Sample records for high ni excess

  1. Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery (United States)

    Wang, Xingbo; Huang, Weifeng; Tao, Shi; Xie, Hui; Wu, Chuanqiang; Yu, Zhen; Su, Xiaozhi; Qi, Jiaxin; Rehman, Zia ur; Song, Li; Zhang, Guobin; Chu, Wangsheng; Wei, Shiqiang


    Peroxide structure O2n- has proven to appear after electrochemical process in many lithium-excess precious metal oxides, representing extra reversible capacity. We hereby report construction of a Li-excess rock-salt oxide Li1+xNi1/2-3x/2Ru1/2+x/2O2 electrode, with cost effective and eco-friendly 3d transition metal Ni partially substituting precious 4d transition metal Ru. It can be seen that O2n- is formed in pristine Li1.23Ni0.155Ru0.615O2, and stably exists in subsequent cycles, enabling discharge capacities to 295.3 and 198 mAh g-1 at the 1st/50th cycle, respectively. Combing ex-situ X-ray absorption near edge spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, high resolution transmission electron microscopy and electrochemical characterization, we demonstrate that the excellent electrochemical performance comes from both percolation network with disordered structure and cation/anion redox couples occurring in charge-discharge process. Li-excess and substitution of common element have been demonstrated to be a breakthrough for designing novel high performance commercial cathodes in rechargeable lithium ion battery field.

  2. The High Price of Excessive Alcohol Consumption

    Centers for Disease Control (CDC) Podcasts


    This podcast is based on the October 2011 release of a report estimating the economic cost of excessive drinking. Excessive alcohol consumption cost the U. S. $223.5 billion in 2006, or about $1.90 per drink. Over three-quarters (76%) of these costs were due to binge drinking, defined as consuming 4 or more alcoholic beverages per occasion for women or 5 or more drinks per occasion for men.  Created: 10/17/2011 by National Center for Chronic Disease Prevention and Health Promotion.   Date Released: 10/17/2011.

  3. Simplified Production of Organic Compounds Containing High Enantiomer Excesses (United States)

    Cooper, George W. (Inventor)


    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  4. Characteristics of combustion and heat transfer of excess enthalpy flames stabilized in a stagnation flow. 2nd Report. ; Heat flux at high flow rate and effects of Lewis number. Yodomi nagarechu ni anteika sareta choka enthalpy kaen no nensho oyobi etsudentatsu tokusei. 2. ; Koryuryo ni okeru netsuryusoku oyobi Lewis su no koka

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S. (Daido Institute of Technology, Nagoya (Japan)); Asato, K.; Kawamura, T. (Gifu University, Gifu (Japan). Faculty of Engineerirng); Mazaki, T. (Daido Senior High School, Nagoya (Japan)); Umemura, H. (Mitsubishi Electric Corp., Tokyo (Japan))


    For the purpose of developing small-sized combustors of high heat transfer efficiency for household and business uses, a study has been carried out on the characteristics of an excess enthalpy flame stabilized in a stagnant flow, the maximum heat flux utilizable from flames through a heat receiver wall, the heat transfer characteristics near the extinction limits, and the effects of Lewis number (Le). Even when heat is drawn from the heat receiver wall in the downstream of flames, stable flames are kept until they extremely approach the heat receiver wall by the effect of preheating for lean methane-air flames of Le[approx equal]1.0 and lean propane-air flames of Le>1.0 and by the effect of preheating and Lewis effect for lean hydrogen-air flames of Le<1.0. In any flames, therefore, the heat flux to the heat receiver wall increases abruptly with the increase of stagnant velocity gradient and thereby the heat transfer characteristics at the heat receiver wall are improved. Heat transfer in the cases where flames exist on the outside and inside of the temperature boundary layer depend not on the thickness of the temperature boundary layer but on the position of flames. 6 refs., 9 figs.

  5. Initial report on characterization of excess highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)



    DOE`s Office of Fissile Materials Disposition assigned to this Y-12 division the task of preparing a report on the 174.4 metric tons of excess highly enriched U. Characterization included identification by category, gathering existing data (assay), defining the likely needed processing steps for prepping for transfer to a blending site, and developing a range of preliminary cost estimates for those steps. Focus is on making commercial reactor fuel as a final disposition path.

  6. Controlled Pyrolysis of Ni-MOF-74 as a Promising Precursor for the Creation of Highly Active Ni Nanocatalysts in Size-Selective Hydrogenation. (United States)

    Nakatsuka, Kazuki; Yoshii, Takeharu; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi


    Metal organic frameworks (MOFs) are a class of porous organic-inorganic crystalline materials that have attracted much attention as H 2 storage devices and catalytic supports. In this paper, the synthesis of highly-dispersed Ni nanoparticles (NPs) for the hydrogenation of olefins was achieved by employing Ni-MOF-74 as a precursor. Investigations of the structural transformation of Ni species derived from Ni-MOF-74 during heat treatment were conducted. The transformation was monitored in detail by a combination of XRD, in situ XAFS, and XPS measurements. Ni NPs prepared from Ni-MOF-74 were easily reduced by the generation of reducing gases accompanied by the decomposition of Ni-MOF-74 structures during heat treatment at over 300 °C under N 2 flow. Ni-MOF-74-300 exhibited the highest activity for the hydrogenation of 1-octene due to efficient suppression of excess agglomerated Ni species during heat treatment. Moreover, Ni-MOF-74-300 showed not only high activity for the hydrogenation of olefins but also high size-selectivity because of the selective formation of Ni NPs covered by MOFs and the MOF-derived carbonaceous layer. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of NiAl{sub 2}O{sub 4} with high surface area as precursor of Ni nanoparticles for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Nielson F.P.; Neto, Raimundo C.R.; Moya, Silvia F.; Schmal, Martin [NUCAT/COPPE/UFRJ, Centro de Tecnologia, Bloco G, sala 128, CEP 21945-970, Rio de Janeiro, RJ (Brazil); Souza, Mariana M.V.M. [Escola de Quimica, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco E, sala 206, CEP 21941-909, Rio de Janeiro, RJ (Brazil)


    NiAl{sub 2}O{sub 4} with high surface area was synthesized by the combustion method, evaluating the effect of urea/nitrate (U/N) ratio. The use of a stoichiometric U/N ratio resulted in a material with high surface area and homogeneous nanocrystallites, while the excess of fuel resulted in a non-porous material with low surface area. The formation of superficial Ni nanoparticles resulted in excellent stability on CO{sub 2} methane reforming. This can be attributed to the rearrangement of nickel in the aluminate matrix and the migration of nickel particles through carbon filaments at the surface during the activation process. (author)

  8. Probing The Electrode/Electrolyte Interface in The Lithium Excess Layered Oxide Li1.2Ni0.2Mn0.6O2

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Kyler J [University of California, San Diego; Qian, Danna [University of California, San Diego; Fell, Chris [University of Florida, Gainesville; Calvin, Scott [Sarah Lawrence College; Veith, Gabriel M [ORNL; Chi, Miaofang [ORNL; Dudney, Nancy J [ORNL; Meng, Ying Shirley [University of California, San Diego


    A detailed surface investigation of the lithium-excess nickel manganese layered oxide Li1.2Ni0.2Mn0.6O2 structure was carried out using x-ray photoelectron spectroscopy (XPS), total electron yield and transmission x-ray absorption spectroscopy (XAS), and electron energy loss spectroscopy (EELS) during the first two electrochemical cycles. All spectroscopy techniques consistently showed the presence of Mn4+ in the pristine material and a surprising reduction of Mn at the voltage plateau during the first charge. The Mn reduction is accompanied by the oxygen loss revealed by EELS. Upon the first discharge, the Mn at the surface never fully returns back to Mn4+. The electrode/electrolyte interface of this compound consists of the reduced Mn at the crystalline defect-spinel inner layer and an oxidized Mn species simultaneously with the presence of a superoxide species in amorphous outer layer. This proposed model signifies that oxygen vacancy formation and lithium removal result in electrolyte decomposition and superoxide formation, leading to Mn activation/dissolution and surface layer-spinel phase transformation. The results also indicate that the role of oxygen is complex and significant in contributing to the extra capacity of this class of high energy density cathode materials.

  9. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. (United States)

    Carroll, Kyler J; Qian, Danna; Fell, Chris; Calvin, Scott; Veith, Gabriel M; Chi, Miaofang; Baggetto, Loic; Meng, Ying Shirley


    A detailed surface investigation of the lithium-excess nickel manganese layered oxide Li1.2Ni0.2Mn0.6O2 structure was carried out using X-ray photoelectron spectroscopy (XPS), total electron yield and transmission X-ray absorption spectroscopy (XAS), and electron energy loss spectroscopy (EELS) during the first two electrochemical cycles. All spectroscopy techniques consistently showed the presence of Mn(4+) in the pristine material and a surprising reduction of Mn at the voltage plateau during the first charge. The Mn reduction is accompanied by the oxygen loss revealed using EELS. Upon the first discharge, the Mn at the surface never fully recovers back to Mn(4+). The electrode/electrolyte interface of this compound consists of the reduced Mn at the crystalline defect-spinel inner layer and an oxidized Mn species simultaneously with the presence of a superoxide species in the amorphous outer layer. This proposed model signifies that oxygen vacancy formation and lithium removal result in electrolyte decomposition and superoxide formation, leading to Mn activation/dissolution and surface layer-spinel phase transformation. The results also indicate that the role of oxygen is complex and significant in contributing to the extra capacity of this class of high energy density cathode materials.

  10. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode. (United States)

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong


    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g-1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm-2 , together with a remarkable power density of 20.2 mW cm-2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Excessively High Vapor Pressure of Al-based Amorphous Alloys


    Jeong, Jae; Lee, Sung; Jeon, Je-Beom; Kim, Suk


    Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the va...

  12. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong


    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  13. High Damping of Lightweight TiNi-Ti2Ni Shape Memory Composites for Wide Temperature Range Usage (United States)

    Yang, Bing; Luo, Zheng; Yuan, Bin; Liu, Jiangwen; Gao, Yan


    A bimodal porous TiNi-Ti2Ni shape memory alloy composite (SMAC) with 59% porosity was fabricated by sintering Ti-46at.%Ni elemental powders with pore-forming agent. The porous TiNi-Ti2Ni SMAC contains two irregular pores of about 400 and 120 μm. We investigated the microstructure and pore morphology correlated with the mechanical properties and damping capacities of the SMAC. Ti2Ni intermetallic phases with size of 1-3 μm were homogeneously distributed in the TiNi matrix. The porous TiNi-Ti2Ni SMAC exhibits exceptionally high inverse mechanical quality factor ( Q -1) of 0.25 at < 40 °C, which is among the highest value reported for porous/dense shape memory alloys or composites to best of our knowledge, and it shows very high compressive fracture strain of about 25%. Moreover, the fabricated porous SMAC at relatively low strain amplitude can exhibit considerable high Q -1 of 0.06 0.11 for a wide range of temperature between - 90 and 200 °C, which is attributed to the stress concentration distribution provided by the bimodal structure of pores and the massive interfaces between pore/matrix and TiNi/Ti2Ni. These porous SMACs can be an ideal candidate for using as a lightweight damping material in the energy-saving applications.

  14. High gain and low excess noise near infrared single photon avalanche detector (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing


    We present the discrete amplification approach used for development of a very high gain and low excess noise factor in the near infrared wavelength region. The devices have the following performance characteristics: gain > 2X105, excess noise factor researchers in the fields of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defense and aerospace applications.

  15. SCL-90-R and 16PF profiles of senior high school students with excessive internet use. (United States)

    Yang, Chang-Kook; Choe, Byeong-Moo; Baity, Matthew; Lee, Jeong-Hyeong; Cho, Jin-Seok


    To investigate the psychiatric symptomatology and personality characteristics of Korean senior high school students considered to use the Internet to excess. We administered a questionnaire packet to students that included 4 measures. These measures included a questionnaire on Internet use patterns during the previous month, the Internet Addiction Test (IAT), the Symptom Checklist-90-R (SCL-90-R), and the Sixteen Personality Factor Questionnaire (16PF). A total of 328 students, aged 15 to 19 years, participated in the study. Students were divided into 4 Internet user groups according to their IAT total scores: nonusers (n = 59, 18.0%), minimal users (n = 155, 47.3%), moderate users (n = 98, 29.9%), and excessive users (n = 16, 4.9%). The SCL-90-R showed that the excessive users group, when compared with the other groups in this study, reported the highest levels of symptomatology. The 16PF also revealed that excessive users were easily affected by feeling, emotionally less stable, imaginative, absorbed in thought, self-sufficient, experimenting, and preferred their own decisions. This study suggests that senior high school students who use the Internet to excess report and subsequently exhibit significantly more psychiatric symptoms than students who use the Internet less frequently. In addition, excessive users appear to have a distinctive personality profile when compared with nonusers, minimal, and moderate users.

  16. Ni Foam-Ni3 S2 @Ni(OH)2 -Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance. (United States)

    Wang, Xiaobing; Hu, Jiangjiang; Su, Yichang; Hao, Jin; Liu, Fanggang; Han, Shuang; An, Jian; Lian, Jianshe


    A novel Ni foam-Ni3 S2 @Ni(OH)2 -graphene sandwich-structured electrode (NF-NN-G) with high areal mass loading (8.33 mg cm(-2) ) has been developed by sulfidation and hydrolysis reactions. The conductivity of Ni3 S2 and Ni(OH)2 were both improved. The upper layer of Ni(OH)2 , covered with a thin graphene film, is formed in situ from the surface of the lower layer of Ni3 S2 , whereas the Ni3 S2 grown on Ni foam substrate mainly acts as a rough support bridging the Ni(OH)2 and Ni foam. The graphene stabilized the Ni(OH)2 and the electrochemical properties were effectively enhanced. The as-synthesized NF-NN-G-5mg electrode shows a high specific capacitance (2258 F g(-1) at 1 A g(-1) or 18.81 F cm(-2) at 8.33 mA cm(-2) ) and an outstanding rate property (1010 F g(-1) at 20 Ag(-1) or 8.413 F cm(-2) at 166.6 mA cm(-2) ). This result is around double the capacitance achieved in previous research on Ni3 S2 @Ni(OH)2 /3DGN composites (3DGN=three-dimensional graphene network). In addition, the as-fabricated NF-NN-G-5mg composite electrode has an excellent cycle life with no capacitance loss after 3000 cycles, indicating a potential application as an efficient electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity (United States)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi; Yang, Wulin


    The intermediate phase of NiS2 is thought to be a bottleneck currently to improve the overall performance of Li/NiS2 thermal batteries because of its low conductivity and close formation enthalpy between NiS2 and the intermediate phase (NiS, Ni3S2, etc). For improving the discharge performances of Li/NiS2 thermal batteries, the nano NiS2 with an average size of 85 ± 5 nm is designated as a cathode material. The electrochemical measurements show that the specific capacity of nano NiS2 cathode is higher than micro NiS2. The nano NiS2 cathode exhibits excellent electrochemical performances with high specific capacities of 794 and 654 mAh g-1 at current density of 0.1 and 0.5 A cm-2 under a cut-off voltage of 0.5 V, respectively. These results show that the rapid intermediate phase evolution from the nanocrystallization can obviously enhance use efficiency of NiS2 and improve discharge performances of thermal batteries.

  18. Hierarchical NiCo2 S4 Nanotube@NiCo2 S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors. (United States)

    Chen, Haichao; Chen, Si; Shao, Hongyan; Li, Chao; Fan, Meiqiang; Chen, Da; Tian, Guanglei; Shu, Kangying


    Hierarchical NiCo2 S4 nanotube@NiCo2 S4 nanosheet arrays on Ni foam have been successfully synthesized. Owing to the unique hierarchical structure, enhanced capacitive performance can be attained. A specific capacitance up to 4.38 F cm(-2) is attained at 5 mA cm(-2) , which is much higher than the specific capacitance values of NiCo2 O4 nanosheet arrays, NiCo2 S4 nanosheet arrays and NiCo2 S4 nanotube arrays on Ni foam. The hierarchical NiCo2 S4 nanostructure shows superior cycling stability; after 5000 cycles, the specific capacitance still maintains 3.5 F cm(-2) . In addition, through the morphology and crystal structure measurement after cycling stability test, it is found that the NiCo2 S4 electroactive materials are gradually corroded; however, the NiCo2 S4 phase can still be well-maintained. Our results show that hierarchical NiCo2 S4 nanostructures are suitable electroactive materials for high performance supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High Density Arrayed Ni/NiO Core-shell Nanospheres Evenly Distributed on Graphene for Ultrahigh Performance Supercapacitor. (United States)

    Liu, Fanggang; Wang, Xiaobing; Hao, Jin; Han, Shuang; Lian, Jianshe; Jiang, Qing


    A novel NiO/Ni/RGO three-dimensional core-shell architecture consisting of Ni nanoparticles as core, NiO as shell and reduced graphene oxide (RGO) as conductivity layer, has been constructed by redox reactions with hydrothermal method and heat treatment. High density arrayed nickel nanoparticles (20 nm diameter) semi-coated by a 3 nm thick layer of NiO are evenly distributed on the surface of graphene. This elaborate design not only uses abundant NiO surfaces to provide a wealth of active sites, but also bridges electrochemical active NiO shell and graphene by Ni core to construct an interconnected 3D conductive network. Since both electrochemical activity and excellent conductivity are reserved in this Ni/NiO core-shell/graphene layer 3D structure, the as-prepared electrode material exhibits an extremely high specific capacitance (2048.3 F g-1 at current density of 1 A g-1) and excellent cycle stability (77.8% capacitance retention after 10000 cycles at current density of 50 A g-1). The novel method presented here is easy and effective and would provide reference for the preparation of other high performance supercapacitor electrodes.

  20. High Temperature coatings based on β-NiAI

    Energy Technology Data Exchange (ETDEWEB)

    Severs, Kevin [Iowa State Univ., Ames, IA (United States)


    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB2 composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

  1. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)


    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  2. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells. (United States)

    Xue, Zhichao; Liu, Xingyuan; Zhang, Nan; Chen, Hong; Zheng, Xuanming; Wang, Haiyu; Guo, Xiaoyang


    Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices.

  3. Nanoporous PdNi/C electrocatalyst prepared by dealloying high-Ni-content PdNi alloy for formic acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wang, Hui; Wang, Rongfang [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Ji, Shan [South African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town 7535 (South Africa)


    To improve the electrochemical performance of Pd-based catalysts for formic acid oxidation, a carbon supported nanoporous PdNi catalyst is prepared by dealloying high-Ni-content PdNi alloy nanoparticles in acid solution. The structure of nanoporous PdNi/C catalyst is characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The electrocatalytic results show that the activity of the nanoporous PdNi/C catalyst is higher than that of nonporous Pd/C catalyst. The results demonstrate that the carbon-supported nanoporous PdNi catalyst has a potential for application in direct formic acid fuel cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)


    NARCIS (Netherlands)


    We discuss the electronic state of Ni atoms in Ni metal and of Ni impurity in Cu and Au metals from the viewpoint of 3d configuration interaction (CI) using the Anderson impurity model including atomic multiplets. On the basis of the discussion, we give an interpretation for the Ni 2p-core X-ray

  5. On risk, leverage and banks: do highly leveraged banks take on excessive risk?

    NARCIS (Netherlands)

    Koudstaal, M.; van Wijnbergen, S.


    This paper deals with the relation between excessive risk taking and capital structure in banks. Examining a quarterly dataset of U.S. banks between 1993 and 2010, we find that equity is valued higher when more risky portfolios are chosen when leverage is high, and that more risk taking has a

  6. Shape memory behavior of single crystal and polycrystalline Ni-rich NiTiHf high temperature shape memory alloys (United States)

    Saghaian, Sayed M.

    NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti 29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (˜20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20-30 J cm- 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7 Hf20 alloys were studied via

  7. Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density. (United States)

    Zhang, Yifan; Park, Mira; Kim, Hak Yong; Park, Soo-Jin


    Nickel oxide is a promising material for supercapacitors owing to its high theoretical specific capacitance; however, its practical capacitance is far below the theoretical limit. In this work, we report a novel Ni/NiO composite supported by carbon nanofibers as a pseudocapacitor electrode. Characterization of this sample by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, and contact angle measurements revealed that Ni nanoparticles were uniformly dispersed on the surface of the nanofibers, leading to strong metal-metal oxide interactions and the formation of oxygen vacancies. Such three dimensional hetero-Ni/NiO components afford high conductivity owing to efficient electron transport and abundant surface defects (oxygen vacancies), which result in enhanced supercapacitor performance and energy density (ED). A moderate concentration of oxygen vacancies is crucial for achieving optimized electrochemical activity. As-prepared Ni/NiO-3 nanofibers generated high capacitances of 526 and 400F/g at current densities of 1 and 10A/g, respectively, with good stability (80% of the initial capacitance retained after 1000 cycles). Moreover, an ED as high as 65.8Wh/kg was achieved at a power density of 900W/kg, which is higher than those of NiO-based supercapacitors. This work provides a strategy for improving the potential of metal oxides for energy storage applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. High temperature intermetallic compounds Ni{sub 3}Al

    Energy Technology Data Exchange (ETDEWEB)

    Kursa, M. [Vysoka Skola Banska, Ostrava (Czech Republic); Hypeska, L. [Vysoka Skola Banska, Ostrava (Czech Republic); Drapala, J. [Vysoka Skola Banska, Ostrava (Czech Republic); Karnik, T. [Vysoka Skola Banska, Ostrava (Czech Republic); Losertova, M. [Vysoka Skola Banska, Ostrava (Czech Republic)


    The paper describes the preparation of Ni3Al intermetallic compounds, and investigations of their structures in the as-cast, remelted, and annealed states. The materials were produced by three techniques : in a high frequency vacuum furnace, by zonal remelting in an electron beam furnace, and by remelting with unidirectional solidification. Those melted in an h. f. vacuum furnace and poured into graphite moulds had well developed dendritic structures, a Ni3Al ({gamma}`) phase, with interdendritic spaces formed by Ni5Al3 + {gamma}`. Many specimens contained shrinkage cavities. Unidirectional solidification allowed casting defects to be eliminated and the grain size to be controlled in dependence on the solidification rate. Rates from 650 to 60 mm per hour were tried to examine their effects on the grain size, homogeneity, and structure. The authors further investigated the influence of B and Zr additions on the solidification process and formation of the structure of Ni3Al. Annealing, in an argon atmosphere at 1100 C for various durations, was tried out for homogenizing the as-cast structures. (orig.).

  9. NiO/LaNiO{sub 3} film electrode with binder-free for high performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xi; Du, Guo; Zhu, Jiliang, E-mail:; Zeng, Zifan; Zhu, Xiaohong


    Graphical abstract: This figure shows the charge-discharge curves of the P{sub 0}, P{sub 5}, P{sub 10} and P{sub 15} electrodes at the current density of 0.5 A/g in 2 M KOH electrolyte, respectively. From the figure, the specific capacitance of P{sub 10} electrode is as high as 2030 F/g. - Highlights: • Novel NiO/LaNiO{sub 3} film electrode with binder-free was prepared by spin-coating technique. • The NiO/LaNiO{sub 3} electrode with appropriate LNO content exhibited a high specific capacitance of 2030 F/g at 0.5A/g and superior cycling stability (83% retention of the initial capacitance after 1000 cycles) in 2 M KOH aqueous solution. • The NiO is directly anchored on the Pt/Ti/SiO{sub 2}/Si(100) substratewith binder-free, which is favorable for obtaining a larger specific surface. - Abstract: NiO/LaNiO{sub 3} (NiO/LNO) film electrode was prepared by spin-coating technique on Pt/Ti/SiO{sub 2}/Si(100) substrates. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS) and cyclic charge-discharge measurements were employed to evaluate the electrochemical performance of the electrode. The effect of LNO layer on the performance of the NiO/LNO electrode was also investigated. The NiO/LNO electrode with appropriate LNO content possesses high specific capacitance (2030 F/g at 0.5 A/g) and good cyclability (specific capacitance retention of 83% after 1000 cycles). The present study suggests that NiO/LNO film is a promising electrode material for supercapacitor.

  10. Passivation of the La{sub 2}NiMnO{sub 6} double perovskite to hydroxylation by excess nickel, and the fate of the hydroxylated surface upon heating

    Energy Technology Data Exchange (ETDEWEB)

    Fulmer, Adam T., E-mail: [Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304 (United States); Nebraska Center for Materials and Nanoscience (NCMN), University of Nebraska, Lincoln, NE 68588 (United States); Dondlinger, Jasmine, E-mail: [Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304 (United States); Nebraska Center for Materials and Nanoscience (NCMN), University of Nebraska, Lincoln, NE 68588 (United States); Langell, Marjorie A., E-mail: [Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304 (United States); Nebraska Center for Materials and Nanoscience (NCMN), University of Nebraska, Lincoln, NE 68588 (United States)


    The double perovskites with a total elemental content of LaNi{sub 0.5}Mn{sub 0.5}O{sub 3} and LaNi{sub 0.75}Mn{sub 0.25}O{sub 3} were synthesized by solid state methods, although the LaNi{sub 0.75}Mn{sub 0.25}O{sub 3} material underwent phase separation into NiO, LaNiO{sub 3} and LaNi{sub 0.5}Mn{sub 0.5}O{sub 3}. Auger Electron Spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) indicated substantial lanthanum surface segregation for the LaNi{sub 0.5}Mn{sub 0.5}O{sub 3} material, which formed an altered La(OH){sub 3} layer 50–100 monolayers in thickness. The La(OH){sub 3} could be removed by Ar{sup +} sputtering to achieve a surface of approximately stoichiometric concentration. Heating the La(OH){sub 3}-covered LaNi{sub 0.5}Mn{sub 0.5}O{sub 3} did not regenerate the double perovskite but rather produced an overlayer of La{sub 2}O{sub 3}. While the LaNi{sub 0.75}Mn{sub 0.25}O{sub 3} material displayed extensive phase separation, the excess nickel appeared to prevent substantial lanthanum surface segregation.

  11. The origin of the Debye relaxation in liquid water and fitting the high frequency excess response. (United States)

    Elton, Daniel C


    We critically review the literature on the Debye absorption peak of liquid water and the excess response found on the high frequency side of the Debye peak. We find a lack of agreement on the microscopic phenomena underlying both of these features. To better understand the molecular origin of Debye peak we ran large scale molecular dynamics simulations and performed several different distance-dependent decompositions of the low frequency dielectric spectra, finding that it involves processes that take place on scales of 1.5-2.0 nm. We also calculated the k-dependence of the Debye relaxation, finding it to be highly dispersive. These findings are inconsistent with models that relate Debye relaxation to local processes such as the rotation/translation of molecules after H-bond breaking. We introduce the spectrumfitter Python package for fitting dielectric spectra and analyze different ways of fitting the high frequency excess, such as including one or two additional Debye peaks. We propose using the generalized Lydanne-Sachs-Teller (gLST) equation as a way of testing the physicality of model dielectric functions. Our attempts at fitting the experimental spectrum using the gLST relation as a constraint indicate that the traditional way of fitting the excess response with secondary and tertiary Debye relaxations is problematic. All of our work is consistent with the recent theory of Popov et al. (2016) that Debye relaxation is due to the migration of Bjerrum-like defects in the hydrogen bond network. Under this theory, the mechanism of Debye relaxation in liquid water is similar to the mechanism in ice, but the heterogeneity and power-law dynamics of the H-bond network in water results in excess response on the high frequency side of the peak.

  12. Hierarchically porous Ni monolith@branch-structured NiCo2O4 for high energy density supercapacitors

    Directory of Open Access Journals (Sweden)

    Mengjie Xu


    Full Text Available A variety of NiCo2O4 nanostrucutures ranging from nanowire to nanoplate and branched structures were successfully prepared via a simple hydrothermal process. The experimental results show that NiCo2O4 with branched structures possesses the best overall electrochemical performance. The improvement of energy density was explored in terms of hierarchically three-dimensional (3D metal substrates and a high specific area capacitance, and area energy density is obtained with hierarchically porous Ni monolith synthesized through a controlled combustion procedure.

  13. NiCo2S4@NiMoO4 Core-Shell Heterostructure Nanotube Arrays Grown on Ni Foam as a Binder-Free Electrode Displayed High Electrochemical Performance with High Capacity (United States)

    Zhang, Yan; Xu, Jie; Zheng, Yayun; Zhang, Yingjiu; Hu, Xing; Xu, Tingting


    Core-shell-structured system has been proved as one of the best architecture for clean energy products owing to its inherited superiorities from both the core and the shell part, which can provide better conductivity and high surface area. Herein, a hierarchical core-shell NiCo2S4@NiMoO4 heterostructure nanotube array on Ni foam (NF) (NiCo2S4@NiMoO4/NF) has been successfully fabricated. Because of its novel heterostructure, the capacitive performance has been enhanced. A specific capacitance up to 2006 F g-1 was obtained at a current density of 5 mA cm-2, which was far higher than that of pristine NiCo2S4 nanotube arrays (about 1264 F g-1). More importantly, NiCo2S4@NiMoO4/NF and active carbon (AC) were congregated as positive electrode and negative electrode in an asymmetric supercapacitor. As-fabricated NiCo2S4@NiMoO4/NF//AC device has a good cyclic behavior with 78% capacitance retention over 2000 cycles, and exhibits a high energy density of 21.4 Wh kg-1 and power density of 58 W kg-1 at 2 mA cm-2. As displayed, the NiCo2S4@NiMoO4/NF core-shell herterostructure holds great promise for supercapacitors in energy storage.

  14. High-precision QEC values of superallowed 0+ → 0+β-emitters 46Cr, 50Fe and 54Ni (United States)

    Zhang, P.; Xu, X.; Shuai, P.; Chen, R. J.; Yan, X. L.; Zhang, Y. H.; Wang, M.; Litvinov, Yu. A.; Blaum, K.; Xu, H. S.; Bao, T.; Chen, X. C.; Chen, H.; Fu, C. Y.; He, J. J.; Kubono, S.; Lam, Y. H.; Liu, D. W.; Mao, R. S.; Ma, X. W.; Sun, M. Z.; Tu, X. L.; Xing, Y. M.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhou, X.; Zhou, X. H.; Zhan, W. L.; Litvinov, S.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Sun, B. H.; Sun, Y.; Xu, F. R.


    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are - 29471 (11) keV, - 34477 (6) keV and - 39278 (4) keV, respectively. The superallowed 0+ →0+β-decay Q values were derived to be QEC (46Cr) = 7604 (11) keV, QEC (50Fe) = 8150 (6) keV and QEC (54Ni) = 8731 (4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected Ft values to be Ft (50Fe) = 3103 (70) s and Ft (54Ni) = 3076 (50) s. The main contribution to the Ft uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.

  15. Prevalence and correlates of excessive daytime sleepiness in high school students in Korea. (United States)

    Joo, Soonjae; Shin, Chol; Kim, Jinkwan; Yi, Hyeryeon; Ahn, Yongkyu; Park, Minkyu; Kim, Jehyeong; Lee, SangDuck


    The purpose of the present study was to determine the prevalence of excessive daytime sleepiness (EDS) and its associations with sleep habits, sleep problems, and school performance in high school students in South Korea. A total of 3871 students (2703 boys and 1168 girls with a mean age of 16.8 years and 16.9 years, respectively) aged 15-18 years in the 11th grade of high school completed a questionnaire that contained items about individual sociodemographic characteristics, sleep habits, and sleep-related problems. The overall prevalence of EDS was 15.9% (14.9% for boys and 18.2% for girls). Mean reported total sleep time was similar in EDS and non-EDS (6.4 +/- 1.6 and 6.4 +/- 1.3 h/day, respectively). The increased risk of EDS was related to perceived sleep insufficiency (P or = 4 days/week (P or = 1-3 days/week (P or = 4 days/week (P performance (P performance had a 60% excess in the odds of EDS compared to those whose school performance was high. These findings suggest that EDS is associated with multiple sleep-related factors in adolescents. Whether interventions to modify associated correlates can alter EDS warrants consideration, especially because it may also improve academic performance in high school students.

  16. Propylene Glycol Poisoning From Excess Whiskey Ingestion: A Case of High Osmolal Gap Metabolic Acidosis. (United States)

    Cunningham, Courtney A; Ku, Kevin; Sue, Gloria R


    In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol.

  17. Fabrications of High-Capacity Alpha-Ni(OH2

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young


    Full Text Available Three different methods were used to produce α-Ni(OH2 with higher discharge capacities than the conventional β-Ni(OH2, specifically a batch process of co-precipitation, a continuous process of co-precipitation with a phase transformation step (initial cycling, and an overcharge at low temperature. All three methods can produce α-Ni(OH2 or α/β mixed-Ni(OH2 with capacities higher than that of conventional β-Ni(OH2 and a stable cycle performance. The second method produces a special core–shell β-Ni(OH2/α-Ni(OH2 structure with an excellent cycle stability in the flooded half-cell configuration, is innovative and also already mass-production ready. The core–shell structure has been investigated by both scanning and transmission electron microscopies. The shell portion of the particle is composed of α-Ni(OH2 nano-crystals embedded in a β-Ni(OH2 matrix, which helps to reduce the stress originating from the lattice expansion in the β-α transformation. A review on the research regarding α-Ni(OH2 is also included in the paper.

  18. High temperature PEMFC and the possible utilization of the excess heat for fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf; Li, Qingfeng; Pan, Chao; Vestboe, Andreas P.; Mortensen, Kasper; Nybo Petersen, Henrik; Lau Soerensen, Christian; Nedergaard Clausen, Thomas; Bjerrum, Niels J. [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Schramm, Jesper [Department of Mechanical Engineering, Building 404, Technical University of Denmark, DK-2800 Lyngby (Denmark)


    In this paper simple heat balances are calculated for systems with methanol and methane reformers in combination with a high temperature PEM fuel cell. In the methanol system at least 11.1% of the fuel energy can be saved by using the excess heat from the fuel cell for vaporization of water and methanol if the cell is operated at temperatures between 150 and 200 {sup circle} C. Similarly, in the methane system, 9.6% can be saved under equivalent conditions. Integration of a high temperature PEM fuel cell with a metal hydride system based on NaAlH{sub 4} is considered briefly with respect to desorption heat. Dead-end operation is studied, and stable performance is seen for 100 min at 150 {sup circle} C without purging. Finally, experiments are reported indicating that preheating of the air has no influence on the fuel cell performance at 150 or 200 {sup circle} C under moderate load. (author)

  19. Urinary acidifier in diet with high excess base for adult cats

    Directory of Open Access Journals (Sweden)

    Carolina Padovani Pires


    Full Text Available Maintaining the pH of urine in the ideal range (6.2 - 6.4 is of great importance for health promotion in the lower urinary tract of cats. In the economic and standard feed sector this is a major concern, given that the animal urine tends to be alkaline after food consumption of those commercial segments, which predispose to the formation of struvite urolith. Therefore, this study aimed to study the effects of increasing levels of urinary acidifiers (0.0%, 0.3%, 0.6% and 0.9%, on a dry matter base in feed with high excess base over the acid-basic balance in the organism, apparent digestibility coefficients of nutrients, urinary pH, hydro-electrolyte balance in cats, as well as the adequacy of equations proposed in the literature to estimate the urinary pH. Twenty-four adult cats, males and females were distributed in a completely randomized design, consisting of six animals per treatment. The dry matter content of urine presented a quadratic behavior (p0.05. The equations proposed in the literature, which use excess of base in feed to estimate urinary pH, overestimated the pH values found in this study.

  20. Lyα excess in high-redshift radio galaxies: a signature of star formation (United States)

    Villar-Martín, M.; Humphrey, A.; De Breuck, C.; Fosbury, R.; Binette, L.; Vernet, J.


    About 54 per cent of radio galaxies at z >= 3 and 8 per cent of radio galaxies at 2 ~ 2) radio galaxies. These Lyα-excess objects (LAEs) show Lyα/HeII values consistent with or above standard photoionization model predictions. We reject with confidence several scenarios to explain the unusual strength of Lyα in these objects: shocks, low nebular metallicities, high gas densities and absorption/scattering effects. We show that the most successful explanation is the presence of a young stellar population which provides the extra supply of ionizing photons required to explain the Lyα excess in at least the most extreme LAEs (probably in all of them). This interpretation is strongly supported by the tentative trend found by other authors for z >= 3 radio galaxies to show lower ultraviolet rest-frame polarization levels, or the dramatic increase in the detection rate at submm wavelengths of z > 2.5 radio galaxies. The enhanced star formation activity in LAEs could be a consequence of a recent merger which has triggered both the star formation and the active galactic nucleus/radio activities. The measurement of unusually high Lyα ratios in the extended gas of some high-redshift radio galaxies suggests that star formation activity occurs in spatial scales of tens of kpc. We argue that, although the fraction of LAEs may be incompletely determined, both at 2 = 3, the much larger fraction of LAEs found at z >= 3 is a genuine redshift evolution and not due to selection effects. Therefore, our results suggest that the radio galaxy phenomenon is more often associated with a massive starburst at z > 3 than at z < 3. Unpublished results are presented in this paper for the radio galaxy 1338-1941, based on observations carried out at the European Southern Observatory, Paranal (Chile) for the ESO project 69.B-0078(B). E-mail:

  1. Failure Analysis and Recovery of a 50-mm Highly Elastic Intermetallic NiTi Ball Bearing for an ISS Application (United States)

    DellaCorte, Christopher; Howard, S. Adam; Moore, Lewis


    Ball bearings used inside the ISS Distillation Assembly centrifuge require superior corrosion and shock resistance to withstand acidic wastewater exposure and heavy spacecraft launch related loads. These requirements challenge conventional steel bearings and provide an ideal pathfinder application for 50-mm bore, deep-groove ball bearings made from the corrosion immune and highly elastic intermetallic material 60NiTi. During early ground testing in 2014 one 60NiTi bearing unexpectedly and catastrophically failed after operating for only 200 hr. A second bearing running on the same shaft was completely unaffected. An investigation into the root cause of the failure determined that an excessively tight press fit of the bearing outer race coupled with NiTi's relatively low elastic modulus were key contributing factors. The proposed failure mode was successfully replicated by experiment. To further corroborate the root cause theory, a successful bearing life test using improved installation practices (selective fitting) was conducted. The results show that NiTi bearings are suitable for space applications provided that care is taken to accommodate their unique material characteristics.

  2. Spin-glass behavior in YCo 10- xNi xSi 2 with high Ni content (United States)

    Tang, H.; Qiao, G. W.; Liu, J. P.; Sellmyer, D. J.; de Boer, F. R.; Buschow, K. H. J.


    The magnetic properties and the structure of YCo 10- xNi xSi 2 alloys with high Ni content have been investigated by means of measurements of X-ray diffraction, dc magnetization and ac-susceptibility. The samples are basically of single phase (with x=6, 7, 8, 8.5, 9, 10) and adopt the ThMn 12 type structure. With x≤7.0, the samples show ferromagnetic behavior below the Curie temperatures. For compounds YCo 2Ni 8Si 2 and YCo 1.5Ni 8.5Si 2, the ac-susceptibility and dc zero-field cooling (ZFC) M( T) curve show a cusp with decreasing temperature, and the dc ZFC and field cooling (FC) M( T) curves in lower fields exhibit thermal irreversibility at low temperatures. The magnetization curves at temperatures below the cusp temperature on the ZFC branches do not saturate in the field range of H≤55 kOe. Furthermore, the hysteresis loops at temperatures below the cusp temperature exhibit no coercivity after ZFC. All these features suggest a spin-glass ordering of the compounds YCo 10- xNi xSi 2 with x equal to 8 and 8.5. The spin-glass behavior can be understood in terms of a competition between ferromagnetic interactions involving close Co-Co neighbors and antiferromagnetic interactions involving more remote Co-Co neighbors.

  3. Hierarchical ternary Ni-Co-Se nanowires for high-performance supercapacitor device design. (United States)

    Guo, Kailu; Cui, Shizhong; Hou, Hongwei; Chen, Weihua; Mi, Liwei


    Large-scale uniform Ni-Co-Se bimetallic ternary nanowires have been successfully synthesized through a successive cation exchange. First, NiSe nanowires in situ grown on nickel foam (NF) were prepared by a facile solvothermal route. Next, a series of ternary materials possessing different proportions of Ni and Co were fabricated by a Co-exchange method using the Ni@NiSe material as a template, which effectively achieved morphological inheritance from the parent material. To explore the electrochemical performance, all synthetic materials were assembled into asymmetric supercapacitor devices. Among asymmetric supercapacitor devices, the Ni@Ni0.8Co0.2Se//active carbon (AC) device exhibited a high specific capacitance of 86 F g-1 at a current density of 1 A g-1 and excellent cycling stability with virtually no decrease in capacitance after 2000 continuous charge-discharge cycles. This device still delivered an energy density of 17 Wh kg-1 even at a high power density of 1526.8 W kg-1. These superior electrochemical properties of Ni@Ni0.8Co0.2Se as an electrode material for supercapacitor devices confirmed the synergistic effect between Co and Ni ions, suggesting their potential application in the field of energy storage.

  4. The high SNR rate in the Galactic Center: origin of the cosmic rays excess? (United States)

    Jouvin, L.; Lemière, A.; Terrier, R.


    The center of our Galaxy hosts a Super-Massive Black Hole (SMBH) of about 4 × 106 M⊙. Since it has been argued that the SMBH might accelerate particles up to very high energies, its current and past activity could contribute to the population of Galactic cosmic-rays (CRs). Additionally, the condition in the Galactic Center (GC) are often compared with the one of a starburst system. The high supernovae (SN) rate associated with the strong massive star formation in the region must create a sustained CR injection in the GC via the shocks produced at the time of their explosion. The presence of an excess of very high energy (VHE) cosmic rays in the inner 100 pc of the Galaxy in close correlation with the massive gas complex known as the central molecular zone (CMZ) has been revealed in 2006 by the H.E.S.S. collaboration. Recently, by analysing 10 years of H.E.S.S. data, the H.E.S.S. collaboration confirmed the presence of this extended VHE diffuse emission and deduced a CR density peaked toward the GC. The origin of the CR over-abundance in the GC still remains mysterious: Is it due to a single accelerator at the center or to multiple accelerators filling the region? In order to investigate the presence of these multiple CR accelerators, and in particular the impact of their spatial distribution on the VHE emission morphology, we build a 3D model of CR injection and diffusive propagation with a realistic 3D gas distribution. We discuss the CR injection in the region by a spectral and morphological comparison with H.E.S.S. data. We show that a peaked γ-ray profile towards the GC center is obtained using a realistic SN spatial distribution taking into account the central massive star clusters. The contribution of theses sources cannot be neglected in particular at high longitudes. In order to fit the very central excess observed with H.E.S.S., another central VHE component is probably necessary.

  5. Equations of state and anisotropy of Fe-Ni and Fe-Ni-Si at high pressure (United States)

    Morrison, R. A.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Greenberg, E.


    Earth's core is composed primarily of iron-nickel alloyed with some fraction of light elements. Accurate pressure-density relations for iron-nickel alloys are necessary to further constrain core composition. Additionally, lattice preferred orientation of elastically anisotropic hcp-structured iron alloys have been proposed as a cause of seismically observed inner core anisotropy. The elastic anisotropy of hcp-structured materials has been closely linked to the lattice parameter axial ratio (c/a), however accurately measuring axial ratios requires nearly hydrostatic conditions. We present high-quality powder x-ray diffraction data on bcc- and hcp-structured Fe0.9Ni0.1 and Fe0.8Ni0.1Si0.1 up to high pressures at ambient temperature. By using diamond anvil cells loaded with tungsten powder as a pressure calibrant and helium as a pressure transmitting medium, the isothermal equations of state and axial ratios of hcp-structured Fe0.9Ni0.1 and Fe0.8Ni0.1Si0.1 were measured with extremely high-statistical quality. We constrain the effect of nickel and silicon on the isothermal equation of state of iron alloys, and we demonstrate nickel and silicon have a measurable impact on the c/a axial ratio of iron. Implications for the Earth's inner core are discussed.

  6. Internal resistance of plastic bonded (pressed type) high rate Ni electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kulcsar, S.; Horvath P.; Csath, G.; Smaroglay, M.


    Internal resistance is one of the most important characteristics of Ni-Cd cells. It has a great effect on the discharge voltage, capacity, and high rate behaviour. In this paper we report the results of an investigation in connection with the internal resistance of the plastic bonded Ni electrode and its variation as a function of pressure and high rate cycling.

  7. Appearances of diffuse excessive high signal intensity (DEHSI) on MR imaging following preterm birth

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Anthony R. [Sheffield Teaching Hospital NHS Foundation Trust, Department of Neonatology, Jessop Wing, Sheffield (United Kingdom); University of Sheffield, Academic Unit of Radiology, Royal Hallamshire Hospital, Sheffield (United Kingdom); University of Sheffield, Department of Academic Radiology, Royal Hallamshire Hospital, Sheffield (United Kingdom); Smith, Michael F. [Sheffield Teaching Hospital NHS Foundation Trust, Department of Neonatology, Jessop Wing, Sheffield (United Kingdom); Rigby, Alan S. [University of Hull, Postgraduate Medical Centre, Castle Hill Hospital, East Yorkshire (United Kingdom); Wallis, Lauren I.; Whitby, Elspeth H. [University of Sheffield, Academic Unit of Radiology, Royal Hallamshire Hospital, Sheffield (United Kingdom)


    Diffuse damage to the periventricular white matter has recently been suggested to be a cause of the cognitive deficits seen following preterm birth. It is unclear whether this form of injury can be visualised on MR imaging, but one group has described diffuse excessive high signal intensity (DEHSI) as a possible form of diffuse white matter injury. This finding is dependant on window imaging and the subjective assessment of the reviewer, but little data have been published on the degree of subjectivity on its appearance among raters. To assess the subjectivity of DEHSI on conventional and ultrafast T2-weighted MR imaging following preterm birth. An observational study of 40 preterm infants who had MR imaging of the brain around term-equivalent age, including conventional fast spin-echo (FSE) and ultrafast single-shot fast spin-echo (SSFSE) T2-weighted sequences in the axial plane. Images were anonymised and scored twice by four observers for the presence of DEHSI. Inter- and intra-observer agreement were calculated. Sixty-five percent of conventional and 100% of the ultrafast images were of diagnostic quality. DEHSI was noted in between 0% and 69.2% of conventional images and 27.5-90% of the ultrafast images. Inter- and intra-observer agreement ranged from none to moderate. The visual appearances of DEHSI on conventional FSE and ultrafast SSFSE T2-W images are highly subjective, limiting its clinical application. (orig.)

  8. High temperature grain growth and oxidation of Fe-29Ni-17Co (Kovar{trademark}) alloy leads

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J.J.; Greulich, F.A.; Beavis, L.C.


    One important application for the Fe-29Ni-17Co (Kovar{trademark}) alloy in wire form is in brazed feed through assemblies which are integral parts of vacuum electronic devices. Since Cu metal brazes are performed at process temperatures of about 1100{degrees}C, there is opportunity for significant grain growth to occur during the brazing operation. Additional high temperature exposure includes decarburization of the Fe-29Ni-17Co alloy wire in wet hydrogen for 30 min. at 1000{degrees}C prior to the Cu brazing operation. Two approaches have been used to characterize grain growth in two lots of Fe-29Ni-17Co alloy: (1) a once-through processing study to study the effect of one-time-only device thermal processing on the resulting grain size, and (2) an isothermal grain growth study involving various times at 800--1100{degrees}C. The results of the once-through processing study indicate that acceptable grain sizes are obtained from both cold worked and mill-annealed wire lots following Cu brazing. The isothermal grain growth study indicates that the linear intercept distance for Fe-29Ni-17Co can be described with a power law function of time, and that thermal exposure must be controlled at temperatures in excess of 900{degrees}C in order to avoid excessive grain growth. A second study has characterized the oxidation kinetics of Fe-29Ni-17Co alloy wire in air at temperatures ranging from 550--700{degrees}C. This study indicates the parabolic growth law applies for this material, and between 550 and 700{degrees}C, oxidation in this alloy occurs at an activation energy of 27.9 kcal/mole. Other oxidation studies at higher temperatures ({ge}750{degrees}C) indicate an activation energy of 52.2 kcal/mole for oxidation of Fe-29Ni-17Co alloy at temperatures greater than 790{degrees}C. Quantitative point analyses of the oxide scale formed at 600{degrees}C suggest that a significant fraction of the scale is close to the stoichiometry of the Fe{sub 2}O{sub 3}-type oxide.

  9. Influence of excess sodium ions on the specific surface area formation in a NiO-Al2O3 catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Lazić M.M.


    Full Text Available The influence of sodium ions on the specific surface area of a NiO-Al2O3 catalyst in dependence of nickel loading (5, 10, and 20 wt% Ni, temperature of heat treatment (400, 700 and 1100oC and the method of sample preparation was investigated. Low temperature nitrogen adsorption (LTNA, X-ray diffraction (XRD and scanning electron microscopy (SEM were applied for sample characterization. Dramatic differences in the specific surface area were registered between non-rinsed and rinsed Al2O3 and NiO-Al2O3 samples. The lagged sodium ions promote sintering of non-rinsed catalyst samples.

  10. Test Method for High β Particle Emission Rate of 63Ni Source Plate

    Directory of Open Access Journals (Sweden)

    ZHANG Li-feng


    Full Text Available For the problem of measurement difficulties of β particle emission rate of Ni-63 source plate used for Ni-63 betavoltaic battery, a relative test method of scintillation current method was erected according to the measurement principle of scintillation detector.β particle emission rate of homemade Ni-63 source plate was tested by the method, and the test results were analysed and evaluated, it was initially thought that scintillation current method was a feasible way of testing β particle emission rate of Ni-63 source plate with high β particle emission rate.

  11. Microstructural Degradation of Ni/YSZ Electrodes in Solid Oxide Electrolysis Cells under High Current

    DEFF Research Database (Denmark)

    Chen, Ming; Liu, Yi-Lin; Bentzen, Janet Jonna


    Ni/yttria stabilized zirconia (YSZ) supported solid oxide electrolysis cells (SOECs) were exposed to long-term galvanostatic electrolysis tests, under different testing conditions (temperature, gas composition, current density etc.) with an emphasis on high current density (above −1 A/cm2...... of Ni-YSZ interfacial reactions, taking place under the conditions prevailing under strong polarization. A mechanism for the formation of ZrO2 nano-particles on the Ni surface under the electrolysis cell testing is proposed and the possibility of Ni-YSZ interfacial reactions under such conditions (T, p...

  12. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. (United States)

    Han, Joung Woo; Kim, Chanyeon; Park, Jun Seong; Lee, Hyunjoo


    Nickel catalysts are typically used for hydrogen production by reforming reactions. Reforming methane with carbon dioxide, called dry reforming of methane (DRM), is a good way to produce hydrogen or syngas (a mixture of hydrogen and carbon monoxide) from two notable greenhouse gases. However, Ni catalysts used for DRM suffer from severe coke deposition. It has been known that small Ni nanoparticles are advantageous to reduce coke formation, but the high reaction temperature of DRM (800 °C) inevitably induces aggregation of the nanoparticles, leading to severe coke formation and degraded activity. Here, we develop highly coke-resistant Ni catalysts by immobilizing premade Ni nanoparticles of 5.2 nm in size onto functionalized silica supports, and then coating the Ni/SiO2 catalyst with silica overlayers. The silica overlayers enable the transfer of reactants and products while preventing aggregation of the Ni nanoparticles. The silica-coated Ni catalysts operate stably for 170 h without any degradation in activity. No carbon deposition was observed by temperature programmed oxidation (TPO), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The Ni catalysts without silica coating show severe sintering after DRM reaction, and the formation of filamentous carbon was observed. The coke-resistant Ni catalyst is potentially useful in various hydrocarbon transformations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron. (United States)

    Tombuloglu, Guzin; Tombuloglu, Huseyin; Sakcali, M Serdal; Unver, Turgay


    Boron (B) is an essential micronutrient for optimum plant growth. However, above certain threshold B is toxic and causes yield loss in agricultural lands. While a number of studies were conducted to understand B tolerance mechanism, a transcriptome-wide approach for B tolerant barley is performed here for the first time. A high-throughput RNA-Seq (cDNA) sequencing technology (Illumina) was used with barley (Hordeum vulgare), yielding 208 million clean reads. In total, 256,874 unigenes were generated and assigned to known peptide databases: Gene Ontology (GO) (99,043), Swiss-Prot (38,266), Clusters of Orthologous Groups (COG) (26,250), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (36,860), as determined by BLASTx search. According to the digital gene expression (DGE) analyses, 16% and 17% of the transcripts were found to be differentially regulated in root and leaf tissues, respectively. Most of them were involved in cell wall, stress response, membrane, protein kinase and transporter mechanisms. Some of the genes detected as highly expressed in root tissue are phospholipases, predicted divalent heavy-metal cation transporters, formin-like proteins and calmodulin/Ca(2+)-binding proteins. In addition, chitin-binding lectin precursor, ubiquitin carboxyl-terminal hydrolase, and serine/threonine-protein kinase AFC2 genes were indicated to be highly regulated in leaf tissue upon excess B treatment. Some pathways, such as the Ca(2+)-calmodulin system, are activated in response to B toxicity. The differential regulation of 10 transcripts was confirmed by qRT-PCR, revealing the tissue-specific responses against B toxicity and their putative function in B-tolerance mechanisms. Copyright © 2014. Published by Elsevier B.V.

  14. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl


    The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient temperat...

  15. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying (United States)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.


    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi–Ti33Ni49Zr18–cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi–Ti33Ni49Zr18–cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi– Ti33Ni49Zr18–cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation

  16. High resistance to sulfur poisoning of Ni with copper skin under electric field

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaopei; Zhang, Yanxing [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Zongxian, E-mail: [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Kaifeng, Henan Province (China)


    The effects of sulfur poisoning on the (1 0 0), (1 1 0) and (1 1 1) surfaces of pure Ni and Cu/Ni alloy are studied in consideration of the effect of electric field. The effects of Cu dopants on the S poisoning characteristics are analyzed by the means of the density functional theory results in combination with thermodynamics data using the ab initio atomistic thermodynamic method. When the Cu concentration increases to 50% on the surface layer of the Cu/Ni alloy, the (1 1 0) surface becomes the most vulnerable to the sulfur poisoning. Ni with a copper skin can mostly decrease the sulfur poisoning effect. Especially under the electric field of 1.0 V/Å, the sulfur adsorption and phase transition temperature can be further reduced. We therefore propose that Ni surfaces with copper skin can be very effective to improve the resistance to sulfur poisoning of the Ni anode under high electric field. - Highlights: • The electric field and Cu dopant effects on S poisoning feature of Ni are analyzed. • The present of large electric field can enhance S tolerance. • Cu dopant concentration affect the surface electronic structure of Ni. • 100% Cu doping on surface Ni layer can mostly decrease the sulfur poison.

  17. High-gain and low-excess noise near-infrared single-photon avalanche detector arrays (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing


    We have designed and developed a new family of photodetectors and arrays with Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions. These devices surpass many limitations of the Single Photon Avalanche Photodetectors such as ultra low excess noise factor, very high gain, lower reset time (researchers in the field of spectroscopy, industrial and scientific instrumentation, Ladar, quantum cryptography, night vision and other military, defense and aerospace applications.

  18. Failure Analysis and Recovery of a 50 MM Highly Elastic Intermetallic NiTi Ball Bearing for an ISS Application (United States)

    DellaCorte, Christopher; Howard, S. Adam; Moore, Lewis E., III


    The ISS Distillation Assembly centrifuge is the pathfinder application for 50mm bore, deep-groove ball bearings made from the highly elastic intermetallic material 60NiTi. Superior corrosion and shock resistance are required to withstand the acidic wastewater exposure and heavy spacecraft launch related loads that challenge conventional steel bearings. During early ground testing one bearing unexpectedly and catastrophically failed after operating for only 200 hours of run time. A second bearing running on the same shaft was completely unaffected. A thorough investigation into the root cause of the failure determined that an excessively tight press-fit of the bearing outer race coupled with NiTis relatively low elastic modulus were key contributing factors. The proposed failure mode was successfully duplicated by experiment. To further corroborate the root cause theory, a successful bearing life test using improved installation practices (selective fitting) was conducted. The results show that NiTi bearings are suitable for space applications provided that care is taken to accommodate their unique material characteristics.

  19. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys (United States)

    Wang, Jian; Zheng, Zhou; Xu, Jing; Wang, Yan


    In this paper, the effects of milling duration and composition on the microstructure and magnetic properties of equi-atomic FeSiBAlNi and FeSiBAlNiNb high entropy alloys during mechanical alloying have been investigated using X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy and alternating gradient magnetometry. The amorphous high entropy alloys have been successfully fabricated using the mechanical alloying method. The results show that the Nb addition prolongs the milling time for the formation of the fully FeSiBAlNi amorphous phase and decreases the glass forming ability. However, FeSiBAlNiNb amorphous high entropy alloy has the higher thermal stability and heat resisting properties. Moreover, the as-milled FeSiBAlNi(Nb) powders are soft-magnetic materials indicated by their low coercivity. The saturation magnetization of the as-milled FeSiBAlNi(Nb) powders decreases with prolonging of the milling time and shows the lowest value when the amorphous high entropy alloys are formed. It suggests that the as-milled products with solid solution phases show the better soft-magnetic properties than those with fully amorphous phases. The Nb addition does not improve the soft-magnetic properties of the FeSiBAlNi high entropy alloys. Rather, both amorphous high entropy alloys have similar soft-magnetic properties after a long milling time.

  20. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi


    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  1. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates. (United States)

    Kong, Xin; Wei, Yonghong; Xu, Shuang; Liu, Jianguo; Li, Huan; Liu, Yili; Yu, Shuyao


    Excessive acidification occurs frequently in food waste (FW) anaerobic digestion (AD) due to the high carbon-to-nitrogen ratio of FW. In this study, zero-valent iron (ZVI) was applied to prevent the excessive acidification. All of the control groups, without ZVI addition (pH∼5.3), produced little methane (CH4) and had high volatile fatty acids/bicarbonate alkalinity (VFA/ALK). By contrast, at OLR of 42.32gVS/Lreactor, the pH of effluent from the reactors with 0.4g/gVSFWadded of ZVI increased to 7.8-8.2, VFA/ALK decreased to <0.1, and the final CH4 yield was ∼380mL/gVSFWadded, suggesting inhibition of excessive acidification. After adding powdered or scrap metal ZVI to the acidogenic reactors, the fractional content of butyric acid changed from 30-40% to 0%, while, that of acetic acid increased. These results indicate that adding ZVI to FW digestion at high OLRs could eliminate excessive acidification by promoting butyric acid conversion and enhancing methanogen activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Chrome-Free Paint Primer for Zn/Ni Plated High-Strength Steel (Briefing Charts) (United States)


    Chrome -Free Paint Primer for Zn/Ni Plated High- Strength Steel 11-19-14 Presentation at ASETSDefense 2014 George Zafiris Team: Mark Jaworowski, Mike...AND SUBTITLE Chrome -Free Paint Primer for Zn/Ni Plated High-Strength Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6... Chrome -free Primer TCP LHE= Low Hydrogen Embrittlement CCC= Chromate (Cr6+) Conversion Coating TCP= Trivalent (Cr3+) Chromium Process  Regulatory EHS

  3. NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. (United States)

    Xu, Lin; Zheng, Ruifang; Liu, Shuhai; Song, Jian; Chen, Jiansheng; Dong, Biao; Song, Hongwei


    Novel NiO@ZnO heterostructured nanotubes (NTs) were fabricated by the coelectrospinning method, consisting of external hexagonal ZnO shell and internal cubic NiO NTs. They are carefully investigated by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy mapping, X-ray diffraction, and X-ray photoelectron spectroscopy techniques. A reasonable formation mechanism of the hierarchical NiO@ZnO NTs is proposed, which is discussed from the view of degradation temperature of different polymers and the amount of inorganic salts. They were then explored for fabrication of H(2)S gas sensors. The gas sensing test reveals that compared with the pure ZnO, NiO, and the ZnO-NiO mixed gas sensors, hierarchical gas sensor exhibits highly improved sensing performances to dilute hydrogen sulfide (H(2)S) gas. The response of the optimum NiO@ZnO NTs sensor to 50 ppm H(2)S increases as high as 2.7-23.7 times compared to the other sensors, whereas the response and recovery times also become shorter considerably. These enhanced gas sensing properties are closely related to the change of nanostructure and activity of ZnO and NiO nanocrystals as well as combination of homo- and heterointerfaces in the optimum gas sensor, which are confirmed by a series of well-designed experiments.

  4. The Dilatometric Analysis of the High Carbon Alloys from Ni-Ta-Al-M System

    Directory of Open Access Journals (Sweden)

    Bała P.


    Full Text Available In the following work presents results of high carbon alloys from the Ni-Ta-Al-M system are presented. The alloys have been designed to have a good tribological properties at elevated temperatures. Despite availability of numerous hot work tool materials there is still a growing need for new alloys showing unique properties, which could be used under heavy duty conditions, i.e. at high temperatures, in a chemically aggressive environment and under heavy wear conditions. A characteristic, coarse-grained dendritic microstructure occurs in the investigated alloys in the as-cast condition. Primary dendrites with secondary branches can be observed. Tantalum carbides of MC type and graphite precipitations are distributed in interdendritic spaces in the Ni-Ta-Al-C and Ni-Ta-Al-C-Co alloys, while Tantalum carbides of MC type and Chromium carbides of M7C3 type appeared in the Ni-Ta-Al-C-Co-Cr and Ni-Ta-Al-C-Cr alloys. In all alloys g’ phase is present, however, its volume fraction in the Ni-Ta-Al-C and Ni-Ta-Al-C-Co alloys is small.

  5. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures


    He, Feng; Wang, Zhijun; Wu, Qingfeng; Li, Junjie; Wang, Jincheng; Liu, C T


    The CoCrFeNi alloy is widely accepted as an exemplary stable base for high entropy alloys (HEAs). Although various investigations prove it to be stable solid solution, its phase stability is still suspicious. Here, we identified that the CoCrFeNi HEA was thermally metastable at intermediate temperatures, and composition decomposition occurred after annealed at 750oC for 800 hrs. The increased lattice distortion induced by minor addition of Al into the CoCrFeNi base accelerated the composition...

  6. Excessive somnolence

    Directory of Open Access Journals (Sweden)

    Stella Tavares

    Full Text Available Excessive somnolence can be quite a incapacitating manifestation, and is frequently neglected by physicians and patients. This article reviews the determinant factors, the evaluation and quantification of diurnal somnolence, and the description and treatment of the main causes of excessive somnolence.

  7. Excessive somnolence. (United States)

    Tavares, S; Alóe, F; Gentil, V; Scaff, M


    Excessive somnolence can be quite a incapacitating manifestation, and is frequently neglected by physicians and patients. This article reviews the determinant factors, the evaluation and quantification of diurnal somnolence, and the description and treatment of the main causes of excessive somnolence.

  8. Development of High-Strength High-Temperature Cast Al-Ni-Cr Alloys Through Evolution of a Novel Composite Eutectic Structure (United States)

    Pandey, P.; Kashyap, S.; Tiwary, C. S.; Chattopadhyay, K.


    Aiming to develop high-strength Al-based alloys with high material index (strength/density) for structural application, this article reports a new class of multiphase Al alloys in the Al-Ni-Cr system that possess impressive room temperature and elevated temperature (≥ 200 °C) mechanical properties. The ternary eutectic and near eutectic alloys display a complex microstructure containing intermetallic phases displaying hierarchically arranged plate and rod morphologies that exhibit extraordinary mechanical properties. The yield strengths achieved at room temperatures are in excess of 350 MPa with compressive plastic strains of more than 30 pct (without fracturing) for these alloys. The stability of the complex microstructure also leads to a yield stress of 191 ± 8 to 232 ± 5 MPa at 250 °C. It is argued that the alloys derive their high strength and impressive plasticity through synergic effects of refined nanoeutectics of two different morphologies forming a core shell type of architecture.

  9. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn. (United States)

    Mufarrege, M M; Hadad, H R; Di Luca, G A; Maine, M A


    The tolerance and removal efficiency of Typha domingensis exposed to high concentrations of Cr, Ni, and Zn in single and combined treatments were studied. Sediment and two plants were disposed in each plastic reactor. The treatments were 100 and 500 mg L(-1) of Cr, Ni, and Zn (single solutions); 100 mg L(-1) Cr + Ni + Zn (multi-metal solutions) and 500 mg L(-1) Cr + Ni + Zn (multi-metal solutions); and a control. Even though the concentrations studied were extremely high, simulating an accidental metal dump, the three metals were efficiently removed from water. The highest removal was registered for Cr. The presence of other metals favored Cr and did not favor Ni and Zn removal from water. After 25 days, senescence and chlorosis of plants were observed in Ni and Comb500 treatments, while Cr and Zn only caused growth inhibition. T. domingensis accumulated high metal concentrations in tissues. The roots showed higher metal concentration than submerged parts of leaves. Cr translocation to aerial parts was enhanced by the presence of Ni and Zn. Our results demonstrate that in the case of an accidental dump of high Cr, Ni, and Zn concentrations, a wetland system dominated by T. domingensis is able to retain metals, and the macrophyte is able to tolerate them the time necessary to remove them from water. Thus, the environment will be preserved since the wetland would act as a cushion.

  10. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong


    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  11. Construction of a Hierarchical NiCo2S4@PPy Core-Shell Heterostructure Nanotube Array on Ni Foam for a High-Performance Asymmetric Supercapacitor. (United States)

    Yan, Minglei; Yao, Yadong; Wen, Jiqiu; Long, Lu; Kong, Menglai; Zhang, Guanggao; Liao, Xiaoming; Yin, Guangfu; Huang, Zhongbing


    In this paper, a hierarchical NiCo2S4@polypyrrole core-shell heterostructure nanotube array on Ni foam (NiCo2S4@PPy/NF) was successfully developed as a bind-free electrode for supercapacitors. NiCo2S4@PPy-50/NF obtained under 50 s PPy electrodeposition shows a low charge-transfer resistance (0.31 Ω) and a high area specific capacitance of 9.781 F/cm(2) at a current density of 5 mA/cm(2), which is two times higher than that of pristine NiCo2S4/NF (4.255 F/cm(2)). Furthermore, an asymmetric supercapacitor was assembled using NiCo2S4@PPy-50/NF as positive electrode and activated carbon (AC) as negative electrode. The resulting NiCo2S4@PPy-50/NF//AC device exhibits a high energy density of 34.62 Wh/kg at a power density of 120.19 W/kg with good cycling performance (80.64% of the initial capacitance retention at 50 mA/cm(2) over 2500 cycles). The superior electrochemical performance can be attributed to the combined contribution of both component and unique core-shell heterostructure. The results demonstrate that the NiCo2S4@PPy-50 core-shell heterostructure nanotube array is promising as electrode material for supercapacitors in energy storage.

  12. Corrosion Behavior of NiCrFe Alloy 600 in High Temperature, Hydrogenated Water

    Energy Technology Data Exchange (ETDEWEB)

    SE Ziemniak; ME Hanson


    The corrosion behavior of Alloy 600 (UNS N06600) is investigated in hydrogenated water at 260 C. The corrosion kinetics are observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 0.055 mg dm{sup -2} hr{sup -1/2}. A combination of scanning and transmission electron microscopy, supplemented by energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction, are used to identify the oxide phases present (i.e., spinel) and to characterize their morphology and thickness. Two oxide layers are identified: an outer, ferrite-rich layer and an inner, chromite-rich layer. X-ray photoelectron spectroscopy with argon ion milling and target factor analysis is applied to determine spinel stoichiometry; the inner layer is (Ni{sub 0.7}Fe{sub 0.3})(Fe{sub 0.3}Cr{sub 0.7}){sub 2}O{sub 4}, while the outer layer is (Ni{sub 0.9}Fe{sub 0.1})(Fe{sub 0.85}Cr{sub 0.15}){sub 2}O{sub 4}. The distribution of trivalent iron and chromium cations in the inner and outer oxide layers is essentially the same as that found previously in stainless steel corrosion oxides, thus confirming their invariant nature as solvi in the immiscible spinel binary Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} (or NiFe{sub 2}O{sub 4}-NiCr{sub 2}O{sub 4}). Although oxidation occurred non-selectively, excess quantities of nickel(II) oxide were not found. Instead, the excess nickel was accounted for as recrystallized nickel metal in the inner layer, as additional nickel ferrite in the outer layer, formed by pickup of iron ions from the aqueous phase, and by selective release to the aqueous phase.

  13. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Karen B. Kelly


    Full Text Available Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA intake compared to adequate folic acid (AFA intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF diet or 60% energy high fat (HF diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05. Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA fed rats (p < 0.05. In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  14. Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys (United States)

    Mishra, Rajesh K.; Shahi, Rohit R.


    The report describes the effect of elemental addition (Mn and Co) on the phase evolution and magnetic properties of equiatomic TiFeNiCr based high entropy alloys (HEAs). HEAs were synthesized through mechanical alloying (MA) of constituent elements for different milling duration. XRD analysis confirms that simple solid solution of face cantered cubic structure is formed for all the three selected HEAs. Double FCC and a sigma phase are evolved for TiFeNiCr and TiFeNiCrMn HEAs. However, for TiFeNiCrCo HEA single FCC phase is formed. Synthesized HEAs show soft magnetic characteristics and the value of saturation magnetization increases as the content of magnetic element increases. Moreover, the investigation also describes the effect of annealing on phase evolution and magnetic properties of synthesized HEAs. The value of saturation magnetization altered for annealed TiFeNiCrM (M = Mn, Co) HEAs.

  15. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y


    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  16. MGI-oriented High-throughput Measurement of Interdiffusion Coefficient Matrices in Ni-based Superalloys

    Directory of Open Access Journals (Sweden)

    TANG Ying


    Full Text Available One of the research hotspots in the field of high-temperature alloys was to search the substitutional elements for Re in order to prepare the single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients in comparison with that of Re was one of the effective strategies. In multicomponent alloys, the interdiffusivity matrix were used to comprehensively characterize the diffusion ability of any alloying elements. Therefore, accurate determination of the composition-dependant and temperature-dependent interdiffusivities matrices of different elements in γ and γ' phases of Ni-based superalloys was high priority. The paper briefly introduces of the status of the interdiffusivity matrices determination in Ni-based superalloys, and the methods for determining the interdiffusivities in multicomponent alloys, including the traditional Matano-Kirkaldy method and recently proposed numerical inverse method. Because the traditional Matano-Kirkaldy method is of low efficiency, the experimental reports on interdiffusivity matrices in ternary and higher order sub-systems of the Ni-based superalloys were very scarce in the literature. While the numerical inverse method newly proposed in our research group based on Fick's second law can be utilized for high-throughput measurement of accurate interdiffusivity matrices in alloys with any number of components. After that, the successful application of the numerical inverse method in the high-throughput measurement of interdiffusivity matrices in alloys is demonstrated in fcc (γ phase of the ternary Ni-Al-Ta system. Moreover, the validation of the resulting composition-dependant and temperature-dependent interdiffusivity matrices is also comprehensively made. Then, this paper summarizes the recent progress in the measurement of interdiffusivity matrices in γ and γ' phases of a series of core ternary Ni-based superalloys achieved in

  17. Highly efficient combustion with low excess air in a modern energy-from-waste (EfW) plant. (United States)

    Strobel, Reto; Waldner, Maurice H; Gablinger, Helen


    The effect of low excess air and high adiabatic combustion temperatures on CO and NOx formation has been investigated on a commercially operated energy-from-waste plant. With optimal combination of low O2 levels and stable combustion control, uncontrolled NOx levels could be lowered to 100-150mg/Nm(3) (dry, at 11% O2) while keeping CO emissions at low levels. Even at adiabatic temperatures above 1400°C thermal NOx hardly contributed to the total NOx emissions in a grate-fired EfW plant. An advanced combustion control system allowed continuous operation with very little excess air (λ<1.2) while keeping CO and NOx at levels well below the legal emission limits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys (United States)

    Benafan, Othmane


    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  19. Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles. (United States)

    Lu, Haicui; Chen, Jizhang; Tian, Qinghua


    Wearable electronics are developing rapidly in recent years. In this work, we develop a cost-effective, facile, and scalable approach to transform insulating cotton textile to highly conductive Ni-coated cotton textile (NCT). In order to verify the feasibility of NCT as a flexible current collector for wearable supercapacitors, we electrodeposit low-crystalline Ni-Al layered double hydroxide (LDH) nanoparticles onto the NCT. The obtained NCT@NiAl-LDH shows high specific capacitance (935.2 mF cm -2 ), superior rate capability, and good cyclability. Besides, the asymmetric supercapacitor (ASC) assembled from NCT@NiAl-LDH exhibits high specific energy of 58.8 Wh kg -1 (134 μWh cm -2 ) when the specific power is 539 W kg -1 (1228 μW cm -2 ). The results demonstrate great potential of our methodology. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Mackey, D.B.; Pool, K.H. (Pacific Northwest Lab., Richland, WA (United States)); Schwenk, E.B. (Westinghouse Hanford Co., Richland, WA (United States))


    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction.

  1. Excessive Daytime Sleepiness

    Directory of Open Access Journals (Sweden)

    Yavuz Selvi


    Full Text Available Excessive daytime sleepiness is one of the most common sleep-related patient symptoms, with preva-lence in the community estimated to be as high as 18%. Patients with excessive daytime sleepiness may exhibit life threatening road and work accidents, social maladjustment, decreased academic and occupational performance and have poorer health than comparable adults. Thus, excessive daytime sleepiness is a serious condition that requires investigation, diagnosis and treatment primarily. As with most medical condition, evaluation of excessive daytime sleepiness begins a precise history and various objective and subjective tools have been also developed to assess excessive daytime sleepiness. The most common causes of excessive daytime sleepiness are insufficient sleep hygiene, chronic sleep deprivation, medical and psychiatric conditions and sleep disorders, such as obstructive sleep apnea, medications, and narcolepsy. Treatment option should address underlying contributors and promote sleep quantity by ensuring good sleep hygiene. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 114-132

  2. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys (United States)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.


    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  3. Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell

    NARCIS (Netherlands)

    Jeremiasse, A.W.; Hamelers, H.V.M.; Saakes, M.; Buisman, C.J.N.


    Valuable, “green” H2 can be produced with a microbial electrolysis cell (MEC). To achieve a high volumetric production rate of high purity H2, a continuous flow MEC with an anion exchange membrane, a flow through bioanode and a flow through Ni foam cathode was constructed. At an electrical energy

  4. Triple-Confined Well-Dispersed Biactive NiCo2S4/Ni0.96S on Graphene Aerogel for High-Efficiency Lithium Storage. (United States)

    Bai, Daxun; Wang, Fen; Lv, Jinmeng; Zhang, Fazhi; Xu, Sailong


    Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clay compounds, have attracted increasing interest in electrochemical energy storage, in the main form of LDH precursor-derived transition metal oxides (TMOs). One typical approach to improve cycling stability of the LDH-derived TMOs is to introduce one- and two-dimensional conductive carbonaceous supports, such as carbon nanotubes and graphene. We herein demonstrate an effective approach to improve the electrochemical performances of well-dispersed biactive NiCo2S4/Ni0.96S as anode nanomaterials for lithium-ion batteries (LIBs), by introducing a three-dimensional graphene aerogel (3DGA) support. The resultant 3DGA supported NiCo2S4/Ni0.96S (3DGA/NCS) composite, obtained by sulfuration of NiCo-layered double hydroxide (NiCo-LDH) precursor in situ grown on the 3DGA support (3DGA/NiCo-LDH). Electrochemical tests show that the 3DGA/NCS composite indeed delivers the greatly enhanced electrochemical performances compared with the NiCo2S4/Ni0.96S counterpart on two-dimensional graphene aerogel, i.e., a high reversible capacity of 965 mA h g(-1) after 200 cycles at 100 mA g(-1) and especially a superlong cycling stability of 620 mA h g(-1) after 800 cycles at 1 A g(-1). The enhancements could be ascribed to the compositional and structural advantages of boosting electrochemical performances: (i) well-dispersed NiCo2S4/Ni0.96S nanoparticles with interfacial nanodomains resulting from both the dual surface confinements of the 3DGA support and the crystallographic confinement of NiCo-well-arranged LDH crystalline layer, (ii) an appropriate specific surface area and a wide pore size distribution of mesopores and macropores, and (iii) highly conductive 3DGA support that is measured experimentally by using electrochemical impedance spectra to underlie the enhancement. Our results demonstrate that the tunable LDH precursor-derived synthesis route may be extended to prepare various transition metal sulfides

  5. Efficient Hydrogenolysis of Guaiacol over Highly Dispersed Ni/MCM-41 Catalyst Combined with HZSM-5

    Directory of Open Access Journals (Sweden)

    Songbai Qiu


    Full Text Available A series of MCM-41 supported Ni catalysts with high metal dispersion was successfully synthesized by simple co-impregnation using proper ethylene glycol (EG. The acquired Ni-based catalysts performed the outstanding hydrogenolysis activity of guaiacol. The effects of the synthesis parameters including drying temperature, calcination temperature, and metal loading on the physical properties of NiO nanoparticles were investigated through the use of X-ray diffraction (XRD. The drying temperature was found to significantly influence the particle sizes of NiO supported on MCM-41, but the calcination temperature and metal loading had less influence. Interestingly, the small particle size (≤3.3 nm and the high dispersion of NiO particles were also obtained for co-impregnation on the mixed support (MCM-41:HZSM-5 = 1:1, similar to that on the single MCM-41 support, leading to excellent hydrogenation activity at low temperature. The guaiacol conversion could reach 97.9% at 150 °C, and the catalytic activity was comparative with that of noble metal catalysts. The hydrodeoxygenation (HDO performance was also promoted by the introduction of acidic HZSM-5 zeolite and an 84.1% yield of cyclohexane at 240 °C was achieved. These findings demonstrate potential applications for the future in promoting and improving industrial catalyst performance.

  6. Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage (United States)

    Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling


    Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.

  7. Influence of preparation method on supported Cu-Ni alloys and their catalytic properties in high pressure CO hydrogenation

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Eriksen, Winnie L.; Duchstein, Linus Daniel Leonhard


    (50 bar CO and 50 bar H2). These alloy catalysts are highly selective (more than 99 mol%) and active for methanol synthesis; however, loss of Ni caused by nickel carbonyl formation is found to be a serious issue. The Ni carbonyl formation should be considered, if Ni-containing catalysts (even...... in alloyed form) are used under conditions with high partial pressure of CO. This journal is © The Royal Society of Chemistry....

  8. High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo (United States)

    Wang, Xiao-Yu; Li, Shuai; Wang, Guang; Ma, Zheng-Lai; Chuai, Manli; Cao, Liu; Yang, Xuesong


    High glucose levels induced by maternal diabetes could lead to defects in neural crest development during embryogenesis, but the cellular mechanism is still not understood. In this study, we observed a defect in chick cranial skeleton, especially parietal bone development in the presence of high glucose levels, which is derived from cranial neural crest cells (CNCC). In early chick embryo, we found that inducing high glucose levels could inhibit the development of CNCC, however, cell proliferation was not significantly involved. Nevertheless, apoptotic CNCC increased in the presence of high levels of glucose. In addition, the expression of apoptosis and autophagy relevant genes were elevated by high glucose treatment. Next, the application of beads soaked in either an autophagy stimulator (Tunicamycin) or inhibitor (Hydroxychloroquine) functionally proved that autophagy was involved in regulating the production of CNCC in the presence of high glucose levels. Our observations suggest that the ERK pathway, rather than the mTOR pathway, most likely participates in mediating the autophagy induced by high glucose. Taken together, our observations indicated that exposure to high levels of glucose could inhibit the survival of CNCC by affecting cell apoptosis, which might result from the dysregulation of the autophagic process. PMID:26671447

  9. Oxidation of CoCrFeMnNi High Entropy Alloys (United States)

    Holcomb, Gordon R.; Tylczak, Joseph; Carney, Casey


    Eight model high entropy alloys (HEAs) in the CoCrFeMnNi family (including one alloy each in the CoCrFeNi and CoFeMnNi subfamilies) were made, prepared, and exposed to laboratory air for 1100 h at 650°C and 750°C. Two commercial alloys, nickel-base superalloy 230 (N06230) and austenitic stainless steel 304H (S30409), were simultaneously exposed for comparison. Mass change oxidation kinetics were measured and cross-sections of exposed samples were observed. Seven of these HEAs contained much more Mn (12-24 wt.%) than is found in commercial heat-resistant stainless steels and superalloys. The oxidation resistance of CoCrFeNi was excellent and comparable to 304H at 650°C and only slightly worse at 750°C. The thin oxide scale on CoCrFeNi was primarily Cr oxide (presumably Cr2O3) with some Mn oxide at the outer part of the scale. The CoCrFeMnNi HEAs all experienced more rapid oxidation than CoCrFeNi and, especially at 750°C, experienced oxide scale spallation. The addition of Y in the alloy to lower S improved the oxidation resistance of these HEAs. Alloy CoFeMnNi, without Cr, experienced much higher oxidation rates and scale spallation than the Cr-containing alloys. A linear regression analysis of the log of the parabolic rate constant, log(kp), as functions of wt.% Cr and Mn found a good correlation for the compositional dependence of the oxidation rate constant, especially at 650°C. Mn was found to be more detrimental increasing log(k p) than Cr was helpful reducing log(k p). If CoCrFeMnNi HEAs are to be used in high temperature oxidizing environments, then examining lower levels of Mn, while maintaining Cr levels, should be pursued.

  10. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian, E-mail: [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Niu, Pengyun; Wei, Ting [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Hao, Liang [College of Architecture and Civil Engineering, Xi' an University of Science and Technology, Xi' an 710054 (China); Liu, Yunzi [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Wang, Xianhui, E-mail: [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an, Shaanxi 710048 (China); Peng, Yuli [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China)


    The AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying and the AlCoNiCrFe high-entropy alloy reinforced Cu matrix composites were subsequently fabricated by powder metallurgy. The phase constituents and morphology of the alloying powders were characterized by X-ray diffractometer and scanning electron microscope, the microstructures of the Cu base composites were characterized by scanning electron microscope and transmission electron microscope, and the compression tests were made as well. The results show that the AlCoNiCrFe high-entropy alloy can form after milling for 24 h. During sintering process, no grain growth occurs and no intermetallic phases present in the AlCoNiCrFe high-entropy alloy in the Cu base composite. Compression tests show that the AlCoNiCrFe high-entropy alloy has a better strengthening effect than metallic glasses and the yield strength of the Cu matrix composite reinforced with the AlCoNiCrFe high-entropy alloy is close to the value predicted by the Voigt model based on the equal strain assumption. - Graphical abstract: AlCoNiCrFe HEA has a better strengthening effect than metallic glasses for particulate reinforced metal matrix composites. The yield strength of the Cu base composite reinforced with the AlCoNiCrFe HEA is close to the upper bound calculated by Voigt model. - Highlights: • AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying. • A novel Cu base composite reinforced with AlCoNiCrFe was fabricated. • No grain growth and no intermetallic phase present in AlCoNiCrFe during sintering. • AlCoNiCrFe has a better strengthening effect than metallic glassy in composites.

  11. Highly alloyed Ni-W substrates for low AC loss applications (United States)

    Gaitzsch, Uwe; Hänisch, Jens; Hühne, Ruben; Rodig, Christian; Freudenberger, Jens; Holzapfel, Bernhard; Schultz, Ludwig


    Cube texture formation has been studied in Ni-W alloys with a W content of 9 at.% and above. These alloys show a low magnetization at 77 K and below, and are therefore excellent candidates for use as substrates of coated conductors in AC applications. The application of a modified deformation and annealing sequence leads to a highly textured surface of Ni9W and Ni9.5W tapes with cube texture fractions above 96%. YBCO (YBa2Cu3O7-δ) layers obtained on these substrates using a standard buffer architecture showed a critical current density exceeding 1.5 MA cm-2 at 77 K, similar to those for films on commercial Ni5W tapes. In contrast, only a weak cube texture was achieved in Ni10W tapes. The rolling texture of this alloy showed a significantly increased Goss component, which could not be reduced by applying intermediate annealing treatments. The influence of this texture on the cube texture formation will be discussed in detail.

  12. Effect of high energy milling on the microstruture and properties of wc-ni composite

    Directory of Open Access Journals (Sweden)

    Camila dos Santos Torres


    Full Text Available Hard metal is a composite material used in several areas of machining, mining and construction. It can be applied directly on oil and gas drilling equipment components. The main objective of this work was to apply a high energy milling technique to produce the WC-Ni composite and study the effects of milling time in the material properties. The milling of hard metal WC-20Ni, was performed for milling times of 1, 2, 4, 8, 16, 32 and 64 hours. The starting powders were characterized by laser sedigraphy, SEM and EDS. Microstrutural analysis of the sintered samples was performed by optical microscopy, microhardness and density by Archimedes. The best results for the WC-20%Ni composite were achieved for 8 hours milling, where the density and hardness reached 97.09% and 1058 ± 54 HV, respectively, after sintering.

  13. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.


    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.


    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Qiang [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Ioka, Kunihito [Theory Center, Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801 (Japan)


    Recent analyses of Fermi Large Area Telescope data show an extended GeV γ-ray excess on top of the expected diffuse background in the Galactic center region, which can be explained by annihilating dark matter (DM) or a population of millisecond pulsars (MSPs). We propose observations of very high energy (VHE) γ-rays to distinguish the MSP scenario from the DM scenario. GeV γ-ray MSPs should release most of their energy to the relativistic e{sup ±} wind, which will diffuse into the Galaxy and radiate TeV γ-rays through inverse Compton scattering and bremsstrahlung processes. By calculating the spectrum and spatial distribution, we show that such emission is detectable with the next generation VHE γ-ray observatory, the Cherenkov Telescope Array (CTA), under reasonable model parameters. It is essential to search for multi-wavelength counterparts to the GeV γ-ray excess in order to solve this mystery in the high-energy universe.

  15. Effect of dose and post irradiation annealing in Ni implanted high entropy alloy FeCrCoNi using slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya, S., E-mail:; Rajaraman, R.; Kalavathi, S.; David, C.; Panigrahi, B.K.; Amarendra, G.


    Defect characterization of room temperature 1.5 MeV Ni ion implanted high entropy FeCrCoNi alloy for two fluences (1 × 10{sup 15} ions/cm{sup 2} and 5 × 10{sup 16} ions/cm{sup 2}) was carried out using the variable low energy positron beam. The FCC solid solution remains robust and stable under 100 dpa irradiation and high temperature annealing. The change in the defect sensitive S-parameter upon implantation reveals the presence of monovacancies for both the doses. The changes in the defect microstructure upon thermal annealing are found to be dose dependent. The high dose shows the formation of stable stacking fault tetrahedrons (SFT's) from the aggregates of monovacancies at higher annealing temperatures while the low dose shows the annealing of monovacancies with temperature. - Highlights: • Defect characterization of room temperature Ni implanted high entropy FeCrCoNi alloy carried out using the slow positron beam. • The FCC FeCrCoNi remains structurally stable under both irradiation and high temperature annealing. • Defect evolution upon thermal annealing is found to be dose dependent.

  16. NiS(NPs)-PEDOT-PSS composite counter electrode for a high efficiency dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Maiaugree, Wasan [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Center for Alternative Energy Research and Development, Khon Kaen University, Khon Kaen 40002 (Thailand); Pimparue, Pachara; Jarernboon, Wirat [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Pimanpang, Samuk [Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Amornkitbamrung, Vittaya [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Swatsitang, Ekaphan, E-mail: [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Center for Alternative Energy Research and Development, Khon Kaen University, Khon Kaen 40002 (Thailand)


    Graphical abstract: Figure(a) and (b) represent models depict PEDOT-PSS counter electrodes of DSSC without and with NiS NPs modification, respectively. The active surface area of PEDOT-PSS polymer can be improved by combining with NiS(NPs). The I-V curves in figure (c) show the superior photovoltaic conversion efficiency of 8.18% for NiS(NPs)/PEDOT-PSS DSSC. - Highlights: • Active surface area of PEDOT-PSS CE can be improved by mixing with NiS(NPs). • Electrocatalytic activity of mixed NiS(NPs)/PEDOT-PSS polymer is also improved. • NiS(NPs)/PEDOT-PSS CE shows a very low charge transfer resistance of 0.46 Ω. • In this work, the high photovoltaic conversion efficiency of 8.18% is achieved. - Abstract: Nickel sulfide (NiS) nanoparticles (NPs) (NiS(NPs)) were prepared by the hydrothermal method. X-ray diffraction (XRD) results indicate the hexagonal structure of NiS(NPs). SEM micrographs reveal the agglomeration of irregular hexagonal – shaped NiS(NPs) with estimated particle size in the range of 50–150 nm. Counter electrodes (CEs) of dye-sensitized solar cells (DSSCs) were prepared by coating the composite slurry of different NiS(NPs) loadings and Poly (3, 4-Ethylendioxythiophene) – Poly (Styrene Sulfonate) (PEDOT-PSS) on fluoride-doped tin oxide (FTO) substrates using a doctor blading technique. Cyclic voltammetry (CV) results indicate that the composites of NiS(NPs) and PEDOT-PSS (NiS(NPs)/PEDOT-PSS) films could function as a catalyst for I{sub 3}{sup −} reduction with a maximum cell efficiency of 8.18% for a cell of 0.3 g NiS(NPs) loading.

  17. Order and Domain Strengthening in Highly Pure and Commercial Cu2NiZn

    NARCIS (Netherlands)

    Wegen, G.J.L. van der; Bronsveld, P.M.; Hosson, J.Th.M. De


    Vickers microhardness measurements are performed on the ordering alloy Cu2NiZn to determine the dependence of the strength upon the quench temperature and the antiphase domain size. The influence of impurities on the strength is investigated by performing the measurements on a highly pure and on a

  18. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Nan [Iowa State Univ., Ames, IA (United States)


    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al2O3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at

  19. High-Frequency Stimulation at the Subthalamic Nucleus Suppresses Excessive Self-Grooming in Autism-Like Mouse Models. (United States)

    Chang, Andrew D; Berges, Victoria A; Chung, Sunho J; Fridman, Gene Y; Baraban, Jay M; Reti, Irving M


    Approximately one quarter of individuals with an autism spectrum disorder (ASD) display self-injurious behavior (SIB) ranging from head banging to self-directed biting and punching. Sometimes, these behaviors are extreme and unresponsive to pharmacological and behavioral therapies. We have found electroconvulsive therapy (ECT) can produce life-changing results, with more than 90% suppression of SIB frequency. However, these patients typically require frequent maintenance ECT (mECT), as often as every 5 days, to sustain the improvement gained during the acute course. Long-term consequences of such frequent mECT started as early as childhood in some cases are unknown. Accordingly, there is a need for alternative forms of chronic stimulation for these patients. To explore the feasibility of deep brain stimulation (DBS) for intractable SIB seen in some patients with an ASD, we utilized two genetically distinct mouse models demonstrating excessive self-grooming, namely the Viaat-Mecp2(-/y) and Shank3B(-/-) lines, and administered high-frequency stimulation (HFS) via implanted electrodes at the subthalamic nucleus (STN-HFS). We found that STN-HFS significantly suppressed excessive self-grooming in both genetic lines. Suppression occurs both acutely when stimulation is switched on, and persists for several days after HFS is stopped. This effect was not explained by a change in locomotor activity, which was unaffected by STN-HFS. Likewise, social interaction deficits were not corrected by STN-HFS. Our data show STN-HFS suppresses excessive self-grooming in two autism-like mouse models, raising the possibility DBS might be used to treat intractable SIB associated with ASDs. Further studies are required to explore the circuitry engaged by STN-HFS, as well as other potential stimulation sites. Such studies might also yield clues about pathways, which could be modulated by non-invasive stimulatory techniques.

  20. Shock compression response of highly reactive Ni + Al multilayered thin foils (United States)

    Kelly, Sean C.; Thadhani, Naresh N.


    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compression response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ˜150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence

  1. Thin Films of Reduced Hafnium Oxide with Excess Carbon for High-Temperature Oxidation Protection (United States)


    contamination; thus the higher oxygen content found by XPS is partly due to organic impurities (and, possibly, water ) that are mostly concentrated in the...International Service Award, 2007. 25 REFERENCES ’C. B. Bargeron, R. C. Benson, and A. N. Jette , "High-Temperature Diffusion of Oxygen in Oxidizing Hafnium...A. N. Jette , and T. E. Phillips, "Oxidation of Hafnium Carbide in the Temperature Range 1400 ° to 2060 °C," Journal of the American Ceramic Society

  2. Are women who quit smoking at high risk of excess weight gain throughout pregnancy?


    Hulman, Adam; Lutsiv, Olha; Park, Christina K; Krebs, Lynette; Beyene, Joseph; McDonald, Sarah D


    Background Smoking cessation has been reported to be associated with high total gestational weight gain (GWG), which itself is a risk factor for adverse maternal-infant outcomes. Recent studies have criticized conventional single measures of GWG, since they may lead to biased results. Therefore, we aimed to compare patterns of GWG based on serial antenatal weight measurements between women who: never smoked, quit during pregnancy, continued to smoke. Methods Participants (N?=?509) of our long...

  3. The fcc-bcc crystallographic orientation relationship in AlxCoCrFeNi high-entropy alloys

    NARCIS (Netherlands)

    Rao, J. C.; Ocelik, V.; Vainchtein, D.; Tang, Z.; Liaw, P. K.; De Hosson, J. Th. M.


    This paper concentrates on the crystallographic-orientation relationship between the various phases in the Al-Co-Cr-Fe-Ni high-entropy alloys. Two types of orientation relationships of bcc phases (some with ordered B2 structures) and fcc matrix were observed in Al0.5CoCrFeNi and Al0.7CoCrFeNi alloys

  4. Serum testosterone levels and excessive erythrocytosis during the process of adaptation to high altitudes (United States)

    Gonzales, Gustavo F


    Populations living at high altitudes (HAs), particularly in the Peruvian Andes, are characterized by a mixture of subjects with erythrocytosis (16 g dl−121 g dl−1). Elevated haemoglobin values (EE) are associated with chronic mountain sickness, a condition reflecting the lack of adaptation to HA. According to current data, native men from regions of HA are not adequately adapted to live at such altitudes if they have elevated serum testosterone levels. This seems to be due to an increased conversion of dehydroepiandrosterone sulphate (DHEAS) to testosterone. Men with erythrocytosis at HAs show higher serum androstenedione levels and a lower testosterone/androstenedione ratio than men with EE, suggesting reduced 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activity. Lower 17beta-HSD activity via Δ4-steroid production in men with erythrocytosis at HA may protect against elevated serum testosterone levels, thus preventing EE. The higher conversion of DHEAS to testosterone in subjects with EE indicates increased 17beta-HSD activity via the Δ5-pathway. Currently, there are various situations in which people live (human biodiversity) with low or high haemoglobin levels at HA. Antiquity could be an important adaptation component for life at HA, and testosterone seems to participate in this process. PMID:23524530

  5. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions

    Directory of Open Access Journals (Sweden)

    Ding Xu


    Full Text Available Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar.

  6. Are women who quit smoking at high risk of excess weight gain throughout pregnancy? (United States)

    Hulman, Adam; Lutsiv, Olha; Park, Christina K; Krebs, Lynette; Beyene, Joseph; McDonald, Sarah D


    Smoking cessation has been reported to be associated with high total gestational weight gain (GWG), which itself is a risk factor for adverse maternal-infant outcomes. Recent studies have criticized conventional single measures of GWG, since they may lead to biased results. Therefore, we aimed to compare patterns of GWG based on serial antenatal weight measurements between women who: never smoked, quit during pregnancy, continued to smoke. Participants (N = 509) of our longitudinal study were recruited from seven antenatal clinics in Southwestern Ontario. Serial GWG measurements were abstracted from medical charts, while information on smoking status was obtained from a self-administered questionnaire at a median gestational age of 32 (27-37) weeks. GWG patterns were assessed by fitting piecewise mixed-effects models. First trimester weight gains and weekly rates for the last two trimesters were compared by smoking status. During the first trimester, women who never smoked and those who quit during pregnancy gained on average 1.7 kg (95 % CI: 1.4-2.1) and 1.2 kg (0.3-2.1), respectively, whereas women who continued smoking gained more than twice as much (3.5 kg, 2.4-4.6). Weekly rate of gain in the second and third trimesters was highest in women who quit smoking (0.60 kg/week, 0.54-0.65), approximately 20 and 50 % higher than in women who never smoked and those who smoked during pregnancy, respectively. In this longitudinal study to examine GWG by smoking status based on serial GWG measurements, we found that women who quit smoking experienced a rapid rate of gain during the last two trimesters, suggesting that this high-risk group may benefit from targeted interventions.

  7. High-performance PdNi alloy structured in situ on monolithic metal foam for coalbed methane deoxygenation via catalytic combustion. (United States)

    Zhang, Qiaofei; Wu, Xin-Ping; Zhao, Guofeng; Li, Yakun; Wang, Chunzheng; Liu, Ye; Gong, Xue-Qing; Lu, Yong


    A monolithic Ni-foam@PdNi(alloy) catalyst is tailored for coalbed methane deoxygenation via galvanically depositing Pd nanoparticles on a Ni-foam surface followed by in situ activation. Experimental and theoretical studies unanimously reveal that the in situ formed PdNi alloy contributes to high activity/selectivity, good stability and oscillation elimination.

  8. KCl-Induced High-Temperature Corrosion Behavior of HVAF-Sprayed Ni-Based Coatings in Ambient Air (United States)

    Jafari, Reza; Sadeghimeresht, Esmaeil; Farahani, Taghi Shahrabi; Huhtakangas, Matti; Markocsan, Nicolaie; Joshi, Shrikant


    KCl-induced high-temperature corrosion behavior of four HVAF-sprayed Ni-based coatings (Ni21Cr, Ni5Al, Ni21Cr7Al1Y and Ni21Cr9Mo) under KCl deposit has been investigated in ambient air at 600 °C up to 168 h. The coatings were deposited onto 16Mo3 steel—a widely used boiler tube material. Uncoated substrate, 304L and Sanicro 25 were used as reference materials in the test environment. SEM/EDS and XRD techniques were utilized to characterize the as-sprayed and exposed samples. The results showed that the small addition of KCl significantly accelerated degradation to the coatings. All coatings provided better corrosion resistance compared to the reference materials. The alumina-forming Ni5Al coating under KCl deposit was capable of forming a more protective oxide scale compared to the chromia-forming coatings as penetration of Cl through diffusion paths was hindered. Both active corrosion and chromate formation mechanisms were found to be responsible for the corrosion damages. The corrosion resistance of the coatings based on the microstructure analysis and kinetics had the following ranking (from the best to worst): Ni5Al > Ni21Cr > Ni21Cr7Al1Y > Ni21Cr9Mo.

  9. High temperature growth kinetics and texture of surface-oxidised NiO for coated superconductor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kursumovic, A.; Tomov, R.; Huehne, R.; Glowacki, B.A.; Everts, J.E.; Tuissi, A.; Villa, E.; Holzapfel, B


    Thick NiO films were grown in air, on biaxially textured (0 0 1) Ni and as-rolled Ni tapes, at temperatures from 1050 to 1350 deg. C. Ni diffusion through the NiO film mainly contributes to the growth since is much faster than oxygen diffusion and occurs by a vacancy diffusion mechanism in the lattice at high temperatures. Parabolic growth kinetics were found for both NiO film thickness and grain growth, and compared with the literature data. Competitive growth of (1 1 1) and (0 0 1) oriented grains establishes the final NiO orientation at temperatures below 1250 deg. C, while at higher temperatures leakage diffusion at/towards grain boundaries, grain coarsening and (1 1 0) oriented grains disrupt the (1 0 0) texture. Hence, development of epitaxy of NiO on textured Ni tapes was found to be largely due to growth kinetics depending on both, time and temperature. We report here a systematic study of the microstructure and kinetics of formation of textured NiO substrate for application as a buffer layer in coated conductor technology.

  10. Hierarchical nanosheet-based Ni3S2 microspheres grown on Ni foam for high-performance all-solid-state asymmetric supercapacitors (United States)

    Li, Gaofeng; Cong, Yuan; Zhang, Chuanxiang; Tao, Haijun; Sun, Yueming; Wang, Yuqiao


    The hierarchical nanosheet-based Ni3S2 microspheres directly grew on Ni foam using a two-step hydrothermal method. The microsphere with a diameter of ˜1 microns and a rough surface was well connected to each other without any binders to provide a larger specific surface area, shorter ion/electron diffusion paths, richer electroactive sites as a supercapacitor electrode. As a three-electrode supercapacitor, it delivers a high specific capacity of 981.8 F g-1 at 2 A g-1, an excellent rate capability of 436.4 F g-1 at 12 A g-1, and a good cycling stability of 950.9 F g-1 with 96.9% retention after 1000 cycles at 2 A g-1. Furthermore, an asymmetric supercapacitor based on Ni3S2-microsphere as a positive electrode and active carbon as a negative electrode shows a high energy density of 29.4 Wh kg-1 at 324.5 W kg-1 and a high power density of 3197.6 W kg-1 at 15.1 Wh kg-1. This work demonstrates that nanosheet-based Ni3S2 microspheres coated Ni foam can be an effective electrode for a real supercapacitor.

  11. Nanoflakes of Ni-Co LDH and Bi2O3Assembled in 3D Carbon Fiber Network for High-Performance Aqueous Rechargeable Ni/Bi Battery. (United States)

    Li, Xin; Guan, Cao; Hu, Yating; Wang, John


    For aqueous nickel/metal batteries, low energy density and poor rate properties are among the limiting factors for their applications, although they are the energy storage systems with high safety, high capacity, and low production cost. Here, we have developed a class of active materials consisting of porous nanoflakes of Ni-Co hydroxides and Bi 2 O 3 that are successfully assembled on carbon substrates of carbon cloth/carbon nanofiber 3D network (CC/CNF). The combination of the porous Ni-Co hydroxides/Bi 2 O 3 nanoflakes with carbon substrate of 3D network is able to provide a large surface area, excellent conductivity, and promote synergistic effects, as a result of the interaction between the active materials and the carbon matrix. With the porous Ni-Co hydroxides and Bi 2 O 3 nanoflakes, the Ni/Bi battery can deliver a high capacity of ∼110 mA h g -1 at a current density of 2 A g -1 . About 80% of its capacity (85 mA h g -1 ) can be retained when the current density increases to 20 A g -1 . The full cell can also maintain 93% of the initial capacity after 1000 charge/discharge cycles, showing great potential for Ni/Bi battery.

  12. High-temperature Mossbauer spectroscopy of mechanically milled NiFe2O4

    DEFF Research Database (Denmark)

    Helgason, O.; Jiang, Jianzhong


    Oxide spinels, in particular those containing iron, often exhibit technically important electrical- and magnetic-properties. We report here on X-ray powder diffraction and Mossbauer studies of nanostructured NiFe2O4 particles prepared by high-energy ball milling from bulk NiFe2O4, which is an inv......Oxide spinels, in particular those containing iron, often exhibit technically important electrical- and magnetic-properties. We report here on X-ray powder diffraction and Mossbauer studies of nanostructured NiFe2O4 particles prepared by high-energy ball milling from bulk NiFe2O4, which...... is an inverse spinel. The Mossbauer spectra were recorded in situ at different temperatures in the range of 300-850 K. The Mossbauer spectra of the milled samples show a broad distribution of magnetic hyperfine fields together with a paramagnetic state at room temperature. Initially, at 700 K the spectrum...... is mainly paramagnetic, but during the process of annealing, magnetic sextets emerge. The treatment results in a significant change in the B/A area ratio of the ferrite. The Neel temperature of the samples is estimated from the B(T) relation to be in the range of 800-850 K....

  13. Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability

    Directory of Open Access Journals (Sweden)

    Haozhe Zhang


    Full Text Available The overall electrochemical performances of Ni–Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery with outstanding durability and high power density based on self-supported NiCo2O4 nanosheets as cathode and Zn nanosheets as anode. This Ni//Zn battery is able to deliver a remarkable capacity of 183.1 mAh g−1 and a good cycling performance (82.7% capacity retention after 3500 cycles. More importantly, this battery achieves an admirable power density of 49.0 kW kg−1 and energy density of 303.8 Wh kg−1, substantially higher than most recently reported batteries. With such excellent electrochemical performance, this battery will have great potential as an ultrafast power source in practical application.

  14. Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery. (United States)

    Lee, Dong Un; Fu, Jing; Park, Moon Gyu; Liu, Hao; Ghorbani Kashkooli, Ali; Chen, Zhongwei


    Herein, a proof-of-concept of novel hybrid rechargeable battery based on electrochemical reactions of both nickel-zinc and zinc-air batteries is demonstrated using NiO/Ni(OH)2 nanoflakes self-assembled into mesoporous spheres as the active electrode material. The hybrid battery operates on two sets of fundamentally different battery reactions combined at the cell level, unlike in other hybrid systems where batteries of different reactions are simply connected through an external circuitry. As a result of combining nickel-zinc and zinc-air reactions, the hybrid battery demonstrates both remarkably high power density (volumetric, 14 000 W L(-1); gravimetric, 2700 W kg(-1)) and energy density of 980 W h kg(-1), significantly outperforming the performances of a conventional zinc-air battery. Furthermore, the hybrid battery demonstrates excellent charge rate capability up to 10 times faster than the rate of discharge without any capacity and voltage degradations, which makes it highly suited for large-scale applications such as electric vehicle propulsion and smart-grid energy storage.

  15. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact. (United States)

    Yin, Xuewen; Yao, Zhibo; Luo, Qiang; Dai, Xuezeng; Zhou, Yu; Zhang, Ye; Zhou, Yangying; Luo, Songping; Li, Jianbao; Wang, Ning; Lin, Hong


    NiOx is a promising hole-transporting material for perovskite solar cells due to its high hole mobility, good stability, and easy processability. In this work, we employed a simple solution-processed NiOx film as the hole-transporting layer in perovskite solar cells. When the thickness of the perovskite layer increased from 270 to 380 nm, the light absorption and photogenerated carrier density were enhanced and the transporting distance of electron and hole would also increase at the same time, resulting in a large charge transfer resistance and a long hole-extracted process in the device, characterized by the UV-vis, photoluminescence, and electrochemical impedance spectroscopy spectra. Combining both of these factors, an optimal thickness of 334.2 nm was prepared with the perovskite precursor concentration of 1.35 M. Moreover, the optimal device fabrication conditions were further achieved by optimizing the thickness of NiOx hole-transporting layer and PCBM electron selective layer. As a result, the best power conversion efficiency of 15.71% was obtained with a Jsc of 20.51 mA·cm-2, a Voc of 988 mV, and a FF of 77.51% with almost no hysteresis. A stable efficiency of 15.10% was caught at the maximum power point. This work provides a promising route to achieve higher efficiency perovskite solar cells based on NiO or other inorganic hole-transporting materials.

  16. High voltage 4H SiC rectifiers using Pt and Ni metallization

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, V.; Steckl, A.J. [Cincinnati Univ., OH (United States). Nanoelectronic Lab.


    We have fabricated high voltage 4H SiC rectifier diodes using Ni and Pt as metals for the Schottky contacts. At a current density of 100 A/cm{sup 2}, these diodes had a forward voltage drop of 1.76 and 1.86 V, respectively. Both Ni- and Pt-SiC diodes had breakdown voltages >1000 V. Pt-based SiC diodes exhibited a higher on-off current ratio (>10{sup 8}) and lower ideality factor (1.11) at room temperature than the Ni-based diodes (>10{sup 6} and 1.29). The diodes were operated at elevated temperatures up to 450 C for forward bias and 300 C for reverse bias. The room temperature barrier height of Ni on 4H SiC was determined to be 1.31 eV and the specific on-resistance of the diodes was found to be {proportional_to}8 m{Omega}-cm{sup 2}. (orig.) 9 refs.

  17. CoO/NiSi(x) core-shell nanowire arrays as lithium-ion anodes with high rate capabilities. (United States)

    Qi, Yue; Du, Ning; Zhang, Hui; Fan, Xing; Yang, Yang; Yang, Deren


    This paper describes a facile chemical vapor deposition (CVD) and subsequent radio-frequency (RF)-sputtering approach for the synthesis of CoO/NiSi(x) core-shell nanowire (NW) arrays on Ni foams. The metallic core (i.e., NiSi(x)) with high conductivity acts as a nanostructured current collector. The as-synthesized CoO/NiSi(x) core-shell NW arrays have been applied as anode materials for lithium-ion batteries, which deliver high cycle life and enhanced power performance compared to planar CoO electrodes on Ni foams. The high surface-to-volume ratio and improved electronic/ionic conductivity of the nanostructured electrodes may be responsible for the improved performance. This journal is © The Royal Society of Chemistry 2012

  18. Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction (United States)

    Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon


    Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.

  19. Oxygen reduction reaction on a highly-alloyed Pt-Ni supported carbon electrocatalyst in acid solution

    CSIR Research Space (South Africa)

    Zheng, H


    Full Text Available . In this work, Pt3Ni/C alloy electrocatalysts were synthesised by a simple route at low temperature, resulting in a highly-alloyed product with high ORR activity and excellent methanol tolerance...

  20. Effects of nutritional and excessive levels of selenium on red blood cells of rats fed a high cholesterol diet. (United States)

    Harisa, Gamaleldin I; Abo-Salem, Osama M; El-sayed, El-sayed M; Shazly, Gamal


    In this study, we investigated the effects of selenium (Se) on the properties of erythrocytes and atherogenic index in the presence and absence of high cholesterol diet (HCD). The effect of selected two different doses (1 μg and 50 μg Se/kg/body weight) on HCD-induced oxidative stress was investigated. The hemolysis of the erythrocytes of the HCD rats as well as by high levels of selenium or their combination was markedly increased. Likewise, atherogenic index and plasma glutathione peroxidase (GPx) activity were significantly increased in the same groups of rats compared to control ones. In contrast, paraoxonase activity, glutathione levels and protein thiol levels, catalase, GPx, and superoxide dismutase activities were significantly decreased in rats that received the HCD, high selenium dose, or their combination. Malondialdehyde and protein carbonyl levels in the plasma and red blood cells were significantly increased by HCD and high selenium dose administration. Co-administration of selenium at low dose with or without an HCD restored all of the investigated parameters to near-normal values. The results of this study suggest that excess selenium administration with HCD worsens the atherogenic index and enhances formation of oxidized red blood cells. At dosage levels in the nutritional range such as 1 μg Se/kg body weight, selenium ameliorates the atherogenic index and preserves the antioxidant capacity of the erythrocytes.

  1. Transmission Electron Microscopy Characterization of Ni(V) Metallization Stressed Under High Current Density in Flip Chip Solder Joints (United States)

    Tsai, M. Y.; Lin, Y. L.; Lin, Y. W.; Ke, J. H.; Kao, C. R.


    The Ni(V) under bump metallization (UBM) in flip chip solder joints is known to be consumed in a two-stage process during current stressing. The Ni(V) UBM transforms first to the “consumed Ni(V)” state. Then, this consumed Ni(V) transforms to a so-called porous structure. In this study, the details of the consumed Ni(V) and the porous structure were analyzed by transmission electron microscopy. Bright-field images showed that the consumed Ni(V) was a continuous layer without columnar structures and that the porous structure had many voids in the matrix. The compositional analyses showed that V atoms were immobile and trapped in the original Ni(V) layer. Cu and Sn atoms diffused into the original Ni(V) layer, and Ni atoms diffused outward. Selected-area diffraction patterns and high-resolution transmission electron microscopy of the porous structure showed that it was composed of an amorphous matrix with fine crystalline Cu6Sn5 and VSn2 phases.

  2. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao, E-mail:


    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27{sup Kip1} and p21{sup Cip1}, were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. - Highlights: • HFD induced-obesity leads to abnormal ovarian morphology. • HFD induced-obesity triggers excessive apoptosis in the ovary. • HFD induced-obesity up-regulates cell cycle inhibitors p21{sup Cip1} and p27{sup Kip1} in the ovary. • HFD induced-obesity causes cell cycle arrest in the ovary.

  3. Exploiting NiTi shape memory alloy films in design of tunable high frequency microcantilever resonators (United States)

    Stachiv, I.; Sittner, P.; Olejnicek, J.; Landa, M.; Heller, L.


    Shape memory alloy (SMA) films are very attractive materials for microactuators because of their high energy density. However, all currently developed SMA actuators utilize martensitic transformation activated by periodically generated heating and cooling; therefore, they have a slow actuation speed, just a few Hz, which restricts their use in most of the nanotechnology applications such as high frequency microcantilever based physical and chemical sensors, atomic force microscopes, or RF filters. Here, we design tunable high frequency SMA microcantilevers for nanotechnology applications. They consist of a phase transforming NiTi SMA film sputtered on the common elastic substrate material; in our case, it is a single-crystal silicon. The reversible tuning of microcantilever resonant frequencies is then realized by intentionally changing the Young's modulus and the interlayer stress of the NiTi film by temperature, while the elastic substrate guarantees the high frequency actuation (up to hundreds of kHz) of the microcantilever. The experimental results qualitatively agree with predictions obtained from the dedicated model based on the continuum mechanics theory and a phase characteristic of NiTi. The present design of SMA microcantilevers expands the capability of current micro-/nanomechanical resonators by enabling tunability of several consecutive resonant frequencies.

  4. Microstructural evolution and corrosion behavior of directionally solidified FeCoNiCrAl high entropy alloy

    Directory of Open Access Journals (Sweden)

    Cui Hongbao


    Full Text Available The FeCoNiCrAl alloys have many potential applications in the fields of structural materials, but few attempts were made to characterize the directional solidification of high entropy alloys. In the present research, the microstructure and corrosion behavior of FeCoNiCrAl high entropy alloy have been investigated under directional solidification. The results show that with increasing solidification rate, the interface morphology of the alloy evolves from planar to cellular and dendritic. The electrochemical experiment results demonstrate that the corrosion products of both non-directionally and directionally solidified FeCoNiCrAl alloys appear as rectangular blocks in phases which Cr and Fe are enriched, while Al and Ni are depleted, suggesting that Al and Ni are dissolved into the NaCl solution. Comparison of the potentiodynamic polarization behaviors between the two differently solidified FeCoNiCrAl high entropy alloys in a 3.5%NaCl solution shows that the corrosion resistance of directionally solidified FeCoNiCrAl alloy is superior to that of the non-directionally solidified FeCoNiCrAl alloy.

  5. Very high-gain and low-excess noise near-infrared single-photon avalanche detector: an NIR solid state photomultiplier (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing


    A new family of photodetectors with a Discrete Amplification (DA) mechanism allows the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions and offers an alternative to conventional photomultiplier tubes and Geiger mode avalanche photodetectors. These photodetectors can operate in linear detection mode with gain-bandwidth product in excess of 4X1014 and in photon counting mode with count rates up to 108 counts/sec. Potential benefits of this technology over conventional avalanche photodetectors include ultra low excess noise factor, very high gain, and lower reset time ( 2X105, excess noise factor researchers in the field of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defence and aerospace applications.

  6. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qingfeng [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Feng, Kai, E-mail: [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Zhuguo, E-mail: [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Lu, Fenggui [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Ruifeng [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 (China); Huang, Jian; Wu, Yixiong [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China)


    Highlights: • Equimolar CrMnFeCoNi high entropy alloy coating are prepared by laser cladding. • The cladding layer forms a simple FCC phase solid solution with identical dendritic structure. • The cladding layer exhibits a noble corrosion resistance in both 3.5 wt.% NaCl and 0.5 M sulfuric acid. • Element segregation makes Cr-depleted interdendrites the starting point of corrosion reaction. - Abstract: Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower i{sub corr} than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted R{sub t} value reaches its maximum at 24 h during a 48 h’ immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H{sub 2}SO{sub 4} reveals that corrosion starts from Cr-depleted interdendrites.

  7. Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure (United States)

    Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector


    Diluted alloys of the binary system Ni-Si have been used as target of beam of ions, electrons, neutrons and so on because in this kind of alloy occurs transformations order-disorder, when the temperature is raised. This fact has permitted to evaluate the phenomena associated with the damage induced by irradiation (DII). The results of these works have been employed to understand the behavior under irradiation of complex alloys and to evaluate the reliability of the results of mathematical simulation of the evolution of the DII. The interest in the alloy system Ni-Si has been reborn due to the necessity of developing materials, which have better resistance against the corrosion on more aggressive environments such as those generated on the nuclear power plants or those that exist out of the Earth's atmosphere. Now, a growing interest to use concentrated alloys of this binary system on diverse fields of the materials science has been taking place because up to determined concentration of silicon, a regular eutectic is formed, and this fact opens the possibility to develop lamellar composite material by directional solidification. However, nowadays, there is a lack of fundamental knowledge about the behavior of this type of lamellar structure under aggressive environments, like those mentioned before. Hence, the task of this work is to evaluate the effect that has the irradiation over the microstructure of the concentrated alloy Ni22at%Si. The dendritic region of the hypereutectic alloy consists of an intermetallic phase Ni3Si, whereas the interdendritic region is formed by the alternation of lamellas of solid solution α-Ni and intermetallic phase Ni3Si. Such kind of microstructure has the advantage to get information of the DII over different phases individually, and at the same time, about of the microstructure influence over the global damage in the alloy. The hypereutectic Ni22at%Si alloy was irradiated perpendicularly to its surface, with 3.66 MeV - Ni ions up

  8. Characterization of High Dose Mn, Fe, and Ni implantation into p-GaN

    CERN Document Server

    Pearton, S J; Thaler, G; Abernathy, C R; Theodoropoulou, N; Hebard, A F; Chu, S N G; Wilson, R G; Zavada, J M; Polyakov, A Y; Osinsky, A V; Norris, P E; Chow, P P; Wowchack, A M; Hove, J M V; Park, Y D


    The magnetization of p-GaN or p-AlGaN/GaN superlattices was measured after implantation with high doses (3-5x10 sup 1 sup 6 cm sup - sup 2) of Mn, Fe, or Ni and subsequent annealing at 700-1000 deg. C. The samples showed ferromagnetic contributions below temperatures ranging from 190-250 K for Mn to 45-185 K for Ni and 80-250 K for Fe. The use of superlattices to enhance the hole concentration did not produce any change in ferromagnetic ordering temperature. No secondary phase formation was observed by x-ray diffraction, transmission electron microscopy, or selected area diffraction pattern analysis for the doses we employed.

  9. Additive Manufacturing of NiTiHf High Temperature Shape Memory Alloy (United States)

    Benafan, Othmane; Bigelow, Glen S.; Elahinia, Mohammad; Moghaddam, Narges Shayesteh; Amerinatanzi, Amirhesam; Saedi, Soheil; Toker, Guher Pelin; Karaca, Haluk


    Additive manufacturing of a NiTi-20Hf high temperature shape memory alloy (HTSMA) was investigated. A selective laser melting (SLM) process by Phenix3D Systems was used to develop components from NiTiHf powder (of approximately 25-75 m particle fractions), and the thermomechanical response was compared to the conventionally vacuum induction skull melted counterpart. Transformation temperatures of the SLM material were found to be slightly lower due to the additional oxygen pick up from the gas atomization and melting process. The shape memory response in compression was measured for stresses up to 500 MPa, and transformation strains were found to be very comparable (Up to 1.26 for the as-extruded; up to 1.52 for SLM).

  10. Synthesis of Highly Branched Polyolefins Using Phenyl Substituted α-Diimine Ni(II Catalysts

    Directory of Open Access Journals (Sweden)

    Fuzhou Wang


    Full Text Available A series of α-diimine Ni(II complexes containing bulky phenyl groups, [ArN = C(NaphthC = NAr]NiBr2 (Naphth: 1,8-naphthdiyl, Ar = 2,6-Me2-4-PhC6H2 (C1; Ar = 2,4-Me2-6-PhC6H2 (C2; Ar = 2-Me-4,6-Ph2C6H2 (C3; Ar = 4-Me-2,6-Ph2C6H2 (C4; Ar = 4-Me-2-PhC6H3 (C5; Ar = 2,4,6-Ph3C6H2 (C6, were synthesized and characterized. Upon activation with either diethylaluminum chloride (Et2AlCl or modified methylaluminoxane (MMAO, all Ni(II complexes showed high activities in ethylene polymerization and produced highly branched amorphous polyethylene (up to 145 branches/1000 carbons. Interestingly, the sec-butyl branches were observed in polyethylene depending on polymerization temperature. Polymerization of 1-alkene (1-hexene, 1-octene, 1-decene and 1-hexadecene with C1-MMAO at room temperature resulted in branched polyolefins with narrow Mw/Mn values (ca. 1.2, which suggested a living polymerization. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature and types of monomers.

  11. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation (United States)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang


    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  12. Microstructure and texture development during high-strain torsion of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kloeden, B.


    In this study polycrystalline NiAl has been subjected to torsion deformation. The deformation, microstructure and texture development subject to the shear strain are studied by different techniques (Electron Back-Scatter and High Energy Synchrotron Radiation). Beside the development of microstructure and texture with shear strain, the effect of an initial texture as well as the deformation temperature on the development of texture and microstructure constitute an important part of this study. Therefore, samples with three different initial textures were deformed in the temperature range T=700 K-1300 K. The shear stress-shear strain curves are characterized by a peak at low strains, which is followed by softening and a steady state at high strains. Grain refinement takes place for all samples and the average grain size decreases with temperature. For temperatures T>1000 K, discontinuous dynamic recrystallization occurs, by which new grains form by nucleation and subsequent growth. The texture is characterized by two components, {l_brace}100{r_brace}<100> (cube,C) and {l_brace}110{r_brace}<100> (Goss,G). Torsional creep of NiAl is characterized by a stress exponent, which depends on temperature and an activation energy, which is stress dependent. The Swift effect, due to which samples change their axial dimension during torsion without applied axial stress, is observed for NiAl. (orig.)

  13. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells (United States)

    Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon


    In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm-2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.

  14. High Temperature Sliding Wear of NiAl-based Coatings Reinforced by Borides

    Directory of Open Access Journals (Sweden)

    Oleksandr UMANSKYI


    Full Text Available The development of composite materials (CM in the systems “metal-refractory compound” is one of the up-to-date trends in design of novel materials aimed at operating under the conditions of significant loads at high temperature. To design such material, NiAl, which is widely used for deposition of protective coatings on parts of gas-turbine engines, was selected for a matrix. To strengthen a NiAl under the conditions of intense wear and a broad temperature range (up to 1000 °C, it is reasonable to add refractory inclusions. Introduction of refractory borides into matrix leads to a marked increase in metal wear resistance. In order to research the behavior of the designed composites at high temperatures and to study the influence of oxides on the friction processes, the authors carried out high temperature oxidation of CM of the above systems at 1000 °С for 90 min. It was determined that all of the composites were oxidized selectively and that the thickness of oxide layers formed on the boride inclusions is 3 – 7 times that on the oxides formed on the NiAl matrix. The mechanism of wear of gas-thermal coatings of the NiAl – МеB2 systems was studied for conditions of high temperature tribotests using the «pin-on-disc» technique. The obtained results indicate that introduction of TiB2, CrB2 and ZrB2 leads to their more intense oxidation during high temperature tribotests as compared to the matrix. The oxides formed on refractory borides act as solid lubricants, which promote a decrease in wear of the contact friction pairs. For more detailed investigation of the effect of tribo-oxidation products on the friction processes, tribotests were conducted for prior oxidized (at 900 °С coatings NiAl – 15 wt.% CrB2 (TiB2, ZrB2.DOI:

  15. Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application

    Directory of Open Access Journals (Sweden)

    Josh Y.Z. Chiou


    Full Text Available A novel one-step direct synthesis of nickel embedded in an ordered mesoporous carbon catalyst (NiOMC is done in a basic medium of nonaqueous solution by a solvent evaporation-induced self-assembly process. The NiOMC sample is characterized by a variety of analytical and spectroscopy techniques, e.g., N2 adsorption/desorption isotherm measurement, X-ray diffraction (XRD, transmission electron microscopy (TEM and temperature-programed reduction (TPR. In this study, the NiOMC catalyst is found to exhibit superior catalytic activity for the steam reforming of ethanol (SRE, showing high hydrogen selectivity and durability. Ethanol can be completely converted at 350 °C over the NiOMC catalyst. Also, the durability of the NiOMC catalyst on the SRE reaction exceeds 100 h at 450 °C, with SH2 approaching 65% and SCO of less than 1%.

  16. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil (United States)

    Liu, Jing; He, Jing; Wang, Luying; Li, Rong; Chen, Pan; Rao, Xin; Deng, Lihong; Rong, Long; Lei, Jiandu


    Nickel oxide (NiO) and phosphotungstic acid (PTA) supported on a ZIF-8 (NiO-PTA/ZIF-8) catalyst was first synthesized and it showed high activity and good selectivity for the hydrocracking of Jatropha oil. The catalyst was characterized by SEM, SEM-EDS, TEM, N2 adsorption, FT-IR, XRD and XPS. Compared with the NiO-PTA/Al2O3 catalyst, the selectivity of C15-C18 hydrocarbon increased over 36%, and catalytic efficiency increased 10 times over the NiO-PTA/ZIF-8 catalyst. The prepared NiO-PTA/ZIF-8 catalyst was stable for a reaction time of 104 h and the kinetic behavior was also analyzed. This catalyst was found to bypass the presulfurization process, showing promise as an alternative to sulfided catalysts for green diesel production. PMID:27020579

  17. Designing New Lithium-Excess Cathode Materials from Percolation Theory: Nanohighways in Li x Ni 2–4x/3 Sb x/3 O 2

    Energy Technology Data Exchange (ETDEWEB)

    Twu, Nancy [Department of Materials; Li, Xin [Department of Materials; Urban, Alexander [Department of Materials; Balasubramanian, Mahalingam [X-ray Science Division, Advanced Photon; Lee, Jinhyuk [Department of Materials; Liu, Lei [Department of Materials; Ceder, Gerbrand [Department of Materials


    Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered LixNi2-4x/3Sb(x/3)O(2) (x = 1.00-1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies reveal a complex nanostructure pattern of Li-Sb and Ni-Sb ordering where the interface between these domains forms the correct local configuration for good lithium mobility. The <1 nm Li-Sb stripe domains and their interfaces thereby effectively act as nanohighways for lithium diffusion.

  18. High strain rate sensitivity of hardness in quinary Ti-Zr-Hf-Cu-Ni high entropy metallic glass thin films (United States)

    Zhao, Shaofan; Wang, Haibin; Xiao, Lin; Guo, Nan; Zhao, Delin; Yao, Kefu; Chen, Na


    Quinary Ti-Zr-Hf-Cu-Ni high-entropy metallic glass thin films were produced by magnetron sputter deposition. Nanoindentation tests indicate that the deposited film exhibits a relatively large hardness of 10.4±0.6 GPa and a high elastic modulus of 131±11 GPa under the strain rate of 0.5 s-1. Specifically, the strain rate sensitivity of hardness measured for the thin film is 0.05, the highest value reported for metallic glasses so far. Such high strain rate sensitivity of hardness is likely due to the high-entropy effect which stabilizes the amorphous structure with enhanced homogeneity.

  19. Controlled decoration of Pd on Ni(OH)2 nanoparticles by atomic layer deposition for high ethanol oxidation activity (United States)

    Jiang, Yiwu; Chen, Jinwei; Zhang, Jie; Zeng, Yaping; Wang, Yichun; Zhou, Feilong; Kiani, Maryam; Wang, Ruilin


    A new catalysts electrode was prepared by in situ controllable deposition of Pd shell layer on the gas diffusion layer (GDL) supported Ni(OH)2 nanoparticles using atomic layer deposition (ALD) technology. High resolution transmission electron microscope confirmed that the Ni(OH)2 core was coated by several atomic layers of Pd. The core-shell Ni(OH)2@Pd catalysts with different thickness of Pd shell are easily prepared by controlling ALD cycle. Electrochemical tests showed that the 100-Ni(OH)2@Pd/GDL catalyst prepared via 100 ALD cycles presented the highest catalytic activity for ethanol electro-oxidation reaction (EOR). The peaking current density of Ni(OH)2@Pd/GDL was 1439 mA mgPd-1, which was about 2.75 times as high as that of Pd/GDL (522 mA mgPd-1). The shift in binding energy of the XPS peak of Pd in Ni(OH)2@Pd catalyst confirmed the strong interaction between the Pd shell and the Ni(OH)2 core. We suggested that the high catalytic activity of Ni(OH)2@Pd/GDL catalyst layer may be due to following factors: high Pd dispersion arising from the core-shell structure, high Pd utilization because of the in situ deposition of Pd on catalyst layer and the interaction between the Pd shell and the Ni(OH)2 core. Herein, the ALD technology exhibits a promising application prospect for preparing core-shell structure and precisely controlling shell thickness of nano-composite as an electro-catalyst toward EOR.

  20. Excessive homework, inadequate sleep, physical inactivity and screen viewing time are major contributors to high paediatric obesity. (United States)

    Ren, Hong; Zhou, Zhixiong; Liu, Wenxi Kevin; Wang, Xiujiang; Yin, Zenong


    This study examined the relationships between energy balance-related behaviours (EBRBs) outside school hours and obesity in Chinese primary school students. We also explored the influence of gender on those relationships. The study sample was a cross-sectional cohort of 5032 Chinese children who were enrolled in grades 1-6 in primary schools in five Chinese cities and whose mean ages ranged from seven years and three months to 11.9 years. The children's parents completed a survey on their child's height, weight and EBRBs outside school hours. The response rate was 97%, and the reported rates of overweight and obesity were 13.6% and 13.8%, respectively. The obesity rates were higher in boys and lower grade children. Most EBRBs varied between boys and girls and with increased grade levels. The amount of time spent on academic-related activities, screen viewing, outdoor activities and sleep was mostly associated with obesity on weekdays and varied by gender. Rate of obesity was alarmingly high in the primary school Chinese children in this cohort, especially in younger children. Excessive time spent on academic-related activities outside school hours, inadequate sleep, physical inactivity and higher levels of screen viewing were major contributors to obesity in these Chinese children. ©2016 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  1. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development. (United States)

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao


    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27(Kip1) and p21(Cip1), were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption isotherms using the gravimetric method (United States)

    Nguyen, Huong Giang T.; Horn, Jarod C.; Thommes, Matthias; van Zee, Roger D.; Espinal, Laura


    Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

  3. Associations of Caffeinated Beverage Consumption and Screen Time with Excessive Daytime Sleepiness in Korean High School Students. (United States)

    Jun, Nuri; Lee, Aeri; Baik, Inkyung


    The present study investigated caffeinated beverage consumption and screen time in the association with excessive daytime sleepiness (EDS) and sleep duration. We conducted a cross-sectional study including 249 Korean male high school students. These participants responded to a questionnaire inquiring the information on lifestyle factors, consumption of caffeinated beverages, time spent for screen media, and sleep duration as well as to the Epworth Sleepiness Scale (ESS) questionnaire. EDS was defined as ESS scores of 9 or greater. Students with EDS consumed greater amount of chocolate/cocoa drinks and spent longer time for a TV and a mobile phone than those without EDS (p coffee than others whereas students with long sleep (> 8 hours) consumed greater amount of chocolate/cocoa drinks than others (p < 0.05). Screen time did not differ according to the categories of sleep duration. Although these findings do not support causal relationships, they suggest that screen time is associated with EDS, but not with sleep duration, and that consumption of certain types of caffeinated beverages is associated with EDS and sleep duration. Adolescents may need to reduce screen time and caffeine consumption to improve sleep quality and avoid daytime sleepiness.

  4. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li


    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  5. Microstructural evolution and corrosion behavior of directionally solidified FeCoNiCrAl high entropy alloy


    Cui Hongbao; Wang Ying; Wang Jinyong


    The FeCoNiCrAl alloys have many potential applications in the fields of structural materials, but few attempts were made to characterize the directional solidification of high entropy alloys. In the present research, the microstructure and corrosion behavior of FeCoNiCrAl high entropy alloy have been investigated under directional solidification. The results show that with increasing solidification rate, the interface morphology of the alloy evolves from planar to cellular and dendritic. The ...

  6. Magnetic properties of the CrMnFeCoNi high-entropy alloy (United States)

    Schneeweiss, Oldřich; Friák, Martin; Dudová, Marie; Holec, David; Šob, Mojmír; Kriegner, Dominik; Holý, Václav; Beran, Přemysl; George, Easo P.; Neugebauer, Jörg; Dlouhý, Antonín


    We present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006 ±0.001 emu T . The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μB ), while the local moments of Ni atoms effectively vanish. These results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.

  7. Influence of yttria surface modification on high temperature corrosion of porous Ni22Cr alloy

    DEFF Research Database (Denmark)

    Karczewski, Jakub; Dunst, Katarzyna; Jasinski, Piotr


    Protective coatings for porous alloys for high temperature use are relatively new materials. Their main drawback is high temperature corrosion. In this work protective coatings based the on Y-precursor infiltrated into the sintered Ni22Cr alloys are studied at 700°C. Effects of the amount...... of the protective phase on the resulting corrosion properties are evaluated in air and humidified hydrogen. Weight gain of the samples, their open porosities and microstructures are analyzed and compared. Results show, that by the addition of even a minor amount of the Y-precursor corrosion rates can be decreased...

  8. Ultrathin and lightweight 3D free-standing Ni@NiO nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates. (United States)

    Liu, Nishuang; Li, Jian; Ma, Wenzhen; Liu, Weijie; Shi, Yuling; Tao, Jiayou; Zhang, Xianghui; Su, Jun; Li, Luying; Gao, Yihua


    A free-standing binder-free 3D Ni@NiO nanowire membrane is fabricated by a simple filtration method followed by thermal annealing. With an appropriate annealing temperature, the functional nanowires can keep their rough and echinate surface, and the conductive network composed of welded nickel nanowire cores is well-preserved without isolation (0.53 Ω/sq). The unique 3D multigrade mesporous structure not only accelerates the intercalation and deintercalation velocity of electrolyte ions but also provides numerous electroactive sites for the Faraday reaction. As a result, the supercapacitor electrode can preserve a capacitance retention of 96.1% (36.9 F/cm(3)) with a high discharge current density, indicating its wonderful rate capability. The fabricated membrane electrode exhibits high volumetric capacitance, stable cycling life, and remarkable retention of the capacitance at high rate, energy, and power density, making it a promising candidate for application in portable electronic products.

  9. High-pressure sequence of Ba3NiSb2O9 structural phases: new S = 1 quantum spin liquids based on Ni2+. (United States)

    Cheng, J G; Li, G; Balicas, L; Zhou, J S; Goodenough, J B; Xu, Cenke; Zhou, H D


    Two new gapless quantum spin-liquid candidates with S = 1 (Ni(2+)) moments: the 6H-B phase of Ba(3)NiSb(2)O(9) with a Ni(2+)-triangular lattice and the 3C phase with a Ni(2/3)Sb(1/3)-three-dimensional edge-shared tetrahedral lattice were obtained under high pressure. Both compounds show no magnetic order down to 0.35 K despite Curie-Weiss temperatures θ(CW) of -75.5 (6H-B) and -182.5 K (3C), respectively. Below ~25 K, the magnetic susceptibility of the 6H-B phase saturates to a constant value χ(0) = 0.013 emu/mol, which is followed below 7 K by a linear-temperature-dependent magnetic specific heat (C(M)) displaying a giant coefficient γ = 168 mJ/mol K(2). Both observations suggest the development of a Fermi-liquid-like ground state. For the 3C phase, the C(M) perpendicular T(2) behavior indicates a unique S = 1, 3D quantum spin-liquid ground state.

  10. Effect of Microstructure on the High Temperature Fatigue Properties of Two Ni-based Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Battiste, Rick [ORNL; Kenik, Edward A [ORNL; Bentley, James [ORNL; Bunting, Bruce G [ORNL


    There is significant need for Ni-based superalloys in the next generation automotive engine components such as exhaust valves. High temperature, high cycle fatigue life is one of the important properties required for such applications. The focus of this work is to evaluate the effect of microstructure on the high cycle fatigue properties of two Ni-based alloys, alloy 751, an alloy used in these applications at lower temperatures, and Waspaloy. High cycle fatigue lives of the alloys at 870oC were evaluated using in-situ high temperature fully reversed fatigue tests at 870oC and a nominal frequency of 30 Hz. Scanning electron microscopy and transmission electron microscopy were used to characterize the microstructure of the alloys. Computational modeling was used to calculate the equilibrium microstructure and microstructural coarsening at 870oC. Correlation of fatigue properties with microstructure of the alloys shows that for the experimental conditions used in the study, the fatigue life of Waspaloy, which has greater high temperature strength and larger volume fraction, is better than that of alloy 751.

  11. Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors (United States)

    Lo, I.-Hsiang; Wang, Jun-Yi; Huang, Kuo-Yen; Huang, Jin-Hua; Kang, Weng P.


    A high-performance supercapacitor based on Ni(OH)2 nanoflakes modified ZnO nanowires (NWs) was developed. The well-aligned ZnO NWs were synthesized by chemical bath deposition, followed by pulse electrodeposition of Ni(OH)2 nanoflakes on the surface of ZnO NWs at 1 mA cm-2 current density. The effects of the pulse electrodeposition conditions were systematically investigated. Both the pulse time and relaxation time were found to affect the size and interspacing of the nanoflakes, while the deposition cycle number determines the thickness of the Ni(OH)2 nanoflake shell. The ZnO/Ni(OH)2 nanocomposite electrode fabricated under the optimal pulse electrodeposition conditions has exhibited a large specific capacitance of 1830 F g-1, a high energy density of 51.5 Wh kg-1, and a high power density of 9 kW kg-1, revealing its potential application in electrochemical capacitors.

  12. A new high pressure form of Ba{sub 3}NiSb{sub 2}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Darie, Céline; Lepoittevin, Christophe; Klein, Holger; Kodjikian, Stéphanie; Bordet, Pierre; Colin, Claire V. [Institut Néel, Université Grenoble-Alpes, and Institut Néel, CNRS, Grenoble F−38042 (France); Lebedev, Oleg I. [Laboratoire CRISMAT, ENSICAEN UMR6508, 6 Bd Maréchal Juin, Caen Cedex 4 F−14050 (France); Deudon, Catherine; Payen, Christophe [Institut des Matériaux Jean Rouxel (IMN), UMR 6502, Université de Nantes, CNRS, Nantes Cedex 3 F−44322 (France)


    In the search of an experimental realization of quantum spin liquid phases we have synthesized polycrystalline samples of Ba{sub 3}NiSb{sub 2}O{sub 9} under high pressure–high temperature conditions. Combining X-ray powder diffraction, neutron powder diffraction and precession electron diffraction we show that the obtained phase isn't hexagonal as reported in the literature, but trigonal. This new structure shows triangular Ni planes, but only in domains of sizes of the order of 10 nm. It therefore is still interesting as a potential candidate for a quantum spin liquid. - Graphical abstract: Synthesis under high pressure of a new form of Ba{sub 3}NiSb{sub 2}O{sub 9} : a promising candidate for a quantum spin liquid. Triangular Ni-planes can effectively be present in this structure but only in domains of up to 10 nm in size.

  13. High-Throughput Structural and Functional Characterization of the Thin Film Materials System Ni-Co-Al. (United States)

    Decker, Peer; Naujoks, Dennis; Langenkämper, Dennis; Somsen, Christoph; Ludwig, Alfred


    High-throughput methods were used to investigate a Ni-Co-Al thin film materials library, which is of interest for structural and functional applications (superalloys, shape memory alloys). X-ray diffraction (XRD) measurements were performed to identify the phase regions of the Ni-Co-Al system in its state after annealing at 600 °C. Optical, electrical, and magneto-optical measurements were performed to map functional properties and confirm XRD results. All results and literature data were used to propose a ternary thin film phase diagram of the Ni-Co-Al thin film system.

  14. NiCoBP-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping, E-mail:


    Highlights: • We report a new oxidase mimetic system for highly efficient electrochemical immunoassay. • NiCoBP-doped carbon nanotube hybrids were used as the nanocatalysts. • NiCoBP-doped carbon nanotube hybrids were used as the mimic oxidase. - Abstract: NiCoBP-doped multi-walled carbon nanotube (NiCoBP–MWCNT) was first synthesized by using induced electroless-plating method and functionalized with the biomolecules for highly efficient electrochemical immunoassay of prostate-specific antigen (PSA, used as a model analyte). We discovered that the as-synthesized NiCoBP–MWCNT had the ability to catalyze the glucose oxidization with a stable and well-defined redox peak. The catalytic current increased with the increment of the immobilized NiCoBP–MWCNT on the electrode. Transmission electron microscope (TEM) and energy dispersive X-ray spectrometry (EDX) were employed to characterize the as-prepared NiCoBP–MWCNT. Using the NiCoBP–MWCNT-conjugated anti-PSA antibody as the signal-transduction tag, a new enzyme-free electrochemical immunoassay protocol could be designed for the detection of target PSA on the capture antibody-functionalized immunosensing interface. Experimental results revealed that the designed immunoassay system could exhibit good electrochemical responses toward target PSA, and allowed the detection of PSA at a concentration as low as 0.035 ng mL{sup −1}. More importantly, the NiCoBP-MWCNT-based oxidase mimetic system could be further extended for the monitoring of other low-abundance proteins or disease-related biomarkers by tuning the target antibody.

  15. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane (United States)

    Gao, Doudou; Zhang, Yuhong; Zhou, Liqun; Yang, Kunzhou


    The catalysts containing Cu, Ni bi-metallic nanoparticles were successfully synthesized by in-situ reduction of Cu2+ and Ni2+ salts into the highly porous and hydrothermally stable metal-organic framework MIL-101 via a simple liquid impregnation method. When the total amount of loading metal is 3 × 10-4 mol, Cu2Ni1@MIL-101 catalyst shows higher catalytic activity comparing to CuxNiy@MIL-101 with different molar ratio of Cu and Ni (x, y = 0, 0.5, 1.5, 2, 2.5, 3). Cu2Ni1@MIL-101 catalyst has the highest catalytic activity comparing to mono-metallic Cu and Ni counterparts and pure bi-metallic CuNi nanoparticles in hydrolytic dehydrogeneration of ammonia borane (AB) at room temperature. Additionally, in the hydrolysis reaction, the Cu2Ni1@MIL- 101 catalyst possesses excellent catalytic performances, which exhibit highly catalytic activity with turn over frequency (TOF) value of 20.9 mol H2 min-1 Cu mol-1 and a very low activation energy value of 32.2 kJ mol-1. The excellent catalytic activity has been successfully achieved thanks to the strong bi-metallic synergistic effects, uniform distribution of nanoparticles and the bi-functional effects between CuNi nanoparticles and the host of MIL-101. Moreover, the catalyst also displays satisfied durable stability after five cycles for the hydrolytically releasing H2 from AB. The non-noble metal catalysts have broad prospects for commercial applications in the field of hydrogen-stored materials due to the low prices and excellent catalytic activity.

  16. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome. (United States)

    Larsen, I; Welde, B; Martins, C; Tjønna, A E


    Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ±  .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P EPOC was highest after 4-AIT. These data suggest that exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Highly stable ceria-zirconia-yttria supported Ni catalysts for syngas production by CO2 reforming of methane (United States)

    Muñoz, M. A.; Calvino, J. J.; Rodríguez-Izquierdo, J. M.; Blanco, G.; Arias, D. C.; Pérez-Omil, J. A.; Hernández-Garrido, J. C.; González-Leal, J. M.; Cauqui, M. A.; Yeste, M. P.


    Ni/CeO2/YSZ and Ni/Ce0.15Zr0.85O2 have been investigated as catalysts for the dry reforming of methane at 750 °C. Ni was incorporated by the impregnation method. The supports were previously activated by using a thermo-chemical protocol consisting on a severe reduction (H2/Ar) at 950 °C followed by a mild oxidation (O2/He) at 500 °C. According to TPR results, this protocol leads to the development of unique redox properties in the case of the CeO2/YSZ oxide. Two types of CO2 + CH4 (1:1) mixtures (helium-diluted and undiluted) were used to feed the reactor. When using the Ni/Ce0.15Zr0.85O2 catalyst with undiluted feed, the reactor became plugged by coke. By contrast, Ni/CeO2/YSZ behaved as an active and stable catalyst even under the most severe operation conditions. The characterization of the spent Ni/CeO2/YSZ using TGA, TEM, Raman and XPS spectroscopy revealed that only a limited amount of graphitic carbon, in form of nanotubes, was formed. No evidences of deactivating carbonaceous forms were obtained. The singular redox properties of the activated CeO2/YSZ oxides are proposed as a key for designing Ni catalysts highly stable in reforming processes.

  18. Single-crystal study of highly anisotropic CeNiGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pikul, A P; Kaczorowski, D; Bukowski, Z; Plackowski, T; Gofryk, K [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland)


    High quality single crystals of CeNiGe{sub 2} have been investigated by means of magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity and thermoelectric power measurements, carried out along all three principal crystallographic directions. The compound is an antiferromagnetic Kondo system that orders magnetically at T{sub N} = 3.9 K and undergoes a spin structure rearrangement at T{sub 1} = 3.2 K. The magnetic behaviour is strongly anisotropic with the easy magnetic direction parallel to the crystallographic a-axis. The Kondo temperature and the total crystal field splitting are of the order of 20 and 100 K, respectively.

  19. Precipitation of TCP. Phases in Ni-base alloys with high chromium content

    Energy Technology Data Exchange (ETDEWEB)

    Pigrova, G.D. [Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)


    The method of physical-chemical phase analysis has been used to investigate the structure, composition and amount of different phases for several commercial alloyed materials. Phase diagram in the temperature range 750-1100 C for high-temperature Ni-base alloy has been achieved. The main phase reactions during long-time ageing are carbide reaction MC{yields}M{sub 23}C{sub 6} and {sigma}-phase formation. The {sigma}-phase formation mechanism established shows that the process kinetics are also approximated by Johnson-Mell equation as it is in case of {sigma}-phase formation in stainless steels. (orig.)

  20. Highly Conformal Ni Micromesh as a Current Collecting Front Electrode for Reduced Cost Si Solar Cell

    DEFF Research Database (Denmark)

    Gupta, Nikita; Rao, K. D. M.; Gupta, Ritu


    deposition of Ni wire network on corrugated solar cell, a short circuit current of 33.28 mA/cm2 was obtained in comparison to 20.53 mA/cm2 without the network electrode. On comparing the efficiency with the conventional cells with screen printed electrodes, a 20% increment in efficiency has been observed...... printing of silver paste. The associated disadvantages call for alternative methods that can lower the cost without compromising the solar cell efficiency. In the present work, a highly interconnected one-dimensional (1D) metal wire network has been employed as front electrode on conventional Si wafers...

  1. Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life (United States)

    Zha, Daosong; Fu, Yongsheng; Zhang, Lili; Zhu, Junwu; Wang, Xin


    Nickel cobalt sulfides (NiCo-S) are promising electrode materials for high-performance supercapacitors but normally show poor rate capability and unsatisfactory long-term endurance. To overcome these disadvantages, a properly constructed electrode architecture with abundant electron transport channels, excellent electronic conductivity and robust structural stability is required. Herein, considering that in situ transformation can mostly retain the specific structural advantages of the precursors, a two-step strategy is purposefully developed to construct a binder-free electrode composed of interconnected NiCo-S nanosheets on Ni foam (NiCo-S/NF), in which NiCo-S/NF is synthesized via the in situ sulfuration of networked acetate anion-intercalated nickel cobalt layered double hydroxide nanosheets loaded on Ni foam (A-NiCo-LDH/NF). Noticeably, the optimized Ni1Co1-S/NF exhibits an ultrahigh specific capacitance of 2553.9 F g-1 at 0.5 A g-1, excellent rate capability (1898.1 F g-1 at 50 A g-1) and superior cycling stability (nearly 90% capacitance retention after 10,000 cycles). Furthermore, the assembled asymmetric supercapacitor based on Ni1Co1-S/NF demonstrates a high energy density of 58.1 Wh kg-1 at a power density of 796 W kg-1 and impressive long-term durability even after a repeated charge/discharge process as long as 70,000 cycles (∼92% capacitance retention). The attractive properties endow the Ni1Co1-S/NF electrode with significant potential for high-performance energy storage devices.

  2. Ni foam cathode enables high volumetric H{sub 2} production in a microbial electrolysis cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeremiasse, Adriaan W. [Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen (Netherlands); Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, P.O. Box 8038, 6700 EK Wageningen (Netherlands); Hamelers, Hubertus V.M. [Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen (Netherlands); Saakes, Michel [Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Magneto Special Anodes B.V., Calandstraat 109, 3125 BA Schiedam (Netherlands); Buisman, Cees J.N. [Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen (Netherlands)


    Valuable, ''green'' H{sub 2} can be produced with a microbial electrolysis cell (MEC). To achieve a high volumetric production rate of high purity H{sub 2}, a continuous flow MEC with an anion exchange membrane, a flow through bioanode and a flow through Ni foam cathode was constructed. At an electrical energy input of 2.6 kWh m{sup -3} H{sub 2} (applied cell voltage: 1.00 V), this MEC was able to produce over 50 m{sup 3} H{sub 2} m{sup -3} MEC d{sup -1} (22.8 {+-} 0.1 A m{sup -2}). The MEC had a low cathode overpotential compared to an MEC with Pt-based cathode, because of the high specific surface area of Ni foam (128 m{sup 2} m{sup -2} projected area). The MEC performance however, decreased during 32 days of operation due to an increase in anode and cathode overpotentials. Scaling likely caused the increase in anode overpotential, but it remained unclear what caused the increase in cathode overpotential. (author)

  3. Experimental and Theoretical Investigations on Viscosity of Fe-Ni-C Liquids at High Pressures (United States)

    Chen, B.; Lai, X.; Wang, J.; Zhu, F.; Liu, J.; Kono, Y.


    Understanding and modeling of Earth's core processes such as geodynamo and heat flow via convection in liquid outer cores hinges on the viscosity of candidate liquid iron alloys under core conditions. Viscosity estimates from various methods of the metallic liquid of the outer core, however, span up to 12 orders of magnitude. Due to experimental challenges, viscosity measurements of iron liquids alloyed with lighter elements are scarce and conducted at conditions far below those expected for the outer core. In this study, we adopt a synergistic approach by integrating experiments at experimentally-achievable conditions with computations up to core conditions. We performed viscosity measurements based on the modified Stokes' floating sphere viscometry method for the Fe-Ni-C liquids at high pressures in a Paris-Edinburgh press at Sector 16 of the Advanced Photon Source, Argonne National Laboratory. Our results show that the addition of 3-5 wt.% carbon to iron-nickel liquids has negligible effect on its viscosity at pressures lower than 5 GPa. The viscosity of the Fe-Ni-C liquids, however, becomes notably higher and increases by a factor of 3 at 5-8 GPa. Similarly, our first-principles molecular dynamics calculations up to Earth's core pressures show a viscosity change in Fe-Ni-C liquids at 5 GPa. The significant change in the viscosity is likely due to a liquid structural transition of the Fe-Ni-C liquids as revealed by our X-ray diffraction measurements and first-principles molecular dynamics calculations. The observed correlation between structure and physical properties of liquids permit stringent benchmark test of the computational liquid models and contribute to a more comprehensive understanding of liquid properties under high pressures. The interplay between experiments and first-principles based modeling is shown to be a practical and effective methodology for studying liquid properties under outer core conditions that are difficult to reach with the current

  4. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)


    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  5. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg{sub 2}Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Hongchao; Hou, Xiaojiang; Zhang, Tiebang, E-mail:; Hu, Rui; Li, Jinshan; Xue, Xiangyi


    Amorphous Mg{sub 2}Ni alloy was prepared by high energy ball-milling starting with polycrystalline Mg{sub 2}Ni which was prepared with the help of a metallurgy method by using a SPEX 8000D mill. The microstructural and phase structure characterization of the prepared materials was performed via scanning electron microscopy, transition electron microscope and X-ray diffraction. The thermal stabilities were investigated by differential scanning calorimetry. The apparent activation energies were determined by means of the Kissinger method. The first and second crystallization reactions take place at ∼ 255 °C and ∼ 410 °C, and the corresponding activation energy of crystallization is E{sub a1} = 276.9 and E{sub a2} = 382.4 kJ/mol, respectively. At 3 MPa hydrogen pressure and 250 °C, the hydrogen absorption capacities of crystalline, partially and fully amorphous Mg{sub 2}Ni alloy are 2.0 wt.%, 3.2 wt.% and 3.5 wt.% within 30 min, respectively. - Graphical Abstract: We mainly focus on the amorphization behavior of crystalline Mg{sub 2}Ni alloy in the high energy ball-milling process and the crystallization behavior of the amorphous Mg{sub 2}Ni alloy in a follow-up heating process. The relationship of milling, microstructure and hydrogenation properties is established and explained by models. - Highlights: • Amorphous Mg{sub 2}Ni has been obtained by high energy ball milling the as-cast alloy. • The amorphization behavior of polycrystalline Mg{sub 2}Ni is presented. • The crystallization behavior of the amorphous Mg{sub 2}Ni alloy is illustrated. • Establish the relationship of milling, microstructure and hydrogenation properties.

  6. Hierarchical MoS2 nanowires/NiCo2O4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors (United States)

    Wen, Shiyang; Liu, Yu; Zhu, Fangfang; Shao, Rong; Xu, Wei


    The hierarchical MoS2 nanowires/NiCo2O4 nanosheets (MS/NCO) supercapacitor electrode materials supported on Ni foam were synthesized by a two-step hydrothermal method. The capacitance was investigated by using various electrochemical methods including cyclic voltammetry, constant-current galvanostatic charge/discharge curves and electrochemical impedance spectroscopy. The MS/NCO networks show 7 times more capacitance (7.1 F cm-2) than pure NiCo2O4 nanosheets by CV at a scan rate of 2 mV s-1. The specific capacitance of the assembled MS/NCO//active carbon (AC) asymmetric supercapacitor could reach up to 51.7 F g-1 at a current density of 1.5 A g-1. Also, the maximum energy density of 18.4 W h kg-1 at a power density of 1200.2 W kg-1 was achieved, with 98.2% specific capacitance retention after 8000 cycles. These exciting results exhibit potential application in developing energy storage devices with high energy density and high power density.

  7. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni


    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  8. Electrochemical Study of Ni20Cr Coatings Applied by HVOF Process in ZnCl2-KCl at High Temperatures (United States)

    Porcayo-Calderón, J.; Sotelo-Mazón, O.; Casales-Diaz, M.; Ascencio-Gutierrez, J. A.; Salinas-Bravo, V. M.; Martinez-Gomez, L.


    Corrosion behavior of Ni20Cr coatings deposited by HVOF (high velocity oxygen-fuel) process was evaluated in ZnCl2-KCl (1 : 1 mole ratio) molten salts. Electrochemical techniques employed were potentiodynamic polarization curves, open circuit potential, and linear polarization resistance (LPR) measurements. Experimental conditions included static air and temperatures of 350, 400, and 450°C. 304-type SS was evaluated in the same conditions as the Ni20Cr coatings and it was used as a reference material to assess the coatings corrosion resistance. Coatings were evaluated as-deposited and with a grinded surface finished condition. Results showed that Ni20Cr coatings have a better corrosion performance than 304-type SS. Analysis showed that Ni content of the coatings improved its corrosion resistance, and the low corrosion resistance of 304 stainless steel was attributed to the low stability of Fe and Cr and their oxides in the corrosive media used. PMID:25210645

  9. One-pot hydrothermal synthesis of Mn3O4 nanorods grown on Ni foam for high performance supercapacitor applications (United States)

    Li, Dongwei; Meng, Fanhui; Yan, Xiuling; Yang, Lishan; Heng, Hua; Zhu, Ye


    Mn3O4/Ni foam composites were synthesized by a one-step hydrothermal method in an aqueous solution containing only Mn(NO3)2 and C6H12N4. It was found that Mn3O4 nanorods with lengths of 2 to 3 μm and diameters of 100 nm distributed on Ni foam homogeneously. Detailed reaction time-dependent morphological and component evolution was studied to understand the growth process of Mn3O4 nanorods. As cathode material for supercapacitors, Mn3O4 nanorods/composite exhibited superior supercapacitor performances with high specific capacitance (263 F · g-1 at 1A · g-1), which was more than 10 times higher than that of the Mn3O4/Ni plate. The enhanced supercapacitor performance was due to the porous architecture of the Ni foam which provides fast ion and electron transfer, large reaction surface area, and good conductivity.

  10. Highly dispersed Pt-Ni nanoparticles on nitrogen-doped carbon nanotubes for application in direct methanol fuel cells. (United States)

    Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng


    Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.

  11. Metal dynamics and tolerance of Typha domingensis exposed to high concentrations of Cr, Ni and Zn. (United States)

    Mufarrege, M M; Hadad, H R; Di Luca, G A; Maine, M A


    Typha domingensis was exposed to a 100mgL(-1) Cr+100mgL(-1) Ni+100mgL(-1) Zn solution. Metal tolerance and metal accumulation in plant tissues and sediment were studied over time. Although removal rates were different, the three metals were efficiently removed from water. Leaf and root tissues showed high metal concentration. However, the sediment showed the highest accumulation. During the first hours of contact, metals were not only accumulated by sediment and roots but they were also taken up by the leaves in direct contact with the solution. Over time, metals were translocated from roots to leaves and vice versa. Metals caused growth inhibition and a decrease in chlorophyll concentration and affected anatomical parameters. Despite these sub-lethal effects, T. domingensis demonstrated that it could accumulate Cr, Ni and Zn efficiently and survive an accidental dump of high concentrations of contaminants in systems such as natural and constructed wetlands. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes. (United States)

    Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J


    Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural Properties of High Speed Electrodeposited Ni-Co Alloy Film on Titanium (United States)

    Xie, Kan; Hussain, Mohammad Sakhawat; Ayres, Virginia

    A new and innovative high-speed process for direct electrodeposition of Ni-Co alloy on titanium surfaces without any pretreatment or displacement reaction has recently been reported. Investigations of the non-columnar growth mechanism(s) that result in high-speed adhesive coating formation are presented. Our results indicate that deposition of nanocrystalline nickel throughout the entire film growth process plays a critical role. When present, local nanowire formation is interpreted in terms of super-saturated conditions. Titanium is a metal that finds use in a wide variety of applications as a structural material in aircrafts, engines, missiles, bicycles and load-bearing bone prostheses. Conventional pretreatment methods to remove a thin tenacious oxide layer and then cap the surface with a sacrificial layer are dangerous, time-consuming and environmentally unfriendly. Extensions of the new high speed method to additional thin film systems are considered.

  14. Sonolência diurna excessiva em pré-vestibulandos Excessive daytime sleepiness in senior high school students

    Directory of Open Access Journals (Sweden)

    José Carlos Souza


    Full Text Available OBJETIVO: O sono é um fenômeno que interfere nos aspectos cognitivos. O objetivo deste estudo foi avaliar a prevalência da sonolência diurna excessiva (SDE em pré-vestibulandos de Campo Grande, MS. MÉTODOS: Foram entrevistados 378 alunos com a escala de sonolência Epworth (ESE. As variáveis foram: sexo, uso esporádico de bebidas alcoólicas e fumo, relato de sinais e sintomas depressivos, renda familiar total dos membros do lar e idade. Foram empregados os testes qui-quadrado e de análise de variância. RESULTADOS: Em relação ao gênero, 50,3% eram homens e 49,7% mulheres; 39,2% ingeriam álcool; 6,6% fumavam e 33% já tinham tido depressão na vida. Entre os alunos, 55,8% tinham SDE, 5,3% eram indicativos de ter distúrbio respiratório ou síndrome da apnéia do sono. Foram detectadas associações entre as variáveis consumo de álcool e tabagismo, em relação à ESE. CONCLUSÕES: Foi alta a prevalência de SDE, sendo detectadas associações entre as variáveis uso esporádico de álcool e fumo, em relação à ESE. Novos estudos devem ser realizados a fim de prevenir as alterações cognitivas entre os pré-vestibulandos que apresentam SDE ou outro distúrbio do sono.OBJETIVE: Sleep is a phenomenon that has influence on cognitive aspects. The purpose of the present study was to evaluate the excessive daytime sleepiness (EDS prevalence. METHODS: 378 senior high school students from a school of Campo Grande-MS, Brazil, were interview with the Epworth Sleepiness Scale. The variables that were crosSDE with the scale were: sex, alcohol use, smoking, symptoms of depression, family income and age. For the analysis it was uSDE the chi2 test and the variance analysis test. RESULTS: Our sample consisted of 50,3% boys and 49,7% girls, 39,2% were alcohol drinkers, 6,6% were smokers and 33% had already had depression. The overall prevalence of EDS was 55,8% and of respiratory disturbance or sleep apnea was 5,3%. We found relationships

  15. Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

    Energy Technology Data Exchange (ETDEWEB)

    Arthanari, Srinivasan; Jang, Jae Cheol; Shin, Kwang Seon [Seoul National University, Seoul (Korea, Republic of)


    In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density (i{sub corr}) value (5.969 μA/cm{sup 2}) compared to N15 (7.387 μA/cm{sup 2}). EIS-Bode plots revealed a higher impedance (|Z|) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer (R{sub 1}) and charge transfer resistance (R{sub ct}) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss (P{sub W}) and hydrogen volume (P{sub H}) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al{sub 3}Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

  16. High excess costs of infections caused by carbapenem-resistant gram-negative bacilli in an endemic region. (United States)

    Vargas-Alzate, Carlos Andrés; Higuita-Gutiérrez, Luis Felipe; López López, Lucelly; Cienfuegos Gallet, Astrid Vanessa; Jiménez Quiceno, Judy Natalia


    The financial burden of antibiotic resistance is a serious concern worldwide. The aim of this study is to describe the excess costs associated with pneumonia, bacteremia, surgical site infections and intra-abdominal infections caused by carbapenem-resistant gram-negative bacilli in Medellín, Colombia, an endemic region for carbapenem resistance. A cohort study was conducted in a third level hospital from 2014 to 2015. All patients with carbapenem-resistant and carbapenem-susceptible gram-negative bacteria infections were included. Pharmaceutical, medical and surgical direct costs were described from the health system perspective. The excess costs were estimated from generalized linear models using a gamma distribution and adjusted for variables that could affect the cost difference. A total of 218 patients were enrolled, 22% of whom were infected with carbapenem-resistant bacteria. Intra-abdominal infections were the most frequent. The adjusted total excess costs was USD $3,966 (95%CI, 1,684-6,249) with a significantly higher cost for antibiotics, followed by hospital stays, laboratory tests and inter-consultation. The highest excess cost was attributed mainly to the use of broad-spectrum antibiotics (USD $1,827, 95%CI, 1,005-2,648) and followed by length of hospital stay (USD $1,015, 95%CI, 163-1867). The results of this study highlight the importance of designing antimicrobial stewardship programs and infection control strategies in endemic regions to reduce the financial threat of antimicrobial resistance to health systems. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. High Temperature Degradation of Powder-processed Ni-based Superalloy

    Directory of Open Access Journals (Sweden)

    Natália Luptáková


    Full Text Available The aim of present work is to study the high temperature degradation of the powder-processed polycrystalline superalloy Ni-15Cr-18Co-4Al-3.5Ti-5Mo. This superalloy has been applied as material for grips of a creep machine. The material was exposed at 1100 °C for about 10 days at 10 MPa stress. During the creep test occurred unacceptable creep deformation of grips as well as severe surface oxidation with scales peeling off. Three types of the microstructure were observed in the studied alloy: (i unexposed state; (ii heat treated (annealing - 10 min/1200 °C and (iii after using as a part of the equipment of the creep machine during the creep test. It is shown that the microstructure degradation resulting from the revealed γ´ phase fcc Ni3(Al,Ti particles preferentially created at the grain boundaries of the samples after performing creep tests affects mechanical properties of the alloy and represents a significant contribution to all degradation processes affecting performance and service life of the creep machine grips. Based on investigation and obtained results, the given material is not recommended to be used for grips of creep machine at temperatures above 1000 °C.

  18. Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, V. [Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798 (Singapore); Energy Research Institute @NTU, Nanyang Technological University, Singapore 637553 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Maheswar Repaka, D. V.; Chaturvedi, A.; Ramanujan, R. V., E-mail: [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Sridhar, I. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)


    Low cost magnetocaloric nanomaterials have attracted considerable attention for energy efficient applications. We report a very high relative cooling power (RCP) in a study of the magnetocaloric effect in quenched FeNiB nanoparticles. RCP increases from 89.8 to 640 J kg{sup −1} for a field change of 1 and 5 T, respectively, these values are the largest for rare earth free iron based magnetocaloric nanomaterials. To investigate the magnetocaloric behavior around the Curie temperature (T{sub C}), the critical behavior of these quenched nanoparticles was studied. Detailed analysis of the magnetic phase transition using the modified Arrott plot, Kouvel-Fisher method, and critical isotherm plots yields critical exponents of β = 0.364, γ = 1.319, δ = 4.623, and α = −0.055, which are close to the theoretical exponents obtained from the 3D-Heisenberg model. Our results indicate that these FeNiB nanoparticles are potential candidates for magnetocaloric fluid based heat pumps and low grade waste heat recovery.

  19. High-field magnetization and specific heat of TmNi{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Kayzel, F.E. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Franse, J.J.M. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Colpa, J.H.P. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Kim-Ngan, N.-H. [Centre for Solid State Physics, Krakow (Poland); Tai, L.T. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Radwanski, R.J. [Centre for Solid State Physics, Krakow (Poland); Gignoux, D. [Centre National de la Recherche Scientifique (CNRS), 38 -Grenoble (France). Lab. Louis Neel


    High-field magnetization on two single-crystalline samples from different batches of TmNi{sub 5} has been measured along the crystallographic a, b and c directions up to 38 T at 1.5 K. A small high-field susceptibility {chi}{sub HF}=6.3.10{sup -3} {mu}{sub B}/T f.u. was observed along the easy c-axis. The magnetization measured alon g both a- and b-axis shows hysteresis and a magnetic transition between 5 and 15 T. Specific heat has been measured from 1.5 to 160 K. A {lambda}-type peak found at about 3.7 K originates from the magnetic system. (orig.).

  20. Characterization of Magnetic Ni Clusters on Graphene Scaffold after High Vacuum Annealing

    CERN Document Server

    Zhang, Zhenjun; Grisafe, Benjamin; Lee, Ji Ung; Lloyd, James R


    Magnetic Ni nanoclusters were synthesized by electron beam deposition utilizing CVD graphene as a scaffold. The subsequent clusters were subjected to high vacuum (5-8 x10-7 torr) annealing between 300 and 600 0C. The chemical stability, optical and morphological changes were characterized by X-ray photoemission microscopy, Raman spectroscopy, atomic force microscopy and magnetic measurement. Under ambient exposure, nickel nanoparticles was observed to be oxidized quickly, forming antiferromagnetic nickel oxide. Here, we report that the majority of the oxidized nickel is in non-stoichiometric form and can be reduced under high vacuum at temperature as low as 300 0C. Importantly, the resulting annealed clusters are relatively stable and no further oxidation was detectable after three weeks of air exposure at room temperature.

  1. Technology of High-speed Direct Laser Deposition from Ni-based Superalloys (United States)

    Klimova-Korsmik, Olga; Turichin, Gleb; Zemlyakov, Evgeniy; Babkin, Konstantin; Petrovsky, Pavel; Travyanov, Andrey

    Recently, additive manufacturing is the one of most perspective technologies; it can replace conventional methods of casting and subsequent time-consuming machining. One of the most interesting additive technologies - high-speed direct laser deposition (HSDLD) allows realizing heterophase process during the manufacturing, which there is process takes place with a partial melting of powder. This is particularly important for materials, which are sensitive to strong fluctuations of temperature treatment regimes, like nickel base alloys with high content of gamma prime phase. This alloys are interested for many industrial areas, mostly there are used in engine systems, aircraft and shipbuilding, aeronautics. Heating and cooling rates during the producing process determine structure and affect on its properties. Using HSDLD process it possible to make a products from Ni superalloys with ultrafine microstructure and satisfactory mechanical characteristics without special subsequent heatreatment.

  2. Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO2 Nanocluster toward High-Performance Lithium Storage. (United States)

    Jiang, Yinzhu; Li, Yong; Zhou, Peng; Yu, Shenglan; Sun, Wenping; Dou, Shixue


    SnO2 is regarded as one of the most promising anodes via conversion-alloying mechanism for advanced lithium ion batteries. However, the sluggish conversion reaction severely degrades the reversible capacity, Coulombic efficiency and rate capability. In this paper, through constructing porous Ni/SnO2 composite electrode composed of homogeneously distributed SnO2 and Ni nanoparticles, the reaction kinetics of SnO2 is greatly enhanced, leading to full conversion reaction, superior cycling stability and improved rate capability. The uniformly distributed Ni nanoparticles provide a fast charge transport pathway for electrochemical reactions, and restrict the direct contact and aggregation of SnO2 nanoparticles during cycling. In the meantime, the void space among the nanoclusters increases the contact area between the electrolyte and active materials, and accommodates the huge volume change during cycling as well. The Ni/SnO2 composite electrode possesses a high reversible capacity of 820.5 mAh g(-1) at 1 A g(-1) up to 100 cycles. More impressively, large capacity of 841.9, 806.6, and 770.7 mAh g(-1) can still be maintained at high current densities of 2, 5, and 10 A g(-1) respectively. The results demonstrate that Ni/SnO2 is a high-performance anode for advanced lithium-ion batteries with high specific capacity, excellent rate capability, and cycling stability.

  3. The Microstructures and Electrical Resistivity of (Al, Cr, Ti)FeCoNiOx High-Entropy Alloy Oxide Thin Films


    Chun-Huei Tsau; Zhang-Yan Hwang; Swe-Kai Chen


    The (Al, Cr, Ti)FeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that ...

  4. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. (United States)

    Xiao, Junwu; Wan, Lian; Yang, Shihe; Xiao, Fei; Wang, Shuai


    We report on the development of highly conductive NiCo2S4 single crystalline nanotube arrays grown on a flexible carbon fiber paper (CFP), which can serve not only as a good pseudocapacitive material but also as a three-dimensional (3D) conductive scaffold for loading additional electroactive materials. The resulting pseudocapacitive electrode is found to be superior to that based on the sibling NiCo2O4 nanorod arrays, which are currently used in supercapacitor research due to the much higher electrical conductivity of NiCo2S4. A series of electroactive metal oxide materials, including CoxNi1-x(OH)2, MnO2, and FeOOH, were deposited on the NiCo2S4 nanotube arrays by facile electrodeposition and their pseudocapacitive properties were explored. Remarkably, the as-formed CoxNi1-x(OH)2/NiCo2S4 nanotube array electrodes showed the highest discharge areal capacitance (2.86 F cm(-2) at 4 mA cm(-2)), good rate capability (still 2.41 F cm(-2) at 20 mA cm(-2)), and excellent cycling stability (∼ 4% loss after the repetitive 2000 cycles at a charge-discharge current density of 10 mA cm(-2)).

  5. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic NiTi Ball Bearings (United States)

    Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.


    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.


    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H.


    Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.

  7. Synthesis of Bulk Nanostructured DO22 Superlattice of Ni3(Mo, Nb with High Strength, High Ductility, and High Thermal Stability

    Directory of Open Access Journals (Sweden)

    H. M. Tawancy


    Full Text Available We show that a bulk nanostructured material combining high strength, high ductility, and high thermal stability can be synthesized in a Ni-Mo-Nb alloy with composition approaching Ni3(Mo, Nb. By means of a simple aging treatment at 700°C, the grains of the parent face-centered cubic phase are made to transform into nanosized ordered crystals with DO22 superlattice maintaining a size of 10–20 nm after up to 100 hours of aging and corresponding room-temperature yield strength of 820 MPa and tensile ductility of 35%. Deformation of the superlattice is found to predominantly occur by twinning on {111} planes of the parent phase. It is concluded that, although the respective slip systems are suppressed, most of the twinning systems are preserved in the DO22 superlattice enhancing the ductility.

  8. In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH 4 /CO 2 reaction

    KAUST Repository

    Al-Sabban, Bedour


    Dry reforming of methane (DRM) proceeds via CH4 decomposition to leave surface carbon species, followed by their removal with CO2-derived species. Reactivity tuning for stoichiometric CH4/CO2 reactants was attempted by alloying the non-noble metals Co and Ni, which have high affinity with CO2 and high activity for CH4 decomposition, respectively. This study was focused on providing evidence of the capturing surface coverage of the reactive intermediates and the associated structural changes of the metals during DRM at high temperature using in-operando X-ray absorption spectroscopy (XAS). On the Co catalysts, the first-order effects with respect to CH4 pressure and negative-order effects with respect to CO2 pressure on the DRM rate are consistent with the competitive adsorption of the surface oxygen species on the same sites as the CH4 decomposition reaction. The Ni surface provides comparatively higher rates of CH4 decomposition and the resultant DRM than the Co catalyst but leaves some deposited carbon on the catalyst surface. In contrast, the bimetallic CoNi catalyst exhibits reactivity towards the DRM but with kinetic orders resembling Co catalyst, producing negligible carbon deposition by balancing CH4 and CO2 activation. The in-operando X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements confirmed that the Co catalyst was progressively oxidized from the surface to the bulk with reaction time, whereas CoNi and Ni remained relatively reduced during DRM. Density functional theory (DFT) calculation considering the high reaction temperature for DRM confirmed the unselective site arrangement between Co and Ni atoms in both the surface and bulk of the alloy nanoparticle (NP). The calculated heat of oxygen chemisorption became more exothermic in the order of Ni, CoNi, Co, consistent with the catalytic behavior. The comprehensive experimental and theoretical evidence provided herein clearly suggests

  9. MnO2-coated Ni nanorods: Enhanced high rate behavior in pseudo-capacitive supercapacitor


    Lei, Yannick; Daffos, Barbara; Taberna, Pierre-Louis; Simon, Patrice; Favier, Frédéric


    International audience; Ni nanorods prepared by electrochemical growth through an anodized aluminium oxide membrane were used as substrate for the electrodeposition of MnO2 either in potentiostatic mode or by a pulsed method. Electrochemical deposition parameters were chosen for an homogeneous deposit onto Ni nanorods. Resulting Ni supportedMnO2 electrodes were tested for electrochemical performances as nanostructured negative electrodes for supercapacitors. They exhibited initial capacitance...

  10. Application of high strength MnMoNi steel to pressure vessels for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Kurihara, I.; Sasaki, T.; Koyama, Y.; Tanaka, Y. [The Japan Steel Works, Ltd. (Japan)


    Recent increase in output of nuclear power plant has been attained by enlargement of major components such as pressure vessels. Such large components have almost reached limit of size from the points of manufacturing capacity and cost in both forgemasters and fabricaters. In order to solve this problem, it must be beneficial to apply design by use of material of higher strength which brings reduction of pressure vessel thickness and weight. The Japan Steel Works, Ltd. (JSW) has many manufacturing experiences of large integrated forgings made from high strength MnMoNi steel with tensile strength level of 620MPa for steam generator (SG) pressure vessel, and has made confirmation tests of its material properties. This paper describes the confirmation test results such as tensile and impact properties, nil-ductility transition temperature (NDT-T), static and dynamic fracture toughness weldability including under clad cracking (UCC) sensitivity and metallurgical factors which influence on such material properties. (orig.)

  11. Application of high strength MnMoNi steel to pressure vessels for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. E-mail:; Kurihara, I.; Sasaki, T.; Koyoma, Y.; Tanaka, Y


    Recent increase in output of nuclear power plant has been attained by enlargement of major components such as pressure vessels. Such large components have almost reached a size limit from the points of manufacturing capacity and cost in both forgemasters and fabricaters. In order to solve this problem, it must be beneficial to apply design by use of material of higher strength, which brings reduction of pressure vessel thickness and weight. The Japan Steel Works Ltd. (JSW) has many manufacturing experiences of large integrated forgings made from high strength MnMoNi steel with tensile strength level of 620 MPa for steam generator (SG) pressure vessel, and has performed confirmation tests of its material properties. This paper describes the confirmation test results such as tensile and impact properties, nil-ductility transition temperature (NDT-T), static and dynamic fracture toughness, weldability including under-clad cracking (UCC) sensitivity, as well as metallurgical factors which influence on such material properties.

  12. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor. (United States)

    Ghosh, Debasis; Das, Chapal Kumar


    Ni foam@reduced graphene oxide (rGO) hydrogel-Ni3S2 and Ni foam@rGO hydrogel-Co3S4 composites have been successfully synthesized with the aid of a two-step hydrothermal protocol, where the rGO hydrogel is sandwiched between the metal sulfide and Ni foam substrate. Sonochemical deposition of exfoliated rGO on Ni foam with subsequent hydrothermal treatment results in the formation of a rGO-hydrogel-coated Ni foam. Then second-time hydrothermal treatment of the dried Ni@rGO substrate with corresponding metal nitrate and sodium sulfide results in individual uniform growth of porous Ni3S2 nanorods and a Co3S4 self-assembled nanosheet on a Ni@rGO substrate. Both Ni@rGO-Ni3S2 and Ni@rGO-Co3S4 have been electrochemically characterized in a 6 M KOH electrolyte, exhibiting high specific capacitance values of 987.8 and 1369 F/g, respectively, at 1.5 A/g accompanied by the respective outstanding cycle stability of 97.9% and 96.6% at 12 A/g over 3000 charge-discharge cycles. An advanced aqueous asymmetric (AAS) supercapacitor has been fabricated by exploiting the as-prepared Ni@rGO-Co3S4 as a positive electrode and Ni@rGO-Ni3S2 as a negative electrode. The as-fabricated AAS has shown promising energy densities of 55.16 and 24.84 Wh/kg at high power densities of 975 and 13000 W/kg, respectively, along with an excellent cycle stability of 96.2% specific capacitance retention over 3000 charge-discharge cycles at 12 A/g. The enhanced specific capacitance, stupendous cycle stability, elevated energy density, and a power density as an AAS of these electrode materials indicate that it could be a potential candidate in the field of supercapacitors.

  13. Core/Double-Shell Type Gradient Ni-Rich LiNi0.76Co0.10Mn0.14O2 with High Capacity and Long Cycle Life for Lithium-Ion Batteries. (United States)

    Liao, Jin-Yun; Oh, Seung-Min; Manthiram, Arumugam


    A concentration-gradient Ni-rich LiNi0.76Co0.1Mn0.14O2 layered oxide cathode has been developed by firing a core/double-shell [Ni0.9Co0.1]0.4[Ni0.7Co0.1Mn0.2]0.5[Ni0.5Co0.1Mn0.4]0.1(OH)2 hydroxide precursor with LiOH·H2O, where the Ni-rich interior (core) delivers high capacity and the Mn-rich exterior (shells) provides a protection layer to improve the cyclability and thermal stability for the Ni-rich oxide cathodes. The content of nickel and manganese, respectively, decreases and increases gradually from the center to the surface of each gradient sample particle, offering a high capacity with enhanced surface/structural stability and cyclability. The obtained concentration-gradient oxide cathode exhibits high-energy density with long cycle life in both half and full cells. With high-loading electrode half cells, the concentration-gradient sample delivers 3.3 mA h cm(-2) with 99% retention after 100 cycles. The material morphology, phase, and gradient structure are also maintained after cycling. The pouch-type full cells fabricated with a graphite anode delivers high capacity with 89% capacity retention after 500 cycles at C/3 rate.

  14. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)


    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  15. Process- and optoelectronic-control of NiOx thin films deposited by reactive high power impulse magnetron sputtering (United States)

    Keraudy, Julien; Delfour-Peyrethon, Brice; Ferrec, Axel; Garcia Molleja, Javier; Richard-Plouet, Mireille; Payen, Christophe; Hamon, Jonathan; Corraze, Benoît; Goullet, Antoine; Jouan, Pierre-Yves


    In this contribution, based on the analyses of the discharge behavior as well as final properties of the deposited Ni-O films during reactive high power impulse magnetron sputtering discharge, we have demonstrated that monitoring the oxygen flow rate leads to 4 different regimes of discharge. Tuning the oxygen partial pressure allows deposition of a large range of chemical compositions from pure nickel to nickel-deficient NiOx (x > 1) in the poisoned mode. Investigation of the plasma dynamics by time-resolved optical emission spectroscopy suggests that the discharge behavior in the poisoned mode principally comes from the higher contribution of both oxygen and argon ions in the total ionic current, leading to a change in the ion induced secondary electron emission coefficient. Additionally, material characterizations have revealed that optoelectronic properties of NiOx films can be easily tuned by adjusting the O/Ni ratio, which is influenced by the change of the oxygen flow rate. Stoichiometric NiO films (O/Ni ratio ˜ 1) are transparent in the visible range with a transmittance ˜80% and insulating as expected with an electrical resistivity ˜106 Ω cm. On the other hand, increasing the O/Ni > 1 leads to the deposition of more conductive coating (ρ ˜ 10 Ω cm) films with a lower transmittance ˜ 50%. These optoelectronic evolutions are accompanied by a band-gap narrowing 3.65 to 3.37 eV originating from the introduction of acceptor states between the Fermi level and the valence band maximum. In addition, our analysis has demonstrated that nickel vacancies are homogeneously distributed over the film thickness, explaining the p-type of the films.

  16. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors (United States)

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin


    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm2 at 2 mA/cm2, which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm2) and NiCo2O4 (0.456 F/cm2), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  17. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors. (United States)

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin


    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm(2) at 2 mA/cm(2), which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm(2)) and NiCo2O4 (0.456 F/cm(2)), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  18. High Tap Density Spherical Li[Ni0.5Mn0.3Co0.2]O2 Cathode Material Synthesized via Continuous Hydroxide Coprecipitation Method for Advanced Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Shunyi Yang


    Full Text Available Spherical [Ni0.5Mn0.3Co0.2](OH2 precursor with narrow size distribution and high tap density has been successfully synthesized by a continuous hydroxide coprecipitation, and Li[Ni0.5Mn0.3Co0.2]O2 is then prepared by mixing the precursor with 6% excess Li2CO3 followed by calcinations. The tap density of the obtained Li[Ni0.5Mn0.3Co0.2]O2 powder is as high as 2.61 g cm−3. The powders are characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, scanning electron microscope (SEM, particle size distribution (PSD, and charge/discharge cycling. The XRD studies show that the prepared Li[Ni0.5Mn0.3Co0.2]O2 has a well-ordered layered structure without any impurity phases. Good packing properties of spherical secondary particles (about 12 μm consisted of a large number of tiny-thin plate-shape primary particles (less than 1 μm, which can be identified from the SEM observations. In the voltage range of 3.0–4.3 V and 2.5–4.6 V, Li[Ni0.5Mn0.3Co0.2]O2 delivers the initial discharge capacity of approximately 175 and 214 mAh g−1 at a current density of 32 mA g−1, and the capacity retention after 50 cycles reaches 98.8% and 90.2%, respectively. Besides, it displays good high-temperature characteristics and excellent rate capability.

  19. Design and characterization of novel precipitation hardenable high Cr Ni-based superalloys

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Dahl, Kristian Vinter; Somers, Marcel A. J.


    Among the Ni-based superalloys, Alloy 718 stands apart with the ability to be precipitation hardened after welding, by the slow formation of nano-scale γ’’ (Ni3Nb) particles. This slow formation gives it a very low crack susceptibility, which has made it widely applied since its introduction...

  20. An analysis of high cloud variability: imprints from the El Niño-Southern Oscillation (United States)

    Li, King-Fai; Su, Hui; Mak, Sze-Ning; Chang, Tiffany M.; Jiang, Jonathan H.; Norris, Joel R.; Yung, Yuk L.


    Using data from the International Satellite Cloud Climatology Project (ISCCP), we examine how near-global (60°N-60°S) high cloud fraction varies over time in the past three decades. Our focus is on identifying dominant modes of variability and associated spatial patterns, and how they are related to sea surface temperature. By performing the principal component analysis, we find that the first two principal modes of high cloud distribution show strong imprints of the two types of El Niño-Southern Oscillation (ENSO)—the canonical ENSO and the ENSO Modoki. Comparisons between ISCCP data and 14 models from the Atmospheric Model Intercomparison Project Phase 5 (AMIP5) show that models simulate the spatial pattern and the temporal variations of high cloud fraction associated with the canonical ENSO very well but the magnitudes of the canonical ENSO vary among the models. Furthermore, the multi-model mean of the second principal mode in the AMIP5 simulations appears to capture the temporal behavior of the second mode but individual AMIP5 models show large discrepancies in capturing observed temporal variations. A new metric, defined by the relative variances of the first two principal components, suggests that most of the AMIP5 models overestimate the second principal mode of high clouds.

  1. Influence of High Pressure and High Temperature Hydrogen on Fracture Toughness of Ni-Containing Steels and Alloys

    Directory of Open Access Journals (Sweden)

    Balitskii Alexander


    Full Text Available W ramach przeprowadzonych badan okreslono wpływ wodoru na krótkotrwała wytrzymałosc i płasko-naprezeniowa ciagliwosc stali 10Cr15Ni27 oraz stopów niklu 04Cr16Ni56, 05Cr19Ni55 przy wielkosciach cisnienia do 35 MPa i zakresie temperatury od 293 do 773 K. Wpływ wodoru wysokiego cisnienia powoduje, ze wydłuzenie, plastycznosc, wytrzymałosc nisko cyklowa N i parametr odpornosci na pekanie Kc przyjmuja minimalne wartosci dla próbek stopu 04Cr16Ni56 przy cisnieniu wynoszacym 10 MPa, natomiast dla nasyconych wodorem próbek stali 10Cr15Ni27 i stopu 05Cr19Ni55 minimum wartosci tych parametrów wystepuje przy cisnieniu 15 MPa, dla koncentracji wodoru wynoszacej odpowiednio 15 i 19 wppm.

  2. Alkylation of a bioinspired high spin Ni(II)N{sub 3}S{sub 2} complex with bifunctional reagents

    Energy Technology Data Exchange (ETDEWEB)

    Chohan, B. S., E-mail: [The Pennsylvania State University, Department of Chemistry (United States)


    Crystal structures of two S-alkylated complexes generated from the reaction of iodoacetamide and iodoethanol with an air and moisture sensitive high spin Ni(II) pentacoordinate triaminodithiolate complex, 1 are determined by X-ray structure analysis. Crystals of complex 2, [NiC{sub 16}H{sub 31}N{sub 5}O{sub 2}S{sub 2}]I{sub 2}, are triclinic, sp. gr. P-bar1 , Z = 2. Crystals of complex 3, [NiC{sub 16}H{sub 28}N{sub 3}O{sub 2}S{sub 2}]I{sub 2}, are monoclinic, sp. gr. P2{sub 1}/c, Z = 4. Structures of complexes 2 and 3 are very similar: one of the S-acetamide (2) or S-ethanol (3) groups coordinates to the Ni center through the oxygen atom forming N{sub 3}S{sub 2}O hexacoordination; the other group remains unbound to the Ni and left dangling. Crystal packing shows that complexes 2 and 3 interact with the iodide counterions, and that only complex 2 interact with neighboring molecules; some of these close intermolecular contacts include H-bonding interactions.

  3. On the Recovery Stress of a Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy (United States)

    Benafan, O.; Noebe, R. D.; Padula, S. A., II; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.; Halsmer, T. J.


    Recovery stress in shape memory alloys (SMAs), also known as blocking stress, is an important property generally obtained during heating under a dimensional constraint as the material undergoes the martensitic phase transformation. This property has been instinctively utilized in most SMA shape-setting procedures, and has been used in numerous applications such as fastening and joining, rock splitting, safety release mechanisms, reinforced composites, medical devices, and many other applications. The stress generation is also relevant to actuator applications where jamming loads (e.g., in case the actuator gets stuck and is impeded from moving) need to be determined for proper hardware sizing. Recovery stresses in many SMA systems have been shown to reach stresses in the order of 800 MPa, achieved via thermo-mechanical training such as pre-straining, heat treatments or other factors. With the advent of high strength, high temperature SMAs, recovery stress data has been rarely probed, and there is no information pertinent to the magnitudes of these stresses. Thus, the purpose of this work is to investigate the recovery stress capability of a precipitation strengthened, Ni50.3Ti29.7Hf20 (at.) high temperature SMA in uniaxial tension and compression. This material has been shown to exhibit outstanding strength and stability during constant-stress, thermal cycling, but no data exists on constant-strain thermal cycling. Several training routines were implemented as part of this work including isothermal pre-straining, isobaric thermal cycling, and isothermal cyclic training routines. Regardless of the training method used, the recovery stress was characterized using constant-strain (strain-controlled condition) thermal cycling between the upper and lower cycle temperatures. Preliminary results indicate recovery stresses in excess of 1.5 GPa were obtained after a specific training routine. This stress magnitude is significantly higher than conventional NiTi stress

  4. Study of NiFe2O4 nanoparticles using Mössbauer spectroscopy with a high velocity resolution (United States)

    Oshtrakh, M. I.; Ushakov, M. V.; Senthilkumar, B.; Selvan, R. Kalai; Sanjeeviraja, C.; Felner, I.; Semionkin, V. A.


    The nanocrystalline NiFe2O4 particles prepared by solution combustion synthesis technique using different fuels such as ethylene-diamine-tetra-acetic acid (NA sample) and urea (NB sample) were studied using magnetic measurement and 57Fe Mössbauer spectroscopy with a high velocity resolution. The temperature dependence of magnetization is different for the two samples. Mössbauer spectra demonstrate the necessity to use more than two magnetic sextets, usually used to fit the NiFe2O4 nanoparticles spectra. Evaluation of the different local microenvironments for Fe in both tetrahedral (A) and octahedral (B) sites, caused by different Ni2 + occupation of octahedral sites, demonstrates at least five different local microenvironments for both A and B sites. Therefore, the Mössbauer spectra were fitted by using ten magnetic sextets which are related to the spread 57Fe location in octahedral and tetrahedral sites.

  5. Atom redistribution and multilayer structure in NiTi shape memory alloy induced by high energy proton irradiation (United States)

    Wang, Haizhen; Yi, Xiaoyang; Zhu, Yingying; Yin, Yongkui; Gao, Yuan; Cai, Wei; Gao, Zhiyong


    The element distribution and surface microstructure in NiTi shape memory alloys exposed to 3 MeV proton irradiation were investigated. Redistribution of the alloying element and a clearly visible multilayer structure consisting of three layers were observed on the surface of NiTi shape memory alloys after proton irradiation. The outermost layer consists primarily of a columnar-like TiH2 phase with a tetragonal structure, and the internal layer is primarily comprised of a bcc austenite phase. In addition, the Ti2Ni phase, with an fcc structure, serves as the transition layer between the outermost and internal layer. The above-mentioned phenomenon is attributed to the preferential sputtering of high energy protons and segregation induced by irradiation.

  6. High-Performance CH3NH3PbI3-Inverted Planar Perovskite Solar Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide. (United States)

    Jahandar, Muhammad; Khan, Nasir; Lee, Hang Ken; Lee, Sang Kyu; Shin, Won Suk; Lee, Jong-Cheol; Song, Chang Eun; Moon, Sang-Jin


    The reduction of charge carrier recombination and intrinsic defect density in organic-inorganic halide perovskite absorber materials is a prerequisite to achieving high-performance perovskite solar cells with good efficiency and stability. Here, we fabricated inverted planar perovskite solar cells by incorporation of a small amount of excess organic/inorganic halide (methylammonium iodide (CH3NH3I; MAI), formamidinium iodide (CH(NH2)2I; FAI), and cesium iodide (CsI)) in CH3NH3PbI3 perovskite film. Larger crystalline grains and enhanced crystallinity in CH3NH3PbI3 perovskite films with excess organic/inorganic halide reduce the charge carrier recombination and defect density, leading to enhanced device efficiency (MAI+: 14.49 ± 0.30%, FAI+: 16.22 ± 0.38% and CsI+: 17.52 ± 0.56%) compared to the efficiency of a control MAPbI3 device (MAI: 12.63 ± 0.64%) and device stability. Especially, the incorporation of a small amount of excess CsI in MAPbI3 perovskite film leads to a highly reproducible fill factor of over 83%, increased open-circuit voltage (from 0.946 to 1.042 V), and short-circuit current density (from 18.43 to 20.89 mA/cm2).

  7. Chemical Ni-C Bonding in Ni-CNT Composite by a Microwave Welding Method and Its Induced High-frequency Radar Frequency Electromagnetic Wave Absorption. (United States)

    Sha, Linna; Gao, Peng; Wu, Tingting; Chen, Yujin


    In this work, a microwave welding method has been used for the construction of chemical Ni-C bonding at the interface between carbon nanotubes (CNTs) and metal Ni in order to provide a different surface electron distribution, which determined the electromagnetic (EM) wave absorption properties based on a surface plasmon resonance (SPR) mechanism. Through a serial of detailed examinations, such as XRD, SEM, TEM, HRTEM, XPS and Raman spectrum etc., the as-expected chemical Ni-C bonding between CNTs and metal Ni has been confirmed. And the BET and surface Zeta potential measurements uncovered the great evolution of structure and electronic density compared with CNTs, metal Ni and Ni-CNT composite without Ni-C bonding. Correspondingly, except the EM absorption due to CNTs and metal Ni in the composite, another wide and strong EM absorption band ranging from 10 GHz to 18 GHz was found, which was induced by the Ni-C bonded interface. The absorption bandwidth with reflection loss less than -10 dB is up to 6.5 GHz (in the frequency range of 10.1-16.6 GHz). With a thinner thickness and more exposed Ni-C interfaces, the Ni-CNT composite displayed a minimum reflection loss, which means that more than 99% EM wave energy attenuated by the absorber.

  8. Ni-Co nanoparticles immobilized on a 3D Ni foam template as a highly efficient catalyst for borohydride electrooxidation in alkaline medium (United States)

    Guo, Meisong; Cheng, Yu; Yu, Yanan; Hu, Jingbo


    Proton exchange membrane (PEM) fuel cells have drawn a great deal of attention due to the rapidly growing energy consumption. Recently, Ni- and Co-based materials have been considered as promising electorcatalysts owing to their multi-functionality. In this work, Ni and Co nanoparticles are directly immobilized on a three-dimensional Ni foam substrate (Ni-Co/NF) without any conductive agents or polymer binder by a facile ion implantation method. The structure and morphology of the Ni-Co/NF electrode were characterized by scanning electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. The performance of the Ni-Co/NF electrode in the electrochemical oxidation of NaBH4 is investigated by cyclic voltammetry and chronoamperometry. The Ni-Co/NF electrode exhibited excellent electrocatalytic activity and good stability during electrochemical reactions. These properties are attributed to the 3D porous structure of the Ni foam and the synergistic effect of Ni and Co nanoparticles. The enhanced electrocatalytic performance in NaBH4 electrooxidation compared with either Ni or Co nanoparticles alone suggests that the Ni-Co/NF is promising for fuel cell applications.

  9. Highly dispersed NiW/{gamma}-Al{sub 2}O{sub 3} catalyst prepared by hydrothermal deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Fan, Yu.; Bao, Xiaojun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); The Key Laboratory of Catalysis, China National Petroleum Corp., China University of Petroleum, Beijing 102249 (China); Shi, Gang; Liu, Haiyan [The Key Laboratory of Catalysis, China National Petroleum Corp., China University of Petroleum, Beijing 102249 (China); Liu, Zhihong [Science and Technology Management Department, PetroChina Company Ltd., World Tower, 16 Andelu, Dongcheng District, Beijing 100011 (China)


    This article describes a novel hydrothermal deposition method for preparing highly dispersed NiW/{gamma}-Al{sub 2}O{sub 3} catalysts and demonstrates its advantages over the conventional impregnation method. Via the hydrothermal precipitation reactions between sodium tungstate and hydrochloric acid and between nickel nitrate and urea, respectively, the active species W and Ni were deposited on {gamma}-Al{sub 2}O{sub 3}. In the hydrothermal deposition of WO{sub 3}, a surfactant hexadecyltrimethyl ammonium bromide (CTAB) was used to prevent the aggregation of WO{sub 3}. The characterization results obtained by means of X-ray photoelectron spectroscopy (XPS), N{sub 2} adsorption and high-resolution transmission electron microscopy (HRTEM) measurements showed that compared with the catalyst prepared by the conventional impregnation method, the catalyst with the same metal contents prepared by the hydrothermal deposition had much higher W and Ni dispersion, higher specific surface area, larger pore volume, the significantly decreased slab length and slightly increased stacking degree of sulfided W species, leading to the significantly enhanced dibenzothiophene (DBT) hydrodesulfurization (HDS) activity. The DBT HDS assessment results also revealed that the catalyst containing 17.7 wt% WO{sub 3} and 2.4 wt% NiO prepared by the hydrothermal deposition method had the similar DBT HDS activity as a commercial NiW/{gamma}-Al{sub 2}O{sub 3} catalyst containing 23 wt% WO{sub 3} and 2.6 wt% NiO, resulting in the greatly decreased amount of active metals for achieving the same HDS activity. (author)

  10. Methane decomposition over high-loaded Ni-Cu-SiO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiamao; Zhao, Linjie; He, Jianchao; Dong, Liang; Xiong, Liangping; Du, Yang; Yang, Yong; Wang, Heyi, E-mail:; Peng, Shuming, E-mail:


    Graphical abstract: Methane decomposition-regeneration with air cycles over 65%Ni-20%Cu-10%SiO{sub 2} catalysts. - Highlights: • Methane decomposition over Ni-Cu-SiO{sub 2} was studied. • The deactivated catalysts were regenerated by air. • Introduction of Cu could enhance the catalytic performance of Ni-SiO{sub 2}. • The increase of the Ni-Cu particle influences the performance of the catalysts. - Abstract: The performance of Ni-SiO{sub 2} and Ni-Cu-SiO{sub 2} during repeated catalytic decomposition of methane (CDM) reactions and subsequent regeneration of the deactivated catalysts with air has been studied. The catalytic activity of the 75%Ni-25%SiO{sub 2} catalyst in the second and third CDM was lower than that during the first, while the lifetime of the catalyst did not change significantly. Both the lifetime and the catalytic activity of 65%Ni-10%Cu-25%SiO{sub 2} in the second and third CDM reactions decreased significantly. 55%Ni-20%Cu-25%SiO{sub 2} showed better performance than the other two catalysts, and its activity and lifetime did not change significantly until the third CDM reaction. The hydrogen yields of 55%Ni-20%Cu-25%SiO{sub 2} were 56.8 gH{sub 2}/gcat., 42.8 gH{sub 2}/gcat., and 2.4 gH{sub 2}/gcat. for the first, second, and third CDM reactions, respectively. Spherical carbon structures were observed on the catalysts following all three CDM reactions over 75%Ni-25%SiO{sub 2}. However, similar carbon structures were only observed following the second and third CDM over 65%Ni-10%Cu-25%SiO{sub 2}, and only following the third cycle with 55%Ni-20%Cu-25%SiO{sub 2}. The formation of spherical carbon during the repeated CDM reactions strongly influenced the performance of the catalysts.

  11. Thermodynamic Property Study of Nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H Systems by High Pressure DSC Method

    Directory of Open Access Journals (Sweden)

    Huaiyu Shao


    Full Text Available Mg, Ni, and Cu nanoparticles were synthesized by hydrogen plasma metal reaction method. Preparation of Mg2Ni and Mg2Cu alloys from these Mg, Ni, and Cu nanoparticles has been successfully achieved in convenient conditions. High pressure differential scanning calorimetry (DSC technique in hydrogen atmosphere was applied to study the synthesis and thermodynamic properties of the hydrogen absorption/desorption processes of nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H systems. Van’t Hoff equation of Mg-Ni-H system as well as formation enthalpy and entropy of Mg2NiH4 was obtained by high pressure DSC method. The results agree with the ones by pressure-composition isotherm (PCT methods in our previous work and the ones in literature.

  12. The High Performance Shape Memory Effect (HP-SME in Ni Rich NiTi Wires: In Situ X-Ray Diffraction on Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Coduri Mauro


    Full Text Available A novel approach for using Shape Memory Alloys (SMA was recently proposed and named highperformance shape memory effect (HP-SME. The HP-SME exploits the thermal cycling of stress-induced martensite for producing extremely high mechanical work with a very stable functional fatigue behaviour in Ni rich NiTi alloy. The latter was found to differ significantly from the functional fatigue behaviour observed for conventional SMA. This study was undertaken in order to elucidate the microstructural modifications at the basis of this particular feature. To this purpose, the functional fatigue was coupled to in situ Synchrotron Radiation X-Ray Diffraction, by recording patterns on wires thermally cycled by Joule effect under a constant applied stress (800 MPa. The accurate analysis the line profile XRD data suggests the accumulation of defects upon functional cycling, while the fibre texture was not observed to change. The functional fatigue exhibits a very similar behaviour as the line broadening of XRD peaks, thus suggesting the accumulation of dislocations as the origin of the mechanism of the permanent deformation.

  13. High salinity volatile phases in magmatic Ni-Cu-platinum group element deposits (United States)

    Hanley, J. J.; Mungall, J. E.


    The role of "deuteric" fluids (exsolved magmatic volatile phases) in the development of Ni-Cu-PGE (platinum group element) deposits in mafic-ultramafic igneous systems is poorly understood. Although considerable field evidence demonstrates unambiguously that fluids modified most large primary Ni-Cu-PGE concentrations, models which hypothesize that fluids alone were largely responsible for the economic concentration of the base and precious metals are not widely accepted. Determination of the trace element composition of magmatic volatile phases in such ore-forming systems can offer considerable insight into the origin of potentially mineralizing fluids in such igneous environments. Laser ablation ICP-MS microanalysis allows researchers to confirm the original metal budget of magmatic volatile phases and quantify the behavior of trace ore metals in the fluid phase in the absence of well-constrained theoretical or experimental predictions of ore metal solubility. In this study, we present new evidence from major deposits (Sudbury, Ontario, Canada; Stillwater Complex, Montana, U.S.A.) that compositionally distinct magmatic brines and halide melt phases were exsolved from crystallizing residual silicate melt and trapped within high-T fluid conduits now comprised of evolved rock compositions (albite-quartz graphic granite, orthoclase-quartz granophyre). Petrographic evidence demonstrates that brines and halide melts coexisted with immiscible carbonic phases at the time of entrapment (light aliphatic hydrocarbons, CO2). Brine and halide melt inclusions are rich in Na, Fe, Mn, K, Pb, Zn, Ba, Sr, Al and Cl, and homogenize by either halite dissolution at high T ( ˜450-700° C) or by melting of the salt phase (700-800° C). LA-ICPMS analyses of single inclusions demonstrate that high salinity volatile phases contained abundant base metals (Cu, Fe, Sn, Bi) and precious metals (Pt, Pd, Au, Ag) at the time of entrapment. Notably, precious metal concentrations in the inclusions

  14. Mechanical Properties of NiTi-Based Foam with High Porosity for Implant Applications (United States)

    Qiu, Ying; Yu, Hao; Young, Marcus L.


    In order to better understand NiTi-based shape memory alloy foams for implant applications, Ni40Ti50Cu10 foams were heat treated and then deformed under incremental and cyclic compression loading. After heat treatment, the microstructure consists of a (Ni,Cu)Ti matrix with small (Ni,Cu)4Ti3 precipitates and a large Ti2(Ni,Cu) secondary phase. The heat-treated Ni40Ti50Cu10 foam exhibits a two-step transformation, involving B19' → B19 and B19 → B2 on heating and B2 → B19 and B19 → B19' on cooling, respectively. One Ni40Ti50Cu10 foam was compression loaded for 10 cycles at each subsequent strain level, i.e., 1, 2, 3, 4, 5, and 6 % strain. In each set of compressive stress-strain loops, the maximum stress level decreases due to plastic damage accumulation and/or retention of transformed martensite. Cross-sectional images from micro-computed tomography were collected during compression loading, which shows very uniform deformation without severe structural damage even up to 5 % strain. Localized deformation is visible at 6 % strain.

  15. High performance p-type NiOx thin-film transistor by Sn doping (United States)

    Lin, Tengda; Li, Xiuling; Jang, Jin


    Major obstacles towards power efficient complementary electronics employing oxide thin-film transistors (TFTs) lie in the lack of equivalent well performing p-channel devices. Here, we report a significant performance enhancement of solution-processed p-type nickel oxide (NiOx) TFTs by introducing Sn dopant. The Sn-doped NiOx (Sn-NiOx) TFTs annealed at 280 °C demonstrate substantially improved electrical performances with the increase in the on/off current ratio (Ion/Ioff) by ˜100 times, field-effect mobility (μlin) by ˜3 times, and the decrease in subthreshold swing by half, comparing with those of pristine NiOx TFTs. X-ray photoelectron spectroscopy and X-ray diffraction results confirm that Sn atoms tend to substitute Ni sites and induce more amorphous phase. A decrease in density of states in the gap of NiOx by Sn doping and the shift of Fermi level (EF) into the midgap lead to the improvements of TFT performances. As a result, Sn-NiOx can be a promising material for the next-generation, oxide-based electronics.

  16. Large enhancement of perpendicular magnetic anisotropy and high annealing stability by Pt insertion layer in (Co/Ni-based multilayers

    Directory of Open Access Journals (Sweden)

    Xi Chen


    Full Text Available We have investigated the influence of ultrathin Pt insertion layers on the perpendicular magnetic anisotropy (PMA and annealing stability of Ta/Pt/(Co/Ni×3/Co/Pt/Ta multilayered films. When the Pt layers were inserted at the Co/Ni interfaces, the PMA of the multilayered films decreased monotonically as the thickness of the Pt insertion layer (tPt was increased. However, when the Pt layers were inserted at the Ni/Co interfaces, the PMA increased from 1.39 × 106 to 3.5 × 106 erg/cm3 as tPt increased from 0 to 10 Å. Moreover, the multilayered film containing 6-Å-thick Pt insertion layers that inserted at the Ni/Co interfaces exhibited the highest annealing stability for PMA, which was up to temperature of 480 °C. We hypothesize that the introduced Pt/Co interfaces, due to the Pt insertion layers, are responsible for the enhanced PMA and high annealing stability. This study is particularly important for perpendicularly magnetized spintronic devices that require high PMA and high annealing stability.

  17. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys (United States)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.


    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  18. Effects of a High Magnetic Field on the Microstructure of Ni-Based Single-Crystal Superalloys During Directional Solidification (United States)

    Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming


    High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p Ni-based single-crystal superalloy blades by applying a high magnetic field.

  19. Characterization of high intensity Ni-like X-ray lasers and their application experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.J.; Daido, H.; Suzuki, M. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering; Japan Atomic Energy Research Inst., Kyoto (Japan). Advanced Photon Research Center; Yamagami, S.; Nagai, K.; Norimatsu, T.; Mima, K.; Yamanaka, T. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering; Kato, Y.; Sasaki, A.; Hasegawa, N. [Japan Atomic Energy Research Inst., Kyoto (Japan). Advanced Photon Research Center; Wang, S.; Gu, Y.; Huang, G. [National Lab. on High Power Laser and Physics, Shanghai, SH (China); Carillon, A.; Ros, D.; Fourcade, P.; Jamelot, G. [Lab. de Spectroscopie Atomique et Ionique, Univ. Paris-Sud, Orsay (France); Joyeux, D.; Phalippou, D. [Lab. Charles Fabry, CNRS, Inst. d' Optique, Orsay (France); Murai, K. [Osaka National Research Inst., Ikeda, Osaka (Japan); Butzbach, R.; Uschmann, I.; Foerster, E. [IOQ, Friedrich-Schiller Univ., Jena (Germany); Namikawa, K.; Tai, R. [Tokyo Gakugei Univ., Koganei (Japan); Koike, F. [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine; Takenaka, H. [NTT Advanced Technology, Musashino (Japan); Zhang, G. [Inst. of Applied Physics and Computational Mathematics, Beijing, BJ (China); Choi, I.W. [Korea Advanced Inst. of Science and Technology, Taejon (Korea)


    At the Institute of Laser Engineering, Osaka University, we have obtained Ni-like X-ray lasers of various atomic number elements, including many shorter wavelength Ni-like lasing lines around 5 nm. The saturated amplification of Ni-like Ag lasing line at the wavelength of 13.9 nm have been observed. Using these X-ray lasers, we are preparing the application experiments such as probing a laser-produced plasma with an X-ray laser interferometer. (orig.)

  20. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+). (United States)

    Lau, Kai-Chung; Chang, Yih Chung; Shi, Xiaoyu; Ng, C Y


    The ionization energy (IE) of NiC and the 0 K bond dissociation energies (D(0)) and heats of formation at 0 K (ΔH(o)(f0)) and 298 K (ΔH(o)(f298)) for NiC and NiC(+) are predicted by the wavefunction based CCSDTQ(Full)/CBS approach and the multireference configuration interaction (MRCI) method with Davidson correction (MRCI+Q). The CCSDTQ(Full)/CBS calculations presented here involve the approximation to the complete basis set (CBS) limit at the coupled cluster level up to full quadruple excitations along with the zero-point vibrational energy (ZPVE), high-order correlation, core-valence electronic (CV), spin-orbit coupling (SO), and scalar relativistic effect (SR) corrections. The present calculations provide the correct symmetry predictions for the ground states of NiC and NiC(+) to be (1)∑(+) and (2)∑(+), respectively. The CCSDTQ(Full)/CBS IE(NiC)=8.356 eV is found to compare favorably with the experimental IE value of 8.372 05±0.000 06 eV. The predicted IE(NiC) value at the MRCI+Q/cc-pwCV5Z level, including the ZPVE, SO, and SR effects is 8.00 eV, which is 0.37 eV lower than the experimental value. This work together with the previous experimental and theoretical investigations supports the conclusion that the CCSDTQ(Full)/CBS method is capable of providing reliable IE predictions for 3d-transition metal carbides, such as FeC and NiC. Furthermore, the CCSDTQ(Full)/CBS calculations give the prediction of D(0)(Ni-C)-D(0)(Ni(+)-C)=0.688 eV, which is also consistent with the experimental determination of 0.732 21±0.000 06 eV, whereas the MRCI+Q calculations (with relativistic and CV effects) predict a significantly lower value of 0.39 eV for D(0)(Ni-C)-D(0)(Ni(+)-C). The analysis of the correction terms shows that the CV and valence-valence electronic correlations beyond CCSD(T) wavefunction and the relativistic effect make significant contributions to the calculated thermochemical properties of NiC/NiC(+). For the experimental D(0) and ΔH(o)(f0) values of

  1. High field magnetization and specific heat of ErNi{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Kayzel, F.E.; Franse, J.J.M. [Univ. van Amsterdam (Netherlands). Van der Waals-Zeeman Lab.; Radwanski, R.J. [Centre for Solid State Physics, Krakow (Poland)


    High field magnetization studies of single crystalline ErNi{sub 5} in fields up to 38T at 1.5K along the main crystallographic directions have been performed. Along the easy direction, the hexagonal axis, the spontaneous magnetization, M{sub s}, amounts to 8.62{mu}{sub B}/f.u. The high-field susceptibility is very small and equal to 41 {times} 10{sup {minus}4}{mu}{sub B}/Tf.u. There exists a distinct difference between the curves along the a- and b-axis. The a-axis curve monotonously increases with field up to 38T. The b-axis curve coincides with the a-axis curve up to 12T but starts to deviate from it above this field, resulting in a value for the magnetization at 38T which is almost the full moment value. The specific beat of a newly-grown single-crystalline sample has been measured in zero field and in applied fields along the c-axis (B = 0.3, 1, 2, 5T). The zero-field measurements coincide with previously reported results The specific heat shows a rapid decrease of the ferrimagnetic order with applied field. Already in 1T, the sharp lambda-type of peak at the magnetic transition is decreased by two third and becomes a broad bump that coincides with the la measurement above 30K. Higher fields further suppress the transition.

  2. Finding sRNA generative locales from high-throughput sequencing data with NiBLS

    Directory of Open Access Journals (Sweden)

    Moulton Vincent


    Full Text Available Abstract Background Next-generation sequencing technologies allow researchers to obtain millions of sequence reads in a single experiment. One important use of the technology is the sequencing of small non-coding regulatory RNAs and the identification of the genomic locales from which they originate. Currently, there is a paucity of methods for finding small RNA generative locales. Results We describe and implement an algorithm that can determine small RNA generative locales from high-throughput sequencing data. The algorithm creates a network, or graph, of the small RNAs by creating links between them depending on their proximity on the target genome. For each of the sub-networks in the resulting graph the clustering coefficient, a measure of the interconnectedness of the subnetwork, is used to identify the generative locales. We test the algorithm over a wide range of parameters using RFAM sequences as positive controls and demonstrate that the algorithm has good sensitivity and specificity in a range of Arabidopsis and mouse small RNA sequence sets and that the locales it generates are robust to differences in the choice of parameters. Conclusions NiBLS is a fast, reliable and sensitive method for determining small RNA locales in high-throughput sequence data that is generally applicable to all classes of small RNA.

  3. Microstructure and morphology of powder particles TiC-NiCr, synthesized in plasma jet, at high-energy actions on components of initial composition Ti-C-NiCr (United States)

    Solonenko, Oleg P.; Smirnov, Andrey V.; Chesnokov, Anton E.


    The results of experiments on in-situ synthesis of the microspherical, in particular hollow, cermet powder TiC- 30vol.%NiCr at processing of the Ti-C-NiCr agglomerates in argon-helium plasma jet flowing out into controlled atmosphere are presented. Preparation of the agglomerates consisted of the following stages: (i) high-energy treatment of the initial powders Ti and NiCr in planetary mill with their subsequent uniform mixing with glass black powder, (ii) preparation of dough from mechanically mixed powders and binder, and their granulation using the extrusion method, (iii) drying and classification of granules by the sizes.

  4. First principles exploration of near-equiatomic NiFeCrCo high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Niu, C.; Zaddach, A.J.; Koch, C.C.; Irving, D.L., E-mail:


    High entropy alloy NiFeCrCo was systematically studied in the range of near-equal atomic concentrations, i.e., 10–40 at.%, by first-principles tools and high throughput calculations. Enthalpy of mixing, lattice parameter (a{sub 0}), bulk modulus (B), and shear modulus (G) were calculated by the exact muffin-tin orbital method combined with coherent potential approximation (EMTO-CPA) for over 2700 compositions of the NiFeCrCo alloy as a single-phase solid solution in paramagnetic state. It was found that certain elements have the most significant influence on each property, namely, Cr on enthalpy of mixing, Co on a{sub 0}, Fe on B, Co on G, and Cr on the ratio of B/G. An equation to predict the enthalpy of mixing by use of binary enthalpy data was evaluated and was found to have a good accuracy with a root-mean-square deviation (RMSD) of 42 meV per formula unit in the prediction. A similar equation to predict bulk modulus with weighted contribution from first–shell interaction is proposed and tested on all alloys. This equation was also found to be accurate with a RMSD of 6 GPa. Finally, it was found that shear moduli of all tested alloys are largely dependent on C{sub 44}, while the concentration of Co has a noticeable control on C{sub 44}. Spin polarized calculations were performed for a select group of alloys with both EMTO-CPA and the Vienna ab-initio Simulation Package (VASP) with special quasi-random structure models for comparison. Good agreement was found between these methods. - Highlights: • 2700 + compositions of non-equiatomic HEAs simulated. • Trends in a{sub o}, ΔH{sub mix}, B, G, and B/G as a function of composition are predicted. • Accuracy of empirical equation for calculation of ΔH{sub mix} is evaluated. • New semi empirical rule to predict bulk modulus from binary data is proposed. • Predicted chemical trends could be used to tune properties of non-equiatomic HEAs.

  5. Well-dispersed Ni nanoclusters on the surfaces of MFI nanosheets as highly efficient and selective catalyst for the hydrogenation of naphthalene to tetralin (United States)

    Gong, Pengyu; Li, Baoshan; Kong, Xianglong; Liu, Jianjun; Zuo, Shengli


    One of the challenges in material science has been to design and prepare highly efficient and selective catalysts for target reactions. Here we demonstrate a one-pot hydrothermal synthesis of hierarchical MFI nanosheets with nickel species chemically bonded on the outer surfaces. It turns out that the growth and morphologies of self-pillared MFI nanosheets are affected by Ni content, and the thickness of MFI nanosheets are determined to be 2.3 nm or 3.0 nm. Specially, the bonded Ni on the outer surfaces can effectively prevent adjacent nanosheets from forming new Sisbnd Osbnd Si bonds, and in conjunction with the self-pillared structure, can hamper complete collapse of Ni-MFI-NSs during calcination. In naphthalene hydrogenation, the separated Ni species are previously reduced to highly-dispersed metallic Ni nanoclusters with size below 1.6 nm, which are highly active for hydrogenation. And the hierarchical porosity of Ni-MFI-NSs significantly enhances the diffusion of substrates and the accessibility of active sites. As a result, Ni-MFI-NSs achieve 100% selectivity for tetralin and 84.9% conversion of naphthalene with Ni content of only 4.2 wt%. Furthermore, the gradually enlarged Ni nanoparticles cause the decline of catalytic activities of catalysts.

  6. Effect of B and Cr on elastic strength and crystal structure of Ni{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Raju, S.V., E-mail: [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States); Oni, A.A. [Department of Materials Science and Engr., North Carolina State University, Raleigh, NC 27695 (United States); Godwal, B.K. [Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720 (United States); Yan, J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94730 (United States); Earth and Planetary Sciences Department, University of California, Santa Cruz, CA 95064 (United States); Drozd, V. [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States); Srinivasan, S. [Department of Materials Science and Engg., Iowa State University, Iowa, IA (United States); LeBeau, J.M. [Department of Materials Science and Engr., North Carolina State University, Raleigh, NC 27695 (United States); Rajan, K. [Department of Materials Science and Engg., Iowa State University, Iowa, IA (United States); Saxena, S.K. [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States)


    Highlights: • Ni{sub 3}Al, Ni{sub 3}Al:B and Ni-Al-Cr alloys were prepared by Bridgman-Stockburger technique. • Crystal structures confirmed by XRD and Electron microscopy studies. • Bulk modulus from XRD studies under pressure and Young’s modulus from nano-indentation were determined. • Combining the above results enabled shear modulus and Poisson’s ratio. • K/G ratio suggests that Ni{sub 3}Al doped with B (500 ppm) has the highest hardness with ductility. - Abstract: Samples of Ni{sub 3}Al, Ni{sub 3}Al:B and Ni–Al–Cr super alloys were prepared by directional solidification method and their effect of alloying with ternary elements on the mechanical properties was investigated. In-situ X-ray diffraction studies were carried out on undoped Ni{sub 3}Al, Ni{sub 3}Al:B with boron 500 ppm and Ni–Al–Cr with 7.5 at.% of chromium super alloys at high pressure using diamond anvil cell. The results indicate that micro-alloying with B forms γ′-phase (L1{sub 2} structure), similar to the pure Ni {sub 3}Al, while Ni–Al–Cr alloy consists of γ′ precipitates in a matrix of γ-phase (Ni-FCC structure). The crystal structure of all three alloys was stable up to 20 GPa. Micro alloying with boron increases bulk modulus of Ni{sub 3}Al by 8% whereas alloying with chromium has the opposite effect decreasing the modulus by 11% when compared to undoped alloy. Further, the elastic modulus and hardness of Ni{sub 3}Al, Ni{sub 3}Al:B and Ni–Al–Cr alloys were determined using the nano-indentation technique, in combination with compressibility data which enabled the estimation of shear modulus and Poisson’s ratio of these alloys.

  7. La{sub 2}NiSb. A ternary ordered version of the Bi{sub 3}Ni type with highly polar bonding

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Konrad; Gerke, Birgit; Schwickert, Christian; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Isaeva, Anna [Technische Universitaet Dresden (Germany). Fachrichtung Chemie und Lebensmittelchemie; Ruck, Michael [Technische Universitaet Dresden (Germany). Fachrichtung Chemie und Lebensmittelchemie; Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)


    The lanthanum-rich antimonide La{sub 2}NiSb was synthesized by annealing a cold-pressed pellet of the elements in a sealed silica glas tube at 1120 K. La{sub 2}NiSb was characterized by powder and single-crystal X-ray diffraction: ordered Bi{sub 3}Ni type, Pnma, Z = 4, a = 825.6(3), b = 452.2(2), c = 1195.5(4) pm, wR = 0.0695, 856 F{sup 2} values, 26 variables. The nickel atoms form infinite zig-zag chains (259 pm Ni-Ni) with trigonal-prismatic lanthanum coordination for each nickel atom. The antimony atoms cap the rectangular faces of the lanthanum prisms (336 pm La-Sb) and thereby coordinate also the nickel atoms (271 pm Ni-Sb). These rods run parallel to the b axis and form a herringbone pattern, similar to the FeB-type structure of GdNi. Although metallic conductivity is expected for La{sub 2}NiSb from DFT-based band structure calculations, the real-space bonding analysis shows prominent localization of electrons on antimonide anions and positively charged lanthanum cations. The chain substructure is strongly bonded by polar covalent Ni-Sb and multicenter Ni-Ni interactions. The nickel atoms, which are involved in multicenter bonding with adjacent nickel and lanthanum atoms, provide a conductivity pathway along the prismatic strands. {sup 121}Sb Moessbauer spectroscopic data at 78 K show a single signal at an isomer shift of -7.62(3) mm s{sup -1}, supporting the antimonide character. La{sub 2}NiSb shows weak paramagnetism with a susceptibility of 2.5 x 10{sup -3} emu mol{sup -1} at room temperature.

  8. Flexible NiO-Graphene-Carbon Fiber Mats Containing Multifunctional Graphene for High Stability and High Specific Capacity Lithium-Ion Storage. (United States)

    Wang, Zhongqi; Zhang, Ming; Zhou, Ji


    An electrode's conductivity, ion diffusion rate, and flexibility are critical factors in determining its performance in a lithium-ion battery. In this study, NiO-carbon fibers were modified with multifunctional graphene sheets, resulting in flexible mats. These mats displayed high conductivities, and the transformation of active NiO to inert Ni(0) was effectively prevented at relatively low annealing temperatures in the presence of graphene. The mats were also highly flexible and contained large gaps for the rapid diffusion of ions, because of the addition of graphene sheets. The flexible NiO-graphene-carbon fiber mats achieved a reversible capacity of 750 mA h/g after 350 cycles at a current density of 500 mA/g as the binder-free anodes of lithium-ion batteries. The mats' rate capacities were also higher than those of either the NiO-carbon fibers or the graphene-carbon fibers. This work should provide a new route toward improving the mechanical properties, conductivities, and stabilities of mats using multifunctional graphene.

  9. New finite element method for thermal fluid flows at high Reynolds numbers; Netsuido ni tomonau ranryu no kaiseki ni tekishita yugen yosoho ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tanahashi, T.; Nakai, T. [Keio University, Tokyo (Japan). Faculty of Engineering


    Generally speaking, finite element methods in the computational fluid dynamics are universal, but not economical. In the present paper in order to overcome this defect ill FEM, we propose a new method using the discrete del operator which is a coordinate-free differential operator in the discrete space. This operator in the discrete space is defined as an element average of the gradient of the shape function and it has three characteristics such as orthogonality, identity and symmetricity. Furthermore the discrete del operator is useful in non-memorizing and in easy coding. As the analytical expression of the discrete del operator is a vector in the two or three dimensions, the natural description of programming becomes objective and compact, which is more understandable for non-specialists of CFD. Here we apply this method to thermal fluid flows at high Reynolds numbers. 10 refs., 5 figs., 1 tab.

  10. Thermodynamic Property Study of Nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H Systems by High Pressure DSC Method


    Huaiyu Shao; Gongbiao Xin; Xingguo Li; Etsuo Akiba


    Mg, Ni, and Cu nanoparticles were synthesized by hydrogen plasma metal reaction method. Preparation of Mg2Ni and Mg2Cu alloys from these Mg, Ni, and Cu nanoparticles has been successfully achieved in convenient conditions. High pressure differential scanning calorimetry (DSC) technique in hydrogen atmosphere was applied to study the synthesis and thermodynamic properties of the hydrogen absorption/desorption processes of nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H systems. Van’t Hoff equation o...

  11. Fabrication and magnetic investigations of highly uniform CoNiGa alloy nanowires (United States)

    Li, Wen-Jing; Khan, U.; Irfan, Muhammad; Javed, K.; Liu, P.; Ban, S. L.; Han, X. F.


    CoNiGa ternary alloy nanowire arrays were successfully fabricated by simple DC electrodeposition into the anodized aluminum oxide (AAO) templates. A systematic study of the potential and components of the electrolyte were conducted to obtain different components of CoNiGa nanowires. The largest Ga content in the prepared alloy nanowires was about 17%, while for Co and Ni contents which can be controlled in a wide range by adjusting the composition and pH value of the electrolyte appropriately. X-ray diffraction analysis confirmed that the as-grown CoNiGa nanowire arrays were polycrystal with fcc phase of Co where Co atoms partially substituted by Ni and Ga. Magnetization curves of samples with different composition were measured at room temperature as well as low temperature. The results showed that the components of the alloy nanowires have a great impact on its magnetic properties. For Co55Ni28Ga17 nanowires, the magnetization reversal mode changes from curling mode to coherent rotation as the angle increases, and the temperature dependence of coercivity can be well described by the thermal activation effect.

  12. The Effect of An Anomalously High Warm-pool Sst On The Magnitude of El NiÑo Warming (United States)

    Sun, De-Zheng

    El Niño warming corresponds to an eastward extension of the warm-pool, one thus naturally wonders whether an increase in the warm-pool SST will result in stronger El Niños. This question, though elementary, have not drawn much attention. The ob- servation that the two strongest El Niños in the instrumental record occurred during the last two decades when the warm-pool SST was anomalous high, however, has added practical importance to answering this question. Here we show observational as well as results from numerical models which tend to support a positive answer to this question. The observational results come from an analysis of the heat balance of the tropical Pacific over the period of 1980-1999. The analysis confirms that El Niño acts as a major mechanism by which the tropical Pacific transports heat poleward-the poleward heat transport is achieved episodically and those episodes correspond well with the occurrence of El Niños. Moreover, the analysis shows that El Niño is a regu- lator of the heat content in the western Pacific: the higher the heat content, the stronger the subsequent El Niño warming, which transports more heat poleward, and results in a larger drop in the heat content in the western Pacific. These empirical results sug- gest a positive relationship between the amplitude of ENSO and the warm-pool SST. An increase in the tropical maximum SST initially increases the zonal SST contrast. A stronger zonal SST contrast then strengthens the surface winds. Because of the stronger winds and the resulting steeper tilt of the equatorial thermocline, the coupled system is potentially unstable and is poised to release its energy through a stronger El Niño warming. A stronger El Niño then pushes the accumulated heat poleward and prevents heat build up in the western Pacific, and thereby stabilize the coupled system. Numerical experiments with a coupled model were then carried out to explore the suggestion from observations. The ocean component is

  13. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance (United States)

    Chen, Haichao; Jiang, Jianjun; Zhang, Li; Xia, Dandan; Zhao, Yuandong; Guo, Danqing; Qi, Tong; Wan, Houzhao


    Self-standing NiCo2S4 nanotube arrays have been in situ grown on Ni foam by the anion-exchange reaction and directly used as the electrode for supercapacitors. The NiCo2S4 nanotube in the arrays effectively reduces the inactive material and increases the electroactive surface area because of the ultrathin wall, which is quite competent to achieve high utilization efficiency at high electroactive materials mass loading. The NiCo2S4 nanotube arrays hybrid electrode exhibits an ultrahigh specific capacitance of 14.39 F cm-2 at 5 mA cm-2 with excellent rate performance (67.7% retention for current increases 30 times) and cycling stability (92% retention after 5000 cycles) at a high mass loading of 6 mg cm-2. High areal capacitance (4.68 F cm-2 at 10 mA cm-2), high energy density (31.5 Wh kg-1 at 156.6 W kg-1) and high power density (2348.5 W kg-1 at 16.6 Wh kg-1) can be achieved by assembling asymmetric supercapacitor with reduced graphene oxide at a total active material mass loading as high as 49.5 mg. This work demonstrates that NiCo2S4 nanotube arrays structure is a superior electroactive material for high-performance supercapacitors even at a mass loading of potential application-specific scale.

  14. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated (United States)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd


    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  15. Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation

    Directory of Open Access Journals (Sweden)

    Firstov Georgiy


    Full Text Available It was shown very recently that despite high thermal stability some high entropy alloys, namely, intermetallic compounds of TiZrHfCoNiCu family, undergo martensitic transformation and exhibit shape memory effect [1]. It was also found that X-ray diffraction patterns taken from those compounds resemble qualitatively ones of B2 ordering type for austenitic state and B19` - for martensite. It is going to be shown [2] that the ordered structure of austenite phase is not B2 but is a result of group-subgroup transition down to triclinic P1 space group. Present paper reports onto the results of electron structure modelling combined with crystal structure analysis with the help of experimental data Rietveld refinement performed for TiZrHfCoNiCu intermetallics. Crystal structures of austenite and martensite phases for these high entropy intermetallics will be discussed.

  16. Towards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application

    Directory of Open Access Journals (Sweden)

    Sabrina C. Zignani


    Full Text Available In order to help the introduction on the automotive market of polymer electrolyte fuel cells (PEFCs, it is mandatory to develop highly performing and stable catalysts. The main objective of this work is to investigate PtNi/C catalysts in a PEFC under low relative humidity and pressure conditions, more representative of automotive applications. Carbon supported PtNi nanoparticles were prepared by reduction of metal precursors with formic acid and successive thermal and leaching treatments. The effect of the chemical composition, structure and surface characteristics of the synthesized samples on their electrochemical behavior was investigated. The catalyst characterized by a larger Pt content (Pt3Ni2/C presented the highest catalytic activity (lower potential losses in the activation region among the synthesized bimetallic PtNi catalysts and the commercial Pt/C, used as the reference material, after testing at high temperature (95 °C and low humidification (50% conditions for automotive applications, showing a cell potential (ohmic drop-free of 0.82 V at 500 mA·cm−2. In order to assess the electro-catalysts stability, accelerated degradation tests were carried out by cycling the cell potential between 0.6 V and 1.2 V. By comparing the electrochemical and physico-chemical parameters at the beginning of life (BoL and end of life (EoL, it was demonstrated that the Pt1Ni1/C catalyst was the most stable among the catalyst series, with only a 2% loss of voltage at 200 mA·cm−2 and 12.5% at 950 mA·cm−2. However, further improvements are needed to produce durable catalysts.

  17. Structural Changes of Highly Active Pd/MeOx (Me = Fe, Co, Ni during Catalytic Methane Combustion

    Directory of Open Access Journals (Sweden)

    Dominik Seeburg


    Full Text Available Fe2O3, Co3O4 and NiO nanoparticles were prepared via a citrate method and further functionalized with Pd by impregnation. The pure oxides as well as Pd/Fe2O3, Pd/Co3O4, and Pd/NiO (1, 5 and 10 wt % Pd were employed for catalytic methane combustion under methane lean (1 vol %/oxygen rich (18 vol %, balanced with nitrogen conditions. Already, the pure metal oxides showed a high catalytic activity leading to complete conversion temperature of T100 ≤ 500 °C. H2-TPR (Temperature-programmed reduction experiments revealed that Pd-functionalized metal oxides exhibited enhanced redox activity compared to the pure oxides leading to improved catalytic combustion activity at lower temperatures. At a loading of 1 wt % Pd, 1Pd/Co3O4 (T100 = 360 °C outperforms 1Pd/Fe2O3 (T100 = 410 °C as well as 1Pd/NiO (T100 = 380 °C. At a loading of 10 wt % Pd, T100 could only be slightly reduced in all cases. 1Pd/Co3O4 and 1Pd/NiO show reasonable stability over 70 h on stream at T100. XPS (X-ray photoelectron spectroscopy and STEM (Scanning transmission electron microscopy investigations revealed strong interactions between Pd and NiO as well as Co3O4, respectively, leading to dynamic transformations and reoxidation of Pd due to solid state reactions, which leads to the high long-term stability.

  18. Thermal cyclic test for Sn-4Ag-0.5Cu solders on high P Ni/Au and Ni/Pd/Au surface finishes

    Directory of Open Access Journals (Sweden)

    M.A. Azmah Hanim


    Full Text Available In electronic packaging, the reliability of the interconnection changes with the surface finish and the type of solders being used. Thermal cycling is one method of reliability assessment. In thermal cycling experiments, the strain state is simplified by soldering together regular shaped pieces of materials with different coefficients of thermal expansion and exposing the joint to repeated fluctuations of temperature within a certain range. Thus, this study focuses on the intermetallic evolution of Sn-4Ag-0.5Cu on Ni/Au and Ni/Pd/Au surface finishes with thermal cycling up to 1000 cycles with the range of temperature varying from 10 to 80 °C. Sandwich samples were prepared by placing solder balls of Sn-4Ag-0.5Cu between two substrates of two different surface finishes: Ni/Au and Ni/Pd/Au. Optical microscope and FESEM (Field emission scanning electron microscope were used to analyze the samples. From the study, it was observed that the intermetallic changes from (Cu, Ni6Sn5 to (Ni, Cu3Sn4 after 1000 thermal cycles for Ni/Au. These changes promote the formation of cracks at the solder joint because of the different mechanical properties between Ni-Sn based intermetallic and Cu-Sn intermetallics. However, for the Ni/Pd/Au surface finishes, no cracks formed after thermal cycling up to 1000 cycles. This shows that the reliability of the solder joint is higher for Ni/Pd/Au surface finishes in this experiment. Based on these results, it can be concluded that the reliability of the Ni/Pd/Au surface finishes with Sn-4Ag-0.5Cu solders is higher within the given condition of this research.

  19. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing (United States)

    Torres, Luis G.; Lopez, Rosario B.; Beltran, Margarita

    Surfactant enhanced soil washing (SESW) was applied to an industrial contaminated soil. A preliminary characterization of the soil regarding the alkaline-earth metals, Na, K, Ca and Mg took values of 2866, 2036, 2783 and 4149 mg/kg. The heavy metals As, Cd, Cu, Pb, Ni and Zn, had values of 4019, 14, 35582, 70, 2603, and 261 mg/kg, respectively. When using different surfactants, high removal of Cu, Ni and Zn were found, and medium removals for Pb, As and Cd. In the case of these three metals, tap water removed more than the surfactant solutions, except for the case of As. There were surfactants with average removals (this is, the removal for all the metals studied) of 67.1% (Tween 80), 64.9% (Surfacpol 14104) and 61.2% (Emulgin W600). There were exceptional removals using Texapon N-40 (83.2%, 82.8% and 86.6% for Cu, Ni and Zn), Tween 80 (85.9, 85.4 and 81.5 for Cd, Zn and Cu), Polafix CAPB (79%, 83.2% and 49.7% for Ni, Zn and As). The worst results were obtained with POLAFIX LO with a global removal of 45%, well below of the average removal with tap water (50.2%).All removal efficiencies are reported for a one step washing using 0.5% surfactant solutions, except for the case of mezquite gum, where a 0.1% solution was employed.

  20. Electrochemical Study of Ni20Cr Coatings Applied by HVOF Process in ZnCl2-KCl at High Temperatures

    Directory of Open Access Journals (Sweden)

    J. Porcayo-Calderón


    Full Text Available Corrosion behavior of Ni20Cr coatings deposited by HVOF (high velocity oxygen-fuel process was evaluated in ZnCl2-KCl (1 : 1 mole ratio molten salts. Electrochemical techniques employed were potentiodynamic polarization curves, open circuit potential, and linear polarization resistance (LPR measurements. Experimental conditions included static air and temperatures of 350, 400, and 450°C. 304-type SS was evaluated in the same conditions as the Ni20Cr coatings and it was used as a reference material to assess the coatings corrosion resistance. Coatings were evaluated as-deposited and with a grinded surface finished condition. Results showed that Ni20Cr coatings have a better corrosion performance than 304-type SS. Analysis showed that Ni content of the coatings improved its corrosion resistance, and the low corrosion resistance of 304 stainless steel was attributed to the low stability of Fe and Cr and their oxides in the corrosive media used.

  1. NiZn ferrite/Fe hybrid epoxy-based composites: extending magnetic properties to high frequency (United States)

    Wang, Yunqi; Grant, Patrick S.


    Hybrid ferromagnetic composites composed of Ni0.4Zn0.6Fe2O4 ferrite powder and Fe particles in an epoxy matrix with various composition ratios were prepared by a simple mould casting route. Planetary ball milling was then introduced to pre-grind Fe and NiZn ferrite filler mixtures before casting, which resulted in fragmentation of the NiZn ferrites and modification of the Fe morphology from spherical particles to sub-micron flakes. Composites containing the ball-milled fillers exhibited a remarkable improvement in electromagnetic properties over the as-supplied materials, especially in the suppression of dielectric and magnetic loss. By combining the characteristics of high resonant frequency of the Fe and low energy losses of the ferrite, an optimum mixture of ball-milled 15 vol% NiZn ferrite and 38 vol% Fe in a hybrid epoxy-based composite gave an approximately one order of magnitude higher extended operating bandwidth over a ferrite-only containing composite, suppressing dielectric and magnetic loss tangents to approximately 10-2 up to 150 MHz without significant deterioration of permeability. This approach of manipulating multi-phase ferromagnetic material fractions and their structure provide for flexibility in the development of bespoke electromagnetic materials for applications in electrically small antenna and metamaterials.

  2. High performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry for V and Ni quantification as tetrapyrroles

    Energy Technology Data Exchange (ETDEWEB)

    Duyck, Christiane Beatrice, E-mail: [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), R. Marques de Sao Vicente, 225, Gavea, Rio de Janeiro, RJ, 22451-900 (Brazil); Universidade Federal Fluminense (UFF), Campus do Valonguinho, Outeiro de Sao Joao Batista, s/no, 24020-150, Niteroi, RJ (Brazil); Saint' Pierre, Tatiana Dillenburg; Miekeley, Norbert [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), R. Marques de Sao Vicente, 225, Gavea, Rio de Janeiro, RJ, 22451-900 (Brazil); Oliveira da Fonseca, Teresa Cristina; Szatmari, Peter [Centro de Pesquisas Leopoldo A. Miguez de Mello da Petrobras (CENPES), Av. Horacio Macedo, 950, Cidade Universitaria, Rio de Janeiro, RJ, 21941-915 (Brazil)


    A method was developed for the determination of V and Ni as tetrapyrroles by High Performance Liquid Chromatography hyphenated to Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) using reversed phase and elution gradient. Chlorinated solvents and tetrahydrofuran were investigated as regard to separation time and ICP-MS detection efficiencies. The final elution gradient program started from pure methanol to a mixture of 20:80 (v/v) chloroform:methanol. External quantification of V and Ni with inorganic standards by flow injection ICP-MS, used online with HPLC, resulted in 95% of recoveries. The Limits of Detection for V during methanol elution and for Ni during the 20% chloroform gradient elution were evaluated by their minimum detectable concentrations, which were, respectively, 5 {mu}g L{sup -1} and 8 {mu}g L{sup -1}. The methodology was applied to polar and resin fractions separated from a Brazilian crude oil and a sediment extract from an oil-polluted area in the Guanabara Bay, Rio de Janeiro, Brazil. Vanadium as tetrapyrroles represented the totality of V content in the polar fraction, whereas Ni was in different polar forms in the resin and sediment extract.

  3. Promoting a-Al2O3 layer growth upon high temperature oxidation of NiCoCrAlY alloys

    NARCIS (Netherlands)

    Nijdam, T.J.


    The turbine blades in gas turbine engines need to be protected against high temperature oxidation and corrosion with a coating system. This coating system comprises of a Ni-based superalloy substrate, a NiCoCrAlY bond coating (BC) and an insulating ceramic thermal barrier coating (TBC). Good

  4. High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes (United States)

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung


    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978

  5. Luminous Type IIP SN 2013ej with high-velocity 56Ni ejecta (United States)

    Utrobin, V. P.; Chugai, N. N.


    We explore the well-observed Type IIP supernova 2013ej with peculiar luminosity evolution. It is found that the hydrodynamic model cannot reproduce in detail the bolometric luminosity at both the plateau and the radioactive tail. Yet the ejecta mass of 23-26 M⊙ and the kinetic energy of (1.2-1.4) × 1051 erg are determined rather confidently. We suggest that the controversy revealed in hydrodynamic simulations stems from the strong asphericity of the 56Ni ejecta. An analysis of the asymmetric nebular H α line and of the peculiar radioactive tail made it possible to recover parameters of the asymmetric bipolar 56Ni ejecta with the heavier jet residing in the rear hemisphere. The inferred 56Ni mass is 0.039 M⊙, twice as large compared to a straightforward estimate from the bolometric luminosity at the early radioactive tail. The bulk of ejected 56Ni has velocities in the range of 4000-6500 km s-1. The linear polarization predicted by the model with the asymmetric ionization produced by bipolar 56Ni ejecta is consistent with the observational value.

  6. A New Ni-Based Metallic Glass with High Thermal Stability and Hardness

    Directory of Open Access Journals (Sweden)

    Aytekin Hitit


    Full Text Available Glass forming ability (GFA, thermal stability and microhardness of Ni51−xCuxW31.6B17.4 (x = 0, 5 metallic glasses have been investigated. For each alloy, thin sheets of samples having thickness of 20 µm and 100 µm were synthesized by piston and anvil method in a vacuum arc furnace. Also, 400 µm thick samples of the alloys were synthesized by suction casting method. The samples were investigated by X-ray diffractometry (XRD and differential scanning calorimetry (DSC. Crystallization temperature of the base alloy, Ni51W31.6B17.4, is found to be 996 K and 5 at.% copper substitution for nickel increases the crystallization temperature to 1063 K, which is the highest value reported for Ni-based metallic glasses up to the present. In addition, critical casting thickness of alloy Ni51W31.6B17.4 is 100 µm and copper substitution does not have any effect on critical casting thickness of the alloys. Also, microhardness of the alloys are found to be around 1200 Hv, which is one of the highest microhardness values reported for a Ni-based metallic glass until now.

  7. An evaluation of mechanical and high-temperature corrosion properties of Ni-Cr alloy with composition of alloying elements

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sujin; Kim, Dongjin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at 950 .deg. C in the impure helium environment of a VHTR, degradation of material is accelerated and mechanical properties decreased. An alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in laboratory were evaluated as a function of the grain boundary strengthening and alloying element composition. The mechanical property and corrosion property for Ni-Cr alloys fabricated in a laboratory were evaluated as a function of the main element composition. The ductility was increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, because there was not aluminum element in the alloy. Aluminum seems to act as an anti-corrosive role in Ni-based alloy. In conclusion, the addition of Al into the alloy is required to improvement of high temperature corrosion resistance.

  8. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bei, H., E-mail: [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)


    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. The effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. The materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (∼70% at 77 K and ∼40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys. - Highlights: • Interstitial atom C was successfully added into FeNiCoCrMn high entropy alloys. • The strain hardening rate and strength are enhanced in the C-containing alloy. • The increased strain-hardening and strength are caused by the nano-twinning.

  9. Two-Dimensional Layered Double Hydroxide Derived from Vermiculite Waste Water Supported Highly Dispersed Ni Nanoparticles for CO Methanation

    Directory of Open Access Journals (Sweden)

    Panpan Li


    Full Text Available Expanded multilayered vermiculite (VMT was successfully used as catalyst support and Ni/VMT synthesized by microwave irradiation assisted synthesis (MIAS exhibited excellent performance in our previous work. We also developed a two-dimensional porous SiO2 nanomesh (2D VMT-SiO2 by mixed-acid etching of VMT. Compared with three-dimensional (3D MCM-41, 2D VMT-SiO2 as a catalyst support provided a superior position for implantation of NiO species and the as-obtained catalyst exhibited excellent performance. In this paper, we successfully synthesized a layered double hydroxide (LDH using the spent liquor after mixed-acid etching of VMT, which mainly contained Mg2+ and Al3+. The as-calcined layered double oxide (LDO was used as a catalyst support for CO methanation. Compared with Ni/MgAl-LDO, Ni/VMT-LDO had smaller active component particles; therefore, in this study, it exhibited excellent catalytic performance over the whole temperature range of 250–500 °C. Ni/VMT-LDO achieved the best activity with 87.88% CO conversion, 89.97% CH4 selectivity, and 12.47 × 10−2·s−1 turn over frequency (TOF at 400 °C under a gas hourly space velocity of 20,000 mL/g/h. This study demonstrated that VMT-LDO as a catalyst support provided an efficient way to develop high-performance catalysts for synthetic natural gas (SNG from syngas.

  10. Highly active Ni/Y-doped ZrO{sub 2} catalysts for CO{sub 2} methanation

    Energy Technology Data Exchange (ETDEWEB)

    Takano, H., E-mail: [Hitachi Zosen Corporation, Kashiwa, 277-8515 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 (Japan); Kirihata, Y.; Izumiya, K.; Kumagai, N. [Hitachi Zosen Corporation, Kashiwa, 277-8515 (Japan); Habazaki, H., E-mail: [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 (Japan); Division of Applied Chemistry & Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 (Japan); Hashimoto, K. [Tohoku Institute of Technology, Sendai, 277-8515 (Japan)


    Highlights: • The Ni/Y-doped ZrO{sub 2} catalysts show highly catalytic activity for CO{sub 2} methanation. • Bidentate carbonate is a major adsorption spice on the Ni/Y-doped ZrO{sub 2} catalysts. • The oxide support of t-ZrO{sub 2} and/or c-ZrO{sub 2} with oxygen vacancies plays a key role. - Abstract: The catalytic methanation of CO{sub 2} was carried out on Ni catalysts supported on Y-doped ZrO{sub 2} with various Y{sup 3+} concentrations and Ni/(Zr + Y) molar ratio = 1. The catalysts were characterized by X-ray diffraction, scanning transmission electron microscopy, specific surface area, temperature-programmed desorption of CO{sub 2}, and temperature-programmed reaction. In addition, operando diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFT) was used to identify the adsorbed reaction intermediate. Catalysts supported on Y-doped ZrO{sub 2} show higher catalytic activity than the catalyst on Y-free ZrO{sub 2} with a monoclinic ZrO{sub 2} phase. The catalytic activity is also dependent upon the Y{sup 3+} concentration, and the highest activity was obtained for the catalyst with a Y/(Zr + Y) molar ratio of 0.333, which consists mainly of fcc Ni and cubic ZrO{sub 2} phase. Y{sup 3+} doping into ZrO{sub 2} introduces oxygen vacancies, which play an important role in enhancing the catalytic activity. The operando DRIFT study reveals that a CO adsorption intermediate is absent, and bidentate carbonate is an important intermediate for CH{sub 4} formation.

  11. On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy (United States)

    Yeh, An-Chou; Chang, Yao-Jen; Tsai, Che-Wei; Wang, Yen-Chun; Yeh, Jien-Wei; Kuo, Chen-Ming


    In the present study, a Co1.5CrFeNi1.5Ti0.5 high-entropy alloy has been investigated for its high-temperature microstructural stability. This material is shown to possess mainly a face-centered cubic (FCC) structure; the η phase is present at the interdendritic region in the as-cast condition, and it is stable between 1073 K and 1273 K (800 °C and 1000 °C); γ' particles are found throughout the microstructures below 1073 K (800 °C). Segregation analysis has been conducted on a single crystal sample fabricated by a directional solidification process with a single crystal seed. Results show that Co, Cr, and Fe partition toward the dendritic region, while Ni and Ti partition toward the interdendritic areas. Scheil analysis indicates that the solid-liquid partitioning ratio of each element is very similar to those in typical single crystal superalloys.

  12. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit (United States)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui


    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  13. Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S., E-mail: [KAERI, Dukjin-dong 150, Yuseong, Daejeon (Korea, Republic of); Kim, M.C.; Yoon, J.H.; Hong, J.H. [KAERI, Dukjin-dong 150, Yuseong, Daejeon (Korea, Republic of)


    The reactor pressure vessels of PWRs have mostly been made of SA508 Grade 3 (Class 1) low alloy steels which have revealed moderate mechanical properties and a moderate radiation resistance for a 40 or 60 year operation. The specified minimum yield strength of the material is 345 MPa with a ductile-brittle transition temperature of about 0 deg. C. While other materials, most of which are non-ferrous alloys or high alloyed steels for a higher temperature application, are being developed for the Generation-4 reactors, low alloy steels with a higher strength and toughness can help to increase the safety and economy of the advanced PWR systems which will be launched in the near future. The ASME specification for SA508 Grade 4N provides a way to increase both the strength and toughness by a chemistry modification, especially by increasing the Ni and Cr contents. However, a higher strength steel has a deficiency due to a lack of operating data for nuclear power plants. In this study, experimental heats of SA508 Grade 4N steels with different chemical compositions were characterized mechanically. The preliminary results for an irradiation embrittlement and the HAZ properties are discussed in addition to their superior baseline properties.

  14. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion

    DEFF Research Database (Denmark)

    Zhang, H.W.; Huang, Xiaoxu; Pippan, R.


    Polycrystalline Ni of two purities (99.967% (4N) and 99.5% (2N)) was deformed to an ultra-high strain of εvM = 100 (εvM, von Mises strain) by high pressure torsion at room temperature. The 4N and 2N samples at this strain are nanostructured with an average boundary spacing of 100 nm, a high density...

  15. High efficient conversion of furfural to 2-methylfuran over Ni-Cu/Al2O3 catalyst with formic acid as a hydrogen donor

    DEFF Research Database (Denmark)

    Fu, Zhaolin; Wang, Ze; Lin, Weigang


    Conversion of furfural to 2-methylfuran over Cu/Al2O3, Ni/Al2O3 and Ni-Cu/Al2O3 catalysts were investigated with formic acid as a hydrogen donor. Ni/Al2O3 showed a high catalytic activity but a moderate selectivity to 2-methylfuran. Contrarily, Cu/Al2O3 showed a low catalytic activity but a high...... selectivity for carbonyl reduction. Over the bimetallic catalysts Ni-10%Cu/Al2O3, by increasing Ni content, more furfural was converted with the reduction of carbonyl primarily. The effect of reaction solvent and the fraction of formic acid were also studied. The result showed that isopropanol solvent could...

  16. Bi(1-x)Ni(x)VO(4-y) Solid Solution with a High Visible-Light Photocatalytic Activity for Degradation Methyl Orange. (United States)

    Wang Jing; Wei, Yuelin; Huang, Yunfang; Wu, Jihuai; Dong, Qiang; Yin, Shu; Sato, Tsugio


    Particulate solid solutions Bi(1-x)Ni(x)VO(4-y) were synthesized by solid-state reaction at high temperature. The samples were characterized by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectrometer (EDS), Brunauer-Emmett-Teller (BET) surface area and Ultraviolet-Visible spectroscopy (UV-Vis). The photocatalytic activity of BiVO4 for photocatalytic degradation of organic contaminants ability in visible light region could be improved by doping of Ni(2+). The high visible light photocatalytic activity of Bi(1-x)Ni(x)VO(4-y) solid solution might be due to the generation of a new band gap and expanding the range of visible light response. It was suggested that the Ni(2+) doping was beneficial to effective charge separation of Bi(1-x)Ni(x)VO(4-y) solid solution, thus improved the photocatalytic activity.

  17. Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100 (Preprint) (United States)


    transition fatigue regimes; however, microplasticity (i.e., heterogeneous plasticity at the scale of microstructure) is relevant to understanding fatigue...and Socie [57] considered the affect of microplastic 14 Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base...considers the local stress state as affected by intergranular interactions and microplasticity . For the calculations given below, the volumes over which

  18. Discovery of a new isomeric state in $^{68}$Ni: Evidence for a highly-deformed proton intruder state

    CERN Document Server

    Dijon, A; De France, G; De Angelis, G; Duchêne, G; Dudouet, J; Franchoo, S; Gadea, A; Gottardo, A; Hüyük, T; Jacquot, B; Kusoglu, A; Lebhertz, D; Lehaut, G; Martini, M; Napoli, D R; Nowacki, F; Péru, S; Poves, A; Recchia, F; Redon, N; Sahin, E; Schmitt, C; Sferrazza, M; Sieja, K; Stezowski, O; Valiente-Dobon, J J; Vancraeyenest, A; Zheng, Y


    We report on the observation of a new isomeric state in $^{68}$Ni. We suggest that the newly observed state at 168(1) keV above the first 2$^+$ state is a $\\pi(2p-2h)$ 0$^{+}$ state across the major Z=28 shell gap. Comparison with theoretical calculations indicates a pure proton intruder configuration and the deduced low-lying structure of this key nucleus suggests a possible shape coexistence scenario involving a highly deformed state.

  19. Unravelling the origin of irreversible capacity loss in NaNiO 2 for high voltage sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liguang; Wang, Jiajun; Zhang, Xiaoyi; Ren, Yang; Zuo, Pengjian; Yin, Geping; Wang, Jun


    Layered transition metal compounds have attracted much attention due to their high theoretical capacity and energy density for sodium ion batteries. However, this kind of material suffers from serious irreversible capacity decay during the charge and discharge process. Here, using synchrotron-based operando transmission X-ray microscopy and high-energy X-ray diffraction combined with electrochemical measurements, the visualization of the dissymmetric phase transformation and structure evolution mechanism of layered NaNiO2 material during initial charge and discharge cycles are clarified. Phase transformation and deformation of NaNiO2 during the voltage range of below 3.0 V and over 4.0 V are responsible for the irreversible capacity loss during the first cycling, which is also confirmed by the evolution of reaction kinetics behavior obtained by the galvanostatic intermittent titration technique. These findings reveal the origin of the irreversibility of NaNiO2 and offer valuable insight into the phase transformation mechanism, which will provide underlying guidance for further development of high-performance sodium ion batteries.

  20. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis. (United States)

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella


    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations (United States)

    Wang, Zining; Li, Jia; Fang, QiHong; Liu, Bin; Zhang, Liangchi


    The mechanical behaviors and deformation mechanisms of scratched AlCrCuFeNi high entropy alloys (HEAs) have been studied by molecular dynamics (MD) simulations, in terms of the scratching forces, atomic strain, atomic displacement, microstructural evolution and dislocation density. The results show that the larger tangential and normal forces and higher friction coefficient take place in AlCrCuFeNi HEA due to its outstanding strength and hardness, and high adhesion and fracture toughness over the pure metal materials. Moreover, the stacking fault energy (SFE) in HEA increases the probability to initiate dislocation and twinning, which is conducive to the formation of complex deformation modes. Compared to the single element metal workpieces, the segregation potency of solutes into twinning boundary (TB) is raised due to the decreasing segregation energy of TB, resulting in the stronger solute effects on improving twinning properties for HEA workpiece. The higher dislocation density and the more activated slipping planes lead to the outstanding plasticity of AlCrCuFeNi HEA. The solute atoms as barriers to hinder the motion of dislocation and the severe lattice distortion to suppress the free slipping of dislocation are significantly stronger obstacles to strengthen HEA. The excellent comprehensive scratching properties of the bulk AlCrCuFeNi HEAs are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This work provides a basis for further understanding and tailoring SFE in mechanical properties and deformation mechanism of HEAs, which maybe facilitate the design and preparation of new HEAs with high performance.

  2. Is high-dose β-lactam therapy associated with excessive drug toxicity in critically ill patients? (United States)

    McDonald, Craig; Cotta, Menino O; Little, Peter J; McWhinney, Brett; Ungerer, Jacobus P; Lipman, Jeffrey; Roberts, Jason A


    β-lactam antibiotics may necessitate higher than licensed drug doses to achieve therapeutic exposures in critically ill patients. Therapeutic drug monitoring can be used to guide dosing so as to maximise therapeutic effect whilst reducing the likelihood of exposure-related toxicity. A retrospective review of critically ill patients identified those that received higher than licensed doses of either meropenem (3-6 g/day) or piperacillin-tazobactam (16 g-2 g/day) (i.e. high-dose group) guided by therapeutic drug monitoring. β-lactam-associated toxicities were compared with a patient group of similar age, sex, body mass index and admission diagnosis that received licensed doses of either antibiotic. Mean daily doses were more than 40% higher in the high-dose groups for each antibiotic. There were no significant differences between the high-dose and licensed-dose groups in terms of hepatocellular derangement (17.9% vs. 31.8%, P=0.25 for meropenem and 17.4% vs. 16.0%, P=0.90 for piperacillin-tazobactam), cholestasis (28.0% vs. 13.6%, P=0.32 for meropenem and 13.0% vs. 4.0%, P=0.26 for piperacillin-tazobactam), need for continuous renal replacement therapy (0% vs. 9.1%, P=0.10 for meropenem and 0% vs. 8.0%, P=0.16 for piperacillin-tazobactam), seizure incidence (7.1% vs. 4.5%, P=0.70 for meropenem and nil for either piperacillin-tazobactam group), thrombocytopenia (9.1% vs. 10.7%, P=0.85 for meropenem and 4.0% vs. 4.3% for piperacillin-tazobactam), or neutropenia (4.5% vs. 3.6%, P=0.95 for meropenem and 0.0% vs. 4.3% for piperacillin-tazobactam). Higher than licensed doses of meropenem and piperacillin-tazobactam guided by therapeutic drug monitoring were not associated with additional toxicities. Larger prospective studies are required to confirm the clinical utility of higher than licensed dosing.

  3. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats (United States)

    Kanyan Enchang, Francis; Nor Hussein, Fuzina


    Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD) prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat. PMID:28246535

  4. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats. (United States)

    Samat, Suhana; Kanyan Enchang, Francis; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani


    Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD) prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat.

  5. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Suhana Samat


    Full Text Available Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat.

  6. Microstructure analysis of silicon nanocrystals formed from silicon rich oxide with high excess silicon: Annealing and doping effects (United States)

    Nomoto, K.; Yang, T. C. J.; Ceguerra, A. V.; Zhang, T.; Lin, Z.; Breen, A.; Wu, L.; Puthen-Veettil, B.; Jia, X.; Conibeer, G.; Perez-Wurfl, I.; Ringer, S. P.


    Thin films consisting of silicon nanocrystals fabricated by high silicon content in silicon rich oxide show unique properties of decreasing resistivity and increasing light absorption while maintaining quantum confinement effects. With that said, the effect of the annealing temperature and doping element on the microscopic structure of silicon nanocrystals (Si NCs) and the film are still under research. In this study, individual intrinsic, boron-, and phosphorus-doped films are annealed at various temperatures, and their structural properties are analyzed via atom probe tomography together with glancing incidence x-ray diffraction, Raman spectroscopy (Raman), transmission electron microscopy (TEM), and energy filtered TEM. In addition, photoluminescence (PL) is performed and linked with their microstructural properties. The Si NC growth is confirmed at annealing temperatures of 1000 °C and 1100 °C. The microstructure of the Si NCs in the whole film is dramatically changed by increasing the annealing temperature from 1000 °C to 1100 °C. In addition, doping changes the arrangement of the Si NCs by assisting their penetration across the SiO2 barrier layers. This study helps to understand the relationship between the microscopic and macroscopic properties of the Si NC film, showing that the size and distribution of the Si NCs are correlated with the obtained PL profiles.

  7. An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. (United States)

    Feng, Jijun; Huang, Zhipeng; Guo, Chao; Chernova, Natasha A; Upreti, Shailesh; Whittingham, M Stanley


    High-voltage cathode material LiNi0.5Mn1.5O4 has been prepared with a novel organic coprecipitation route. The as-prepared sample was compared with samples produced through traditional solid state method and hydroxide coprecipitation method. The morphology was observed by scanning electron microscopy, and the spinel structures were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. Besides the ordered/disordered distribution of Ni/Mn on octahedral sites, the confusion between Li and transition metal is pointed out to be another important factor responsible for the corresponding performance, which is worthy further investigation. Galvanostatic cycles, cyclic voltammetry, and electrochemical impedance spectroscopy are employed to characterize the electrochemical properties. The organic coprecipitation route produced sample shows superior rate capability and stable structure during cycling.

  8. Dynamical simulation of surface compositional changes in ni-cu alloys during high-temperature ion sputtering (United States)

    Yamamura, Y.; Kenmotsu, T.

    Using the ACAT-DIFFUSE code, we tried to follow Lam's experimental compositional changes near the surface of Ni-40 at% Cu alloys at various temperatures (25-550°C), where the experiments were performed with a normally incident beam of 3 keV Ne+ ions. The ACAT-DIFFUSE code include both kinetic processes and thermal processes which take place during ion bombardment. If we assume that the segregation energy is a decreasing function of ion-fluence, the experimental ion-fluence dependence of the Cu/Ni ratios at the first layer can be reproduced by the ACAT-DIFFUSE code. The simulated depth profiles at the steady state are in good agreement with the measured depth profiles for T ≤ 300°C. The contribution of atoms at the second layer to the sputtered flux is much less than Lam's value even at high temperature.

  9. Structural modification and twinning stress reduction in a high-temperature Ni-Mn-Ga magnetic shape memory alloy (United States)

    Pagounis, E.; Chulist, R.; Lippmann, T.; Laufenberg, M.; Skrotzki, W.


    Mechanical and synchrotron diffraction experiments were performed to investigate the temperature dependent structural changes in a Ni-Mn-Ga single crystal. The initial sample exhibits a mixture of seven-layered (7M) and non-modulated (NM) martensites at room temperature. Compression along ⟨100⟩ resulted in a strain of 18%, indicating a stress-induced intermartensitic transformation from the 7M to the NM phase. The thermally induced intermartensitic transformation follows the sequence 5M→7M→NM during cooling from the austenite phase. The structural changes are quantitatively reflected in the mechanical response. A twinning stress of 3.8 MPa is measured at 90 °C, which is the lowest reported in high-temperature Ni-Mn-Ga structures.

  10. Continuum mechanics simulations of NiO/Ni-YSZ composites during reduction and re-oxidation

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Frandsen, Henrik Lund; Kaiser, Andreas


    expansion, diffusional creep, grain boundary sliding (GBS) and microcracking due to excessive stress. In the Ni/NiO phase, nonelastic strains in terms of diffusional and power law creep were implemented, and additionally for NiO deformation due to microcracking and/or pseudoplasticity. Semi...

  11. No association between excessive wound complications and preoperative high-dose, hypofractionated, image-guided radiation therapy for spine metastasis. (United States)

    Keam, Jennifer; Bilsky, Mark H; Laufer, Ilya; Shi, Weiji; Zhang, Zhigang; Tam, Moses; Zatcky, Joan; Lovelock, Dale M; Yamada, Yoshiya


    Radiation therapy is known to impair wound healing. Higher dose per fraction is believed to increase this risk. This study sought to quantify rates of wound complication in patients receiving preoperative conventionally fractionated radiotherapy (XRT) or high-dose hypofractionated image-guided radiation therapy (IGRT) for spinal metastasis, and to identify predictors of wound complication. The records of 165 consecutive patients who underwent spine surgery for metastasis at Memorial Sloan-Kettering Cancer Center between 1999 and 2010, with a history of prior radiation therapy, were reviewed. Patients with primary spine tumors, 2 courses of prior radiation therapy to the surgical site, total dose 3 Gy/fraction). The total dose prescribed to the 100% isodose line to treat the planning target volume was 18-30 Gy in 1-5 fractions. Clinical factors evaluated included age, Karnofsky Performance Scale score, body mass index, presence of diabetes, smoking, ambulatory status, prior surgery at same spinal site, preoperative laboratory results (hemoglobin, lymphocyte count, and albumin), perioperative chemotherapy or steroids, estimated blood loss, extent of stabilization hardware, time between radiation therapy and surgery, number of vertebral bodies irradiated, total radiation dose, and dose per fraction of radiation therapy. Wound complication was defined as poor healing, dehiscence, or infection. Potential predictors of wound complication were assessed by univariate analyses using competing-risk methods to adjust for risk of death. results: For XRT patients, median dose was 30 Gy (range 11.5-70 Gy) with 72% of them receiving 3 Gy × 10 fractions. For IGRT patients, 66% received 18-24 Gy × 1 fraction and 23% received 6 Gy × 5 fractions. Groups differed only by the mean number of vertebral bodies treated (4.6 XRT and 1.8 IGRT, p complications occurred at a median of 0.95 months (range 0.4-3.9 months). A total of 22 wound events occurred in the XRT group and 2 in the IGRT

  12. Structural safety of coolant channel components under excessively high pressure tube diametral expansion rate at garter spring location

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, M. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sinha, S.K., E-mail: [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)


    Structural safety of coolant channel assembly in the event of high diametral expansion of pressure tube in a 220 MWe pressurised heavy water reactor was investigated using axisymmetric and 3-D finite element models. The axisymmetric analyses were performed and stresses were evaluated for pressure tube, girdle wire and calandria tube at different point of time for diametral expansion rates of 0.2%, 0.25% and 0.3% per year of the pressure tube inside diameter. The results of this study indicated that for the case of 0.3% per year of diametral expansion rate (worst case scenario), occurrence of complete circumferential interference of garter spring with calandria tube at the location of maximum expansion would take place much earlier at around 14 years or 4.2% of the total expansion of pressure tube as opposed to its anticipated design life (30 years). This fact was further corroborated by 3-D finite element analysis performed for the actual assembly configuration under actual loadings. The latter analysis revealed that net section yielding of calandria tube occurs in just 1 year after the occurrence of total circumferential interference between calandria tube and garter spring spacer. It has also been observed that the maximum stress intensity in girdle wire does not increase beyond the ultimate tensile strength even when maximum stress intensity in calandria tube reaches its yield strength. These analyses also revealed that the structural as well as functional integrity of pressure tube and the garter spring is not affected as result of this interference.

  13. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)


    Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

  14. Three-dimensional porous ZnCo(2)O(4) sheet array coated with Ni(OH)(2) for high-performance asymmetric supercapacitor. (United States)

    Pan, Yu; Gao, Hong; Zhang, Mingyi; Li, Lu; Wang, Guangning; Shan, Xinyuan


    Hierarchical ZnCo2O4@Ni(OH)2 sheet composite structures on Ni foam were rationally designed and successfully synthesized. The ZnCo2O4 micro-sheets grown on Ni foam served as the skeleton to improve the electrical conductivity of redox active Ni(OH)2 materials, providing more electroactive sites for the faradaic reaction, and solidify the Ni(OH)2 materials onto Ni foam as a current collector. The electrode of ZnCo2O4@Ni(OH)2 showed an ultrahigh areal capacitance of 4.6F/cm2 at a current density of 2mA/cm2. A lightweight and small asymmetric supercapacitor (ASC) device was successfully fabricated using the ZnCo2O4@Ni(OH)2 and carbonized filter paper (CFP) as positive and negative electrode, respectively. The ASC could work in a large potential window of 0-1.8V and achieve a high energy density of 49Wh/kg at 428W/kg. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Joint effect of ferromagnetic and non-ferromagnetic cations for adjusting room temperature ferromagnetism of highly luminescent CuNiInS quaternary nanocrystals. (United States)

    Shen, Jin; Wang, Chunlei; Xu, Shuhong; Lv, Changgui; Zhang, Ruohu; Cui, Yiping


    In this work, highly luminescent quaternary CuNiInS nanocrystals (NCs) are put forward as a good prototype for investigating defect-induced room temperature ferromagnetism. A ferromagnetic Ni cation can preserve the strong luminescence of NCs without introducing intermediate energy levels in the center of the forbidden band. The strong luminescence of NCs is used as an indicator for monitoring the concentration of vacancy defects inside them, facilitating the investigation of the origin of room temperature ferromagnetism in CuNiInS NCs. Our results reveal that the patching of Cu vacancies [Formula: see text] with Ni will result in bound magnetic polarons composed of both [Formula: see text] and a substitution of Cu by Ni [Formula: see text] giving rise to the room temperature ferromagnetism of CuNiInS NCs. Either the ferromagnetic Ni or the non-ferromagnetic Cu cation can tune the magnetism of CuNiInS NCs because of the change of bound magnetic polaron concentration at the altered concentration ratio of [Formula: see text] and [Formula: see text].

  16. Structural Transformations in High-Capacity Li 2 Cu 0.5 Ni 0.5 O 2 Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, Rose; Pandian, Amaresh S.; Yan, Pengfei; Weker, Johanna N.; Wang, Chongmin; Nanda, Jagjit


    Cathode materials that can cycle > 1 Li+ per transition metal are of substantial interest to increase the overall energy density of lithium-ion batteries. Li2Cu0.5Ni0.5O2 has a very high theoretical capacity of ~ 500 mAh/g assuming both Li+ are cycled reversibly. The Cu2+/3+ and Ni2+/3+/4+ redox couples are also at high voltage, which could further boost the energy density of this system. Despite such promise, Li2Cu0.5Ni0.5O2 undergoes irreversible phase changes during charge (delithiation) that result in large first-cycle irreversible loss and poor long-term cycling stability. Oxygen is evolved before the Cu2+/3+ or Ni3+/4+ transitions are accessed. In this contribution, XRD, TEM, and TXM-XANES are used to follow the chemical and structural changes that occur in Li2Cu0.5Ni0.5O2 during electrochemical cycling. Li2Cu0.5Ni0.5O2 is a solid solution of orthorhombic Li2CuO2 and Li2NiO2, but the structural changes more closely mimic the Li2NiO2 endmember. Li2Cu0.5Ni0.5O2 loses long-range order during charge, but TEM analysis provides clear evidence for particle exfoliation and the transformation from orthorhombic to a partially layered structure. Linear combination fitting and principal component analysis of TXM-XANES are used to map the different phases that emerge during cycling ex situ and in situ. Significant changes in the XANES at the Cu and Ni K-edges correlate with the onset of oxygen evolution.

  17. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets. (United States)

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko


    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  18. NiCo2O4 surface coating Li[Ni0.03Mn1.97]O4 micro-/nano- spheres as cathode material for high-performance lithium ion battery (United States)

    Ye, Pan; Dong, Hui; Xu, Yunlong; Zhao, Chongjun; Liu, Dong


    Here we report a novel transitional metal oxide (NiCo2O4) coated Li[Ni0.03Mn1.97]O4 micro-/nano- spheres as high-performance Li-ion battery cathode material. A thin layer of ∼10 nm NiCo2O4 was formed by simple wet-chemistry approach adjacent to the surface of Li[Ni0.03Mn1.97]O4 micro-/nano- spheres, leading to significantly enhanced battery electrochemical performance. The optimized sample(1 wt%) not only delivers excellent discharge capacity and cycling stability improvement at both room temperature and elevated temperatures, but also effectively prevents Mn dissolution while retaining its coating structure intact according to XRF and TEM results. The CV and EIS break-down analysis indicated a much faster electrochemical reaction kinetics, more reversible electrode process and greatly reduced charge transfer and Warburg resistance, clearly illustrating the dual role of NiCo2O4 coating to boost electron transport and Li+ diffusion, and alleviation of manganese dissolving. This approach may render as an efficient technique to realize high-performance lithium ion battery cathode material.

  19. Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate (United States)

    Feng, Jiayu; Jin, Weiwei; Huang, Pengcheng; Wu, Fangying


    We report a dual-ligand strategy based on silver nanoparticles (AgNPs) for highly selective detection of Ni2+ using colorimetric techniques. Adenosine monophosphate (AMP) and sodium dodecyl sulfonate (SDS) were both used as ligands to modify AgNPs. The presence of Ni2+ induces the aggregation of AgNPs through cooperative electrostatic interaction and metal-ligand interaction, resulting in a color change from bright yellow to orange. The cofunctionalized AgNPs showed obvious advantages over the ones functionalized only by AMP or SDS in terms of selectivity. Under the optimized conditions, this sensing platform for Ni2+ works in the concentration range of 4.0 to 60 μM and has a low detection limit of 0.60 μM. In addition, the colorimetric assay is very fast, and the whole analysis can be completed within a few minutes. Thus, it can be directly used in tap water and lake water samples. [Figure not available: see fulltext.

  20. High-quality multilayer graphene on an insulator formed by diffusion controlled Ni-induced layer exchange (United States)

    Murata, H.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; Toko, K.


    The Ni-induced layer-exchange growth of amorphous carbon is a unique method used to fabricate uniform multilayer graphene (MLG) directly on an insulator. To improve the crystal quality of MLG, we prepare AlOx or SiO2 interlayers between amorphous C and Ni layers, which control the extent of diffusion of C atoms into the Ni layer. The growth morphology and Raman spectra observed from MLG formed by layer exchange strongly depend on the material type and thickness of the interlayers; a 1-nm-thick AlOx interlayer is found to be ideal for use in experiments. Transmission electron microscopy and electron energy-loss spectra reveal that the crystal quality of the resulting MLG is much higher than that of a sample without an interlayer. The grain size reaches a few μm, leading to an electrical conductivity of 1290 S/cm. The grain size and the electrical conductivity are the highest among MLG synthesized using a solid-phase reaction including metal-induced crystallization. The direct synthesis of uniform, high-quality MLG on arbitrary substrates will pave the way for advanced electronic devices integrated with carbon materials.

  1. Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. (United States)

    Dinh, Khang Ngoc; Zheng, Penglun; Dai, Zhengfei; Zhang, Yu; Dangol, Raksha; Zheng, Yun; Li, Bing; Zong, Yun; Yan, Qingyu


    Herein, the hydrothermal synthesis of porous ultrathin ternary NiFeV layer double hydroxides (LDHs) nanosheets grown on Nickel foam (NF) substrate as a highly efficient electrode toward overall water splitting in alkaline media is reported. The lateral size of the nanosheets is about a few hundreds of nanometers with the thickness of ≈10 nm. Among all molar ratios investigated, the Ni 0.75 Fe 0.125 V 0.125 -LDHs/NF electrode depicts the optimized performance. It displays an excellent catalytic activity with a modest overpotential of 231 mV for the oxygen evolution reaction (OER) and 125 mV for the hydrogen evolution reaction (HER) in 1.0 m KOH electrolyte. Its exceptional activity is further shown in its small Tafel slope of 39.4 and 62.0 mV dec -1 for OER and HER, respectively. More importantly, remarkable durability and stability are also observed. When used for overall water splitting, the Ni 0.75 Fe 0.125 V 0.125 -LDHs/NF electrodes require a voltage of only 1.591 V to reach 10 mA cm -2 in alkaline solution. These outstanding performances are mainly attributed to the synergistic effect of the ternary metal system that boosts the intrinsic catalytic activity and active surface area. This work explores a promising way to achieve the optimal inexpensive Ni-based hydroxide electrocatalyst for overall water splitting. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-pressure phase of the cubic spinel NiMn2O4

    DEFF Research Database (Denmark)

    Åsbrink, S.; Waskowska, A.; Olsen, J. Staun


    experimental uncertainty, there is no volume change at the transition. The cia ratio of the tetragonal spinel is almost independent of pressure and equal to 0.91. The phase transition is attributed to the Jahn-Teller-type distortion and the ionic configurationcan be assumed as (Mn3+)(tetr)[Ni2+Mn3+](oct......It has been observed that the fee spinel NiMn2O4 transforms to a tetragonal structure at about 12 GPa. The tetragonal phase does not revert to the cubic phase upon decompression and its unit-cell constants at ambient pressure are a(0)=8.65(8) and c(0)=7.88(15) Angstrom (distorted fee). Within thr......). The bulk modulus of the cubic phase is 206(4) GPa....

  3. Effect of High Velocity Arc Spraying Parameters on Properties of FeNiCrAl Coating

    Directory of Open Access Journals (Sweden)

    TIAN Haoliang


    Full Text Available FeNiCrAl coating is a kind of surface wear resistant material for shaft parts. Microstructure, adhesive strength, phase composition and microhardness were analyzed in order to study the influence mechanism of spraying parameters on coating properties. The relation among the spraying current, coating microstructure and cohesive strength was studied in detail. The results shown that the spraying current is very important to obtain the dense coating (porosity of 8.76% with cohesive strength of 52.3 MPa and an excellent coating is prepared by spraying current 200 A, spraying voltage 34 V and spraying distance 160 mm. The hardness of coating is 626 HV0.1 and about 1.6 times as that of the matrix. The effective mechanism is relevant to the scatter distribution of the Fe-Al intermetallic compound and Cr0.19Fe0.1Ni0.11 solution in the coating.

  4. Low-cost Fe--Ni--Cr alloys for high temperature valve applications (United States)

    Muralidharan, Govindarajan


    An Fe--Ni--Cr alloy is composed essentially of, in terms of weight percent: 1 to 3.5 Al, up to 2 Co, 15 to 19.5 Cr, up to 2 Cu, 23 to 40 Fe, up to 0.3 Hf, up to 4 Mn, 0.15 to 2 Mo, up to 0.15 Si, up to 1.05 Ta, 2.8 to 4.3 Ti, up to 0.5 W, up to 0.06 Zr, 0.02 to 0.15 C, 0.0001 to 0.007 N, balance Ni, wherein, in terms of atomic percent: 6.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.10, 0.33.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.065, 4.ltoreq.(Fe+Cr)/(Al+Ti+Zr+Hf+Ta).ltoreq.10, the alloy being essentially free of Nb and V.

  5. Durability of high performance Ni-yttria stabilized zirconia supported solid oxide electrolysis cells at high current density

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Sun, Xiufu; Liu, Yi-Lin


    We report the durability of a solid oxide electrolysis cell (SOEC) with a record low initial area specific resistance (ASR) and a record low degradation rate. The cell consists of a Ni-yttria stabilized zirconia (YSZ) cermet as support and active fuel electrode, a YSZ electrolyte, a gadolinia doped...

  6. Advanced asymmetric supercapacitors based on Ni(OH){sub 2}/graphene and porous graphene electrodes with high energy density

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun; Fan, Zhuangjun; Sun, Wei; Wei, Tong [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Ning, Guoqing [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhang, Qiang; Zhang, Rufan; Wei, Fei [Beijing Key Laboratory of Green Chemical Reaction, Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Zhi, Linjie [National Center for Nanoscience and Technology of China, Zhongguancun, Beiyitiao 11, Beijing 100190 (China)


    Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost-effective microwave-assisted method. In order to achieve high energy and power densities, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH){sub 2}/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high-voltage region of 0-1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g{sup -1} and high energy density of 77.8 Wh kg{sup -1}. Furthermore, the Ni(OH){sub 2}/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. High-field magnetization studies of NdNi{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Kim-Ngan, N.-T.H. [Center for Solid State Phys., Krakow (Poland)]|[Pedagogical Univ., Krakow (Poland). Inst. of Physics and Informatics; Radwanski, R.J. [Center for Solid State Phys., Krakow (Poland)]|[Pedagogical Univ., Krakow (Poland). Inst. of Physics and Informatics; Kayzel, F.E. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Franse, J.J.M. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.


    Magnetization studies on single-crystalline NdNi{sub 5} in external fields up to 35 T are reported. NdNi{sub 5} is a ferromagnet with a T{sub C} of 7.2 K and the easy magnetic direction is along the a direction. The spontaneous magnetic moment is 2.1{mu}{sub B}/f.u. Along the c-axis, the magnetization amounts to 1.65{mu}{sub B}/f.u. at 35 T. The magnetization process is analyzed within the crystalline electric field approach in combination with exchange interactions, taking into account the contribution of the Ni sublattice. The studies confirm that the charge-formed ground state of the f{sup 3} (Nd{sup 3+}) subsystem is the state {Gamma}{sub 8} with a dominant vertical stroke {+-}5/2 right angle contribution. The full magnetization curves, up to 300 T, have been calculated. The magnetization curve along the c-axis proceeds to saturation with a metamagnetic-like transition at 150 T. (orig.).

  8. Unusually high coral recruitment during the 2016 El Niño in Mo'orea, French Polynesia. (United States)

    Edmunds, Peter J


    The negative implications of the thermal sensitivity of reef corals became clear with coral bleaching throughout the Caribbean in the 1980's, and later globally, with the severe El Niño of 1998 and extensive seawater warming in 2005. These events have substantially contributed to declines in coral cover, and therefore the El Niño of 2016 raised concerns over the implications for coral reefs; on the Great Barrier Reef these concerns have been realized. A different outcome developed in Mo'orea, French Polynesia, where in situ seawater temperature from 15 March 2016 to 15 April 2016 was an average of 0.4°C above the upper 95% CI of the decadal mean temperature, and the NOAA Degree Heating Weeks (DHW) metric supported a Level 1 bleaching alert (DHW ≥ 4.0). Starting 1 September 2016 and for the rest of the year (122 d), in situ seawater temperature was an average of 0.4°C above the 95% CI of long-term values, although DHW remained at zero. Minor coral bleaching (0.2-2.6% of the coral) occurred on the outer reef (10-m and 17-m depth) in April 2016, by May 2016 it had intensified to affect 1.3-16.8% of the coral, but by August 2016, only 1.4-3.0% of the coral was bleached. Relative to the previous decade, recruitment of scleractinians to settlement tiles on the outer- (10 m) and back- (2 m) reef over 2016/17 was high, both from January 2016 to August 2016, and from August 2016 to January 2017, with increased relative abundances of pocilloporids on the outer reef, and acroporids in the back reef. The 2016 El Niño created a distinctive signature in seawater temperature for Mo'orea, but it did not cause widespread coral bleaching or mortality, rather, it was associated with high coral recruitment. While the 2016 El Niño has negatively affected other coral reefs in the Indo-Pacific, the coral communities of Mo'orea continue to show signs of resilience, thus cautioning against general statements regarding the effects of the 2015/16 El Niño on coral reefs in the region.

  9. Unusually high coral recruitment during the 2016 El Niño in Mo'orea, French Polynesia.

    Directory of Open Access Journals (Sweden)

    Peter J Edmunds

    Full Text Available The negative implications of the thermal sensitivity of reef corals became clear with coral bleaching throughout the Caribbean in the 1980's, and later globally, with the severe El Niño of 1998 and extensive seawater warming in 2005. These events have substantially contributed to declines in coral cover, and therefore the El Niño of 2016 raised concerns over the implications for coral reefs; on the Great Barrier Reef these concerns have been realized. A different outcome developed in Mo'orea, French Polynesia, where in situ seawater temperature from 15 March 2016 to 15 April 2016 was an average of 0.4°C above the upper 95% CI of the decadal mean temperature, and the NOAA Degree Heating Weeks (DHW metric supported a Level 1 bleaching alert (DHW ≥ 4.0. Starting 1 September 2016 and for the rest of the year (122 d, in situ seawater temperature was an average of 0.4°C above the 95% CI of long-term values, although DHW remained at zero. Minor coral bleaching (0.2-2.6% of the coral occurred on the outer reef (10-m and 17-m depth in April 2016, by May 2016 it had intensified to affect 1.3-16.8% of the coral, but by August 2016, only 1.4-3.0% of the coral was bleached. Relative to the previous decade, recruitment of scleractinians to settlement tiles on the outer- (10 m and back- (2 m reef over 2016/17 was high, both from January 2016 to August 2016, and from August 2016 to January 2017, with increased relative abundances of pocilloporids on the outer reef, and acroporids in the back reef. The 2016 El Niño created a distinctive signature in seawater temperature for Mo'orea, but it did not cause widespread coral bleaching or mortality, rather, it was associated with high coral recruitment. While the 2016 El Niño has negatively affected other coral reefs in the Indo-Pacific, the coral communities of Mo'orea continue to show signs of resilience, thus cautioning against general statements regarding the effects of the 2015/16 El Niño on coral reefs

  10. Synthesis of high-purity phthalocyanines (pc): High intrinsic conductivities in the molecular conductors H[sub 2](pc)I and Ni(pc)I

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.A.; Murata, K.; Miller, D.C.; Stanton, J.L.; Broderick, W.E.; Hoffman, B.M.; Ibers, J.A. (Northwestern Univ., Evanston, IL (United States))


    The authors show that one can prepare M(pc)I crystals, M = [open quotes]H[sub 2][close quotes] and Ni, with remarkably improved charge-transport properties by carefully avoiding impurities in the preparation of the M(pc) precursors. The purest H[sub 2](pc) (<60 ppm free-radical impurities) was prepared by a melt method in quartz and Teflon vessels while very pure Ni(pc) (170-250 pm) could only be obtained by metalation of the pure H[sub 2](pc). Template syntheses of Ni(pc) result in impure material and are to be discouraged for applications requiring very pure M(pc) materials. H[sub 2](pc)I and Ni(pc)I synthesized from the high-purity precursors remain metallic down to ca. 3 K, a far lower temperature than ever before observed. At this temperature the conductivities exhibit maximum values that are ca. 30-fold greater than at room temperature, not 5-7-fold as seen before, with absolute values of [sigma] [approximately] (1-2) [times] 10[sup 4] [Omega][sup [minus]1] cm[sup [minus]1]. The study of a series of Ni(pc)I compounds prepared from Ni(pc) parent materials exhibiting a range of purity levels further shows a strong correlation between the charge-transport properties and the level of paramagnetic impurities in the macrocycle precursor. However, the maximum conductivity appears to saturate at the lowest impurity concentrations, which suggests that the behavior exhibited by the best materials prepared are representative for the first time of the limiting, intrinsic charge-transport properties of H[sub 2](pc)I and Ni(pc)I. A full structure report for H[sub 2](pc)I-1 is presented also. The structure consists of metal-over-metal stacks of partially oxidized H[sub 2](pc) groups surrounded by linear chains of triiodide anions. H[sub 2](pc)I crystallizes with two formula units in the tetragonal space group D[sub 4h][sup 2]-P4/mcc with a = 13.931 [angstrom], c = 6.411 [angstrom], and V = 1244.2 [angstrom][sup 3] (T = 108 K).

  11. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure

    CERN Document Server

    Dong Shu Shan; Cheng Hai Yong; Yang Hai Bin; Zou Guang Tian


    By using aluminium nanopowder prepared by wire electrical explosion, pure monophase NiAl compound with fine crystallites (<=10 mu m) and good densification (98% of the theoretical green density) was successfully fabricated by means of self-propagating high-temperature synthesis (SHS) under a high pressure of 50 MPa. Investigation shows that, due to the physical and chemical characteristics of the nanoparticles, the SHS reaction mode and mechanism are distinct from those when using conventional coarse-grained reactants. The SHS reaction process depends on the thermal conditions related to pressure and can occur at a dramatically low temperature of 308 sup o C, which cannot be expected in conventional SHS reaction. With increasing pressure, the SHS explosive ignition temperature (T sub i sub g) of forming NiAl decreases due to thermal and kinetic effects.

  12. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery. (United States)

    Huang, Hui; Feng, Tong; Gan, Yongping; Fang, Mingyu; Xia, Yang; Liang, Chu; Tao, Xinyong; Zhang, Wenkui


    The further development of electrode materials with high capacity and excellent rate capability presents a great challenge for advanced lithium-ion batteries. Herein, we demonstrate a battery-capacitive synchronous lithium storage mechanism based on a scrupulous design of TiC/NiO core/shell nanoarchitecture, in which the TiC nanowire core exhibits a typical double-layer capacitive behavior, and the NiO nanosheet shell acts as active materials for Li(+) storage. The as-constructed TiC/NiO (32 wt % NiO) core/shell nanoarchitecture offers high overall capacity and excellent cycling ability, retaining above 507.5 mAh g(-1) throughout 60 cycles at a current density of 200 mA g(-1) (much higher than theoretical value of the TiC/NiO composite). Most importantly, the high rate capability is far superior to that of NiO or other metal oxide electrode materials, owing to its double-layer capacitive characteristics of TiC nanowire and intrinsic high electrical conductivity for facile electron transport during Li(+) storage process. Our work offers a promising approach via a rational hybridization of two electrochemical energy storage materials for harvesting high capacity and good rate performance.

  13. ;Green; carbon with hierarchical three dimensional porous structure derived from - Pongamia pinnata seed oil extract cake and NiCo2O4-Ni(OH)2/Multiwall carbon nanotubes nanocomposite as electrode materials for high performance asymmetric supercapacitor (United States)

    Chaitra, K.; Narendra, Reddy; Venkatesh, Krishna; Nagaraju, N.; Kathyayini, Nagaraju


    Herein, we report for the first time synthesis and electrochemical supercapacitance performance of 3-D hierarchical porous ;Green; carbon derived from Pongamia pinnata seed oil extract cake and its activation using different amounts of KOH. Also, nanocomposites of multiwalled carbon nanotubes (MWCNT) with various weight percentages of Ni and Co were prepared by hydrothermal method. Physico-chemical properties of ;Green; carbon and nanocomposites were analyzed by Powder X-ray Diffraction, Brunner Emmett Teller surface area, Scanning Electron Microscopy-Elemental Dispersive Spectrum, Transmission Electron Microscopy and Raman techniques. KOH activated carbon was found associated with combination of micropores & mesopores while the nanocomposite with mixture of spinel NiCo2O4 and Ni(OH)2. Porous carbon activated with 2:1::KOH:C (KC2) and the nanocomposite with 1:1 Ni & Co (NC1) exhibited excellent electrochemical performance in three electrode system. Further, fabricated asymmetric supercapacitor (AS) device Ni-Co-MWCNT (NC1)//KC2 exhibited specific capacitance (Cs) of 177 F/g as determined by cyclic voltammetry at 10 mV/s and retained 90% even at 3000th cycle in life cycle test conducted at high current density of 50 A/g. In order to evaluate its practical performance, the AS device was charged to 1.8 V at 5 A/g and used successfully to power a calculator for more than 1 h.

  14. Prevention of excess gain. (United States)

    Stevens, J; Truesdale, K P; Wang, C-H; Cai, J


    Obesity prevention trials are designed to promote healthy weight. The success of these trials is often assessed using one of three metrics--means, incidence or prevalence. In this study, we point out conceptual shortcomings of these metrics and introduce an alternative that we call 'excess gain'. A mathematical demonstration using simulated data shows a scenario in which the statistical power of excess gain compares favorably with that of incidence and prevalence. Prevention of excess gain communicates an easily understood public health message that is applicable to all individuals regardless of weight status.

  15. Neuro-developmental outcome at 18 months in premature infants with diffuse excessive high signal intensity on MR imaging of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Anthony [Sheffield Teaching Hospitals NHS Foundation Trust, Department of Neonatology, Sheffield (United Kingdom); University of Sheffield, Department of Academic Radiology, Sheffield, South Yorkshire (United Kingdom); Whitby, Elspeth; Paley, Martyn [University of Sheffield, Department of Academic Radiology, Sheffield, South Yorkshire (United Kingdom); Wilkinson, Stuart; Smith, Michael [Sheffield Teaching Hospitals NHS Foundation Trust, Department of Neonatology, Sheffield (United Kingdom); Alladi, Sathya [Sheffield Teaching Hospitals NHS Foundation Trust, Department of Child Development, Sheffield (United Kingdom)


    Diffuse excessive high signal intensity (DEHSI) may represent damage to the white matter in preterm infants, but may be best studied alongside quantitative markers. Limited published data exists on its neuro-developmental implications. The purpose of this study was to assess whether preterm children with DEHSI at term-corrected age have abnormal neuro-developmental outcome. This was a prospective observational study of 67 preterm infants with MRI of the brain around term-equivalent age, including diffusion-weighted imaging (DWI). Images were reported as being normal, overtly abnormal or to show DEHSI. A single observer placed six regions of interest in the periventricular white matter and calculated the apparent diffusion coefficients (ADC). DEHSI was defined as (1) high signal on T2-weighted images alone, (2) high signal with raised ADC values or (3) raised ADC values independent of visual appearances. The neuro-development was assessed around 18 months' corrected age using the Bayley Scales of Infant and Toddler Development (3rd Edition). Standard t tests compared outcome scores between imaging groups. No statistically significant difference in neuro-developmental outcome scores was seen between participants with normal MRI and DEHSI, regardless of which definition was used. Preterm children with DEHSI have similar neuro-developmental outcome to those with normal brain MRI, even if the definition includes objective markers alongside visual appearances. (orig.)

  16. Subgrain and dislocation structure changes in hot-deformed high-temperature Fe-Ni austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K.J.; Rodak, K.; Hetmanczyk, M.; Kuc, D


    The influence of plastic deformation on the substructure of a high-temperature austenitic Fe-Ni alloy has been presented. Hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s{sup -1}, at testing temperatures in the range 900-1150 deg. C. The examination of the microstructure was carried out, using transmission electron microscopy. Direct measurements on the micrographs allowed the calculation of structural parameters: the average subgrain area, and the mean dislocation density. A detailed investigation has shown that the microstructure is inhomogeneous, consisting of dense dislocation walls, subgrains and recrystallized regions.

  17. Fabrication of Ni stamp with high aspect ratio, two-leveled, cylindrical microstructures using dry etching and electroplating

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Keller, Stephan Sylvest; Hansen, Ole


    obtained by defining a reservoir and a separating trench with different depths of 85 and 125 μm, respectively, in a single embossing step. The fabrication of the required two leveled stamp is done using a modified DEEMO (dry etching, electroplating and molding) process. Dry etching using the Bosch process......We describe a process for the fabrication of a Ni stamp that is applied to the microstructuring of polymers by hot embossing. The target devices are microcontainers that have a potential application in oral drug delivery. Each container is a 3D, cylindrical, high aspect ratio microstructure...

  18. Effect of Temperature on the Galvanic Corrosion of Cu-Ni Alloy/High Strength Steel in Seawater

    Directory of Open Access Journals (Sweden)

    Wang Chun Li


    Full Text Available The galvanic corrosion behavior of Cu-Ni Alloy(B10/high strength steel (921A has been studied using a zero-resistance ammeter (ZRA in seawater at different temperatures. As well as it was systemically investigated by weight loss measurements, electrochemical methods and scanning electron microscope.Results showed 921A acts as the anode and B10 act as the cathodes. The effect of temperature on the galvanic corrosion is important, the corrosion rate became higher with the temperature increased.

  19. High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two-stage Viking gasifier product gas

    DEFF Research Database (Denmark)

    Hofmann, P.; Schweiger, A.; Fryda, L.


    and tar traces. The chosen SOFC was electrolyte supported with a nickel/gadolinium-doped cerium oxide (Ni-GDC) anode, known for its carbon deposition resistance. Through humidification the steam to carbon ratio (S/C) was adjusted to 0.5, which results in a thermodynamically carbon free condition......This paper presents the results from a 150 h test of a commercial high temperature single planar solid oxide fuel cell (SOFC) operating on wood gas from the Viking two-stage fixed-bed downdraft gasifier, which produces an almost tar-free gas, that was further cleaned for particulates, sulphur...

  20. Excess wind power

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg


    analyses it is analysed how excess productions are better utilised; through conversion into hydrogen of through expansion of export connections thereby enabling sales. The results demonstrate that particularly hydrogen production is unviable under current costs but transmission expansion could...

  1. Material properties of Ni-Cr-Al alloy and design of a 4 GPa class non-magnetic high-pressure cell

    Energy Technology Data Exchange (ETDEWEB)

    Uwatoko, Yoshiya [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan); Todo, Sakae [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan); Ueda, Kazuhiro [Department of Physics, Saitama University, Urawa 338-8570 (Japan); Uchida, Ahimusa [Department of Physics, Saitama University, Urawa 338-8570 (Japan); Kosaka, Masashi [Department of Physics, Saitama University, Urawa 338-8570 (Japan); Mori, Nobuo [Department of Physics, Saitama University, Urawa 338-8570 (Japan); Matsumoto, Takehiko [National Institute for Materials Science, Tsukuba 305-0047 (Japan)


    The Ni-Cr-Al Russian alloy was prepared. Its magnetic and mechanical properties were better than those of MP35N alloy. We fabricated the a piston-cylinder-type hybrid high-pressure cell using the Ni-Cr-Al alloy. It has been found that the maximum working pressure can be repeatedly raised to 3.5 GPa at T = 2 K without any difficulties.

  2. Material properties of Ni-Cr-Al alloy and design of a 4 GPa class non-magnetic high-pressure cell

    CERN Document Server

    Uwatoko, Y; Ueda, K; Uchida, A; Kosaka, M; Mori, N; Matsumoto, T


    The Ni-Cr-Al Russian alloy was prepared. Its magnetic and mechanical properties were better than those of MP35N alloy. We fabricated the a piston-cylinder-type hybrid high-pressure cell using the Ni-Cr-Al alloy. It has been found that the maximum working pressure can be repeatedly raised to 3.5 GPa at T = 2 K without any difficulties.

  3. High Temperature Evolution of PtNiAl-Based Thermal Barrier Coatings from First Principles Simulations (United States)


    sites and transfer electrons to the three surface oxygen atoms. By contrast, the most stable adsorption site for the noble metal Pt and the...impurity S is on top of a surface oxygen atom, with little charge transfer occuring. We find a binding energy ordering of S < Pt < 0 <AI « Y < Hf, which...and structure of the a-AI 203/~-NiAI interface," Acta Materia /ia, 55, 2791-2803 (2007). [2] B. Hinnemann and E. A. Carter, "Adsorption of AI , 0, Hf

  4. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application (United States)

    Muralidharan, Govindarajan


    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  5. Enhanced optoelectronic quality of perovskite films with excess CH3NH3I for high-efficiency solar cells in ambient air (United States)

    Zhang, Yunhai; Lv, Huiru; Cui, Can; Xu, Lingbo; Wang, Peng; Wang, Hao; Yu, Xuegong; Xie, Jiangsheng; Huang, Jiabin; Tang, Zeguo; Yang, Deren


    Solution-processed polycrystalline perovskite films contribute critically to the high photovoltaic performance of perovskite-based solar cells (PSCs). The inevitable electronic trap states at grain boundaries and intrinsic defects such as metallic lead (Pb0) and halide vacancies in perovskite films cause serious carrier recombination loss. Furthermore, the film can easily decompose into PbI2 in a moist atmosphere. Here, we introduce a simple strategy, through a small increase in methylammonium iodide (CH3NH3I, MAI), molar proportion (5%), for perovskite fabrication in ambient air with ˜50% relative humidity. Analysis of the morphology and crystallography demonstrates that excess MAI significantly promotes grain growth without decomposition. X-ray photoemission spectroscopy shows that no metallic Pb0 exists in the perovskite film and the I/Pb ratio is improved. A time-resolved photoluminescence measurement indicates efficient suppression of non-radiative recombination in the perovskite layer. As a result, the device yields improved power conversion efficiency from 14.06% to 18.26% with reduced hysteresis and higher stability under AM1.5G illumination (100 mW cm-2). This work strongly provides a feasible and low-cost way to develop highly efficient PSCs in ambient air.

  6. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig


    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  7. Resolving the structure and properties of τ1-Cr-Ni-Al for high temperature protective applications (United States)

    Simonson, J. W.; Nicasio, J. E.; Ilyas, H.; Pabla, J.; Horvat, K.; Misuraca, J. C.

    Increasing the temperature of the steam in turbine power plants enhances thermal efficiency while reducing CO2 emissions. Exposed steel components, however, must be coated to withstand the harsh environments present in next-generation advanced ultra-supercritical plants. Proposed coating materials must exhibit low density, high hardness, high toughness, excellent oxidation resistance, and low thermal conductivity. With an eye towards satisfying this diverse array of requirements, we report the properties of the so-called τ1 phase of Cr-Ni-Al. We resolve the previously controversial composition and crystal structure of this material. The complex structure is composed of distorted icosahedra and octahedra of Al, with nearest-neighbor transition metal-Al bond lengths as short as 2.4 Å, far shorter than typical distances in Ni-Al and Cr-Al binaries. Accordingly, Vickers hardness is 6 . 88 +/- 0 . 13 GPa, as hard as extra-high-hardness armor plating at only 45% the density. We discuss these properties in light of the result of transport and oxidation resistance measurements. The apparent dependencies of these properties on crystal structure suggests new criteria for materials research. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund, for support of this research under contract 56764-UNI10.

  8. Towards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application. (United States)

    Zignani, Sabrina C; Baglio, Vincenzo; Sebastián, David; Saccà, Ada; Gatto, Irene; Aricò, Antonino S


    In order to help the introduction on the automotive market of polymer electrolyte fuel cells (PEFCs), it is mandatory to develop highly performing and stable catalysts. The main objective of this work is to investigate PtNi/C catalysts in a PEFC under low relative humidity and pressure conditions, more representative of automotive applications. Carbon supported PtNi nanoparticles were prepared by reduction of metal precursors with formic acid and successive thermal and leaching treatments. The effect of the chemical composition, structure and surface characteristics of the synthesized samples on their electrochemical behavior was investigated. The catalyst characterized by a larger Pt content (Pt₃Ni₂/C) presented the highest catalytic activity (lower potential losses in the activation region) among the synthesized bimetallic PtNi catalysts and the commercial Pt/C, used as the reference material, after testing at high temperature (95 °C) and low humidification (50%) conditions for automotive applications, showing a cell potential (ohmic drop-free) of 0.82 V at 500 mA·cm -2 . In order to assess the electro-catalysts stability, accelerated degradation tests were carried out by cycling the cell potential between 0.6 V and 1.2 V. By comparing the electrochemical and physico-chemical parameters at the beginning of life (BoL) and end of life (EoL), it was demonstrated that the Pt₁Ni₁/C catalyst was the most stable among the catalyst series, with only a 2% loss of voltage at 200 mA·cm -2 and 12.5% at 950 mA·cm -2 . However, further improvements are needed to produce durable catalysts.

  9. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhi, E-mail: [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Senkov, Oleg N. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433 (United States); Parish, Chad M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, Chuan; Zhang, Fan [CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI 53719 (United States); Santodonato, Louis J. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, Gongyao [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Zhao, Guangfeng; Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Liaw, Peter K., E-mail: [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)


    The microstructure and phase composition of an AlCoCrFeNi high-entropy alloy (HEA) were studied in as-cast (AlCoCrFeNi-AC, AC represents as-cast) and homogenized (AlCoCrFeNi-HP, HP signifies hot isostatic pressed and homogenized) conditions. The AlCoCrFeNi-AC ally has a dendritric structure in the consisting primarily of a nano-lamellar mixture of A2 (disordered body-centered-cubic (BCC)) and B2 (ordered BCC) phases, formed by an eutectic reaction. The homogenization heat treatment, consisting of hot isostatic pressed for 1 h at 1100 °C, 207 MPa and annealing at 1150 °C for 50 h, resulted in an increase in the volume fraction of the A1 phase and formation of a Sigma (σ) phase. Tensile properties in as-cast and homogenized conditions are reported at 700 °C. The ultimate tensile strength was virtually unaffected by heat treatment, and was 396±4 MPa at 700 °C. However, homogenization produced a noticeable increase in ductility. The AlCoCrFeNi-AC alloy showed a tensile elongation of only 1.0%, while after the heat-treatment, the elongation of AlCoCrFeNi-HP was 11.7%. Thermodynamic modeling of non-equilibrium and equilibrium phase diagrams for the AlCoCrFeNi HEA gave good agreement with the experimental observations of the phase contents in the AlCoCrFeNi-AC and AlCoCrFeNi-HP. The reasons for the improvement of ductility after the heat treatment and the crack initiation subjected to tensile loading were discussed.

  10. A novel Ni{sup 2+}-doped Ag{sub 3}PO{sub 4} photocatalyst with high photocatalytic activity and enhancement mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Song, Limin, E-mail: [College of Environment and Chemical Engineering, State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Chen, Zewen; Li, Tongtong [College of Environment and Chemical Engineering, State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Zhang, Shujuan, E-mail: [College of Science, Tianjin University of Science & Technology, Tianjin, 300457 (China)


    Ni{sup 2+}-doped Ag{sub 3}PO{sub 4} (Ni{sup 2+}-Ag{sub 3}PO{sub 4}) photocatalysts with superhigh activity for photodegradation of organic pollutants were prepared by a simple hydrothermal method. The photocatalysts were characterized with X-ray powder diffractometry, transmission electron microscopy, ultraviolet–visible absorption spectroscopy, X-ray photoelectron spectroscopy, measurement of total organic carbon, and electron paramagnetic resonance spectrometry. The photocatalysts were evaluated by methyl orange (MO) photodegradation experiments under visible light irradiation (λ > 420 nm). Comparative analysis showed the optimal doping dosage was 0.05 mol/L Ni{sup 2+}. The optimal Ni{sup 2+}-Ag{sub 3}PO{sub 4} has an MO photodegradation rate constant four times larger than pure Ag{sub 3}PO{sub 4}. The photocatalytic ratio of 40 mg/L MO over the optimal Ni{sup 2+}-Ag{sub 3}PO{sub 4} after 10 min is 89%, which indicates excellent photocatalytic ability in high-concentration MO solutions. The Ni{sup 2+} doping into Ag{sub 3}PO{sub 4} can increase the level of band gap, and accelerate the utilization of photons and the separation of photo-generated charges. Therefore, the Ni{sup 2+} doping into Ag{sub 3}PO{sub 4} is responsible for the enhancement of photocatalytic ability. - Highlights: • Ni{sup 2+}-modified with higher photodegradation ability was synthesized. • ·OH radicals were the main active species in the oxidation of MO. • The doping of Ni{sup 2+} in Ag{sub 3}PO{sub 4} is responsible for the enhanced activity.

  11. Study of highly efficient power generation system based on chemical-looping combustion; Chemical loop nenshoho ni yoru kokoritsu hatsuden system no kaihatsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, S.; Suzuki, T.; Yamamoto, M. [Tokyo Institute of Technology, Tokyo (Japan). Research Laboratory of Resources Utilization


    This paper describes the research and development of power generation system by means of chemical-looping combustion. For this system, fuel flows in a reduction reactor and air flows in an oxidation reactor. These two flows are separated. As a result, recovery of CO2 without energy consumption, drastic improvement of power generation efficiency, and suppression of NOx emission are expected. To realize the above, two promising candidates, NiCoO2/YSZ and NiO2/NiAl2O4, have been found as recycle solid particles between the both reactors. These have excellent oxidation/reduction cycle characteristics. By these particles as well as the existing particle, NiO/YSZ, practical application of the chemical-looping combustion is realized. Besides LNG, coal and hydrogen were considered as fuels. When using coal or hydrogen, it was found that temperature of the reduction reactor should be increased the same as that of the oxidation reactor. This is a different point from a case using LNG as a fuel. 5 refs., 2 figs.

  12. Effect of Ni addition on the preparation of Al2O3–TiB2 composites using high-energy ball milling

    Directory of Open Access Journals (Sweden)

    Wei Yang


    Full Text Available Al2O3–TiB2 composites were synthesized using high-energy ball milling from starting powders containing Al, TiO2, and B2O3. To explore the effect of the addition of another ductile metallic phase during milling, 15 wt.% Ni was added to a sample of the starting powders. The phase transformations and microstructure of the milled powder mixtures were investigated using X-ray diffraction and electron microscopy. The results showed that the Ni addition facilitated the mechanochemical reaction between the Al, TiO2, and B2O3. Before the appearance of the Al2O3–TiB2 composite, the intermediate product NiAl was formed by a gradual exothermic reaction. With continued milling, the final phases of Al2O3–TiB2 and Ni were obtained.

  13. Effect of C particle size on the mechanism of self-propagation high-temperature synthesis in the Ni-Ti-C system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.F., E-mail: [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia); Wang, H.Y.; Wang, J.G. [Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun 130025 (China); Jiang, Q.C., E-mail: [Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun 130025 (China)


    Highlights: > We investigated the effect of C particle size on the self-propagating high temperature reaction mechanism. > Coarse C particle size (>38 {mu}m) resulted in the formation of prior TiC{sub x} layer between Ti and C. > Prior TiC{sub x} layer control the whole reaction of Ni-Ti-C and domain the reaction kinetics. > The selection of C particle size is the most important factor to fabricate TiC/Ni composite using Ti, C and Ni mixtures. - Abstract: Effect of C particle size on the mechanism of self-propagation high-temperature synthesis (SHS) in the Ni-Ti-C system was investigated. Fine C particle resulted in a traditional mechanism of dissolution-precipitation while coarse C particle made the reaction be controlled by a mechanism of the diffusion of C through the TiC{sub x} layer. The whole process can be described: C atoms diffusing through the TiC{sub x} layer dissolved into the Ni-Ti liquid and TiC were formed once the liquid became supersaturated. Simultaneously, the heat generated from the TiC formation made the unstable TiC{sub x} layer break up. However, with the spread of Ti-Ni liquid, a new TiC{sub x} layer was formed again at the interface between spreading liquid and C particle. This process cannot stop until all the C particles are consumed completely.

  14. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes (United States)

    Huang, Jiarui; Wang, Wei; Lin, Xirong; Gu, Cuiping; Liu, Jinyun


    A sandwich-structured NiMn2O4@reduced graphene oxide (NiMn2O4@rGO) nanocomposite consisting of ultrathin NiMn2O4 sheets uniformly anchored on both sides of a three-dimensional (3D) porous rGO is presented. The NiMn2O4@rGO nanocomposites prepared through a dipping process combining with a hydrothermal method show a good electrochemical performance including a high reversible capability of 1384 mAh g-1 at 1000 mA g-1 over 1620 cycles, and an superior rate performance. Thus, a full cell consisting of a commercial LiCoO2 cathode and the NiMn2O4@rGO anode delivers a stable capacity of about 1046 mAh g-1 (anode basis) after cycling at 50 mA g-1 for 60 times. It is demonstrated that the 3D porous composite structure accommodates the volume change during the Li+ insertion/extraction process and facilitates the rapid transport of ions and electrons. The high performance would enable the presented NiMn2O4@rGO nanocomposite a promising anode candidate for practical applications in Li-ion batteries.

  15. Effects of the Microstructure on Segregation behavior of Ni-Cr-Mo High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an improved fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a resistance of thermal embrittlement in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. In this study, we have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels) were evaluated after a long-term heat treatment(450 .deg. C, 2000hr. Then, the images of the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  16. Three-dimensional modeling for deformation of austenitic NiTi shape memory alloys under high strain rate (United States)

    Yu, Hao; Young, Marcus L.


    A three-dimensional model for phase transformation of shape memory alloys (SMAs) during high strain rate deformation is developed and is then calibrated based on experimental results from an austenitic NiTi SMA. Stress, strain, and martensitic volume fraction distribution during high strain rate deformation are simulated using finite element analysis software ABAQUS/standard. For the first time, this paper presents a theoretical study of the microscopic band structure during high strain rate compressive deformation. The microscopic transformation band is generated by the phase front and leads to minor fluctuations in sample deformation. The strain rate effect on phase transformation is studied using the model. Both the starting stress for transformation and the slope of the stress–strain curve during phase transformation increase with increasing strain rate.

  17. Excessively High Hydration Volume May Not Be Associated With Decreased Risk of Contrast-Induced Acute Kidney Injury After Percutaneous Coronary Intervention in Patients With Renal Insufficiency. (United States)

    Liu, Yong; Li, Hualong; Chen, Shiqun; Chen, Jiyan; Tan, Ning; Zhou, Yingling; Liu, Yuanhui; Ye, Piao; Ran, Peng; Duan, Chongyang; Chen, Pingyan


    No well-defined protocols currently exist regarding the optimal rate and duration of normal saline administration to prevent contrast-induced acute kidney injury (CI-AKI) in patients with renal insufficiency. Hydration volume ratios (hydration volume/weight; HV/W) were calculated in 1406 patients with renal insufficiency (estimated glomerular filtration rate [eGFR], 0.05) and even increased CI-AKI risk (HV/W >25 mL/kg: adjusted OR, 2.11; 95% CI, 1.24-3.59; P=0.006). Additionally, higher HV/W was significantly associated with an increased risk of death (Q4 vs Q1: adjusted hazard ratio, 3.44; 95% CI, 1.20-9.88; P=0.022). Excessively high hydration volume at routine speed might be associated with increased risk of CI-AKI and death post-PCI in patients with renal insufficiency. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Targeting Binge Eating for the Prevention of Excessive Weight Gain: Interpersonal Psychotherapy for Adolescents at High-Risk for Adult Obesity (United States)

    Tanofsky-Kraff, Marian; Wilfley, Denise E.; Young, Jami F.; Mufson, Laura; Yanovski, Susan Z.; Glasofer, Deborah R.; Salaita, Christine G.


    The most prevalent disordered eating pattern described in overweight youth is loss of control (LOC) eating, during which individuals experience an inability to control the type or amount of food they consume. LOC eating is associated cross-sectionally with greater adiposity in children and adolescents, and appears to predispose youth to gain weight or body fat above that expected during normal growth, thus likely contributing to obesity in susceptible individuals. No prior studies have examined whether LOC eating can be decreased by interventions in children or adolescents without full-syndrome eating disorders, or whether programs reducing LOC eating prevent inappropriate weight gain attributable to LOC eating. Interpersonal psychotherapy, a form of therapy that was designed to treat depression and has been adapted for the treatment of eating disorders, has demonstrated efficacy in reducing binge eating episodes and inducing weight stabilization among adults diagnosed with binge eating disorder. In this paper, we propose a theoretical model of excessive weight gain in adolescents at high-risk for adult obesity who engage in LOC eating and associated overeating patterns. A rationale is provided for interpersonal psychotherapy as an intervention to slow the trajectory of weight gain in at-risk youth, with the aim of preventing or ameliorating obesity in adulthood. PMID:17557971

  19. Neurodevelopmental outcomes in preterm infants: comparison of infants with and without diffuse excessive high signal intensity on MR images at near-term-equivalent age. (United States)

    Jeon, Tae Yeon; Kim, Ji Hye; Yoo, So-Young; Eo, Hong; Kwon, Jeong-Yi; Lee, Jeehun; Lee, Munhyang; Chang, Yun Sil; Park, Won Soon


    To compare the neurodevelopmental outcomes between preterm infants with diffuse excessive high signal intensity (DEHSI) and those without DEHSI on magnetic resonance (MR) images, in association with other white matter lesions. This retrospective study was approved by the institutional review board, and requirement to obtain informed consent was waived. High-risk preterm infants (n = 126) who underwent screening brain MR imaging at near-term-equivalent age were classified into two groups according to the presence of DEHSI. Bayley Scales of Infant Development-II, presence of cerebral palsy, and neurosensory impairment between 18 and 24 months of age were compared between the two groups. The associations of MR findings of other white matter lesions (cystic encephalomalacia, punctate lesions, loss of volume, ventricular dilatation, and delayed myelination) and subsequent outcomes were also analyzed. Outcome data were evaluated by using exact logistic regression analyses and Fisher exact test. DEHSI was present in 75% (95 of 126) of infants. Subsequent neurodevelopmental outcomes did not differ significantly between the two groups. Severe motor delay and cerebral palsy were more common in infants with both DEHSI and other white matter lesions as compared with infants with normal white matter (P = .001 and P cystic encephalomalacia (odds ratio, 19.6; 95% confidence interval: 1.3, 333.3) and punctate lesions (odds ratio, 90.9; 95% confidence interval: 6.4, 1000) were significant predictors of cerebral palsy. Although the incidence of DEHSI was high (75%) in preterm infants at near-term-equivalent age MR imaging, DEHSI was not predictive of following adverse outcomes. Cystic encephalomalacia and punctate lesions were more significant predictors of cerebral palsy.

  20. Surface microstructure and B2 phase structural state induced in NiTi alloy by a high-current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, L.L. [Institute of Strength Physics and Materials Science SB RAS, 2/4 Akademichesky Ave., Tomsk 634021 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk 634036 (Russian Federation); Ostapenko, M.G., E-mail: [Institute of Strength Physics and Materials Science SB RAS, 2/4 Akademichesky Ave., Tomsk 634021 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634036 (Russian Federation); Lotkov, A.I.; Neiman, A.A. [Institute of Strength Physics and Materials Science SB RAS, 2/4 Akademichesky Ave., Tomsk 634021 (Russian Federation)


    Graphical abstract: - Highlights: • Structural states of B2 and B19′ phases in the modified NiTi surface zone were analyzed depending on beam energy density. • The surface structure was examined by XRD analysis and transmission electron microscopy. • The formation of the martensite phase in the surface or intermediate NiTi layers depends on the beam energy density. • The factors responsible for changes in the chemical composition of NiTi surface layers after electron beam treatment were analyzed. - Abstract: In the work, we studied structural phase states in surface layers of electron beam-irradiated nickel-titanium (NiTi) alloy depending on beam energy density. The surface of NiTi specimens was exposed to pulsed irradiation (pulse duration τ = 150 μs, number of pulses N = 5) by a low-energy high-current (I = 70 A) electron beam with surface melting at electron beam energy densities E{sub 1} = 15 J/cm{sup 2}, E{sub 2} = 20 J/cm{sup 2}, and E{sub 3} = 30 J/cm{sup 2}. The surface layer structure was examined by X-ray diffraction analysis and transmission electron microscopy. It is found that in the NiTi specimens irradiated at E ≤ 20 J/cm{sup 2}, the layer that contains a martensite phase resides not on the surface but at some depth from it. In the NiTi specimens irradiated at E{sub 3} = 30 J/cm{sup 2}, the entire modified surface zone is characterized by a two-phase state in which the B19′ phase dominates over the B2 phase. It is supposed that a barrier to B2 → B19′ martensite transformation in the melted NiTi layer irradiated at E ≤ 20 J/cm{sup 2} is high inhomogeneous residual stresses varying with depth from the irradiated surface.

  1. Observations of Glide and Decomposition of a Dislocations at High Temperatures in Ni-Al Single Crystals Deformed along the Hard Orientation (United States)

    Srinivasan, R.; Daw, M. S.; Noebe, R. D.; Mills, M. J.


    Ni-44at.% Al and Ni-50at.% single crystals were tested in compression in the hard (001) orientations. The dislocation processes and deformation behavior were studied as a function of temperature, strain and strain rate. A slip transition in NiAl occurs from alpha(111) slip to non-alphaaaaaaaaaaa9111) slip at intermediate temperatures. In Ni-50at.% Al single crystal, only alpha(010) dislocations are observed above the slip transition temperature. In contrast, alpha(101)(101) glide has been observed to control deformation beyond the slip transition temperature in Ni-44at.%Al. alpha(101) dislocations are observed primarily along both (111) directions in the glide plane. High-resolution transmission electron microscopy observations show that the core of the alpha(101) dislocations along these directions is decomposed into two alpha(010) dislocations, separated by a distance of approximately 2nm. The temperature window of stability for these alpha(101) dislocations depends upon the strain rate. At a strain rate of 1.4 x 10(exp -4)/s, lpha(101) dislocations are observed between 800 and 1000K. Complete decomposition of a alpha(101) dislocations into alpha(010) dislocations occurs beyond 1000K, leading to alpha(010) climb as the deformation mode at higher temperature. At lower strain rates, decomposition of a alpha(101) dislocations has been observed to occur along the edge orientation at temperatures below 1000K. Embedded-atom method calculations and experimental results indicate that alpha(101) dislocation have a large Peieris stress at low temperature. Based on the present microstructural observations and a survey of the literature with respect to vacancy content and diffusion in NiAl, a model is proposed for alpha(101)(101) glide in Ni-44at.%Al, and for the observed yield strength versus temperature behavior of Ni-Al alloys at intermediate and high temperatures.

  2. Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; Chen, Hongwei; He, Xin; Wang, Yiting; Xu, Zedong


    It is still a huge challenge to obtain a high-energy-density asymmetric supercapacitors and develop an active electrode material with excellent electrochemical characteristics. Although NiCo2S4 has been considered as one of the promising positive electrode materials for asymmetric supercapacitors, the electrochemical performance of the NiCo2S4-based positive electrodes is still relatively low and cannot meet the demand in the devices. Herein, NiCo2S4/Co9S8 nanorods with a large capacitance are synthesized via a simple two-step hydrothermal treatment. A high-performance asymmetric supercapacitor operating at 1.6 V is successfully assembled using the NiCo2S4/Co9S8 nanorods as positive electrode and activated carbon as negative electrode in 3 M KOH aqueous electrolyte, which demonstrates a fairly high energy density of 49.6 Wh kg-1 at a power density of 123 W kg-1, an excellent capacitance of 0.91 F cm-2 (139.42 F g-1) at current density of 1 mA cm-2 as well as a remarkable cycling stability due to the high physical strength, the large specific surface area, and the good conductivity for NiCo2S4/Co9S8 nanorods and the brilliant synergistic effect for NiCo2S4 and Co9S8 electrode materials. The as-prepared NiCo2S4/Co9S8 nanorods open up a new platform as positive electrode material for high-energy-density asymmetric supercapacitors in energy-storage.

  3. Highly mobile type II twin boundary in Ni-Mn-Ga five-layered martensite

    Energy Technology Data Exchange (ETDEWEB)

    Sozinov, A.; Lanska, N.; Soroka, A. [AdaptaMat Ltd., Yrityspiha 5, Helsinki FIN-00390 (Finland); Straka, L. [School of Science and Technology, Laboratory of Engineering Materials, Aalto University, PL 14200, FIN-00076 AALTO (Finland)


    Twin relationships and stress-induced reorientation were studied in Ni{sub 2}Mn{sub 1.14}Ga{sub 0.86} single crystal with five-layered modulated martensite crystal structure. Very low twinning stress of about 0.1 MPa was found for twin boundaries which deviated a few degrees from the (011) crystallographic plane. However, twin boundaries oriented exactly parallel to the (011) plane exhibited considerably higher level of twinning stress, above 1 MPa. X-ray diffraction experiments and calculations based on approximation of the martensite crystal lattice as a tetragonal lattice with a slight monoclinic distortion identified the two different kinds of twin interfaces as type II and type I twin boundaries.

  4. High-temperature oxidation of advanced FeCrNi alloy in steam environments (United States)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.


    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy ;Alloy 33; using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  5. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping

    Energy Technology Data Exchange (ETDEWEB)

    Kunce, I., E-mail: [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Polanski, M.; Karczewski, K. [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Plocinski, T.; Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw (Poland)


    Laser engineered net shaping (LENS) was used to produce thin-walled samples of the high-entropy alloy AlCoCrFeNi from a prealloyed powder. To determine the effect of the cooling rate during solidification on the microstructure of the alloy, different laser scanning rates were used. A microstructural study of the surfaces of the sample walls was performed using X-ray diffraction analysis and optical and scanning/transmission electron microscopy. The crystal structure of the alloy was determined to be a body-centred cubic (bcc)-derivative B2-ordered type. The microstructure of the alloy produced by LENS was dendritic. Further, it was found that with an increase in the laser scanning rate from 2.5 to 40 mm s{sup −1}, the average grain size decreased from 108.3 ± 32.4 μm to 30.6 ± 9.2 μm. The maximum cooling rate achieved during the laser cladding of the alloy was 44 × 10{sup 3} K s{sup −1}. The electron microscopy study of the alloy showed the presence of precipitates. The morphology of the disordered bcc (Fe, Cr)-rich precipitates in the ordered B2 (Al, Ni)-rich matrix changed in the dendritic and interdendritic regions from fine and spherical (with a diameter of less 100 nm) to spinodal (with the thickness being less than 100 nm). The LENS- produced AlCoCrFeNi alloy exhibited an average microhardness of approximately 543 HV0.5; this was approximately 13% higher than the hardness in the as-cast state and can be attributed to the grain refinemet in the LENS- produced alloy. Moreover, it was found that increasing the cooling rate during laser cladding increasess the microhardness of the alloy. - Highlights: • Laser-engineered net shaping is used to produce samples of AlCoCrFeNi alloy. • The alloy has a body-centred cubic (bcc)-derivative B2-ordered crystal structure. • Electron microscopy images of the alloy show the presence of precipitates. • The microhardness of the laser-clad alloy is higher than that of the as-cast alloy. • The cooling rate

  6. Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor. (United States)

    Kong, Dezhi; Ren, Weina; Cheng, Chuanwei; Wang, Ye; Huang, Zhixiang; Yang, Hui Ying


    In this article, we report a novel electrode of NiCo2O4 nanowire arrays (NWAs) on carbon textiles with a polypyrrole (PPy) nanosphere shell layer to enhance the pseudocapacitive performance. The merits of highly conductive PPy and short ion transport channels in ordered NiCo2O4 mesoporous nanowire arrays together with the synergistic effect between NiCo2O4 and PPy result in a high specific capacitance of 2244 F g(-1), excellent rate capability, and cycling stability in NiCo2O4/PPy electrode. Moreover, a lightweight and flexible asymmetric supercapacitor (ASC) device is successfully assembled using the hybrid NiCo2O4@PPy NWAs and activated carbon (AC) as electrodes, achieving high energy density (58.8 W h kg(-1) at 365 W kg(-1)), outstanding power density (10.2 kW kg(-1) at 28.4 W h kg(-1)) and excellent cycling stability (∼89.2% retention after 5000 cycles), as well as high flexibility. The three-dimensional coaxial architecture design opens up new opportunities to fabricate a high-performance flexible supercapacitor for future portable and wearable electronic devices.

  7. Excessive crying in infants

    Directory of Open Access Journals (Sweden)

    Ricardo Halpern


    Full Text Available ABSTRACT Objective: Review the literature on excessive crying in young infants, also known as infantile colic, and its effects on family dynamics, its pathophysiology, and new treatment interventions. Data source: The literature review was carried out in the Medline, PsycINFO, LILACS, SciELO, and Cochrane Library databases, using the terms “excessive crying,” and “infantile colic,” as well technical books and technical reports on child development, selecting the most relevant articles on the subject, with emphasis on recent literature published in the last five years. Summary of the findings: Excessive crying is a common symptom in the first 3 months of life and leads to approximately 20% of pediatric consultations. Different prevalence rates of excessive crying have been reported, ranging from 14% to approximately 30% in infants up to 3 months of age. There is evidence linking excessive crying early in life with adaptive problems in the preschool period, as well as with early weaning, maternal anxiety and depression, attention deficit hyperactivity disorder, and other behavioral problems. Several pathophysiological mechanisms can explain these symptoms, such as circadian rhythm alterations, central nervous system immaturity, and alterations in the intestinal microbiota. Several treatment alternatives have been described, including behavioral measures, manipulation techniques, use of medication, and acupuncture, with controversial results and effectiveness. Conclusion: Excessive crying in the early months is a prevalent symptom; the pediatrician's attention is necessary to understand and adequately manage the problem and offer support to exhausted parents. The prescription of drugs of questionable action and with potential side effects is not a recommended treatment, except in extreme situations. The effectiveness of dietary treatments and use of probiotics still require confirmation. There is incomplete evidence regarding alternative

  8. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.


    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  9. Surface modification of 40CrNiMo7 steel with high current pulsed electron beam treatment (United States)

    Hao, Shengzhi; Wang, Huihui; Zhao, Limin


    High current pulsed electron beam (HCPEB) treatment was conducted on 40CrNiMo7 steel with accelerating voltage 27 kV, energy density 3 J/cm2, pulse duration 2.5 μs and 1-50 pulses. The evolutions of surface microstructure were investigated by using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. It was found that the carbides in the surface remelted layer of depth ∼4 μm were dissolved gradually along with the increasing number of HCPEB pulses. Eventually, the surface microstructure of 40CrNiMo7 steel was transformed to a complex structure composed of very refined ∼150 nm austenite as the main part and a little quantity of martensite phases. After 15 pulses of HCPEB treatment, the surface microhardness was doubled to 553 HV, and the wear rate decreased to one third of the initial state correspondingly.

  10. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan


    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.

  11. Microstructures and shape memory characteristics of dual-phase Co-Ni-Ga high-temperature shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Yan, E-mail: [School of Materials Science and Engineering, Beihang University, Beijing 100091 (China)] [Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100091 (China); Xin Yan [School of Energy and Power Engineering, North China Electric Power University, Beijing 102206 (China); Chai Liang [School of Materials Science and Engineering, Beihang University, Beijing 100091 (China)] [Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100091 (China); Ma Yunqing [Department of Materials Science and Engineering, Xiamen University, Xiamen 361005 (China); Xu Huibin [School of Materials Science and Engineering, Beihang University, Beijing 100091 (China)] [Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100091 (China)


    The influence of microstructure on mechanical properties and shape memory characteristics of Co-Ni-Ga high-temperature shape memory alloys were investigated in this study. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were employed to detect the microstructures. We found that these alloys were composed of dual phases, a non-modulated tetragonal L1{sub 0} martensite and a face-centered cubic (fcc) {gamma} phase. The martensite was twinned and well self-accommodated. The {gamma} phase was a Co-based solid solution with 30% lower hardness than martensite. Although the fracture mode was intergranular, the strength and plasticity of the alloys increased markedly with the increasing volume fraction of the {gamma} phase. The presence of the {gamma} phase in grain boundaries rather than in the martensite is favorable to shape memory recovery. This was revealed by the maximum shape recovery strain over 5.0% that was obtained in the Co{sub 46}Ni{sub 25}Ga{sub 29} alloy, with the {gamma} phase formed mainly in grain boundaries.

  12. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling (United States)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell


    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  13. 3D well-interconnected NiO–graphene–carbon nanotube nanohybrids as high-performance anode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifeng; Zhang, Xia; You, Xiaolong; Zhang, Mengyuan; Walle, Maru Dessie [Central South University, College of Chemistry and Chemical Engineering (China); Wang, Juan [State Grid Information & Telecommunication Group Co., Ltd. (China); Li, Yajuan, E-mail:; Liu, You-Nian [Central South University, College of Chemistry and Chemical Engineering (China)


    3D carbon scaffold built from carbon nanotubes (CNTs) and graphene exhibits the synergistic effects in electronic conductivity and buffers the structural strain of materials. In this paper, NiO–graphene–carbon nanotubes (NiO–G–CNTs) nanohybrids were prepared via a facile hydrothermal–thermal decomposition process. The as-prepared ternary component nanohybrids exhibit high reversible specific capacity, improved cycling stability, and excellent rate capability, compared to those of NiO–graphene hybrids and pure NiO. The NiO–G–CNT electrode reveals a specific capacity of 858.1 mA h g{sup −1} after 50 cycles at a current density of 100 mA g{sup −1}. At a higher current density of 1000 mA g{sup −1}, it still reveals a specific capacity of 676 mA h g{sup −1} after 40 cycles. This outstanding electrochemical performance is attributed to its special 3D network structures, where the NiO nanoparticles are well distributed on the surface of graphene sheets, with the CNTs interwoven between individual graphene sheets. This special structure effectively prevents the restacking of graphene sheets and affords an easy route for the transport of electrons and ions.Graphical abstract.

  14. Evaluation of solid sampling for determination of Mo, Ni, Co, and V in soil by high-resolution continuum source graphite furnace atomic absorption spectrometry (United States)

    Babos, Diego Victor; Barros, Ariane Isis; Ferreira, Edilene Cristina; Neto, José Anchieta Gomes


    New methods are proposed for the determination of Mo, Ni, Co, and V in soils using high-resolution continuum source graphite furnace atomic absorption spectrometry with direct solid sampling. Cobalt and V were simultaneously determined, and different analytical lines of Ni and V were monitored to adjust sensitivity for each sample. Accuracy was checked by means of soil certified reference materials, and also by flame atomic absorption spectrometry as comparative technique. The results for Mo, Ni, Co, and V found by proposed methods were in agreement with certified values and with those obtained by the comparative technique at 95% confidence level. The concentrations found in different soil samples were in the ranges 0.19-1.84 mg kg- 1 (Mo), 9.2-22.7 mg kg- 1 (Ni), 1.1-10.7 mg kg- 1 (Co), and 35.6-426.1 mg kg- 1 (V). The relative standard deviations were in the ranges 3.2-10% (Mo), 2.8-9.8% (Ni), 4.0-9.2% (Co), and 1.2-8.0% (V). The limits of quantification for Mo, Ni, Co, and V were 0.027, 0.071, 0.15, and 1.43 ng, respectively.

  15. One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor (United States)

    Chen, Xi'an; Chen, Xiaohua; Zhang, Fengqiao; Yang, Zhi; Huang, Shaoming


    Reduced graphene oxide/carbon nanotube/α-Ni(OH)2 (RGO/CNT/α-Ni(OH)2) composites are successfully synthesized by a one-pot hydrothermal route. The structural characterization of the composites by EDX, XRD, FT-IR, XPS, Raman, FESEM and TEM indicate that α-Ni(OH)2 nanoparticles with the size around 5 nm are randomly decorated onto three-dimensional (3D) hierarchical structure RGO/CNT. The electrochemical performances of the composites are evaluated by cyclic voltammogram, galvanostatic charge-discharge and electrochemical impedance spectroscopy. Interestingly, it is found that the electrochemical capacitance of the composites depends on the amount of CNTs to a large extent and RGO/CNT/α-Ni(OH)2 composite (GC2Ni2) with optimized ratio exhibits the high specific capacitance of 1320 F g-1 at 6 A g-1. In addition, the cycling measurements show that GC2Ni2 maintains a specific capacitance of 1008 F g-1 at 15 A g-1 after 1000 cycles corresponding to a reduction of capacitance of about 7.8%. The enhancement in specific capacitance and cycling stability is believed to be due to the 3D RGO/CNT conductive network which promotes not only efficient charge transport and facilitates the electrolyte diffusion, but also prevents effectively the volume expansion/contraction and aggregation of electroactive materials during charge-discharge process.

  16. Mechanistic insights into the oxidation behavior of Ni alloys in high-temperature CO2

    Energy Technology Data Exchange (ETDEWEB)

    Oleksak, Richard P.; Baltrus, John P.; Nakano, Jinichiro; Nakano, Anna; Holcomb, Gordon R.; Dogan, Omer N.


    We present results of a Ni superalloy oxidized for short times in high purity CO2 and similarly in Ar containing ≤ 1 ppb O2. A detailed analysis of the oxidized surfaces reveals striking similarities for the two exposure environments, suggesting O2 impurities control the oxidation process in high-temperature CO2. Selective oxidation results in Cr-rich oxide layers grown by 2 outward diffusion, while Cr vacancies left in the metal contribute to significant void formation at the oxide/metal interface. Unlike for most of the alloy surface, the oxidation behavior of secondary phase metal carbides is considerably different in the two environments.

  17. Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bing; Zhuang, Hua; Fang, Tao; Jiao, Zheng; Liu, Ruizhe; Ling, Xuetao [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Lu, Bo [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Jiang, Yong, E-mail: [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)


    Highlights: • 3D hierarchical NiO/graphene is prepared by a refluxing method with aqua-based solvent. • Time-dependent experiments are carried out to investigate formation mechanism. • Hierarchical sphere is formed through self-assembly of NiO grown on disc-shaped CTAB micelles. • It delivers a capacitance of 555 F g{sup −1} at 1 A g{sup −1} with 90.8% retention after 2000 cycles. - Abstract: This article reports a facile preparation of NiO/graphene composite by the combination of a controlled refluxing method with water based solvent in the presence of cetyltrimethylammonium bromide and subsequent annealing. X-ray diffraction and scanning electron microscopy reveal that the graphene nanosheets are uniformly wrapped by hierarchical porous NiO spheres with three-dimension hierarchical structure in the product. The composite shows highly improved electrochemical performance as electrode material for supercapacitor. The three-dimension hierarchical structure NiO/graphene composite delivers a first discharge capacitance of 555 F g{sup −1} and remains a reversible capacitance up to 504 F g{sup −1} after 2000 cycles at a current of 1 A g{sup −1} in three-electrode system. Contrarily, the pure NiO shows only a first discharge capacitance of 166 F g{sup −1} and remains only a reversible capacitance of 107 F g{sup −1} after 2000 cycles. The NiO/graphene composite also exhibits ameliorative rate capacitance of 402.9 F g{sup −1} at the current density of 5 A g{sup −1}. The enhanced electrochemical performances are ascribed to the higher surface area, the stable three-dimension hierarchical structure and the synergistic effects between the conductive graphene and porous NiO spheres.

  18. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon (United States)

    Xu, Yanli; Sang, Huanxin; Wang, Kang; Wang, Xitao


    In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Nisbnd C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.

  19. A highly efficient electrocatalyst of perovskite LaNiO{sub 3} for nonaqueous Li–O{sub 2} batteries with superior cycle stability

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qian [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Han, Xiaopeng [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Ding, Fei, E-mail: [National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Zhang, Lei [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Sang, Lin [National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Liu, Xingjiang [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Xu, Qiang, E-mail: [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)


    A highly efficient catalyst of perovskite LaNiO{sub 3} was synthesized by a simple reverse homogenous precipitation method and adopted as the electrocatalyst in nonaqueous Li–O{sub 2} batteries. The phase structure and morphologies of the as-synthesized LaNiO{sub 3} nanoparticles (NPs) are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrocatalytic activity of porous LaNiO{sub 3} catalysts was investigated by cyclic voltammetry (CV) and charge–discharge measurements using Li–O{sub 2} batteries in aprotic electrolyte. The electrochemical results show that the LaNiO{sub 3}-based electrode exhibits much enhanced cycling ability (>155 cycles) as well as stable discharging plateau (limit > 2.51 V) with a 706 mV smaller charge–discharge voltage gap than that of the pure carbon cathode at a current density of 50 mA g{sup −1}. The superior performance contributes to the high intrinsic electrocatalytic activity of LaNiO{sub 3} with the porous nanostructure. - Highlights: • Mesoporous LaNiO{sub 3} nanoparticles with high dispersibility are simply synthesized. • Better round-trip efficiency and cycle stability with less catalyst consumption. • The LaNiO{sub 3}-based cell shows a low discharge–recharge voltage gap of 878 mV. • More than 155 cycles with stable discharging terrace (limit > 2.51 V) is reported.

  20. Reducing Excessive Television Viewing. (United States)

    Jason, Leonard A.; Rooney-Rebeck, Patty


    A youngster who excessively watched television was placed on a modified token economy: earned tokens were used to activate the television for set periods of time. Positive effects resulted in the child's school work, in the amount of time his family spent together, and in his mother's perception of family social support. (KH)

  1. HIV Excess Cancers JNCI (United States)

    In 2010, an estimated 7,760 new cancers were diagnosed among the nearly 900,000 Americans known to be living with HIV infection. According to the first comprehensive study in the United States, approximately half of these cancers were in excess of what wo

  2. Evidence for single-chain magnet behavior in a Mn(III)-Ni(II) chain designed with high spin magnetic units: a route to high temperature metastable magnets. (United States)

    Clérac, Rodolphe; Miyasaka, Hitoshi; Yamashita, Masahiro; Coulon, Claude


    We herein present the synthesis, crystal structure, and magnetic properties of a new heterometallic chain of MnIII and NiII ions, [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2 (1) (saltmen2- = N,N'-(1,1,2,2-tetramethylethylene) bis(salicylideneiminate) and pao- = pyridine-2-aldoximate). The crystal structure of 1 was investigated by X-ray crystallographic analysis: compound 1 crystallized in monoclinic, space group C2/c (No. 15) with a = 21.140(3) A, b = 15.975(1) A, c = 18.6212(4) A, beta = 98.0586(4) degrees , V = 6226.5(7) A3, and Z = 4. This compound consists of two fragments, the out-of-plane dimer [Mn2(saltmen)2]2+ as a coordination acceptor building block and the neutral mononuclear unit [Ni(pao)2(py)2] as a coordination donor building block, forming an alternating chain having the repeating unit [-Mn-(O)2-Mn-ON-Ni-NO-]n. In the crystal structure, each chain is well separated with a minimum intermetallic distance between Mn and Ni ions of 10.39 A and with the absence of interchain pi overlaps between organic ligands. These features ensure a good magnetic isolation of the chains. The dc and ac magnetic measurements were performed on both the polycrystalline sample and the aligned single crystals of 1. Above 30 K, the magnetic susceptibility of this one-dimensional compound was successfully described in a mean field approximation as an assembly of trimers (Mn...Ni...Mn) with a NiII...MnIII antiferromagnetic interaction (J = -21 K) connected through a ferromagnetic MnIII...MnIII interaction (J'). However, the mean field theory fails to describe the magnetic behavior below 30 K emphasizing the one-dimensional magnetic character of the title compound. Between 5 and 15 K, the susceptibility in the chain direction was fitted to a one-dimensional Ising model leading to the same value of J'. Hysteresis loops are observed below 3.5 K, indicating a magnet-type behavior. In the same range of temperature, combined ac and dc measurements show a slow relaxation of the magnetization

  3. A possible highly active supported Ni dimer catalyst for O{sub 2} dissociation: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Yanxing, E-mail: [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Xilin; Mao, Jianjun [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Zongxian, E-mail: [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China)


    Graphical abstract: The minimum energy paths (MEPs) for the dissociation process of O{sub 2} on the surfaces of bare YSZ (111) and Ni{sub n}/YSZ (111) (n = 1, 2 and 3). - Highlights: • The catalytic activity of supported metal catalysts is closely related to the size of metal particles. • The dissociation of O{sub 2} on the YSZ (111) surface is largely enhanced by the supported Ni cluster. • The supported Ni dimer is predicted to be the smallest Ni cluster needed for efficient O{sub 2} dissociation. • The results would provide an important reference to improve the activity and efficiency of the Ni/YSZ(111) nanocomposite catalysts in cost-effective materials. - Abstract: The adsorption and dissociation of O{sub 2} on the supported small nickel clusters with one-, two-, three-Ni atoms on yttria-stabilized zirconia (YSZ) (111) surfaces, as well as those on the bare YSZ(111) and Ni(111) surfaces are comparatively studied using ab initio density functional theory calculations. It is found that the dissociation of O{sub 2} on the YSZ(111) surface is largely enhanced by the supported Ni dimer, which is predicted to be the smallest Ni cluster needed for efficient O{sub 2} dissociation. The results would provide an important reference to improve the activity and efficiency of the Ni/YSZ(111) nanocomposite catalysts in cost-effective materials.

  4. Gram-Scale Synthesis of Highly Active and Durable Octahedral PtNi Nanoparticle Catalysts for Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Choi, Juhyuk; Jang, Jue-Hyuk; Roh, Chi-Woo


    , compared to commercial Pt/C (0.22 A mgPt−1). Single-cell performance and electrochemical impedance spectroscopy (EIS) were also tested. The PtNi@Pt catalysts showed enhanced current density of 3.1 A cm−2 at 0.6 V in O2 flow while the commercial Pt/C had the value of 2.5 A cm−2. After 30,000 cycles......Proton exchange membrane fuel cells (PEMFC) are regarded as a promising renewable energy source for a future hydrogen energy society. However, highly active and durable catalysts are required for the PEMFCs because of their intrinsic high overpotential at the cathode and operation under the acidic...... condition for oxygen reduction reaction (ORR). Since the discovery of the exceptionally high surface activity of Pt3Ni(111), the octahedral PtNi nanoparticles have been synthesized and tested. Nonetheless, their milligram-scale synthesis method and poor durability make them unsuitable...

  5. Diffuse excessive high signal intensity in low-risk preterm infants at term-equivalent age does not predict outcome at 1 year: a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Yael [Tel Aviv Sourasky Medical Centre, Child Development Centre, Dana-Dwek Children' s Hospital, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Weinstein, Maya [Tel Aviv Sourasky Medical Centre, Functional Brain Centre, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Bar Ilan University, Department of Psychology, Gonda Multidisciplinary Brain Research Centre, Ramat-Gan (Israel); Myers, Vicki [Tel Aviv Sourasky Medical Centre, Functional Brain Centre, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Uliel, Shimrit; Geva, Karen [Tel Aviv Sourasky Medical Centre, Child Development Centre, Dana-Dwek Children' s Hospital, Tel Aviv (Israel); Berger, Irit; Marom, Ronella [Tel Aviv Sourasky Medical Centre, Department of Neonatology, Lis Maternity Hospital, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Bashat, Dafna Ben [Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Tel Aviv University, Sagol School of Neuroscience, Tel Aviv (Israel); Ben-Sira, Liat [Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Tel Aviv Sourasky Medical Centre, Department of Radiology, Tel Aviv (Israel); Geva, Ronny [Bar Ilan University, Department of Psychology, Gonda Multidisciplinary Brain Research Centre, Ramat-Gan (Israel); Gross-Tsur, Varda [Shaare-Zedek Medical Centre, Neuropediatric Unit, Jerusalem (Israel)


    The outcome of premature infants with only diffuse excessive high signal intensity (DEHSI) is not clear. We explored the relationship between DEHSI, white matter (WM) diffusion characteristics, perinatal characteristics, and neurobehavioral outcome at 1 year in a homogenous group of preterm infants without major brain abnormalities. Fifty-eight preterm infants, gestational age 29 ± 2.6 weeks, underwent an MRI at term-equivalent age (TEA). Griffiths Mental Developmental Scales, neurological assessment, and Parental Stress Index (PSI) were performed at 1 year corrected age. These measures were compared between preterm infants according to DEHSI classification (none, mild, moderate). Diffusion tensor imaging was used in major WM volumes of interest to objectively measure the degree of WM maturation. No significant differences were detected in the perinatal risk characteristics, neurobehavioral outcome, and PSI at 1 year between infants with different DEHSI classifications. In infants with DEHSI, increased axial and radial diffusivities were detected in the optic radiations, centrum semiovale, and posterior limb of the internal capsule, indicating less advanced maturation of the WM. Significant correlations were detected between the time interval from birth to MRI and the WM microstructure in infants without DEHSI. DEHSI in premature infants is neither a predictive measure for short-term adverse neurobehavioral outcome nor related to perinatal risk characteristics. Extrauterine exposure time had a differential effect on WM maturational trajectories in infants with DEHSI compared to those without. We suggest DEHSI may represent an alteration in WM maturational characteristics. Further follow-up studies may verify later consequences of DEHSI in premature infants. (orig.)

  6. Interleukin-17A-Deficient Mice Are Highly Susceptible to Toxoplasma gondii Infection Due to Excessively Induced T. gondii HSP70 and Interferon Gamma Production. (United States)

    Moroda, Masataka; Takamoto, Masaya; Iwakura, Yoichiro; Nakayama, Jun; Aosai, Fumie


    Interleukin17A (IL-17A) is known to be involved in the host defense against pathogens and the pathogenesis of autoimmune diseases. Previously, we showed that excessive amounts of interferon gamma (IFN-γ) play an important role in the pathogenesis of the lethal effects of Toxoplasma gondii by inducing anaphylactic responses. In the study described in this report, we examined the effects of IL-17A deficiency on murine host defense against oral T. gondii infection. IL-17A-deficient C57BL/6 (B6) mice exhibited higher rates of mortality than wild-type (WT) mice during the acute phase of T. gondii infection. CD4+ T cells in the mesenteric lymph nodes (mLNs) and ileum of T. gondii-infected IL-17A-deficient mice produced higher levels of IFN-γ than did those of WT mice. In addition, the level of T. gondii HSP70 (T.gHSP70) expression was also significantly increased in the ileum, mLNs, liver, and spleen of infected IL-17A-deficient mice compared with that in WT mice. These elevated levels of expression of T.gHSP70 and IFN-γ in infected IL-17A-deficient mice were presumably linked to the IL-17A defect since they decreased to WT levels after treatment with recombinant IL-17A. Furthermore, IL-17A-deficient mice were highly susceptible to the anaphylactic effect of T.gHSP70, and the survival of IL-17A-deficient mice during the acute phase was improved by treatment with an anti-T.gHSP70 monoclonal antibody. These results suggest that IL-17A plays an important role in host survival against T. gondii infection by protecting the host from an anaphylactic reaction via the downregulation of T.gHSP70 and IFN-γ production. Copyright © 2017 American Society for Microbiology.

  7. Excess Early Mortality in Schizophrenia

    DEFF Research Database (Denmark)

    Laursen, Thomas Munk; Nordentoft, Merete; Mortensen, Preben Bo


    Schizophrenia is often referred to as one of the most severe mental disorders, primarily because of the very high mortality rates of those with the disorder. This article reviews the literature on excess early mortality in persons with schizophrenia and suggests reasons for the high mortality...... as well as possible ways to reduce it. Persons with schizophrenia have an exceptionally short life expectancy. High mortality is found in all age groups, resulting in a life expectancy of approximately 20 years below that of the general population. Evidence suggests that persons with schizophrenia may...

  8. Cation-exchange induced high power electrochemical properties of core-shell Ni(OH){sub 2} rate at CoOOH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weihua [College of Chemistry and Molecular Science, Wuhan University, 430072 Wuhan (China); Department of Chemistry, Zhengzhou University, 450001 Zhengzhou (China); Yang, Yifu; Shao, Huixia [College of Chemistry and Molecular Science, Wuhan University, 430072 Wuhan (China)


    New applications such as hybrid electric vehicles and power backup require rechargeable batteries to combine high energy density with high charge and discharge rate capability. In this study, the core-shell Ni(OH){sub 2} rate at CoOOH composite is constructed via a simple cation-exchange route at moderate conditions. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), and inductively coupled plasma (ICP) are used to characterize the resulting Ni(OH){sub 2} rate at CoOOH composites. The Ni(OH){sub 2} rate at CoOOH electrode exhibits high power, higher capacity and longer life cycle when it is chosen as an positive electrode material for rechargeable alkaline MH-Ni battery. The enhanced electrochemical performance is attributed to the seamless combination of the CoOOH shell and the Ni(OH){sub 2} core, avoiding the contact resistance between them at a large current density. It is believed that our methodology provides a simple and environment friendly route to a variety of core-shell materials with different composition and novel function. (author)

  9. Effects of High-Temperature Treatment on the Reaction Between Sn-3%Ag-0.5%Cu Solder and Sputtered Ni-V Film on Ferrite Substrate (United States)

    Shen, Xiaohu; Jin, Hao; Dong, Shurong; Wong, Hei; Zhou, Jian; Guo, Zhaodi; Wang, Demiao


    We have demonstrated a novel sputtering method for lead-free thin metal films on ferrite substrates for surface-mount inductor applications. In a surface-mounting process, the cladding of enameled wire needs to be burnt off at high temperature, which requires the devices to withstand a high-temperature reliability test at 420°C for 10 s. There are no reports that a sputtered film of thickness less than 6 μm can withstand this test. In this work, we used Ag/Ni-7 wt.%V double metal layers for the metallization. The dissolution of Ni-7 wt.%V in Sn-3%Ag-0.5%Cu lead-free solder at various temperatures was studied in detail. Scanning electron microscopy with energy-dispersive x-ray spectroscopy was used to investigate the interfacial reaction between the sputtered films and the solder. The intermetallic compounds are mainly (Cu,Ni)6Sn5 at 250°C; however, (Ni,Cu)3Sn4 becomes the predominant composition at 420°C. In addition, although outdiffusion of V atoms from the Ni-V layer was observed, its effect on the intermetallic compound (IMC) was insignificant. We further confirmed that the proposed metallization is able to pass the aforementioned high-temperature reliability test.

  10. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode. (United States)

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming


    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.

  11. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability. (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong


    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg(-1) and 47.5 Wh kg(-1) at a power density of 400 W kg(-1), respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  12. Ni3 FeN-Supported Fe3 Pt Intermetallic Nanoalloy as a High-Performance Bifunctional Catalyst for Metal-Air Batteries. (United States)

    Cui, Zhiming; Fu, Gengtao; Li, Yutao; Goodenough, John B


    Electrocatalysts for both the oxygen reduction and evolution reactions (ORR and OER) are vital for the performances of rechargeable metal-air batteries. Herein, we report an advanced bifunctional oxygen electrocatalyst consisting of porous metallic nickel-iron nitride (Ni3 FeN) supporting ordered Fe3 Pt intermetallic nanoalloy. In this hybrid catalyst, the bimetallic nitride Ni3 FeN mainly contributes to the high activity for the OER while the ordered Fe3 Pt nanoalloy contributes to the excellent activity for the ORR. Robust Ni3 FeN-supported Fe3 Pt catalysts show superior catalytic performance to the state-of-the-art ORR catalyst (Pt/C) and OER catalyst (Ir/C). The Fe3 Pt/Ni3 FeN bifunctional catalyst enables Zn-air batteries to achieve a long-term cycling performance of over 480 h at 10 mA cm-2 with high efficiency. The extraordinarily high performance of the Fe3 Pt/Ni3 FeN bifunctional catalyst makes it a very promising air cathode in alkaline electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-field magnetic phase transitions and spin excitations in magnetoelectric LiNiPO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Jensen, Jens; Jensen, Thomas Bagger Stibius


    The magnetically ordered phases and spin dynamics of magnetoelectric LiNiPO4 have been studied in fields up to 17.3 T along the c axis. Using neutron diffraction, we show that a previously proposed linearly polarized incommensurate (IC) structure exists only for temperatures just below the Neel...... temperature T-N. The ordered IC structure at the lowest temperatures is shown instead to be an elliptically polarized canted spiral for fields larger than 12 T. The transition between the two IC phases is of second order and takes place about 2 K below T-N. For mu H-0 > 16 T and temperatures below 10 K......, the spiral structure is found to lock in to a period of five crystallographic unit cells along the b axis. Based on the neutron-diffraction data, combined with detailed magnetization measurements along all three crystallographic axes, we establish the magnetic phase diagrams for fields up to 17.3 T along c...

  14. Production and properties of high strength Ni free Zr-based BMGs (United States)

    Iqbal, M.; Wang, W. H.


    Bulk metallic glasses (BMGs) are well known for very attractive physical, mechanical and thermal properties. Zr-based BMGs are used as structural materials in sports goods, electronics, jewelry, medical and aerospace applications. Ni free Zr48Cu36Al8M8 (M = Nb, Ti and Ta) BMGs are successfully synthesized by Cu mold casting technique. Differential scanning calorimetery (DSC) results show that the Zr48Cu36Al8Nb8 BMG have good thermal stability, wide supercooled liquid region of 80 K and contain the double stage crystallization. The alloy has fracture strength of 1.953 GPa. Shear angle was measured to be in the range of 43.5±5° for the alloy studied. Vicker's hardness of the BMGs was found to be over 500 Hv for the as cast alloy which enhanced about 11 % more by annealing up to 600 °C/20 min. Intersected shear bands were observed. The observed promising mechanical and thermal properties showed that BMG studied can be used for industrial applications.

  15. Analysis of components depth profile at the interface of Ti6242 alloy and TiNi coatings after high temperature oxidation in air

    Energy Technology Data Exchange (ETDEWEB)

    Galdikas, A. [Department of Physics and Mathematics, Kaunas University of Medicine (Lithuania); Riviere, J.P.; Pichon, L. [Laboratoire de Physique des Materiaux, University of Poitiers, Poitiers (France); Petraitiene, A.; Moskalioviene, T. [Physics Department, Kaunas University of Technology, 50 Studentu st., Kaunas (Lithuania)


    We have analyzed the interfacial elemental depth profile evolution after high temperature isothermal oxidation of NiTi coatings deposited by dynamic ion mixing on a Ti6242 alloy (Ti-6Al-2Sn-4Zr-2Mo). NiTi coatings (thickness 0.4 {mu}m) were deposited at room temperature (RT) by ion beam sputtering. High temperature isothermal oxidation tests in 1 atm flowing synthetic air (80% N{sub 2}, 20% O{sub 2}) have been conducted at 500 C and 600 C during 100 hours. We have observed a non-monotonous depth distribution of nickel in GDOES depth profiles after oxidation of TiNi/Ti6242: nickel segregates to the surface of TiNi coating and to the interface between TiNi coating and Ti6242 alloy. We propose a kinetic model based on rate equations for analyzing the depth profile. This model includes microprocesses taking place during oxidation in air such as: adsorption of nitrogen and oxygen, diffusion of components through the film and interface, formation of chemical compounds. It is shown by modeling that non-monotonous depth profile of nickel occurs because nickel from TiNi coating is forming a nickel oxide compound when oxygen atoms reach the film/alloy interface. XRD analysis confirms the presence of nickel oxide in the TiNi/Ti6242 interface after oxidation at both temperatures 500 C and 600 C (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Fast synthesis of porous NiCo{sub 2}O{sub 4} hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei; Cao, Yang; Chen, Yong [State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Peng, Juan; Lai, Xiaoyong [Laboratory Cultivation Base of Natural Gas Conversion, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021 (China); Tu, Jinchun, E-mail: [State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China)


    Highlights: • Porous NiCo{sub 2}O{sub 4} hollow nanospheres were synthesized via a facile “CEP” approach and the synthesis mechanism was discussed. • The NiCo{sub 2}O{sub 4} hollow nanospheres possess superior electron-transfer capability and electrocatalytic activity. • The sensitivity is as high as 1917 μA·mM{sup −1}·cm{sup −2} and the detection limit is as low as 0.6 μM (S/N = 3). - Abstract: In this paper, we report the fast synthesis of porous NiCo{sub 2}O{sub 4} hollow nanospheres via a polycrystalline Cu{sub 2}O-templated route based on the elaborately designed “coordinating etching and precipitating” process. The composition and morphology of the porous NiCo{sub 2}O{sub 4} hollow nanospheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electron-transfer capability and electrocatalytic activity of the materials were investigated by electrochemical impedance spectroscopy and cyclic voltammetry. NiCo{sub 2}O{sub 4} was endowed with superior electron-transfer capability, large surface area, and abundant intrinsic redox couples of Ni{sup 2+}/Ni{sup 3+} and Co{sup 2+}/Co{sup 3+} ions; thus, the modified electrode exhibited excellent glucose-sensing properties, with a high sensitivity of 1917 μA·mM{sup −1}·cm{sup −2} at a low concentration, a good linear range from 0.01 mM to 0.30 mM and from 0.30 mM to 2.24 mM, and a low detection limit of 0.6 μM (S/N = 3).

  17. The otherness of sexuality: excess. (United States)

    Stein, Ruth


    The present essay, the second of a series of three, aims at developing an experience-near account of sexuality by rehabilitating the idea of excess and its place in sexual experience. It is suggested that various types of excess, such as excess of excitation (Freud), the excess of the other (Laplanche), excess beyond symbolization and the excess of the forbidden object of desire (Leviticus; Lacan) work synergistically to constitute the compelling power of sexuality. In addition to these notions, further notions of excess touch on its transformative potential. Such notions address excess that shatters psychic structures and that is actively sought so as to enable new ones to evolve (Bersani). Work is quoted that regards excess as a way of dealing with our lonely, discontinuous being by using the "excessive" cosmic energy circulating through us to achieve continuity against death (Bataille). Two contemporary analytic thinkers are engaged who deal with the object-relational and intersubjective vicissitudes of excess.

  18. High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding (United States)

    Lv, Y. H.; Li, J.; Tao, Y. F.; Hu, L. F.


    TiNi/Ti2Ni matrix composite coatings were produced on Ti6Al4V surfaces by laser cladding the mixed powders of Ni-based alloy and different contents of TaC (0, 5, 10, 15, 20, 30 and 40 wt.%). Microstructures of the coatings were investigated. High-temperature wear tests of the substrate and the coatings were carried out at 600 °C in air for 30 min. High-temperature oxidation tests of the substrate and the coatings were performed at 1000 °C in air for 50 h. Wear and oxidation mechanisms were revealed in detail. The results showed that TiNi/Ti2Ni as the matrix and TiC/TiB2/TiB as the reinforcements are the main phases of the coatings. The friction coefficients of the substrate and the coatings with different contents of TaC were 0.431 (the substrate), 0.554 (0 wt.%), 0.486 (5 wt.%), 0.457 (10 wt.%), 0.458 (15 wt.%), 0.507 (20 wt.%), 0.462 (30 wt.%) and 0.488 (40 wt.%). The wear rates of the coatings were decreased by almost 83%-98% than that of the substrate and presented a decreasing tendency with increasing TaC content. The wear mechanism of the substrate was a combination of serious oxidation, micro-cutting and brittle debonding. For the coatings, oxidation and slight scratching were predominant during wear, accompanied by slight brittle debonding in partial zones. With the increase in content of TaC, the oxidation film better shielded the coatings from destruction due to the effective friction-reducing role of Ta2O5. The oxidation rates of the substrate and the coatings with different contents of TaC at 1000 °C were 12.170 (the substrate), 5.886 (0 wt.%), 4.937 (5 wt.%), 4.517 (10 wt.%), 4.394 (15 wt.%), 3.951 (20 wt.%), 4.239 (30 wt.%) and 3.530 (40 wt.%) mg2 cm-4 h-1, respectively. The oxidation film formed outside the coating without adding TaC was composed of TiO2, NiO, Cr2O3, Al2O3 and SiO2. When TaC was added, Ta2O5 and TaC were also detected, which effectively improved the oxidation resistance of the coatings. The addition of TaC contributed to the

  19. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion (United States)

    Wu, Wenqian; Song, Min; Ni, Song; Wang, Jingshi; Liu, Yong; Liu, Bin; Liao, Xiaozhou


    An equiatomic FeCoCrNi high-entropy alloy with a face-centered cubic structure was fabricated by a powder metallurgy route, and then processed by high-pressure torsion. Detailed microscopy investigations revealed that grain refinement from coarse grains to nanocrystalline grains occurred mainly via concurrent nanoband (NB) subdivision and deformation twinning. NB-NB, twin-NB and twin-twin interactions contributed to the deformation process. The twin-twin interactions resulted in severe lattice distortion and accumulation of high densities of dislocations in the interaction areas. With increasing strain, NB subdivision and interactions between primary twins and inclined secondary stacking faults (SFs)/nanotwins occurred. Secondary nanotwins divided the primary twins into many equiaxed parts, leading to further grain refinement. The interactions between secondary SFs/nanotwins associated with the presence of Shockley partials and primary twins also transformed the primary twin boundaries into incoherent high-angle grain boundaries.

  20. High frequency and magnetoelectrical properties of magnetoresistive memory element based on FeCoNi/TiN/FeCoNi film

    Directory of Open Access Journals (Sweden)

    Kurlyandskaya, G. V.


    Full Text Available A miniaturised memory device for information recording and readout processes have been designed on the basis of anisotropic magnetoresistive effect in Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å three-layered film done by rf diode sputtering. Stable recording and readout processes were available for 32 rectangular element column, where each element had μm dimensions convenient to fabricate memory chip with 106 bits capacity. Rectangles of different sizes with removed corners were used in order to define the geometry of most of all stable recording and readout processes. Magnetoresistance and magnetoimpedance effects of a magnetic memory device have been comparatively analysed. We suggest that the decrease of the absolute value of the magnetoimpedance of the memory device comes from the reduction of the real part via the magnetoresistance.

    Se ha diseñado un dispositivo de memoria para la grabación y lectura de información basado en el efecto de la anisotropía magnetorresistiva de una multicapa fabricada por sputtering mediante diodo de rf. El elemento de memoria se compone de tres películas delgadas, de composición Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å. El dispositivo permite procesos de grabación y lectura estables, y se compone de 32 elementos de memoria rectangulares por columna, donde cada elemento tiene dimensiones de μm lo que permite la fabricación de memorias integradas con capacidades del orden de 106 bits. Se han ensayado elementos de memoria rectangulares de diferentes tamaños, con las esquinas redondeadas con objeto de conseguir procesos de lectura-escritura lo más estable posible. Se han analizado comparativamente los efectos de magnetorresistencia y magnetoimpedancia de los elementos de memoria de diferentes dimensiones. Sugerimos que la disminución del valor absoluto de la magnetoimpedancia del elemento de memoria es consecuencia de la reducción de la parte real, de origen magnetorresistivo.

  1. Investigation of the structure and properties of nanoscale TiNiNb compositions obtained by high-energy exposure

    Directory of Open Access Journals (Sweden)

    Rusinov Peter


    Full Text Available The article describes a complex method of surface modification of steel materials with shape memory effect (SME TiNiNb, using high-speed gas-flame spraying of mechanically activated powder in a protective environment. We defined the control parameters of the surface modification which monitor the structural state of the material, and allow effecting purposefully on the functional properties of the surface layer with SME. We also developed a statistical model of technological process, which allows optimizing the structurally sensitive mechanical properties and ensuring the formation of nanocrystalline structure. Basing on the phase composition analysis and the average grain size we defined correlation of properties of the coatings to their structural-phase state. X-ray studies have shown that the formation of the surface layers using the developed technology ensures the shape memory effect. We demonstrated the effect that the structural state of surface-modified layer has on microhardness and wear resistance.

  2. Effect of Deposition Time on the Morphological Features and Corrosion Resistance of Electroless Ni-High P Coatings on Aluminium

    Directory of Open Access Journals (Sweden)

    N. Sridhar


    Full Text Available High phosphorus Ni-P alloy was deposited on aluminium substrate using electroless deposition route. Using zincating bath, the surface was activated before deposition. Deposition time was varied from 15 minutes to 3 hours. Deposit was characterised using scanning electron microscope with energy dispersive spectroscope, X-ray diffraction, and microhardness tester. The corrosion resistance was measured using Tafel extrapolation route. The medium was aqueous 5% HNO3 solution. The analysis showed that the deposit consisted of nodules of submicron and micron scale. The predominant phase in the deposit was nickel along with phosphides of nickel. Compared to substrate material, deposit showed higher hardness. With increase in deposition time, the deposit showed more nobleness in 5% HNO3 solution and nobleness reached a limiting value in 1 hour deposition time.

  3. Plasticity performance of Al 0.5 CoCrCuFeNi high-entropy alloys under nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Li-ping; Chen, Shu-ying; Ren, Jing-li; Ren, Yang; Yang, Fu-qian; Dahmen, Karin A.; Liaw, Peter K.


    The statistical and dynamic behaviors of the displacement-load curves of a high-entropy alloy, Al0.5 CoCrCuFeNi, were analyzed for the nanoindentation performed at two temperatures. Critical behavior of serrations at room temperature and chaotic flows at 200 °C were detected. These results are attributed to the interaction among a large number of slip bands. For the nanoindentation at room temperature, recurrent partial events between slip bands introduce a hierarchy of length scales, leading to a critical state. For the nanoindentation at 200 °C, there is no spatial interference between two slip bands, which is corresponding to the evolution of separated trajectory of chaotic behavior

  4. Effects Of The Combined Heat And Cryogenic Treatment On The Stability Of Austenite In A High Co-Ni Steel

    Directory of Open Access Journals (Sweden)

    Gruber M.


    Full Text Available The stability of austenite is one of the most dominant factors affecting the toughness properties of high Co-Ni steels such as Aermet 100 and AF1410. Thus, the aim of this work was to get a deeper understanding on the impact of combined heat and cryogenic treatment on the stability of retained and reverted austenite. In order to characterize the evolution of the phase fraction of austenite during tempering at different temperatures and times, X-ray diffraction analyses were carried out. The stability of austenite, which was formed during tempering, was analyzed with dilatometric investigations by studying the transformation behavior of the austenite during cooling from tempering temperature down to −100°C. Additionally, transmission electron microscopy investigations were performed to characterize the chemical composition and phase distribution of austenite and martensite before and after tempering.

  5. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors. (United States)

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren


    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (∼1470 F g(-1) at 5 mV s(-1)) and excellent cycling stability with ∼98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg(-1)), a high power density (27.5 kW kg(-1)) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.

  6. A Study of Thin Film Resistors Prepared Using Ni-Cr-Si-Al-Ta High Entropy Alloy


    Ruei-Cheng Lin; Tai-Kuang Lee; Der-Ho Wu; Ying-Chieh Lee


    Ni-Cr-Si-Al-Ta resistive thin films were prepared on glass and Al2O3 substrates by DC magnetron cosputtering from targets of Ni0.35-Cr0.25-Si0.2-Al0.2 casting alloy and Ta metal. Electrical properties and microstructures of Ni-Cr-Si-Al-Ta films under different sputtering powers and annealing temperatures were investigated. The phase evolution, microstructure, and composition of Ni-Cr-Si-Al-Ta films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Auge...

  7. Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor. (United States)

    Kim, D -Y; Ghodake, G S; Maile, N C; Kadam, A A; Sung Lee, Dae; Fulari, V J; Shinde, S K


    In this study, hierarchical interconnected nickel cobalt sulfide (NiCo2S4) nanosheets were effectively deposited on a flexible stainless steel foil by the chemical bath deposition method (CBD) for high-performance supercapacitor applications. The resulting NiCo2S4 sample was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical measurements. XRD and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of the ternary NiCo2S4 sample with a pure cubic phase. FE-SEM and HR-TEM revealed that the entire foil surface was fully covered with the interconnected nanosheets like surface morphology. The NiCo2S4 nanosheets demonstrated impressive electrochemical characteristics with a specific capacitance of 1155 F g-1 at 10 mV s-1 and superior cycling stability (95% capacity after 2000 cycles). These electrochemical characteristics could be attributed to the higher active area and higher conductivity of the sample. The results demonstrated that the interconnected NiCo2S4 nanosheets are promising as electrodes for supercapacitor and energy storage applications.

  8. Predictors of excessive use of social media and excessive online gaming in Czech teenagers. (United States)

    Spilková, Jana; Chomynová, Pavla; Csémy, Ladislav


    Background and aims Young people's involvement in online gaming and the use of social media are increasing rapidly, resulting in a high number of excessive Internet users in recent years. The objective of this paper is to analyze the situation of excessive Internet use among adolescents in the Czech Republic and to reveal determinants of excessive use of social media and excessive online gaming. Methods Data from secondary school students (N = 4,887) were collected within the 2015 European School Survey Project on Alcohol and Other Drugs. Logistic regression models were constructed to describe the individual and familial discriminative factors and the impact of the health risk behavior of (a) excessive users of social media and (b) excessive players of online games. Results The models confirmed important gender-specific distinctions - while girls are more prone to online communication and social media use, online gaming is far more prevalent among boys. The analysis did not indicate an influence of family composition on both the excessive use of social media and on excessive online gaming, and only marginal effects for the type of school attended. We found a connection between the excessive use of social media and binge drinking and an inverse relation between excessive online gaming and daily smoking. Discussion and conclusion The non-existence of significant associations between family environment and excessive Internet use confirmed the general, widespread of this phenomenon across the social and economic strata of the teenage population, indicating a need for further studies on the topic.

  9. Excessive crying in infants

    Directory of Open Access Journals (Sweden)

    Ricardo Halpern


    Conclusion: Excessive crying in the early months is a prevalent symptom; the pediatrician's attention is necessary to understand and adequately manage the problem and offer support to exhausted parents. The prescription of drugs of questionable action and with potential side effects is not a recommended treatment, except in extreme situations. The effectiveness of dietary treatments and use of probiotics still require confirmation. There is incomplete evidence regarding alternative treatments such as manipulation techniques, acupuncture, and use of the herbal supplements and behavioral interventions.

  10. Exceso de peso corporal e hipertensión arterial en adolescentes de secundaria básica Corporal excess weight related to high blood pressure in adolescent students of secondary school

    Directory of Open Access Journals (Sweden)

    José Luís Álvarez Gómez


    Full Text Available Introducción: el exceso de peso y la hipertensión arterial constituyen factores de riesgo aterosclerótico cuyas prevalencias se incrementan de forma creciente a nivel global, cada vez en edades más tempranas. Objetivos: contribuir al esclarecimiento de la relación entre el exceso de peso (sobrepeso y obesidad y la tensión arterial elevada en adolescentes. Métodos: se realizó un estudio observacional en 344 jóvenes entre 12 y 16 años de edad, estudiantes de la Secundaria Básica Urbana "Benito Juárez" del área de salud del policlínico "Antonio Guiteras Holmes" en La Habana Vieja, entre enero de 2005 y enero de 2006. A todos los estudiantes se les realizaron mediciones antropométricas de peso corporal, talla y circunferencia de la cintura. La asociación entre el exceso de peso y las cifras de tensión arterial elevadas se determinó mediante la prueba de Chi cuadrado con un nivel de significación de pIntroduction: the excess weight and high blood pressure are risk atherosclerosclerosis factor whose prevalences increase at global level in earlier ages. Objectives: to contribute to clearing up of relation between the excessive body weight (excess weight and obesity and the high blood pressure in adolescents. Methods: an observational study was conducted in 344 young people aged between 12 and 16 studying in "Benito Juárez" Secondary School from health area of "Antonio Guiteras" Polyclinic in Habana Vieja municipality between January, 2005 and January, 2006. In all students we made anthropometric measurements of body weight, height and waist circumference. The association between excess weight and the figures of high blood pressure was determined by Chi² test with a value of p < 0,05. Results: there was a 14% excess weight and a 4% of obesity. High blood pressure (systolic and/or diastolic was present in the 4.7% of young people and the pre-high blood pressure in the 18.6% increasing with age in both sexes. There was a significant

  11. Formation of g-C3N4@Ni(OH)2 Honeycomb Nanostructure and Asymmetric Supercapacitor with High Energy and Power Density. (United States)

    Dong, Bitao; Li, Mingyan; Chen, Sheng; Ding, Dawei; Wei, Wei; Gao, Guoxin; Ding, Shujiang


    Nickel hydroxide (Ni(OH)2) has been regarded as a potential next-generation electrode material for supercapacitor owing to its attractive high theoretical capacitance. However, practical application of Ni(OH)2 is hindered by its lower cycling life. To overcome the inherent defects, herein we demonstrate a unique interconnected honeycomb structure of g-C3N4 and Ni(OH)2 synthesized by an environmentally friendly one-step method. In this work, g-C3N4 has excellent chemical stability and supports a perpendicular charge-transporting direction in charge-discharge process, facilitating electron transportation along that direction. The as-prepared composite exhibits higher specific capacities (1768.7 F g-1 at 7 A g-1 and 2667 F g-1 at 3 mV s-1, respectively) compared to Ni(OH)2 aggregations (968.9 F g-1 at 7 A g-1) and g-C3N4 (416.5 F g-1 at 7 A g-1), as well as better cycling performance (∼84% retentions after 4000 cycles). As asymmetric supercapacitor, g-C3N4@Ni(OH)2//graphene exhibits high capacitance (51 F g-1) and long cycle life (72% retentions after 8000 cycles). Moreover, high energy density of 43.1 Wh kg-1 and power density of 9126 W kg-1 has been achieved. This attractive performance reveals that g-C3N4@Ni(OH)2 with honeycomb architecture could find potential application as an electrode material for high-performance supercapacitors.


    African Journals Online (AJOL)

    Applying these data, viscosity-B-coefficients, activation parameters (Δμ10≠) and (Δμ20≠) and excess thermodynamic functions, viz., excess molar volume (VE), excess viscosity, ηE and excess molar free energy of activation of flow, (GE) were calculated. The value of interaction parameter, d, of Grunberg and Nissan ...

  13. Synthesis, structure, and physicochemical properties of dinuclear NiII complexes as highly efficient functional models of phosphohydrolases. (United States)

    Greatti, Alessandra; Scarpellini, Marciela; Peralta, Rosely A; Casellato, Annelise; Bortoluzzi, Adailton J; Xavier, Fernanado R; Jovito, Rafael; de Brito, Marcos Aires; Szpoganicz, Bruno; Tomkowicz, Zbigniew; Rams, Michal; Haase, Wolfgang; Neves, Ademir


    As metal ions are present in the catalytic sites of several enzymes, attention has been focused on the synthesis and characterization of metal complexes able to act as biomimetic functional and structural models for these systems. In this study, a novel dinuclear NiII complex was synthesized, [Ni2(L2)(OAc)2(CH3CN)]BPh4 (2) (HL2=2-[N-(2-(pyridyl-2-yl)ethyl)(1-methylimidazol-2-yl)amin omethyl]-4-methyl-6-[N-(2-(imidazol-4-yl)ethyl)amino methyl]phenol), employing a new unsymmetrical dinucleating ligand containing N,O-donor groups as a model for hydrolases. Complex 2 was characterized by a variety of techniques including: elemental analysis, infrared and UV-vis spectroscopies, molar conductivity, electrochemistry, potentiometric titration, magnetochemistry, and single-crystal X-ray diffractometry. The structural and magnetochemical data of 2 allow us to consider this complex as a structural model for the active site of the ureases, as previously reported for [Ni2(L1)(OAc)2(H2O)]ClO4.H2O (1) (HL1=2-[N-bis-(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)aminomethyl] phenol). The characterization of complexes 1 and 2 (mainly by X-ray diffraction and potentiometric titration) led us to study their reactivities toward the hydrolysis of the substrate bis(2,4-dinitrophenyl)phosphate (2,4-BDNPP). These studies revealed that complexes 1 and 2 show the best catalytic activity reported so far, with acceleration rates 8.8x10(4) and 9.95x10(5) times faster, respectively, than the uncatalyzed hydrolysis of 2,4-BDNPP. Catalytic activity of 2 on 2,4-DNPP showed that the monoester is hydrolyzed 27 times slower than the 2,4-BDNPP diester under identical experimental conditions. Therefore, 1 and 2 can undoubtedly be considered highly efficient functional models of the phosphohydrolases.

  14. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells (United States)

    Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning


    Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.

  15. Microstructure and wear behaviors of laser clad NiCr/Cr3C2-WS2 high temperature self-lubricating wear-resistant composite coating (United States)

    Yang, Mao-Sheng; Liu, Xiu-Bo; Fan, Ji-Wei; He, Xiang-Ming; Shi, Shi-Hong; Fu, Ge-Yan; Wang, Ming-Di; Chen, Shu-Fa


    The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.

  16. Microstructure and Mechanical Properties of High-Alloyed 23Cr-5Mn-2Ni-3Mo Cast Steel / Mikrostruktura I Właściwości Mechaniczne Wysokostopowego Staliwa 23Cr-5Mn-2Ni-3Mo

    Directory of Open Access Journals (Sweden)

    Kalandyk B.


    Full Text Available The article presents the microstructure and mechanical properties of cast duplex stainless steel type 23Cr-5Mn-2Ni-3Mo. It has been shown that the structure of the tested cast steel is composed of ferrite enriched in Cr, Mo and Si, and austenite enriched in Mn and Ni. In the initial state, at the interface, precipitates rich in Cr and Mo were present. A high carbon content (0.08%C in this cast steel indicates that probably those were complex carbides of the M23C6 type and/or σ phase. Studies have proved that the solution annealing conducted at 1060°C was not sufficient for their full dissolution, while at the solutioning temperature of 1150°C, the structure of the tested material was composed of ferrite and austenite.

  17. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Todd M., E-mail:; Weaver, Mark L.


    Multi-component, high-entropy alloys (HEAs) are being investigated as potential alternatives for high temperature structural materials due to their reported high symmetry crystal structures, favorable mechanical properties, high temperature phase stabilities, and resistances to degradation in oxidizing/corrosive environments. However, their high temperature oxidation behaviors are poorly understood. In this work, the as-cast microstructures and 1050 °C oxidation behaviors of a series of arc-melted Al{sub x}(NiCoCrFe){sub 100-x} HEAs where x = 8, 10, 12, 15, 20, and 30 (at.%) were investigated. The dominant structure of the low Al concentration HEAs was determined to be FCC, while the high Al concentration HEAs were BCC dominant. A structural transition point at ∼15 at. % Al exists where a large fraction of both FCC and BCC are present. Each HEA exhibited initial transient oxidation followed by various degrees of parabolic oxide growth. All of the HEAs formed a combination of Al{sub 2}O{sub 3} and AlN beneath an external Cr{sub 2}O{sub 3} scale. Increased Al content improved the continuity and internal position of the Al{sub 2}O{sub 3} scale, resulting in enhanced oxidation resistances. These results are discussed relative to chemically similar conventional alloys and existing Ni–Cr–Al oxide formation models. The resulting phase equilibria has been compared to thermodynamic predictions made using the CALPHAD method. - Highlights: • The as-cast HEAs formed FCC, BCC, and/or B2 (i.e. ordered BCC) crystal structures. • Thermodynamic CALPHAD based models were fairly consistent with experimental results. • All of the HEAs selectively oxidized to form predominantly Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} scales. • The HEAs exhibited some parabolic oxide growth comparable to model NiCrAl alloys. • The oxidation performance was heavily influenced by the relative Al concentrations.

  18. Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype. (United States)

    Kaplan, Josh Steven; Nipper, Michelle A; Richardson, Ben D; Jensen, Jeremiah; Helms, Melinda; Finn, Deborah Ann; Rossi, David James


    Cerebellar granule cell GABAA receptor responses to alcohol vary as a function of alcohol consumption phenotype, representing a potential neural mechanism for genetic predilection for alcohol abuse (Kaplan et al., 2013; Mohr et al., 2013). However, there are numerous molecular targets of alcohol in the cerebellum, and it is not known how they interact to affect cerebellar processing during consumption of socially relevant amounts of alcohol. Importantly, direct evidence for a causative role of the cerebellum in alcohol consumption phenotype is lacking. Here we determined that concentrations of alcohol that would be achieved in the blood after consumption of 1-2 standard units (9 mm) suppresses transmission through the cerebellar cortex in low, but not high, alcohol consuming rodent genotypes (DBA/2J and C57BL/6J mice, respectively). This genotype-selective suppression is mediated exclusively by enhancement of granule cell GABAA receptor currents, which only occurs in DBA/2J mice. Simulating the DBA/2J cellular phenotype in C57BL/6J mice by infusing the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride, into cerebellar lobules IV-VI, in vivo, significantly reduced their alcohol consumption and blood alcohol concentrations achieved. 4,5,6,7-Tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride infusions also significantly decreased sucrose consumption, but they did not affect consumption of water or general locomotion. Thus, genetic differences in cerebellar response to alcohol contributes to alcohol consumption phenotype, and targeting the cerebellar GABAA receptor system may be a clinically viable therapeutic strategy for reducing excessive alcohol consumption. Alcohol abuse is a leading cause of preventable death and illness; and although alcohol use disorders are 50%-60% genetically determined, the cellular and molecular mechanisms of such genetic influences are largely unknown. Here we demonstrate that genetic differences in

  19. A Study of Thin Film Resistors Prepared Using Ni-Cr-Si-Al-Ta High Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Ruei-Cheng Lin


    Full Text Available Ni-Cr-Si-Al-Ta resistive thin films were prepared on glass and Al2O3 substrates by DC magnetron cosputtering from targets of Ni0.35-Cr0.25-Si0.2-Al0.2 casting alloy and Ta metal. Electrical properties and microstructures of Ni-Cr-Si-Al-Ta films under different sputtering powers and annealing temperatures were investigated. The phase evolution, microstructure, and composition of Ni-Cr-Si-Al-Ta films were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and Auger electron spectroscopy (AES. When the annealing temperature was set to 300°C, the Ni-Cr-Si-Al-Ta films with an amorphous structure were observed. When the annealing temperature was at 500°C, the Ni-Cr-Si-Al-Ta films crystallized into Al0.9Ni4.22, Cr2Ta, and Ta5Si3 phases. The Ni-Cr-Si-Al-Ta films deposited at 100 W and annealed at 300°C which exhibited the higher resistivity 2215 μΩ-cm with −10 ppm/°C of temperature coefficient of resistance (TCR.

  20. Excessive deforestation of Gishwati Mountainous forest ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    sigp1. Excessive deforestation of Gishwati. Mountainous forest & biodiversity changes. Introduction. The Change in Forest cover in. Rwanda is result of the high growth of population density. The latter has doubled between 1978 and 2002. Over.

  1. Self-assembled NiCo2O4-anchored reduced graphene oxide nanoplates as high performance anode materials for lithium ion batteries (United States)

    Yang, Juan; Tian, Hangyu; Tang, Jingjing; Bai, Tao; Xi, Lihua; Chen, Sanmei; Zhou, Xiangyang


    The NiCo2O4-anchored reduced graphene oxide (NiCo2O4@rGO) nanoplates have been synthesized by a facile self-assembly process. The morphology, crystalline structure and electrochemical performance of the materials have been investigated comprehensively. The results of SEM manifest that NiCo2O4 particles have been densely anchored on the surface of rGO with a mesoporous structure, and the morphology is tunable via altering concentration of urea during the preparation process. Due to the high ratio of NiCo2O4 in the composite and the plate structure, the electrochemical performance of as-prepared material has been greatly improved. When evaluated as anode materials in lithium ion batteries (LIBs), the as-prepared NiCo2O4@rGO nanocomposite delivers a reversible capacity of 994 mAh g-1 at a current density of 200 mA g-1 with outstanding rate capability, revealing that it could be a promising anode for LIBs.

  2. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau


    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  3. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications (United States)

    Ramachandran, K.; Raj Kumar, T.; Babu, K. Justice; Gnana Kumar, G.


    The facile, time and cost efficient and environmental benign approach has been developed for the preparation of Nickel (Ni)-Cobalt (Co) alloy nanowires filled multiwalled carbon nanotubes (MWCNTs) with the aid of mesoporous silica nanoparticles (MSN)/Ni-Co catalyst. The controlled incorporation of Ni-Co nanostructures in the three dimensional (3D) pore structures of MSN yielded the catalytically active system for the MWCNT growth. The inner surface of MWCNTs was quasi-continuously filled with face-centered cubic (fcc) structured Ni-Co nanowires. The as-prepared nanostructures were exploited as non-enzymatic electrochemical sensor probes for the reliable detection of glucose. The electrochemical measurements illustrated that the fabricated sensor exhibited an excellent electrochemical performance toward glucose oxidation with a high sensitivity of 0.695 mA mM-1 cm-2, low detection limit of 1.2 μM, a wide linear range from 5 μM-10 mM and good selectivity. The unprecedented electrochemical performances obtained for the prepared nanocomposite are purely attributed to the synergistic effects of Ni-Co nanowires and MWCNTs. The constructed facile, selective and sensitive glucose sensor has also endowed its reliability in analyzing the human serum samples, which wide opened the new findings for exploring the novel nanostructures based glucose sensor devices with affordable cost and good stability.

  4. Microstructure and thermal stability of a Ni-Cr-Co-Ti-V-Al high-entropy alloy coating by laser surface alloying (United States)

    Cai, Zhaobing; Cui, Xiufang; Jin, Guo; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan


    A Ni-Cr-Co-Ti-V-Al high-entropy alloy (HEA) coating with a BCC phase and (Ni, Co)Ti2 compounds was synthesized successfully by laser surface alloying on a Ti-6Al-4V substrate. The microstructure of as-synthesized coatings is typical, namely, the microstructure from the coating to the substrate changes from equiaxed grains to columnar grains. After remaining at 900 °C for 8 h, the constituent phases remain unchanged. However, owing to the unceasing dissolution of the Ti element, the lattice parameter of the BCC HEA phase changes from 3.06 Å to 3.16 Å. The thermoanalysis results show that the oxidation film on the Ni-Cr-Co-Ti-V-Al HEA coating is mainly composed of TiO2, V2O5, and NiO. The oxidation resistance of this HEA coating may be due to the existence of NiO and the alloying elements Al, Cr, and Co; the oxidation phenomenon should be responsible for the mass increase in the thermogravimetry process. The differential scanning calorimetry and the dynamic differential scanning calorimetry curves show that the synthesized HEA coating is stable below 1005 °C.

  5. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C-H Bond Breaking. (United States)

    Liu, Zongyuan; Grinter, David C; Lustemberg, Pablo G; Nguyen-Phan, Thuy-Duong; Zhou, Yinghui; Luo, Si; Waluyo, Iradwikanari; Crumlin, Ethan J; Stacchiola, Dario J; Zhou, Jing; Carrasco, Javier; Busnengo, H Fabio; Ganduglia-Pirovano, M Verónica; Senanayake, Sanjaya D; Rodriguez, José A


    Ni-CeO2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal-support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2-x (111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparative studies on ultrasonic, friction, laser and resistance pressure welding of NiTi shape memory alloys with high-alloy steels. Final report; Vergleichende Untersuchungen zum Ultraschall-, Reib-, Laserstrahl- und Widerstandspressschweissen von NiTi-Shape-Memory-Metall mit hochlegierten Staehlen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Zuckschwerdt, K.


    The suitability of different welding techniques for welding of NiTi shape memory alloys with high-alloy steel (C12CrNi17-7, X5CrNiNb19-9, X20Cr13) was investigated. The quality of the welds was analyzed using mechanical-technological, fractographic, metallographic and electron microscopy analysis. [German] Ziel dieses Forschungsvorhabens ist es, die Eignung der einzelnen Schweissverfahren fuer das Fuegen von NiTi-Formgedaechtnislegierungen mit hochlegiertem Stahl (X12CrNi17-7, X5CrNiNb19-9, X20Cr13) darzustellen und zu beurteilen. Die Qualitaet der Fuegeverbindungen wird mit Hilfe mechanisch-technologischer, fraktographischer, metallographischer und elektronenmikroskopischer Untersuchungen bewertet.

  7. High Electrical Conductivity in Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 , a Semiconducting Metal–Organic Graphene Analogue


    Sheberla, Dennis; Sun, Lei; Blood-Forsythe, Martin; Er, Suleyman; Wade, Casey R.; Brozek, Carl K.; Aspuru-Guzik, Alan; Dincă, Mircea


    Reaction of 2,3,6,7,10,11-hexaaminotriphenylene with Ni2+ in aqueous NH3 solution under aerobic conditions produces Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), a new two-dimensional metalorganic framework (MOF). The new material can be isolated as a highly conductive black powder or dark blue-violet films. Two-probe and van der Pauw electrical measurements reveal bulk (pellet) and surface (film) conductivity values of 2 Scm -1 and 40 Scm -1, respectively, both records for MOFs ...

  8. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings (United States)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.


    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  9. In Situ Multitechnical Investigation into Capacity Fading of High-Voltage LiNi0.5Co0.2Mn0.3O2. (United States)

    Shen, Chong-Heng; Wang, Qi; Chen, Hong-Jiang; Shi, Chen-Guang; Zhang, Hui-Yi; Huang, Ling; Li, Jun-Tao; Sun, Shi-Gang


    LiNi0.5Co0.2Mn0.3O2 positive electrode materials of lithium ion battery can release a discharge capacity larger than 200 mAh/g at high potential (>4.30 V). However, its inevitable capacity fading, which is greatly related to the structural evolution, reduces the cycling performance. The origin of this capacity fading is investigated by coupled in situ XRD-PITT-EIS. A new phase of NiMn2O4 is discovered on the surface of the LiNi0.5Co0.2Mn0.3O2 upon charging to high voltage, which blocks Li(+) diffusion pathways. Theoretical calculations predict the formation of cubic NiMn2O4. Moreover, corrosion, cracks, and microstress appear to increase the difficulty of Li(+) transportation, which are attributed to the protection degradation of the interfacial film on the positive electrode material at high voltage. After 50 electrochemical cycles, the increase in degree of crystal defects by low-angle grain boundary, evidenced through HR-TEM, leads to poor Li(+) kinetics, which in turn causes capacity loss. The in situ XRD-PITT-EIS technique can bring multiperspective insights into fading mechanism of the high-voltage positive electrode materials and provide a solution to control or suppress the problem on the basis of structural, kinetic, and electrochemical interfacial understandings.

  10. Hierarchical core-shell structures of P-Ni(OH)2 rods@MnO2 nanosheets as high-performance cathode materials for asymmetric supercapacitors. (United States)

    Li, Kunzhen; Li, Shikuo; Huang, Fangzhi; Yu, Xin-Yao; Lu, Yan; Wang, Lei; Chen, Hong; Zhang, Hui


    The hierarchical porous structure with phosphorus-doped Ni(OH)2 (P-Ni(OH)2) rods as the core and MnO2 nanosheets as the shell is fabricated directly by growth on a three-dimensional (3D) flexible Ni foam (NF) via a two-step hydrothermal process. As a binder-free electrode material, this unique hybrid structure exhibits excellent electrochemical properties, including an ultrahigh areal capacitance of 5.75 F cm-2 at a current density of 2 mA cm-2 and great cyclic stability without capacitance loss at a current density of 20 mA cm-2 after 10 000 cycles. Moreover, an all-solid-state asymmetric supercapacitor (AAS) based on a P-Ni(OH)2@MnO2 hybrid structure on Ni foam as the cathode and activated carbon (AC) as the anode is successfully assembled to enhance value the electrochemical properties. The AAS device also shows excellent electrochemical properties including a large potential window of 0∼1.6 V, an areal capacitance is 911.3 mF cm-2 at a current density of 1 mA cm-2 and long-term cycling performance. Meanwhile, the AAS device also delivers a high energy density of 0.324 mW h cm-2 at a power density of 0.8 mW cm-2; and can easily light colorful light-emitting diode (LED) lights, suggesting that 3D P-Ni(OH)2@MnO2 hybrid composite has promising potential for practical use in high-performance supercapacitors.

  11. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study (United States)

    Choi, Won-Mi; Jo, Yong Hee; Sohn, Seok Su; Lee, Sunghak; Lee, Byeong-Joo


    Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.

  12. Enhancing the rate capability of high capacity xLi{sub 2}MnO{sub 3} . (1 - x)LiMO{sub 2} (M = Mn, Ni, Co) electrodes by Li-Ni-PO{sub 4} treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sun-Ho; Thackeray, Michael M. [Electrochemical Energy Storage Department, Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)


    The rate capability of high capacity xLi{sub 2}MnO{sub 3} . (1 - x)LiMO{sub 2} (M = Mn, Ni, Co) electrodes for lithium-ion batteries has been significantly enhanced by stabilizing the electrode surface by reaction with a Li-Ni-PO{sub 4} solution, followed by a heat-treatment step. Reversible capacities of 250 mAh/g at a C/11 rate, 225 mAh/g at C/2 and 200 mAh/g at C/1 have been obtained from 0.5Li{sub 2}MnO{sub 3} . 0.5LiNi{sub 0.44}Co{sub 0.25}Mn{sub 0.31}O{sub 2} electrodes between 4.6 and 2.0 V. The data bode well for their implementation in batteries that meet the 40-mile range requirement for plug-in hybrid vehicles. (author)

  13. High-performance turbocharger for motor sports cars; Motor sports yo turbo ni tsuibe

    Energy Technology Data Exchange (ETDEWEB)

    Koike, T. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)


    Motor sports car with a turbo-charged gasoline or diesel engine ranges over racing car, prototype car and production cars from light vehicle to large truck. Not only a large output power but also a high torque ranging from a low- revolution region of engines to a high-revolution region are required for turbochargers for racing cars. The turbocharger for racing cars requires the following features: (1) The latest fluid performance for achieving a high pressure ratio, high efficiency and large capacity, (2) a high reliability for bearing high exhaust temperature, (3) a high-response rotation part with low inertia moment, (4) a loss reduction bearing for improving a response and total performance, and (5) the small light-weight turbocharger for balancing a car with an engine. The turbocharger for motor sports cars has developed various advanced technologies concretely for achieving a high running performance and low fuel consumption required for automobiles. Such advanced technologies developed for motor races will also contribute to the growth of an automobile industry in the future. (NEDO)

  14. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds. (United States)

    Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying


    Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (∼2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s(-1), with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.

  15. Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins

    Directory of Open Access Journals (Sweden)

    Hashimoto Yoshi


    Full Text Available Abstract After publication we discovered an error in the identification of the origin of the cell line reported in our article in BMC Biotechnology (2010, 10:50, entitled "Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae, is permissive for AcMNPV infection and produces high levels of recombinant proteins". Upon analysis of primary A. odorata cultures, we found that they were contaminated with cells of Trichoplusia ni origin. The origin of the Ao38 cell line was determined as T. ni using three marker genes and the Ao38 cell line was renamed BTI-Tnao38. References to the origin of the cell line as Ascalapha odorata should be replaced with "a cell line of Trichoplusia ni origin". The absence of TNCL virus detection in the BTI-Tnao38 (Ao38 cell line was confirmed using a highly sensitive RT-PCR protocol capable of detecting TNCL virus RNA at approximately 0.018 copies/cell. Because of these observations, we have revised the title of the original article to "Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins" and two additional authors were added to reflect their contributions to the analysis of this cell line.

  16. A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils

    Directory of Open Access Journals (Sweden)

    Xiaodong Xie


    Full Text Available We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.

  17. In Situ Confined Growth Based on a Self-Templating Reduction Strategy of Highly Dispersed Ni Nanoparticles in Hierarchical Yolk-Shell Fe@SiO2 Structures as Efficient Catalysts. (United States)

    Jiao, Jiao; Wang, Haiyan; Guo, Wanchun; Li, Ruifei; Tian, Kesong; Xu, Zhaopeng; Jia, Yin; Wu, Yuehao; Cao, Ling


    Ni-based magnetic catalysts exhibit moderate activity, low cost, and magnetic reusability in hydrogenation reactions. However, Ni nanoparticles anchored on magnetic supports commonly suffer from undesirable agglomeration during catalytic reactions due to the relatively weak affinity of the magnetic support for the Ni nanoparticles. A hierarchical yolk-shell Fe@SiO2 /Ni catalyst, with an inner movable Fe core and an ultrathin SiO2 /Ni shell composed of nanosheets, was synthesized in a self-templating reduction strategy with a hierarchical yolk-shell Fe3 O4 @nickel silicate nanocomposite as the precursor. The spatial confinement of highly dispersed Ni nanoparticles with a mean size of 4 nm within ultrathin SiO2 nanosheets with a thickness of 2.6 nm not only prevented their agglomeration during catalytic transformations but also exposed the abundant active Ni sites to reactants. Moreover, the large inner cavities and interlayer spaces between the assembled ultrathin SiO2 /Ni nanosheets provided suitable mesoporous channels for diffusion of the reactants towards the active sites. As expected, the Fe@SiO2 /Ni catalyst displayed high activity, high stability, and magnetic recoverability for the reduction of nitroaromatic compounds. In particular, the Ni-based catalyst in the conversion of 4-nitroamine maintained a rate of over 98 % and preserved the initial yolk-shell structure without any obvious aggregation of Ni nanoparticles after ten catalytic cycles, which confirmed the high structural stability of the Ni-based catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Antioxidant enzymes induced by repeated intake of excess energy in the form of high-fat, high-carbohydrate meals are not sufficient to block oxidative stress in healthy lean individuals. (United States)

    Lim, Sangbin; Won, Hyeran; Kim, Yeonghwan; Jang, Miran; Jyothi, K R; Kim, Youngseol; Dandona, Paresh; Ha, Joohun; Kim, Sung Soo


    It has been reported that high-fat, high-carbohydrate (HFHC) meals increase oxidative stress and inflammation. We examined whether repeated intake of excess energy in the form of HFHC meals alters reactive oxygen species (ROS) generation and the expression levels of antioxidant enzymes and mitochondrial proteins in mononuclear cells, and to determine whether this is associated with insulin resistance. We recruited healthy lean individuals (n 10). The individuals were divided into two groups: one group (n 5) ingested 10878·4 kJ/d (2600 kcal/d; 55-70 % carbohydrate, 9·5-16 % fat, 7-20 % protein) recommended by the Dietary Reference Intake for Koreans for 4 d and the other group (n 5) ingested a HFHC meal containing 14 644 kJ/d (3500 kcal/d). Then, measurements of blood insulin and glucose levels, together with suppressor of cytokine signalling-3 (SOCS-3) expression levels, were performed in both groups. Also, cellular and mitochondrial ROS levels as well as malondialdehyde (MDA) levels were measured. Expression levels of cytosolic and mitochondrial antioxidant enzymes, and mitochondrial complex proteins were analysed. Repeated intake of HFHC meals induced an increase in homeostasis model of assessment-insulin resistance (HOMA-IR), together with an increase in SOCS-3 expression levels. While a single intake of the HFHC meal increased cytosolic and mitochondrial ROS, repeated intake of HFHC meals reduced them and increased the levels of MDA, cytosolic and mitochondrial antioxidant enzymes, and several mitochondrial complex proteins. Repeated intake of HFHC meals induced cellular antioxidant mechanisms, which in turn increased lipid peroxidation (MDA) and SOCS-3 expression levels, induced hyperinsulinaemia and increased HOMA-IR, an index of insulin resistance. In conclusion, excess energy added to a diet can generate detrimental effects in a short period.

  19. Cross-sectional TEM analysis of structural phase states in TiNi alloy treated by a low-energy high-current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Neiman, A.A., E-mail: [Institute of Strength Physicists and Materials Science SB RAS, Tomsk (Russian Federation); Meisner, L.L. [Institute of Strength Physicists and Materials Science SB RAS, Tomsk (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation); Lotkov, A.I. [Institute of Strength Physicists and Materials Science SB RAS, Tomsk (Russian Federation); Koval, N.N. [National Research Tomsk State University, Tomsk (Russian Federation); Institute of High Current Electronics SB RAS, Tomsk (Russian Federation); Semin, V.O. [Institute of Strength Physicists and Materials Science SB RAS, Tomsk (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation); Teresov, A.D. [National Research Tomsk State University, Tomsk (Russian Federation); Institute of High Current Electronics SB RAS, Tomsk (Russian Federation)


    Highlights: • The TiNi melted layer is characterized by changing of chemical composition for the Ti enrichment. • Structure of the B2 phase in the modified zone has considerable distortions of the crystal lattice. • Gradient character of changes of TiNi structure in the modified zone is experimentally shown. - Abstract: The paper reports on a study of structural phase states and their cross-sectional in-depth evolution from the surface of TiNi specimens treated by low-energy high-current electron beams with surface melting at a beam energy density E = 10 J/cm{sup 2}, number of pulses N = 10, and pulse duration τ = 50 μs. After treatment, the modified TiNi surface zone takes on a layered structure in which each layer differs in phase composition and structural phase state. It is found that the melted layer is 8–10 μm thick. This layer is in a single-B2 phase state with distorted structure, lattice parameters a = b = 3.003–3.033 Å, c = 3.033–3.063 Å and α = 89.3–90°, β = γ = 90°, quasihomogeneous chemical composition corresponding to Ti{sub 51.7}Ni{sub 48.3}, the preferred orientations of the crystallites in a direction close to 〈4 1 0〉{sub B2}, and inhomogeneous lattice strain. The intermediate layer contains, in addition to the B2 phase, a B19′ martensite phase. The structural state of the B2 phase in this layer is close to equilibrium and its parameters approximate those of the initial B2 phase in nonirradiated TiNi specimens.

  20. Topiramate Induced Excessive Sialorrhea

    Directory of Open Access Journals (Sweden)

    Ersel Dag


    Full Text Available It is well-known that drugs such as clozapine and lithium can cause sialorrhea. On the other hand, topiramate has not been reported to induce sialorrhea. We report a case of a patient aged 26 who was given antiepileptic and antipsychotic drugs due to severe mental retardation and intractable epilepsy and developed excessive sialorrhea complaint after the addition of topiramate for the control of seizures. His complaints continued for 1,5 years and ended after giving up topiramate. We presented this case since it was a rare sialorrhea case induced by topiramate. Clinicians should be aware of the possibility of sialorrhea development which causes serious hygiene and social problems when they want to give topiramate to the patients using multiple drugs.

  1. Porous NiCo{sub 2}S{sub 4}-halloysite hybrid self-assembled from nanosheets for high-performance asymmetric supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Hui, E-mail:; Dong, Hong; Wang, Yucheng; Xu, Jiayu; Jia, Dianzeng


    Highlights: • The NiCo{sub 2}S{sub 4}-HL nanomaterial is achieved via two-step hydrothermal approach. • The unique structures are assembled self-assembly by nanosheets. • The obtained electrode exhibits high capacitance and excellent retention. • An asymmetric supercapacitor also displays high energy density and outstanding cycling stability. • The high-performance of the device is possibly due to the introduction of HL and formation of composed nanosheets. - Abstract: The porous nanostructures have drawn considerable attention because of their abundant pore volume and unique properties that provide outstanding performance in catalysis and energy storage applications. This study proposes the growth mechanism of porous NiCo{sub 2}S{sub 4} composited with halloysite (HL) via a self-assembly method using halloysite as a template and component. Electrochemical tests showed that the NiCo{sub 2}S{sub 4}-HL exhibited an ultrahigh specific capacitance (Csp) (589C g{sup −1} at 1A g{sup −1}) and good cycle stability (Csp retention of 86% after 1000 cycles). The desirable capacitive performance of the NiCo{sub 2}S{sub 4}-HL can be attributed to the large specific surface area and short diffusion path for electrons and ions in the hierarchical porous structure. The superior electrochemical performances with the energy density of 35.48 W h kg{sup −1} at a power density of 199.9 W kg{sup −1} were achieved in an assembled aqueous asymmetric supercapacitor (ASC) device using NiCo{sub 2}S{sub 4}-HL as a positive electrode and N-doped graphene (NG) as a negative electrode. Moreover, the NiCo{sub 2}S{sub 4}-HL//NG asymmetric supercapacitor achieved outstanding cycle stability (also retained 83.2% after 1700 cycles). The high-performance of the ASC device will undoubtedly make the porous NiCo{sub 2}S{sub 4}-HL as potential electrode materials attractive in energy storage systems.

  2. Neutron diffraction study of anomalous high-field magnetic phases in TmNi2B2C

    DEFF Research Database (Denmark)

    Toft, K.N.; Abrahamsen, A.B.; Eskildsen, M.R.


    We present a (B,T)-phase diagram of the magnetic superconductor TmNi2B2C obtained by neutron scattering. The measurements were performed in magnetic fields up to 6 T applied along the crystalline a axis. The observed phases are characterized by three ordering vectors, Q(F)=(0.094,0.094,0),Q(AI)=(0.......90Yb0.10)Ni2B2C the Q(F)-->Q(AI) phase transition is also observed but at a larger transition field compared to the undoped compound. In (Tm0.85Yb0.15)Ni2B2C the Q(F) phase persists up to at least 1.8 T. The magnetic correlation length of the Q(AI) phase in TmNi2B2C measured parallel and perpendicular...

  3. Parameter Studies on High-Velocity Oxy-Fuel Spraying of CoNiCrAlY Coatings Used in the Aeronautical Industry

    Directory of Open Access Journals (Sweden)

    J. A. Cabral-Miramontes


    Full Text Available The thermal spraying process is a surface treatment which does not adversely affect the base metal on which it is performed. The coatings obtained by HVOF thermal spray are employed in aeronautics, aerospace, and power generation industries. Alloys and coatings designed to resist oxidizing environments at high temperatures should be able to develop a surface oxide layer, which is thermodynamically stable, slowly growing, and adherent. MCrAlY type (M = Co, Ni or combination of both coatings are used in wear and corrosion applications but also provide protection against high temperature oxidation and corrosion attack in molten salts. In this investigation, CoNiCrAlY coatings were produced employing a HVOF DJH 2700 gun. The work presented here focuses on the influences of process parameters of a gas-drive HVOF system on the microstructure, adherence, wear, and oxygen content of CoNiCrAlY. The results showed that spray distance significantly affects the properties of CoNiCrAlY coatings.

  4. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries (United States)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio


    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/-1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.

  5. Self-supporting hierarchical rGO@Ni nanosheet@Co3O4 nanowire array and its application in high-rate batteries (United States)

    Shi, F.; Xie, D.; Zhong, Y.; Wang, D. H.; Xia, X. H.; Gu, C. D.; Wang, X. L.; Tu, J. P.


    To meet the design requirements for high-rate battery electrodes, self-supporting hierarchical rGO@Ni nanosheet@Co3O4 nanowire array film with light weight is synthesized via a series of controllable fabrication processes. Due to modifying the highly conductive nickel nanosheets onto the surface of rGO film, the energy storage performance of this hybrid film is enhanced, especially in rate capability. The whole high-rate battery, which is fabricated by using this film as the positive electrode, manifests the maximum energy density of 20.3 Wh kg-1 at a power density of 326 W kg-1 along with excellent capacity retention of 81.4% after 5000 cycles. Therefore, the rGO-Ni-Co3O4 hybrid film is a promising electrode material for flexible long-life cycling high-rate batteries.

  6. A facile strategy for the synthesis of NiSe@CoOOH core-shell nanowires on nickel foam with high surface area as efficient electrocatalyst for oxygen evolution reaction (United States)

    Xu, Yuan-Zi; Yuan, Cheng-Zong; Chen, Xue-Ping


    In this article, we describe a NiSe@CoOOH core-shell nanostructure nanowires supported on nickel foam(NiSe@CoOOH NWs/NF) have been successfully synthesized by a facile approach for the first time. The NiSe@CoOOH NWs/NF has been confirmed by XRD, SEM images, TEM images, XPS, EDX and HRTEM. The NiSe@CoOOH NWs/NF, as a 3D oxygen-evolving and nonprecious-metal catalyst, shows high catalytic performance for oxygen evolution reaction.

  7. Magnetically separable Ag/AgBr/NiFe2O4 composite as a highly efficient visible light plasmonic photocatalyst (United States)

    Ge, Ming; Liu, Wei; Hu, Xin-Rong; Li, Zhen-Lu


    A magnetic Ag/AgBr/NiFe2O4 plasmonic photocatalyst was firstly prepared by coupling a hydrothermal route with a solvothermal method. The as-synthesized Ag/AgBr/NiFe2O4 was characterized by XRD, XPS, FE-SEM, UV-vis DRS, PL and BET surface area. Under visible light irradiation, the resulting Ag/AgBr/NiFe2O4 exhibited a higher photocatalytic activity for rhodamine B (RhB) degradation compared with Ag/AgBr, which was ascribed to the heterostructured Ag/AgBr/NiFe2O4 and the surface plasmon resonance (SPR) effect of Ag nanoparticles. Moreover, the Ag/AgBr/NiFe2O4 plasmonic photocatalyst can be recovered and recycled by a magnetic field along with good stability. A plausible mechanism is also proposed via active species trapping experiments, which indicating that the superoxide radicals (O2-•) are the main reactive oxygen species for RhB degradation in Ag/AgBr/NiFe2O4 suspension under visible light.

  8. Facile solid-state synthesis of Ni@C nanosheet-assembled hierarchical network for high-performance lithium storage (United States)

    Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming


    Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.

  9. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Mau-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Jian, Sheng-Rui, E-mail: [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Yeh, An-Chou [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kuo, Chen-Ming [Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan (China)


    This study explores the effects of cooling rate after solution heat treatment on the high temperature/low stress (982 °C/200 MPa) creep properties of CM-247LC Nickel base superalloy. Cooling rate was controlled by blowing argon gas, air cooling, and furnace cooling, which, in turn, gave rise to corresponding cooling rates (from 1260 °C to 800 °C) of 18.7, 7.4, and 0.19 °C/s, respectively. The results indicated that higher cooling rate from the solution heat treatment temperature led to finer γ′ precipitates and much improved tertiary creep as well as rupture life time in high-temperature creep test. The microstructural analyses using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that finer γ′ precipitates and narrower γ channel width could result in denser rafting structure which might have hindered the climb of dislocations across the precipitates rafts.

  10. A facile solvent-free Synthesis Route for the Assembly of Highly CO2 Selective and H2S tolerant NiSIFSIX Metal-Organic Framework

    KAUST Repository

    Eddaoudi, Mohamed


    The development of materials for CO2 capture with high selectivity and high tolerance to H2S is of prime importance for various industrially relevant gas streams (e.g. natural gas and biogas upgrading as well as pre-combustion capture). Here, we report the successful fabrication of a MOF with combined exceptional CO2 capture properties and H2S tolerance, namely Ni SIFSIX based-MOF using both solvothermal and solvent-free methodologies.

  11. High-order standing spin wave modes in Fe{sub 19}Ni{sub 81} micron wire observed by homodyne method

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, A; Motoi, K; Miyajima, H [Department of Physics, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Uchiyama, T [Department of Electrical Engineering and Computer, Nagoya University, Chikusaku, Nagoya 464-8603 (Japan); Utsumi, Y, E-mail: [Laboratory of Advanced Science and Technology fro Industry, University of Hyogo, Koto, Ako, Hyogo 678-1205 (Japan)


    The broadband spin dynamics of patterned ferromagnetic Fe{sub 19}Ni{sub 81} microwire with thickness of 80 nm has been investigated experimentally using broadband rectifying method. The rectifying effect provides a highly sensitive method to detect the high-order perpendicular standing spin wave (PSSW) mode. Present analytical calculation reproduces the observed relation between resonance frequency and applied magnetic field. The effective thickness is explained by the pinning condition of magnetic moment at the surface of the wire.

  12. Diphoton excess through dark mediators

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Yi [Department of Physics and Astronomy, University of Victoria,Victoria, BC V8P 5C2 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, ON N2J 2W9 (Canada); Lefebvre, Michel [Department of Physics and Astronomy, University of Victoria,Victoria, BC V8P 5C2 (Canada); Pospelov, Maxim [Department of Physics and Astronomy, University of Victoria,Victoria, BC V8P 5C2 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, ON N2J 2W9 (Canada); Zhong, Yi-Ming [C.N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, New York 11794 (United States)


    Preliminary ATLAS and CMS results from the first 13 TeV LHC run have encountered an intriguing excess of events in the diphoton channel around the invariant mass of 750 GeV. We investigate a possibility that the current excess is due to a heavy resonance decaying to light metastable states, which in turn give displaced decays to very highly collimated e{sup +}e{sup −} pairs. Such decays may pass the photon selection criteria, and successfully mimic the diphoton events, especially at low counts. We investigate two classes of such models, characterized by the following underlying production and decay chains: gg→S→A{sup ′}A{sup ′}→(e{sup +}e{sup −})(e{sup +}e{sup −}) and qq̄→Z{sup ′}→sa→(e{sup +}e{sup −})(e{sup +}e{sup −}), where at the first step a heavy scalar, S, or vector, Z{sup ′}, resonances are produced that decay to light metastable vectors, A{sup ′}, or (pseudo-)scalars, s and a. Setting the parameters of the models to explain the existing excess, and taking the ATLAS detector geometry into account, we marginalize over the properties of heavy resonances in order to derive the expected lifetimes and couplings of metastable light resonances. We observe that in the case of A{sup ′}, the suggested range of masses and mixing angles ϵ is within reach of several new-generation intensity frontier experiments.

  13. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking (United States)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while

  14. Deformation Behavior of Al0.25CoCrFeNi High-Entropy Alloy after Recrystallization

    Directory of Open Access Journals (Sweden)

    Jinxiong Hou


    Full Text Available Cold rolling with subsequent annealing can be used to produce the recrystallized structure in high entropy alloys (HEAs. The Al0.25CoCrFeNi HEAs rolled to different final thickness (230, 400, 540, 800, 1000, 1500 μm are prepared to investigate their microstructure evolutions and mechanical behaviors after annealing. Only the single face-centered cubic phase was obtained after cold rolling and recrystallization annealing at 1100 °C for 10 h. The average recrystallized grain size in this alloy after annealing ranges from 92 μm to 136 μm. The annealed thin sheets show obviously size effects on the flow stress and formability. The yield strength and tensile strength decrease as t/d (thickness/average grain diameter ratio decreases until the t/d approaches 2.23. In addition, the stretchability (formability decreases with the decrease of the t/d ratio especially when the t/d ratio is lower than about 6. According to the present results, yield strength can be expressed as a function of the t/d ratio.

  15. Niobium carbo-nitride precipitation behavior in a high nitrogen 15Cr-15Ni heat resistant austenitic stainless steel (United States)

    Ha, Vu The; Jung, Woo Sang


    A high nitrogen 15Cr-15Ni niobium-stabilized austenitic alloy has been produced and subjected to a special heat treatment consisting of 5 hours of solution treatment at 1270 °C followed by hot rolling, quenching and subsequent aging at temperatures of 700 °C to 800 °C. It was found that fine dispersion of nano-sized thermally stable primary Nb(C,N) precipitates had already formed in the as-cast condition. The particles were presented at all examined stages of the TMT process (as-homogenized, as-solution treated and as-aged conditions). Secondary precipitates Nb(C,N) were densely formed during subsequent aging; these precipitates had sizes of 4 nm to 5 nm. Both the primary and secondary Nb(C,N) particles showed excellent thermal stability within the temperature range of 700 °C to 800 °C. The creep properties of the studied alloy at 750 °C were superior when compared to those of commercial type 347 stainless steel.

  16. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    Directory of Open Access Journals (Sweden)

    Norio Maruyama, Sachiko Hiromoto, Eiji Akiyama and Morihiko Nakamura


    Full Text Available Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-. For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR both in air and in PBS(-. A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR. The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  17. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Chlup, Zdeněk; Dlouhý, Antonín; Dobeš, Ferdinand; Roupcová, Pavla; Vilémová, Monika; Matějíček, Jiří


    Roč. 689, MAR (2017), s. 252-256 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GA14-25246S; GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Creep * High-entropy alloy (HEA) * Mechanical alloying * Oxide dispersion strengthened (ODS) alloy * Powder metallurgy * Spark plasma sintering Subject RIV: JG - Metallurgy; JG - Metallurgy (UFP-V) OBOR OECD: Materials engineering; Materials engineering (UFM-A); Materials engineering (UFP-V) Impact factor: 3.094, year: 2016

  18. Episodic Excessive Blinking in Children. (United States)

    Mali, Yasmin Poustchi; Simon, John W; Chaudhri, Imran; Zobal-Ratner, Jitka; Barry, Gerard P


    Many children present with excessive blinking. Categorization, associated conditions, and prognosis are controversial. All children with excessive blinking were reviewed, excluding those with known uveitis, glaucoma, or obvious eyelid abnormalities. Parents were telephoned for follow-up. No ocular pathology was identified in 31 of 34 children with excessive blinking (91%). Parents were able to report a specific cause of blinking in 7 (21%). In 24 of 34 (71%), parents reported complete resolution of excessive blinking. No new ophthalmologic diagnoses were uncovered on follow-up. Episodes of excessive blinking rarely indicate neurologic disorders and frequently resolve spontaneously. Copyright 2016, SLACK Incorporated.

  19. A low knee voltage and high breakdown voltage of 4H-SiC TSBS employing poly-Si/Ni Schottky scheme (United States)

    Kim, Dong Young; Seok, Ogyun; Park, Himchan; Bahng, Wook; Kim, Hyoung Woo; Park, Ki Cheol


    We report a low knee voltage and high breakdown voltage 4H-SiC TSBS employing poly-Si/Ni dual Schottky contacts. A knee voltage was significantly improved from 0.75 to 0.48 V by utilizing an alternative low work-function material of poly-Si as an anode electrode. Also, reverse breakdown voltage was successfully improved from 901 to 1154 V due to a shrunk low-work-function Schottky region by a proposed self-align etching process between poly-Si and SiC. SiC TSBS with poly-Si/Ni dual Schottky scheme is a suitable structure for high-efficiency rectification and high-voltage blocking operation.

  20. Magnetic properties of the CrMnFeCoNi high-entropy alloy

    Czech Academy of Sciences Publication Activity Database

    Schneeweiss, Oldřich; Friák, Martin; Dudová, Marie; Holec, D.; Šob, Mojmír; Kriegner, D.; Holý, V.; Beran, Přemysl; George, E. P.; Neugebauer, J.; Dlouhý, Antonín


    Roč. 96, č. 1 (2017), č. článku 014437. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-22834S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 ; RVO:61389005 Keywords : high-entropy alloys * magnetism * low-temperatures * quantum-mechanical calculations * magnetic transitions Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UJF-V) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Condensed matter physics (including formerly solid state physics, supercond.) (UFM-A); Condensed matter physics (including formerly solid state physics, supercond.) (UJF-V) Impact factor: 3.836, year: 2016

  1. High-resolution electron microscopy in spin pumping NiFe/Pt interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ley Domínguez, D., E-mail:; Sáenz-Hernández, R. J.; Faudoa Arzate, A.; Arteaga Duran, A. I.; Ornelas Gutiérrez, C. E.; Solís Canto, O.; Botello-Zubiate, M. E.; Rivera-Gómez, F. J.; Matutes-Aquino, J. A. [Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico); Azevedo, A.; Silva, G. L. da; Rezende, S. M. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil)


    In order to understand the effect of the interface on the spin pumping and magnetic proximity effects, high resolution transmission electron microscopy and ferromagnetic resonance (FMR) were used to analyze Py/Pt bilayer and Pt/Py/Pt trilayer systems. The samples were deposited by dc magnetron sputtering at room temperature on Si (001) substrates. The Py layer thickness was fixed at 12 nm in all the samples and the Pt thickness was varied in a range of 0–23 nm. A diffusion zone of approximately 8 nm was found in the Py/Pt interfaces and confirmed by energy dispersive X-ray microanalysis. The FMR measurements show an increase in the linewidth and a shift in the ferromagnetic resonance field, which reach saturation.

  2. Low-cost and facile synthesis of Ni(OH)2/ZnO nanostructures for high-sensitivity glucose detection (United States)

    Strano, V.; Mirabella, S.


    An efficient electrode for non-enzymatic glucose detection is produced with low-cost techniques on a Cu wire. ZnO nanorods (NRs) were grown on a Cu wire by chemical bath deposition and were used as the substrate for pulsed electrodeposition of nanostructured Ni(OH)2 flakes. The effect of the electrodeposition potential on the final morphology and electrochemical behavior of the Ni(OH)2/ZnO/Cu structures is reported. ZnO NRs resulted to be well dressed by Ni(OH)2 flakes and were tested as glucose sensing electrodes in 0.1 M NaOH solution, showing high sensitivities (up to 3 mA mM‑1 cm‑2) and long-term stability. The presence of ZnO NRs was shown to improve the performance of the glucose sensor in terms of electrochemical stability over the time and sensitivity compared to Ni(OH)2/Cu sample. The reported data demonstrate a simple, versatile and low-cost fabrication approach for effective glucose sensing system within a urban mines framework.

  3. In situ synthesis of oriented NiS nanotube arrays on FTO as high-performance counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan, E-mail: [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Chang, Yin [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Zhao, Yun [Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Wang, Jian; Wang, Cheng-wei [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China)


    Oriented nickel sulfide (NiS) nanotube arrays were successfully in-situ fabricated on conductive glass substrate and used directly as counter electrode for dye-sensitized solar cells without any post-processing. Compared with Pt counter electrode, for the beneficial effect of electronic transport along the axial direction through the arrays to the substrate, oriented NiS nanotube arrays exhibit both higher electrocatalytic activity for I{sub 3}{sup −} reduction and better electrochemical stability, resulting in a significantly improved power conversion efficiency of 9.8%. Such in-situ grown oriented sulfide semiconductor nanotube arrays is expected to lead a new class structure of composites for highly efficient cathode materials. - Highlights: • In-situ synthesis strategy was proposed to construct oriented NiS nanotube arrays. • Such oriented tube nanostructure benefits the electronic transport along the axial direction of the arrays. • As CE of DSSCs, NiS nanotube arrays exhibit both higher efficiency (9.8%) and electrochemical stability than Pt.

  4. High-Temperature Oxidation-Resistant and Low Coefficient of Thermal Expansion NiAl-Base Bond Coat Developed for a Turbine Blade Application (United States)


    Many critical gas turbine engine components are currently made from Ni-base superalloys that are coated with a thermal barrier coating (TBC). The TBC consists of a ZrO2-based top coat and a bond coat that is used to enhance the bonding between the superalloy substrate and the top coat. MCrAlY alloys (CoCrAlY and NiCrAlY) are currently used as bond coats and are chosen for their very good oxidation resistance. TBC life is frequently limited by the oxidation resistance of the bond coat, along with a thermal expansion mismatch between the metallic bond coat and the ceramic top coat. The aim of this investigation at the NASA Glenn Research Center was to develop a new longer life, higher temperature bond coat by improving both the oxidation resistance and the thermal expansion characteristics of the bond coat. Nickel aluminide (NiAl) has excellent high-temperature oxidation resistance and can sustain a protective Al2O3 scale to longer times and higher temperatures in comparison to MCrAlY alloys. Cryomilling of NiAl results in aluminum nitride (AlN) formation that reduces the coefficient of thermal expansion (CTE) of the alloy and enhances creep strength. Thus, additions of cryomilled NiAl-AlN to CoCrAlY were examined as a potential bond coat. In this work, the composite alloy was investigated as a stand-alone substrate to demonstrate its feasibility prior to actual use as a coating. About 85 percent of prealloyed NiAl and 15 percent of standard commercial CoCrAlY alloys were mixed and cryomilled in an attritor with stainless steel balls used as grinding media. The milling was carried out in the presence of liquid nitrogen. The milled powder was consolidated by hot extrusion or by hot isostatic pressing. From the consolidated material, oxidation coupons, four-point bend, CTE, and tensile specimens were machined. The CTE measurements were made between room temperature and 1000 C in an argon atmosphere. It is shown that the CTE of the NiAl-AlN-CoCrAlY composite bond coat

  5. A High-Capacity and Long-Cycle-Life Lithium-Ion Battery Anode Architecture: Silver Nanoparticle-Decorated SnO2/NiO Nanotubes. (United States)

    Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Youn, Doo-Young; Park, Soojin; Kim, Il-Doo


    The combination of high-capacity and long-term cyclability has always been regarded as the first priority for next generation anode materials in lithium-ion batteries (LIBs). To meet these requirements, the Ag nanoparticle decorated mesoporous SnO2/NiO nanotube (m-SNT) anodes were synthesized via an electrospinning process, followed by fast ramping rate calcination and subsequent chemical reduction in this work. The one-dimensional porous hollow structure effectively alleviates a large volume expansion during cycling as well as provides a short lithium-ion duffusion length. Furthermore, metallic nickel (Ni) nanoparticles converted from the NiO nanograins during the lithiation process reversibly decompose Li2O during delithiation process, which significantly improves the reversible capacity of the m-SNT anodes. In addition, Ag nanoparticles uniformly decorated on the m-SNT via a simple chemical reduction process significantly improve rate capability and also contribute to long-term cyclability. The m-SNT@Ag anodes exhibited excellent cycling stability without obvious capacity fading after 500 cycles with a high capacity of 826 mAh g-1 at a high current density of 1000 mA g-1. Furthermore, even at a very high current density of 5000 mA g-1, the charge-specific capacity remained as high as 721 mAh g-1, corresponding to 60% of its initial capacity at a current density of 100 mA g-1.

  6. Hydrogen production from methane steam reforming over Ni on high surface area CeO2 and CeO2-ZrO supports synthesized by surfactant-assisted method

    Directory of Open Access Journals (Sweden)

    Sumittra Charojrochkul


    Full Text Available Methane steam reforming performances of Ni on high surface area (HSA CeO2 and CeO2-ZrO2 supports have been studied under solid oxide fuel cell (SOFC operating conditions. Their performances were compared to general Ni/CeO2, Ni/CeO2-ZrO2, and Ni/Al2O3. It was firstly observed that Ni/CeO2-ZrO2 (HSA with the Ce/Zr ratio of 3/1 showed the best performance in terms of activity and stability toward the methane steam reforming among those with the Ce/Zr ratios of 1/1, 1/3, and 3/1. Both Ni/CeO2-ZrO2 (HSA and Ni/CeO2 (HSA presented better resistance toward carbon formation than the general Ni/CeO2, Ni/CeO2- ZrO2, and Ni/Al2O3 at the same operating conditions. These benefits are related to the high oxygen storage capacity (OSC of CeO2-ZrO2. During the steam reforming process, in addition to the reactions on Ni surface (*, the redox reactions between the gaseous components presented in the system and the lattice oxygen (Ox on CeO2-ZrO2 surface also take place. Among these reactions, the redox reactions between the high carbon formation potential compounds (CH4, CHx-*n and CO and the lattice oxygen (Ox can prevent the formation of carbon species from the methane decomposition and Boudard reactions at the inlet H2O/CH4 ratio of 3.0/1.0.

  7. One-pot synthesis of powder-form {beta}-Ni(OH){sub 2} monolayer nanosheets with high electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao, E-mail: [Yantai University, Shandong Provincial Engineering Research Center for Light Hydrocarbon Comprehensive Utilization, College of Chemistry and Chemical Engineering (China)


    In this work, {beta}-Ni(OH){sub 2} monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH){sub 2} layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of {beta}-Ni(OH){sub 2} by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of {beta}-Ni(OH){sub 2} from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that {beta}-Ni(OH){sub 2} monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure.

  8. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. (United States)

    Lu, Yi; Jiang, Bin; Fang, Liang; Ling, Faling; Gao, Jiemei; Wu, Fang; Zhang, Xihua


    The NiFe layered double hydroxides (LDHs) with different mole ratio of Ni/Fe (4:1, 3:1, 7:3 and 1:1) were prepared by a simple coprecipitation method. The adsorption performance were evaluated by the removal of methyl orange (MO) dye and hexavalent chromium(VI) heavy metal ion. It is found that Ni4Fe1-LDH can remove more than 92% of MO in 10 min at the 10 mg/L MO initial concentration, and 97% of Cr(VI) in 1 h at 4 mg/L Cr2O7(2-) initial concentration. The saturated adsorption capacity of Ni4Fe1-LDH is found to be as large as 205.76 mg/g for MO and 26.78 mg/g for Cr(VI). The adsorption behavior of this new adsorbent is fitted well with Langmuir isotherm and the pseudo-second-order kinetic model, indicative of a monolayer and chemical adsorption that synergistically originates from exchangeable anions mechanism and layer charge density. Due to the excellent removal capacity of MO and Cr(VI), the NiFe-LDHs could be a promising adsorbent for wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries (United States)

    Long, Hu; Shi, Tielin; Hu, Hao; Jiang, Shulan; Xi, Shuang; Tang, Zirong


    Mesoporous NiO nanosheets were directly grown on three-dimensional (3D) carbon cloth substrate, which can be used as binder-free anode for lithium-ion batteries (LIBs). These mesoporous nanosheets were interconnected with each other and forming a network with interval voids, which give rise to large surface area and efficient buffering of the volume change. The integrated hierarchical electrode maintains all the advantageous features of directly building two-dimensional (2D) nanostructues on 3D conductive substrate, such as short diffusion length, strain relaxation and fast electron transport. As the LIB anode, it presents a high reversible capacity of 892.6 mAh g-1 after 120 cycles at a current density of 100 mA g-1 and 758.1 mAh g-1 at a high charging rate of 700 mA g-1 after 150 cycles. As demonstrated in this work, the hierarchical NiO nanosheets/carbon cloth also shows high flexibility, which can be directly used as the anode to build flexible LIBs. The introduced facile and low-cost method to prepare NiO nanosheets on flexible and conductive carbon cloth substrate is promising for the fabrication of high performance energy storage devices, especially for next-generation wearable electronic devices.

  10. Porous Ni3(NO3)2(OH)4 nano-sheets for supercapacitors: Facile synthesis and excellent rate performance at high mass loadings (United States)

    Shi, Mingjie; Cui, Mangwei; Kang, Litao; Li, Taotao; Yun, Shan; Du, Jing; Xu, Shoudong; Liu, Ying


    For supercapacitors, pores in electrode materials can accelerate chemical reaction kinetics by shortening ion diffusion distances and by enlarging electrolyte/electrode interfaces. This article describes a simple one-step route for the preparation of pure-phase porous Ni3(NO3)2(OH)4 nano-sheets by directly heating a mild Ni(NO3)2 and urea solution. During heating, urea decomposed into NH3·H2O, which provided a suitable alkaline environment for the formation of Ni3(NO3)2(OH)4 nano-sheets. Meanwhile, the side product, NH4NO3, created numerous pores as a pore-forming agent. After NH4NO3 removal, the specific surface areas and pore volumes of products were boosted by ∼180-times (from 0.61 to 113.12 m2/g) and ∼90-times (from 3.40 × 10-3 to 3.17 × 10-1 m2/g), respectively. As a cathode material of supercapacitor, the porous Ni3(NO3)2(OH)4 nano-sheets exhibited a high specific capacitance of 1094 F/g at an ultrahigh mass loading of 17.55 mg/cm2, leading to an impressive areal capacitance of 19.2 F/cm2. Furthermore, a Ni3(NO3)2(OH)4 nano-sheet//commercial active carbon asymmetric supercapacitor was constructed and delivered an energy density of 33.2 Wh/Kg at a power density of 190.5 W/Kg, based on the mass of active materials on both electrodes.

  11. Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Weibing; Lan, Si; Gao, Libo; Zhang, Hongti; Xu, Shang; Song, Jian; Wang, Xunli; Lu, Yang


    High-entropy CoCrFeNiAl0.3 alloy thin films were prepared by magnetron sputtering technique. The thin film surface was very smooth and homogeneous. The synchrotron X-ray experiment confirmed that (111) type of texture existed in the thin film, and the structure was face-centered cubic nanocrystals with a minor content of ordered NiAl-type body-centered cubic structures. Interestingly, the elastic modulus of the thin film was nearly the same to the bulk single-crystal counterpart, however, the nanohardness is about four times of the bulk single-crystal counterpart. It was found that the high hardness was due to the formation of nanocrystal structure inside the thin films and the preferred growth orientation, which could be promising for applications in micro fabrication and advanced coating technologies.

  12. Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures (United States)

    Arslan Hafeez, Muhammad; Farooq, Ameeq


    The aim of the research was to investigate the variation in microstructural, mechanical and tribological characteristics of 30CrMnSiNi2A ultra-high strength steel as a function of tempering temperatures. Steel was quenched at 880 °C and tempered at five different tempering temperatures ranging from 250 °C to 650 °C. Optical microscopy and pin on disc tribometer was used to evaluate the microstructural and wear properties. Results show that characteristics of 30CrMnSiNi2A are highly sensitive to tempering temperatures. Lathe and plate shaped martensite obtained by quenching transform first into ε-carbide, second cementite, third coarsened and spheroidized cementite and finally into recovered ferrite and austenite. Hardness, tensile and yield strengths decreased while elongation increased with tempering temperatures. On the other hand, wear rate first markedly decreased and then increased. Optimum amalgamation of characteristics was achieved at 350 °C.

  13. Low content of Pt supported on Ni-MoC{sub x}/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui, E-mail:


    Highlights: • Ni-MoC{sub x}/C catalyst support was synthesized by a two-step method. • 10Pt/Ni-MoC{sub x}/C was an active and durable low Pt catalyst for MOR, ORR and HER. • The high stability of 10Pt/Ni-MoC{sub x}/C was ascribed to the anchoring effect of MoC{sub x}. • High activity of 10Pt/Ni-MoC{sub x}/C was due to a synergistic of Pt, Ni, MoO{sub x} and MoC{sub x}. - Abstract: Nickel and molybdenum carbide modified carbon black (Ni-MoC{sub x}/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoC{sub x}/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoC{sub x}/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoC{sub x}/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoC{sub x}/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoC{sub x}/C reached 68.4 m{sup 2} g{sup −1}, which was higher than that of 20Pt/C (63.2 m{sup 2} g{sup −1}). The enhanced stability and activity of 10Pt/Ni-MoC{sub x}/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoC{sub x} formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoO{sub x} and MoC{sub x}. These findings indicated that 10Pt/Ni-MoC{sub x}/C was a promising electrocatalyst for direct methanol fuel cells.

  14. Impact of the structural anisotropy of La{sub 2}NiO{sub 4+δ} on on high temperature surface modifications and diffusion of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Gauquelin, Nicolas


    La{sub 2}NiO{sub 4+δ} was first studied due to its structural similarities with the High Temperature superconductor La{sub 2}NiO{sub 4+δ} and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K{sub 2}NiF{sub 4} layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La{sub 2}NiO{sub 4+δ} were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich phases at T>1173 K. The sensibility of the oxygen non-stoichiometry to cooling was studied and subsequently a new {sup 18}O-{sup 18}O exchange apparatus allowing quenching of the samples using liquid nitrogen was developed. Oxygen selfdiffusion was studied using SIMS in the range 673-873K in both [100] and [001] crystallographic directions. The effect of the disorientation of the sample surface on the determination of the slowest diffusion coefficient was discovered and revealed the very strong anisotropy (>5 orders of magnitude difference) between the different diffusion paths. Finally using HTXRD and oxygen release experiments, it was shown that oxygen diffusion from interstitial oxygen starts to be relevant at 550-600 K and a change of behavior is observed around 700 K, corresponding to a possible change in the diffusion mechanism from interstitial to interstitialcy.

  15. Genesis of ultra-high-Ni olivine in high-Mg andesite lava triggered by seamount subduction. (United States)

    Nishizawa, Tatsuji; Nakamura, Hitomi; Churikova, Tatiana; Gordeychik, Boris; Ishizuka, Osamu; Haraguchi, Satoru; Miyazaki, Takashi; Vaglarov, Bogdan Stefanov; Chang, Qing; Hamada, Morihisa; Kimura, Jun-Ichi; Ueki, Kenta; Toyama, Chiaki; Nakao, Atsushi; Iwamori, Hikaru


    The Kamchatka Peninsula is a prominent and wide volcanic arc located near the northern edge of the Pacific Plate. It has highly active volcanic chains and groups, and characteristic lavas that include adakitic rocks. In the north of the peninsula adjacent to the triple junction, some additional processes such as hot asthenospheric injection around the slab edge and seamount subduction operate, which might enhance local magmatism. In the forearc area of the northeastern part of the peninsula, monogenetic volcanic cones dated at subducted seamount triggered the ascent of Si-rich fluids to vein the wedge peridotite and formed a peridotite-pyroxenite source, causing the temporal evolution of local magmatism with wide compositional range.

  16. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors. (United States)

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao


    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  17. One-step electrochemical growth of a three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode. (United States)

    Fan, Xin; Dou, Peng; Jiang, Anni; Ma, Daqian; Xu, Xinhua


    Various well-designed nanostructures have been proposed to optimize the electrode systems of lithium-ion batteries for problems like Li(+) diffusion, electron transport, and large volume changes so as to fulfill effective capacity utilization and increase electrode stability. Here, a novel three-dimensional (3D) hybrid Sn-Ni@PEO nanotube array is synthesized as a high performance anode for a lithium-ion battery through a simple one-step electrodeposition for the first time. Superior to the traditional stepwise synthesis processes of heterostructured nanomaterials, this one-step method is more suitable for practical applications. The electrode morphology is well preserved after repeated Li(+) insertion and extraction, indicating that the positive synergistic effect of the alloy nanotube array and 3D ultrathin PEO coating could authentically optimize the current volume-expansion electrode system. The electrochemistry results further confirm that the superiority of the Sn-Ni@PEO nanotube array electrode could largely boost durable high reversible capacities and superior rate performances compared to a Sn-Ni nanowire array. This proposed ternary hybrid structure is proven to be an ideal candidate for the development of high performance anodes for lithium-ion batteries.

  18. M2(m-dobdc) (M = Mn, Fe, Co, Ni) Metal-Organic Frameworks as Highly Selective, High-Capacity Adsorbents for Olefin/Paraffin Separations. (United States)

    Bachman, Jonathan E; Kapelewski, Matthew T; Reed, Douglas A; Gonzalez, Miguel I; Long, Jeffrey R


    The metal-organic frameworks M2(m-dobdc) (M = Mn, Fe, Co, Ni; m-dobdc(4-) = 4,6-dioxido-1,3-benzenedicarboxylate) were evaluated as adsorbents for separating olefins from paraffins. Using single-component and multicomponent equilibrium gas adsorption measurements, we show that the coordinatively unsaturated M(2+) sites in these materials lead to superior performance for the physisorptive separation of ethylene from ethane and propylene from propane relative to any known adsorbent, including para-functionalized structural isomers of the type M2(p-dobdc) (p-dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate). Notably, the M2(m-dobdc) frameworks all exhibit an increased affinity for olefins over paraffins relative to their corresponding structural isomers, with the Fe, Co, and Ni variants showing more than double the selectivity. Among these frameworks, Fe2(m-dobdc) displays the highest ethylene/ethane (>25) and propylene/propane (>55) selectivity under relevant conditions, together with olefin capacities exceeding 7 mmol/g. Differential enthalpy calculations in conjunction with structural characterization of ethylene binding in Co2(m-dobdc) and Co2(p-dobdc) via in situ single-crystal X-ray diffraction reveal that the vast improvement in selectivity arises from enhanced metal-olefin interactions induced by increased charge density at the metal site. Moderate olefin binding enthalpies, below 55 and 70 kJ/mol for ethylene and propylene, respectively, indicate that these adsorbents maintain sufficient reversibility under mild regeneration conditions. Additionally, transient adsorption experiments show fast kinetics, with more than 90% of ethylene adsorption occurring within 30 s after dosing. Breakthrough measurements further indicate that Co2(m-dobdc) can produce high purity olefins without a temperature swing, an important test of process applicability. The excellent olefin/paraffin selectivity, high olefin capacity, rapid adsorption kinetics, and low raw materials cost

  19. High birth weights but not excessive weight gain prior to manifestation are related to earlier onset of diabetes in childhood: 'accelerator hypothesis' revisited. (United States)

    Kuchlbauer, Veronika; Vogel, Mandy; Gausche, Ruth; Kapellen, Thomas; Rothe, Ulrike; Vogel, Christian; Pfäffle, Roland; Kiess, Wieland


    Aim of this study was to test Wilkin's 'accelerator hypothesis': whether excessive weight gain accelerates the onset of type 1 diabetes. Anthropometric birth data of 1117 children who developed diabetes between 1988 and April 2013 were compared with those of a sex, age, and gestational age matched, contemporary regional control group (n = 54 344). Cases were divided into three manifestation groups (G1:0-4.9 yr, G2:5-9.9 yr, and G3: 10-20 yr). Furthermore, growth data of 540 children with diabetes were compared with controls (n = 134 249) in pre-, peri-, and post-onset intervals (interval: 1-6). Also, correlation of age at onset and body mass index (BMI) standard deviation score (SDS) at this point of time were examined. Cases had significantly higher SDSs for birth weight when compared with controls (boys: p = 0.007, girls: p = 0.002). Children with early manifestation had the highest mean of birth weight SDS (G1>G2>G3), (p = 0.22, adjusted r(2) = 0.001). BMI SDS trend curves of cases are slightly higher compared with those of the healthy controls. This was only significant in years after diagnosis (interval 6, p manifestation. The youngest children at diagnosis (G1) had the lowest BMI SDS at manifestation and vice versa (G1manifestation. Discrepant results from other studies could be due to non-age-adjusted controls. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effects of Electromagnetic Stirring on the Microstructure and High-Temperature Mechanical Properties of a Hyper-eutectic Al-Si-Cu-Ni Alloy (United States)

    Jang, Youngsoo; Choi, Byounghee; Kang, Byungkeun; Hong, Chun Pyo


    A liquid treatment method by electromagnetic stirring was applied to a hyper-eutectic Al-15wt pctSi-4wt pctCu-3wt pctNi alloy for the piston manufacturing with diecasting process in order to improve high-temperature mechanical properties of the piston heads. The mechanical properties, such as hardness, high-temperature tensile stress, thermal expansion, and high-temperature relative wear resistance, were estimated using the specimens taken from the liquid-treated diecast products, and the results were compared with those of a conventional metal-mold-cast piston.

  1. Processing of High-Entropy AlCoCr0.75Cu0.5FeNi Alloy by Spray Forming (United States)

    Srivastava, V. C.; Mandal, G. K.; Ciftci, N.; Uhlenwinkel, V.; Mädler, L.


    Compositionally complex AlCoCrCuFeNi alloy system is one of the extensively studied high-entropy alloys (HEA). Most of these studies have been carried out on as-cast materials that witness slow cooling rate during solidification. In the present investigation, HEA based on AlCoCrCuFeNi system was processed employing spray forming so as to realize its inherent rapid solidification effect and unique microstructural evolution mechanism. The spray formed as well as the as-cast alloys were compared in terms of their microstructural features, phase constitution and hardness. These microstructural features were also compared with that of the overspray powders (light of the prevailing mechanisms of structural evolution and possible solidification phenomena during spray atomization and deposition. This study gives a new direction in processing of these alloys and understanding their solidification behavior under the conditions of layer-by-layer deposition of semi-solid/liquid droplets.

  2. Highly efficient hydrogen evolution based on Ni3S4@MoS2 hybrids supported on N-doped reduced graphene oxide (United States)

    Xu, Xiaobing; Zhong, Wei; Wu, Liqian; Sun, Yuan; Wang, Tingting; Wang, Yuanqi; Du, Youwei


    Hydrogen evolution reaction (HER) through water splitting at low overpotential is an appealing technology to produce renewable energy, wherein the design of stable electrocatalysts is very critical. To achieve optimal electrochemical performance, a highly efficient and stable noble-metal-free HER catalyst is synthesized by means of a facile hydrothermal co-synthesis. It consists of Ni3S4 nanosheets and MoS2 nanolayers supported on N-doped reduced graphene oxide (Ni3S4/MoS2@N-rGO). The optimized sample provides a large amount of active sites that benefit electron transfer in 3D conductive networks. Thanks to the strong synergistic effect in the catalyst network, we achieved a low overpotential of 94 mV, a small Tafel slope of 56 mV/dec and remarkable durability in an acidic medium.

  3. Surface nanostructure and improved microhardness of 40CrNiMo7 steel induced by high current pulsed electron beam treatment (United States)

    Wang, Huihui; Hao, Shengzhi


    In this paper, surface modification of 40CrNiMo7 steel was investigated with high current pulsed electron beam (HCPEB) treatment. The scanning electron microscope (SEM), electron back-scattered diffraction (EBSD), electron probe micro analysis (EPMA), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results show that a composite microstructure of mainly refined austenite and a little martensite was produced in the surface modified layer of depth ∼7 μm. The average size of small cells on modified surface was decreased to ∼120 nm after 25 HCPEB pulses. XRD analysis indicates a preferred orientation of austenite (2 2 0) crystal plane, and TEM results show the broken and dissolved cementite in the surface modified layer. After HCPEB treatment, all the samples exhibited a remarkable improvement in surface microhardness measurement, up to ∼1000 HK for 15 HCPEB pulses, as tripled of the initial 40CrNiMo7 steel.

  4. TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors (United States)

    Liang, Jun; Li, Meng; Chai, Yao; Luo, Min; Li, Li


    In this study, we report for the first time a cost-effective and general approach for the high-yield synthesis of a hierarchical core-shell and hollow structure of ternary CoNi2S4 in a triethanolamine (TEOA)-assisted hydrothermal system. It is found that a continuous increase in TEOA usages facilitates the formation and transformation of hierarchical CoNi2S4 hollow nanospheres, and the formation mechanism of the unique structure is revealed to be assembly-then-inside-out evacuation and Ostwald ripening mechanism during the sulfidation process. More importantly, when used as faradaic electrode for supercapacitors, the hierarchical hollow CoNi2S4 nanospheres display not only exceptional pseudocapacitve performance with high specific capacitance (2035 Fg-1 at 1 Ag-1) and excellent rate capability (1215 Fg-1 at 20 Ag-1), but also superior cycling stability, with only about 8.7% loss over 3000 cycles at 10 Ag-1. This work can provide some guidance for us in the structural and compositional tuning of mixed binary-metal sulfides toward many desired applications.

  5. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo(2)O(4) nanowires for high-performance supercapacitor. (United States)

    Xiong, Wei; Gao, Yongsheng; Wu, Xu; Hu, Xuan; Lan, Danni; Chen, Yangyang; Pu, Xuli; Zeng, Yan; Su, Jun; Zhu, Zhihong


    Novel biological carbon materials with highly ordered microstructure and large pore volume have caused great interest due to their multifunctional properties. Herein, we report the preparation of an interconnected porous carbon material by carbonizing the organic matrix of mollusc shell. The obtained three-dimensional carbon skeleton consists of hexangular and tightly arranged channels, which endow it with efficient electrolyte penetration and fast electron transfer, enable the mollusc shell based macroporous carbon material (MSBPC) to be an excellent conductive scaffold for supercapacitor electrodes. By growing NiCo2O4 nanowires on the obtained MSBPC, NiCo2O4/MSBPC composites were synthesized. When used on supercapacitor electrode, it exhibited anomalously high specific capacitance (∼1696 F/g), excellent rate performance (with the capacity retention of 58.6% at 15 A/g) and outstanding cycling stability (88% retention after 2000 cycles). Furthermore, an all-solid-state symmetric supercapacitor was also assembled based on this NiCo2O4/MSBPC electrode and showed good electrochemical performance with an energy density of 8.47 Wh/kg at 1 A/g, good stability over 10000 cycles. And we believe that more potential applications beyond energy storage can be developed based on this MSBPC.

  6. Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode (United States)

    Li, Lei; Qin, Jia; Bi, Huiting; Gai, Shili; He, Fei; Gao, Peng; Dai, Yunlu; Zhang, Xitian; Yang, Dan; Yang, Piaoping


    A porous hybrid g-C3N4/RGO (CNRG) material has been fabricated through a facile hydrothermal process with the help of glucose molecules, and serves as an efficient immobilization substrate to support ultrathin Ni(OH)2 nanosheets under an easy precipitation process. It was found that the g-C3N4 flakes can uniformly coat on both sides of the RGO, forming sandwich-type composites with a hierarchical structure. It is worth noting that the introduction of the g-C3N4 can effectively achieve the high dispersion and avoid the agglomeration of the nickel hydroxide, and significantly enhance the synthetically capacitive performance. Owning to this unique combination and structure, the CNRG/Ni(OH)2 composite possesses large surface area with suitable pore size distribution, which can effectively accommodate the electrolyte ions migration and accelerate efficient electron transport. When used as electrode for supercapacitor, the hybrid material exhibits high supercapacitive performance, such as an admirable specific capacitance (1785 F/g at a current density of 2 A/g), desirable rate stability (retain 910 F/g at 20 A/g) and favorable cycling durability (maintaining 71.3% capacity after 5000 cycles at 3 A/g). Such desirable properties signify that the CNRG/Ni(OH)2 composites can be a promising electrode material in the application of the supercapacitor.

  7. Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode (United States)

    Li, Lei; Qin, Jia; Bi, Huiting; Gai, Shili; He, Fei; Gao, Peng; Dai, Yunlu; Zhang, Xitian; Yang, Dan; Yang, Piaoping


    A porous hybrid g-C3N4/RGO (CNRG) material has been fabricated through a facile hydrothermal process with the help of glucose molecules, and serves as an efficient immobilization substrate to support ultrathin Ni(OH)2 nanosheets under an easy precipitation process. It was found that the g-C3N4 flakes can uniformly coat on both sides of the RGO, forming sandwich-type composites with a hierarchical structure. It is worth noting that the introduction of the g-C3N4 can effectively achieve the high dispersion and avoid the agglomeration of the nickel hydroxide, and significantly enhance the synthetically capacitive performance. Owning to this unique combination and structure, the CNRG/Ni(OH)2 composite possesses large surface area with suitable pore size distribution, which can effectively accommodate the electrolyte ions migration and accelerate efficient electron transport. When used as electrode for supercapacitor, the hybrid material exhibits high supercapacitive performance, such as an admirable specific capacitance (1785 F/g at a current density of 2 A/g), desirable rate stability (retain 910 F/g at 20 A/g) and favorable cycling durability (maintaining 71.3% capacity after 5000 cycles at 3 A/g). Such desirable properties signify that the CNRG/Ni(OH)2 composites can be a promising electrode material in the application of the supercapacitor. PMID:28287119

  8. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance (United States)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi


    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm-2 & 19.1 Wh Kg-1 and 194 mF cm-2 & 4.5 Wh Kg-1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm-2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices.

  9. Oriented CuCo2S4 nanograss arrays/Ni foam as an electrode for a high-performance all-solid-state supercapacitor (United States)

    Wang, Yuqiao; Yang, Dawei; Zhou, Tianyue; Pan, Jie; Wei, Tao; Sun, Yueming


    An oriented nanograss array consisting of CuCo2S4 nanocrystallines was directly prepared on Ni foam by a hydrothermal method. The uniform arrays with a single blade diameter of ∼100 nm and length of ∼4 μm can grow tightly on Ni foam without any binders. The ordered one-dimensional structure facilitates the electron transport to Ni substrates along the axial direction. The electrochemical properties were presented in three- and two-electrode configurations, demonstrating an enhanced specific capacitance and a long-term cycling stability. As a practical all-solid-state device, it achieved a high energy density of 31.88 W h kg‑1 at a power density of 3.20 kW kg‑1. Even at a higher power density of 15.23 W h kg‑1, the device still had an energy density of 16.5 kW kg‑1. After 5000 cycles, the retention ratio was higher than 99% at high current density of 11.36 A g‑1.

  10. Highly Uniform Atomic Layer-Deposited MoS2@3D-Ni-Foam: A Novel Approach To Prepare an Electrode for Supercapacitors. (United States)

    Nandi, Dip K; Sahoo, Sumanta; Sinha, Soumyadeep; Yeo, Seungmin; Kim, Hyungjun; Bulakhe, Ravindra N; Heo, Jaeyeong; Shim, Jae-Jin; Kim, Soo-Hyun


    This article takes an effort to establish the potential of atomic layer deposition (ALD) technique toward the field of supercapacitors by preparing molybdenum disulfide (MoS2) as its electrode. While molybdenum hexacarbonyl [Mo(CO)6] serves as a novel precursor toward the low-temperature synthesis of ALD-grown MoS2, H2S plasma helps to deposit its polycrystalline phase at 200 °C. Several ex situ characterizations such as X-ray diffractometry (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and so forth are performed in detail to study the as-grown MoS2 film on a Si/SiO2 substrate. While stoichiometric MoS2 with very negligible amount of C and O impurities was evident from XPS, the XRD and high-resolution transmission electron microscopy analyses confirmed the (002)-oriented polycrystalline h-MoS2 phase of the as-grown film. A comparative study of ALD-grown MoS2 as a supercapacitor electrode on 2-dimensional stainless steel and on 3-dimensional (3D) Ni-foam substrates clearly reflects the advantage and the potential of ALD for growing a uniform and conformal electrode material on a 3D-scaffold layer. Cyclic voltammetry measurements showed both double-layer capacitance and capacitance contributed by the faradic reaction at the MoS2 electrode surface. The optimum number of ALD cycles was also found out for achieving maximum capacitance for such a MoS2@3D-Ni-foam electrode. A record high areal capacitance of 3400 mF/cm(2) was achieved for MoS2@3D-Ni-foam grown by 400 ALD cycles at a current density of 3 mA/cm(2). Moreover, the ALD-grown MoS2@3D-Ni-foam composite also retains high areal capacitance, even up to a high current density of 50 mA/cm(2). Finally, this directly grown MoS2 electrode on 3D-Ni-foam by ALD shows high cyclic stability (>80%) over 4500 charge-discharge cycles which must invoke the research community to further explore the potential of ALD for such applications.

  11. Can small pelagic fish landings be used as predictors of high-frequency oceanographic fluctuations in the 1–2 El Niño region?

    Directory of Open Access Journals (Sweden)

    F. I. Ormaza-González


    Full Text Available A group of small pelagic fish captured between 1981 and 2012 within El Niño area 1–2 by the Ecuadorian fleet was correlated with the oceanographic Multivariate ENSO Index (MEI, and the Oceanographic El Niño Index (ONI referred to El Niño region 3–4. For the period 1981–2012, total landings correlated poorly with the indexes, but during 2000–2012 (cold PDO they proved to have a 14–29 % association with both indexes; the negative slope of the curves suggested higher landing during cold events (La Niña and also indicated a tendency to decrease at extreme values ( >  0.5 and  < −1.0. Round herring (Etrumeus teres fourth-quarter (Q4 landings were related to the MEI in a nonlinear analysis by up to 80 %. During moderate or strong La Niña events landings noticeably increased. Bullet tuna (Auxis spp. catches showed a negative gradient from cold to warm episodes with an R2 of 0.149. For Chilean jack mackerel (Trachurus murphyi irregular landings between 2003 and 2007 were observed and were poorly correlated (R2 < 0.1 with ONI or MEI. Anchovy (Engraulis ringens captured in Ecuadorian waters since 2000 had an R2 of 0.302 and 0.156 for MEI and ONI, respectively, but showed a higher correlation with the cold Pacific Decadal Oscillation (PDO. South American pilchard (Sardinops sagax was higher than −0.5 for the ONI and MEI, and landings dramatically decreased; however, Q4 landings correlated with ONI and MEI, with R2 of 0.109 and 0.225, respectively (n = 3. Linear correlation of Q4 indexes against the following year's Q1 landings had a linkage of up to 22 %; this species could therefore be considered a predictor of El Niño. Chub mackerel (Scomber japonicus landings did not have a significant linear correlation with the indexes for 1981–2012 and therefore could not be considered a valid predictor. Chuhueco (Cetengraulis mysticetus is a local species with high landings during El Niño years and, conversely

  12. Rapid formation of Ni3Sn4 joints for die attachment of SiC-based high temperature power devices using ultrasound-induced transient liquid phase bonding process. (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Feng, J C; Liu, J H; Tian, H; Wang, S J


    High melting point Ni3Sn4 joints for the die attachment of SiC-based high temperature power devices was successfully achieved using an ultrasound-induced transient liquid phase (TLP) bonding process within a remarkably short bonding time of 8s. The formed intermetallic joints, which are completely composed of the refined equiaxial Ni3Sn4 grains with the average diameter of 2μm, perform the average shear strength of 26.7MPa. The sonochemical effects of ultrasonic waves dominate the mechanism and kinetics of the rapid formation of Ni3Sn4 joints. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Measuring Excess Noise in SDL's (United States)

    Katzberg, S. J.; Kowitz, H. R.; Rowland, C. W.; Shull, T. A.; Ruggles, S. L.; Matthews, L. F.


    New instrument gives quantitive information on "excess noise" in semiconductor-diode laser (SDL's). By proper selection of detector, instrument tests any SDL from visible wavelengths through thermal infrared. Lasers determine excess noise in SKL source by measuring photocurrent generated in photodetector exposed first to reference laser then to SKL under test.

  14. Metal pollution (Pb, Zn, Ni and Cr) in air, road and soil sediment in a high traffic area; Contaminacion por metales (Pb, Zn, Ni y Cr) en aire, sedimentos viales y suelo en una zona de alto trafico vehicular

    Energy Technology Data Exchange (ETDEWEB)

    Manchado, Anali; Garcia, Neyma; Garcia, Cezar; Acosta, Lorena; Cordova, Alberto; Linares, Maria; Giraldoth, Debora [Centro de Investigaciones CEDEGAS, Facultad de Ingenieria, Universidad del Zulia, Maracaibo (Venezuela)]. E-mail:;; Velasquez, Harvi [Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo (Venezuela)


    Due to the important health effects of inhalable particles (PM10) and its associated metals, levels of four trace metals (Pb, Ni, Zn, Cr) generated by mobile sources with variable toxicity incorporated to PM10 atmospheric samples in a high density traffic area were evaluated. Samples were collected at two different sites (being considered as emission and dispersion areas) during a dry-wet season period, using a low volume air sampler equipped with quartz fiber filters; after an acid extraction, samples were analyzed by atomic absorption spectrometry. PM10 concentrations were two times higher in the emission area than in the dispersion area for both climatic regimens, but exhibited a better correlation between sites during the dry season. All the elements showed statistically significant differences between monitoring sites. On the other hand, when the total sampling period for PM10 is compared for all the tested metals, significant differences between sites and between meteorological seasons can be appreciated. The Venezuelan air quality standard for Pb was not exceeded, but a mean concentration of 1.13 {mu}g/m{sup 3} -very close to Venezuelan and USEPA standard- was obtained at the emission site. Nevertheless, Pb and Ni reported levels for both locations were above the Organizacion Mundial de la Salud (OMS) allowed limit during the whole sampling period. Further, the statistical analysis demonstrated the selection of the monitoring areas was adequate, confirming that motor vehicles are the main emission source of these atmospheric pollutants. [Spanish] Debido a la importancia del efecto sobre la salud de las particulas inhalables PM10 y los metales asociados a ellas, se evaluaron los niveles de cuatro metales traza (Pb, Ni, Zn y Cr) generados por fuentes moviles de dichas particulas, en sedimentos viales y suelo en una zona de alta densidad vehicular. Las muestras fueron colectadas en los sitios considerados como de emision y dispersion durante las epocas de

  15. Analysis of the pressure response of high angle multiple (HAM) fractures intersecting a welbore; Kokeisha multi fracture (HAM) kosei ni okeru atsuryoku oto kaiseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ujo, S.; Osato, K. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Arihara, N. [Waseda University, Tokyo (Japan); Schroeder, R.


    This paper reports pressure response analysis on wells piercing a high angle multi (HAM) fracture model. In this model which is defined on a three-dimensional space, a plurality of slanted fractures intersect with wells at high angles (however, intersection of fractures with each other is not considered). With respect to the pressure response analysis method using this model, the paper presents a basic differential equation on pressure drawdown and boundary conditions in the wells taking flows in the fractures pseudo-linear, as well as external boundary conditions in calculation regions (a reservoir spreads to an infinite distance, and its top and bottom are closed by non-water permeating beds). The paper also indicates that results of calculating a single vertical fracture model and a slanted fracture model by using a numerical computation program (MULFRAC) based on the above equations agree well respectively with the existing calculation results (calculations performed by Erlougher and Cinco et al). 5 refs., 6 figs.

  16. Estimation of performance of a high-speed boat by using the Rankine source method; Kosokutei no rankinsosuho ni yoru seino suitei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, T. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)


    This paper describes estimation of performance of a high-speed boat by using the Rankine source method. An orthogonal coordinate system is considered, which uses the center of a hull as the zero point, and is made dimensionless by using the hull length. The catamaran boat or the single hull boat being the subject of the discussion is supposed to have a transom stern, and to be sailing at a constant speed in the -X direction. A governing equation and a border condition were formulated using disturbance speed potential and X-direction speed differentiation. An inverse specular image was employed as a specular image system upon considering attitude change in the high-speed boat. As to the division of hull surface, the portions protruded above the static water surface were cut off from among the panel data of boat CAD. Considering a high speed condition in which the water surface is completely separated at the transom section, the water level at the transom section was supposed to be at the same height as at the rear end of the hull. Blow-out intensity at the water surface was derived in such a way that a CAD panel of the rear end of the hull is searched and wave height agrees with the height of the transom in the Z direction. A resistance curve may be obtained easily by using a personal computer. 4 refs., 8 figs.

  17. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  18. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL


    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  19. Formation of NiCrAlY/NiAl multi-layered coating by low pressure plasma spraying; Genatsu plasma yosha ni yoru NiCrAlY/NiAl tasomaku no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, H. [Industrial Res. Inst. of Nagano Pref., Nagano (Japan).; Yonehama, K.; Sugimoto, K.; Kobayashi, M. [Shinshu Univ., Nagano (Japan). Faculty of Education


    NiCrAlY/NiAl multi-layered coating was produced on SUS310S steel by means of mutual low pressure plasma spraying of NiCrAlY and Al powders which was accompanied with self-propagating high-temperature synthesis (SHS) reaction of metal deposits. The NiAl layer contained Ni3Al particles and Cr2Al phase along the fine grain boundary. Also, Ni3Al was detected in the NiCrAlY layer with a small amount of NiAl particles. As the result, high hardness was obtained in both the layers, i.e., 650HV in NiAl layer and 450HV in NiCrAlY one at 673K. The structure of the multilayered coating changed hardly during annealing lower than 973K because enriched Cr at NiCrAlY/NiAl interface suppressed NiAl + Ni3Al{yields}Ni5Al3 peritectoid reaction. The SHS reaction time of an compressed Al droplet in diameter of 50{mu}m was calculated as 4.17times10{sup -3} second. 20 refs., 9 figs., 3 tabs.

  20. Electromagnetic spectrum caused by partial discharge in air in high voltage substations; Kakushu hendensho ni okeru kichu gaibu noise ni yoru denjiha spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H.; Kato, T.; Hayakawa, N.; Hikita, M.; Ueda, T.; Okubo, H. [Nagoya University, Nagoya (Japan)


    We have been investigating characteristics of electromagnetic spectrum for partial discharge (PD) diagnosis systems for SF6 gas insulated switch gears (GIS). We measured noise spectrum in air at three different types of high voltage substations 550 kV open-air insulation substation, 550 kV open-air GIS substation and 275 kV underground GIS substation. A biconical antenna acting in a frequency range from 30 to 300 MHz was placed at a few meter away from GIS or gas circuit breaker (GCB) in the substations. From the experimental result, we obtained the average gain Ga of electromagnetic spectrum at each frequency in the substations. Next, we discussed the relationship between Ga and atmospheric conditions using an empirical formula of PD inception electric field Ec. As a result, we found the inverse proportionality of Ga against Ec which was determined by the temperature, pressure and radius of high voltage overhead conductors. We also investigated the relationship between PD pulse and the emitted electromagnetic spectrum from fundamental experiment for a needle-plane electrode configuration. Finally, we introduced `equivalent charge: qe` for substation, and concluded that the charge magnitudes of the 550 kV open-air insulation substation were about 7 times larger than those in the open-air GIS substation. 12 refs., 11 figs., 2 tabs.

  1. Oxygen Vacancies in Reduced Rh/ and Pt/Ceria for Highly Selective and Reactive Reduction of NO into N2 in excess of O2

    NARCIS (Netherlands)

    Wang, Yixiao; Oord, Ramon; Van Den Berg, Daniël; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397; Makkee, Michiel


    Currently commercial NOx removal (DeNOx) abatement systems for lean-burn engines exceed regulation limits on the road for NOx emissions. Commercial DeNOx catalysts exhibit poor performance in the selective conversion of NO to N2, especially at high temperature and high gas hourly space velocities

  2. Hydrothermal synthesis of NiCo{sub 2}O{sub 4} nanowires/nitrogen-doped graphene for high-performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mei, E-mail:; Chen, Jianpeng; Ma, Yuxiao; Zhang, Jingdan; Liu, Jianhua; Li, Songmei; An, Junwei


    Highlights: • NCO/NG composites were synthesized in a water–glycerol mixed solvent via hydrothermal treatment and subsequent calcination. • NiCo{sub 2}O{sub 4} nanowires are dispersed on NG nanosheets and the composite has porous structure. • The NCO/NG composite exhibits a high specific capacitance and long cycling performance. - Abstract: NiCo{sub 2}O{sub 4} nanowires/nitrogen-doped graphene (NCO/NG) composite materials were synthesized by hydrothermal treatment in a water–glycerol mixed solvent and subsequent thermal transformation. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electrochemical performance of the composites was evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum techniques. NiCo{sub 2}O{sub 4} nanowires are densely coated by nitrogen-doped graphene and the composite displays good electrochemical performance. The maximum specific capacitance of NCO/NG is 1273.13 F g{sup −1} at 0.5 A g{sup −1} in 6 M KOH aqueous solution, and it exhibits good capacity retention without noticeable degradation after 3000 cycles at 4 A g{sup −1}.

  3. Oleylamine-modified impregnation method for the preparation of a highly efficient Ni/SiO2 nanocatalyst active in the partial oxidation of methane to synthesis gas

    Directory of Open Access Journals (Sweden)

    Hosseini Davarani Seyed Mohammad Sadegh


    Full Text Available In this research, a novel modified wet impregnation method has been successfully developed to synthesize 5% Ni/SiO2 nanocatalyst with high catalytic activity and stability for the partial oxidation of methane. Oleylamine was used as a capping agent in the impregnation solution to improve Ni dispersion and interaction with silica surfaces. The product was analyzed and characterized by X-ray diffraction (XRD, Fourier transform infrared (FT-IR spectroscopy, N2 physisorption measurement and transmission electron microscopy (TEM and temperature- -programmed H2 reduction (H2-TPR. Partial oxidation of methane over the modified catalyst was performed in a continues-flow fixed-bed reactor under atmospheric pressure at 700°C. The modified catalyst showed 91% CH4 conversion, 86% H2 yield and 95% CO selectivity, and these results almost remained constant within 5 h reaction on stream. The excellent catalytic performance of the catalyst was reasonably attributed to the small and uniform distribution of Ni nanoparticles on the support, and structural characterization confirmed this conclusion.

  4. Formation of microcraters and hierarchically-organized surface structures in TiNi shape memory alloy irradiated with a low-energy, high-current electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, L. L., E-mail:; Meisner, S. N., E-mail: [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Markov, A. B., E-mail:; Ozur, G. E., E-mail:; Yakovlev, E. V., E-mail: [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Rotshtein, V. P., E-mail: [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Tomsk State Pedagogical University, Tomsk, 634050 (Russian Federation); Gudimova, E. Yu., E-mail: [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)


    The regularities of surface cratering in TiNi alloy irradiated with a low-energy, high-current electron beam (LEHCEB) in dependence on energy density and number of pulses are studied. LEHCEB processing of TiNi samples was carried out using RITM-SP facility. Energy density E{sub s} was varied from 1 to 5 J/cm{sup 2}, pulse duration was 2.5–3.0 μs, the number of pulses n = 1–128. The dominant role of non-metallic inclusions [mainly, TiC(O)] in the nucleation of microcraters was found. It was revealed that at small number of pulses (n = 2), an increase in energy density leads both to increasing average diameter and density of microcraters. An increase in the number of pulses leads to a monotonic decrease in density of microcraters, and, therefore, that of the proportion of the area occupied by microcraters, as well as a decrease in the surface roughness. The multiple LEHCEB melting of TiNi alloy in crater-free modes enables to form quasi-periodical, hierarchically-organized microsized surface structures.

  5. Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation (United States)

    Li, Chao; Sun, Jun-Jie; Chen, Duo; Han, Guang-Bing; Yu, Shu-Yun; Kang, Shi-Shou; Mei, Liang-Mo


    A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites. This method involves coating Fe2O3 nanorods with a uniform silica layer, reduction in 10% H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4, and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods. The fabricated nanocomposites are further characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectroscopy. The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B (RhB) at room temperature, and maintain superior catalytic activity even after six cycles. In addition, these samples could be easily separated from the catalytic system by an external magnet and reused, which shows great potential applications in treating waste water. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11174183), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  6. YbNi{sub 4}P{sub 2}. Single crystal growth by the Czochralski method and high-field magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Kristin; Krellner, Cornelius [Goethe-University, Frankfurt (Germany); Foerster, Tobias [HLD, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Brando, Manuel [MPI for Chemical Physics of Solids, Dresden (Germany)


    We have investigated a new generation of YbNi{sub 4}P{sub 2} single crystals that were grown from a levitating melt by the Czochralski method. With T{sub C}= 0.17 K, this ferromagnetic material has the lowest Curie temperature ever observed among stoichiometric compounds. A quantum critical point occurs in the substitution series YbNi{sub 4}(P{sub 1-x}As{sub x}){sub 2} at x ∼ 0.1. The hybridization between localized f-electrons and the conduction electrons leads to a Fermi-liquid ground state with narrow bands and strongly enhanced effective electronic masses (heavy fermion system, Kondo temperature 8 K). An external magnetic field can split the bands, deform the Fermi surface and simultaneously suppress the Kondo interaction. If such a deformation changes the topology, it is called a Lifshitz transition. Previous thermodynamic and electrical transport studies have found indications for Lifshitz transitions in this Kondo lattice system. We report on results of high-field magnetization measurements at low temperature to further investigate the putative Lifshitz transitions in YbNi{sub 4}P{sub 2}.

  7. Contribution of the low cycle fatigue on ultra high purity Ni-Cr-Fe alloys and on Ni monocrystals to the understanding of the hydrogen role in stress corrosion cracking for the alloys 600 and 690; Apport de la fatigue oligocyclique sur alliages Ni-Cr-Fe d'ultra haute purete et sur monocristaux de Ni a la comprehension sous contrainte des alliages 600 et 69O

    Energy Technology Data Exchange (ETDEWEB)

    Renaudot, N


    We discuss the role of hydrogen in cracking of Ni base alloys used for pressurised water reactor (PWR) primary tubes (alloy 600 and 690). Cracking can be explained by a Stress Corrosion Cracking (SCC) phenomenon. For this purpose, Low cycle fatigue (R = - 1) under cathodic charging at room temperature is conducted to study hydrogen effects on propagation of cracks mechanically initiated by the formation of Persistent Slip Bands (PSB). Low cycle fatigue on Ultra High Purity specimens (Ni, alloy 600 and 690) reveals the very important hydrogen effect on crack propagation rate, whatever the Cr content in the Ni base alloy. If Cr seems to have an effect over-hydrogen penetration in specimens (by a protective film formation), it have no beneficial effect when hydrogen have diffused ahead of a crack tip. Propagation rates (transgranular or intergranular) are highly increased, no matter of the absence of impurities like sulphur. Then, in PWR, the difference in the behaviour of alloy 600 and 690 could be due to a slower microcrack propagation rate for alloy 690. Protective films could play an important role in this difference, which is to study. Low cycle fatigue on Ni single crystals oriented for single slip shows, for the first time on bulk specimen, a macroscopic softening which can be explained. by hydrogen-dislocation interactions. Moreover, a simple quantitative model based on these interactions results in the same softening as the one observed experimentally. These results allow to validate experimentally one of the most important steps in the 'Corrosion Enhanced Plasticity (CEP) model', i.e. the softening ahead of a stress corrosion crack tip by hydrogen dislocation interactions. This is of importance because this model can explain cracking in numerous FCC materials-environment couple. (author)

  8. High-Throughput Screening Across Quaternary Alloy Composition Space: Oxidation of (AlxFeyNi1-x-y)∼0.8Cr∼0.2. (United States)

    Payne, Matthew A; Miller, James B; Gellman, Andrew J


    Composition spread alloy films (CSAFs) are commonly used as libraries for high-throughput screening of composition-property relationships in multicomponent materials science. Because lateral gradients afford two degrees of freedom, an n-component CSAF can, in principle, contain any composition range falling on a continuous two-dimensional surface through an (n - 1)-dimensional composition space. However, depending on the complexity of the CSAF gradients, characterizing and graphically representing this composition range may not be straightforward when n ≥ 4. The standard approach for combinatorial studies performed using quaternary or higher-order CSAFs has been to use fixed stoichiometric ratios of one or more components to force the composition range to fall on some well-defined plane in the composition space. In this work, we explore the synthesis of quaternary Al-Fe-Ni-Cr CSAFs with a rotatable shadow mask CSAF deposition tool, in which none of the component ratios are fixed. On the basis of the unique gradient geometry produced by the tool, we show that the continuous quaternary composition range of the CSAF can be rigorously represented using a set of two-dimensional "pseudoternary" composition diagrams. We then perform a case study of (AlxFeyNi1-x-y)∼0.8Cr∼0.2 oxidation in dry air at 427 °C to demonstrate how such CSAFs can be used to screen an alloy property across a continuous two-dimensional subspace of a quaternary composition space. We identify a continuous boundary through the (AlxFeyNi1-x-y)∼0.8Cr∼0.2 subspace at which the oxygen uptake into the CSAF between 1 and 16 h oxidation time increases abruptly with decreasing Al content. The results are compared to a previous study of the oxidation of AlxFeyNi1-x-y CSAFs in dry air at 427 °C.

  9. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry. (United States)

    Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A


    A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres (United States)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang


    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  11. Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study (United States)

    Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya


    We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.

  12. Ground state of Er sup 3+ ions in ErNi sub 5 as studied by high field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Radwanski, R.J.; Franse, J.J.M.; Kayzel, F.E.; Marquina, C. (Van der Waals-Zeeman Lab., Univ. Amsterdam (Netherlands)); Gignoux, D. (Lab. Louis Neel, CNRS, 38 - Grenoble (France)); Szewczyk, A. (Inst. of Physics of Polish Academy of Sciences, Warszaw (Poland))


    By magnetization studies of single crystalline ErNi{sub 5} in magnetic fields up to 35 T, the crystal field and exchange interactions have been evaluated. The ground state of the Er{sup 3+} ion is found to be a {Gamma}{sub 9} doublet with a dominant vertical stroke{+-}15/2> contribution. The derived parameters describe the inelastic neutron scattering and specific heat results available in the literature very well. (orig.).

  13. Synthesis of highly ordered 30 nm NiFe2O4 particles by the microwave-combustion method (United States)

    Mahmoud, M. H.; Elshahawy, A. M.; Makhlouf, Salah A.; Hamdeh, H. H.


    NiFe2O4 of 30 nm average size was synthesized by microwave combustion and subsequent solid state reaction at 1273 K. The materials were characterized by X-ray diffraction, TEM, vibrating sample magnetometery and Mössbauer spectroscopy. The microwave combustion produced materials were comprised chemically of ferrites and a smaller amount of hematite. The NiFe2O4 particles have the cubic spinel structure with crystallites of sizes less than 10 nm, and were found to have low magnetization, and essentially no hysteresis loop; characteristics of superparamagnetism. Upon annealing at temperatures 973 K and below, crystallite growth was accompanied by increase in both coercive field and magnetization. The coercive field was a maximum for the sample annealed at 973 K. On the other hand, crystallite growth at higher annealing temperatures yielded mainly ferrites and improvement in soft magnetic properties. Mössbauer and magnetization measurements indicate that the fine NiFe2O4 particles produced at the annealing temperature of 1273 K are in good chemical and magnetic order, excluding the spins arrangement at the surface of the particles which show spin glass-like behavior.

  14. High power {mu}s pulsed electrolysis using palladium wires: evidence for a possible phase transition under deuterium overloaded conditions and related excess heat

    Energy Technology Data Exchange (ETDEWEB)

    Celani, F.; Spallone, A.; Tripodi, P.; Petrocchi, A.; Di Gioacchino, D. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Marini, P.; Di Stefano, V. [EURESIS, Rome (Italy); Pace, S. [Salerno Univ. (Italy). Dip. di Fisica; Mancini, A. [ORIM s.r.l., Macerata (Italy)


    In this paper, an electrolytic experiment aimed at reaching high deuterium concentration gradients in palladium wires, using the electromigration effect, is described. The selection criteria of experimental parameters will be described, show results of the loading and calorimetric measurements. These tests reveal that a high mean value of D/Pd has been reached in a short time and that there is a correlation between an anomalous heat emission and an electric resistivity transition of the overload palladium.

  15. Preparation of a Ni-MgO-Al2O3 catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells (United States)

    Jang, Won-Jun; Jung, You-Shick; Shim, Jae-Oh; Roh, Hyun-Seog; Yoon, Wang Lai


    Steam reforming of methane (SRM) is conducted using a series of Ni-MgO-Al2O3 catalysts for direct internal reforming (DIR) in molten carbonate fuel cells (MCFCs). Ni-MgO-Al2O3 catalysts are prepared by the homogeneous precipitation method with a variety of MgO loading amounts ranging from 3 to 15 wt%. In addition, each precursor concentrations are systemically changed (Ni: 1.2-4.8 mol L-1; Mg: 0.3-1.2 mol L-1; Al: 0.4-1.6 mol L-1) at the optimized composition (10 wt% MgO). The effects of MgO loading and precursor concentration on the catalytic performance and resistance against poisoning of the catalyst by potassium (K) are investigated. The Ni-MgO-Al2O3 catalyst with 10 wt% MgO and the original precursor concentration (Ni: 1.2 mol L-1; Mg: 0.3 mol L-1; Al: 0.4 mol L-1) exhibits the highest CH4 conversion and resistance against K poisoning even at the extremely high gas space velocity (GHSV) of 1,512,000 h-1. Excellent SRM performance of the Ni-MgO-Al2O3 catalyst is attributed to strong metal (Ni) to alumina support interaction (SMSI) when magnesium oxide (MgO) is co-precipitated with the Ni-Al2O3. The enhanced interaction of the Ni with MgO-Al2O3 support is found to protect the active Ni species against K poisoning.

  16. Various discussions on feminine adaptive capability in high-tech labors. (2). Haiteku rodo ni okeru josei no tekiono ni kansuru shokento. (2)

    Energy Technology Data Exchange (ETDEWEB)

    Jindai, M.; Miyake, S.; Hataya, T.; Sato, N.; Matsui, M.; Matsumani, M. (Univ. of Occupational and Environmental Health, Kitakyushu (Japan). Institute of Industrial Ecological Sciences)


    The Japanese industrial society is transforming into a post industrial society, accompanying a noticeable orientation to an information society as a result of introduction of the highly advanced technologies (hi-techs) and a rapid change in the labor structure as a result of more entry of women into the society. Therefore, a study was made on the contacts with the hi-techs of women in their labor scenes through an image survey and two kinds of experiment. One of the experiments was conducted on their work burdens and work adaptability when female workers manipulate industrial robots. Another experiment was on effects of feminine physiological periods on image judging work using as a model an inspection work that uses a CRT. As a result, it was revealed that the degree of friendly feeling in female workers toward hi-techs is affected largely by operating duration of hi-tech devices. The result of work and the degree of skillfulness in robot manipulations were higher in men than in women. Very little effects were observed on the feminine physiological periods giving on the image judging work. 36 refs., 5figs., 2 tabs.

  17. Experimental studies on performance of tandem hydrofoils in high speed regions; Kosokuiki ni okeru tandem suichuyoku no seino ni kansuru jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakatake, K.; Oda, K.; Kataoka, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Okada, S. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Mizuno, S. [Hitachi Zosen Corp., Osaka (Japan)


    With an objective to clarify basic performance of hydrofoils, a towing experiment was carried out on single hydrofoil and tandem hydrofoils, whose results are reported in this paper. In the experiment, the tandem hydrofoils are supported on two stays on the left and right sides, and the whole lifting power and the whole drag including those of the stays were measured by using strain gauges placed on four plate springs. Results of the experiment may be summarized as follows: in the case of the single hydrofoil, the lifting power constant varied as a result of strong impact on free surface as the shallower the hydrofoil, but corresponds to the size of the lifting power coefficient in high speed regions; in the case of the tandem hydrofoils, the smaller the submersion depth, the effects grew larger on the lifting power coefficient and the drag coefficient, similarly to the case of the single hydrofoil; and the lifting power coefficient for the leading hydrofoils changes very little as a result of change in horizontal distance between the tandem hydrofoils, but the lifting power coefficient of the rear hydrofoils vibrates due to influence from the leading hydrofoils, with the peak of the value thereof transferring to the higher speed side as the horizontal distance increases. 3 refs., 10 figs., 2 tabs.

  18. A High-Voltage and High-Capacity Li1+x Ni0.5 Mn1.5 O4 Cathode Material: From Synthesis to Full Lithium-Ion Cells. (United States)

    Mancini, Marilena; Axmann, Peter; Gabrielli, Giulio; Kinyanjui, Michael; Kaiser, Ute; Wohlfahrt-Mehrens, Margret


    We report Co-free, Li-rich Li1+x Ni0.5 Mn1.5 O4 (0high-voltage and high-capacity cathode materials for Li-ion cells. Their tailored morphology allows high density and facile processability for electrode development. In the potential range 2.4-4.9 V, the cathode material of composition Li1.5 Ni0.5 Mn1.5 O4 shows excellent performance in terms of capacity and cycling stability in half-cells. In addition, for the first time, we demonstrate the application of the high-voltage and high-capacity cathode in full Li-ion cells with graphite anodes with very high cycling stability. The electrochemical performance and low cost of the cathode material, together with the feasibility of a chemical method to obtain Li-rich Li1+x Ni0.5 Mn1.5 O4 (0high-energy density Li-ion batteries possible. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Effect of maternal excessive iodine intake on neurodevelopment and cognitive function in rat offspring

    Directory of Open Access Journals (Sweden)

    Zhang Le


    Full Text Available Abstract Background Iodine deficiency and iodine excess are both associated with adverse health consequences. Iodine deficiency during pregnancy leads to insufficient maternal thyroid hormone, subsequently causing irreversible adverse effects on the neurological and cognitive functions of the offspring. The results of our previous epidemiological study suggested that mild iodine excess might increase the prevalence of subclinical hypothyroidism. In the present study, female Wistar rats maintained on low-iodine grain were randomly assigned to three groups based on iodated water concentration: low iodine (LI, 1.2 μg/d, normal iodine (NI, 5–6 μg/d, and 3-fold high iodine (3HI, 15–16 μg/d. The present study investigated whether higher-than-normal iodine intake (3HI by rats from before pregnancy until breastfeeding affects the postnatal (PN neurodevelopment (PN7 and PN45 of their offspring during particularly sensitive periods in brain development. Results After 12 weeks of treatment (before pregnancy, iodine concentrations in urine and thyroid tissue and circulating thyroxine of adult females correlated with iodine intake. Brain-derived neurotrophic factor (BDNF expression in the hippocampi of pups on PN7 and PN45 was decreased in 3HI group compared to the NI controls (P  0.05, all On PN7 and PN45, the BDNF levels of the 3HI pups were 83.5% and 88.8%, respectively, that of the NI pups. In addition, the 3HI group had a higher neuroendocrine-specific protein A (NSP-A level than the NI controls on PN7 (P  0.05. NSP-A levels of the 3HI pups were 117.0% that of the NI pups. No significant difference was observed in the expressions of c-Fos or c-Jun in the hippocampal CA1 region of the 3HI group compared to the controls (P > 0.05. Results from the Morris water maze test revealed that pups of the 3HI group had mild learning and spatial memory deficits. Conclusions The neurodevelopmental and cognitive deficits of the 3HI pups were

  20. Stoichiometry of LiNiO{sub 2} Studied by Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, V.; Reiman, S.; Walcher, D.; Garcia, Y. [Johannes Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany); Doroshenko, N. [A. A. Galkin Donetsk Physico-Technical Institute NAS of Ukraine (Ukraine); Guetlich, P. [Johannes Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany)


    From the {sup 61}Ni and {sup 57}Fe Moessbauer spectroscopy data follows the cationic site assignment in Li{sub 1-x}Ni{sub 1+x}O{sub 2}. Our data explain the ferromagnetic properties of this material because of the appearance of Ni{sup 2+} (S=1) among Ni{sup 3+} (S=1/2) in Ni{sup 3+}O{sub 2} hexagonal planes. We have no evidence for the ferromagnetic interaction between the NiO{sub 2} layers through the excess Ni{sup 2+} ions substituting the Li{sup +} ions. The presence of Ni{sup 2+} found in the Ni{sup 3+}O{sub 2} planes explains the absence of the Jahn-Teller distortions probably because of the electronic transfer between the Ni{sup 3+} and Ni{sup 2+} ions.

  1. Does Excessive Pronation Cause Pain?

    DEFF Research Database (Denmark)

    Olesen, Christian Gammelgaard; Nielsen, RG; Rathleff, M

    Excessive pronation could be an inborn abnormality or an acquired foot disorder caused by overuse, inadequate supported shoes or inadequate foot training. When the muscles and ligaments of the foot are insufficient it can cause an excessive pronation of the foot. The current treatment consist...... of antipronation shoes or insoles, which latest was studied by Kulce DG., et al (2007). So far there have been no randomized controlled studies showing methods that can measure the effect of treatments with insoles. Some of the excessive pronation patients recieve antipronation training often if the patient...

  2. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing (United States)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo


    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  3. Are certain college students prone to experiencing excessive alcohol-related consequences? Predicting membership in a high-risk subgroup using pre-college profiles. (United States)