Center - HITEC' - Overview

    Kopec, J.

    2009-01-01

    Full text: The main activities of the Department for Nuclear Equipment High Technology Centre in 2008 were focused on the development of specialized systems using linear accelerators for medical applications, realized within the frame of the Innovative Economy Operational Program: · Calculations, simulations and design of accelerator structures and beam shaping devices · Design of a model of carrying structures · Building stands for carrying out critical component examinations and tests A new evolutionary algorithm has been implemented in a three-dimensional treatment planning system for intensity modulated radiotherapy (IMRT) planning optimization. A design for a multi leaf collimator, second model, was worked out. The Department received an Award for the Polkam TBI therapeutic table in the first edition of the '' Teraz-Polska '' national contest for the best Polish innovative product. Equipment manufactured by the High Technology Centre and especially for total body irradiation techniques was presented for the first time during the Biennial Meeting of the European Society for Therapeutic Radiology and Oncology in Goeteborg, Sweden. The second edition of the School of Medical Accelerator Physics organized in October 2008 was well received by medical physicists and physicians. (author)

  17. Parity dependence of the nuclear level density at high excitation

    Rao, B.V.; Agrawal, H.M.

    1995-01-01

    The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E 0 , Γ n , J π ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ 3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)

  18. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; Buluc, Aydin; Shao, Meiyue

    2017-01-01

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using the compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.

  19. Instruction in nuclear physics in Italian science and technology high schools

    Langella, N.A.

    1994-01-01

    The study of nuclear energy in Italian secondary schools was recently given notable impetus in the context of a general reassessment of scientific education. The current and previous situations as to the teaching of nuclear physics are compared and the new curriculum designed for industrial high schools specializing in nuclear energy, following the 1989 referendum on nuclear power generation (which led to a halt in the construction of new plants and the shutdown of those in service), is analyzed

  20. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  1. Disposal of high level nuclear wastes: thermodynamic equilibrium and environment ethics

    Rana, M.A.

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. (authors)

  2. Fuel element concept for long life high power nuclear reactors

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  3. Reclaiming some moral high ground - Ethical aspects in nuclear communications

    Hore-Lacy, Ian

    2000-01-01

    Public communication about nuclear energy needs to relate to the cultural undercurrents which determine how people perceive the environment. The paper discusses some of these and suggests ways of responding to them. It also outlines major ethical considerations relevant to uranium mining and nuclear energy and hence which are relevant to communication about both. Competent discourse about values is fundamental. (author)

  4. Theoretical interpretation of high-energy nuclear collisions

    Fai, G.

    1990-08-01

    In the following, I briefly summarize the research results and progress under this project in the time period January 1, 1988--July 31, 1990. Published and unpublished research in this time period focused on aspects of nuclear disassembly, nuclear dynamics, and subnucleonic degrees of freedom in model field theories

  5. Controllers for high-performance nuclear fusion plasmas

    Baar, de M.R.

    2012-01-01

    A succesful nuclear fusion reactor will confine plasma at hig temperatures and densities, with low thermal losses. The workhorse of the nuclear fusion community is the tokamak, a toroidal device in which plasmas are confined by poloidal and toroidal magnetic fields. Ideally, the confirming magnetic

  6. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie; Ferrer, Ludovic; Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois

    2008-01-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ( 67 Cu, 47 Sc) or alpha ( 211 At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ( 64 Cu, 124 I, 44 Sc), or that can be generator-produced ( 82 Rb, 68 Ga) or providing the opportunity of a new imaging modality ( 44 Sc) are considered to have a great interest at short term whereas 86 Y, 52 Fe, 55 Co, 76 Br or 89 Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.) 5

  7. Nuclear safety. Living up to high expectations today, tomorrow

    Jennekens, J.H.

    1986-10-01

    How safe is safe enough? In the nuclear energy field, whenever government, the nuclear industry, or independent researchers have presented the public with an answer to this question it has been met with a demand for more safety-related controls on the industry. It is doubtful whether doubling the $25 million budget of the Canadian Atomic Energy Control Board (AECB) would result in twice as much nuclear safety. It is disturbing that people feel there is not enough information; the much of the information the AECB makes available has been ignored. In the long term it is important that the public become confident in nuclear safety. It may be that some day all toxic waste will have to be managed as safely as nuclear waste

  8. Nuclear high-spin data for A = 174, 176 and 184

    Junde, Huo [Jilin Univ. (China). Dept. of Physics

    1996-06-01

    Nuclear high-spin data are important in the frontier areas of nuclear structure physics. The information on A = 174, 176 and 184 mass chains from various reaction experiments together with their adopted high-spin levels and gamma transition properties are presented and discussed. High-spin data for A = 174, 176 and 184 mass chains were evaluated in 1995.

  9. Brazing refractory metals used in high-temperature nuclear instrumentation

    Palmer, A. J.; Woolstenhulme, C. J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  10. High-energy expansion for nuclear multiple scattering

    Wallace, S.J.

    1975-01-01

    The Watson multiple scattering series is expanded to develop the Glauber approximation plus systematic corrections arising from three (1) deviations from eikonal propagation between scatterings, (2) Fermi motion of struck nucleons, and (3) the kinematic transformation which relates the many-body scattering operators of the Watson series to the physical two-body scattering amplitude. Operators which express effects ignored at the outset to obtain the Glauber approximation are subsequently reintroduced via perturbation expansions. Hence a particular set of approximations is developed which renders the sum of the Watson series to the Glauber form in the center of mass system, and an expansion is carried out to find leading order corrections to that summation. Although their physical origins are quite distinct, the eikonal, Fermi motion, and kinematic corrections produce strikingly similar contributions to the scattering amplitude. It is shown that there is substantial cancellation between their effects and hence the Glauber approximation is more accurate than the individual approximations used in its derivation. It is shown that the leading corrections produce effects of order (2kR/subc/) -1 relative to the double scattering term in the uncorrected Glauber amplitude, hk being momentum and R/subc/ the nuclear char []e radius. The leading order corrections are found to be small enough to validate quatitative analyses of experimental data for many intermediate to high energy cases and for scattering angles not limited to the very forward region. In a Gaussian model, the leading corrections to the Glauber amplitude are given as convenient analytic expressions

  11. Brazing Refractory Metals Used In High-Temperature Nuclear Instrumentation

    Palmer, A.J.; Woolstenhulme, C.J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE) sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR 1) experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed

  12. Brazing refractory metals used in high-temperature nuclear instrumentation

    Palmer, A. J. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Woolstenhulme, C. J. [EG and G Services, Inc., (United States)

    2009-07-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  13. Transverse momentum in high-energy nuclear collisions: Collective expansion

    Wang, X.; Hwa, R.C.

    1987-01-01

    Hadron production in the central region in high-energy nuclear collisions is investigated. The hydrodynamical expansion of a locally thermalized system is studied for both the cases with and without phase transition. The case with phase transition is considered by using a sound-velocity function c/sub s/(T) parametrized to fit the energy density determined in a lattice gauge calculation. The effect of a transverse rarefaction wave is included in the calculation of the temperature profile of the expanding fluid. The transverse-momentum distribution of hadrons is calculated by collecting all the hadrons produced when the hadron gas is cooled down to a freeze-out temperature at different times in the expansion. Fluctuation in initial temperature and radius is allowed due to variation in impact parameter. On the basis of a study of the thermalization process in the parton model we impose a constraint on the initial temperature and the thermalization time, the simultaneous variation of both of which gives rise to a relationship between the average transverse momentum and rapidity density. We have found that there is no so-called ''plateau'' region in that relationship. The implication on the diagnostics of a quark-gluon plasma is discussed

  14. Fabrication of high performance components for Indian nuclear reactors

    Jayaraj, R.N.

    2011-01-01

    Nuclear Fuel Complex (NFC), a Unit of the Department of Atomic Energy (DAE) has been engaged for well over three-and-half decades in the manufacture of fuels for Pressurized Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs). All the fuel assembly components, like, fuel clad tubes, end plugs, spacers, spacer grids etc. are also being manufactured at NFC in Zirconium alloy material. Apart from the regular production of these components and finished fuel assemblies, NFC has also been engaged in the production of Zirconium alloy reactor core structurals, like, pressure tubes, calandria tubes, garter springs and reactivity control mechanisms for PHWRs and square channels for BWRs. While all these structural components are produced through standardized flow sheets, there have been continuous innovations carried out in the processes to meet the ever increasing end-use characteristics laid down by the utilities. The paper enumerates various aspects of different technologies developed at NFC for the manufacture of high performance components for reactor applications

  15. A brief introduction to high altitude nuclear explosion and a review on high altitude nuclear tests of usa and former USSR

    Sun Jingwen

    1999-11-01

    The author briefly introduces some knowledge about high altitude nuclear explosion (HANE) and presents a general review on high altitude nuclear tests of USA and former USSR. Physical phenomenon generated by HANE is given. The effects of HANE on space flyer, artificial satellite and communication are discussed. Some aspects of a mechanism of antimissile for HANE are described and the effect and role of HANE for USA and USSR are reviewed

  16. Green light for MYRRHA, high technology in nuclear research

    Abderrahim, H.A.; Baeten, P.

    2010-01-01

    During the past years, SCK-CEN has invested in the development, in a European context, of a revolutionary material test reactor. This ground-breaking irradiation facility, called MYRRHA, will be the world's first nuclear reactor driven by a particle accelerator, and in time will replace the BR2 reactor. The aim of MYRRHA is to contribute to the sustainable implementation of nuclear energy and to help develop solutions for important social concerns, such as the management of radioactive waste and the safety of nuclear energy. Following the expert opinion of the international MIRT team in 2009, in early 2010 the federal government gave its blessing to this ambitious project.

  17. Survey of cognition on nuclear and radiation in Beijing high school students

    Wang Chao; He Jianrong; Zhu Xiayang; Yang Guoliang; Cong Huiling; Hu Qinfang

    2014-01-01

    Objective: To explore cognition level on nuclear and radiation in Beijing high school students, which may provide evidence for promoting science popularization on nuclear and radiation. Methods: Questionnaire-based survey was conducted in Beijing high school students, randomized cluster sampling was used to recruit study participants. Demographic information was collected, and cognition level on nuclear and radiation was evaluated by questionnaire. Results: A total of 1029 pieces of eligible questionnaires were collected. The correct rate for answering common sense about nuclear and radiation was 58%, with score of boys significantly higher than that of girls (t = 4.131, P < 0.05). About subjective cognition of nuclear and radiation knowledge, 87 (8.5%) indicated 'quite clear', 779 (75.7%) indicated 'know a little', 163 (15.8%) indicated 'know nothing'. There was significant difference in score of common sense about nuclear and radiation among people with various subjective cognition level of nuclear and radiation (J-T = 8.279, P < 0.05). There was a linear correlation between support degree for nuclear power and subjective cognition level of nuclear and radiation (r = 0.161, P < 0.05). There was significant difference in score of common sense about nuclear and radiation among people with various support degree for nuclear power (J-T = 7.508, P < 0.05), whereas those who had got high scores tended to support nuclear power to a higher degree. Conclutions: Students knew little about knowledge on nuclear and radiation. It is necessary to strengthen propaganda and education on nuclear and radiation, which may help enhance the students' comprehensive quality, and sustainable expansion of nuclear power more support in the long run. (authors)

  18. Mechanical properties test and microstructure analysis of polyoxymethylene (POM) micro injection moulded standard parts

    Tosello, Guido; Lucchetta, Giovanni; Hansen, Hans Nørgaard

    2009-01-01

    to factorial plans, in which the factors of interest were mould temperature, melt temperature and dimensional range of the specimen (i.e. macro and micro parts). Micro structure analysis was performed by means of plastography techniques and revealed that high mould and melt temperatures resulted on a thin skin...

  19. The modular high-temperature gas-cooled reactor: A cost/risk competitive nuclear option

    Gotschall, H.L.

    1994-01-01

    The business risks of nuclear plant ownership are identified as a constraint on the expanded use of nuclear power. Such risks stem from the exacting demands placed on owner/operator organizations of current plants to demonstrate ongoing compliance with safety regulations and the resulting high costs for operation and maintenance. This paper describes the Modular High-Temperature Gas-Cooled Reactor (MHTGR) design, competitive economics, and approach to reducing the business risks of nuclear plant ownership

  20. Nuclear models to 200 MeV for high-energy data evaluations. Vol.12

    Chadwick, M.; Reffo, G.; Dunford, C.L.; Oblozinsky, P.

    1998-01-01

    The work of the Nuclear Energy Agency's Subgroup 12 is described, which represents a collaborative effort to summarize the current status of nuclear reaction modelling codes and prioritize desired future model improvements. Nuclear reaction modelling codes that use appropriate physics in the energy region up to 200 MeV are the focus of this study, particularly those that have proved useful in nuclear data evaluation work. This study is relevant to developing needs in accelerator-driven technology programs, which require accurate nuclear data to high energies for enhanced radiation transport simulations to guide engineering design. (author)

  1. Nuclear charge radii and nuclear moments of neutron deficient Ba isotopes from high resolution laser spectroscopy

    Nowicki, G.; Bekk, K.; Goering, S.; Hanser, A.; Rebel, H.; Schatz, G.

    1978-07-01

    Isotope shifts and hyperfine structure of the BaI 6s 2 1 S 0 -6s6p 1 P 1 transitions (lambda = 553.6 nm) in neutron deficient Ba nuclides (N 131 Ba, 128 Ba, in addition to remeasurements of all stable Ba nuclides. The extracted values of delta 2 >, the observed odd-even staggering and the nuclear moments are discussed in the light of other theoretical and experimental nuclear structure studies of the region 50 [de

  2. Assistance to high schools: A mobile Nuclear Physics Laboratory. Final report, 1991--1992 activities

    Kerlin, T.W.; Dean, C.H.

    1992-01-01

    The Nuclear Engineering Department of the University of Tennessee was awarded a grant from DOE to expand and improve a program of assisting high school physics teachers in their coverage of nuclear physics. Nuclear physics has routinely been handled poorly in high school classes. There are several reasons for this: nuclear physics is usually near the end of high school physics texts and teachers often fail to get to it, many teachers are unfamiliar with nuclear physics and are reluctant to cover it, and laboratories are a problem because equipment is expensive, teachers often do not know how to use the equipment and schools often do not want to store radioactive sources. The assistance program encourages teachers to cover nuclear physics and overcomes the problems associated with laboratories

  3. High Committee for transparency and information on nuclear safety: Annual activity report (January 2010 - December 2010)

    2010-01-01

    After a description of the operation of the French 'High Committee for transparency and information on nuclear safety' (HCTISN), of its missions, its organisation and its means, the progress report presents the High Committee activity for 2010 with summaries of its report on the transparency of nuclear material and waste management, its meetings, its work groups, its visits and participations to other events

  4. Investigation of nuclear matter properties by means of high energy nucleus-nucleus collisions

    Stock, R.

    1985-09-01

    We review recent advances towards an understanding of high density nuclear matter, as created in central collisions of nuclei at high energy. In particular, information obtained for the nuclear matter equation of state will be discussed. The lectures focus on the Bevalac energy domain of 0.4 to 2 GeV per projectile nucleon. (orig.)

  5. The precautionary principle and high-level nuclear waste policy

    Frishman, S.

    1999-01-01

    The 'Precautionary Principle' has grown from the broadening observation that there is compelling evidence that damage to humans and the world-wide environment is of such a magnitude and seriousness that new principles for conducting human activities are necessary. One of the various statements of the Precautionary Principle is: when an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically. The use of a precautionary principle was a significant recommendation emerging from the 1992 United Nations Conference on Environment and Development, held in Rio de Janeiro, Brazil, and it is gaining acceptance in discussions ranging from global warming to activities that affect the marine environment, and far beyond. In the US high-level nuclear waste policy, there is a growing trend on the part of geologic repository proponents and regulators to shift the required safety evaluation from a deterministic analysis of natural and engineered barriers and their interactions to risk assessments and total system waste containment and isolation performance assessment. This is largely a result of the realisation that scientific 'proof' of safety cannot be demonstrated to the level repository proponents have led the American public to expect. Therefore, they are now developing other methods in an attempt to effectively lower the repository safety expectations of the public. Implicit in this shift in demonstration of 'proof' is that levels of uncertainty far larger than those generally taken as scientifically acceptable must be accepted in repository safety, simply because greater certainty is either too costly, in time and money, or impossible to achieve at the potential Yucca Mountain repository site. In the context of the Precautionary Principle, the repository proponent must bear the burden of providing 'Acceptable' proof, established by an open

  6. Effective channel approach to nuclear scattering at high energies

    Rule, D.W.

    1975-01-01

    The description of high energy nuclear reactions is considered within the framework of the effective channel approach. A variational procedure is used to obtain an expression for the Green's function in the effective channel, which includes the average fluctuation potential, average energy, and an additional term arising from the non-commutability of the kinetic energy operator and the effective target wave function. The resulting expression for the effective channel, containing one variational parameter, is used to obtain the coupling potential. The resulting formulation is applied to the elastic scattering of 1 GeV protons by 4 He nuclei. A simple Gaussian form is used for the spin--isospin averaged proton--nucleon interaction. The variational parameter in the effective channel wave function is fixed a posteriori via the total p-- 4 He cross section. The effect of the coupling to the effective channel is demonstrated, as well as the effect of each term in the coupled equation for this channel. The calculated elastic cross sections were compared to both the recent data from Saclay and the earlier Brookhaven data for the 1-GeV p-- 4 He elastic scattering cross section. Using proton--nucleus elastic scattering experiments to study the proton--nucleon elastic scattering amplitude is discussed. The main purpose of our study is to investigate the effects on the cross section of varying, within its estimated range of uncertainty, each parameter which enters into the coupled equations. The magnitude of these effects was found to be large enough to conclude that any effects due to dynamical correlations would be obscured by the uncertainties in the input parameters

  7. High frequency, high amplitude and low energy earthquake study of nuclear power plants

    Bernero, R.M.; Lee, A.J.H.; Sobel, P.A.

    1988-01-01

    Nuclear power plants are designed for a seismic input spectrum based on U.S. acceleration time histories. However, data recorded near several earthquakes, mostly in the Eastern U.S., are richer in high frequency energy. This paper focuses on the evaluation of one of these events, i.e., the 1986 Ohio earthquake approximately 10 miles from the Perry nuclear power plant. The Perry Seismic Category I structures were reanalyzed using the in-structure recorded earthquake motions. The calculated in-structure response spectra and recorded response spectra have the same general trends, which shows the buildings are capable of responding to high frequency earthquake motion. Dynamic stresses calculated using the Ohio earthquake recorded motions are substantially lower than the design stresses. The seismic qualification of a wide sample of equipment was reassessed using the Ohio earthquake recorded motions and the margins were found to be larger than one. The 1986 Ohio earthquake was also shown to possess much lower energy content and ductility demand than the design spectra. For the Perry case, the seismic design was shown to have adequate safety margins to accommodate the 1986 Ohio earthquake, even though the design spectra were exceeded at about 20 Hz. The NRC is evaluating the need to generically modify design spectra in light of the recent high frequency recordings. (orig.)

  8. High performance gamma measurements of equipment retrieved from Hanford high-level nuclear waste tanks

    Troyer, G.L.

    1997-03-17

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to 90% saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  9. High performance gamma measurements of equipment retrieved from Hanford high-level nuclear waste tanks

    Troyer, G.L.

    1997-01-01

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to 90% saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed

  10. Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation with PHITS code

    Fujita, Reiko

    2017-01-01

    In the ImPACT program of the Cabinet Office, programs are underway to reduce long-lived fission products (LLFP) contained in high-level radioactive waste through nuclear transmutation, or to recycle/utilize useful nuclear species. This paper outlines this program and describes recent achievements. This program consists of five projects: (1) separation/recovery technology, (2) acquisition of nuclear transmutation data, (3) nuclear reaction theory model and simulation, (4) novel nuclear reaction control and development of elemental technology, and (5) discussions on process concept. The project (1) develops a technology for dissolving vitrified solid, a technology for recovering LLFP from high-level waste liquid, and a technology for separating odd and even lasers. Project (2) acquires the new nuclear reaction data of Pd-107, Zr-93, Se-79, and Cs-135 using RIKEN's RIBF or JAEA's J-PARC. Project (3) improves new nuclear reaction theory and structural model using the nuclear reaction data measured in (2), improves/upgrades nuclear reaction simulation code PHITS, and proposes a promising nuclear transmutation pathway. Project (4) develops an accelerator that realizes the proposed transmutation route and its elemental technology. Project (5) performs the conceptual design of the process to realize (1) to (4), and constructs the scenario of reducing/utilizing high-level radioactive waste to realize this design. (A.O.)

  11. Structure of high excited nuclear states and elastic scattering

    Zhivopistsev, F.A.; Rzhevskij, E.S.

    1979-01-01

    An approach to a unified description of nuclear reactions and nuclear structure based on the formalism of the quantum Green functions and on the ideas of the theory of finite Fermi systems has been formulated. New structural vertices are introduced, which are responsible for nucleon collectivization in an atomic nucleus and for the excitation of many-phonon, quasideuteron, quasitriton and other configurations. The vertices define both the processes of particle scattering by atomic nuclei (T matrix and optical potentials) and the nuclear structure (secular equations and wave functions). The vertices are determined from the equations with effective many-particle forces Fsub(nm)sup(c). In their turn the Fsub(nm)sup(c) forces are either determined from a comparison of theory and experiment, or calculated from the equations with more fundamental nucleon-nucleon forces in a nucleus. The effective forces Fsub(nm)sup(c) are more universal than the constants of the theory of finite Fermi-systems, which extends the boundaries of applicability of the particle-hole formalism in the description of nuclear processes. In this approach the traditional methods of description of the nuclear structure, based on particular models of hamiltonian and wave functions, acquire a natural interpretation

  12. Spent nuclear fuel project high-level information management plan

    Main, G.C.

    1996-09-13

    This document presents the results of the Spent Nuclear Fuel Project (SNFP) Information Management Planning Project (IMPP), a short-term project that identified information management (IM) issues and opportunities within the SNFP and outlined a high-level plan to address them. This high-level plan for the SNMFP IM focuses on specific examples from within the SNFP. The plan`s recommendations can be characterized in several ways. Some recommendations address specific challenges that the SNFP faces. Others form the basis for making smooth transitions in several important IM areas. Still others identify areas where further study and planning are indicated. The team`s knowledge of developments in the IM industry and at the Hanford Site were crucial in deciding where to recommend that the SNFP act and where they should wait for Site plans to be made. Because of the fast pace of the SNFP and demands on SNFP staff, input and interaction were primarily between the IMPP team and members of the SNFP Information Management Steering Committee (IMSC). Key input to the IMPP came from a workshop where IMSC members and their delegates developed a set of draft IM principles. These principles, described in Section 2, became the foundation for the recommendations found in the transition plan outlined in Section 5. Availability of SNFP staff was limited, so project documents were used as a basis for much of the work. The team, realizing that the status of the project and the environment are continually changing, tried to keep abreast of major developments since those documents were generated. To the extent possible, the information contained in this document is current as of the end of fiscal year (FY) 1995. Programs and organizations on the Hanford Site as a whole are trying to maximize their return on IM investments. They are coordinating IM activities and trying to leverage existing capabilities. However, the SNFP cannot just rely on Sitewide activities to meet its IM requirements

  13. The safety of high activity long life nuclear waste

    Devillers, Ch.

    1998-01-01

    The article concerns the deep geological storage for managing high activity long life nuclear waste. He puts forward a context giving a structure to the discussions of those involved concerning an assessment of the safety of a deep geological deposit project. Three main aspects are put forward. The risks for future generations and the time scales to be considered: briefly, the deposit needs to satisfy two functions for protecting man and the environment, namely firstly isolating high activity radionuclides from the biosphere during the time required for their radioactive decay (about ten thousands years), and secondly delay and dilute long life radionuclides without any a priori time limit so as to reduce their effects in the biosphere to extremely low levels. The risks are linked to possible failures of the containment barriers whose causes need to be analysed and be provided against by suitable provisions concerning their design. The definition of these design provisions requires an in depth examination of uncertain elements. The main causes of uncertainty are listed according to the scale of time in question, that is O-10,000 years, 10,000-100,000 years and beyond 100,000 years, stressing the importance of selecting a stable geological site and more generally a solid concept that is not very sensitive in uncertainties. Beyond 100,000 years the extent of uncertainties no longer makes it possible to make realistic predictions. It is thus necessary to consider the alternative scenarios concerning geological and climatic changes and the corresponding increasing risks of radionuclides. The risks in question may be relativized by realizing that on this time scale, the residual activities of soluble and insoluble alpha and beta emitters are comparable to those of a storage centre located on the surface at the end of the monitoring period. Finally, the article considers the approach put forward concerning the safety of a deep geological storage advocated by the French

  14. Energy loss effect in high energy nuclear Drell-Yan process

    Duan, C.G.; Song, L.H.; Huo, L.J.; Li, G.L.

    2003-01-01

    The energy loss effect in nuclear matter, which is a nuclear effect apart from the nuclear effect on the parton distribution as in deep-inelastic scattering process, can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of the nuclear parton distribution studied only with lepton deep-inelastic scattering experimental data, the measured Drell-Yan production cross sections for 800 GeV proton incident on a variety of nuclear targets are analyzed within the Glauber framework which takes into account the energy loss of the beam proton. It is shown that the theoretical results with considering the energy loss effect are in good agreement with the FNAL E866 data. (orig.)

  15. Nuclear material enrichment identification method based on cross-correlation and high order spectra

    Yang Fan; Wei Biao; Feng Peng; Mi Deling; Ren Yong

    2013-01-01

    In order to enhance the sensitivity of nuclear material identification system (NMIS) against the change of nuclear material enrichment, the principle of high order statistic feature is introduced and applied to traditional NMIS. We present a new enrichment identification method based on cross-correlation and high order spectrum algorithm. By applying the identification method to NMIS, the 3D graphs with nuclear material character are presented and can be used as new signatures to identify the enrichment of nuclear materials. The simulation result shows that the identification method could suppress the background noises, electronic system noises, and improve the sensitivity against enrichment change to exponential order with no system structure modification. (authors)

  16. Assessing the high costs of new nuclear power plants

    Komanoff, C.

    1984-01-01

    The variation in nuclear plant capital costs, both over time and within the current generation of plants, is considerable and is one of the impressive facts associated with that technology. This article concerns statistical methods for determining relative management efficiency or inefficiency in nuclear plant construction. It emphasizes the need to adjust raw cost data for important variables in order to make fair comparisons among disparate projects. The analysis identifies the costliest and least-costly projects and elucidates trends that helped or harmed several or more projects at the same time. Its findings can form a supplement and guide for engineering and management audits of individual nuclear projects. 5 references, 1 figure, 1 table

  17. Mock Referendum on Nuclear Power with Korean Elementary, Middle, and High School Students

    Lee, Seung Koo; Park, Pil Han; Choi, Yoon Seok; Han, Eun Ok

    2017-01-01

    Today, policies relating to nuclear power generation face a myriad of issues regarding the aspects of understanding, sympathy, acceptance, and satisfaction by policy consumers. This study has provided education on nuclear power for elementary, middle, and high school students who are expected to have high ripple effects of communication and education, and organized a mock referendum on nuclear power generation to observe the results of the referendum. Based on the results of this study, it is important to provide sufficient information on the dangers of nuclear power to the future generation in order to enable them to participate in policies with the right value judgments. Both before and after the educational program, all of elementary, middle, and high school students overwhelmingly indicated that nuclear power was dangerous in presenting their disagreement. The expert groups must consider that students are concerned about the risks of nuclear power generation, despite the explanations from experts on the safety of nuclear power. Based on the results of this study, it is important to provide sufficient information on the dangers of nuclear power to the future generation in order to enable them to participate in policies with the right value judgments. Both before and after the educational program, all of elementary, middle, and high school students overwhelmingly indicated that nuclear power was dangerous in presenting their disagreement.

  18. Mock Referendum on Nuclear Power with Korean Elementary, Middle, and High School Students

    Lee, Seung Koo; Park, Pil Han; Choi, Yoon Seok; Han, Eun Ok [Dept. of Education and Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2017-04-15

    Today, policies relating to nuclear power generation face a myriad of issues regarding the aspects of understanding, sympathy, acceptance, and satisfaction by policy consumers. This study has provided education on nuclear power for elementary, middle, and high school students who are expected to have high ripple effects of communication and education, and organized a mock referendum on nuclear power generation to observe the results of the referendum. Based on the results of this study, it is important to provide sufficient information on the dangers of nuclear power to the future generation in order to enable them to participate in policies with the right value judgments. Both before and after the educational program, all of elementary, middle, and high school students overwhelmingly indicated that nuclear power was dangerous in presenting their disagreement. The expert groups must consider that students are concerned about the risks of nuclear power generation, despite the explanations from experts on the safety of nuclear power. Based on the results of this study, it is important to provide sufficient information on the dangers of nuclear power to the future generation in order to enable them to participate in policies with the right value judgments. Both before and after the educational program, all of elementary, middle, and high school students overwhelmingly indicated that nuclear power was dangerous in presenting their disagreement.

  19. Survey on the knowledge of Laotian high school students on nuclear energy

    Yusa, Noritaka

    2017-01-01

    This study conducted a survey to gather information on the knowledge of Laotian high school students on nuclear energy. This study prepared an original 11-pages textbook that briefly introduced nuclear energy and related matters in Lao. One hundred high school students belonging to a public high school with a good reputation in Savannakhet Province were requested to read the textbook approximately in a half day to tell subjective impression on the amount of prior knowledge on the contents of each section. The survey revealed the knowledge of the high school students on the nuclear energy and related matters was quite limited although the official textbooks used in the secondary education in Laos contain quite a few explanations on structure of atom, chemical and nuclear reaction, structure of nuclear power plants, the chain and fusion reactions, and so on. (author)

  20. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  1. Extended teamwork: team performance in highly automated nuclear power plants

    Skjerve, Ann Britt; Strand, Stine; Skraaning, Gyrd Jr.

    2004-07-01

    Nuclear power plant (NPP) operation is in essence a teamwork task. The central control-room (CCR) operators are required to co-operate to achieve the operational goals, and they further depend on the assistance of the field operators and, at least in modern plants, on the assistance of the high-level automatic system. Future NPPs (e.g., advanced reactors) are foreseen to contain substantially higher automation levels, reduced staffing, and redefined roles of the remaining staff, as compared to the present situation. This paper suggests that in future plants, in which the autonomy and authority of the automatic system and of the field operators are increased, the transactions between the CCR operators and automatic system/field operators might most efficiently be conceptualized within the framework of co-operation, and thus teamwork. This framework has typically been restricted to conceptualizations of the transactions between the CCR operators, but in future settings, co-ordination, communication and mutual support between the CCR operators and the field operators/automatic system may be of increased importance for sustaining plant safety, as compared to the present situation. The paper further argues that human-system interfaces in future NPPs should be designed to support the activities of the extended team consisting of the CCR operators, the field operators, and the automatic system. The paper outlines an exploratory study aimed at generating ideas on how extended teamwork quality may be promoted. The study is currently foreseen to comprise two exemplary design solutions: a state-of-the art screen-based control-room (baseline condition) and a possible future control-room in which the activities of the field operators and the automatic system are explicitly represented on the human-system interface, where the authority and autonomy of these are increased, and the staffing level reduced, as compared to the baseline condition. The study will explore extended

  2. Extended teamwork: team performance in highly automated nuclear power plants

    Skjerve, Ann Britt; Strand, Stine; Skraaning, Gyrd Jr.

    2004-01-01

    Nuclear power plant (NPP) operation is in essence a teamwork task. The central control-room (CCR) operators are required to co-operate to achieve the operational goals, and they further depend on the assistance of the field operators and, at least in modern plants, on the assistance of the high-level automatic system. Future NPPs (e.g., advanced reactors) are foreseen to contain substantially higher automation levels, reduced staffing, and redefined roles of the remaining staff, as compared to the present situation. This paper suggests that in future plants, in which the autonomy and authority of the automatic system and of the field operators are increased, the transactions between the CCR operators and automatic system/field operators might most efficiently be conceptualized within the framework of co-operation, and thus teamwork. This framework has typically been restricted to conceptualizations of the transactions between the CCR operators, but in future settings, co-ordination, communication and mutual support between the CCR operators and the field operators/automatic system may be of increased importance for sustaining plant safety, as compared to the present situation. The paper further argues that human-system interfaces in future NPPs should be designed to support the activities of the extended team consisting of the CCR operators, the field operators, and the automatic system. The paper outlines an exploratory study aimed at generating ideas on how extended teamwork quality may be promoted. The study is currently foreseen to comprise two exemplary design solutions: a state-of-the art screen-based control-room (baseline condition) and a possible future control-room in which the activities of the field operators and the automatic system are explicitly represented on the human-system interface, where the authority and autonomy of these are increased, and the staffing level reduced, as compared to the baseline condition. The study will explore extended

  3. Study on highly reliable digital communication technology of reactor nuclear measuring equipment

    Gu Pengfei; Huang Xiaojin

    2007-01-01

    To meet the need of highly reliable of reactor nuclear measuring equipment, in allusion to the idiographic request of nuclear measuring equipment, the actual technical development and the application in industrial field, we design a kind of redundancy communication net based on PROFIBUS, and a kind of communication interface module based on redundancy PROFIBUS communication, which link the nuclear measuring equipment and PROFIBUS communication net, and also lay a foundation for advanced research. (authors)

  4. Nuclear reactions of high energy deuterons with medium mass targets

    Numajiri, Masaharu; Miura, Taichi; Oki, Yuichi

    1994-01-01

    Formation cross sections of product nuclides in the nuclear reactions of medium mass targets by 10 GeV deuterons were measured with a gamma-ray spectroscopy. The measured data were compared with the cross sections of 12 GeV protons. (author)

  5. NSC KIPT accelerator on nuclear and high energy physics

    Guk, I.S.; Dovbnya, A.N.; Kononenko, S.G.; Tarasenko, A.S.; Botman, J.I.M.; Wiel, van der M.J.

    2004-01-01

    One of the main reasons for the outflow of experts in nuclear physics and adjacent areas of science from Ukraine is the absence of modern accelerating facilities, for conducting research in the present fields of interest worldwide in this area of knowledge. A qualitatively new level of research can

  6. Technical basis for the proposed high efficiency nuclear fuel program

    MacDonald, P.E.; Herring, J.S.; Crawford, D.C.; Neimark, L.E.

    1999-01-01

    Greenhouse gas emissions from fossil fired electricity generating stations will dramatically increase over the next 20 years. Nuclear energy is the only fully developed technology able to supply large amounts of electricity without generation of greenhouse gases. However, the problem of noncompetitive economics and public concerns about radioactive waste disposal, safety, and nuclear weapons proliferation may prevent the reemergence of nuclear power as a preferred option for new electric energy generation in the U.S. This paper discusses a new research program to help address these issues, by developing fuel designs capable of burnup values in excess of 60 MWD/kgU. The objectives of the program are to: improve the reliability and robustness of light water reactor fuel, thereby improving safety margins; Significantly increase the energy generated by each fuel loading, thereby achieving longer operating cycles, higher capacity factors, and lower cost electric power; Significantly reduce the volume of spent nuclear fuel discharged for disposal by allowing more energy to be extracted from each fuel element prior to discharge; Develop fuel that is much more proliferation resistant. (author)

  7. Kinematics of high-energy nuclear processes; Cinematica de los procesos nucleares de alta energia

    Sanchez del Rio, C

    1972-07-01

    This report is the first draft of one of the chapters of a book being prepared under the title:Topics on Practical Nuclear Physics. It is published as a report because of its immediate educational value and in order to include in its final draft the suggestions of the readers. (Author)

  8. High Energy Physics and Nuclear Physics Network Requirements

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  9. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  10. Some comments on the behaviour of the excited nuclear matter formed in nuclear collisions at high energies

    Besliu, Calin; Jipa, Alexandru; Argintaru, Dan

    2003-01-01

    In the last years many experiments have been performed in different laboratories to investigate the behaviour of the nuclear matter formed in nuclear collisions at high energies. Therefore, many experimental results are available at present. For explaining these experimental results a lot of models have been proposed. A very large number of concepts have been used. Taking into account some own experimental results obtained in proton-nucleus and nucleus-nucleus collisions at energies between a few A GeV and a few hundred A GeV we comments in the frame a phenomenological geometric picture the main experimental results on charged particle multiplicities, participants, cross sections, momentum spectra, temperature slopes, nuclear matter flow, size and structure of the participant regions, antiparticle to particle ratios and chemical potential. Some jumps in the dependencies of some interesting physical quantities on the available energies in the centre of mass system can be reported. Trends to behaviours like-saturation of some physical quantities are observed, too. Therefore, some connections with the possible phase transitions in nuclear matter are included. A few specific signals of different phase transitions in nuclear matter are suggested. (authors)

  11. High-Resolution Imaging Reveals New Features of Nuclear Export of mRNA through the Nuclear Pore Complexes

    Joseph M. Kelich

    2014-08-01

    Full Text Available The nuclear envelope (NE of eukaryotic cells provides a physical barrier for messenger RNA (mRNA and the associated proteins (mRNPs traveling from sites of transcription in the nucleus to locations of translation processing in the cytoplasm. Nuclear pore complexes (NPCs embedded in the NE serve as a dominant gateway for nuclear export of mRNA. However, the fundamental characterization of export dynamics of mRNPs through the NPC has been hindered by several technical limits. First, the size of NPC that is barely below the diffraction limit of conventional light microscopy requires a super-resolution microscopy imaging approach. Next, the fast transit of mRNPs through the NPC further demands a high temporal resolution by the imaging approach. Finally, the inherent three-dimensional (3D movements of mRNPs through the NPC demand the method to provide a 3D mapping of both transport kinetics and transport pathways of mRNPs. This review will highlight the recently developed super-resolution imaging techniques advanced from 1D to 3D for nuclear export of mRNPs and summarize the new features in the dynamic nuclear export process of mRNPs revealed from these technical advances.

  12. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  13. Crossroads: Quality of Life in a Nuclear World. A High School English Curriculum.

    French, Dan; And Others

    One of a set of high school curricula on nuclear issues, this 10-day unit for English classes informs students of the issues surrounding the nuclear arms race and military spending. Each lesson includes readings, worksheets, and a daily homework assignment and focuses on one of the following activities: discussion, brainstorming, role playing, or…

  14. Crossroads: Quality of Life in a Nuclear World. A High School Social Studies Curriculum.

    French, Dan; And Others

    One of a set of high school curricula on nuclear issues, this 10-day social studies unit helps students understand the interrelationship of economics, the arms race, military spending, and the threat of nuclear war. Activities such as role plays, discussion, brainstorming, and problem solving develop students' abilities to evaluate issues and…

  15. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-01-01

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL)

  16. Chernobyl Nuclear Catastrophe and the High Risk Potential for Mental Retardation.

    Holowinsky, Ivan Z.

    1993-01-01

    This report considers potential effects of the 1986 nuclear explosion at the Chernobyl (Ukraine) nuclear reactor. Approximately 17 million people, of whom 2.5 million were below the age of 5, are thought to have suffered some radioactive contamination. Many of these children are at high risk for mental retardation and learning disorders.…

  17. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    Murphy, W.M.; Kovach, L.A.

    1995-01-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research related to geologic disposal of HLW

  18. High system-safety level of nuclear power stations

    Lutz, H.R.

    1976-01-01

    A bluntly worded disquisition contrasting the incidence of death and harm to persons in the chemical industry with the low hazards in nuclear power stations. Quotes conclusions from a U.S. accident study that the risk from 100 large power stations is 100 times smaller than from chlorine manufacture and transport. The enclosure of a reactor in a safety container, the well understood effects of radioactivity on man, and the ease of measuring leakage well below safe limits, are safety features which he considers were not matched in the products and plant of the Seveso factory which suffered disaster. Questions the usefulness of warnings about nuclear dangers when chemical dangers are much greater and road dangers very much greater still. (R.W.S.)

  19. Liquid level measurement in high level nuclear waste slurries

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs

  20. Evolution of nuclear collectivity at high spins and temperatures

    Baktash, C.

    1989-01-01

    In the past few years, we have utilized the Spin Spectrometer and a variety of complementary probes (continuum γrays, proton-γ coincidence spectroscopy and γ decay of GDR) to study the nuclear response to the DIFFERENTIAL effects of increasing spin and temperature for constant values of excitation energy or spin, respectively. In this paper we shall describe two of the experiments that trace the properties of rapidly-rotating nuclei at small to moderate excitation energies. 22 refs., 7 figs

  1. High energy halogen atom reactions activated by nuclear transformations

    Rack, E.P.

    1990-05-01

    This program, which has been supported for twenty-four years by the Us Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of chemical activation by nuclear processes; the stereochemistry of radioactivity for solution of specific problems. This program was contributed to the training of approximately seventy scientists at various levels. This final report includes a review of the areas of research and chronological tabulation of the publications

  2. IAEA Activities in Nuclear High Temperature Heat for Industrial Processes

    Reitsma, Frederik

    2017-01-01

    IAEA activities to support Member States: Information Exchange; Modelling and Simulations; Development of Methodologies; Safety; Technology Support; Education and Training; Knowledge Preservation. Assist MSs with national nuclear programmes; Support innovations in nuclear power deployment; Facilitate and assist international R&D collaborations. Interest in HTGR technology • The IAEA activities in the area of HTGR are guided by the recommendations of the TWG-GCRs – Currently 14 members: China, France, Germany, Indonesia, Japan, Korea (Rep. of), Netherlands, Russian Federation, South Africa, Switzerland, Turkey, Ukraine, United Kingdom, United States of America – 3 International Organizations: OECD/NEA, European Commission, Gen-IV Forum. – 2 new members in 2017: Poland and Singapore. Meetings • Meet every 24 months • Next meeting: 30 October – 1 November 2017 • Other Member states with some activities on HTGRs – Kazakhstan – history of close cooperation with Japan – Saudi Arabia – feasibility study for HTGRs to provide heat for the petro-chemical industry – Canada – three HTR designs under consideration in the nuclear regulator pre-licensing vendor design reviews

  3. Promoting nuclear education and technology in Thai high schools

    Keyes, W.

    1998-01-01

    The public acceptance project which Thailand is undertaking through the Chulalongkorn University project is based on the awareness that increased public support of nuclear power is an essential precondition to the consideration of a nuclear power program for the country. By approaching public education on this matter via an independent and recognized authority such as Chulalongkorn University, the issue has remained as an education and information process rather than becoming a political issue and falling victim to all of the pitfalls of that process. The model of selecting independent partners and organizations to conduct public education and public acceptance activities appears to be more effective than for the utility itself to more directly address such issues. It is of course recognized that at some time there will be a public discussion and debate of the issue of nuclear power in Thailand. However the work done by such public education projects in advance of any public announcements on any project plans should help to ensure that the ensuing public discussion will take place amongst a better informed public

  4. Development of nuclear counting system for plateau high voltage scintillation detector test facilities

    Sarizah Mohamed Nor; Siti Hawa Md Zain; Muhd Izham Ahmad; Izuhan Ismail

    2010-01-01

    Nuclear counter system is a system monitoring and analysis of radioactivity used in scientific and technical research and development in the Malaysian Nuclear Agency. It consists of three basic parts, namely sensors, signal conditioning and monitoring. Nuclear counter system set up for use in the testing of nuclear detectors using radioactive sources such as 60 Co and 137 Cs and other radioactive sources. It can determine the types of scintillation detectors and the equivalent function properly, always operate in the range plateau high voltage and meet the specifications. Hence, it should be implemented on all systems in the Nuclear Nuclear counter Malaysia and documented as Standard Working Procedure (SWP) is a reference to the technicians, trainees IPTA / IPTS and related workers. (author)

  5. A web-based resource for the nuclear science/technology high school curriculum - a summary

    Ripley, C.

    2009-01-01

    On November 15, 2008, the CNA launched a new Nuclear Science Technology High School Curriculum Website. Located at www.cna.ca the site was developed over a decade, first with funding from AECL and finally by the CNA, as a tool to explain concepts and issues related to energy and in particular nuclear energy targeting the public, teachers and students in grades 9-12. It draws upon the expertise of leading nuclear scientists and science educators. Full lesson plans for the teacher, videos for discussion, animations, games, electronic publications, laboratory exercises and quick question and answer sheets will give the student greater knowledge, skills and attitudes necessary to solve problems and to critically examine issues in making decisions. Eight modules focus on key areas: Canada's Nuclear History, Atomic Theory, What is Radiation?, Biological Effects of Radiation, World Energy Sources, Nuclear Technology at Work, Safety (includes Waste Disposal) in the Nuclear Industry and Careers. (author)

  6. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    Khaleel, Mohammad A.

    2009-01-01

    This report is an account of the deliberations and conclusions of the workshop on 'Forefront Questions in Nuclear Science and the Role of High Performance Computing' held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to (1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; (2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; (3) provide nuclear physicists the opportunity to influence the development of high performance computing; and (4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  7. Proceedings of the third specialists` meeting on high energy nuclear data

    Fukahori, Tokio [ed.

    1998-11-01

    This report is the Proceedings of the Third Specialists` Meeting on High Energy Nuclear Data. The meeting was held on March 30-31, 1998, at the Tokai Research Establishment of Japan Atomic Energy Research Institute with the participation of forty-odd specialists, who were the evaluators, theorists, experimentalists and users of high energy nuclear data including the members of the Japanese Nuclear Data Committee. The need of the high energy nuclear data up to a few Gev has been stressed in the meeting for many applications, such as spallation neutron sources for radioactive waste treatment, accelerator shielding design, medical isotope production, radiation therapy, the effects of space radiation on astronauts and their equipments, and the cosmic history of meteorites and other galactic substances. Since the Second Specialists` Meeting in 1995, such an evaluation activity in Japan has been grown and the results are accumulated. Foreign activities of high energy nuclear data evaluation are also being increased. According to the above situation, with the view point of reviewing and validating an evaluated high energy nuclear data file, project of high energy nuclear data file production, differential and integral experiments, status of evaluation and reviewing methods, processing and transport calculation methods, benchmark tests, international trends, etc. were discussed. The 16 of the presented papers are indexed individually. (J.P.N.)

  8. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  9. On the nuclear fragmentation mechanisms in nuclear collisions at intermediate and high energies

    Jipa, Al.; Besliu, C.; Felea, D.; Iliescu, B.; Ristea, O.; Ristea, M.; Calin, C.; Horbuniev, A.; Arsene, I.; Esanu, T.; Ochesanu, S.; Caramarcu, C.; Bordeianu, C.; Rosu, I.; Grossu, V.; Zgura, I.S.; Stan, E.; Mitu, C.; Potlog, M.; Cherciu, M.; Stefan, I.

    2004-01-01

    The nuclear fragmentation mechanisms can be discussed taking into account different scales. These scales are related to the fragment sizes. Taking into account the possible different fragmentation mechanisms of the nuclei at the same incident energy an analysis of the experimental results obtained in different experiments performed at the JINR Dubna (Russia), KEK Tsukuba (Japan), GSI Darmstadt (Germany) is done. Results on apparent temperatures, angular distributions, fragment momentum spectra, multiplicities of the intermediate mass fragments are used to analyse the competition between two possible nuclear fragmentation mechanisms, namely: a sudden fragmentation by explosive mechanisms, like shock waves, and a slow fragmentation by the 'fission' of the spectator regions, mainly, because of the interactions with the particles or fragments emitted from the participant region at transverse angles on the incident nucleus, in CMS.Some connections with chaos dynamics and fractal structure of the fragmentation patterns are included. (authors)

  10. Nuclear-Mechanical Coupling: Small Amplitude Mechanical Vibrations and High Amplitude Power Oscillations in Nuclear Reactors

    Suarez Antola, R.

    2008-11-01

    The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may produce changes in density. Changes in density modify the reactivity. Changes in reactivity modify thermal power. Modifications in thermal power produce variations in temperature fields. Variations in temperature produce variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small amplitude. A recently constructed, simple mathematical model of nuclear reactor kinetics, that improves the one due to A.S. Thompson, is reviewed. It was constructed in order to study, in a first approximation, the stability of the reactor: a nonlinear nuclear-thermal oscillator (that corresponds to reactor point kinetics with thermal-elastic feedback and with frozen delayed neutron effects) is coupled nonlinearly with a linear mechanical-thermal oscillator (that corresponds to the first normal mode of mechanical vibrations excited by thermo-elastic effects). This mathematical model is studied here from the standpoint of mechanical vibrations. It is shown how, under certain conditions, a suitable mechanical perturbation could elicit fast and growing oscillatory instabilities in the reactor power. Applying the asymptotic method due to Krylov, Bogoliubov and Mitropolsky, analytical formulae that may be used in the calculation of the time varying amplitude and phase of the mechanical oscillations are given, as functions of the mechanical, thermal and nuclear parameters of the reactor. The consequences for the mechanical integrity of the reactor are assessed. Some conditions, mainly, but not exclusively

  11. Transformation of highly toxic chemicals factory for Fuqing nuclear power plant

    Wang Hongkai; Gao Yuan; Li Hua

    2014-01-01

    For the iodine adsorption tests of current M310 nuclear power plant, dimethyl sulfate is one of highly toxic chemical of national strict standard management, and the nation make strict control over toxic chemicals procurement, transportation, storage, management requirements. Since the appropriate toxic chemicals storage place was not considered in the design of M310 nuclear power plant, Fuqing nuclear power sites for storage of dimethyl sulfate implement technical transformation to meet and regulate the storage requirements for highly toxic chemical. This will lay the foundation for carrying out smoothly the relevant tests of nuclear power plant, and provide the reference for the use and construction of toxic chemicals reactor in the same type nuclear power plant. (authors)

  12. Proceedings of the topical conference on nuclear physics, high energy physics and astrophysics (NPHEAP-2010)

    Vo Van Thuan; Tran Duc Thiep; Le Hong Khiem

    2011-01-01

    There were roughly 80 scientists gathering for the NPHEAP-2010 and there 61 oral talks and posters have been presented. The audience has been introduced to the status of long term nuclear power program of Vietnam up to 2030. One of the highlights for near future activity of Vietnamese nuclear sector should be the manpower training and education for this huge master plan. Most of invited and contributed papers have devoted to both basic nuclear physics at world radioactive beams and applied nuclear instrumentation. In addition to some traditional astronomical papers, there were more contributions on advanced cosmic ray physics and related nuclear astrophysics. A few of papers on high energy and particle physics jointly showed a high interest in flavor physics at LHC, KEK and J-PARC. (NHA)

  13. QCD evolution equations for high energy partons in nuclear matter

    Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt

    1994-01-01

    We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.

  14. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  15. Development of object-oriented software technique in field of high energy and nuclear physics

    Ye Yanlin; Ying Jun; Chen Tao

    1997-01-01

    The background for developing object-oriented software technique in high energy and nuclear physics has been introduced. The progress made at CERN and US has been outlined. The merit and future of various software techniques have been commented

  16. 76 FR 35137 - Vulnerability and Threat Information for Facilities Storing Spent Nuclear Fuel and High-Level...

    2011-06-16

    ... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...

  17. The high quality of safety culture is absolutely necessary for the nuclear industry development

    Amiruddin, A.

    1998-01-01

    Batan as a facilitator in achieving the nuclear programme, has to start to introduce the nuclear science and technology to the publics and announces the nuclear activities results. By this mean time, most of people is still quite sure considering that the use of fossil fuel is better than that of nuclear fuel, even though there will be no other choice ultimately to use nuclear energy. This contradiction appears due to three reasons i.e., public's unbelieveness crisis dealt with less of knowledge of public about nuclear sciences and technology, their confident of nuclear-danger risks and the broadly miss-information sprout by the opposition. The main challenge created from the crisis of the safety culture of human activities. Some points to anticipated those situation are to establish infrastructure, maintain co-operation, links and coordination within points in the infrastructure, also to create the working culture system based on professional development and high quality safety management, and to increase publics information by a birds point approach through regional, cultural, social and political communication. Publics knowledge and understanding will bring about their supports and acceptances to the nuclear programme and its development (Nuclear Power Plant as a particular)

  18. GNES-R: Global nuclear energy simulator for reactors task 1: High-fidelity neutron transport

    Clarno, K.; De Almeida, V.; D'Azevedo, E.; De Oliveira, C.; Hamilton, S.

    2006-01-01

    A multi-laboratory, multi-university collaboration has formed to advance the state-of-the-art in high-fidelity, coupled-physics simulation of nuclear energy systems. We are embarking on the first-phase in the development of a new suite of simulation tools dedicated to the advancement of nuclear science and engineering technologies. We seek to develop and demonstrate a new generation of multi-physics simulation tools that will explore the scientific phenomena of tightly coupled physics parameters within nuclear systems, support the design and licensing of advanced nuclear reactors, and provide benchmark quality solutions for code validation. In this paper, we have presented the general scope of the collaborative project and discuss the specific challenges of high-fidelity neutronics for nuclear reactor simulation and the inroads we have made along this path. The high-performance computing neutronics code system utilizes the latest version of SCALE to generate accurate, problem-dependent cross sections, which are used in NEWTRNX - a new 3-D, general-geometry, discrete-ordinates solver based on the Slice-Balance Approach. The Global Nuclear Energy Simulator for Reactors (GNES-R) team is embarking on a long-term simulation development project that encompasses multiple laboratories and universities for the expansion of high-fidelity coupled-physics simulation of nuclear energy systems. (authors)

  19. Geology of high-level nuclear waste disposal: an introduction

    Roxbugh, I.S.

    1987-01-01

    Hazardous waste is produced by the nuclear fuel cycle from mining and milling of uranium ore, refinement and enrichment, reactor use, and during reprocessing of spent fuel. Waste can be classified according to origin, physical state, and levels of radioactivity and radiotoxicity. The method of the long-term waste disposal is based on the degree of the hazard and the length of time (1000 years to millions of years) for the waste to become safe. The International Atomic Energy Agency (IAEA) has classified radioactive waste into five categories (I-V) based on the amount of radioactivity and heat output of the waste. The text is concerned mainly with the two most hazardous categories (I and II). Disposal at various geological sites using proven mining, engineering, and deep drilling techniques has been proposed and studied. An ideal geological repository would have (1) minimum ground water movement, (2) geochemical and mineralogical properties to retard or immobilize the effects of the nuclear waste from reaching the biosphere, (3) thermochemical properties to allow for heat loading without damage, and (4) structural strength for the operational period. Types of geological environments (both undersea and on land) include evaporites, crystalline rocks, and argillaceous deposits. European and North American case histories are described, and there is a glossary and an extensive list of references in this concise review

  20. The measurement of magnetic moments of nuclear states of high angular momentum

    Goldring, G.

    1978-01-01

    Two problems related to the measurement of the g-factor of relevant nuclear levels and their circumvention are discussed: a) the very high magnetic fields required for the measurements, available only as a hyperfine field of electrons or other charged particles moving very close to the nucleus; b) the large angular momentum of those nuclear states. The nuclei considered are those recoiling from a nuclear reaction at high speeds in either vacuum or gas. The environment of these nuclei are the isolated ions with which they are associated. The hyperfine interaction with such ions is primarily magnetic. (B.G.)

  1. Corrosion issues in high-level nuclear waste containers

    Asl, Samin Sharifi

    In this dissertation different aspects of corrosion and electrochemistry of copper, candidate canister material in Scandinavian high-level nuclear waste disposal program, including the thermodynamics and kinetics of the reactions that are predicted to occur in the practical system have been studied. A comprehensive thermodynamic study of copper in contact with granitic groundwater of the type and composition that is expected in the Forsmark repository in Sweden has been performed. Our primary objective was to ascertain whether copper would exist in the thermodynamically immune state in the repository, in which case corrosion could not occur and the issue of corrosion in the assessment of the storage technology would be moot. In spite of the fact that metallic copper has been found to exist for geological times in granitic geological formations, copper is well-known to be activated from the immune state to corrode by specific species that may exist in the environment. The principal activator of copper is known to be sulfur in its various forms, including sulfide (H2S, HS-, S2-), polysulfide (H2Sx, HSx -, Sx 2-), poly sulfur thiosulfate ( SxO3 2-), and polythionates (SxO6 2-). A comprehensive study of this aspect of copper chemistry has never been reported, and yet an understanding of this issue is vital for assessing whether copper is a suitable material for fabricating canisters for the disposal of HLNW. Our study identifies and explores those species that activate copper; these species include sulfur-containing entities as well as other, non-sulfur species that may be present in the repository. The effects of temperature, solution pH, and hydrogen pressure on the kinetics of the hydrogen electrode reaction (HER) on copper in borate buffer solution have been studied by means of steady-state polarization measurements, including electrochemical impedance spectroscopy (EIS). In order to obtain electrokinetic parameters, such as the exchange current density and the

  2. Reliability engineering for nuclear and other high technology systems

    Lakner, A.A.; Anderson, R.T.

    1985-01-01

    This book is written for the reliability instructor, program manager, system engineer, design engineer, reliability engineer, nuclear regulator, probability risk assessment (PRA) analyst, general manager and others who are involved in system hardware acquisition, design and operation and are concerned with plant safety and operational cost-effectiveness. It provides criteria, guidelines and comprehensive engineering data affecting reliability; it covers the key aspects of system reliability as it relates to conceptual planning, cost tradeoff decisions, specification, contractor selection, design, test and plant acceptance and operation. It treats reliability as an integrated methodology, explicitly describing life cycle management techniques as well as the basic elements of a total hardware development program, including: reliability parameters and design improvement attributes, reliability testing, reliability engineering and control. It describes how these elements can be defined during procurement, and implemented during design and development to yield reliable equipment. (author)

  3. Activities promoting the achievement of high nuclear fuel performance indicators

    Naev, I.; Tomov, A.

    2011-01-01

    This presentation begins with brief general information about Kozloduy Nuclear Power Plant and organization activities about fresh fuel delivery assurance. The TVSA implementation, fuel cycle, fresh fuel standard entrance inspection and additional fresh fuel inspection are briefly described. Activities concerning core refueling, radiochemistry analysis, control rods drop time, measurement of the distance between the reactor flange and PTU flange, specific items for core unloading and a comparison between the two variants for operations scope with full and without full core unloading are presented. The core unloading - results and next steps, final core design (Unit 6, 2010), preparing for core loading (Unit 6, 2010) , core loading (Unit 6, 2010), after loading core inspection (Unit 6, 2010), core inspection, reactor assembling (Unit 6, 2010), fuel control during reactor startup, fuel control during operation period and fuel assembly data base are also discussed

  4. Advanced scheme for high-yield laser driven nuclear reactions

    Margarone, Daniele; Picciotto, A.; Velyhan, Andriy; Krása, Josef; Kucharik, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, Jiří; Bellutti, P.; Korn, Georg

    2015-01-01

    Roč. 57, č. 1 (2015), s. 014030 ISSN 0741-3335 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional research plan: CEZ:AV0Z2043910 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser plasma * nuclear reaction * laser fusion Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 2.404, year: 2015

  5. Studies in High Energy Heavy Ion Nuclear Physics

    Hoffmann, Gerald W. [Univ. of Texas, Austin, TX (United States); Markert, Christina [Univ. of Texas, Austin, TX (United States)

    2016-09-01

    This close-out report covers the period 1994 - 2015 for DOE grant DE-FG02-94ER40845 with the University of Texas at Austin. The research was concerned with studies of the strong nuclear force and properties of nuclear matter under extreme conditions of temperature and density which far exceed that in atomic nuclei. Such extreme conditions are briefly created (for about 10 trillionths of a trillionth of a second) during head-on collisions of large atomic nuclei (e.g. gold) colliding at speeds very close to the speed-of-light. The collisions produce thousands of subatomic particles, many of which are detected in our experiment called STAR at the Relativistic Heavy-Ion Collider at the Brookhaven National Lab in New York. The goal of our research is to learn how the strong nuclear force and its fundamental particles (quarks and gluons) behave in extreme conditions similar to that of the early Universe when it was about 1 micro-second old, and in the cores of very dense neutron stars. To learn anything new about the matter which exists for such a very short amount of time requires carefully designed probes. In our research we focused on two such probes, one being short-lived resonance particles and the other using correlations between pairs of the detected particles. Resonances are short-lived particles created in the collision, which interact with the surrounding matter, and which break apart, or "decay" into more stable particles which survive long enough to be seen in our detectors. The dependence of resonance properties on the conditions in the collision system permit tests of theoretical models and improve our understanding. Dynamical interactions in the matter also leave imprints on the final, outgoing particle distributions measured in the experiment. In particular, angular correlations between pairs of particles can be related to the fundamental strong force as it behaves in the hot, dense matter. Studying correlations as a function of experimentally controlled

  6. High temperature friction and seizure in gas cooled nuclear reactors

    Cousseran, P.; Febvre, A.; Martin, R.; Roche, R.

    1978-01-01

    One of the most delicate problems encountered in the gas cooled nuclear reactors is the friction without lubrication in a dry and hot (800 0 C /1472 0 F) helium atmosphere even at very small velocity. The research and development programs are described together with special tribometers that operate at mode than 1000 0 C (1832 0 F) in dry helium. The most interesting test conditions and results are given for gas nitrited steels and for strongly alloyed Ni-Cr steels coated with chromium carbide by plasma sprayed. The effects of parameters live velocity, travelled distance, contact pressure, roughness, temperature and prolonged stops under charge are described together with the effects of negative phenomena like attachment and chattering [fr

  7. Studies in High Energy Heavy Ion Nuclear Physics

    Hoffmann, Gerald W.; Markert, Christina

    2016-01-01

    This close-out report covers the period 1994 - 2015 for DOE grant DE-FG02-94ER40845 with the University of Texas at Austin. The research was concerned with studies of the strong nuclear force and properties of nuclear matter under extreme conditions of temperature and density which far exceed that in atomic nuclei. Such extreme conditions are briefly created (for about 10 trillionths of a trillionth of a second) during head-on collisions of large atomic nuclei (e.g. gold) colliding at speeds very close to the speed-of-light. The collisions produce thousands of subatomic particles, many of which are detected in our experiment called STAR at the Relativistic Heavy-Ion Collider at the Brookhaven National Lab in New York. The goal of our research is to learn how the strong nuclear force and its fundamental particles (quarks and gluons) behave in extreme conditions similar to that of the early Universe when it was about 1 micro-second old, and in the cores of very dense neutron stars. To learn anything new about the matter which exists for such a very short amount of time requires carefully designed probes. In our research we focused on two such probes, one being short-lived resonance particles and the other using correlations between pairs of the detected particles. Resonances are short-lived particles created in the collision, which interact with the surrounding matter, and which break apart, or 'decay' into more stable particles which survive long enough to be seen in our detectors. The dependence of resonance properties on the conditions in the collision system permit tests of theoretical models and improve our understanding. Dynamical interactions in the matter also leave imprints on the final, outgoing particle distributions measured in the experiment. In particular, angular correlations between pairs of particles can be related to the fundamental strong force as it behaves in the hot, dense matter. Studying correlations as a function of experimentally controlled

  8. Department of Nuclear Equipment '' High Technology Center - HITEC '' - Overview

    Krawczyk, P.

    2010-01-01

    Full text: The Department of Nuclear Equipment specializes in applications of accelerator technologies in medicine and industrial radiography. It combines research and development with manufacturing activities. The year 2009 was an important and busy period for the Department. We expect to observe already its full results in the coming year. In 2009, the Department concentrated on developing technologies, solutions and elements for use in the new generation of medical accelerators. Design, manufacturing and tests of a model of a new accelerating structure were conducted. The overall mechanical and electrical design of the accelerator was reworked and partially tested. Major efforts were devoted to creating an efficient software environment for the accelerators: new concepts for the control system were developed and tested, and a recording and verification system based on the DICOM standard was completed. A new imaging system was designed and manufactured and work on the associated imaging software was initiated. Design work on a multileaf collimator, begun in 2008, was continued. In effect, an operational model of the device was manufactured which allowed a practical verification of the design ideas. A lull scale prototype is scheduled for manufacture in 2010. The 2009 edition of the HITEC School on Medical Accelerators was directed to Medical Technicians. Very positive feedback from the participants proves the correctness of that decision. The year 2009 was also important for the manufacturing capabilities of the Department of Nuclear Equipment: a new Precision Machining Workshop was established and equipped with modern CNC milling machines. Also, the Vacuum Technologies Laboratory significantly extended the range of its machinery. In 2009 HITEC underwent deep organizational changes. The Quality Management System that governs all aspects of the Department's activities was also substantially redesigned. In December 2009, the new System was successfully audited and

  9. Topics in nuclear and radiochemistry for college curricula and high school science programs

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

  10. Siting high-level nuclear waste repositories: A progress report for Rhode Island

    Frohlich, R.K.; Vild, B.F.

    1986-03-01

    In this booklet, we will not try to argue the pros and cons of nuclear power or weapons production. We will focus instead on the issue of nuclear waste disposal. With the passage of the Nuclear Waste Policy Act (NWPA) of 1982, the US Congress and the President charged federal and state regulators with the responsibility of settling that issue by the end of this century - with extensive public involvement. This booklet, now in its second printing, is designed to explain the nature of ''high-level'' nuclear waste, the essential criteria for its safe and permanent disposal, and Rhode Island's participation in the federal repository program. It has been funded from a USDOE grant derived from a utility-financed Nuclear Waste Fund established under the NWPA. 17 refs., 10 figs., 2 tabs

  11. Identification of High Confidence Nuclear Forensics Signatures. Results of a Coordinated Research Project and Related Research

    2017-08-01

    The results of a Coordinated Research Project and related research on the identification of high confidence nuclear forensic isotopic, chemical and physical data characteristics, or signatures, provides information on signatures that can help identify the origin and history of nuclear and other radioactive material encountered out of regulatory control. This research report compiles findings from investigations of materials obtained from throughout the nuclear fuel cycle to include radioactive sources. The report further provides recent results used to identify, analyse in the laboratory, predict and interpret these signatures relative to the requirements of a nuclear forensics examination. The report describes some of the controls on the incorporation and persistence of these signatures in these materials as well as their potential use in a national system of identification to include a national nuclear forensics library.

  12. High-temperature and breeder reactors - economic nuclear reactors of the future

    Djalilzadeh, A.M.

    1977-01-01

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  13. Topics in nuclear and radiochemistry for college curricula and high school science programs

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled ''Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures

  14. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  15. Single-Crystal-to-Single-Crystal Anion Exchange in a Gadolinium MOF: Incorporation of POMs and [AuCl4]−

    Javier López-Cabrelles

    2016-04-01

    Full Text Available The encapsulation of functional molecules inside porous coordination polymers (also known as metal-organic frameworks, MOFs has become of great interest in recent years at the field of multifunctional materials. In this article, we present a study of the effects of size and charge in the anion exchange process of a Gd based MOF, involving molecular species like polyoxometalates (POMs, and [AuCl4]−. This post-synthetic modification has been characterized by IR, EDAX, and single crystal diffraction, which have provided unequivocal evidence of the location of the anion molecules in the framework.

  16. Transverse energy production in high energy nuclear collisions and the equation of state of nuclear matter

    Doss, K.G.R.; Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.; Ludewigt, B.; Poskanzer, A.M.; Ritter, H.G.; Schmidt, H.R.; Lawrence Berkeley Lab., CA; Kampert, K.H.; Loehner, H.

    1987-08-01

    In nuclear collisions of AU+Au, Nb+Nb and Ca+Ca at bombarding energies between 150 and 800 MeV per nucleon transverse energy and transverse momenta of light particles are studied event by event at θ = 90 0 in the center of mass system. At all energies a rise of the mean transverse energy per nucleon is observed with increasing charged particle multiplicity. Particularly large values of E perpendicular to have been found for 3 He-fragments. The hydrodynamical picture is discussed for a possible separation of the collective flow and the thermal parts of the E perpendicular to -spectrum. From this, evidence for a rather stiff equation of state is found. (orig.)

  17. Japanese HTTR program for demonstration of high temperature applications of nuclear energy

    Nishihara, T.; Hada, K.; Shiozawa, S.

    1997-01-01

    Construction works of the HTTR started in March 1991 in order to establish and upgrade the HTGR technology basis, to carry out innovative basic researches on high temperature engineering and to demonstrate high temperature heat utilization and application of nuclear heat. This report describes the demonstration program of high temperature heat utilization and application. (author). 2 refs, 4 figs, 3 tabs

  18. Modeling and numerical techniques for high-speed digital simulation of nuclear power plants

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1987-01-01

    Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses

  19. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon

    2014-01-01

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar

  20. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar.

  1. A method for assay of special nuclear material in high level liquid waste streams

    Venkata Subramani, C.R.; Swaminathan, K.; Asuvathraman, R.; Kutty, K.V.G.

    2003-01-01

    The assay of special nuclear material in the high level liquid waste streams assumes importance as this is the first stage in the extraction cycle and considerable losses of plutonium could occur here. This stream contains all the fission products as also the minor actinides and hence normal nuclear techniques cannot be used without prior separation of the special nuclear material. This paper presents the preliminary results carried out using wavelength dispersive x-ray fluorescence as part of the developmental efforts to assay SNM in these streams by instrumental techniques. (author)

  2. Theses of reports 'V Conference of high energy physics, nuclear physics and accelerators'

    Dovbnya, A.N.

    2007-01-01

    Nucleus structure study in the reactions on the charged particles; application of the nuclear and physical methods in the adjacent science fields; study and development of accelerators and accumulators of charged particles; basic research in an effort to develop the nuclear and physical methods for the nuclear power needs, medicine and industry; computed engineering in the physical studies; basic research of interaction processes of ultrarelativistic particles with monocrystals and substance; physics of detectors are submitted in proceedings of V Conference on High Energy Physics

  3. Book of abstracts of the 9th Conference on High Energy Physics, Nuclear Physics and Accelerators

    Dovbnya, A.N.

    2011-01-01

    The conference is devoted to the fundamental investigations at intermediate and high energies; also, the nuclear structure in reactions with charged particles; application of nuclear-physical methods to associated fields; investigation and development of accelerators, and of charged particles storage rings; the fundamental investigation and development of nuclear physical methods as applied in atomic energetics, medicine and industry; an application of the computer technologies for physical studies; fundamental investigations of processes of the ultrarelativistic particle interactions with monocrystals and matter; and physics of detectors.

  4. Process for solidifying high-level nuclear waste

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  5. Final stage of high energy hadron-nucleus nuclear collision reactions

    Strugal'ski, Z.; Jedrzejec, H.; Strugalska-Gola, E.; Mulas, E.

    1996-01-01

    The final or 'slow' stage of the hadron-nucleus collision reactions at high energy is considered on the basis of the collision mechanism prompted experimentally. The transmutation process of the damaged target nucleus into nucleons and stable nuclear fragments is discussed. Relations between intensities or multiplicities n p of the emitted fast protons and the mean intensities or multiplicities b > of the evaporated nucleons and nuclear fragments are presented. 14 refs

  6. High-speed particle tracking in nuclear emulsion by last-generation automatic microscopes

    Armenise, N.; De Serio, M.; Ieva, M.; Muciaccia, M.T.; Pastore, A.; Simone, S.; Damet, J.; Kreslo, I.; Savvinov, N.; Waelchli, T.; Consiglio, L.; Cozzi, M.; Di Ferdinando, D.; Esposito, L.S.; Giacomelli, G.; Giorgini, M.; Mandrioli, G.; Patrizii, L.; Sioli, M.; Sirri, G.; Arrabito, L.; Laktineh, I.; Royole-Degieux, P.; Buontempo, S.; D'Ambrosio, N.; De Lellis, G.; De Rosa, G.; Di Capua, F.; Coppola, D.; Formisano, F.; Marotta, A.; Migliozzi, P.; Pistillo, C.; Scotto Lavina, L.; Sorrentino, G.; Strolin, P.; Tioukov, V.; Juget, F.; Hauger, M.; Rosa, G.; Barbuto, E.; Bozza, C.; Grella, G.; Romano, G.; Sirignano, C.

    2005-01-01

    The technique of nuclear emulsions for high-energy physics experiments is being revived, thanks to the remarkable progress in measurement automation achieved in the past years. The present paper describes the features and performances of the European Scanning System, a last-generation automatic microscope working at a scanning speed of 20cm 2 /h. The system has been developed in the framework of the OPERA experiment, designed to unambigously detect ν μ ->ν τ oscillations in nuclear emulsions

  7. Shocks from high-energy nuclear-interacting particles in the mountain Chakaltajya

    Kamata, K [Tokyo Univ. (Japan)

    1975-06-01

    Experimental investigations of extensive air showers at the height of 5200 m above the sea level have been performed. The behaviour of high energy nuclear active particles in the cores of the showers has been studied using the nuclear knock-on method. The cross section of the proton inelastic interaction with the air is shown to increase with energy in the energy range of 3-9 TeV.

  8. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    Lee, Chien-Chiang; Chiu, Yi-Bin

    2011-01-01

    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  9. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    Lee, Chien-Chiang, E-mail: cclee@cm.nsysu.edu.tw; Chiu, Yi-Bin

    2011-03-15

    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  10. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  11. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements. Annex: Individual Reports

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  12. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  13. Confidentiality Enhancement of Highly Sensitive Nuclear Data Using Steganography with Chaotic Encryption over OFDM Channel

    Mahmoud, S.; Ayad, N.; Elsayed, F.; Elbendary, M.

    2016-01-01

    Full text: Due to the widespread usage of the internet and other wired and wireless communication methods, the security of the transmitted data has become a major requirement. Nuclear knowledge is mainly built upon the exchange of nuclear information which is considered highly sensitive information, so its security has to be enhanced by using high level security mechanisms. Data confidentiality is concerned with the achievement of higher protection for confidential information from unauthorized disclosure or access. Cryptography and steganography are famous and widely used techniques that process information in order to achieve its confidentiality, but sometimes, when used individually, they don’t satisfy a required level of security for highly sensitive data. In this paper, cryptography is accompanied with steganography for constituting a multilayer security techniques that can strengthen the level of security of highly confidential nuclear data that are archived or transmitted through different channel types and noise conditions. (author)

  14. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed

  15. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    Kubis, S.; Kutschera, M.

    1999-01-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases. (author)

  16. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    Kubis, S.; Kutschera, M.

    1999-04-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases

  17. Department of Nuclear Equipment '' High Technology Center - HITEC '' - Overview

    Krawczyk, P.

    2010-01-01

    Full text: The Department of Nuclear Equipment, also known under the brand '' HITEC '' plays a unique role in the Institute. It combines research and development with manufacturing activities in the area of accelerator technology applications in medicine and industrial radiography. In 2010, the Department continued intense development efforts in the framework of Project No. POIG.01.01-14-012/08-00 (known under the short name of '' Accelerators and Detectors '') funded by EU Structural Funds. As described in detail elsewhere in this Report, these efforts resulted in substantial progress in the design and manufacture of the first model of a medical multi-energy accelerator for advanced radiotherapy. This model is an important testbed for a number of technologies and solutions that will be implemented in the final accelerator. Also, design and manufacture of the elements for an intra-surgery accelerator was carried out. It is worth noting that participation in the '' Accelerators and Detectors '' Project allowed HITEC to modernize significantly its manufacturing and testing capabilities. In 2010, the new equipment was successfully implemented for use in a manufacturing regime. The year 2010 also saw the completion of two R(and)D projects co-financed by the Polish Ministry of Science and Higher Education: · Multileaf Collimator as a Precision Device for Irradiation Field Delimiting in Medical Accelerators; · 4? Recessed Ionization Chamber with Internal Power Supply. In both cases, full scale prototypes of the respective devices were manufactured. In response to market interest HITEC started in 2010 a concept study of a compact low energy industrial radiography accelerator. Subsequently, HITEC received an order to develop and manufacture such a device and the development work was started. On completion the new device will extend the range of commercially available accelerators. In parallel to the above, HITEC continued to extend its engagement in scientific

  18. High committee for nuclear safety transparency and information. December 18, 2008 meeting

    2008-12-01

    The high committee for the nuclear safety transparency and information (HCTISN) is an information, consultation and debate authority devoted to the assessment of the risks linked with nuclear activities and to the analysis of their impact on public health, on the environment and on nuclear safety. Each year, the HCTISN organizes several ordinary meetings in order to analyze some specific topics of the moment. This meeting was organized around 6 main topics: 1 - a presentation of nuclear medicine by Prof. Devaux, of its domains of application and the respect of radiation protection rules; 2 - the launching of a working group on the transparency/secrecy problem with nuclear activities; 3 - the elaboration of an environmental radioactivity index by the nuclear safety authority (ASN); 4 - the order addressed to the Cruas nuclear facility for the lack of standardized marking and maintenance of pipes used for the transport of explosive fluids; 5 - the consequences of the blocking of 2 fuel assemblies (out of 157) in the Tricastin reactor core; 6 - the flood at the Tricastin site, its origin and consequences. (J.S.)

  19. Review of recent benchmark experiments on integral test for high energy nuclear data evaluation

    Nakashima, Hiroshi; Tanaka, Susumu; Konno, Chikara; Fukahori, Tokio; Hayashi, Katsumi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    A survey work of recent benchmark experiments on an integral test for high energy nuclear data evaluation was carried out as one of the work of the Task Force on JENDL High Energy File Integral Evaluation (JHEFIE). In this paper the results are compiled and the status of recent benchmark experiments is described. (author)

  20. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  1. Nuclear radiation detectors using high resistivity neutron transmutation doped silicon

    Gessner, T.; Irmer, K.

    1983-01-01

    A method for the production of semiconductor detectors based on high resistivity n-type silicon is described. The n-type silicon is produced by neutron irradiation of p-type silicon. The detectors are produced by planar technique. They are suitable for the spectrometry of alpha particles and for the pulse count measurement of beta particles at room temperature. (author)

  2. Quark model and high-energy nuclear experiments

    Bialas, A.

    1979-05-01

    Theoretical aspects of the measurements of production of low transverse momentum secondaries in high-energy hadron-nucleus and nucleus-nucleus collisions are discussed. Applications of the quark model to those processes are discussed in some detail. 58 references

  3. Scaling laws in high energy electron-nuclear processes

    Chemtob, M.

    1980-11-01

    We survey the parton model description of high momentum transfer electron scattering processes with nuclei. We discuss both nucleon and quark parton models and confront the patterns of scaling laws violations, induced by binding effects, in the former, and perturbative QCD effects, in the latter

  4. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector

    Alexiev, D.; Butcher, K.S.A.

    1991-11-01

    Surface barrier radiation detector made from high purity liquid phase epitaxial gallium arsenide wafers have been operated as X- and γ-ray detectors at various operating temperatures. Low energy isotopes are resolved including 241 Am at 40 deg C. and the higher gamma energies of 235 U at -80 deg C. 15 refs., 1 tab., 6 figs

  5. Quark model and high-energy nuclear experiments

    Bialas, A.

    1979-05-01

    Theoretical aspects of the measurements of production of low transverse momentum secondaries in high-energy hadron-nucleus and nucleus-nucleus collisions are discussed. Applications of the quark model to those processes are discussed in some detail. 58 references.

  6. Neutron analysis of the fuel of high temperature nuclear reactors; Analisis neutronico del combustible de reactores nucleares de alta temperatura

    Bastida O, G. E.; Francois L, J. L., E-mail: gbo729@yahoo.com.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  7. Bridging nuclear safety, security and safeguards at geological disposl of high level radioactive waste and spent nuclear fuel

    Niemeyer, Irmgard; Deissmann, Guido; Bosbach, Dirk

    2016-01-01

    Findings and recommendations: • Further R&D needed to identify concepts, methods and technologies that would be best suited for the holistic consideration of safety, security and safeguards provisions of geological disposal. • 3S ‘toolbox’, including concepts, methods and technologies for: ■ material accountancy, ■ measurement techniques for spent fuel verification, ■ containment and surveillance, ■ analysis of open source information, ■ environmental sampling and monitoring, ■ continuity of knowledge, ■ design implications. •: Bridging safety, security and safeguards in research funding and research activities related to geological disposal of high-level radioactive waste and spent nuclear fuel.

  8. High committee for nuclear safety transparency and information. March 17, 2009 meeting

    2009-03-01

    The high committee for the nuclear safety transparency and information (HCTISN) is an information, consultation and debate authority devoted to the assessment of the risks linked with nuclear activities and to the analysis of their impact on public health, on the environment and on nuclear safety. Each year, the HCTISN organizes several ordinary meetings in order to analyze some specific topics of the moment. This meeting was organized around 9 main topics: 1 - presentation by the French nuclear safety authority (ASN) of a dismantling strategy for nuclear facilities, in particular taking into account a final state for the site and the information of populations; 2 - status of the next campaign of iodine tablets distribution; 3 - the management of ancient uranium mines and in particular the long-term environmental and health impact of mine tailings; 4 - the implementation of the high committee's recommendations; 5 - work progress of the working group on information transparency; 6 - Areva's invitation of the working group on information transparency to assist to the organisation of a Mox fuel convoy between Cherbourg and Japan; 7 - progress of the working group on the elaboration of a 'communication scale' comparable to the INES scale; 8 - presentation of the meetings organized by the ANCLI (French national association of local information commissions) about the implementation of the Aarhus convention; 9 - presentation by the IRSN (Institute of radiation protection and nuclear safety) of its communication approach towards the public. (J.S.)

  9. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  10. Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states

    Wundt, B J; Jentschura, U D

    2010-01-01

    The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic self-energy remainder function for states with principal quantum number n = 5, ..., 8 and with angular momentum l = n - 1 and l = n - 2 are described (j = l +- 1/2).

  11. Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states

    Wundt, B J; Jentschura, U D [Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409-0640 (United States)

    2010-06-14

    The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic self-energy remainder function for states with principal quantum number n = 5, ..., 8 and with angular momentum l = n - 1 and l = n - 2 are described (j = l {+-} 1/2).

  12. Development of nuclear energy and radiation textbooks for high school students

    Lee, Seung Koo; Park, Pil Han; Choi, Yoon Seok; Kim, Wook; Jeong, Im Soon; Han, Eun Ok [Dept. of Education and Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2015-04-15

    This study aimed to develop textbooks about nuclear energy and radiation targeting high school students-the leaders of the next generation. Students learn about nuclear power generation and radiation through minimal information in science textbooks; most students acquire concepts through teaching-learning activities between teachers and students. Therefore, if a science teacher has an inaccurate perception about nuclear energy and radiation, this may have an improper influence on students. Before the failure of securing social acceptance due to ignorance about nuclear energy and radiation leads to biased political effects, the correct information should be provided in schools to allow future generations to develop educated value judgments. The present textbooks were developed as a part of such effort.

  13. Russian-Origin Highly Enriched Uranium Spent Nuclear Fuel Shipment From Bulgaria

    Cummins, Kelly; Bolshinsky, Igor; Allen, Ken; Apostolov, Tihomir; Dimitrov, Ivaylo

    2009-01-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  14. Development of nuclear energy and radiation textbooks for high school students

    Lee, Seung Koo; Park, Pil Han; Choi, Yoon Seok; Kim, Wook; Jeong, Im Soon; Han, Eun Ok

    2015-01-01

    This study aimed to develop textbooks about nuclear energy and radiation targeting high school students-the leaders of the next generation. Students learn about nuclear power generation and radiation through minimal information in science textbooks; most students acquire concepts through teaching-learning activities between teachers and students. Therefore, if a science teacher has an inaccurate perception about nuclear energy and radiation, this may have an improper influence on students. Before the failure of securing social acceptance due to ignorance about nuclear energy and radiation leads to biased political effects, the correct information should be provided in schools to allow future generations to develop educated value judgments. The present textbooks were developed as a part of such effort

  15. Status of the French nuclear high level waste disposal

    Sombret, C.

    1985-09-01

    French research on high level waste processing has led to the development of industrial vitrification facilities. Borosilicate glass is still being investigated for its long-term storage properties, since it is itself a component of the containment system. The other constituents of this system, the engineered barriers, are also being actively investigated. The geological barrier is now being assessed using a methodology applicable to various types of geological formations, and final site qualification should be possible before the end of 1992

  16. High resisting alloy without Co used in nuclear industry

    Balleret, Alain.

    1976-01-01

    The description is given of a high resistance alloy characterised in that it includes by weight 5 to 14% molybdenum, 19 to 32% chromium, 2 to 8% tungsten, 6 to 50% nickel, 0.2 to 2.8% carbon, 0 to 5% vanadium, 0 to 5% zirconium, 0 to 5% niobium-tantalum, 0 to 3% manganese, 0 to 3% silicon, 0 to 1.5% boron and iron in an amount to ensure the global balance of this alloy [fr

  17. Vitrification of high-level alumina nuclear waste

    Brotzman, J.R.

    1979-01-01

    Borophosphate glass compositions have been developed for the vitrification of a high-alumina calcined defense waste. The effect of substituting SiO 2 , P 2 O 5 and CuO for B 2 O 3 on the viscosity and leach resistance was measured. The effect of the alkali to borate ratio and the Li 2 O:Na 2 O ratio on the melt viscosity and leach resistance was also measured

  18. High-efficiency optical pumping of nuclear polarization in a GaAs quantum well

    Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.

    2017-11-01

    The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.

  19. Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

    Choong-Koo Chang

    2016-02-01

    Full Text Available Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV high resistance grounding (HRG system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

  20. High committee for nuclear safety transparency and information. July 1, 2009 meeting

    2009-07-01

    The high committee for the nuclear safety transparency and information (HCTISN) is an information, consultation and debate authority devoted to the assessment of the risks linked with nuclear activities and to the analysis of their impact on public health, on the environment and on nuclear safety. Each year, the HCTISN organizes several ordinary meetings in order to analyze some specific topics of the moment. This meeting was organized around 5 main points: 1 - radioactive waste management: status and steps of the June 28, 2006 law, ANDRA's projects of deep geologic disposal for long living/high-medium activity wastes and of low depth disposal for long living/low activity wastes, French nuclear safety authority (ASN) opinion about the sites choice, implementation of article 10 of the June 28, 2006 law relative to public information; 2 - progress of the working groups' works on transparency and secrecy, on the development of a communication scale, and on the creation of an Internet portal for the radio-ecological follow-up of nuclear sites; 3 - comments of the ASN's report on the nuclear safety and radiation protection in France in 2008; 4 - procedure of management of the radio-physicists shortage in order to warrant the patients' safety and information; 5 - miscellaneous points: project of European directive on nuclear safety, organisation of a visit day onboard of a ship for nuclear materials transportation, comments about the by-law from May 5, 2009, relative to the exemption to informing consumers about the addition of radionuclides to consumption and construction products. (J.S.)

  1. 2003 Conference for Computing in High Energy and Nuclear Physics

    Schalk, T.

    2003-01-01

    The conference was subdivided into the follow separate tracks. Electronic presentations and/or videos are provided on the main website link. Sessions: Plenary Talks and Panel Discussion; Grid Architecture, Infrastructure, and Grid Security; HENP Grid Applications, Testbeds, and Demonstrations; HENP Computing Systems and Infrastructure; Monitoring; High Performance Networking; Data Acquisition, Triggers and Controls; First Level Triggers and Trigger Hardware; Lattice Gauge Computing; HENP Software Architecture and Software Engineering; Data Management and Persistency; Data Analysis Environment and Visualization; Simulation and Modeling; and Collaboration Tools and Information Systems

  2. Disposal of high active nuclear fuel waste. A critical review of the Nuclear Fuel Safety (KBS) project on final disposal of vitrified high active nuclear fuel waste

    1978-01-01

    This report has been prepared by the Swedish Energy Commission's working group for Safety and Environment. The main contributions are by profs. Jan Rydberg of Chalmers University of Technology, Sweden and John W Winchester of Florida State University, USA. The aim of the report is to discuss weather the KBS-project fullfills the Swedish ''Stipulations Act'', that a absolutely safe way of disposing of the nuclear waste must have been demonstrated before any new reactors are allowed to be taken inot use. Rydberg and Winchester do not arrive at similar conclusions. (L.E.)

  3. Development of high purity large forgings for nuclear power plants

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-01-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  4. High-temperature laser induced spectroscopy in nuclear steam generators

    Allmon, W.E.; Berthold, J.W.

    1990-01-01

    This patent describes an apparatus for conducting optical spectroscopy in a hostile environment. It comprises: a source of high intensity light; an optical fiber connected to the source of high intensity light for transmitting light therefrom. The optical fiber having an end for discharging light onto a material to be spectroscopically analyzed; a sheath defining a space around at least a part of the optical fiber carrying the end of the optical fiber for shielding the optical fiber from the hostile environment; a window in the sheath for closing the space and for passing light transmitted through the end of the optical fiber out of the sheath; light detector means for detecting and spectroscopically analyzing emitted light from the material; an optical fiber means for transmitting the emitted light from the material to the light detector means; a standardization module for containing a sample having a known composition and being exposed to known temperature and pressure conditions; an additional optical fiber connected to the module for transmitting light to the sample in the module; multiplexer means; and additional optical fiber means for returning light from the module to the detector through the multiplexer means

  5. Development of high purity large forgings for nuclear power plants

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  6. The scope and nature of the problem of high level nuclear waste disposal

    Jennekens, J.

    1981-09-01

    The disposal of high level nuclear waste poses a challenge to the Canadian technical and scientific communities, but a much greater challenge to government and industry leaders who must convince the public that the so-called 'problem' can be resolved by a pragmatic approach utilizing existing skills and knowledge. This paper outlines the objectives of radioactive waste management, the quantities of high level waste expected to be produced by the Canadian nuclear power program, the regulatory process which will apply and the government initiatives which have been and will be taken to ensure that the health, safety, security, and environmental interests of the public will be protected. (author)

  7. What are Spent Nuclear Fuel and High-Level Radioactive Waste?

    2002-01-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository

  8. Magnetostrictive device for high-temperature sound and vibration measurement in nuclear power stations

    Hans, R.; Podgorski, J.

    1977-01-01

    The demands on the monitoring systems in nuclear power stations are increasing continuously, not only because of more stringent safety requirements but also for reasons of plant availability and thus economic efficiency. The noise and vibration measurements which therefore have to be taken make it necessary to provide measuring devices with a high degree of efficiency, adequate sensitivity and resistance to high temperatures, radiation and corrosion. Probes using the magnetostrictive effect, whereby a ferromagnetic core changes its length in a magnetic field - a phenomenon which has been known for approximately fifty years - fulfill all the conditions for application in nuclear power stations. (orig.) [de

  9. Consideration of Nuclear Criticality When Directly Disposing Highly Enriched Spent Nuclear Fuel in Unsaturated Tuff - I: Nuclear Criticality Constraints

    Rechard, Rob P.; Sanchez, Lawrence C.; Trellue, Holly R.

    2003-01-01

    This paper presents the mass, concentration, and volume required for a critical event to occur in homogeneous mixtures of fissile material and various other geologic materials. The fissile material considered is primarily highly enriched uranium spent fuel; however, 239 Pu is considered in some cases. The non-fissile materials examined are those found in the proposed repository area at Yucca Mountain, Nevada: volcanic tuff, iron rust, concrete, and naturally occurring water. For 235 U, the minimum critical solid concentration for tuff was 5 kg/m 3 (similar to sandstone), and in goethite, 45 kg/m 3 . The critical mass of uranium was sensitive to a number of factors, such as moisture content and fissile enrichment, but had a minimum, assuming almost 100% saturation and >20% enrichment, of 18 kg in tuff as Soddyite (or 9.5 kg as UO 2 ) and 7 kg in goethite. For 239 Pu, the minimum critical solid concentration for tuff was 3 kg/m 3 (similar to sandstone); in goethite, 20 kg/m 3 . The critical mass of plutonium was also sensitive to a number of factors, but had a minimum, assuming 100% saturation and 80-90% enrichment, of 5 kg in tuff and 6 kg in goethite

  10. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo

    2016-01-01

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted

  11. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted.

  12. Safe immobilization of high-level nuclear reactor wastes

    Ringwood, A.; Kesson, S.; Ware, N.; Hibberson, W.; Major, A.

    1979-01-01

    The advantages and disadvantages of methods of immobilizing high-level radioactive wastes are discussed. Problems include the devitrification of glasses and the occurrence of radiation damage. An alternative method of radioctive waste immobilization is described in which the waste is incorporated in the constituent minerals of a synthetic rock, Synroc. Synroc is immune from devitrification and is composed of phases which possess crystal structures identical to those of minerals which are known to have retained radioactive elements in geological environments at elevated pressures and tempertures for long periods. The composition and mineralogy of Synroc is given and the process of immobilizing wastes in Synroc is described. Accelerated leaching tests at elevated pressures and temperatures are also described

  13. Superconducting magnets in nuclear and high energy physics

    Hamelin, J.; Parain, J.; Perot, J.; Lesmond, C.

    1976-01-01

    A few examples of superconducting magnets developped at Saclay for high energy physics are presented. The OGA doublet is a large acceptance optical system consisting of two quadrupoles with maximum field gradients of 35 and 23 teslas per meter giving an increase of the beam acceptance by a factor 4. The ALEC dipole is a synchrotron magnet with a length of 1.5 meter and a field of 5 teslas, operating in pulse made at a frequency of 0.1 Hertz and entirely constructed in industry. The ECO project is a demonstration of electrical energy saving by means of superconductors. It consists in the replacement of conventional copper of a classical beam transport magnet by superconducting windings. The use of superconductors for polarized target magnets allows a large variety of configurations to be obtained in order to satisfy the acceptance and space requirements to the detectors around the targets [fr

  14. Modelling of some high burnup phenomena in nuclear fuel

    Forsberg, K; Lindstroem, F; Massih, A R [ABB Atom AB, Vaesteraas (Sweden)

    1997-08-01

    In this paper the results of some modelling efforts carried out by ABB Atom to describe certain light water reactor fuel high burnup effects are presented. In particular the degradation of fuel thermal conductivity with burnup and its impact on fuel temperature is briefly discussed. The formation of a porous rim and its effect on a thermal fission gas release has been modelled and the model has been used to predict the release of pressurized water reactor fuel rods that were operated at low power densities. Furthermore, a mathematical model which combines the diffusion and re-solution controlled thermal release with grain boundary movement has been briefly described. The model is used to compare release with diffusion only and release caused by diffusion and grain boundary sweeping (due to grain growth). Finally, analytical expressions are obtained for the calculation of fuel stoichiometry as a function of burnup. (author). 20 refs, 10 figs, 1 tab.

  15. Global flow of glasma in high energy nuclear collisions

    Chen, Guangyao; Fries, Rainer J., E-mail: rjfries@comp.tamu.edu

    2013-06-25

    We discuss the energy flow of the classical gluon fields created in collisions of heavy nuclei at collider energies. We show how the Yang–Mills analog of Faraday's Law and Gauss' Law predicts the initial gluon flux tubes to expand or bend. The resulting transverse and longitudinal structure of the Poynting vector field has a rich phenomenology. Besides the well-known radial and elliptic flow in transverse direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow that tilts the fireball for non-central collisions, and it implies a characteristic flow pattern for collisions of non-symmetric systems A+B. The rapidity-odd transverse flow translates into a directed particle flow v{sub 1} which has been observed at RHIC and LHC. The global flow fields in heavy ion collisions could be a powerful check for the validity of classical Yang–Mills dynamics in high energy collisions.

  16. Post treatment of high-level nuclear fuel wastes

    Berreth, J.R.; Cole, H.S.; Hoskins, A.P.; Lewis, L.C.; Samsel, E.G.

    1975-01-01

    The glass-ceramic product prepared from fluidized-bed calcined synthetic commercial wastes, based on data obtained to date, has many of the properties desired for long-term storage. Although more characterization is necessitated, the product's high-calcine content will decrease the number of storage canisters required and use a minimum of product-forming additives, resulting in significant process cost savings. The product remains in a solid, nonflowing form at temperatures close to the preparation temperature and yet is prepared at relatively low temperatures. The product has void spaces to accommodate radiolytic gas formation, but is hard and dense and has very low leach rates. Process features, such as no direct product contact with furnace or storage canisters, will minimize corrosion of both process equipment and storage canisters

  17. A high resolution gridded ionization chamber for nuclear spectroscopy

    Vitale, E.R.

    1988-01-01

    This paper describes some techniques used in the design of high resolution gridded ionisation chambers for measurements of absolute activity of radionuclides. Details of the geometry of the system and its electrodes are presented; their shape and the spacing between the grid wire was studied with the help of an electrolytic tank. The experimental spectra obtained with an Am 241 source using Ar + 10% methane as a flow gas show a total resolution of 39,07 KeV in very good agreement with the best results available in the literature. An application of the methods developed was used in the design ans construction of a proportional counter provided with three sequential grids disposed in such a way that the pulses from the first stage had their amplitude multiplied by the two further stages. Multiplication factors of the order of 10 sup(3) were obtained but higher values are expected. (author)

  18. High-temperature thermophysical properties of nuclear fuels

    Hyland, G.J.; Ralph, Jeffrey

    1985-01-01

    This is a summary of discussions held at the 9th European Thermophysical Properties Conference. The first group discussed the following: the question of Bredig transition in UO 2 and related oxides, the thermal conductivity of molten UO 2 , the status of first principle calculations of the free energies of defect formation in UO 2 . A second group of topics discussed were: oxygen potentials over mixed oxide systems, the current status of vapor pressure measurements over liquid UO 2 made by use of laser heating techniques and their interpretation and preliminary results on electric and dielectric properties of solid UO 2 at high frequencies and low temperatures. The main interest was in the thermal conductivity of molten UO 2 and much of the discussion time was devoted to this. (U.K.)

  19. Quality Assurance in Nuclear Fuel Research at the Laboratory of High- and Medium-level Activity at SCK-CEN

    Sannen, L.; Gys, A.; Verwerft, M

    1999-10-01

    Quality assurance in nuclear fuel research demands specific calibration and validation methodologies. Indeed the analytical experiments in hot-cells on highly radioactive objects are non-standard and many times unique. The standards and validation methods developed for and applied to the main nuclear fuel research experiments in the hot laboratories of the Belgian Nuclear Research Centre SCK-CEN are outlined.

  20. Quality Assurance in Nuclear Fuel Research at the Laboratory of High- and Medium-level Activity at SCK-CEN

    Sannen, L.; Gys, A.; Verwerft, M.

    1999-10-01

    Quality assurance in nuclear fuel research demands specific calibration and validation methodologies. Indeed the analytical experiments in hot-cells on highly radioactive objects are non-standard and many times unique. The standards and validation methods developed for and applied to the main nuclear fuel research experiments in the hot laboratories of the Belgian Nuclear Research Centre SCK-CEN are outlined

  1. Nuclear process heat at high temperature: Application, realization and development programme

    Sammeck, K.H.; Fischer, R.

    1976-01-01

    Studies in the Federal Republic of Germany (FRG), the USA and the United Kingdom have shown that high-temperature helium energy from an HTR can advantageously be utilized for coal gasification and other fossil fuel conversion processes, and that a substantial demand for substitute natural gas (SNG) can be expected in the future. These results are based on plant design studies, economic assessments and basic development efforts in the field of coal gasification with nuclear heat, which in the FRG were carried out by Arbeitsgemeinschaft Nukleare Prozesswaerme (ANP)-members, HRB and KFA Juelich. Nuclear process plants are based on different gasification processes, resulting in different concepts of the nuclear heat system. In the case of hydro-gasification it is expected that steam reformers, arranged within the primary circuit of the reactor, will be heated directly by the primary helium. In the case of steam gasification, the high-temperature energy must be transferred to the gasification process via an intermediate circuit which is coupled to a gasifier outside the containment. In both cases the design of the nuclear reactor resembles an HTR for electricity generation. The main objectives of the development of nuclear process heat are to increase the helium outlet temperature of the reactor up to 950 0 C, to develop metallic alloys for high-temperature components such as heat exchangers, to design and construct a hot-gas duct, a steam reformer and a helium-helium heat exchanger and to develop the gasification processes. The nuclear safety regulations and the interface problems between the reactor, the process plant and the electricity generating plant have to be considered thoroughly. The Arbeitsgemeinschaft Nukleare Prozesswaerme and HRB started a development programme, in close collaboration with KFA Juelich, which will lead to the construction of a prototype plant for coal gasification with nuclear heat within 5 to 5 1/2 years. A survey of the main objectives

  2. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2009-01-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink(reg s ign), an extension of MATLAB(reg s ign), is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  3. Nuclear

    Anon.

    2000-01-01

    The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)

  4. High resolution spectroscopy in solids by nuclear magnetic resonance; Espectroscopia de alta resolucao em solidos por ressonancia magnetica nuclear

    Bonagamba, T J

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120{sup 0} C to +160{sup 0} C, and is fully controlled by a Macintosh IIci microcomputer. (author).

  5. Why consider subseabed disposal of high-level nuclear waste

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of years of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept

  6. Why consider subseabed disposal of high-level nuclear wastes

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1983-01-01

    There exist large areas of the deep seabed that warrant assessment as potential disposal sites for high-level radioactive wastes because (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanoes; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the foreseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and have been remarkably insensitive to past oceanic and climatic changes; and (6) sedimentary records of tens of millions of years of slow, uninterrupted deposition of fine-grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clayey sediments indicate that they can act as a primary barrier to the escape of buried radionuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political, and social issues raised by this new concept

  7. Nuclear structure of 94,95Mo at high spins

    Kharraja, B.; Ghugre, S.S.; Garg, U.; Janssens, R.V.; Carpenter, M.P.; Crowell, B.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reviol, W.; Mueller, W.F.; Riedinger, L.L.; Kaczarowski, R.

    1998-01-01

    The high-spin level structures of 94,95 Mo (N=52,53) have been investigated via the 65 Cu( 36 S, αp2n) 94 Mo and 65 Cu( 36 S, αpn) 95 Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies E x ∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94 Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g 9/2 neutron across the N=50 shell gap. The level sequences observed in 95 Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d 5/2 or a g 7/2 neutron to the 94 Mo core. copyright 1998 The American Physical Society

  8. Friction and wear studies of nuclear power plant components in pressurized high temperature water environments

    Ko, P.L.; Zbinden, M.; Taponat, M.C.; Robertson, M.F.

    1997-01-01

    The present paper is part of a series of papers aiming to present the friction and wear results of a collaborative study on nuclear power plant components tested in pressurized high temperature water. The high temperature test facilities and the methodology in presenting the kinetics and wear results are described in detail. The results of the same material combinations obtained from two very different high temperature test facilities (NRCC and EDF) are presented and discussed. (K.A.)

  9. Recent research on nuclear reaction using high-energy proton and neutron

    Shibata, Tokushi [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1997-11-01

    The presently available high-energy neutron beam facilities are introduced. Then some interesting research on nuclear reaction using high-energy protons are reported such as the intermediate mass fragments emission and neutron spectrum measurements on various targets. As the important research using high-energy neutron, the (p,n) reactions on Mn, Fe, and Ni, the elastic scattering of neutrons, and the shielding experiments are discussed. (author)

  10. Study on the high-precision laser welding technology of nuclear fuel elements processing

    Kim, Soo Sung; Yang, M. S.; Kim, W. K.; Lee, D. Y

    2001-01-01

    The proper welding method for appendage of bearing pads and spacers of PHWR nuclear fuel elements is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of welding defects of the appendage parts is mostly apt to occur and it is connected directly with the safty and life prediction of the nuclear reactor in operation. Recently there has been studied all over the world to develope welding technology by laser in nuclear fuel processing, and the appendage of bearing pads and spacers of PHWR nuclear fuel elements. Therefore, the purpose of this study is to investigate the characteristics of the laser welded specimens and make some samples for the appendage of bearing pads of PHWR nuclear fuel elements. This study will be also provide the basic data for the fabrications of the appendage of bearing pads and spacers. Especially the laser welding is supposed to be used in the practical application such as precise materials manufacturing fields. In this respect this technology is not only a basic advanced technology with wide applications but also likely to be used for the development of directly applicable technologies for industries, with high potential benefits derived in the view point of economy and industry.

  11. High energy nuclear data evaluations for neutron-, proton-, and photon-induced reactions at KAERI

    Lee, Young Ouk; Chang, Jong Hwa; Kim, Doo Hwan; Lee, Jeong Yeon; Han, Yinlu; Sukhovitski, Efrem Sh.

    2001-01-01

    The Korea Atomic Energy Research Institute (KAERI) is building high energy neutron-, proton-, and photon-induced nuclear data libraries for energies up to hundreds MeV in response to nuclear data needs from various R and Ds and applications. The librares provide nuclear data needed for the accelerator-driven transmutation of nuclear waste and radiation transport simulations of cancer radiotherapy. The neutron library currently has 10 isotopes such as C-12, N-14, O-16, Al-27, Si-28, Ca-40, Fe-56, Ni-58, Zr-90, Sn-120, and Pb-208 for energies from 20 up to 400 MeV. The proton nuclear data were evaluated in a consistent manner with the neutron case, using the same nuclear model parameters. In addition to the same isotopes included in the neutron library, the proton library has 70 extra isotopes of 24 elements ranging from nitrogen to lead up to 150 MeV for which the evaluations are focused on the medical and activation analyses applications. The photonuclear data library has been built along with international collaboration by participating in the IAEA's Coordinated Research Project (CRP) which ended last year. Currently the KAERI photonuclear library includes 143 isotopes of 39 elements

  12. Study on the high-precision laser welding technology of nuclear fuel elements processing

    Kim, Soo Sung; Yang, M. S.; Kim, W. K.; Lee, D. Y.

    2001-01-01

    The proper welding method for appendage of bearing pads and spacers of PHWR nuclear fuel elements is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of welding defects of the appendage parts is mostly apt to occur and it is connected directly with the safty and life prediction of the nuclear reactor in operation. Recently there has been studied all over the world to develope welding technology by laser in nuclear fuel processing, and the appendage of bearing pads and spacers of PHWR nuclear fuel elements. Therefore, the purpose of this study is to investigate the characteristics of the laser welded specimens and make some samples for the appendage of bearing pads of PHWR nuclear fuel elements. This study will be also provide the basic data for the fabrications of the appendage of bearing pads and spacers. Especially the laser welding is supposed to be used in the practical application such as precise materials manufacturing fields. In this respect this technology is not only a basic advanced technology with wide applications but also likely to be used for the development of directly applicable technologies for industries, with high potential benefits derived in the view point of economy and industry

  13. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  14. High committee for transparency and information on nuclear safety: meeting of September 10, 2010

    2010-01-01

    After the approval of its rules of procedure and the designation of the High committee office, the members of the committee discuss the following topics: the High committee communication rules, various issues regarding radioactive wastes (activity of the low level waste work group, recent decisions made by the government on the process of selection of a low level waste storage site, perspectives and modalities of a public hearing organised by the committee according to the mission defined in the waste bill). Then, they discuss the environmental monitoring issue: organisation and strategy of radioactivity control in France by the French nuclear safety authority (ASN) and by the French institute for radiation protection and nuclear safety (IRSN), assessment of the radio-ecological status at the vicinity of basic nuclear installations

  15. Using electrochemical separation to reduce the volume of high-level nuclear waste

    Slater, S.A.; Gay, E.C.

    1998-01-01

    Argonne National Laboratory (ANL) has developed an electrochemical separation technique called electrorefining that will treat a variety of metallic spent nuclear fuel and reduce the volume of high-level nuclear waste that requires disposal. As part of that effort, ANL has developed a high throughput electrorefiner (HTER) that has a transport rate approximately three times faster than electrorefiners previously developed at ANL. This higher rate is due to the higher electrode surface area, a shorter transport path, and more efficient mixing, which leads to smaller boundary layers about the electrodes. This higher throughput makes electrorefining an attractive option in treating Department of Energy spent nuclear fuels. Experiments have been done to characterize the HTER, and a simulant metallic fuel has been successfully treated. The HTER design and experimental results is discussed

  16. Application of Nuclear Power Plant Simulator for High School Student Training

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant.

  17. Application of Nuclear Power Plant Simulator for High School Student Training

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung

    2014-01-01

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant

  18. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  19. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  20. German Spent Nuclear Fuel Legacy: Characteristics and High-Level Waste Management Issues

    A. Schwenk-Ferrero

    2013-01-01

    Full Text Available Germany is phasing-out the utilization of nuclear energy until 2022. Currently, nine light water reactors of originally nineteen are still connected to the grid. All power plants generate high-level nuclear waste like spent uranium or mixed uranium-plutonium dioxide fuel which has to be properly managed. Moreover, vitrified high-level waste containing minor actinides, fission products, and traces of plutonium reprocessing loses produced by reprocessing facilities has to be disposed of. In the paper, the assessments of German spent fuel legacy (heavy metal content and the nuclide composition of this inventory have been done. The methodology used applies advanced nuclear fuel cycle simulation techniques in order to reproduce the operation of the German nuclear power plants from 1969 till 2022. NFCSim code developed by LANL was adopted for this purpose. It was estimated that ~10,300 tonnes of unreprocessed nuclear spent fuel will be generated until the shut-down of the ultimate German reactor. This inventory will contain ~131 tonnes of plutonium, ~21 tonnes of minor actinides, and 440 tonnes of fission products. Apart from this, ca.215 tonnes of vitrified HLW will be present. As fission products and transuranium elements remain radioactive from 104 to 106 years, the characteristics of spent fuel legacy over this period are estimated, and their impacts on decay storage and final repository are discussed.

  1. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  2. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    Salama, Amgad; El Amin, Mohamed F.; Sun, Shuyu

    2015-01-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since

  3. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  4. Senior High School Students' Preference and Reasoning Modes about Nuclear Energy Use.

    Yang, Fang-Ying; Anderson, O. Roger

    2003-01-01

    Examines senior high school students' cognitive orientation toward scientific or social information, designated as information preference, and associated preferential reasoning modes when presented with an environmental issue concerning nuclear energy usage. Investigates the association of information preference variable with academic and personal…

  5. Improving performance of high risk organizations Spanish nuclear sector from the analysis of organizational culture factors

    La Salabarnada, E.; German, S.; Silla, I.; Navajas, J.

    2012-01-01

    This paper presents the research project funded by UNESA and conducted by the CISOT-CIEMAT that aims to contribute to improving the operating performance of the Spanish nuclear power plants. This paper aims to identify the factors and key organizational processes to improve efficiency, in order to advance knowledge about the influence of organizational culture on the safety of high reliability organizations.

  6. Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.

    Hoffman, Darleane C.; Choppin, Gregory R.

    1986-01-01

    Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)

  7. Shell structure at high spin and the influence on nuclear shapes

    Khoo, T.L.; Chowdhury, P.; Ahmad, I.

    1982-01-01

    Nuclear structure at high spin is influenced by a combination of liquid-drop and shell-structure effects. For N 90. The competition between oblate and prolate driving effects leads to a prolate-to-oblate shape transition in 154 Dy 88 . The role of rotation-aligned configurations in the shape change is discussed

  8. Adaptation of high pressure water jets with abrasives for nuclear installations dismantling

    Rouviere, R.; Pinault, M.; Gasc, B.; Guiadeur, R.; Pilot, M.

    1989-01-01

    This report presents the work realized for adjust the cutting technology with high pressure water jet with abrasives for nuclear installation dismantling. It has necessited the conception and the adjustement of a remote tool and the realization of cutting tests with waste produce analysis. This technic can be ameliorated with better viewing systems and better fog suction systems

  9. Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    Aarts, G.; Aichelin, J.; Allton, C.; Arnaldi, R.; Bass, S. A.; Bedda, C.; Brambilla, N.; Bratkovskaya, E.; Braun-Munzinger, P.; Bruno, G. E.; Dahms, T.; Das, S. K.; Dembinski, H.; Djordjevic, M.; Ferreiro, E. G.; Frawley, A.; Gossiaux, P. B.; Granier de Cassagnac, R.; Grelli, A.; He, Ming; Horowitz, W. A.; Innocenti, G. M.; Jo, M.; Kaczmarek, O.; Kuijer, P; Laine, M.; Lombardo, M. P.; Mischke, A.; Munhoz, M. G.; Nahrgang, M.; Nguyen, Mai; Oliveira da Silva, A. C.; Petreczky, P.; Rothkopf, A.; Schmelling, M.; Scomparin, E.; Song, Ting; Stachel, J.; Suaide, A. A P; Tolos, L.; Trzeciak, B.; Uras, A.; van Doremalen, L.; Vermunt, L.; Vigolo, S.; Xu, N.; Ye, Z.; Zanoli, H.J.C.; Zhuang, P.

    2017-01-01

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results

  10. Climate effects of a hypothetical regional nuclear war: Sensitivity to emission duration and particle composition

    Pausata, Francesco S. R.; Lindvall, Jenny; Ekman, Annica M. L.; Svensson, Gunilla

    2016-11-01

    Here, we use a coupled atmospheric-ocean-aerosol model to investigate the plume development and climate effects of the smoke generated by fires following a regional nuclear war between emerging third-world nuclear powers. We simulate a standard scenario where 5 Tg of black carbon (BC) is emitted over 1 day in the upper troposphere-lower stratosphere. However, it is likely that the emissions from the fires ignited by bomb detonations include a substantial amount of particulate organic matter (POM) and that they last more than 1 day. We therefore test the sensitivity of the aerosol plume and climate system to the BC/POM ratio (1:3, 1:9) and to the emission length (1 day, 1 week, 1 month). We find that in general, an emission length of 1 month substantially reduces the cooling compared to the 1-day case, whereas taking into account POM emissions notably increases the cooling and the reduction of precipitation associated with the nuclear war during the first year following the detonation. Accounting for POM emissions increases the particle size in the short-emission-length scenarios (1 day/1 week), reducing the residence time of the injected particle. While the initial cooling is more intense when including POM emission, the long-lasting effects, while still large, may be less extreme compared to the BC-only case. Our study highlights that the emission altitude reached by the plume is sensitive to both the particle type emitted by the fires and the emission duration. Consequently, the climate effects of a nuclear war are strongly dependent on these parameters.

  11. Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: first theoretical framework of POM-based heterocyclic aromatic rings.

    Janjua, Muhammad Ramzan Saeed Ashraf

    2012-11-05

    This work was inspired by a previous report (Janjua et al. J. Phys. Chem. A 2009, 113, 3576-3587) in which the nonlinear-optical (NLO) response strikingly improved with an increase in the conjugation path of the ligand and the nature of hexamolybdates (polyoxometalates, POMs) was changed into a donor by altering the direction of charge transfer with a second aromatic ring. Herein, the first theoretical framework of POM-based heteroaromatic rings is found to be another class of excellent NLO materials having double heteroaromatic rings. First hyperpolarizabilities of a large number of push-pull-substituted conjugated systems with heteroaromatic rings have been calculated. The β components were computed at the density functional theory (DFT) level (BP86 geometry optimizations and LB94 time-dependent DFT). The largest β values are obtained with a donor (hexamolybdates) on the benzene ring and an acceptor (-NO(2)) on pyrrole, thiophene, and furan rings. The pyrrole imido-substituted hexamolybdate (system 1c) has a considerably large first hyperpolarizability, 339.00 × 10(-30) esu, and it is larger than that of (arylimido)hexamolybdate, calculated as 0.302 × 10(-30) esu (reference system 1), because of the double aromatic rings in the heteroaromatic imido-substituted hexamolybdates. The heteroaromatic rings act as a conjugation bridge between the electron acceptor (-NO(2)) and donor (polyanion). The introduction of an electron donor into heteroaromatic rings significantly enhances the first hyperpolarizabilities because the electron-donating ability is substantially enhanced when the electron donor is attached to the heterocyclic aromatic rings. Interposing five-membered auxiliary fragments between strong donor (polyanion) or acceptor (-NO(2)) groups results in a large computed second-order NLO response. The present investigation provides important insight into the NLO properties of (heteroaromatic) imido-substituted hexamolybdate derivatives because these compounds

  12. An investigation on image of nuclear energy from the view of Japanese high school students

    Takahashi, Reiko; Nakayama, Kazuhiko.

    1996-01-01

    The authors have conducted an investigation on Japanese high school students' knowledge, recognition and interest on energy issues. How they are currently recognizing the 'Nuclear Energy' and whether there is a difference in the way of recognition with their attributes have been revealed in this investigation. A questionnaire based on a word association (WA) method and a cluster analysis have been carried out. Using these statistical methodologies, a picture of energy issues from the view of young generations has been cleared. The authors believe that the analysis in the field of nuclear energy by means of such techniques has been done for the first time in Japan. (author)

  13. Local nuclear slope and curvature in high energy pp and pp-bar elastic scattering

    Desgrolard, P. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Kontros, J.; Lengyel, A.I. [Inst. of Electron Physics, Uzhgorod (Ukraine); Martynov, E.S. [National Academy of Sciences of Ukraine, Kiev (Ukraine). Bogolyubov Inst. for Theoretical Physics

    1997-05-01

    The local nuclear slope is reconstructed from the experimental angular distributions with a procedure that uses overlapping t-bins, for an energy that ranges from the ISR to the Sp-bar pS and the Tevatron. Predictions of several models of (p-bar,p) elastic scattering at high energy are tested. Only a model with two-components Pomeron and Odderon gives a satisfactory agreement with the (non fitted) slope data. The extreme sensitivity of the local nuclear curvature with the choice for a Pomeron model is emphasized. (author). 30 refs.

  14. Mineral-modeled ceramics for long-term storage of high-level nuclear wastes

    Vance, E.R.

    1980-01-01

    Over the past ten years, Penn State's Materials Research Laboratory has done extensive work on mineral-modeled ceramics for high-level nuclear waste storage. These ceramics are composed of several mineral analogues that form a monolithic polycrystalline aggregate. Mineral-modeling can be made in a similar fashion to nuclear waste glasses, and their naturally occurring analogues are known to last millions, and even billions, of years in hot, wet conditions. It is believed that such ceramics could reduce dispersal of radionuclides by leaching to a minimum

  15. Chernobyl nuclear catastrophe and the high risk potential for mental retardation

    Holowinsky, I.Z.

    1993-01-01

    The nuclear explosion at Chernobyl nuclear reactor on April 26, 1986, continues to have wide political, social, and medical ramifications. Hot debris from the Chernobyl reactor covered an area of more than 5,000 square kilometers with nearly 20 million curies of radionuclides. Eleven regions with a population of nearly 17 million people, of whom 2.5 million were children below the age of 5 years, suffered some degree of radioactive contamination. These children are currently of elementary school age. One of the tragedies of the explosion is that thousands of these children are at high risk for mental retardation and learning disorders

  16. Design and evaluation of a pressure sensor for high temperature nuclear application

    Yancey, M.E.

    1981-11-01

    The goal of this technical development task was the development of a small eddy-current pressure sensor for use within a high temperature nuclear environment. The sensor is designed for use at pressures and temperatures of up to 17.23 MPa and 650 0 F. The design of the sensor incorporated features to minimize possible errors due to temperature transients present in nuclear applications. This report describes a prototype pressure sensor that was designed, the associated 100 kHz signal conditioning electronics, and the evaluation tests which were conducted

  17. Combined conditioning in the high-temperature experimental nuclear reactor (AVR) at Juelich

    Nieder, R.; Vey, K.; Ivens, G.

    1984-01-01

    The high temperature experimental nuclear reactor (AVR) is the first nuclear power plant in which combined cycle operation has been introduced. The water-steam cycle has been operated for about 15 years according to the alkali method of working with ammonia and hydrazine. The VGB-guidelines have been adhered to througout. Since January 1983 cobined cycle operation has been employed, and in this process a pH-value of about 8.5 and an oxygen concentration of about 200 μg/kg in the feedwater have been used. A distinct reduction of tritium concentration in the water-steam cycle was the outstanding new result. (orig.) [de

  18. Triton-3He relative and differential flows and the high density behavior of nuclear symmetry

    Yong, Gaochan; Li, Baoan; Chen, Liewen

    2010-01-01

    Using a transport model coupled with a phase-space coalescence after-burner we study the triton- 3 He relative and differential transverse flows in semi-central 132 Sn + 124 Sn reactions at a beam energy of 400 MeV/nucleon. We find that the triton- 3 He pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t- 3 He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy. (author)

  19. Investigation of the proton-neutron interaction by high-precision nuclear mass measurements

    Savreux, R P; Akkus, B

    2007-01-01

    We propose to measure the atomic masses of a series of short-lived nuclides, including $^{70}$Ni, $^{122-130}$Cd, $^{134}$Sn, $^{138,140}$Xe, $^{207-210}$Hg, and $^{223-225}$Rn, that contribute to the investigation of the proton-neutron interaction and its role in nuclear structure. The high-precision mass measurements are planned for the Penning trap mass spectrometer ISOLTRAP that reaches the required precision of 10 keV in the nuclear mass determination.

  20. Optical-coupling nuclear spin maser under highly stabilized low static field

    Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)

    2008-01-15

    A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.

  1. Geologic isolation of nuclear waste at high latitudes: the role of ice sheets

    Person, M.; McIntosh, J.; Iverson, N.; Neuzil, C.E.; Bense, V.

    2012-01-01

    Geologic isolation of high-level nuclear waste from the biosphere requires special consideration in countries at high latitudes (>40°N) owing to the possibility of future episodes of continental glaciation (Talbot 1999). It is now widely recognized that Pleistocene continental glaciations have had a profound effect on rates of sediment erosion (Cuffey & Paterson 2010) and deformation including tectonic thrusting (Pedersen 2005) as well as groundwater flow (Person et al. 2007; Lemieux et al. 2008a,b,c). In addition, glacial mechanical loads may have generated anomalous, or fossil, pore pressures within certain clay-rich confining units (e.g. Vinard et al. 2001). Because high-level nuclear wastes must be isolated from the biosphere as long as 1 million years (McMurry et al. 2003), the likelihood of one or more continental ice sheets overrunning high-latitude sites must be considered.

  2. US program for the immobilization of high-level nuclear wastes

    Crandall, J.L.

    1979-01-01

    A program has been developed for long-term management of high-level nuclear waste. The Savannah River Operations Office of the US Department of Energy is acting as the lead office for this program with technical advice from the E.I. du Pont de Nemours and Company. The purpose of the long-term program is to immobilize the DOE high-level waste in forms that act as highly efficient barriers against radionuclide release to the disposal site and to provide technology for similar treatment of commercial high-level waste in case reprocessing of commercial nuclear fuels is ever resumed. Descriptions of existing DOE and commercial wastes, program strategy, program expenditures, development of waste forms, evaluation and selection of waste forms, regulatory aspects of waste form selection, project schedules, and cost estimates for immobilization facilities are discussed

  3. The feature of high flux engineering test reactor and its role in nuclear power development

    Lu Guangquan

    1987-01-01

    The High Flux Engineering Test Reactor (HFETR) designed and built by Chinese own efforts reached to its initial criticality on Dec. 27, 1979, and then achieved high power operation on Dec. 16, 1980. Until Nov. 11. 1986, the reactor had been operated for thirteen cycles. The paper presents briefly main feature of HFETR and its utilization during past years. The paper also deals with its role in nuclear power development. Finally, author gives his opinion on comprehensive utilization of HFETR. (author)

  4. Ion chromatographic separation for analysis of radiostrontium in nuclear reprocessing solutions of high ionic strength

    Lamb, J.D.; Nordmeyer, F.R.; Drake, P.A.; Elder, M.P.; Miles, R.W.

    1989-01-01

    An ion chromatography (IC)-based method was developed for Sr 2+ concentration and separation showing high recoveries of strontium. This procedure permits complete automation. One of the potential weaknesses of the IC approach to sample preconcentration, i.e. sensitivity to solutions of high acid content, common in nuclear reprocessing solution, has been overcome by a novel application of acid suppression technology. (author) 12 refs.; 8 figs.; 3 tabs

  5. Study on microstructure and high temperature wear resistance of laser cladded nuclear valve clack

    Zhang Chunliang; Chen Zichen

    2002-01-01

    Laser cladding of Co-base alloy on the nuclear valve-sealing surface are performed with a 5 kW CO 2 transverse flowing laser. The microstructure and the high temperature impact-slide wear resistance of the laser cladded coating and the plasma cladded coating are studied. The results show that the microstructure, the dilution rate and the high temperature impact-slide wear resistance of the laser cladded coating have obvious advantages over the spurt cladding processing

  6. Development of high-reliability control system for nuclear power plants

    Asami, K.; Yanai, K.; Hirose, H.; Ito, T.

    1983-01-01

    In Japan, many nuclear power generating plants are in operation and under construction. There is a general awareness of the problems in connection with nuclear power generation and strong emphasis is put on achieving highly reliable operation of nuclear power plants. Hitachi has developed a new high-reliability control system. NURECS-3000 (NUclear Power Plant High-REliability Control System), which is applied to the main control systems, such as the reactor feedwater control system, the reactor recirculation control system and the main turbine control system. The NURECS-3000 system was designed taking into account the fact that there will be failures, but the aim is for the system to continue to function correctly; it is therefore a fault-tolerant system. It has redundant components which can be completely isolated from each other in order to prevent fault propagation. The system has a hierarchical configuration, with a main controller, consisting of a triplex microcomputer system, and sub-loop controllers. Special care was taken to ensure the independence of these subsystems. Since most of the redundant system failures are caused by common-mode failures and the reliability of redundant systems depends on the reliability of the common-mode parts, the aim was to minimize these parts. (author)

  7. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  8. Large palpable ductal carcinoma in situ is Her-2 positive with high nuclear grade.

    Monabati, Ahmad; Sokouti, Ali-Reza; Noori, Sadat Noori; Safaei, Akbar; Talei, Abd-Rasul; Omidvari, Shapoor; Azarpira, Negar

    2015-01-01

    Ductal carcinoma in situ (DCIS) of the breast is a heterogeneous group with variable clinical presentation. The exact molecular mechanism is not known why some ductal carcinomas may reach to such a large size but still remains in situ. Although, molecular classification of DCIS lesions and nuclear grading are important for identification of more aggressive lesions but it is not sufficient. Our aim was to examine the expression pattern of immunohistochemical (IHC) markers of ER, PR, HER-2 in palpable DCIS lesions and compare with clinicopathological findings. Our center is referral hospital from South of Iran. Samples were obtained from fifty four patients with a diagnosis of palpable DCIS. Equivocal (2+) case in HER-2 IHC testing was more characterized by chromogenic in situ hybridization. The positive frequency of HER2, ER, and PR was 92%, 48%, and 37% respectively. Palpable DCIS lesions were significantly more HER-2 positive (92%). The DCIS cases were more likely to be of high nuclear grade (grade III) and Her-2 positive cases were more likely to be of high nuclear grade than intermediate grade. All ER negative tumors had high nuclear grade. The Her-2 positivity is suggested as the most important factor responsible for marked in situ proliferation and production of palpable mass.

  9. Consideration of ultra-high temperature nuclear heat sources for MHD conversion systems

    Holman, R.R.; Tobin, J.M.; Young, W.E.

    1975-01-01

    The nuclear technology reactors developed and tested in the Nuclear Engine Rocket Vehicle Application (NERVA) program operated with fuel exit gas temperatures in excess of 2600 K. This experience provided a significant ultra-high temperature technology base and design insight for commercial power applications. Design approaches to accommodate fission product retention and other key prevailing requirements are examined in view of the basic overriding functional requirements, and some interesting reconsiderations are suggested. Predicted overall system performance potentials for a 2000 K MHD conversion system and reactor parameter requirements are compared and related to existing technology status. Needed verification and development efforts are suggested. A reconsideration of basic design approaches is suggested that could open the door for immediate development of ultrahigh temperature nuclear heat sources for advanced energy systems

  10. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  11. Mathematical modelling of heat production in deep geological repository of high-level nuclear waste

    Kovanda, O.

    2017-01-01

    Waste produced by nuclear industry requires special handling. Currently, there is a research taking place, focused at possibilities of nuclear waste storage in deep geological repositories, hosted in stable geological environment. The high-level nuclear waste produces significant amount of heat for a long time, which can affect either environment outside of or within the repository in a negative way. Therefore to reduce risks, it is desirable to know the principles of such heat production, which can be achieved using mathematical modeling. This thesis comes up with a general model of heat production-time dependency, dependable on initial composition of the waste. To be able to model real situations, output of this thesis needs to be utilized in an IT solution. (authors)

  12. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again. © 2012 Society for Risk Analysis.

  13. Combining chemical and electric-nuclear propulsion for high speed flight

    Murthy, S.N.B.; Froning, H.D.

    1991-01-01

    In the development of propulsion for the high speed (greater than Mach 8) regime of a SSTO vehicle, an alternative to a combination of scramjets and conventional chemical rockets is a nuclear system such as the dense plasma fusion engine operated with aneutronic fuels. Several variants are then possible in the manner of energizing the working fluid. An attempt has been made to compare the effectiveness of nuclear and scramjet engines with respect to weights and utilization of energy availability. It is shown that nuclear engines can be as effective as the optimized combustion engines, and will yield a considerable reduction in GTOW in earth-based missions, and have a special use in other planetary atmospheres in which combustion may be difficult but collection and processing of working fluid is feasible. 9 refs

  14. Transport of spent nuclear fuel from the High Flux Beam Reactor

    Holland, Michael; Carelli, Joseph; Shelton, Thomas

    1997-01-01

    The shipment of more than 1000 elements of spent nuclear fuel (SNF) from the Department of Energy's Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR) to the Department's Savannah River Site (SRS) for long term interim storage required overcoming several significant obstacles. The project management team was comprised of DOE, BNL and NAC International personnel. This achievement involved coordinating the efforts of numerous government and contractor organizations such as the U.S. Coast Guard, the U.S. Nuclear Regulatory Commission, state and local governments, marine and motor carriers, and carrier inspectors. Unique experience was gained during development and execution of the project in the following areas: dry transfer of SNF to shipping casks; inter-modal transfers; logistics; cask licensing by the Nuclear Regulatory Commission (NRC); compliance with environmental regulations; transportation plan development, and stakeholder outreach and coordination

  15. On-site storage of high level nuclear waste: attitudes and perceptions of local residents.

    Bassett, G W; Jenkins-Smith, H C; Silva, C

    1996-06-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and-more generally-the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three counties where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste.

  16. Status of the United States' high-level nuclear waste disposal program

    Rusche, B.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 is a remarkable piece of legislation in that there is general agreement on its key provisions. Nevertheless, this is a program intended to span more than a century, with some choices by Congress, states, Indian tribes and the nuclear power industry yet to be made. The crafters of the Act clearly recognized this. And further, the crafters recognized ''. . .that. . .state, Indian tribe and public participation in the planning and development of repositories is essential in order to promote public confidence in the safety of disposal of such waste and spent fuel . . . High-level radioactive waste and spent nuclear fuel have become major subjects of public concern, and appropriate precautions must be taken to ensure that such waste and spent fuel do not adversely affect the public health and safety and the environment for this or future generations

  17. High committee for nuclear safety transparency and information. Annual activity report. June 2008 - December 2009

    2010-01-01

    This document is the first activity report of the High committee for nuclear safety transparency and information (HCTISN), created on June 18, 2008. The HCTISN is a French authority of information, dialogue and debate about the risks linked with nuclear activities and about their impacts on public health, on the environment and on nuclear safety. The committee has the ability to express his opinion and recommendations about any question on the above topics and to propose any measure aiming at warranting or improving the transparency in the nuclear domain. This activity report offers a synthetic overview of the actions already undertaken: the plutonium imports from UK, the contamination incident at the Socatri facility (a Areva-Eurodif daughter company located at the Tricastin site), and the dismantling strategy of basic nuclear facilities. It presents the composition, organization, missions and means of the Committee, the different working groups and the follow-up of the different recommendations emitted so far by the Committee. (J.S.)

  18. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  19. Modeling by GASP-IV simulation of high-level nuclear waste disposal

    Kurstedt, H.A. Jr.; DePorter, E.L.; Turek, J.L.; Funk, S.K.; Rasbach, C.E.

    1981-01-01

    High-level nuclear waste generated by defense-oriented and commercial nuclear energy activities are to be stored ultimately in underground repositories. Research continues on the waste-form and waste-form processing. DOE managers must coordinate the results of this research, the capacities and availability times of the permanent geologic storage repositories, and the capacities and availability times of interim storage facilities (pending availability of permanent repositories). Comprehensive and active DOE program-management information systems contain predicted generation of nuclear wastes from defense and commercial activities; milestones on research on waste-forms; and milestones on research and development, design, acquisition, and construction of facilities and repositories. A GASP IV simulation model is presented which interfaces all of these data. The model accepts alternate management decisions; relates all critical milestones, all research and development data, and the generation of waste nuclear materials; simulates the passage of time; then, predicts the impact of those alternate decisions on the availability of storage capacity for waste nuclear materials. 3 references, 3 figures

  20. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  1. Four themes that underlie the high-level nuclear waste management program

    Sprecher, W.M.

    1989-01-01

    In 1982, after years of deliberation and in response to mounting pressures from environmental, industrial, and other groups, the US Congress enacted the Nuclear Waste Policy Act (NWPA) of 1982, which was signed into law by the President in January 1983. That legislation signified a major milestone in the nation's management of high-level nuclear waste, since it represented a consensus among the nation's lawmakers to tackle a problem that had evaded solution for decades. Implementation of the NWPA has proven to be exceedingly difficult, as attested by the discord generated by the US Department of Energy's (DOE's) geologic repository and monitored retrievable storage (MRS) facility siting activities. The vision that motivated the crafters of the 1982 act became blurred as opposition to the law increased. After many hearings that underscored the public's concern with the waste management program, the Congress enacted the Nuclear Waste Policy Amendments Act of 1987 (Amendments Act), which steamlined and focused the program, while establishing three independent bodies: the MRS Review Commission, the Nuclear Waste Technical Review Board, and the Office of the Nuclear Waste Negotiator. Yet, even as the program evolves, several themes characterizing the nation's effort to solve the waste management problem continue to prevail. The first of these themes has to do with social consciousness, and the others that follow deal with technical leadership, public involvement and risk perceptions, and program conservatism

  2. High Purity Germanium Detector as part of Health Canada's Mobile Nuclear Laboratory

    Stocki, Trevor J.; Bouchard, Claude; Rollings, John; Boudreau, Marc-Oliver; McCutcheon- Wickham, Rory; Bergman, Lauren [Radiation Protection Bureau, Health Canada, AL6302D, 775 Brookfield Road, Ottawa, K1A 0K9 (Canada)

    2014-07-01

    In the event of a nuclear emergency on Canadian soil, Health Canada has designed and equipped two Mobile Nuclear Labs (MNLs) which can be deployed near a radiological accident site to provide radiological measurement capabilities. These measurements would help public authorities to make informed decisions for radiation protection recommendations. One of the MNLs has been outfitted with a High Purity Germanium (HPGe) detector within a lead castle, which can be used for identification as well as quantification of gamma emitting radioisotopes in contaminated soil, water, and other samples. By spring 2014, Health Canada's second MNL will be equipped with a similar detector to increase sample analysis capacity and also provide redundancy if one of the detectors requires maintenance. The Mobile Nuclear Lab (MNL) with the HPGe detector has been successfully deployed in the field for various exercises. One of these field exercises was a dirty bomb scenario where an unknown radioisotope required identification. A second exercise was an inter-comparison between the measurements of spiked soil and water samples, by two field teams and a certified laboratory. A third exercise was the deployment of the MNL as part of a full scale nuclear exercise simulating an emergency at a Canadian nuclear power plant. The lessons learned from these experiences will be discussed. (authors)

  3. How an integrated change programme has accelerated the reduction in high hazard nuclear facilities at Sellafield

    Mackintosh, Angela

    2013-01-01

    For over five decades the Sellafield Site has been central to the UK's nuclear programme. Now operated by Sellafield Ltd, under the management of Parent Body Organisation Nuclear Management Partners (NMP), a consortium of URS Washington Division, AMEC and AREVA is focussed on the decommissioning of historical facilities. When Decommissioning commenced in the late 1980's the site focus at that time was on commercial reprocessing and waste management. Now through the implementation of a company change programme, emphasis has shifted towards accelerated risk and hazard reduction of degraded legacy plants with nuclear inventory whilst ensuring value for money for the customer, the Nuclear Decommissioning Authority. This paper will describe the management success by the Site owners in delivering a successful change programme. The paper will explain how the site has transitioned to the INPO Standard Nuclear Performance Model (SNPM) and how through the use of a change maturity matrix has contributed to the accelerated reduction in high risk high hazard nuclear facilities. The paper will explain in detail how the Decommissioning Programme Office has facilitated and coordinated the Governance and assured delivery of the change plan and how successful application of visual management has aided the communication of its progress. Finally, the paper will discuss how the Delivery Schedules have proved critical for presenting the change plan to Key Stakeholders, Government Owners and Powerful Regulators. Overall, this paper provides an insight into how a massive change programme is being managed within one of the world's highest regulated industries. (authors)

  4. How an integrated change programme has accelerated the reduction in high hazard nuclear facilities at Sellafield

    Mackintosh, Angela [Change Manager, Decommissioning, Sellafield Ltd, Seascale, Cumbria (United Kingdom)

    2013-07-01

    For over five decades the Sellafield Site has been central to the UK's nuclear programme. Now operated by Sellafield Ltd, under the management of Parent Body Organisation Nuclear Management Partners (NMP), a consortium of URS Washington Division, AMEC and AREVA is focussed on the decommissioning of historical facilities. When Decommissioning commenced in the late 1980's the site focus at that time was on commercial reprocessing and waste management. Now through the implementation of a company change programme, emphasis has shifted towards accelerated risk and hazard reduction of degraded legacy plants with nuclear inventory whilst ensuring value for money for the customer, the Nuclear Decommissioning Authority. This paper will describe the management success by the Site owners in delivering a successful change programme. The paper will explain how the site has transitioned to the INPO Standard Nuclear Performance Model (SNPM) and how through the use of a change maturity matrix has contributed to the accelerated reduction in high risk high hazard nuclear facilities. The paper will explain in detail how the Decommissioning Programme Office has facilitated and coordinated the Governance and assured delivery of the change plan and how successful application of visual management has aided the communication of its progress. Finally, the paper will discuss how the Delivery Schedules have proved critical for presenting the change plan to Key Stakeholders, Government Owners and Powerful Regulators. Overall, this paper provides an insight into how a massive change programme is being managed within one of the world's highest regulated industries. (authors)

  5. Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors

    Chang Oh; Cliff Davis; Rober Barner; Paul Pickard

    2005-01-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various

  6. Status of the high-level nuclear waste disposal program in Japan

    Uematsu, K.

    1985-01-01

    The Japan Atomic Energy Commission (JAEC) initiated a high-level radioactive waste disposal program in 1976. Since then, the Advisory Committee on Radioactive Waste Management of JAEC has revised the program twice. The latest revision was issued in 1984. The committee recommended a four-phase program and the last phase calls for the beginning of emplacement of the high-level nuclear waste into a selected repository in the Year 2000. The first phase is already completed, and the second phase of this decade calls for the selection of a candidate disposal site and the conducting of the RandD of waste disposal in an underground research laboratory and in a hot test facility. This paper covers the current status of the high-level nuclear waste disposal program in Japan

  7. Development of anodic stripping voltametry for the determination of palladium in high level nuclear waste

    Bhardwaj, T. K. [North Carolina State University, Raleigh (United States); Sharma, H. S.; Affarwal, S. K. [Bhabha Atomic Research Centre, Mumbai (India); Jain, P. C. [Meerut College, Meerut (India)

    2012-12-15

    Deposition potential, deposition time, square wave frequency, rotation speed of the rotating disc electrode, and palladium concentration were studied on a Glassy Carbon Electrode (GCE) in 0.01M HCl for the determination of palladium in High Level Nuclear Waste (HLNW) by anodic stripping voltammetry. Experimental conditions were optimized for the determination of palladium at two different, 10-8 and 10-7 M, levels. Error and standard deviation of this method were under 1% for all palladium standard solutions. The developed technique was successfully applied as a subsidiary method for the determination of palladium in simulated high level nuclear waste with very good precision and high accuracy (under 1 % error and standard deviation).

  8. An instrumentation and control philosophy for high-level nuclear waste processing facilities

    Weigle, D.H.

    1990-01-01

    The purpose of this paper is to present an instrumentation and control philosophy which may be applied to high-level nuclear waste processing facilities. This philosophy describes the recommended criteria for automatic/manual control, remote/local control, remote/local display, diagnostic instrumentation, interlocks, alarm levels, and redundancy. Due to the hazardous nature of the process constituents of a high-level nuclear waste processing facility, it is imperative that safety and control features required for accident-free operation and maintenance be incorporated. A well-instrumented and controlled process, while initially more expensive in capital and design costs, is generally safer and less expensive to operate. When the long term cost savings of a well designed process is coupled with the high savings enjoyed by accident avoidance, the benefits far outweigh the initial capital and design costs

  9. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  10. Risk perception on management of nuclear high-level and transuranic waste storage

    Dees, Lawrence A. [Colorado Christian Univ., Lakewood, CO (United States)

    1994-08-15

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  11. High committee for nuclear safety transparency and information. October 8, 2009 meeting

    2009-10-01

    The high committee for the nuclear safety transparency and information (HCTISN) is an information, consultation and debate authority devoted to the assessment of the risks linked with nuclear activities and to the analysis of their impact on public health, on the environment and on nuclear safety. Each year, the HCTISN organizes several ordinary meetings in order to analyze some specific topics of the moment. This meeting was organized around 3 main points: 1 - the progress of the different working groups work: elaboration of a communication scale, comparable to the INES scale, for the evaluation of environmental radioactivity, the realisation of a web site for the HCTISN, the question of transparency and secrecy around the maritime transportation of radioactive materials after the visit by the High Committee of two ships from the British INS company; 2 - the management of radioactive wastes with the concept of storage reversibility: political, technical and decisional aspects, position of the National Evaluation Committee for the researches and studies relative to radioactive materials and wastes management (CNE), position of the ANCLI (French national association of local information commissions), debate; 3 - the shortage of radio-physicists in France and the information of populations and patients (declaration of incidents). Some miscellaneous points are reported as well: the first draft of the first annual report of the HCTISN, development of a societal approach for the research programs of the French institute of radiation protection and nuclear safety (IRSN), validation of a collaboration proposal with the ANCLI. (J.S.)

  12. Sorption of strontium on uranyl peroxide: implications for a high-level nuclear waste repository.

    Sureda, Rosa; Martínez-Lladó, Xavier; Rovira, Miquel; de Pablo, Joan; Casas, Ignasi; Giménez, Javier

    2010-09-15

    Strontium-90 is considered the most important radioactive isotope in the environment and one of the most frequently occurring radionuclides in groundwaters at nuclear facilities. The uranyl peroxide studtite (UO2O2 . 4H2O) has been observed to be formed in spent nuclear fuel leaching experiments and seems to have a relatively high sorption capacity for some radionuclides. In this work, the sorption of strontium onto studtite is studied as a function of time, strontium concentration in solution and pH. The main results obtained are (a) sorption is relatively fast although slower than for cesium; (b) strontium seems to be sorbed via a monolayer coverage of the studtite surface, (c) sorption has a strong dependence on ionic strength, is negligible at acidic pH, and increases at neutral to alkaline pH (almost 100% of the strontium in solution is sorbed above pH 10). These results point to uranium secondary solid phase formation on the spent nuclear fuel as an important mechanism for strontium retention in a high-level nuclear waste repository (HLNW). Copyright 2010 Elsevier B.V. All rights reserved.

  13. Estimation of nuclear destruction in high energy nucleus-nucleus interactions

    Uzhinskij, V.V.

    1995-01-01

    It is assumed that: 1) a projectile particle invokes into target nucleus a cascade of quark-gluon exchanges; 2) the nucleons involved in the cascade are ejected from the nucleus which leads to the nuclear destruction. On these bases a simple model to estimate the nuclear destruction at the fast stage of the interaction is proposed. The allowed region of the model parameters is determined at the proton-emulsion high-energy interaction data analysis: an analysis of gold interactions with nuclei at an energy of 600 MeV/nucleon fixes the parameter values. The distributions on the energy in zero degree calorimeter (T ZDC ) in the interactions of Si+Al, Cu, Pb (14 GeV/nucleon) and Au+Au (10 GeV/nucleon) calculated in the framework of the model and in the cascade-evaporation model (CEM) are presented. The proposed model describes the nuclear destruction at intermediate and high energies better than CEM does. The estimation of the average values of impact parameter and the number of intra-nuclear collisions for Au+Au interactions in the events with different T ZDC is given. 34 refs., 11 figs

  14. Risk perception on management of nuclear high-level and transuranic waste storage

    Dees, L.A.

    1994-01-01

    The Department of Energy's program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE's management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive

  15. In Vitro Comparison of Marginal and Internal Fit of Press-on-Metal Ceramic (PoM) Restorations with Zirconium-Supported and Conventional Metal Ceramic Fixed Partial Dentures Before and After Veneering.

    Varol, Seda; Kulak-Özkan, Yasemin

    2015-07-01

    To compare marginal and internal fit between 3- and 4-unit press-on-metal (PoM) ceramic, zirconia-supported, and conventional metal ceramic fixed partial dentures (FPDs) before and after veneering. Ten pieces for each 3- and 4-unit MC, IPS InLine PoM, and IPS e.max ZirCAD/Zir Press FPDs were produced. Cross-sections from silicone replicas were examined and measured with a light microscope. Occlusal, axial, intermarginal, and marginal mean adaptation scores of cross-sectioned replicas and means of measurements obtained from 4 sites were calculated independently. Mean values for molars were 78.44 ± 32.01 μm (MC), 89.84 ± 29.20 μm (PoM), and 85.17 ± 28.49 μm (Zir). Premolar values were 76.08 ± 27.92 μm (MC), 89.94 ± 23.49 μm (PoM), and 87.18 ± 28.25 μm (Zir). No difference existed between the means of 3- and 4-unit FPDs except the molar-intermarginal region. The mean value of 4-unit FPDs (93.88 ± 25.41 μm) was less than the 3-unit FPDs (103.68 ± 24.55 μm) at the molar-inter marginal region. A gap increase was observed in all sites except the molar-axio-occlusal region after veneering. According to the mean difference, gap increases at the molar-marginal, molar-intermarginal, and premolar-intermarginal regions were statistically significant. A statistical difference was found at the molar-marginal region for 4-unit MCR (p = 0.041) and 4-unit PoM FPDs (p = 0.042) before and after veneering. Gap increase after veneering of 4-unit metal ceramics at molar-intermarginal, premolar-marginal, and premolar-intermarginal regions (p = 0.020; p = 0.015; p = 0.004) was significant. The gap measurements of the IPS InLine PoM and IPS e.max ZirCAD/Zir Press groups were all clinically acceptable. No studies on marginal and internal fit in the IPS InLine PoM system have been published to date. This study should be supported with future studies. No significant increase was observed after press-veneering the IPS e.max ZirCAD frameworks with an IPS e.max ZirPress material

  16. High temperature phase transitions in nuclear fuels of the fourth generation

    De Bruycker, F.

    2010-01-01

    Understanding the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents, relevant to the general objectives of nuclear safety research. The main purpose of this thesis is the study of high temperature phase transitions in nuclear materials, with special attention to the candidate fuel materials for the reactors of the 4. Generation. In this framework, material properties need to be investigated at temperatures higher than 2500 K, where equilibrium conditions are difficult to obtain. Laser heating combined with fast pyrometer is the method used at the European Institute for Transuranium Elements (JRC - ITU). It is associated to a novel process used to determine phase transitions, based on the detection, via a suited low-power (mW) probe laser, of changes in surface reflectivity that may accompany solid/liquid phase transitions. Fast thermal cycles, from a few ms up to the second, under almost container-free conditions and control atmosphere narrow the problem of vaporisation and sample interactions usually meet with traditional method. This new experimental approach has led to very interesting results. It confirmed earlier research for material systems known to be stable at high temperature (such as U-C) and allowed a refinement of the corresponding phase diagrams. But it was also feasible to apply this method to materials highly reactive, thus original results are presented on PuO 2 , NpO 2 , UO 2 -PuO 2 and Pu-C systems. (author)

  17. Nuclear Kaiso expression is associated with high grade and triple-negative invasive breast cancer.

    Jeroen F Vermeulen

    Full Text Available Kaiso is a BTB/POZ transcription factor that is ubiquitously expressed in multiple cell types and functions as a transcriptional repressor and activator. Little is known about Kaiso expression and localization in breast cancer. Here, we have related pathological features and molecular subtypes to Kaiso expression in 477 cases of human invasive breast cancer. Nuclear Kaiso was predominantly found in invasive ductal carcinoma (IDC (p = 0.007, while cytoplasmic Kaiso expression was linked to invasive lobular carcinoma (ILC (p = 0.006. Although cytoplasmic Kaiso did not correlate to clinicopathological features, we found a significant correlation between nuclear Kaiso, high histological grade (p = 0.023, ERα negativity (p = 0.001, and the HER2-driven and basal/triple-negative breast cancers (p = 0.018. Interestingly, nuclear Kaiso was also abundant in BRCA1-associated breast cancer (p<0.001 and invasive breast cancer overexpressing EGFR (p = 0.019. We observed a correlation between nuclear Kaiso and membrane-localized E-cadherin and p120-catenin (p120 (p<0.01. In contrast, cytoplasmic p120 strongly correlated with loss of E-cadherin and low nuclear Kaiso (p = 0.005. We could confirm these findings in human ILC cells and cell lines derived from conditional mouse models of ILC. Moreover, we present functional data that substantiate a mechanism whereby E-cadherin controls p120-mediated relief of Kaiso-dependent gene repression. In conclusion, our data indicate that nuclear Kaiso is common in clinically aggressive ductal breast cancer, while cytoplasmic Kaiso and a p120-mediated relief of Kaiso-dependent transcriptional repression characterize ILC.

  18. The survey of the nuclear sciences in the curricula of senior high schools

    Ujeno, Yowri; Okamura, Seizo; Inaoka, Mariko; Nakase, Yoshiaki.

    1994-01-01

    To know senior high school education and recognition of nuclear science, questionnaire survey was made in a total of 619 university, college or occupational school students who graduated from senior high schools before 1993. Female students accounted for 95% (n=589) because females are believed to more strongly affect the next generation than males. Of these students, 92.7% had graduated from the ordinary course of senior high school. Students who majored in physical science accounted for 38.6%. In the physical science curriculum, nuclear science had been selected in 27.8% of the students. Among the students who majored in physical science, 38.1% did not memorize the learning of basic physical science at all, and only 25% memorized the learning. These results suggest that the learning of physical science is extremely insufficient. However, such an unfamiliar phenomenon of physical science seems to be closely related to the examination system to universities and colleges. The reason why few people give a debate upon atomic power generation is that people have no accurate knowledge because of their insufficient school learning of nuclear science. Only 19.1% had taken lessons of atomic power generation in the curriculum of social science. Serious problems of the senior high school educational system are pointed out. (N.K.)

  19. Ceramic process and plant design for high-level nuclear waste immobilization

    Grantham, L.F.; McKisson, R.L.; De Wames, R.E.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    In the last 3 years, significant advances in ceramic technology for high-level nuclear waste solidification have been made. Product quality in terms of leach-resistance, compositional uniformity, structural integrity, and thermal stability promises to be superior to borosilicate glass. This paper addresses the process effectiveness and preliminary designs for glass and ceramic immobilization plants. The reference two-step ceramic process utilizes fluid-bed calcination (FBC) and hot isostatic press (HIP) consolidation. Full-scale demonstration of these well-developed processing steps has been established at DOE and/or commercial facilities for processing radioactive materials. Based on Savannah River-type waste, our model predicts that the capital and operating cost for the solidification of high-level nuclear waste is about the same for the ceramic and glass options. However, when repository costs are included, the ceramic option potentially offers significantly better economics due to its high waste loading and volume reduction. Volume reduction impacts several figures of merit in addition to cost such as system logistics, storage, transportation, and risk. The study concludes that the ceramic product/process has many potential advantages, and rapid deployment of the technology could be realized due to full-scale demonstrations of FBC and HIP technology in radioactive environments. Based on our finding and those of others, the ceramic innovation not only offers a viable backup to the glass reference process but promises to be a viable future option for new high-level nuclear waste management opportunities

  20. Decree No 87-137 of 2 March 1987 concerning the High Council for nuclear safety and information

    1987-01-01

    This Decree amends the Decree of 13th March 1973 setting up a High Council for Nuclear Safety. Its purpose is to widen the terms of reference of the High Council for Nuclear Safety. In addition to its responsibilities as regards the safety of nuclear installations, it is now competent in the field of information. The Council is now charged with informing the media as well as the public not only on questions of safety proper but also on incidents and accidents occurring in nuclear installations. (NEA) [fr

  1. An optimized approach towards the treatment of high level liquid waste in the nuclear cycle

    Maio, V.; Todd, T.; Law, J.; Roach, J.; Sabharwall, P.

    2006-01-01

    Full text: One key long-standing issue that must be overcome to realize the successful growth of nuclear power is an economical, politically acceptable, stakeholder-compatible, and technically feasible resolution pertaining to the safe treatment and disposal of high-level liquid radioactive waste (HLLW). In addition to spent nuclear reactor fuel, HLLW poses a unique challenge in regard to environmental and security concerns, since future scenarios for a next generation of domestic and commercialized nuclear fuel cycle infrastructures must include reprocessing - the primary source of HLLW-to ensure the cost effectiveness of nuclear power as well as mitigate any threats as related to proliferation. Past attempts to immobilize HLLW - generated by both the weapons complex and the commercial power sector-have been plagued by an inability to convince the public and some technical peer reviewers that any proposed geological disposal sites (e.g., Yucca Mountain) can accommodate and contain the HLLW for a period of geological time equivalent to ten fold the radiological half-life of the longest lived of the actinides remaining after reprocessing. The paper explores combined equipment and chemical processing approaches for advancing and economizing the immobilization of high level liquid waste to ensure its long term durability, its decoupling from the unknown behavior of the repository over long geological time periods, and its economical formulation as required for the nuclear fuel cycle of the future. One approach involves the investigation of crystalline based waste forms as opposed to the glass/amorphous based waste forms, and how recent developments in crystalline forms show promise in sequestering the long lived actinides for over tens of millions of years. Another approach -compatible with the first- involves the use of an alternative melter technology-the Cold Crucible Induction Melter (CCIM)- to overcome the engineering material problems of Joule Heated Meters (JHM

  2. Formation and disintegration of high-density nuclear matter in heavy-ion collisions

    Kitazoe, Yasuhiro; Matsuoka, Kazuo; Sano, Mitsuo

    1976-01-01

    The formation of high-density nuclear matter which may be expected to be attained in high-energy heavy-ion collisions and the subsequent disintegration of dense matter are investigated by means of the hydrodynamics. Head-on collisions of identical nuclei are considered in the nonrelativistic approximation. The compressed density cannot exceed 4 times of the normal one so long as the freedom of only nucleons is considered, and can become higher than 4 times when other freedoms such as the productions of mesons and also nucleon isobars are additionally taken into account. The angular distributions for ejected particles predominate both forwards and backwards at low collision energies, corresponding to the formation of nuclear density less than 2 times of the normal density and become isotropic at the point of 2 times of the normal one. As the collision energy increases further, lateral ejection is intensified gradually. (auth.)

  3. Nuclear design for high temperature gas cooled reactor (GTHTR300C) using MOX fuel

    Mouri, Tomoaki; Kunitomi, Kazuhiko

    2008-01-01

    A design study of the hydrogen cogeneration high temperature gas cooled reactor (GTHTR300C) that can produce both electricity and hydrogen has been carried out in Japan Atomic Energy Agency. The GTHTR300C is the system with thermal power of 600MW and reactor outlet temperature of 950degC, which is expected to supply the hydrogen to fuel cell vehicles after 2020s. In future, the full deployment of fast reactor cycle without natural uranium will demand the use of Mixed-Oxide (MOX) fuels in the GTHTR300C. Therefore, a nuclear design was performed to confirm the feasibility of the reactor core using MOX fuels. The designed reactor core has high performance and meets safety requirements. In this paper, the outline of the GTHTR300C and the nuclear design of the reactor core using MOX fuels are described. (author)

  4. Attempt at cloning high-quality goldfish breed 'Ranchu' by fin-cultured cell nuclear transplantation.

    Tanaka, Daisuke; Takahashi, Akito; Takai, Akinori; Ohta, Hiromi; Ueno, Koichi

    2012-02-01

    The viability of ornamental fish culture relies on the maintenance of high-quality breeds. To improve the profitability of culture operations we attempted to produce cloned fish from the somatic nucleus of the high-quality Japanese goldfish (Carassius auratus auratus) breed 'Ranchu'. We transplanted the nucleus of a cultured fin-cell from an adult Ranchu into the non-enucleated egg of the original goldfish breed 'Wakin'. Of the 2323 eggs we treated, 802 underwent cleavage, 321 reached the blastula stage, and 51 reached the gastrula stage. Two of the gastrulas developed until the hatching stage. A considerable number of nuclear transplants retained only the donor nucleus. Some of these had only a 2n nucleus derived from the same donor fish. Our results provide insights into the process of somatic cell nuclear transplantation in teleosts, and the cloning of Ranchu.

  5. Californium-252 neutron activation analysis of high-level processed nuclear tank waste

    Troyer, G.L.; Purcell, M.A.

    2000-01-01

    The basis for production assessment of the vitrification of Hanford nuclear fuel reprocessing wastes will be high-precision measurements of the elemental sodium content. However, the chemical analysis of both radioactive and nonradioactive components in nuclear waste can be challenged by high radiation dose rates. The dose rates compromise many analytical techniques as well as pose personnel dosimetry risks. In many cases, reduction of dose rates through dilution compromises the precision and sensitivity for certain key components. The use of neutron activation analysis (NAA) provides a method of analysis that avoids the need for dilutions or extensive sample preparation. These waste materials also contain trace quantities of fissionable isotopes, which, through neutron activation, can be estimated by delayed neutron counting of fissioned fragments

  6. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    Yu Qingchang; Ouyang Huafu; Xu Taoguang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the authors consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  7. Low- and high-density nuclear equation of state and the hyperon puzzle

    Colucci, Giuseppe; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2013-07-01

    The measurements of the unusually high mass of the millisecond pulsar PSR J1614-2230 (1.97 ± 0.04 M {sub CircleDot}) imposes a strong constraint on the nuclear Equation of State (EoS), in particular for what concerns the finite density behaviour of nuclear and neutron matter. In my talk I first discuss a model for the low-density part of the EoS, based on chiral one-pion exchange. I consider a self-consistent approach at finite temperature and density and show that even in a fully-relativistic theory the one-pion exchange contribution is dominated by a contact interaction. Then, a relativistic mean-field approach is used to discuss the high-density part of the EoS, including the presence of hyperons. In the latter, a density dependent parametrization is used and a parameter study on the hyperon-scalar meson coupling is performed.

  8. Future health physics prospects in high-level nuclear waste management

    Waite, D.A.; Mayberry, J.J.

    1986-01-01

    The objective of this presentation is to provide an overview of health physics activities anticipated to be required at a high-level nuclear waste repository and to project the numbers of health physics personnel expected to be required to carry out these activities. Health physics personnel receiving consideration in the projections include the health physics manager, shift supervisors, area supervisors, health physicists, and technologists. Phases of the repository addressed are construction, operation, retrieval, and decommissioning. Specific topics discussed in the process of developing the projections are: (a) the basic features of a geologic repository, (b) the staffing requirements of such a repository, (c) health physics involvement in repository operations, and (d) the anticipated schedule for operation of repositories in the United States. A quantitative assessment of future health physics prospects in high-level nuclear waste management is included

  9. The applied research program of the High Flux Neutron Generator at the National Nuclear Center, Havana

    Perez, G.; Martin, G.; Ceballos, C.; Padron, I.; Shtejer, K.; Perez, N.; Guibert, R.; Ledo, L.M.; Cruz Inclan, Carlos

    2001-01-01

    The Havana High Flux Neutron Generator facility is an intense neutron source based on a 20 mA duoplasmatron ion source and a 250 kV high voltage power supply. It has been installed in the Neutron Generator Laboratory at the Center of Applied Technologies and Nuclear Research in 1997. This paper deal outlined the future applied program to be carried out in this facility in the next years. The Applied Research Program consists on install two nuclear analytic techniques: the PELAN technique which uses the neutron generator in the pulse mode and the Low Energy PIXE technique which uses the same facility as a low energy proton accelerator for PIXE analysis. (author)

  10. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  11. The Competence Promoting by NNSA for Keeping High Level Nuclear Safety: The Corner Stone of the Nuclear Safety Regulation Edifice

    Hu, L.

    2016-01-01

    Facing the fast development of the nuclear power industry and the application of radioactive sources, The MEP(NNSA) is endeavoured to promoting its competency, including: complementing the law system, training and recruiting staff to keep a capable team, constructing the R&D base to keep the basic capability, promoting safety culture both for the industry and the regulator. After the Fukushima nuclear accident, the MEP(NNSA) planned to construct R&D base, in which the Platform Nuclear Safety Monitoring and Emergency Responding, the Platform of Safety Technology of PWR Testing, the Laboratory of Safety Management Technology of Nuclear Waste Verification, the Laboratory of Environmental Radiation Monitoring and the Center of International Cooperation are included. On the other hand, the MEP(NNSA) issued Chinese nuclear safety culture policy declaration in 2014, and carried out a large scale Specialized Action for Nuclear Safety Promotion to promote the nuclear safety culture both for the industry and herself. For the nuclear regulator, It is essential to conduct the competence promoting by both “hardware” and “software”, the former is the material foundation of regulation authority, which will be effectively functioning under the facilitating of the latter. (author)

  12. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Beaumont, Jonathan; Villa, Mario; Mellor, Matthew; Joyce, Malcolm John

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has bee...

  13. Thermal control of high energy nuclear waste, space option. [mathematical models

    Peoples, J. A.

    1979-01-01

    Problems related to the temperature and packaging of nuclear waste material for disposal in space are explored. An approach is suggested for solving both problems with emphasis on high energy density waste material. A passive cooling concept is presented which utilized conduction rods that penetrate the inner core. Data are presented to illustrate the effectiveness of the rods and the limit of their capability. A computerized thermal model is discussed and developed for the cooling concept.

  14. High-level waste solidification system for the Western New York Nuclear Service Center

    Carrell, J.R.; Holton, L.K.; Siemens, D.H.

    1982-01-01

    A preconceptual design for a waste conditioning and solidification system for the immobilization of the high-level liquid wastes (HLLW) stored at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York was completed in 1981. The preconceptual design was conducted as part of the Department of Energy's (DOE) West Valley Demonstration Project, which requires a waste management demonstration at the WNYNSC. This paper summarizes the bases, assumptions, results and conclusions of the preconceptual design study

  15. Introduction to the study of particle accelerators. Atomic, nuclear and high energy physics for engineers

    Warnecke, R.R.

    1975-01-01

    This book is destined for engineers taking part in the design building and running of nuclear physics and high-energy physics particle accelerators. It starts with some notions on the theory of relativity, analytical and statistical mechanics and quantum mechanics. An outline of the properties of atomic nuclei, the collision theory and the elements of gaseous plasma physics is followed by a discussion on elementary particles: characteristic parameters, properties, interactions, classification [fr

  16. Tentative job analysis for a high-level, fixed-site, nuclear security officer

    Adams, K.G.; Trujillo, A.A.

    1977-10-01

    A tentative job analysis for a high-level, fixed-site, nuclear security officer is presented. The primary objective of the report is to provide a framework for evaluating the functions of a security officer in physical protection systems. Several job requirements related to duties, basic skills, personal contacts, supervision, working conditions, and decision making are presented. Individual character traits desirable in security officers are described

  17. Environmental program planning for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada

    1987-08-01

    This report was prepared to illustrate the policy and actions that the State of Nevada believe are required to assure that the quality of the environment is adequately considered during the course of the DOE work at the proposed high-level nuclear waste repository at Yucca Mountain. The report describes the DOE environmental program and the studies planned by NWPO to reflect the State's position toward environmental protection. 41 refs., 2 figs., 11 tabs

  18. Nuclear design aspect of the Korean high intensity proton accelerator project

    Chang, Jonghwa; Song, Tae-Yung [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1998-11-01

    A plan to construct a high current proton accelerator has been proposed by KAERI. We are presenting the required nuclear design to support the project as well as a brief overview of the proposed proton accelerator. The target and core design is highlighted to show feasibility of incineration of minor actinides from the spent fuel of light water reactors. Radiation shielding and activation analyses are also important for the design and the license of the accelerator. (author)

  19. High energy-density physics: From nuclear testing to the superlasers

    Teller, E.; Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.

    1995-01-01

    The authors describe the role for the next-generation ''superlasers'' in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, the authors focus on three important areas of physics that have unresolved issues which must be addressed by experiment: equations of state, turbulent hydrodynamics, and the transport of radiation. They describe the advantages the large lasers will have in a comprehensive experimental program

  20. Atomic Nuclei Utter Disintegration into Nucleons by High Energy Nuclear Projectiles

    Strugalski, Z.

    1994-01-01

    The disintegration process of atomic nuclei by high energy nuclear projectiles is described. The physical basis for this process is the passage of hadrons through layers of intranuclear matter accompanied by the nucleon emission from the target nuclei observed in experiments; kinetic energies of the nucleons are from about 20 up to about 400 MeV - in the target nucleus reference system. 22 refs., 3 tabs