WorldWideScience

Sample records for high na oil

  1. Physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with combinations of sodium caseinate and sodium alginate

    DEFF Research Database (Denmark)

    Yesiltas, Betül; García Moreno, Pedro Jesús; Sørensen, Ann-Dorit Moltke

    2017-01-01

    .2 ratio NaCas:NaAlg by Box-Behnken's design, the formulae 70%-1.4%-1.2 was decided due to high fish oil content's decreasing effect on droplet size and peroxide value. Practical applications: Physically and oxidatively stable high fat (50-70%) omega-3 delivery fish oil-in-water emulsions are of high......A systematic study was carried out in order to evaluate the physical and oxidative stability of high fat omega-3 delivery fish oil-in-water emulsions stabilized with combinations of sodium caseinate (NaCas) and sodium alginate (NaAlg). The influence of 3 factors related to emulsion composition...... (fish oil content: 50, 60 and 70%; total amount of NaCas and NaAlg: 1.4, 2.1 and 2.8 %; and ratio NaCas:NaAlg: 0.4, 1.2 and 2) on physical (droplet size, viscosity and zeta potential) and oxidative (primary and secondary oxidation products) parameters was evaluated. It was possible to produce emulsions...

  2. Application of alkaline waterflooding to a high acidity crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Sayyouh, M.H. (King Sand Univ., Riyadh (SA). Petroleum Engineering Dept.); Abdel-Waly, A.; Osman, A. (Cairo Univ. (EG). Petroleum Engineering Dept.); Awara, A.Z. (Geisum Oil Company, Cairo (EG))

    The enhanced recovery of a high acidity crude oil (South Geisum crude) by alkaline solutions is studied. Acidity, interfacial tension, and contact angle, were investigated. Displacement tests were carried out to study the effect of alkaline slug concentration, slug size, oil alkali type, temperature and viscosity on recovery. The interfacial tension between crude oil and formation water decreases with increasing alkaline concentration until a minimum, after which it increases again. Contact angle measurements indicated oil-wetting conditions that increase by the addition of alkaline solutions. At the early stages of displacement, oil recovery increases with increasing alkaline concentration until a maximum at 4% by weight NaOH concentration. Also, at such early stages, an excessive increase in alkaline concentration results in lower oil recovery. On the other hand, after the injection of many pore volumes of water, oil recovery is almost the same regardless of the alkaline concentration. Oil recovery increases with increasing alkaline slug size until a maximum at 15% PV. Sodium hydroxide slugs produce more oil recovery than sodium carbonate slugs. Oil recovery increases with increasing temperature (from 25 to 55{sup 0}C) and decreasing oil viscosity.

  3. Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3.

    Science.gov (United States)

    Parthipan, Punniyakotti; Elumalai, Punniyakotti; Sathishkumar, Kuppusamy; Sabarinathan, Devaraj; Murugan, Kadarkarai; Benelli, Giovanni; Rajasekar, Aruliah

    2017-10-01

    The present study focuses on the optimization of biosurfactant (BS) production using two potential biosurfactant producer Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3 and role of enzymes in the biodegradation of crude oil. The optimal conditions for P. stutzeri NA3 and A. baumannii MN3 for biodegradation were pH of 8 and 7; temperature of 30 and 40 °C, respectively. P. stutzeri NA3 and A. baumannii MN3 produced 3.81 and 4.68 g/L of BS, respectively. Gas chromatography mass spectrometry confirmed that BS was mainly composed of fatty acids. Furthermore, the role of the degradative enzymes, alkane hydroxylase, alcohol dehydrogenase and laccase on biodegradation of crude oil are explained. Maximum biodegradation efficiency (BE) was recorded for mixed consortia (86%) followed by strain P. stutzeri NA3 (84%). Both bacterial strains were found to be vigorous biodegraders of crude oil than other biosurfactant-producing bacteria due to their enzyme production capabilities and our results suggests that the bacterial isolates can be used for effective degradation of crude oil within short time periods.

  4. The ARGO Project: assessing NA-TECH risks on off-shore oil platforms

    Science.gov (United States)

    Capuano, Paolo; Basco, Anna; Di Ruocco, Angela; Esposito, Simona; Fusco, Giannetta; Garcia-Aristizabal, Alexander; Mercogliano, Paola; Salzano, Ernesto; Solaro, Giuseppe; Teofilo, Gianvito; Scandone, Paolo; Gasparini, Paolo

    2017-04-01

    ARGO (Analysis of natural and anthropogenic risks on off-shore oil platforms) is a 2 years project, funded by the DGS-UNMIG (Directorate General for Safety of Mining and Energy Activities - National Mining Office for Hydrocarbons and Georesources) of Italian Ministry of Economic Development. The project, coordinated by AMRA (Center for the Analysis and Monitoring of Environmental Risk), aims at providing technical support for the analysis of natural and anthropogenic risks on offshore oil platforms. In order to achieve this challenging objective, ARGO brings together climate experts, risk management experts, seismologists, geologists, chemical engineers, earth and coastal observation experts. ARGO has developed methodologies for the probabilistic analysis of industrial accidents triggered by natural events (NA-TECH) on offshore oil platforms in the Italian seas, including extreme events related to climate changes. Furthermore the environmental effect of offshore activities has been investigated, including: changes on seismicity and on the evolution of coastal areas close to offshore platforms. Then a probabilistic multi-risk framework has been developed for the analysis of NA-TECH events on offshore installations for hydrocarbon extraction.

  5. MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress.

    Science.gov (United States)

    Li, Zhe; Wang, Wenwen; Li, Guilong; Guo, Kai; Harvey, Paul; Chen, Quan; Zhao, Zhongjuan; Wei, Yanli; Li, Jishun; Yang, Hetong

    2016-11-01

    Peppermint (Mentha × piperita L.) is an important and commonly used flavoring agent worldwide, and salinity is a major stress that limits plant growth and reduces crop productivity. This work demonstrated the metabolic responses of essential oil production including the yield and component composition, gene expression, enzyme activity, and protein activation in a salt-tolerant peppermint Keyuan-1 with respect to NaCl stress. Our results showed that Keyuan-1 maintained normal growth and kept higher yield and content of essential oils under NaCl stress than wild-type (WT) peppermint.Gas chromatography-mass spectrometry (GC-MS) and qPCR results showed that compared to WT seedlings, a 150-mM NaCl stress exerted no obvious changes in essential oil composition, transcriptional level of enzymes related to essential oil metabolism, and activity of pulegone reductase (Pr) in Keyuan-1 peppermint which preserved the higher amount of menthol and menthone as well as the lower content of menthofuran upon the 150-mM NaCl stress. Furthermore, it was noticed that a mitogen-activated protein kinase (MAPK) protein exhibited a time-dependent activation in the Keyuan-1 peppermint and primarily involved in the modulation of the essential oil metabolism in the transcript and enzyme levels during the 12-day treatment of 150 mM NaCl. In all, our data elucidated the effect of NaCl on metabolic responses of essential oil production, and demonstrated the MAPK-dependent regulation mechanism of essential oil biosynthesis in the salt-tolerant peppermint, providing scientific basis for the economic and ecological utilization of peppermint in saline land.

  6. Effect of Water Content, Temperature and NaCl on CO2 Corrosion of Carbon Steel (A106B in Iraqi Crude Oil

    Directory of Open Access Journals (Sweden)

    Saad Ahmed Jafar

    2018-01-01

    Full Text Available An investigation was carried out to determine the corrosion rate of carbon steel (A 106 GradeB as flow line in crude oil production with CO2 content employing three Iraqi crude oil (Kirkuk crude oil, Halfaya crude oil, and Rumalia crude oil with identical produced water (brine [1%NaCl,2%NaCl, and 3%NaCl]. Experiments were performed in an autoclave test apparatus, crude oilproduced water mixtures, water cuts were (0, 10, 20, 30, 40, and 100%, and temperature (20, 40, 60°C. For all experiments, CO2 partial pressure was maintained at 4bar and rotational speed 500 rpm. The corrosion rates were determined by the weight loss method. The results revealed that the corrosion rate of carbon steel increased by increasing water cut and temperature, but decreased with increasing salt concentration for all types of crude oil. Rumaila crude oil exhibited the highest corrosion rate and Kirkuk crude oil exhibits the lowest corrosion rate while Halfaya crude oil exhibits a moderate corrosion rate.

  7. Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate.

    Science.gov (United States)

    Long, Zhao; Zhao, Mouming; Liu, Ning; Liu, Daolin; Sun-Waterhouse, Dongxiao; Zhao, Qiangzhong

    2015-10-01

    High purity peanut oil-based diacylglycerol (PO-DAG) (94.95 wt%) was prepared via enzymatic glycerolysis from peanut oil (PO). The resulting dominance of DAGs was proven to greatly influence the properties of corresponding fresh or frozen-thawed emulsions. Stable fresh oil-in-water emulsions were produced using either PO-DAG or PO, with stability enhanced by increased concentrations of Na-CN. The lower equilibrium interfacial tension along with greater negative ζ-potential of PO revealed that Na-CN was preferentially adsorbed to the PO interface. Adding 0.05 mol/L NaCl to the PO emulsions minimized depletion flocculation caused by the unadsorbed Na-CN, but further NaCl addition increased oil droplet size and concomitant coalescence. For the PO-DAG emulsions, adding 0.2 mol/L NaCl did not significantly (p>0.05) affect their ζ-potential but adding 0.05 or 0.1 mol/L NaCl lowered ζ-potential, although NaCl at these concentrations increased oil droplet size and coalescence. Freezing-thawing process considerably weakened the stability of PO-DAG emulsions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions.

    Science.gov (United States)

    Bourgou, Soumaya; Bettaieb, Iness; Saidani, Moufida; Marzouk, Brahim

    2010-12-08

    This research evaluated the effect of saline conditions on fruit yield, fatty acids, and essential oils compositions and phenolics content of black cumin (Nigella sativa). This plant is one of the most commonly found aromatics in the Mediterranean kitchen. Increasing NaCl levels to 60 mM decreased significantly the fruits yield by 58% and the total fatty acids amount by 35%. Fatty acids composition analysis indicated that linoleic acid was the major fatty acid (58.09%) followed by oleic (19.21%) and palmitic (14.77%) acids. Salinity enhanced the linoleic acid percentage but did not affect the unsaturation degree of the fatty acids pool and thus the oil quality. The essential oil yield was 0.39% based on the dry weight and increased to 0.53, 0.56, and 0.72% at 20, 40, and 60 mM NaCl. Salinity results on the modification of the essential oil chemotype from p-cymene in controls to γ-terpinene/p-cymene in salt-stressed plants. The amounts of total phenolics were lower in the treated plants. Salinity decreased mainly the amount of the major class, benzoics acids, by 24, 29, and 44% at 20, 40, and 60 mM NaCl. The results suggest that salt treatment may regulate bioactive compounds production in black cumin fruits, influencing their nutritional and industrial values.

  9. Crystallographic characterization of cement pastes hydrated with NaCl; Caracterizacao cristalografica de pastas de cimento hidratadas com NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Carina Gabriela de Melo e; Martinelli, Antonio Eduardo; Melo, Dulce Maria Araujo; Melo, Marcus Antonio de Freitas; Melo, Vitor Rodrigo de Melo e [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-07-01

    One of the major current challenges faced by oil companies is the exploration of pre salt basins. Salt layers deposited upon the evaporation of ocean water and continental separation are mainly formed by NaCl and isolate immense oil reservoirs. The mechanical stability and zonal isolation of oil wells that run through salt layers must be fulfilled by cement sheaths saturated with NaCl to assure chemical compatibility between cement and salt layer. The present study aimed at evaluating the effect of NaCl addition on the hydration of oil well cement slurries as well as identifying the nature of crystalline phases present in the hardened cement. To that end, cement slurries containing NaCl were mixed, hardened and characterized by X-ray diffraction. The results revealed that the presence of NaCl affects the formation of hydration products by the presence of Friedel's salt. The intensity of the corresponding peaks increase as the contents of NaCl in the slurry increase. High concentrations of NaCl in Portland slurries increase the setting time of cement and the presence of Friedel's salt decreases the strength of the hardened cement. (author)

  10. The oil market towards 2030 - can OPEC combine high oil price with high market share

    International Nuclear Information System (INIS)

    Aune, Finn Roar; Glomsroed, Solveig; Lindholt, Lars; Rosendahl, Knut Einar

    2005-01-01

    In this paper we examine within a partial equilibrium model for the oil market whether OPEC can combine high oil prices with a high market share. The oil market model explicitly accounts for reserves, development and production in 4 field categories across 13 regions. Oil companies may invest in new field development or alternatively on improved oil recovery in the decline phase of fields in production. Non-OPEC production is profit-driven, whereas OPEC meets the residual call for OPEC oil at a pre-specified oil price, while maintaining a surplus capacity. The model is run over a range of exogenous oil prices from 15 to 60 $ per barrel. Sustained high oil prices stimulate Non-OPEC production, but its remaining reserves gradually diminish despite new discoveries. Oil demand is only slightly affected by higher prices. Thus, OPEC is able to keep and eventually increase its current market share beyond 2010 even with oil prices around $30 per barrel. In fact, the model simulations indicate that an oil price around $40 is profitable for OPEC, even in the long term. Sensitivity analyses show that the most profitable price level for OPEC is generally above $35 per barrel. Even with several factors working jointly in OPEC's disfavour, the oil price seems to stick to the 30 $ level. Thus, for OPEC there is a trade-off between high prices and high market share in the short to medium term, but not in the long term. For OECD countries, on the other hand, there is a clear trade-off between low oil prices and low import dependence. (Author)

  11. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    KAUST Repository

    Imran, Ali

    2015-11-24

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post treatment of the pyrolysis vapors. The in-situ catalytic pyrolysis was carried out in an entrained flow reactor system using a premixed feedstock of Na2CO3 and biomass and post treatment of biomass pyrolysis vapor was conducted in a downstream fixed bed reactor of Na2CO3/γ-Al2O3. Results have shown that both Na2CO3 and Na2CO3/γ-Al2O3 can be used for the production of a high quality bio-oil from catalytic pyrolysis of oil-impregnated-wood and jatropha cake. The catalytic bio-oil had very low oxygen content, water content as low as 1wt.%, a neutral pH, and a high calorific value upto 41.8MJ/kg. The bio-oil consisted of high value chemical compounds mainly hydrocarbons and undesired compounds in the bio-oil were either completely removed or considerably reduced. Increasing the triglycerides content (vegetable oil) in the wood enhanced the formation of hydrocarbons in the bio-oil. Post treatment of the pyrolysis vapor over a fixed bed of Na2CO3/γ-Al2O3 produced superior quality bio-oil compared to in-situ catalytic pyrolysis with Na2CO3. This high quality bio-oil may be used as a precursor in a fractionating process for the production of alternative fuels. © 2015 Elsevier B.V.

  12. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    Science.gov (United States)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.

  13. Tensão superficial estática de soluções aquosas com óleos minerais e vegetais utilizados na agricultura Surface tension of mineral oils and vegetable oils

    Directory of Open Access Journals (Sweden)

    Cristina G. de Mendonça

    2007-01-01

    Full Text Available O trabalho teve como objetivo avaliar a tensão superficial estática de soluções aquosas com formulações de óleos minerais e vegetais emulsionáveis utilizados como adjuvantes na agricultura. Os óleos minerais e vegetais, quando adicionados aos produtos fitossanitários, podem imprimir características desejáveis à calda de pulverização, como reduzir a tensão superficial em soluções aquosas, possibilitar maior contato da calda com a superfície vegetal ou reduzir o potencial de deriva durante as pulverizações. Foram testados os seguintes produtos comerciais: óleos minerais (Assist, Attach, Dytrol, Iharol, Mineral Oil, Spinner, Sunspray-E e Triona e óleos vegetais (Agrex'oil Vegetal, Crop Oil, Natur'l Óleo, Óleo Vegetal Nortox e Veget Oil, todos com registro de uso na agricultura. A tensão superficial das soluções aquosas foi avaliada em 11 concentrações para cada produto (0,025; 0,05; 0,1; 0,25; 0,5; 0,75; 1,0; 1,5; 2,0; 2,5 e 3,0% v/v. Essa propriedade dos óleos minerais e dos óleos vegetais foi estimada medindo-se a massa das gotas formadas na extremidade de uma bureta. Ao conjunto de dados obtidos para cada produto, na avaliação da tensão superficial, foram determinadas as análises de variância e de regressão, ajustando-se os dados ao Modelo de Mitscherlich. Entre os óleos minerais, destacaram-se os produtos: Assist, Dytrol, Iharol e Mineral Oil por apresentarem as menores tensões superficiais mínimas estimadas pelo Modelo, respectivamente, 29,255; 28,442; 26,097 e 28,584 mN m-1. Os óleos vegetais que apresentaram os menores valores de tensão superficial mínima estimados pelo Modelo, foram: Agrex' oil Vegetal (27,716 mN m-1, Natur'l óleo (28,216 mN m-1, Veget Oil (27,308 mN m-1 e Crop Oil (29,964 mN m-1.The aim of this work was to evaluate the surface tension of water emulsion with mineral oils and vegetable oils used as adjuvant. The mineral and vegetable oils when added to the agrochemicals can

  14. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate

    KAUST Repository

    Imran, Ali

    2014-11-01

    Performance of a novel alumina-supported sodium carbonate catalyst was studied to produce a valuable bio-oil from catalytic flash pyrolysis of lignocellulosic biomass. Post treatment of biomass pyrolysis vapor was investigated in a catalyst fixed bed reactor at the downstream of the pyrolysis reactor. In-situ catalytic upgrading of biomass pyrolysis vapor was conducted in an entrained flow pyrolysis reactor by feeding a premixed feedstock of the catalyst and biomass. Na2CO3/gamma-Al2O3 was very effective for de-oxygenation of the pyrolysis liquid and oxygen content of the bio-oil was decreased from 47.5 wt.% to 16.4 wt.%. An organic rich bio-oil was obtained with 5.8 wt.% water content and a higher heating value of 36.1 MJ/kg. Carboxylic acids were completely removed and the bio-oil had almost a neutral pH. This bio-oil of high calorific low, low water and oxygen content may be an attractive fuel precursor. In-situ catalytic upgrading of biomass pyrolysis vapor produced a very similar quality bio-oil compared to post treatment of pyrolysis vapors, and shows the possible application of Na2CO3/gamma-Al2O3 in a commercial type reactor system such as a fluidized bed reactor. (C) 2014 Elsevier B.V. All rights reserved.

  15. Bio diesel Production via Transesterification of Palm Oil Using NaOH/ Al2O3 Catalysts

    International Nuclear Information System (INIS)

    Taufiq Yap Yun Hin; Nurul Fitriyah Abdullah; Mahiran Basri; Taufiq Yap Yun Hin; Nurul Fitriyah Abdullah

    2011-01-01

    Due to the increase in price of petroleum and environmental concerns, the search for alternative fuels has gained importance. In this work, bio diesel production by transesterification of palm oil with methanol has been studied in a heterogeneous system using sodium hydroxide loaded on alumina (NaOH/ Al 2 O 3 ). NaOH/ Al 2 O 3 catalyst was prepared by impregnation of alumina with different amount of an aqueous solution of sodium hydroxide followed by calcination in air for 3 h. The prepared catalysts were then characterized by using x-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunner-Emmett-Teller surface area measurement (BET), scanning electron microscopy (SEM) and temperature-programmed desorption of CO 2 (CO 2 -TPD). Moreover, the dependence of the conversion of palm oil on the reactions variables such as the molar ratio of methanol/oil, the amount of catalysts used, reaction temperatures and reaction times were performed. The conversion of 99 % was achieved under the optimum reaction conditions. The bio diesel obtained was characterized by FT-IR and the pour point was measured. (author)

  16. Production Biodiesel from Coconut Oil Using Microwave: Effect of Some Parameters on Transesterification Reaction by NaOH Catalyst

    Directory of Open Access Journals (Sweden)

    A. Suryanto

    2015-07-01

    Full Text Available The purpose of this research was to study the effect of reaction time and NaOH catalyst in transesterification of coconut oil enhanced by microwave and to obtain a biodiesel. Reaction was conducted in batch reactor which equipped by microwave. Coconut oil contains saturated fatty acids about 70% with medium chain (C8-C14, especially lauric acid and myristic acid. The reaction was initiated by mixing oil and methanol with oil to methanol mole ratios of 1:3, 1:6, 1:9 and 1:12, catalyst concentration of 0.1, 0.15, 0.2, 0.25 and 0.3 wt.%, as well as setting electrical power at 100, 264 and 400 W. The reaction times were of  0.5, 1, 1.5, 2, 2.5, 3 and 3.5 min. The result showed that microwave could be employed as an energy source and was able to accelerate the transesterification process to produce biodiesel using NaOH catalyst. The biodiesel yields increase with increasing microwave power. The highest yield of biodiesel obtained  was of  97.37%  with reaction conditions set at 0.2 wt.% catalyst, a reaction time of 2 min, molar ratio of methanol to oil 1:9 and microwave power of 400 watt. © 2015 BCREC UNDIP. All rights reservedReceived: 15th January 2015; Revised: 10th March 2015; Accepted: 15th March 2015How to Cite: Suryanto, A., Suprapto, S., Mahfud, M. (2015. Production Biodiesel from Coconut Oil Using Microwave: Effect of Reaction Time on Transesterification Reaction by NaOH Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 162-168. (doi:10.9767/bcrec.10.2.8080.162-168 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8080.162-168 

  17. Modulation of salt (NaCl)-induced effects on oil composition and fatty acid profile of sunflower (Helianthus annuus L.) by exogenous application of salicylic acid.

    Science.gov (United States)

    Noreen, Sibgha; Ashraf, Muhammad

    2010-12-01

    Salicylic acid (SA) is a potential endogenous plant hormone that plays an important role in plant growth and development. Since sunflower yield and its seed oil yield are adversely affected by salinity, in this study the role of SA in modulating salt (NaCl)-induced effects on various yield and oil characteristics of sunflower was investigated. For this purpose a greenhouse experiment comprising two sunflower hybrid lines (Hysun-33 and SF-187), two NaCl levels (0 and 120 mmol L(-1)) and four SA levels (0, 100, 200 and 300 mg L(-1)) was conducted. Salt stress markedly reduced yield, oil content, linoleic acid and δ-tocopherol in both sunflower lines, while it increased linolenic acid, palmitic acid, stearic acid and α- and γ-tocopherols. However, increasing levels of foliar-applied SA resulted in improved achene yield and hundred-achene weight in both lines. Foliar-applied SA caused a significant decrease in oil stearic acid and α- and γ-tocopherols in both lines under non-saline and saline conditions. Salt-induced harmful effects on achene yield and oil characteristics of sunflower could be alleviated by exogenous application of SA. High doses of SA caused a marked increase in sunflower achene oil content as well as some key fatty acids. Copyright © 2010 Society of Chemical Industry.

  18. Effect of Solids-To-Liquids, Na2SiO3-To-NaOH and Curing Temperature on the Palm Oil Boiler Ash (Si + Ca) Geopolymerisation System

    Science.gov (United States)

    Yahya, Zarina; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Abd Razak, Rafiza; Sandu, Andrei Victor

    2015-01-01

    This paper investigates the effect of the solids-to-liquids (S/L) and Na2SiO3/NaOH ratios on the production of palm oil boiler ash (POBA) based geopolymer. Sodium silicate and sodium hydroxide (NaOH) solution were used as alkaline activator with a NaOH concentration of 14 M. The geopolymer samples were prepared with different S/L ratios (0.5, 1.0, 1.25, 1.5, and 1.75) and Na2SiO3/NaOH ratios (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0). The main evaluation techniques in this study were compressive strength, X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscope (SEM). The results showed that the maximum compressive strength (11.9 MPa) was obtained at a S/L ratio and Na2SiO3/NaOH ratio of 1.5 and 2.5 at seven days of testing.

  19. Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Shankar

    2017-11-01

    Full Text Available Activated calcium oxide extracted from crab shell impregnated on Na-ZSM-5 has been investigated. Crab shells were collected, powdered and calcined at 900 °C, and CaO was impregnated on Na-ZSM-5 and calcined at 550 °C for 10 h. The CaO/Na-ZSM-5 was characterized by X-ray diffraction, scanning electron microscopy and BET surface area. The prepared catalyst was tested for its catalytic activity by transesterifing neem oil into biodiesel in the presence of methanol. The influence of various parameters including reaction time, temperature, methanol to oil ratio, catalyst concentration and dosage were also investigated. Produced biodiesel have also been tested using proton NMR spectroscopy. Biodiesel yield as 95% has been achieved with 15% CaO impregnated on Na-ZSM-5 at 75 °C. The optimum transesterification reaction conditions were identified as follows: reaction temperature, 75 °C; reaction time, 6 h; methanol-to-neem oil molar ratio, 12:1; catalyst dosage, 0.2 g; and catalyst concentration, 15%. Based on the above study, it can be concluded that the calcium oxide impregnated Na-ZSM-5 can be a potential catalyst for biodiesel production.

  20. Efficacy of ultrasonic activation of NaOCl and orange oil in removing filling material from mesial canals of mandibular molars with and without isthmus

    Directory of Open Access Journals (Sweden)

    Mirela Sangoi BARRETO

    2015-01-01

    Full Text Available Objectives The aim of this study was to evaluate the volume of remaining filling material after passive ultrasonic irrigation (PUI of sodium hypochlorite (NaOCl and orange oil in mesial canals of mandibular molars, with and without isthmus. Material and Methods Thirty mesial roots of mandibular molars were divided according to the presence or absence of isthmus. Canals were prepared and filled (Micro-CT #1. Filling was removed using rotary instruments, and specimens were sub-divided into three groups according to the irrigation procedures: Conventional – conventional irrigation with NaOCl, PUI/NaOCl – PUI of NaOCl (three activations, 20 seconds each, and PUI/orange oil – PUI of orange oil (Micro-CT#2. Specimens were enlarged using the X2 and X3 ProTaper Next instruments and submitted to the same irrigation protocols (Micro-CT #3. Results No differences were found between the experimental groups in each stage of assessment (P>0.05. The volume of residual filling material was similar to that in Micro-CT #2 and Micro-CT #3, but lower than that observed in Micro-CT #1 (P<0.05. When groups were pooled according to the presence or absence of an isthmus, volume of residual filling material was higher in specimens presenting isthmus (P<0.05. Conclusions PUI of NaOCl or orange oil did not improve filling removal. Isthmus consists in an anatomical obstacle that impairs the removal of filling material.

  1. Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil-water separation process

    KAUST Repository

    Duong, Hoang Hanh Phuoc; Chung, Neal Tai-Shung; Wei, Shawn; Irish, Lana

    2014-01-01

    Forward osmosis (FO) has attracted wide attention in recent years. However, the FO performance may be restricted due to internal concentration polarization (ICP) and fast fouling propensity that occurs in the membrane sublayer. Particularly, these problems significantly affect the membrane performance when treating highly contaminated oily wastewater. Recently, double-skinned flat sheet cellulose acetate (CA) membranes consisting of two selective skins via the phase inversion method have demonstrated less ICP and fouling propensity over typical single-skinned membranes. However, these membranes exhibit low water fluxes of <12 LMH under 2 M NaCl draw solution. Therefore, a novel double-skinned FO membrane with a high water flux has been aimed for in this study for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between (i) a truly dense skin for salt rejection and (ii) a fairly loose dense skin for emulsified oil particle rejection. The former dense skin is a polyamide synthesized via interfacial polymerization, while the latter one is a self-assembled sulfonated pentablock copolymer (Nexar copolymer) layer. The resultant double-skinned membrane exhibits a high water flux of 17.2 LMH and a low reverse salt transport of 4.85 gMH using 0.5 M NaCl as the draw solution and DI water as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation. © 2014 American Chemical Society.

  2. Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil-water separation process

    KAUST Repository

    Duong, Hoang Hanh Phuoc

    2014-04-15

    Forward osmosis (FO) has attracted wide attention in recent years. However, the FO performance may be restricted due to internal concentration polarization (ICP) and fast fouling propensity that occurs in the membrane sublayer. Particularly, these problems significantly affect the membrane performance when treating highly contaminated oily wastewater. Recently, double-skinned flat sheet cellulose acetate (CA) membranes consisting of two selective skins via the phase inversion method have demonstrated less ICP and fouling propensity over typical single-skinned membranes. However, these membranes exhibit low water fluxes of <12 LMH under 2 M NaCl draw solution. Therefore, a novel double-skinned FO membrane with a high water flux has been aimed for in this study for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between (i) a truly dense skin for salt rejection and (ii) a fairly loose dense skin for emulsified oil particle rejection. The former dense skin is a polyamide synthesized via interfacial polymerization, while the latter one is a self-assembled sulfonated pentablock copolymer (Nexar copolymer) layer. The resultant double-skinned membrane exhibits a high water flux of 17.2 LMH and a low reverse salt transport of 4.85 gMH using 0.5 M NaCl as the draw solution and DI water as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation. © 2014 American Chemical Society.

  3. Extraction and characterization of oil bodies from soy beans: a natural source of pre-emulsified soybean oil.

    Science.gov (United States)

    Iwanaga, Daigo; Gray, David A; Fisk, Ian D; Decker, Eric Andrew; Weiss, Jochen; McClements, David Julian

    2007-10-17

    Soybeans contain oil bodies that are coated by a layer of oleosin proteins. In nature, this protein coating protects the oil bodies from environmental stresses and may be utilized by food manufacturers for the same purpose. In this study, oil bodies were extracted from soybean using an aqueous extraction method that involved blending, dispersion (pH 8.6), filtration, and centrifugation steps. The influence of NaCl (0-250 mM), thermal processing (30-90 degrees C, 20 min) and pH (2-8) on the properties and stability of the oil bodies was analyzed using zeta-potential, particle size, and creaming stability measurements. The extracted oil bodies were relatively small ( d 32 approximately 250 nm), and their zeta-potential went from around +12 mV to -20 mV as the pH was increased from 2 to 8, with an isoelectric point around pH 4. The oil bodies were stable to aggregation and creaming at low (pH = 2) and high (pH >/= 6) pH values but were unstable at intermediate values (3 oil bodies were stable to aggregation and creaming at relatively low salt concentrations (NaCl oil bodies were stable to thermal processing from 30 to 90 degrees C (0 mM NaCl, pH 7), but there appeared to be a change in their interfacial properties (decrease in zeta-potential) at temperatures exceeding 60 degrees C. These results suggest that oil bodies extracted from soybeans have similar or improved stability compared to soybean oil emulsions produced from bulk ingredients and may provide a new way of creating functional soy products for the food industry.

  4. Kolkhoung (Pistacia khinjuk) Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability 
and Nutritional Value.

    Science.gov (United States)

    Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi

    2015-03-01

    In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.

  5. Kolkhoung (Pistacia khinjuk Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability and Nutritional Value

    Directory of Open Access Journals (Sweden)

    Maryam Asnaashari

    2015-01-01

    Full Text Available In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high–performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well-balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation–sensitive oils to improve their shelf life.

  6. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  7. Controlled phase stability of highly Na-active triclinic structure in nanoscale high-voltage Na2-2xCo1+xP2O7 cathode for Na-ion batteries

    Science.gov (United States)

    Song, Hee Jo; Kim, Jae-Chan; Dar, Mushtaq Ahmad; Kim, Dong-Wan

    2018-02-01

    With the increasing demand for high energy density in energy-storage systems, a high-voltage cathode is essential in rechargeable Li-ion and Na-ion batteries. The operating voltage of a triclinic-polymorph Na2CoP2O7, also known as the rose form, is above 4.0 V (vs. Na/Na+), which is relatively high compared to that of other cathode materials. Thus, it can be employed as a potential high-voltage cathode material in Na-ion batteries. However, it is difficult to synthesize a pure rose phase because of its low phase stability, thus limiting its use in high-voltage applications. Herein, compositional-engineered, rose-phase Na2-2xCo1+xP2O7/C (x = 0, 0.1 and 0.2) nanopowder are prepared using a wet-chemical method. The Na2-2xCo1+xP2O7/C cathode shows high electrochemical reactivity with Na ions at 4.0 V, delivering high capacity and high energy density.

  8. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  9. Experimental Study of Enhancing Oil Recovery with Weak Base Alkaline/Surfactant/Polymer

    Directory of Open Access Journals (Sweden)

    Dandan Yin

    2017-01-01

    Full Text Available Na2CO3 was used together with surfactant and polymer to form the Alkaline/Surfactant/Polymer (ASP flooding system. Interfacial tension (IFT and emulsification of Dagang oil and chemical solutions were studied in the paper. The experiment results show that the ASP system can form super-low interfacial tension with crude oil and emulsified phase. The stability of the emulsion is enhanced by the Na2CO3, surfactant, and the soap generated at oil/water contact. Six core flooding experiments are conducted in order to investigate the influence of Na2CO3 concentration on oil recovery. The results show the maximum oil recovery can be obtained with 0.3 wt% surfactant, 0.6 wt% Na2CO3, and 2000 mg/L polymer. In a heterogeneous reservoir, the ASP flooding could not enhance the oil recovery by reducing IFT until it reaches the critical viscosity, which indicates expanding the sweep volume is the premise for reducing IFT to enhance oil recovery. Reducing or removing the alkali from ASP system to achieve high viscosity will reduce oil recovery because of the declination of oil displacement efficiency. Weak base ASP alkali can ensure that the whole system with sufficient viscosity can start the medium and low permeability layers and enhance oil recovery even if the IFT only reaches 10−2 mN/m.

  10. High oil prices: A non-OPEC capacity game

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Asche, Frank; Misund, Baard; Mohn, Klaus

    2005-08-01

    The current high oil price is partly due to low investments in the oil industry the last decade. According to economic theory, exploration and development of new oil and gas fields should respond positively to increasing petroleum prices. But since the late 1990s, financial analysts have focused strongly on short-term accounting return measures, like RoACE, for benchmarking and valuation of international oil and gas companies. Consequently, the demand for strict capital discipline among oil and gas companies may have reduced their willingness to invest for future reserves and production growth. Thus, we have experienced an unusual combination of high oil prices and low investment levels in exploration and development. In many ways, the oil companies' focus on RoACE, at the expense of reserve replacement, resembles an implicit co-ordination on low capacity among non-OPEC petroleum producers. This is a partial explanation of the current high oil prices. By examining actual parameters used by the financial markets in pricing of oil companies, we address the issue of whether the low investment outcome could represent a long-term equilibrium. This is hardly likely, as oil companies are made aware that stronger emphasis is put on reserve replacement. (Author)

  11. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  12. Teor de óleo e de cafeína em variedades de café Oil and caffeine content in the coffee bean

    Directory of Open Access Journals (Sweden)

    J. S. Tango

    1963-01-01

    Full Text Available Determinou-se a porcentagem de óleo e de cafeína em sementes de diversas variedades de Coffee arabica. As sementes provieram de frutos despolpados, secos em terreiro sem despolpar, ou secos na própria planta. O tratamento des frutos influiu sôbre o teor de óleo, sendo também significativa a diferença entre as variedades. Os dados confirmam resultados anteriores de que a variedade mucronata é rica e a, variedade laurina, pobre, em óleo. No que concerne ao teor de cafeína, o tratamento dos frutos não mostrou influência, mas pronunciada diferença se constatou entre as variedades. Sete das variedades se mostraram mais pobres do que o café 'Sumatra', tomado comg padrão. A variedade laurina destacou-se das demais pelo baixo teor dêsse alcalóide com, aproximadamente, a metade do nível encontrado nas demais variedades analisadas, o que a torna valiosa para um piano de melhoramento visando a redução do nível de cafeína nas sementes.Oil and caffeine contents were determined for seed samples obtained from cherries of sixteen varieties of Coffea arabica which were submitted to three types of treatments pulped, non pulped and left to dry with pericarp in the sun, or naturally dried on the tree. Cherry processing seems not to have influence on the oil content in the seeds (table I, but significant differences were noted among the varieties with respect to this characteristic. Mucronata revealed to have high oil content while the laurina is a low oil producing variety. Coffee cherries left to dry on the trees gave lower caffeine content. Seven of the sixteen varieties presented a lower caffeine content than the standard 'Sumatra'. The laurinis variety had an exceptional lower caffeine content of about half the amount found in the control. Laurina characteristics are controlled by a recessive allele lr with strong pleiotropic effects. It is not yet known how the laurina allele affects the chemical reactions which lead to a so low caffeine

  13. Biodiesel's Characteristics Preparation from Palm Oil

    Directory of Open Access Journals (Sweden)

    Tilani Hamid

    2010-10-01

    Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separated from glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels' properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

  14. Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization

    Science.gov (United States)

    Chang, Liang; Hu, Yun Hang

    2018-05-01

    Highly conductive porous Na-embedded carbon nanowalls (Na@C), which were recently invented, have exhibited excellent performance for dye-sensitized solar cells and electric double-layer capacitors. In this work, Na@C was demonstrated as an excellent electrode material for capacitive deionization (CDI). In a three-electrode configuration system, the specific capacity of the Na@C electrodes can achieve 306.4 F/g at current density of 0.2 A/g in 1 M NaCl, which is higher than that (235.2 F/g) of activated carbon (AC) electrodes. Furthermore, a high electrosorption capacity of 8.75 mg g-1 in 100 mg/L NaCl was obtained with the Na@C electrodes in a batch-mode capacitive deionization cell. It exceeds the electrosorption capacity (4.08 mg g-1) of AC electrodes. The Na@C electrode also showed a promising cycle stability. The excellent performance of Na@C electrode for capacitive deionization (CDI) can be attributed to its high electrical conductivity and large accessible surface area.

  15. Productions of sunflower oil biodiesel and used cooking oil through heterogeneous catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    Gutiérrez-Zapata, C A; Collazos, C A; Acuña, H E Castellanos; Fernandez, C P; Martínez, D Blanco; Cuervo, J A

    2017-01-01

    This document compares homogeneous and heterogeneous catalysts used by production of biodiesel of sunflower oil and cooking oil used in frying. For this, NaOH was used as a catalyst homogeneous, and K 2 CO 3 and Na 2 CO 3 supported in gamma-alumina (K 2 CO 3 /γ Al 2 O 3 y Na 2 CO 3 /γ-Al 2 O 3 ) were synthesized as heterogeneous catalysts, which were characterized by X-ray diffraction. The transesterification tests were carried out for the sunflower oil and used cooking oil, in a reflux system, to different molar relations methanol/oil, depending on the type of oil and characterization of the same. The reflux system is performed at a temperature of 55-60°C for one hour. Finally, biofuel was characterized and the yield of the reaction was calculated. (paper)

  16. Productions of sunflower oil biodiesel and used cooking oil through heterogeneous catalysts compared to conventional homogeneous catalysts

    Science.gov (United States)

    Gutiérrez-Zapata, C. A.; Blanco Martínez, D.; Collazos, C. A.; Castellanos Acuña, H. E.; Cuervo, J. A.; Fernandez, C. P.

    2017-01-01

    This document compares homogeneous and heterogeneous catalysts used by production of biodiesel of sunflower oil and cooking oil used in frying. For this, NaOH was used as a catalyst homogeneous, and K2CO3 and Na2CO3 supported in gamma-alumina (K2CO3/γ Al2O3 y Na2CO3 /γ-Al2O3) were synthesized as heterogeneous catalysts, which were characterized by X-ray diffraction. The transesterification tests were carried out for the sunflower oil and used cooking oil, in a reflux system, to different molar relations methanol/oil, depending on the type of oil and characterization of the same. The reflux system is performed at a temperature of 55-60°C for one hour. Finally, biofuel was characterized and the yield of the reaction was calculated.

  17. Utilization of oil palm fronds in producing activated carbon using Na2CO3 as an activator

    Science.gov (United States)

    Maulina, S.; Anwari, FN

    2018-02-01

    Oil Palm Frond is a waste in palm oil plantations that have the potential to be processed into more valuable products. This possibility is because of the presence of cellulose, hemicellulose, and lignin in oil palm fronds. Therefore, this study aimed to utilize oil palm fronds in manufacturing of activated carbon through pyrolysis and impregnation that meets the requirements of the Industrial National Standard 06-3730-1995. The palm-fringed oil palm fronds were pyrolyzed in reactors at 150°C, 200°C, and 250°C for 60 minutes. Subsequently, the charcoal produced from the pyrolysis was smoothed with a ball mill, sieved with a size of 140 meshes, and impregnated using a Sodium Carbonate (Na2CO3) for 24 hours at a concentration of 0 %, 2.5%, 5%, and 7.5 % (w/v). The activated carbon has 35.13% of charcoal yield, 8.6% of water content, 14.25% of ash content, 24.75% of volatile matter, 72.75% of fixed carbon, and 492.29 of iodine number. Moreover, SEM analysis indicated that activated carbon porous are coarse and distributed.

  18. Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddy mice.

    Science.gov (United States)

    Yamazaki, Tomomi; Nakamori, Akiko; Sasaki, Eriko; Wada, Satoshi; Ezaki, Osamu

    2007-12-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). We analyzed the effects of dietary fish oil on fatty liver induced by sucrose, safflower oil, and butter in ddY mice. In experiment I, mice were fed a high-starch diet [70 energy% (en%) starch] plus 20% (wt/wt) sucrose in the drinking water or fed a high-safflower oil diet (60 en%) for 11 weeks. As a control, mice were fed a high-starch diet with drinking water. Fish oil (10 en%) was either supplemented or not. Mice supplemented with sucrose or fed safflower oil showed a 1.7-fold or 2.2-fold increased liver triglyceride content, respectively, compared with that of control mice. Fish oil completely prevented sucrose-induced fatty liver, whereas it exacerbated safflower oil-induced fatty liver. Sucrose increased SREBP-1c and target gene messenger RNAs (mRNAs), and fish oil completely inhibited these increases. In experiment II, mice were fed a high-safflower oil or a high-butter diet, with or without fish oil supplementation. Fish oil exacerbated safflower oil-induced fatty liver but did not affect butter-induced fatty liver. Fish oil increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and target CD36 mRNA in safflower oil-fed mice. These increases were not observed in sucrose-supplemented or butter-fed mice. The effects of dietary fish oil on fatty liver differ according to the cause of fatty liver; fish oil prevents sucrose-induced fatty liver but exacerbates safflower oil-induced fatty liver. The exacerbation of fatty liver may be due, at least in part, to increased expression of liver PPARgamma.

  19. Valorisation of Jatropha curcas: Solubilisation of proteins and sugars from the NaOH extracted de-oiled press cake

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Sanders, J.P.M.

    2011-01-01

    In this study, we investigated the possibilities for increasing the valorisation of de-oiled Jatropha press cake (DO-JPC). The studied raw material is the by-product of the alkaline protein extraction of the DO-JPC: NaOH Extracted DO-JPC (NEDO-JPC). Protein solubilisation of NEDO-JPC was performed

  20. The effect of NaOH catalyst concentration and extraction time on the yield and properties of Citrullus vulgaris seed oil as a potential biodiesel feed stock

    Directory of Open Access Journals (Sweden)

    J.K. Efavi

    2018-06-01

    Full Text Available In this work, oil was extracted from Citrullus vulgaris (watermelon seeds for potential feedstock in biodiesel production. The results showed that, the oil content from Citrullus vulgaris seeds oil during extraction reached an average yield of 50%. Biodiesel was produced via transesterification using NaOH as catalyst. The effect of NaOH on the yield of the biodiesel was investigated at three different concentrations; 0.13, 0.15 and 0.18 g and oil to methanol ratio of 5:1 under different reaction times; 90, 120 and 150 min at 60 °C. The yield of biodiesel from NaOH concentration of 0.13 g was found to be 70% as compared to those of concentrations, 0.15 g and 0.18 g which were 53% and 49% respectively.Gas chromatography was used to identify the methyl ester groups present in the biodiesel and the results revealed both concentration and time-dependent increase in oil yield. The physicochemical properties of the watermelon seed oil such as flash point (141.3 ± 0.4–143.4 ± 0.2, density (0.86 ± 0.04–0.91 ± 0.01 g/cm3, kinematic viscosity (30.50 ± 0.1–31.20 ± 0.04 mm2/s and acid value (mg KOH/g are similar to conventional vegetable oils. This work therefore, highlights the potential utility of water melon seeds for biodiesel production. Keywords: Citrullus vulgaris, Gas chromatography, Catalyst

  1. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  2. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ting [College of Textiles, Donghua University, Shanghai 201620 (China); Cao, Shengbin [College of Textiles, Donghua University, Shanghai 201620 (China); School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306 (China); Xu, Guangbiao, E-mail: guangbiao_xu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science and Technology Ministry of Education, Donghua University, Shanghai 201620 (China)

    2016-03-15

    Highlights: • Highly porous sorbent was made up of kapok and PET fibers. • The sorbent was prepared by air-laying-bonding method. • The sorbent showed much higher oil sorption capacity than 100% loose kapok fibers. • The sorbent showed high intercepting efficiency to oils on water. • The runing of water significantly accelerated the oil leakage. - Abstract: Highly porous fibrous assembly made by kapok and hollow PET fibers was prepared by the air-laying-bonding method, and used as the interceptor for oils on static and running water. SEM showed that the vast majority of kapok and PET fibers in the assembly was intact and retained their hollow lumens, with the assembly's porosity high to 98.03%. Oil sorption tests exhibited that kapok/PET assembly could absorb 63.00 g/g of vegetable oil and 58.50 g/g of used motor oil, with high oil retention after 24 h dripping. In static condition of oil interception, the two oils started to leak at around 20 min for 10-mm thick kapok/PET wall. The time for that was prolonged with increasing the thickness of kapok/PET wall. After oil breakthrough, continuous oil leaking took place. The typical leakage was divided into three stages in which oils leaked separately in sharply increased rate, reduced rate and finally gently. In running condition, oils leaked in markedly quicker way than that in static condition, with initial leakage of oils shortened to less 6 min when the water ran at 60.35 ml/s. The leakage of oils was considerably accelerated with increasing running rates.

  3. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water

    International Nuclear Information System (INIS)

    Dong, Ting; Cao, Shengbin; Xu, Guangbiao

    2016-01-01

    Highlights: • Highly porous sorbent was made up of kapok and PET fibers. • The sorbent was prepared by air-laying-bonding method. • The sorbent showed much higher oil sorption capacity than 100% loose kapok fibers. • The sorbent showed high intercepting efficiency to oils on water. • The runing of water significantly accelerated the oil leakage. - Abstract: Highly porous fibrous assembly made by kapok and hollow PET fibers was prepared by the air-laying-bonding method, and used as the interceptor for oils on static and running water. SEM showed that the vast majority of kapok and PET fibers in the assembly was intact and retained their hollow lumens, with the assembly's porosity high to 98.03%. Oil sorption tests exhibited that kapok/PET assembly could absorb 63.00 g/g of vegetable oil and 58.50 g/g of used motor oil, with high oil retention after 24 h dripping. In static condition of oil interception, the two oils started to leak at around 20 min for 10-mm thick kapok/PET wall. The time for that was prolonged with increasing the thickness of kapok/PET wall. After oil breakthrough, continuous oil leaking took place. The typical leakage was divided into three stages in which oils leaked separately in sharply increased rate, reduced rate and finally gently. In running condition, oils leaked in markedly quicker way than that in static condition, with initial leakage of oils shortened to less 6 min when the water ran at 60.35 ml/s. The leakage of oils was considerably accelerated with increasing running rates.

  4. Comparison Between Oil-mist and Oil-jet Lubrication of High-speed, Small-bore, Angular-contact Ball Bearings

    Science.gov (United States)

    Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.

    2001-01-01

    Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5 x 10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5 x 10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7 percent was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.

  5. A comparison of intraoral antimicrobial effects of stabilized stannous fluoride dentifrice, baking soda/peroxide dentifrice, conventional NaF dentifrice and essential oil mouthrinse.

    Science.gov (United States)

    Bacca, L A; Leusch, M; Lanzalaco, A C; Macksood, D; Bouwsma, O J; Shaffer, J B; Howard-Nordan, K S; Knippenberg, S H; Kreutzjans, M K; Miller, J M; Poore, C L; Sunberg, R J; Vastola, K A; Becus, M; Bartizek, R D; Block, R P; Briner, W W; White, D J

    1997-01-01

    The intraoral antimicrobial activity of four commercial oral products-conventional NaF dentifrice (Crest), baking soda/peroxide/NaF dentifrice (Mentadent), essential oil mouthrinse (Listerine) and SnF2 dentifrice (Crest Plus Gum Care)-have been compared in three test regimens. Formulations were compared for their ability to suppress the regrowth and apical extension of dental plaque following toothbrushing during thirty hours of non-brushing where products were used as oral rinses (30-hour plaque regrowth model). Formulations were also compared for their ability to suppress the colony-forming units (cfu) of facultative anaerobic bacteria sampled from buccal gingival surfaces following use (Gingival Surface Microbial Index-GSMI model). Lastly, formulations were compared for effects in suppressing the glycolytic metabolic activity and regrowth activity of in vivo-treated dental plaques sampled at various periods following topical use and incubated under controlled ex vivo conditions (Plaque Glycolysis and Regrowth-PGRM model). In thirty-hour plaque regrowth testing, the rank ordered antimicrobial efficacy of formulations followed SnF2 > essential oils > NaF = water = baking soda/peroxide. In GSMI testing, all formulations were shown to suppress the cfu of facultative anaerobic bacteria relative to baseline, although SnF2 treatment was observed to reduce bacterial levels to a significantly greater degree than NaF dentifrice or baking soda/peroxide dentifrice up to two hours following brushing. In PGRM testing, the SnF2 dentifrice provided significant inhibition of bacterial metabolism and regrowth following topical application when compared with the NaF dentifrice as control. The baking soda/peroxide dentifrice provided no reduction in either bacterial metabolism or regrowth in PGRM. Previous studies had demonstrated modest effects for essential oil rinse in reducing PGRM plaque regrowth, with no effects for this treatment on plaque metabolism. Overall, these results

  6. Production of bio-oil via hydrothermal liquefaction of birch sawdust

    International Nuclear Information System (INIS)

    Malins, Kristaps

    2017-01-01

    Highlights: • NaOH has significant impact on hydrothermal liquefaction of birch sawdust. • High yield of bio-oil (54.1%) was obtained under developed optimal conditions. • Compounds in bio-oil have appropriate chemical structure for hydrocarbon synthesis. • The yield of marketable solid residue with potential for industrial application was 7.1%. • Solid residue has high calorific value (29.8 MJ/kg) and C content (74.6 wt.%). - Abstract: The effect of weight ratio of plywood manufacturing by-product birch sawdust (BS) to water (1/2–1/8), reaction temperature (200–340 °C), initial H 2 pressure (0–10 MPa), residence time (5–90 min), catalysts amount (0.25–7.0 wt.%) and type (FeSO 4 , ZnSO 4 , NiSO 4 , Raney-nickel, Ni65%/SiO 2 −Al 2 O 3 , Na 2 CO 3 and NaOH) on hydrothermal liquefaction of BS was investigated. High yield of bio-oil (54.1%) with calorific value (CV) 24.9 MJ/kg under developed optimal experimental conditions in the presence of NaOH (5 wt.%) utilizing weight ratio of BS to water 1/4, residence time 5 min, mixing speed 250 rpm at 300 °C without pressurized particular inert gas or H 2 atmosphere was achieved. Compounds in bio-oil analyzed by gas chromatography-mass spectrometry (GC-MS) have suitable chemical structures for conversion into renewable hydrocarbons. Marketable solid residue (SR) with yield 7.1%, high CV (29.8 MJ/kg) and perspective characteristics for industrial application was obtained. Produced gas in process analyzed by gas chromatography-thermal conductivity detector (GC–TCD) contains 60.1 vol.% of CO 2 .

  7. Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography-evaporative light scattering detection.

    Science.gov (United States)

    Salghi, Rachid; Armbruster, Wolfgang; Schwack, Wolfgang

    2014-06-15

    Triacylglycerol profiles were selected as indicator of adulteration of argan oils to carry out a rapid screening of samples for the evaluation of authenticity. Triacylglycerols were separated by high-performance liquid chromatography-evaporative light scattering detection. Different peak area ratios were defined to sensitively detect adulteration of argan oil with vegetable oils such as sunflower, soy bean, and olive oil up to the level of 5%. Based on four reference argan oils, mean limits of detection and quantitation were calculated to approximately 0.4% and 1.3%, respectively. Additionally, 19 more argan oil reference samples were analysed by high-performance liquid chromatography-refractive index detection, resulting in highly comparative results. The overall strategy demonstrated a good applicability in practise, and hence a high potential to be transferred to routine laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mapeamento de QTL para conteúdos de proteína e óleo em soja Mapping QTL for protein and oil content in soybean

    Directory of Open Access Journals (Sweden)

    Josiane Isabela da Silva Rodrigues

    2010-05-01

    Full Text Available O objetivo deste trabalho foi detectar e mapear locos de caracteres quantitativos (QTL que afetam os conteúdos de proteína e óleo em soja (Glycine max L. Merr.. Plantas F2, derivadas do cruzamento entre a linhagem CS3032PTA276 e a variedade UFVS2012, foram cultivadas em casa de vegetação e forneceram as folhas para extração e análise de DNA. Quarenta e oito marcadores microssatélites (SSR polimórficos foram avaliados na população F2. A avaliação dos fenótipos foi realizada em 207 famílias das progênies F2:3, em um delineamento em blocos ao acaso, com três repetições, conduzido em Viçosa, MG, em 2006. Foram detectados quatro QTL associados ao conteúdo de proteína, nos grupos de ligação D1a, G, A1, e I, e três QTL associados ao conteúdo de óleo, nos grupos A1, I e O. A variação fenotípica explicada pelos QTL variou de 6,24 a 18,94% e 17,26 a 25,93%, respectivamente, para os conteúdos de proteína e óleo. Foram detectados novos QTL associados aos conteúdos de proteína e óleo, além dos previamente relatados em outros estudos. Regiões distintas das atualmente conhecidas podem estar envolvidas no controle genético do teor de proteína e óleo na soja.The objective of this study was to detect and map quantitative trait loci (QTL affecting soybean (Glycine max L. Merr. protein and oil contents. F2 plants, derived from the cross between the CS3032PTA276 line and the variety UFVS2012, were grown in a greenhouse and provided the leaves for DNA extraction and analysis. Forty-eight polymorphic microsatelite markers (SSR were evaluated in the F2 population. Evaluation of the phenotype was performed in 207 families from F2:3 progenies, in a complete block design with three replicates, carried out in Viçosa, MG, Brazil, in 2006. Four QTL associated with protein content, in linkage groups D1a, G, A1, and I, and three QTL for oil content in groups A1, I and O were identified. Phenotypic variation for protein and oil

  9. Fortum Oil and Gas 2000: Exceptionally high price of crude oil and strong refining margins

    International Nuclear Information System (INIS)

    Ropponen, V.-M.

    2001-01-01

    Fortum intends to be an active player in the structural reorganization of the oil business by utilizing its niche position in oil refining. Fortum produces sophisticated motor fuel components, which it uses in its reformulated gasolines and sells and exports to other oil companies, even to highly demanding markets in California. The increase in the price of crude oil considerably improved the results of Oil and Gas Upstream. Similarly, an improvement in the refining margin, as well as profitable shipping operations and a strong demand for gasoline components, boosted the results of Oil Refining and Marketing. (orig.)

  10. Brine crude oil interactions at the oil-water interface

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    The impact of brine salinity and its ionic composition on oil displacement efficiency has been investigated extensively in recent years due to the potential of enhanced oil recovery (EOR). Wettability alterations through relative interactions at the mineral surface have been the basis of proposed...... in enhancing oil emulsion formation by increasing interactions between polar acids and brine solutions. The results propose the potential use of HPO42- ions in reservoirs having inactive mineral surfaces. The relative oil affinity of different ions including K+, Na+, Mg2+, and Ca2+ (cations), and Cl-, SO42...... and thus reduces the interfacial viscoelasticity of the trapped oil. These results show significant correlation between oil emulsion formation and increased oil recovery. Copyright 2015; Society of Petroleum Engineers...

  11. Study on high power ultraviolet laser oil detection system

    Science.gov (United States)

    Jin, Qi; Cui, Zihao; Bi, Zongjie; Zhang, Yanchao; Tian, Zhaoshuo; Fu, Shiyou

    2018-03-01

    Laser Induce Fluorescence (LIF) is a widely used new telemetry technology. It obtains information about oil spill and oil film thickness by analyzing the characteristics of stimulated fluorescence and has an important application in the field of rapid analysis of water composition. A set of LIF detection system for marine oil pollution is designed in this paper, which uses 355nm high-energy pulsed laser as the excitation light source. A high-sensitivity image intensifier is used in the detector. The upper machine sends a digital signal through a serial port to achieve nanoseconds range-gated width control for image intensifier. The target fluorescence spectrum image is displayed on the image intensifier by adjusting the delay time and the width of the pulse signal. The spectral image is coupled to CCD by lens imaging to achieve spectral display and data analysis function by computer. The system is used to detect the surface of the floating oil film in the distance of 25m to obtain the fluorescence spectra of different oil products respectively. The fluorescence spectra of oil products are obvious. The experimental results show that the system can realize high-precision long-range fluorescence detection and reflect the fluorescence characteristics of the target accurately, with broad application prospects in marine oil pollution identification and oil film thickness detection.

  12. High-Performance Na-O2 Batteries Enabled by Oriented NaO2 Nanowires as Discharge Products.

    Science.gov (United States)

    Khajehbashi, S Mohammad B; Xu, Lin; Zhang, Guobin; Tan, Shuangshuang; Zhao, Yan; Wang, Lai-Sen; Li, Jiantao; Luo, Wen; Peng, Dong-Liang; Mai, Liqiang

    2018-06-13

    Na-O 2 batteries are emerging rechargeable batteries due to their high theoretical energy density and abundant resources, but they suffer from sluggish kinetics due to the formation of large-size discharge products with cubic or irregular particle shapes. Here, we report the unique growth of discharge products of NaO 2 nanowires inside Na-O 2 batteries that significantly boosts the performance of Na-O 2 batteries. For this purpose, a high-spin Co 3 O 4 electrocatalyst was synthesized via the high-temperature oxidation of pure cobalt nanoparticles in an external magnetic field. The discharge products of NaO 2 nanowires are 10-20 nm in diameter and ∼10 μm in length, characteristics that provide facile pathways for electron and ion transfer. With these nanowires, Na-O 2 batteries have surpassed 400 cycles with a fixed capacity of 1000 mA h g -1 , an ultra-low over-potential of ∼60 mV during charging, and near-zero over-potential during discharging. This strategy not only provides a unique way to control the morphology of discharge products to achieve high-performance Na-O 2 batteries but also opens up the opportunity to explore growing nanowires in novel conditions.

  13. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    International Nuclear Information System (INIS)

    Babich, I.V.; Hulst, M. van der; Lefferts, L.; Moulijn, J.A.; O'Connor, P.; Seshan, K.

    2011-01-01

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na 2 CO 3 ) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na 2 CO 3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na 2 CO 3 , gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%. -- Highlights: → The pyrolytic catalytic conversion of chlorella algae to liquid fuel precursor. → Na 2 CO 3 as a catalyst for the primary conversion of chlorella. → Pyrolysis oil from catalytic runs carries higher heating value and lower acidity. → High-quality bio-oil from algae via catalytic pyrolysis with energy recovery in bio-oil of 40%.

  14. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.

    Science.gov (United States)

    Xue, Jia; Zhong, Qixin

    2014-10-08

    Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.

  15. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  16. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  17. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  18. Penggunaan Katalis NaOH dalam Proses Transesterifikasi Minyak Kemiri menjadi Biodiesel

    Directory of Open Access Journals (Sweden)

    Farid Mulana

    2011-12-01

    Full Text Available Research on biodiesel production from hazelnut oil by transesterification process using NaOH catalyst was one of the efforts for renewable energy research. The purpose of this study was to determine the effect of NaOH catalyst and the ratio of hazelnut oil to methanol on the production of biodiesel via transesterification process. The transesterification process was carried out in a stirred reactor equipped by a condenser with speed of 200 rpm, temperature of 60°C and the operating time of 90 minutes. The results indicated that biodiesel could be produced from hazelnut oil through transesterification process with the highest yield of 81.7% that was obtained on the use of 2% wt. of NaOH catalyst and the mole ratio of oil to methanol of 1:9. Viscosity, density, and acid number of biodiesel obtained in this study met the Indonesia National Standard for biodiesel as SNI 04-7182-2006, therefore hazelnut oil produced biodiesel could potentially be an alternative diesel fuel. Keywords: hazelnut oil, biodiesel, transesterification, NaOH catalyst

  19. Polyalhpaolefins and VHVI base oils - base oils for high performance lubricants; Polyalfaolefine und VHVI-Grundoele - Grundoele fuer hochwertige Schmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Lehmus, M.; Nissfolk, F.; Kulmala, K. [Fortum Oil and Gas Oyj / Base Oils, Fortum (Finland)

    2002-01-01

    Next to polyalphaolefines (PAOs base oils of the API/ATIEL Group IV), VHVI base oils (belonging to API/ATIEL Group III) are being increasingly used in high-performance automotive and industrial lubricants. A comparative study of the properties of VHVI base oils and polyalphaolefins shows that high-quality VHVI base oils have comparable volatility, oxidation stability and viscosity indices to polyalphaolefins, whereas the most pronounced differences are viscometric properties in the low-temperature range. However, there are noticeable differences between different market-typical VHVI base oils, depending primarily on the manufacturing process. The differences in the physicochemical properties of PAOs and various VHVI base oils are attributable to differences in the typical molecular composition. This is illustrated by a compositional analysis of several VHVI base oils, in which the (iso)paraffin content and the content of different naphthenic and aromatic compounds is analyzed. The base oil influence on specific properties of formulated lubricants is discussed on the basis of several examples, and studies conducted with passenger car engine oils (PCMOs), heavy-duty engine oils (HDEOs) and gear oils are described in detail. As a result of extremely low CCS viscosities, PAOs are optimally suited for use in 0W-X PCMOs whereas 5W-X PCMOs meeting highest performance requirements can also be formulated with high-quality VHVI base oils. Emission measurements with HDEOs formulated with either SN mineral base oil or VHVI base oil demonstrated that the base oil type affects tailpipe particle emissions in the particle size range <5 {mu}m as replacement of SN mineral base oil with VHVI base oil resulted in lower particle emissions. Test stand measurements with gear oils formulated with either VHVI base oils or PAOs yielded comparable results in terms of power transfer ratio and oil temperature increase. (orig.)

  20. Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2013-04-01

    Full Text Available This paper introduces palm oil mill effluent as a promising substrate for biosurfactant production. Potential strains ofbacteria were isolated from various hydrocarbon-contaminated soils and screened for biosurfactant production with the helpof the drop collapse method and surface tension measurements. Out of 26 isolates of bacteria, the strain NA3 showed thehighest bacterial growth with the highest surface tension reduction of 27.2 mN/m. It was then identified as Nevskia ramosaNA3 by biochemical and 16S rRNA sequence analysis. The Plackett-Burman experimental design was employed to determinethe important nutritional requirements for biosurfactant production by N. ramosa NA3 under controlled conditions. Six outof 11 factors of the production medium were found to significantly affect the production of biosurfactant. FeCl2 and NaNO3had a direct proportional correlation with the biosurfactant production. Commercial sugar, glucose, K2HPO4 and MgCl2showed inversely proportional relationship with biosurfactant production in the selected experimental range.

  1. Oil sands to the rescue: oil sand microbial communities can degrade recalcitrant alkyl phenyl alkanoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, Corinne [University of Essex (Canada)], email: cwhitby@essex.ac.uk

    2011-07-01

    Almost half of all global oil reserves are found as biodegraded heavy oils found in vast tar sand deposits located in North and South America and these account for 47% of Canadian oil production. Oil sand extraction generates large amounts of toxic waste water, known as oil sand process waters (OSPW), that are stored in large tailing ponds that contain toxic compounds like naphthenic acids (NAs). The presence of NAs creates problems like toxicity, corrosion, and the formation of calcium napthenate deposits which block pipelines and other infrastructure and need to be removed. This paper presents oil sand microbial communities that can degrade these NAs. The approach is to apply new aliphatic and aromatic NAs as substrates to supplement and identify NA degrading microbes and also to identify the metabolites produced and explain NA degradation pathways and the functional genes involved. The chemistry and the processes involved are explained. From the results, it is suggested that pure cultures of P. putida KT2440 be used against NAs.

  2. Application of microemulsion in oil production operations; Emprego de microemulsao na producao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcia Cristina K. de; Gonzalez, Gaspar [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    Microemulsions are thermodynamically stable liquid-liquid dispersions that present a wide range of potential applications in the Petroleum Industry due to their high stability, ultralow interfacial tension and capacity to modify the wettability of the solids eventually present in the system. In this work some specific application such as removal of deposits from solid surfaces, oily sludge separation, heavy oil recovery from consolidated porous media and oil mobilization from limestone cores, currently under examination at PETROBRAS, are reviewed. It has been found that heavy oil fraction strongly attached to solid surfaces can be removed up to above 90% in the case solids contaminated with oil previously treated by thermal desorption or for sand contaminated with crude oil. Tests with field samples of oily sludge showed that these contaminants can readily be resolved into oil, water and free loose solid particles. In fluid injection tests using consolidated porous media it was observed that the injection of microemulsion after secondary oil removal with sea water conduced to an additional recovery of 59%. Qualitative tests carried out with consolidated limestone cores impregnated with crude oil showed that the oil was efficiently displaced by microemulsion. This effect has been ascribed to the rock matrix wettability inversion caused by the microemulsion. (author)

  3. NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells

    Science.gov (United States)

    West, William; Whitacre, Jay; DelCastillo, Linda

    2009-01-01

    Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.

  4. High-Viscosity Oil Filtration in the Pool Under Thermal Action

    Science.gov (United States)

    Shagapov, V. Sh.; Yumagulova, Yu. A.; Gizzatullina, A. A.

    2018-05-01

    We have developed a mathematical model and constructed numerical solutions of the problem of heating a high-viscosity oil pool through one horizontal well or a system of wells and have shown the possibility of their further operation until the limiting profitable discharge of oil is attained. The expenditure of heat in heating the oil pool, the evolution of discharge of oil, and the mass of extracted oil over the considered period have been considered.

  5. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mendil, Durali; Uluoezlue, Ozguer Dogan; Tuezen, Mustafa; Soylak, Mustafa

    2009-01-01

    The element contents (Fe, Mn, Zn, Cu, Pb, Co, Cd, Na, K, Ca and Mg) in edible oils (olive oil, hazelnut oil, sunflower oil, margarine, butter and corn oil) from Turkey were determined using atomic absorption spectrometry after microwave digestion. The concentrations of trace element in the samples were found to be 291.0-52.0, 1.64-0.04, 3.08-1.03, 0.71-0.05, 0.03-0.01, 1.30-0.50, 84.0-0.90, 50.1-1.30, 174.2-20.8 and 20.8-0.60 μg/g for iron, manganese, zinc, copper, lead, cobalt, sodium, potassium, calcium, and magnesium, respectively. Cadmium was found to be 4.57-0.09 μg/kg. The high heavy metal and minerals accumulation levels in the samples were found in olive oil for Cu, Pb, Co, margarine for Fe, K, corn oil for Zn, Mn, butter for Na, Mg, sunflower oil for Ca and hazelnut oil for Cd, respectively.

  6. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    Science.gov (United States)

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing

    2015-04-01

    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Phosphorylation of glyoxysomal malate synthase from castor oil seed endosperm and cucumber cotyledon

    International Nuclear Information System (INIS)

    Yang, Y.P; Randall, D.D.

    1989-01-01

    Glyoxysomal malate synthase (MS) was purified to apparent homogeneity from 3-d germinating castor oil seed endosperm by a relatively simple procedure including two sucrose density gradient centrifugations. Antibodies raised to the caster oil seed MS crossreacted with MS from cucumber cotyledon. MS was phosphorylated in both tissues in an MgATP dependent reaction. The phosphorylation pattern was similar for both enzymes and both enzymes were inhibited by NaF, NaMo, (NH 4 )SO 4 , glyoxylate and high concentration of MgCl 2 (60 mM), but was not inhibited by NaCl and malate. Further characterization of the phosphorylation of MS from castor oil seed endosperms showed that the 5S form of MS is the form which is labelled by 32 P. The addition of exogenous alkaline phosphatase to MS not only decreased enzyme activity, but could also dephosphorylate phospho-MS. The relationship between dephosphorylation of MS and the decrease of MS activity is currently under investigation

  8. Breeding and application of high-oil soybean varieties through radiation

    International Nuclear Information System (INIS)

    Guo Tai; Liu Zhongtang; Hu Xiping; Wang Zhixin; Wu Xiuhong; Zheng Wei; Chen Dexiang

    2005-01-01

    This paper reported the results of breeding and utilizing of high-oil soybean varieties, and at the same time, discussed the key technique of selecting high-oil soybean variety. This research based on crossbreeding, through genetic improvement and radiation treatment, continuous directive selection, combined with quality analysis and disease-resistant identification, and we had created four high-oil soybean varieties (lines), they were Hefeng46 (Hefu93154-4), Hefeng47(Hefu 93154-2), Hefeng48 (Hefu 93155-6), Hefu 93148-4. Their oil content ranges from 21.28% to 23.18%, and the yield is 2208-2578.5 kg/hm 2 , compared with the check, the yield is 10.1%-13.1% higher. All those varieties resisted one or two main soybean diseases. (authors)

  9. Suplementação com óleo de soja na dieta de potros Soybean oil supplementation in the diet of foals

    Directory of Open Access Journals (Sweden)

    Waleska Tobo Pastori

    2009-09-01

    Full Text Available Em um delineamento quadrado latino 4 X 4 balanceado, foram utilizados quatro potros, filhos do mesmo garanhão, com idade entre 10 e 12 meses e 270 ± 9,80 kg. Foram analisados os efeitos dos níveis de 5, 10, 15 e 20% de óleo de soja no concentrado sobre a aceitabilidade e a digestibilidade dos nutrientes e sobre a concentração plasmática de colesterol total e suas frações nas lipoproteínas de densidade muito baixa (VLDL-C, densidade baixa (LDL-C e densidade alta (HDL-C e nos triglicérides totais. O aumento do nível de óleo na dieta afetou as digestibilidades da matéria orgânica, fibra em detergente neutro e fibra em detergente ácido, que apresentaram resposta quadrática, com diminuição após os valores de 10,7; 9,5 e 10,5%, respectivamente, de extrato etéreo na dieta. Os níveis de óleo de soja tiveram efeito linear sobre as concentrações plasmáticas de colesterol e LDL-C, que apresentaram diminuição de 0,65 mg/dL e 0,58 mg/dL, respectivamente, a cada 1% de aumento no extrato etéreo do concentrado. Níveis de óleo de soja superiores a 9,5% no concentrado afetam a digestibilidade da dieta, principalmente na parede celular, e diminuem as concentrações plasmáticas de colesterol e LDL-C.Four foals, sired by the same stallion, aged between 10 and 12 months and 270 ± 9.80 kg average weight, were alloted in a 4 X 4 balanced Latin Square design. The effects were analyzed of the inclusion of the levels of 5, 10, 15 and 20% of soybean oil in the concentrate on the acceptability, nutrient digestibilities and on total cholesterol plasma concentrations and its fractions: very low density lipoprotein (VLDL-C, low-density lipoprotein (LDL-C, high-density lipoprotein (HDL-C and total triglycerides (TRG. The increase in the level of soybean oil in the diet affected the digestibilities of organic matter, neutral detergent fiber and acid detergent fiber that presented a quadratic response which decreased after a expected values of 10

  10. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    International Nuclear Information System (INIS)

    Deng Xin; Fang Zhen; Liu Yunhu

    2010-01-01

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H 2 SO 4 or by two-step process were studied in an ultrasonic reactor at 60 deg. C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H 2 SO 4 as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H 2 SO 4 for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil.

  11. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    Science.gov (United States)

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi

    2018-04-27

    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  12. Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres

    International Nuclear Information System (INIS)

    Bergamasco, Juliana; Araujo, Marcelo V. de; Vasconcellos, Adriano de; Luizon Filho, Roberto A.; Hatanaka, Rafael R.; Giotto, Marcus V.; Aranda, Donato A.G.; Nery, José G.

    2013-01-01

    Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg −1 ), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg −1 ). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23 Na- and 13 C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. Highlights: • Rhizomucor miehei lipase was immobilized on PVA microspheres (PVA4, PVA12, PVA25). • Polymer-enzyme complex was characterized by XDR, SEM, ATR-FTIR, 13 C-CPMAS-NMR, 23 Na-MAS-NMR. • Polymer-enzymes (PVA12 and PVA25) enzymes yielded considerable amount of ethyl esters. • Synergistic effect was observed for the polymer-enzyme complexes

  13. Properties of organogels of high stearic soybean oil

    Science.gov (United States)

    Recently, the U.S. Food and Drug Administration (FDA) announced that food companies have to phase out the use of partially hydrogenated oils containing trans-fats by 2018. The use of high-stearic oils has been recognized as one of the ways to replace trans fats in food. Organogels also have drawn a ...

  14. Fine-particle sodium tracer for long-range transport of the Kuwaiti oil-fire smoke

    Energy Technology Data Exchange (ETDEWEB)

    Lowenthal, D.H.; Borys, R.D.; Rogers, C.F.; Chow, J.C.; Stevens, R.K.

    1993-04-23

    Evidence for long-range transport of the Kuwaiti oil-fire smoke during the months following the Persian Gulf War has been more or less indirect. However, more-recent data on the aerosol chemistry of Kuwaiti oil-fire plumes provides a direct link between those fires and aerosols collected at the Mauna Loa Observatory (MLO) during the late spring and summer of 1991. By itself, temporal covariation of fine-particle concentrations of elemental carbon, sulfur, and the noncrustal V/Zn ratio in MLO aerosols suggested a link to large-scale oil-combustion sources, but not necessarily to Kuwait. However, high concentrations of fine-particle (0.1-1.0 microm diameter) NaCl were observed in the 'white' oil-fire plumes over Kuwait during the summer of 1991. In the absence of other demonstratable sources of fine-particle Na, these relationships provide a direct link between the Kuwaiti oil-fires and aerosol composition observed at MLO. (Copyright (c) 1993 American Geophysical Union.)

  15. Production of synthetic hydrocarbon lube oil from highly waxy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Q; Ding, Z; Zheng, Sh; Wu, W

    1980-01-01

    A feasible way to utilize the low value soft wax is to convert it into synthetic hydrocarbon lube oil by thermal cracking/polymerization route. The first commercial plant for this purpose has been in normal operation since 1970. It has been proved to be economically sound. The antioxidant response of the product polymer oil can be distinctly improved by hydro-refining. It has been found that the vacuum gas oil from highly waxy crude with or without furfural refining can be used as cracking stock. If high viscosity index polymer oil is desired, it is better to use slack wax as the cracking stock.

  16. Viewpoint On the Climate Change Effects of High Oil Prices

    International Nuclear Information System (INIS)

    Vielle, M.; Viguier, L.

    2005-11-01

    Some commentators claim that the oil market has achieved within a few months what international bureaucrats have struggled to obtain in a decade of international climate negotiations. The fallacy of the oil price argument is that substitutions and income effects that would result from higher oil prices are not considered. Using a computable general equilibrium model, we show that high oil prices cannot serve as substitutes for effective climate policies.

  17. Effects of H2O/Na2O molar ratio on the strength of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash based concrete

    International Nuclear Information System (INIS)

    Yusuf, Moruf Olalekan; Megat Johari, Megat Azmi; Ahmad, Zainal Arifin; Maslehuddin, Mohammed

    2014-01-01

    Highlights: • Effects of H 2 O/Na 2 O on GBFS-POFA alkaline activated concrete are investigated. • High H 2 O/Na 2 O contents enhance dissolutions/workability at the expense of strength. • Lower H 2 O/Na 2 O molar ratios aid compressive strength of the products. • Increase in H 2 O/Na 2 O favours the reactivity of Ca and the products molecular bonds. • Low H 2 O/Na 2 O positively affects the microstructural density of the products. - Abstract: Effects of H 2 O/Na 2 O molar ratios (MRs) on the developed alkaline activated pozzolanic solid wastes (PMs)-ultrafine palm oil fuel ash (UPOFA) and ground blast furnace slag (GBFS)-were studied by using the constant mass of combined activators (10 M NaOH aq + Na 2 SiO 3aq of silica-modulus (Ms = SiO 2 /Na 2 O) of 3.3).The free water content (FWC) expressed as FWC/(PMs) varied from 0.02 to 0.1 by mass while the total H 2 O/Na 2 O MRs ranged from 18.9 to 23.1 The findings revealed that increase in H 2 O/Na 2 O MRs negatively affects the strength but positively impact the mixture workability (consistency). The microstructural morphology examination using Scanning Electron Microscope coupled with Energy dispersive spectroscopy (SEM + EDS) reveals the contribution of H 2 O/Na 2 O MRs to the product nature, compactness, and the reactivity of Ca 2+ and Al 3+ while Fourier transform infra-red (FTIR) spectroscopy indicates that H 2 O/Na 2 O ratios contributed to the product amorphousity and carbonation process but sparingly affected its formed polymerized structural units (SiQ n (mAl), n = 2 and 3)

  18. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    International Nuclear Information System (INIS)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-01-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  19. Sensory properties during storage of crisps and French fries prepared with sunflower oil and high oleic sunflower oil

    NARCIS (Netherlands)

    Gemert, L.J. van

    1996-01-01

    A selected and trained descriptive sensory panel has assessed samples of crisps and French fries prepared on an industrial scale with either sunflower oil (SO) or high oleic sunflower oil (HOSO). Furthermore, crisps have been fried in these oils with or without dimethyl polysiloxane (DMPS).

  20. Towards sustained high oil prices and increasingly volatile

    International Nuclear Information System (INIS)

    Auverlot, Dominique; Teillant, Aude; Rech, Olivier

    2012-09-01

    It is particularly difficult to predict the evolution of global oil production and its ability to meet the demand: the main uncertainties are related to the magnitude of the growth of emerging countries, more or less rapid decline in the production of major oil fields current events as well as natural or accidental, but especially geopolitics, which may affect, at any time, production. In a tight market today, the rapid growth of emerging economies, disruption of the oil supply chain world, even its mere mention, could cause short-term loss of excess production capacity - largely concentrated in Saudi Arabia - an increase substantial progress and, as contemplated by the International Atomic Energy imbalances between global oil supply and demand. If, after 2020, production of conventional oil begins to decline and the demand from emerging markets continues to grow, more massive imbalances may arise, leading to potential geopolitical tensions. Control would then demand the best answer. Otherwise, the resources of unconventional hydrocarbons, considerable expected to meet the demand, provided that their development is fast enough and their operating conditions are environmentally friendly. A consensus is emerging today on keeping oil prices high (above $ 100 / barrel) and volatile in the coming years, allowing some producing countries to pursue their development, but for France amplifying the negative effects on the economic growth oil bill (more than 49 billion euros in 2011) weighs more heavily in our trade deficit. In all cases, climate issues, the weight of the oil bill on our economy, securing our energy supply and technical uncertainties or geopolitical oil production call for reducing our oil consumption, accelerated motion the transition to a low carbon economy and development of our own energy resources. Contents: - Current analysis of oil reserves; - Uncertainties about the evolution of world oil production; - What is the potential long-term oil production

  1. 'High throughput': new technique to evaluation of biocides for biofouling control in oil fields; 'High throughput': nova tecnologia para avaliacao da eficacia de biocidas no controle de biofilme na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Bei [DOW, IL(United States); Yang, Jeff [DOW, Shangai (China); Bertheas, Ute [DOW, Horgen (Switzerland); Takahashi, Debora F. [DOW, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The wide metabolism diversifications and versatile surviving mechanisms lead to the broad existence of microorganisms in oil fields. Water flooding in secondary production can encourage microbial growth and biofilm build-up. Microbial contamination in oil field can cause many problems including microbiologically induced corrosion, oil and gas souring, deposition of iron sulfide, degradation of polymer additives, and plugging oil and gas pipelines and water purification systems. In general, biocides are needed both topside and down hole to control problematic microorganisms. In this study, a high throughput test method was developed that enables a more realistic determination of biocides efficacy against anaerobic microorganisms commonly found in oil field environments. Using this method, a thorough comparison of several commonly used biocides products in oil field for their efficacy against oil field anaerobic sulfate-reducing bacteria isolates was executed. This study showed that for each individual application, it is important to screen biocides and their combinations against microorganisms cultured from the field. Since biocides vary in their mode of action, this study also demonstrated the critical importance of utilizing the high throughput method for determining the best and most customized solution for each application. (author)

  2. Maintaining K+ balance on the low-Na+, high-K+ diet

    Science.gov (United States)

    Cornelius, Ryan J.; Wang, Bangchen; Wang-France, Jun

    2016-01-01

    A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the “Western” high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances. PMID:26739887

  3. Mechanisms of radiation - chemical conversion of high-paraffinic crude oil

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Zaikina, R.F.; Silverman, J.

    2002-01-01

    Complete text of publication follows. Regularities of radiation-thermal cracking (RTC) are studied in high-paraffinic oil. Irradiation of oil samples by 2 MeV electrons was performed using a special facility assembled at the electron accelerator ELU-4. The following characteristic RTC features were observed in oil with high contents of heavy paraffins: low level of isomerization in light RTC fractions; very high polymerization rate and low olefin contents in RTC products; relatively low yields of light fractions at low irradiation dose rates; increase in the molecular weight of the gasoline fraction as the irradiation dose rate grows. Similar intense polymerization of RTC products was observed in our experiments with such wastes of oil extraction as asphalt-pitch-paraffin sediments (APPS). Theoretically this feedstock contains great reserves of hydrogen, and, therefore, has high potential yields of light fractions. However, in this case RTC was accompanied by intense reactions of polymerization and chemical adsorption that limited the maximum yields of light RTC products to 40% in our experiments. A specific feature of APPS radiation-induced destruction is formation of the big amount of a reactive paraffinic residue. As a result of interaction with the polymerizing residue the light liquid fractions were completely absorbed and the heavy residue got denser and solidified after several days of exposure at room temperature. RTC regularities in heavy paraffinic oil differ from those observed both in highly viscous petroleum feedstock and light paraffin oils. We attribute these observations to the behavior of heavy alkyl radicals that initiate polymerization and isomerization in heavy paraffin fractions

  4. Lack of promotion of colon carcinogenesis by high-oleic safflower oil.

    Science.gov (United States)

    Takeshita, M; Ueda, H; Shirabe, K; Higuchi, Y; Yoshida, S

    1997-04-15

    The nonpromoting effect of olive oil on colon carcinogenesis has been attributed to its high oleic acid content, whereas a positive association of monounsaturated fat in beef tallow with colon tumors has been reported. The effect of constituents other than fatty acids could not be neglected in these experiments. In order to minimize the effects of minor constituents in the oils, the authors compared conventional safflower oil with oil from a mutant strain of safflower that is rich in oleic acid. ICR mice were treated with 1,2-dimethylhydrazine (DMH, 20 mg/kg body weight every week for 12 weeks) and then were fed either a high-fat diet (23.5% by weight), containing safflower oil (HF-LA) or high-oleic safflower oil (HF-OA), or a low-fat diet (5% by weight), containing safflower oil (LF-LA) or high-oleic safflower oil (LF-OA). The test diets were continued until termination of the experiment at 30 weeks after the first administration of DMH. Fatty acid composition of colon phospholipids was determined by gas-liquid chromatography-mass spectrometry. Tumor multiplicity in animals fed the HF-OA diet was indistinguishable from that in animals fed LF-LA or LF-OA. In contrast, animals fed the HF-LA diet had a significantly higher incidence of colon tumors (mostly adenocarcinomas) than the other groups. Fatty acid profiles of colon phospholipids reflected those of the diet. Animals fed a HF-LA diet showed a marked decrease of nervonic acid (C24:1, n-9) in the colon sphingomyelin. These data indicate that oleic acid does not enhance DMH-induced colon carcinogenesis in mice, even when they are fed a high-fat diet.

  5. Performance of high-rate gravel-packed oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Unneland, Trond

    2001-05-01

    Improved methods for the prediction, evaluation, and monitoring of performance in high-rate cased-hole gravel-packed oil wells are presented in this thesis. The ability to predict well performance prior to the gravel-pack operations, evaluate the results after the operation, and monitor well performance over time has been improved. This lifetime approach to performance analysis of gravel-packed oil wells contributes to increase oil production and field profitability. First, analytical models available for prediction of performance in gravel-packed oil wells are reviewed, with particular emphasis on high-velocity flow effects. From the analysis of field data from three North Sea oil fields, improved and calibrated cased-hole gravel-pack performance prediction models are presented. The recommended model is based on serial flow through formation sand and gravel in the perforation tunnels. In addition, new correlations for high-velocity flow in high-rate gravel-packed oil wells are introduced. Combined, this improves the performance prediction for gravel-packed oil wells, and specific areas can be targeted for optimized well design. Next, limitations in the current methods and alternative methods for evaluation and comparison of well performance are presented. The most widely used parameter, the skin factor, remains a convenient and important parameter. However, using the skin concept in direct comparisons between wells with different reservoir properties may result in misleading or even invalid conclusions. A discussion of the parameters affecting the skin value, with a clarification of limitations, is included. A methodology for evaluation and comparison of gravel-packed well performance is presented, and this includes the use of results from production logs and the use of effective perforation tunnel permeability as a parameter. This contributes to optimized operational procedures from well to well and from field to field. Finally, the data sources available for

  6. Highly efficient procedure for the transesterification of vegetable oil

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xuezheng; Gao, Shan; He, Mingyuan [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Yang, Jianguo [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Energy Institute, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-10-15

    The highly efficient procedure has been developed for the synthesis of biodiesel from vegetable oil and methanol. The KF/MgO has been selected as the most efficient catalyst for the reactions with the yield of 99.3%. Operational simplicity, without need of the purification of raw vegetable oil, low cost of the catalyst used, high activities, no saponification and reusability are the key features of this methodology. (author)

  7. Jussara berry (Euterpe edulis M.) oil-in-water emulsions are highly stable: the role of natural antioxidants in the fruit oil.

    Science.gov (United States)

    Carvalho, Aline G A; Silva, Kelly A; Silva, Laís O; Costa, André M M; Akil, Emília; Coelho, Maria A Z; Torres, Alexandre G

    2018-05-23

    Antioxidants help prevent lipid oxidation, and therefore are critical to maintain sensory quality and chemical characteristics of edible oils. Jussara berry (Euterpe edulis M.) oil is a source of minor compounds with potential antioxidant activity. The aim of this work was to investigate the role of such compounds on the effectiveness to prevent or delay oxidation of oil present in oil-in-water emulsions, and how the emulsions physical stability would be affected. Jussara berry oil extracted by ethanol extraction, its stripped variations (partially stripped, highly stripped and highly stripped with added BHT), and expeller pressed oil were used to prepare oil-in-water emulsions. Jussara berry oils were analyzed before emulsions preparation to ensure its initial quality and composition, and oil-in-water emulsions were analyzed regarding their oxidative and physical stability. Ethanol extracted oil emulsion presented higher oxidative stability when compared to highly stripped oil emulsion with added synthetic antioxidant BHT (oxidative stability index 45% lower, after 60 days, and reached undetectable levels after 90 days). All emulsions maintained physically stable for up to 120 days of storage. Our results indicate that natural antioxidants in jussara berry oil protect emulsions from oxidation while keeping physical stability unchanged. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Relationships among oil content, protein content and seed size in soybeans

    Directory of Open Access Journals (Sweden)

    Mario Marega Filho

    2001-03-01

    Full Text Available During 1995/96 and 1996/97, experiments were carried out at Londrina State University, aiming at quantifying the oil and protein contents in two groups of soybean genotypes; estimating the phenotypic, genotypic and environmental correlations existent among oil, protein content and seed size, and identifying genotypes for direct human consumption with high protein content. The evaluated characters were Weight of a Hundred Seeds (WHS, expressed in grams/100 seeds, Oil Content (OC and Protein Content (PC, expressed in %. In the experiment carried out in the field, OC ranged from 12 to 20.37 % and PC from 35.66 to 41.75% while in the experiment carried out in the greenhouse OC ranged from 12.26 to 21.79 % and PC from 32.95 to 41.56 % . The correlations between oil and protein were negative and significant. The relationship among WHS with OC and PC was low and higly affected by the time effect. Due to their high protein content and stability to oil and protein contents, there were distinction among the treatments carried out in the field (GA23 and GA20, and those carried out in the greenhouse (PI408251, Waseda, B6F4 (L-3 less, PI423909 and Tambagura.Durante 1995/96 e 1996/97, foram conduzidos experimentos na Universidade Estadual de Londrina, visando: quantificar os teores de óleo e proteína em dois grupos de genótipos de soja tipo alimento; estimar as correlações fenotípicas e genotípicas existentes entre os teores de óleo, proteína e tamanho das sementes; e, identificar genótipos para consumo humano de forma direta, com elevado teor de proteína. Foram avaliados os caracteres Peso de Cem Sementes (PCS, expresso em gramas / 100 sementes, Teor de Óleo (TO, e Teor de Proteína (TP, expressos em %. Na população conduzida a campo, a característica TO variou de 12 a 20,4 %, e TP de 35,7 a 41,8 %. A população conduzida em casa de vegetação apresentou uma variação de 12,3 a 21,8 % para TO, e de 33 a 41,6 % para TP. As correla

  9. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na3OBr and Na4OI2

    International Nuclear Information System (INIS)

    Wang, Yonggang; Wen, Ting; Park, Changyong; Kenney-Benson, Curtis; Pravica, Michael; Zhao, Yusheng; Yang, Wenge

    2016-01-01

    The structure stability under high pressure and thermal expansion behavior of Na 3 OBr and Na 4 OI 2 , two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na 3 OBr and Na 4 OI 2 , respectively. The cubic Na 3 OBr structure and tetragonal Na 4 OI 2 with intergrowth K 2 NiF 4 structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na 4 OI 2 exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20–80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications

  10. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  11. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xin; Fang, Zhen; Liu, Yun-hu [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China)

    2010-12-15

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H{sub 2}SO{sub 4} or by two-step process were studied in an ultrasonic reactor at 60 C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H{sub 2}SO{sub 4} as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H{sub 2}SO{sub 4} for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil. (author)

  12. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xin [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China); Fang Zhen, E-mail: zhenfang@xtbg.ac.c [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China); Liu Yunhu [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China)

    2010-12-15

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H{sub 2}SO{sub 4} or by two-step process were studied in an ultrasonic reactor at 60 deg. C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H{sub 2}SO{sub 4} as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H{sub 2}SO{sub 4} for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil.

  13. High-glycemic index carbohydrates abrogate the antiobesity effect of fish oil in mice

    DEFF Research Database (Denmark)

    Hao, Qin; Lillefosse, Haldis Haukås; Fjære, Even

    2012-01-01

    Fish oil rich in n-3 polyunsaturated fatty acids is known to attenuate diet-induced obesity and adipose tissue inflammation in rodents. Here we aimed to investigate whether different carbohydrate sources modulated the antiobesity effects of fish oil. By feeding C57BL/6J mice isocaloric high-fat d...... metabolic effects of fish oil by demonstrating that high-GI carbohydrates attenuate the antiobesity effects of fish oil.......Fish oil rich in n-3 polyunsaturated fatty acids is known to attenuate diet-induced obesity and adipose tissue inflammation in rodents. Here we aimed to investigate whether different carbohydrate sources modulated the antiobesity effects of fish oil. By feeding C57BL/6J mice isocaloric high...

  14. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-01-01

    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  15. Computer modeling of oil spill trajectories with a high accuracy method

    International Nuclear Information System (INIS)

    Garcia-Martinez, Reinaldo; Flores-Tovar, Henry

    1999-01-01

    This paper proposes a high accuracy numerical method to model oil spill trajectories using a particle-tracking algorithm. The Euler method, used to calculate oil trajectories, can give adequate solutions in most open ocean applications. However, this method may not predict accurate particle trajectories in certain highly non-uniform velocity fields near coastal zones or in river problems. Simple numerical experiments show that the Euler method may also introduce artificial numerical dispersion that could lead to overestimation of spill areas. This article proposes a fourth-order Runge-Kutta method with fourth-order velocity interpolation to calculate oil trajectories that minimise these problems. The algorithm is implemented in the OilTrack model to predict oil trajectories following the 'Nissos Amorgos' oil spill accident that occurred in the Gulf of Venezuela in 1997. Despite lack of adequate field information, model results compare well with observations in the impacted area. (Author)

  16. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  17. Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol) coatings for self-cleaning and oil/water separation

    International Nuclear Information System (INIS)

    Wang, Qian; Fu, Youjia; Yan, Xiaoxia; Chang, Yanjiao; Ren, Lili; Zhou, Jiang

    2017-01-01

    Highlights: • Underwater superoleophobic CS/PVA coatings were prepared using a facile method. • Immersion in NaOH solution was crucial to enhance roughness of the coating surface. • Effects of coating composition on wettability of coating surface were investigated. • The CS/PVA coatings possess self-cleaning property. • The CS/PVA coatings can be used for oil/water separation with high efficiency. - Abstract: In this paper, chitosan (CS)/poly(vinyl alcohol) (PVA) coatings cross-linked with glutaraldehyde (GA) were prepared. Effects of the coating composition and NaOH solution treatment on surface morphology and topography were investigated by scanning electron microscope and atomic force microscope. It was found that the process of immersing the CS/PVA coatings into NaOH solution was crucial to enhance rough structure on the coating surface. The rough surface structure and the hydrophilic groups of CS and PVA made the CS/PVA coatings possess underwater superoleophobicity and low adhesion to oil. Oil contact angle of the prepared CS/PVA coatings was up to 161° and slide angle was only 3°. Moreover, the CS/PVA coatings showed stable superoleophobicity in high salt, strong acidic, and alkaline environments as well as underwater self-cleaning property and excellent transparency. The CS/PVA coatings could be used for gravity driven oil/water separation with high efficiency.

  18. Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol) coatings for self-cleaning and oil/water separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian; Fu, Youjia; Yan, Xiaoxia; Chang, Yanjiao; Ren, Lili; Zhou, Jiang

    2017-08-01

    Highlights: • Underwater superoleophobic CS/PVA coatings were prepared using a facile method. • Immersion in NaOH solution was crucial to enhance roughness of the coating surface. • Effects of coating composition on wettability of coating surface were investigated. • The CS/PVA coatings possess self-cleaning property. • The CS/PVA coatings can be used for oil/water separation with high efficiency. - Abstract: In this paper, chitosan (CS)/poly(vinyl alcohol) (PVA) coatings cross-linked with glutaraldehyde (GA) were prepared. Effects of the coating composition and NaOH solution treatment on surface morphology and topography were investigated by scanning electron microscope and atomic force microscope. It was found that the process of immersing the CS/PVA coatings into NaOH solution was crucial to enhance rough structure on the coating surface. The rough surface structure and the hydrophilic groups of CS and PVA made the CS/PVA coatings possess underwater superoleophobicity and low adhesion to oil. Oil contact angle of the prepared CS/PVA coatings was up to 161° and slide angle was only 3°. Moreover, the CS/PVA coatings showed stable superoleophobicity in high salt, strong acidic, and alkaline environments as well as underwater self-cleaning property and excellent transparency. The CS/PVA coatings could be used for gravity driven oil/water separation with high efficiency.

  19. Crude oil prices : how high, how much harm?

    International Nuclear Information System (INIS)

    Levesque, M.; Alexander, C.

    2002-01-01

    This paper discussed the issue of crude oil prices and the economy. Crude oil prices are on the rise due to the recent events in the Middle East. In early April, West Texas Intermediate crude oil climbed to nearly US$28 a barrel. Most of the increase reflects the expectation of stronger world oil demand combined with supply constraints on the part of OPEC. Although there has been some concern expressed that rising oil prices may hinder economic recovery, the authors of this report do not see evidence that rising oil prices would throw economic recovery off course, arguing that the current spike will be short-lived. They stated that even under a worse-case scenario where prices remain inflated, there is little reason to fear for the health of the Canadian economy. OPEC is expected to increase its low production quotas in June. In addition, non-OPEC nations (Russia in particular) are expected to increase oil production in the coming months. The authors also indicated that it is unlikely that conflict in the West Bank will disrupt oil supply because Israel is not an oil-exporting nation. However, oil supply could be affected if other Arab nations were drawn into the issue. It was also noted that military action against Iraq would increase oil prices, possibly as high as US$40 a barrel, but the full extent of this hike in price will probably be unsustainable. In addition, the authors emphasized that the increase in energy costs would not be enough to seriously jeopardize the economic recovery in the United States. As for Canada, it is estimated that a US$10 per barrel increase in crude oil prices would have a small, but positive impact on Canadian GDP because in contrast to the United States, Canada produces much more energy than it consumers. In 2001, Canada ran a trade surplus of $2.8 billion. The report ended by stating that although higher oil prices could add a full percentage point to headline inflation by the end of the year, core inflation is likely to remain

  20. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration.

    Science.gov (United States)

    Luo, Dan; Wang, Feng; Zhu, Jingyi; Cao, Feng; Liu, Yuan; Li, Xiaogang; Willson, Richard C; Yang, Zhaozhong; Chu, Ching-Wu; Ren, Zhifeng

    2016-07-12

    The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil-water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions.

  1. Low-temperature glycerolysis of avocado oil

    Science.gov (United States)

    Satriana, Arpi, Normalina; Supardan, Muhammad Dani; Gustina, Rizka Try; Mustapha, Wan Aida Wan

    2018-04-01

    Glycerolysis can be a useful technique for production of mono- and diacylglycerols from triacylglycerols present in avocado oil. In the present work, the effect of catalyst and co-solvent concentration on low-temperature glycerolysis of avocado oil was investigated at 40oC of reaction temperature. A hydrodynamic cavitation system was used to enhance the miscibility of the oil and glycerol phases. NaOH and acetone were used as catalyst and co-solvent, respectively. The experimental results showed that the catalyst and co-solvent concentration affected the glycerolysis reaction rate. The catalyst concentration of 1.5% and co-solvent concentration of 300% were the optimised conditions. A suitable amount of NaOH and acetone must be added to achieve an optimum of triacylglycerol conversion.

  2. Effects of high fat fish oil and high fat corn oil diets on initiation of AOM-induced colonic aberrant crypt foci in male F344 rats

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Heemskerk, S.; Berg, H. van den; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    Modulating effects of high fat fish oil (HFFO) and high fat corn oil (HFCO) diets on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) were studied in male F344 rats following 8 weeks of dietary treatment. The incidence of AOM-induced ACF was significantly lower in the proximal colon of

  3. The impact of high oil prices on natural gas

    International Nuclear Information System (INIS)

    Koevoet, H.

    2003-01-01

    The principle of gas-to-oil (oil prices determine the price of natural gas) in the Netherlands and several other developments elsewhere (war in Iraq and a cold winter in the USA) has caused high natural gas prices. The question is whether the liberalization of the energy market can change this principle [nl

  4. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.

    Science.gov (United States)

    Zhou, Wenting; Li, Song; Liu, Yan; Xu, Zhengzheng; Wei, Sufeng; Wang, Guoyong; Lian, Jianshe; Jiang, Qing

    2018-03-21

    Traditional oil-water separation materials have to own ultrahigh or ultralow surface energy. Thus, they can only be wetted by one of the two, oil or water. Our experiment here demonstrates that the wettability in oil-water mixtures can be tuned by oil and water initially. Hierarchical voids are built on commercial copper foams with the help of hydrothermally synthesized titanium dioxide nanorods. The foams can be easily wetted by both oil and water. The water prewetted foams are superhydrophilic and superoleophobic under oil-water mixtures, meanwhile the oil prewetted foams are superoleophilic and superhydrophobic. In this paper, many kinds of water-oil mixtures were separated by two foams, prewetted by corresponding oil or water, respectively, combining a straight tee in a high flux, high efficiency, and continuous mode. This research indicates that oil-water mixtures can be separated more eco-friendly and at lower cost.

  5. High internal phase emulsion (HIPE)-templated biopolymeric oleofilms containing an ultra-high concentration of edible liquid oil.

    Science.gov (United States)

    Wijaya, Wahyu; Van der Meeren, Paul; Dewettinck, Koen; Patel, Ashok R

    2018-04-25

    We report, for the first time, the fabrication of oleofilms (containing more than 97 wt% edible liquid oil) using high internal phase emulsions (with oil volume fraction φoil = 0.82) as templates. Advanced microscopy studies revealed an interesting microstructure of these films where jammed oil droplets were embedded in a dried matrix of biopolymeric complexes.

  6. Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes.

    Science.gov (United States)

    de Lara, Lucas S; Michelon, Mateus F; Miranda, Caetano R

    2012-12-20

    In our paper, we study the interface wettability, diffusivity, and molecular orientation between crude oil and different fluids for applications in improved oil recovery (IOR) processes through atomistic molecular dynamics (MD). The salt concentration, temperature, and pressure effects on the physical chemistry properties of different interfaces between IOR agents [brine (H(2)O + % NaCl), CO(2), N(2), and CH(4)] and crude oil have been determined. From the interfacial density profiles, an accumulation of aromatic molecules near the interface has been observed. In the case of brine interfaced with crude oil, our calculations indicate an increase in the interfacial tension with increasing pressure and salt concentration, which favors oil displacement. On the other hand, with the other fluids studied (CO(2), N(2), and CH(4)), the interfacial tension decreases with increasing pressure and temperature. With interfacial tension reduction, an increase in fluid diffusivity in the oil phase is observed. We also studied the molecular orientation properties of the hydrocarbon and fluids molecules in the interface region. We perceived that the molecular orientation could be affected by changes in the interfacial tension and diffusivity of the molecules in the interface region with the increased pressure and temperature: pressure (increasing) → interfacial tension (decreasing) → diffusion (increasing) → molecular ordering. From a molecular point of view, the combination of low interfacial tension and high diffusion of molecules in the oil phase gives the CO(2) molecules unique properties as an IOR fluid compared with other fluids studied here.

  7. The optimization of soybean oil hydrolysis reaction research

    International Nuclear Information System (INIS)

    Hasnisa Hashim; Jumat Salimon

    2008-01-01

    The hydrolysis reaction of soybean oil was optimized. The concentration effect of ethanolic alkaline solution (KOH and NaOH) to the oil acidity was studied. The alkaline concentrations, reaction time and temperature factors was investigated during the optimization of the hydrolysis or saponification reaction. KOH solution of 1 M showed a good saponification activity which resulted oil acid value of 226.8 mg/ g compared to NaOH solution with acid value of 225.4 mg/ g for the same reaction. The optimum saponification reaction of soybean oil occurred at 60 degree Celsius in 30 minutes by using ethanolic KOH 1 M with acid value of 229.6 mg/ g. Composition of free fatty acid before and after hydrolysis were determined by using gas chromatography. (author)

  8. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer.

    Science.gov (United States)

    Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo

    2017-11-01

    In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin.

    Science.gov (United States)

    Xue, Jia; Michael Davidson, P; Zhong, Qixin

    2015-10-01

    Emulsions of essential oils are investigated as potential intervention strategies to improve food safety and are preferably prepared from generally-recognized-as-safe emulsifiers. Stable thyme oil nanoemulsions can be prepared using combinations of sodium caseinate (NaCas) and soy lecithin. The objective of the present research was to study the antimicrobial activity of these nanoemulsions and understand the impacts of emulsifier concentrations. 10 g/L thyme oil was emulsified using combinations of (A) 4% w/v NaCas and 0.5% w/v lecithin or (B) 2% w/v NaCas and 0.25% w/v lecithin by high shear homogenization. Combination A resulted in a transparent emulsion with a mean droplet diameter of 82.5 nm, while it was turbid for the Combination B with an average diameter of 125.5 nm. Nanoemulsified thyme oil exhibited quicker initial reductions of bacteria than free thyme oil in tryptic soy broth (TSB) and 2% reduced fat milk at 21 °C, due to the improved dispersibility of thyme oil. In TSB with 0.3 g/L thyme oil, it took less than 4 and 8 h for two nanoemulsions and free oil, respectively, to reduce Escherichia coli O157:H7 and Listeria monocytogenes to be below the detection limit. The emulsified thyme oil also demonstrated more significant reductions of bacteria initially (4 and 8 h) in 2% reduced fat milk than free thyme oil. Especially, with 4 g/L thyme oil, the nanoemulsion prepared with Combination A reduced L. monocytogenes to be below the detection limit after 72 h, while the free thyme oil treatment was only bacteriostatic and the turbid nanoemulsion treatment with Combination B resulted in about 1 log CFU/mL reduction. However, E. coli O157:H7 treated with 3 g/L emulsified thyme oil and Salmonella Enteritidis treated with 4 g/L emulsified thyme oil recovered to a higher extent in milk than free thyme oil treatments. The increased concentration of emulsifiers in Combination A apparently reduced the antimicrobials available to alter bacteria membrane permeability

  10. At-wavelength interferometry of high-NA diffraction-limited EUV optics

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik; Jackson, Keith; Bokor, Jeffrey; Attwood, David

    2003-01-01

    Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub(angstrom)-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed

  11. Comparison of chemical characteristics of high oleic acid fraction of moringa oleifera oil with some vegetable oils

    International Nuclear Information System (INIS)

    Rahman, F.; Nadeem, M.; Zahoor, Y.

    2014-01-01

    Chemical characteristics of High oleic acid fraction (HOF) of Moringa oleifera oil (MOO) was compared with sunflower, soybean and canola oils. HOF of MOO was obtained by dry fractionation at 0 degree C. Iodine value and C18:1 in HOF increased from 61.55 to 82.47 points and 70.29% to 81.15%, respectively. Cloud point of HOF was 1.1 degree C as compared to 10.2 degree C in MOO. The induction period of HOF was greater than all the vegetable oils tested in this investigation. HOF can be used as a source of edible oil with better health attributes and superior storage stability. (author)

  12. High-rate oil removing scouring agent. Koyubun jokyoyo seirenzai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, K.; Sato, Y. (Dai-Ichi Kogyo Seiyaku Co. Ltd., Kyoto (Japan))

    1991-11-01

    Fiber forming, scutching and knitting processes in recent years are performed three to five times faster than in the conventional processes. Associated therewith, oil solutions are taken importantly for their stability and workability, such as smoothing properties, heat resistance and abrasion resistance. On the other hand, difficulty is increasing in removing the oils after scutching and knitting. This paper explains basic rinsing activities required in oil removal, and describes various test characteristics and compatibility of various high-rate oil removing scouring agents. An oil-in-water rinsing mechanism relies upon comprehensive actions of a surfactant in wetting, permeation, emulsified dispersion and solubilization. The most importantly taken among them is the emulsifying action, which largely depends upon its chemical structure. Therefore, for a high-rate oil removing scouring agent, creation of activators is required that make the above basic characteristics and activities compatible for various applications. For example, the above product covers a great variety of kinds for diverse applications, based on non-ionic and anion-based activators. 6 figs., 20 tabs.

  13. Study of chemical stability of lemon oil components in sodium caseinate-lactose glycoconjugate-stabilized oil-in-water emulsions using solid-phase microextraction-gas chromatography.

    Science.gov (United States)

    Sabik, Hassan; Achouri, Allaoua; Alfaro, Maria; Pelletier, Marylène; Belanger, Denis; Britten, Michel; Fustier, Patrick

    2014-07-25

    A headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC/MS) method was developed to quantify lemon oil components and their degradation products in oil-in-water (O/W) emulsions prepared with sodium caseinate-heated-lactose (NaC-T + Lact) glycoconjugates as wall materials at two pH values (3.0 and 6.8). NaC-T + Lact conjugates had a significantly lower solubility at both pHs. Hydrolysis prior to glycation enhanced the solubility of glycoconjugates. Glycation with lactose did not improve the emulsion activity of NaC, while caseinate glycoconjugates showed much stronger antioxidant activity than the NaC-control sample. This might be due to the presence of melanoidins formed between the sugar and amino acid compounds as supported by the increase in browning intensity. Among the SPME-fibres tested, carboxen/polydimethylsiloxane (CAR/PDMS) provided better results in terms of sensitivity and selectivity for oil lemon components and their degradation products. Storage studies of these emulsions demonstrated that glycated NaC-T + Lact showed protection against peroxidation compared to the control. However, acidic pH conditions altered their stability over storage time. The major off-flavor components (α-terpineol and carvone) were inhibited in emulsions stabilized with glycated NaC, particularly at pH 6.8. The use of NaC-T + Lact conjugates showed improved encapsulation efficiency and stability and could be used as potential food ingredient-emulsifiers for stabilising citrus oils against oxidative degradation in food and beverage applications.

  14. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  15. Production and refining of Dacryodes edulis “native pear” seeds oil ...

    African Journals Online (AJOL)

    KOH/g, SN of 72.8. Degumming (with 0.2%Na2CO3 and 0.2%H3PO4) and bleaching gave oils with lower AV (7.45 mgKOH/gfat) and higher acid value (9.4 mgKOH/gfat), respectively. Iodine value (48.78 ml/g) of the 0.2% Na2CO3 degummed oil was higher than that of the seed oil degummed with 0.2% H3PO4 (25.35ml/g).

  16. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  17. Avocado oil extraction processes: method for cold-pressed high-quality edible oil production versus traditional production

    Directory of Open Access Journals (Sweden)

    Giacomo Costagli

    2015-10-01

    Full Text Available Nowadays the avocado fruit (Persea americana Mill. is widely regarded as an important fruit for its nutritional values, as it is rich in vital human nutrients. The avocado fruit is mainly sold fresh on the market, which however trades also a relevant quantity of second-grade fruits with a relatively high oil content. Traditionally, this oil is extracted from dried fruits by means of organic solvents, but a mechanical method is also used in general in locations where drying systems and/or solvent extraction units cannot be installed. These traditional processes yield a grade of oil that needs subsequent refining and is mainly used in the cosmetic industry. In the late 1990s, in New Zeland, a processing company with the collaboration of Alfa Laval began producing cold-pressed avocado oil (CPAO to be sold as edible oil for salads and cooking. Over the last fifteen years, CPAO production has increased in many other countries and has led to an expansion of the market which is set to continue, given the growing interest in highquality and healthy food. Avocado oil like olive oil is extracted from the fruit pulp and in particular shares many principles of the extraction process with extra-vergin olive oil. We conducted a review of traditional and modern extraction methods with particular focus on extraction processes and technology for CPAO production.

  18. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  19. At-wavelength interferometry of high-NA diffraction-limited EUV optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik; Jackson, Keith; Bokor, Jeffrey; Attwood, David

    2003-08-01

    Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub{angstrom}-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed.

  20. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    OpenAIRE

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type t...

  1. Genotype and year variability of the chemical composition of walnut oil of Moroccan seedlings from the high Atlas Mountains

    Directory of Open Access Journals (Sweden)

    Kodad, O.

    2016-03-01

    Full Text Available Protein and oil content, fatty acid composition and tocopherol concentration were determined for two years in the kernel of ten candidate walnut selections from the high Atlas Mountains in Morocco. Considerable variation between genotypes was found for all parameters. The ranges of protein content (11.58–14.5% of kernel dry weight, DW, oil content (54.4–67.48% of kernel DW, oleic (12.47–22.01% of total oil, linoleic (55.03–60.01%, linolenic (9.3–15.87%, palmitic (6.84–9.12%, and stearic (1.7–2.92% acid percentages, γ-tocopherol (188.1–230.7 mg·kg-1 of oil, δ-tocopherol (23.3–43.4 mg·kg-1, and α-tocopherol (8.9–16.57 mg·kg-1 contents agreed with previous results obtained from other commercial walnut cultivars. The effect of year was significant for all the chemical components, except for oil content and palmitic acid percentage. Some genotypes showed high oil contents and consistently high values of γ-tocopherol in both years of study. The introduction of these genotypes as new cultivars by vegetative propagation may result in a an increase in quality of the walnuts from the high Atlas Mountains of Morocco, and as a seed source for forest walnut propagation in the same region.Se determinó durante dos años el contenido en proteína y aceite, la composición en ácidos grasos y la concentración en tocoferoles en la pepita de diez plantones de nogal seleccionados en el Alto Atlas de Marruecos, encontrándose una considerable variación entre genotipos para todos los parámetros. Los rangos del contenido en proteína (11.58–14.5 % del peso seco, PS, contenido en aceite (54.4–67.48 % PS, porcentaje de ácido oleico (12.47–22.01% del aceite total, linoleico (55.03–60.01 %, linolénico (9.3–15.87 %, palmítico (6.84–9.12 %, y esteárico (1.7–2.92 %, contenido en γ-tocoferol (188.1–230.7 mg·kg−1 de aceite, δ-tocoferol (23.3–43.4 mg·kg−1 y α-tocoferol (8.9–16.57 mg·kg−1, coincidieron con

  2. Poverty and growth impacts of high oil prices: Evidence from Sri Lanka

    International Nuclear Information System (INIS)

    Naranpanawa, Athula; Bandara, Jayatilleke S.

    2012-01-01

    The sharp rise in oil and food prices in 2007 and 2008 caused negative impacts on poverty and economic growth in many oil and food importing developing countries. Some analysts believe that these countries are under stress again due to a rise in crude oil prices, to a two-and-a-half year high in March 2011, which has also been partly responsible for higher food prices in recent months. However, there is a limited body of empirical evidence available from developing countries on the impact of high oil prices on growth in general and household poverty in particular. In this study, Sri Lanka is used as a case study and a computable general equilibrium (CGE) approach is adopted as an analytical framework to explore the growth and poverty impacts of high oil prices. The results suggest that urban low income households are the group most adversely affected by high global oil prices, followed by low income rural households. In contrast, estate low income households are the least affected out of all low income households. The energy intensive manufacturing sector and services sector are affected most compared to the agricultural sector. - Highlights: ► Using a general equilibrium model we find poverty and oil price link for Sri Lanka. ► Urban low income households are the group most adversely affected. ► Energy intensive manufacturing and services sectors are affected most.

  3. HIGH PRESSURE PHASE EQUILIBRIUM: PREDICTION OF ESSENTIAL OIL SOLUBILITY

    Directory of Open Access Journals (Sweden)

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.Este trabalho descreve uma metodologia para o cálculo da solubilidade de óleos essenciais em dióxido de carbono a altas pressões baseada na formulação proposta em 1979 por Asselineau, Bogdanic e Vidal. Foram utilizadas as equações cúbicas de estado de Peng-Robinson e Soave-Redlich-Kwong com regras de mistura de van der Waals com dois parâmetros de interação. O cálculo da solubilidade do óleo essencial de laranja em dióxido de carbono pressurizado foi usado para validação do método. A solubilidade calculada a 308,15 K para pressões entre 50 e 70 bar variou entre 1,5 e 4,1 mg/g. Valores experimentais para as mesmas condições variam entre 1,7± 0.1 a 3,6± 0.1 mg/g. Os valores preditos não são muito sensíveis à composição inicial do óleo essencial.

  4. Auto Detection For High Level Water Content For Oil Well

    Science.gov (United States)

    Janier, Josefina Barnachea; Jumaludin, Zainul Arifin B.

    2010-06-01

    Auto detection of high level water content for oil well is a system that measures the percentage of water in crude oil. This paper aims to discuss an auto detection system for measuring the content of water level in crude oil which is applicable for offshore and onshore oil operations. Data regarding water level content from wells can be determined by using automation thus, well with high water level can be determined immediately whether to be closed or not from operations. Theoretically the system measures the percentage of two- fluid mixture where the fluids have different electrical conductivities which are water and crude oil. The system made use of grid sensor which is a grid pattern like of horizontal and vertical wires. When water occupies the space at the intersection of vertical and horizontal wires, an electrical signal is detected which proved that water completed the circuit path in the system. The electrical signals are counted whereas the percentage of water is determined from the total electrical signals detected over electrical signals provided. Simulation of the system using the MultiSIM showed that the system provided the desired result.

  5. Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils.

    Science.gov (United States)

    Chen, Miao; Xia, Qinghai; Liu, Mousheng; Yang, Yaling

    2011-01-01

    A cloud-point extraction (CPE) method using Triton X-114 (TX-114) nonionic surfactant was developed for the extraction and preconcentration of propyl gallate (PG), tertiary butyl hydroquinone (TBHQ), butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) from edible oils. The optimum conditions of CPE were 2.5% (v/v) TX-114, 0.5% (w/v) NaCl and 40 min equilibration time at 50 °C. The surfactant-rich phase was then analyzed by reversed-phase high-performance liquid chromatography with ultraviolet detection at 280 nm, using a gradient mobile phase consisting of methanol and 1.5% (v/v) acetic acid. Under the studied conditions, 4 synthetic phenolic antioxidants (SPAs) were successfully separated within 24 min. The limits of detection (LOD) were 1.9 ng mL(-1) for PG, 11 ng mL(-1) for TBHQ, 2.3 ng mL(-1) for BHA, and 5.9 ng mL(-1) for BHT. Recoveries of the SPAs spiked into edible oil were in the range 81% to 88%. The CPE method was shown to be potentially useful for the preconcentration of the target analytes, with a preconcentration factor of 14. Moreover, the method is simple, has high sensitivity, consumes much less solvent than traditional methods, and is environment-friendly. Practical Application: The method established in this article uses less organic solvent to extract SPAs from edible oils; it is simple, highly sensitive and results in no pollution to the environment.

  6. A Simple Refining Technique of Coconut Oil for Small Holder Industries

    Directory of Open Access Journals (Sweden)

    Sugeng Triyono

    2009-04-01

    Full Text Available A simple refining equipment and process for small holder industries of edible coconut oil has beeninvestigated. The equipment consisted of 20-L filtering and NaOH neutralization bottles. Filtration wasintended to remove impurities such as gums and pigment, while neutralization was to remove free fattyacids (FFA and other non-fat materials. In the experiment, the crude coconut oil was found to have impurityof 0.16%, FFA of 8.02%, saponification number of 270, and water content of 0.33%. The results showed thateither granular activated carbon (GAC or zeolite filtration can be chosen individually to remove physicalimpurity. The GAC or zeolite-filtered coconut oil contained impurity less than the SNI standard of 0.05%.In term of FFA; however, the NaOH neutralized coconut oil did not meet the SNI standard of 0.3%. AfterNaOH neutralization, the GAC filtered oil contained 1.20% FFA; while the zeolite filtered oil contained1.32%. These FFA contents were definitely higher than the SNI standard, but could satisfy APCC standardfor grade IV coconut oil which is 5%. The refined coconut oils could also satisfy the SNI standard ofsaponification number which is 196 – 206 at minimum. In term of water content, either the filtered or theneutralized oil could also satisfy the SNI standard of 0.3%. In short, the proposed technique could helpfarmers refine their raw coconut oil, and hopefully improve its marketability.

  7. Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Chenyang Lu

    2017-05-01

    Full Text Available Multiple lines of evidence suggest that the gut microbiota plays vital roles in metabolic diseases such as hyperlipidemia. Previous studies have confirmed that krill oil can alleviate hyperlipidemia, but the underlying mechanism remains unclear. To discern whether krill oil changes the structure of the gut microbiota during the hyperlipidemia treatment, 72 mice were acclimatized with a standard chow diet for 2 weeks and then randomly allocated to receive a standard chow diet (control group, n = 12 or a high-sugar-high-fat (HSHF diet supplemented with a low (100 μg/g·d, HSHF+LD group, n = 12, moderate (200 μg/g·d, HSHF+MD group, n = 12 or high dosage of krill oil (600 μg/g·d, HSHF+HD group, n = 12, simvastatin (HSHF+S group, n = 12 or saline (HSHF group, n = 12 continuously for 12 weeks. The resulting weight gains were attenuated, the liver index and the low-density lipoprotein, total cholesterol and triglyceride concentrations showed a stepwise reduction in the treated groups compared with those of the control group. A dose-dependent modulation of the gut microbiota was observed after treatment with krill oil. Low- and moderate- doses of krill oil increased the similarity between the composition of the HSHF diet-induced gut microbiota and that of the control, whereas the mice fed the high-dose exhibited a unique gut microbiota structure that was different from that of the control and HSHF groups. Sixty-five key operational taxonomic units (OTUs that responded to the krill oil treatment were identified using redundancy analysis, of which 26 OTUs were increased and 39 OTUs were decreased compared with those of the HSHF group. In conclusion, the results obtained in this study suggest that the structural alterations in the gut microbiota induced by krill oil treatment were dose-dependent and associated with the alleviation of hyperlipidemia. Additionally, the high-dose krill oil treatment showed combined effects on the alleviation of

  8. Enhancement of oleic acid in butter oil by high oleic fraction of moringa oleifera oil

    International Nuclear Information System (INIS)

    Nadeem, M.; Ullah, R.

    2016-01-01

    Oleic acid in butter oil (BO) was enhanced by a high oleic acid fraction (HOF) of Moringa oleifera oil (MOO). HOF was blended with BO at four different concentrations i.e. 5%, 10 percent, 15% and 20% (HOF-5, HOF-10, HOF-15 and HOF-20, respectively), compared with a control (BO). The oleic acid in HOF increased from 71.55 percent to 80.25%. DPPH free radical scavenging activity and total flavonoid content of HOF was 76.88% and 34.52 mg/100 g. Supplementation of butter oil with 20% HOF, decreased the cholesterol from 224 to 177 mg/100 g. Peroxide value of three months stored HOF-20 was 1.18 (meqO/sub 2/ kg) as compared to control, 3.15 (meqO/sub 2/kg). Induction period of HOF-20 was 4.07 h greater than control. These results evidenced that oleic acid in butter oil can be substantially increased by HOF of MOO. (author)

  9. Influence of salinity on bioremediation of oil in soil

    International Nuclear Information System (INIS)

    Rhykerd, R.L.; Weaver, R.W.; McInnes, K.J.

    1995-01-01

    Spills from oil production and processing result in soils being contaminated with oil and salt. The effect of NaCl on degradation of oil in a sandy-clay loam and a clay loam soil was determined. Soils were treated with 50 g kg -1 non-detergent motor oil (30 SAE). Salt treatments included NaCl amendments to adjust the soil solution electrical conductivities to 40, 120, and 200 dS m -1 . Soils were amended with nutrients and incubated at 25 o C. Oil degradation was estimated from the quantities of CO 2 evolved and from gravimetric determinations of remaining oil. Salt concentrations of 200 dS m -1 in oil amended soils resulted in a decrease in oil mineralized by 44% for a clay loam and 20% for a sandy-clay loam soil. A salt concentration of 40 dS m -1 reduced oil mineralization by about 10% in both soils. Oil mineralized in the oil amended clay-loam soil was 2-3 times greater than for comparable treatments of the sandy-clay loam soil. Amending the sandy-clay loam soil with 5% by weight of the clay-loam soil enhanced oil mineralization by 40%. Removal of salts from oil and salt contaminated soils before undertaking bioremediation may reduce the time required for bioremediation. (author)

  10. Hierarchical Porous Carbon Spheres for High-Performance Na-O2 Batteries.

    Science.gov (United States)

    Sun, Bing; Kretschmer, Katja; Xie, Xiuqiang; Munroe, Paul; Peng, Zhangquan; Wang, Guoxiu

    2017-12-01

    As a new family member of room-temperature aprotic metal-O 2 batteries, Na-O 2 batteries, are attracting growing attention because of their relatively high theoretical specific energy and particularly their uncompromised round-trip efficiency. Here, a hierarchical porous carbon sphere (PCS) electrode that has outstanding properties to realize Na-O 2 batteries with excellent electrochemical performances is reported. The controlled porosity of the PCS electrode, with macropores formed between PCSs and nanopores inside each PCS, enables effective formation/decomposition of NaO 2 by facilitating the electrolyte impregnation and oxygen diffusion to the inner part of the oxygen electrode. In addition, the discharge product of NaO 2 is deposited on the surface of individual PCSs with an unusual conformal film-like morphology, which can be more easily decomposed than the commonly observed microsized NaO 2 cubes in Na-O 2 batteries. A combination of coulometry, X-ray diffraction, and in situ differential electrochemical mass spectrometry provides compelling evidence that the operation of the PCS-based Na-O 2 battery is underpinned by the formation and decomposition of NaO 2 . This work demonstrates that employing nanostructured carbon materials to control the porosity, pore-size distribution of the oxygen electrodes, and the morphology of the discharged NaO 2 is a promising strategy to develop high-performance Na-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Alessandra Ferramosca

    2015-01-01

    Full Text Available In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group, a diet with 35% fat (HF group, or a high-fat diet supplemented with 2.5% krill oil (HF+KO group. The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  12. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  13. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.

    Science.gov (United States)

    Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson

    2013-12-15

    Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  15. Automatic residue removal for high-NA extreme illumination

    Science.gov (United States)

    Moon, James; Nam, Byong-Sub; Jeong, Joo-Hong; Kong, Dong-Ho; Nam, Byung-Ho; Yim, Dong Gyu

    2007-10-01

    An epidemic for smaller node has been that, as the device architecture shrinks, lithography process requires high Numerical Aperture (NA), and extreme illumination system. This, in turn, creates many lithography problems such as low lithography process margin (Depth of Focus, Exposure Latitude), unstable Critical Dimension (CD) uniformity and restricted guideline for device design rule and so on. Especially for high NA, extreme illumination such as immersion illumination systems, above all the related problems, restricted design rule due to forbidden pitch is critical and crucial issue. This forbidden pitch is composed of numerous optical effects but majority of these forbidden pitch compose of photo resist residue and these residue must be removed to relieve some room for already tight design rule. In this study, we propose automated algorithm to remove photo resist residue due to high NA and extreme illumination condition. This algorithm automatically self assembles assist patterns based on the original design layout, therefore insuring the safety and simplicity of the generated assist pattern to the original design and removes any resist residue created by extreme illumination condition. Also we tested our automated algorithm on full chip FLASH memory device and showed the residue removal effect by using commercial verification tools as well as on actual test wafer.

  16. Serum lipids, apoproteins and nutrient intake in rural Cretan boys consuming high-olive-oil diets.

    NARCIS (Netherlands)

    Aravanis, C.; Mensink, R.P.; Karalias, N.; Christodoulou, B.; Kafatos, A.; Katan, M.B.

    1988-01-01

    A high intake of olive oil has produced high levels of high-density and low levels of low-density lipoprotein cholesterol in short-term dietary trials. To investigate long-term effects of olive oil we have studied the diet and serum lipids of boys in Crete, where a high olive oil consumption is the

  17. Forecasting short-run crude oil price using high- and low-inventory variables

    International Nuclear Information System (INIS)

    Ye, Michael; Zyren, John; Shore, Joanne

    2006-01-01

    Since inventories have a lower bound or a minimum operating level, economic literature suggests a nonlinear relationship between inventory level and commodity prices. This was found to be the case in the short-run crude oil market. In order to explore this inventory-price relationship, two nonlinear inventory variables are defined and derived from the monthly normal level and relative level of OECD crude oil inventories from post 1991 Gulf War to October 2003: one for the low inventory state and another for the high inventory state of the crude oil market. Incorporation of low- and high-inventory variables in a single equation model to forecast short-run WTI crude oil prices enhances the model fit and forecast ability

  18. NaCl stress-induced changes in the essential oil quality and abietane diterpene yield and composition in common sage

    Directory of Open Access Journals (Sweden)

    Taieb Tounekti

    2015-09-01

    Full Text Available Aim: The purpose of this study was to evaluate how increasing NaCl salinity in the medium can affects the essential oils (EOs composition and phenolic diterpene content and yield in leaves of Salvia officinalis L. The protective role of such compounds against NaCl stress was also argued with regard to some physiological characteristics of the plant (water and ionic relations as well as the leaf gas exchanges. Materials and Methods: Potted plants were exposed to increasing NaCl concentrations (0, 50, 75 and 100 mM for 4 weeks during July 2012. Replicates from each treatment were harvested after 0, 2, 3 and 4 weeks of adding salt to perform physiological measurements and biochemical analysis. Results: Sage EOs were rich in manool, viridiflorol, camphor, and borneol. Irrigation with a solution containing 100 mM NaCl for 4 weeks increased considerably 1.8-cineole, camphor and beta-thujone concentrations, whereas lower concentrations (50 and 75 mM had no effects. On the contrary, borneol and viridiflorol concentrations decreased significantly under the former treatment, while manool and total fatty acid concentrations were not affected. Leaf extracts contained also several diterpenes such as carnosic acid (CA, carnosol (CAR and 12- and #1054;-methoxy carnosic acid (MCA. The concentrations and total contents of CA and MCA increased after 3 weeks of irrigation with 75 or 100 mM NaCl. The 50 mM NaCl had no effect on these diterpenes. Our results suggest a protective role for CA against salinity stress. Conclusion: This study may provide ways to manipulate the concentration and yield of some phenolic diterpenes and EOs in sage. In fact soil salinity may favour a directional production of particular components of interest. [J Intercult Ethnopharmacol 2015; 4(3.000: 208-216

  19. Mechanism of oil-pulling therapy - in vitro study.

    Science.gov (United States)

    Asokan, Sharath; Rathinasamy, T K; Inbamani, N; Menon, Thangam; Kumar, S Senthil; Emmadi, Pamela; Raghuraman, R

    2011-01-01

    Oil pulling has been used extensively as a traditional Indian folk remedy without scientific proof for many years for strengthening teeth, gums and jaws and to prevent decay, oral malodor, bleeding gums and dryness of throat and cracked lips. The aim of this study was to evaluate the antibacterial activity of sesame oil and lignans isolated from sesame oil on oral microorganisms and to check whether saponification or emulsification occurs during oil-pulling therapy. The in vitro study was carried out in three different phases: (1) Antibacterial activity of the lignans and sesame oil were tested by minimum inhibitory concentration assay by agar dilution method and agar well diffusion method, respectively. (2) Increase in free fatty acid level of oil and the quantity of sodium hydroxide (NaOH) used up in the titration are good indicators of saponification process. This was assessed using analytical tests for vegetable oils. (3) Swished oil was observed under light microscope to assess the status of the oil, presence of microorganisms, oral debris and foreign bodies. Sesamin and sesamolin isolated from sesame oil did not have any antibacterial effect against oral microorganisms like Streptococcus mutans, Streptococcus mitis and Streptococcus viridans. Emulsification of sesame oil occurs during oil-pulling therapy. Increased consumption of NaOH in titration is a definite indication of a possible saponification process. The myth that the effect of oil-pulling therapy on oral health was just a placebo effect has been broken and there are clear indications of possible saponification and emulsification process, which enhances its mechanical cleaning action.

  20. Organic pollutant removal from edible oil process wastewater using electrocoagulation

    Science.gov (United States)

    Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.

    2018-03-01

    Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater

  1. Seed oil triglyceride profiling of thirty-two hybrid grape varieties.

    Science.gov (United States)

    De Marchi, Fabiola; Seraglia, Roberta; Molin, Laura; Traldi, Pietro; De Rosso, Mirko; Panighel, Annarita; Dalla Vedova, Antonio; Gardiman, Massimo; Giust, Mirella; Flamini, Riccardo

    2012-09-01

    Triglyceride profile of seed oil samples from 32 hybrid grape varieties not studied before was investigated. A new method for the analysis of triacylglycerols (TAGs) has been developed based on the direct infusion in the electrospray ionization (ESI) source and employing tetrahydrofuran/methanol/water (85:10:5 v|v|v) as solvent; the formation of [M + Na](+) ions in high yield has been observed. TAGs were identified by ESI-tandem mass spectrometry analysis, and the matrix-assisted-laser-desorption-ionization and time-of-flight profile of samples was determined. Six were the principal TAGs identified in seed oil: trilinolein (LLL) was the most abundant (43%), followed by dilinoleoyl-oleoylglycerol (LOL, 23%), and dilinoleoyl-palmitoylglycerol (LPL, 15%). Compounds present in lower concentration were LSL and LOO (11%), LOP (6%), and LSP (2%). Compared with seed oils produced from V. Vinifera grapes, some significant differences in the relative abundances of TAGs were found, in particular hybrid grape seed oils showed higher LOL and lower LPL content, respectively. Among the samples studied, a particularly high content of LLL (rich in unsaturated fatty acids) was found in seed oils from two red varieties. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Neste Oy starts the production of extra high viscosity index lubricating oil in Porvoo

    International Nuclear Information System (INIS)

    Kilander, H.

    1997-01-01

    Neste Oy is starting the manufacture of basic oil, used in advanced motor lubricants, in Finland. The plant will start the manufacture of the EHVI (Extra High Viscosity) by the end of 1997. The EHVI basic oil is a synthetic-like oil product, suitable for manufacture of high-quality lubricants. In the beginning the production of the basic oil will be about 50 000 tons/a. The investment costs of the plants are 180 million FIM

  3. High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology.

    Science.gov (United States)

    Fan, Xiulin; Yue, Jie; Han, Fudong; Chen, Ji; Deng, Tao; Zhou, Xiuquan; Hou, Singyuk; Wang, Chunsheng

    2018-04-24

    Room-temperature all-solid-state Na-S batteries (ASNSBs) using sulfide solid electrolytes are a promising next-generation battery technology due to the high energy, enhanced safety, and earth abundant resources of both sodium and sulfur. Currently, the sulfide electrolyte ASNSBs are fabricated by a simple cold-pressing process leaving with high residential stress. Even worse, the large volume change of S/Na 2 S during charge/discharge cycles induces additional stress, seriously weakening the less-contacted interfaces among the solid electrolyte, active materials, and the electron conductive agent that are formed in the cold-pressing process. The high and continuous increase of the interface resistance hindered its practical application. Herein, we significantly reduce the interface resistance and eliminate the residential stress in Na 2 S cathodes by fabricating Na 2 S-Na 3 PS 4 -CMK-3 nanocomposites using melting-casting followed by stress-release annealing-precipitation process. The casting-annealing process guarantees the close contact between the Na 3 PS 4 solid electrolyte and the CMK-3 mesoporous carbon in mixed ionic/electronic conductive matrix, while the in situ precipitated Na 2 S active species from the solid electrolyte during the annealing process guarantees the interfacial contact among these three subcomponents without residential stress, which greatly reduces the interfacial resistance and enhances the electrochemical performance. The in situ synthesized Na 2 S-Na 3 PS 4 -CMK-3 composite cathode delivers a stable and highly reversible capacity of 810 mAh/g at 50 mA/g for 50 cycles at 60 °C. The present casting-annealing strategy should provide opportunities for the advancement of mechanically robust and high-performance next-generation ASNSBs.

  4. Novel high-NA MRF toolpath supports production of concave hemispheres

    Science.gov (United States)

    Maloney, Chris; Supranowitz, Chris; Dumas, Paul

    2017-10-01

    Many optical system designs rely on high numerical aperture (NA) optics, including lithography and defense systems. Lithography systems require high-NA optics to image the fine patterns from a photomask, and many defense systems require the use of domes. The methods for manufacturing such optics with large half angles have often been treated as proprietary by most manufacturers due to the challenges involved. In the past, many high-NA concave surfaces could not be polished by magnetorheological finishing (MRF) due to collisions with the hardware underneath the polishing head. By leveraging concepts that were developed to enable freeform raster MRF capabilities, QED Technologies has implemented a novel toolpath to facilitate a new high-NA rotational MRF mode. This concept involves the use of the B-axis (rotational axis) in combination with a "virtual-axis" that utilizes the geometry of the polishing head. Hardware collisions that previously restricted the concave half angle limit can now be avoided and the new functionality has been seamlessly integrated into the software. This new MRF mode overcomes past limitations for polishing concave surfaces to now accommodate full concave hemispheres as well as extend the capabilities for full convex hemispheres. We discuss some of the previous limitations, and demonstrate the extended capabilities using this novel toolpath. Polishing results are used to qualify the new toolpath to ensure similar results to the "standard" rotational MRF mode.

  5. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    Science.gov (United States)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  6. Performance and Meat Quality of Thin Tailed Sheep in Supplementary Feeding Lemuru Fish Oil Protected By Saponification with Different NaOH Concentration

    Directory of Open Access Journals (Sweden)

    Agustinah Setyaningrum

    2015-09-01

    Full Text Available This study was aimed to obtain oil and the exact saponification with different NaOH concentration to protect unsaturated fats, which does can result in good production performance and lamb meat quality with low saturated fatty acid. Stage one studied the performance of sheep production on supplementing lemuru fish oil (LFO protected with different saponification optimization. Twenty lambs aged 5-6 months early weighing 8-14 kg were divided into 4 treatments, namely P0 basal feed (50% elephant grass + 50% concentrate, P1 (basal feed + soap LFO NaOH 10%, P2 (basal feed + soap LFO NaOH 20% and P3 (basal feed + soap LFO NaOH 30% with completely randomized design and 5 replication for performance and 3 replication for meat quality. The results showed that the treatment effect was not significant (P>0.05 on the consumption of dry matter (DM, crude protein (CP, ether extract (EE, total digestible nutrien (TDN, daily gain and blood cholesterol. P2 yield the highest daily gain 130.95 ± 19.29 g/head/day of cholesterol at the same time low of 58.67 mg/dl. Stage two studied the criteria of lamb carcass and meat quality in supplementary feeding LFO protected with different saponification optimization. Twelve sheeps were slaughtered for P0, P1, P2 and P3. The results showed that the treatment effect was not significant (P> 0.05 to slaughter weight, carcass weight and carcass percentage, the physical quality of meat (pH, water holding capacity, cooking losses and tenderness, and chemical quality of the meat (DM levels, CP , EE, saturated fatty acids and unsaturated fatty acids except in EPA and DHA increased very significantly (P<0.01. Conclusively, giving soap LFO with different optimization did not significantly affect the appearance and quality of sheep meat production, except in EPA and DHA which were significantly increased

  7. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na{sub 3}OBr and Na{sub 4}OI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yonggang, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Wen, Ting [Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); Park, Changyong; Kenney-Benson, Curtis [High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Pravica, Michael; Zhao, Yusheng, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Yang, Wenge, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu [High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China)

    2016-01-14

    The structure stability under high pressure and thermal expansion behavior of Na{sub 3}OBr and Na{sub 4}OI{sub 2}, two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na{sub 3}OBr and Na{sub 4}OI{sub 2}, respectively. The cubic Na{sub 3}OBr structure and tetragonal Na{sub 4}OI{sub 2} with intergrowth K{sub 2}NiF{sub 4} structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na{sub 4}OI{sub 2} exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20–80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications.

  8. Combination of Sardine and Shark Oil High Content of Omega-3 and Squalene

    Directory of Open Access Journals (Sweden)

    Muhamad Musbah

    2017-05-01

    Full Text Available Sardine oil contain high concentration of  EPA but low of  DHA while shark is reverse. Shark oil  high contain of DHA and squalene but low EPA. This research aim to fortify the quality of  fish oil withomega-3 and squalen and improve the quality of fish oil. The combination of fish oil (sardine:shark 1: 1, 1: 2, 1: 3, 1: 4, 2: 1, 3: 1 and 4:1 showed significant results on peroxide, anisidine, and total oxidation value, however free fatty acids analysis did not show the influence to the content value.  The best oxidation parameters value werefound (sardine: shark (1:4 with peroxide was 5.44±0.06 mEq/kg, anisidine was 8.3±0.72 mEq/kg and total oxidation was 19.27±0.7mEq/kg. Fatty acids profile between  sardines and shark oil containedvarious SFA, MUFA and PUFA. Sardine oil which was added more to combination ratio will increase omega-3. Sample 1:4 had 43.16% squalene.

  9. Absorption of CO2 from modified flue gases of power generation Tarahan chemically using NaOH and Na2CO3 and biologically using microalgae

    Science.gov (United States)

    Purba, Elida; Agustina, Dewi; Putri Pertama, Finka; Senja, Fita

    2018-03-01

    This research was carried out on the absorption of CO2 from the modified flue gases of power generation Tarahan using NaOH (sodium hydroxide) and Na2CO3 (sodium carbonate). The operation was conducted in a packed column absorber and then the output gases from the packed column was fed into photo-bioreactor for biological absorption. In the photo-bioreactor, two species of microalgae, N. occulata and T. chuii, were cultivated to both absorb CO2 gas and to produce biomass for algal oil. The aims of this research were, first, to determine the effect of absorbent flow rate on the reduction of CO2 and on the decrease of output gas temperature, second, to determine the characteristics of methyl ester obtained from biological absorption process. Flow rates of the absorbent were varied as 1, 2, and 3 l/min. The concentrations of NaOH and Na2CO3 were 1 M at a constant gas flow rate of 6 l/min. The output concentrations of CO2 from the absorber was analyzed using Gas Chromatography 2014-AT SHIMADZU Corp 08128. The results show that both of the absorbents give different trends. From the absorption using NaOH, it can be concluded that the higher the flow rate, the higher the absorption rate obtained. The highest flow rate achieved maximum absorption of 100%. On the other hand, absorption with Na2CO3 revealed the opposite trend where the higher the flow rates the lower the absorption rate. The highest absorption using Na2CO3 was obtained with the lowest flow rate, 1 l/min, that was 45,5%. As the effect of flow rate on output gas temperature, the temperature decreased with increasing flow rates for both absorbents. The output gas temperature for NaOH and Na2CO3 were consecutively 35 °C and 31 °C with inlet gas temperature of 50°C. Absorption of CO2 biologically resulted a reduction of CO2 up to 60% from the input gas concentration. Algal oil was extracted with mixed hexane and chloroform to obtain algal oil. Extracted oil was transesterified to methyl ester using sodium

  10. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.

    Science.gov (United States)

    Kim, Dong-Min; Kim, Youngjin; Arumugam, Durairaj; Woo, Sang Won; Jo, Yong Nam; Park, Min-Sik; Kim, Young-Jun; Choi, Nam-Soon; Lee, Kyu Tae

    2016-04-06

    Thanks to the advantages of low cost and good safety, magnesium metal batteries get the limelight as substituent for lithium ion batteries. However, the energy density of state-of-the-art magnesium batteries is not high enough because of their low operating potential; thus, it is necessary to improve the energy density by developing new high-voltage cathode materials. In this study, nanosized Berlin green Fe2(CN)6 and Prussian blue Na(0.69)Fe2(CN)6 are compared as high-voltage cathode materials for magnesium batteries. Interestingly, while Mg(2+) ions cannot be intercalated in Fe2(CN)6, Na(0.69)Fe2(CN)6 shows reversible intercalation and deintercalation of Mg(2+) ions, although they have the same crystal structure except for the presence of Na(+) ions. This phenomenon is attributed to the fact that Mg(2+) ions are more stable in Na(+)-containing Na(0.69)Fe2(CN)6 than in Na(+)-free Fe2(CN)6, indicating Na(+) ions in Na(0.69)Fe2(CN)6 plays a crucial role in stabilizing Mg(2+) ions. Na(0.69)Fe2(CN)6 delivers reversible capacity of approximately 70 mA h g(-1) at 3.0 V vs Mg/Mg(2+) and shows stable cycle performance over 35 cycles. Therefore, Prussian blue analogues are promising structures for high-voltage cathode materials in Mg batteries. Furthermore, this co-intercalation effect suggests new avenues for the development of cathode materials in hybrid magnesium batteries that use both Mg(2+) and Na(+) ions as charge carriers.

  11. High freight rates hinder oil markets' return to equilibrium

    International Nuclear Information System (INIS)

    Anon

    2005-01-01

    Hurricane damage to refineries in the US has created shortages of refined products there, boosting imports and sending freight rates across the Atlantic to record levels. The situation was made worse for a time by a strike at France's main oil terminals in the Mediterranean, which prevented some oil tankers from being rapidly redeployed to routes across the Atlantic. Worldscale (WS) rates for routes from the UK and Europe to the US Atlantic and Gulf Coasts rose well above WS500 for clean tonnage during October. High rates were nevertheless not simply confined to product tankers crossing the Atlantic. Rates for crude tankers to the US have also risen, and tightness has begun to appear in some other markets as well. The net result has been to slow down the movement of oil from regions of surplus to those of scarcity, depressing prices in the former and keeping them at high levels in the latter. Atlantic tanker markets look like remaining tight for the rest of the year and perhaps beyond. (author)

  12. Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions.

    Science.gov (United States)

    Wang, Chih-Feng; Yang, Sheng-Yi; Kuo, Shiao-Wei

    2017-02-20

    Because the treatment of oily wastewater, generated from many industrial processes, has become an increasing environmental concern, the search continues for simple, inexpensive, eco-friendly, and readily scalable processes for fabricating novel materials capable of effective oil/water separation. In this study we prepared an eco-friendly superhydrophilic and underwater superoleophobic polyvinylpyrrolidone (PVP)-modified cotton that mediated extremely efficient separations of mixtures of oil/water and oil/corrosive solutions. This PVP-modified cotton exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 20 h. Moreover, the compressed PVP-modified cotton could separate both surfactant-free and -stabilized oil-in-water emulsions with fluxes of up to 23,500 L m -2 h -1 bar -1 -a level one to two orders of magnitude higher than that possible when using traditional ultrafiltration membranes having similar rejection properties. The high performance of our PVP-modified cotton and its green, low-energy, cost-effective preparation suggest its great potential for practical applications.

  13. Liver hypertrophy in winter flounder following exposure to experimentally oiled sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, G L; King, M J; Kiceniuk, J W; Addison, R F

    1982-01-01

    1. Male winter flounder were exposed to sediments contaminated with Venezuelan crude oil in 3 laboratory experiments of 4-5 months duration. 2. Oil exposure resulted in significant increases in liver weight. This was particularly evident in fish weighing less than 400 g. 3. The enlarged livers of the oil-exposed flounder had reduced concentrations of DNA, protein, Na/sup +/ and Zn2/sup +/, and increased concentrations of lipid and phospholipid. 4. The reduced DNA and Na/sup +/ concentrations suggested liver hypertrophy rather than hyperplasia. 5. The increased phospholipid concentrations suggested growth of membrane structures such as endoplasmic reticulum.

  14. Grinding temperature and energy ratio coe cient in MQL grinding of high-temperature nickel-base alloy by using di erent vegetable oils as base oil

    Institute of Scientific and Technical Information of China (English)

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grind-ing temperature, and energy ratio coefficient of MQL grinding were compared among the seven veg-etable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient;(2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient;(3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil;(4) viscosity significantly influences grinding force and grinding tem-perature to a greater extent than fatty acid varieties and contents in vegetable oils;(5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less vis-cous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature;(6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid;and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7%energy ratio coefficient

  15. Avocado oil extraction processes: method for cold-pressed high-quality edible oil production versus traditional production

    OpenAIRE

    Giacomo Costagli; Matteo Betti

    2015-01-01

    Nowadays the avocado fruit (Persea americana Mill.) is widely regarded as an important fruit for its nutritional values, as it is rich in vital human nutrients. The avocado fruit is mainly sold fresh on the market, which however trades also a relevant quantity of second-grade fruits with a relatively high oil content. Traditionally, this oil is extracted from dried fruits by means of organic solvents, but a mechanical method is also used in general in locations where drying systems and/or sol...

  16. Economic study of NHR application on high pour point oil field

    International Nuclear Information System (INIS)

    Zhao Gang; Zhang Zuoyi; Ma Yuanle

    1997-01-01

    In order to extent the application of NHR (nuclear heating reactor) and cut down the oil production costs, the authors designed different heating disposition by NHR and boiler heating stations in high pour point oil reservoir, total 16.9 km 2 , in Daqing oil field. This work was based on the study of history matching, water flood planning and hot water circulation for the reservoir. The analyzing results show that, the convert heating cost of NHR is a third of boiler's and the net oil production of NHR is 4 times more than the latter. Considering economization and reliability, authors suggest to adopt the scheme of two NHR with one boiler heating station

  17. The Effects of High and Volatile Oil Prices

    International Nuclear Information System (INIS)

    Artus, Patrick; Autume, Antoine d'; Chalmin, Philippe; Chevalier, Jean-Marie; Coeure, Benoit; Kalantizs, Yannick; Klein, Caroline; Guesnerie, Roger; Callonnec, Gael; Gaudin, Thomas; Moisan, Francois; Lescaroux, Francois; Clerc, Marie; Marcus, Vincent; Lalanne, Guy; Pouliquen, Erwan; Simon, Olivier; Mignon, Valerie

    2010-01-01

    demand into play (this is estimated at around 0.2 in the short term and around 0.4 over the longer term for fuel demand) and possibly caused behavioural changes such as those seen in France and described in the report. The other explanation is related to energy and environmental policies, which have helped reduce oil demand. However, the strong growth expected in emerging markets is likely to increase global demand for oil by several million barrels per day by 2014. This reflects the expectation that the number of cars on the road worldwide will double by 2030, and it seems unlikely that tougher environmental constraints will contain these trends. Half of this growth will come from Asia. Such an increase in global oil demand will only be sustainable if it is accompanied by higher prices that will enable the exploitation of new unconventional oil fields or fields with high production costs. As regards volatility, the authors first repeat that there are real determinants at play: the level of oil prices encourages or discourages investment in production capacity. Low oil prices slow capacity investments and therefore limit future supply, which then causes prices to rise, thereby providing an incentive to invest and develop supply. However, neither these (endogenous) irregularities in the investment programs of oil companies and exporting countries nor changing demand trends alone can account for the sharp rise in prices between 2002 and 2008 and the very sudden drop that followed in July-August 2008. A number of observers believe that the explanation lies in speculation on the oil market. The report's authors sift through all the arguments for and against this theory. While it is undeniable that speculation has developed on the oil futures market, the authors question two key points: was this speculation really focused on an oil price rally, and could it have such a significant retroactive effect on spot prices? Their conclusions recognise that speculation was indeed

  18. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.

    2015-01-01

    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... that the final temperature of black oil increases upon adiabatic decompression. In the case of the isenthalpic process at initial conditions of the reservoir, e.g. 150°C and 1000 bars, it is found that the final temperature can increase to 173.7°C. At non-isenthalpic conditions the final temperature increases...

  19. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    International Nuclear Information System (INIS)

    Bootello, M.A.; Garces, R.; Martinez-Force, E.; Salas, J.J.

    2016-01-01

    The composition and distribution of fatty acids in triacylglycerol (TAG) molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the Sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.

  20. Molten salt pyrolysis of milled beech wood using an electrostatic precipitator for oil collection

    Directory of Open Access Journals (Sweden)

    Heidi S. Nygård

    2015-07-01

    Full Text Available A tubular electrostatic precipitator (ESP was designed and tested for collection of pyrolysis oil in molten salt pyrolysis of milled beech wood (0.5-2 mm. The voltage-current (V-I characteristics were studied, showing most stable performance of the ESP when N2 was utilized as inert gas. The pyrolysis experiments were carried out in FLiNaK and (LiNaK2CO3 over the temperature range of 450-600 ℃. The highest yields of pyrolysis oil were achieved in FLiNaK, with a maximum of 34.2 wt% at 500 ℃, followed by a decrease with increasing reactor temperature. The temperature had nearly no effect on the oil yield for pyrolysis in (LiNaK2CO3 (19.0-22.5 wt%. Possible hydration reactions and formation of HF gas during FLiNaK pyrolysis were investigated by simulations (HSC Chemistry software and measurements of the outlet gas (FTIR, but no significant amounts of HF were detected.

  1. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine

    International Nuclear Information System (INIS)

    Ong, Hwai Chyuan; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Leong, K.Y.

    2014-01-01

    Highlights: • Calophyllum inophyllum has been evaluated as a potential feedstock for biodiesel. • Acid and base catalyzed transesterification processes was used to produce biodiesel. • The physiochemical properties of CIME fulfilled specification of ASTM D6751. • Engine performance and emission are conducted for CIME and its blends. - Abstract: In the present study, crude Calophyllum inophyllum oil (CCIO) has been evaluated as a potential feedstock for biodiesel production. C.inophyllum oil has high acid value which is 59.30 mg KOH/g. Therefore, the degumming, esterification, neutralization and transesterification process are carried out to reduce the acid value to 0.34 mg KOH/g. The optimum yield was obtained at 9:1 methanol to oil ratio with 1 wt.%. NaOH catalyst at 50 °C for 2 h. On the other hand, the C.inophyllum biodiesel properties fulfilled the specification of ASTM D6751 and EN 14214 biodiesel standards. After that, the C.inophyllum biodiesel diesel blends were tested to evaluate the engine performance and emission characteristic. The performance and emission of 10% C.inophyllum biodiesel blends (CIB10) give a satisfactory result in diesel engines as the brake thermal increase 2.30% and fuel consumption decrease 3.06% compared to diesel. Besides, CIB10 reduces CO and smoke opacity compared to diesel. In short, C.inophyllum biodiesel can become an alternative fuel in the future

  2. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  3. Environmental considerations in a high desert, crude oil pipeline spill

    International Nuclear Information System (INIS)

    Lowe, M.A.; Mancini, E.R.; Chamberlain, D.W.; Albright, G.R.

    1993-01-01

    A road grader punctured a high-pressure crude oil pipeline in the California high desert resulting in the release of approximately 4,200 barrels of Alaska North Slope crude oil. Oil sprayed over a steeply sloped hillside and flowed into an adjacent, densely vegetated ephemeral stream channel which carried secondary treatment sewage discharge. Three underflow dams were constructed in the channel within 2.8 km of the site. To ensure containment at the first dam, the sewage discharge was diverted from the channel, eventually to an upland impulse sprinkler irrigation system. Channel water and phase-separated ANS crude oil, impounded behind the first dam, percolated through alluvial sands/gravels to a depth of about five meters. The oil percolated through the soils on the receding surface of the water, affecting soils to an equivalent depth and saturating a horizontally narrow band of stream-bank soils as much as two to four meters into the bank. Stream channel undergrowth and a small number of mature trees were cleared to provide access for cleanup and/or to remove oiled plants. A large number of trees experienced partial leaf-drop within 25 days of the spill while two heavily oiled trees died. New vegetative growth was evident within five weeks of the spill. Site restoration included planting cuttings of five riparian tree species and hydroseeding exposed banks. Total petroleum hydrocarbon concentrations ranged from not detectable to 203,000 parts per million and averaged approximately 25,000 ppm in affected soils as sampled in place and in stockpiles. Approximately 30,000 tons of hydrocarbon-contaminated soil was excavated from the length of the stream channel (3,600 tons) as well as the area behind the first dam and spill site (26,400 tons). All soils were staged on site for waste profiling and final disposition. After treatment, the contaminated soil was beneficially reused as daily cover at a southern California landfill at a turnkey cost of approximately $57/ton

  4. Bioemulsan Production by Iranian Oil Reservoirs Microorganisms

    Directory of Open Access Journals (Sweden)

    A Amiriyan, M Mazaheri Assadi, VA Saggadian, A Noohi

    2004-10-01

    Full Text Available The biosurfactants are believed to be surface active components that are shed into the surrounding medium during the growth of the microorganisms. The oil degrading microorganism Acinetobacter calcoaceticus RAG-1 produces a poly-anionic biosurfactant, hetero-polysaccharide bioemulsifier termed as emulsan which forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. In the present paper results of the possibility of biosurfactant (Emulsan production by microorganisms isolated from Iranian oil reservoirs is presented. Fourthy three gram negative and gram positive, non fermentative, rod bacilli and coccobacilli shaped baceria were isolated from the oil wells of Bibi Hakimeh, Siri, Maroon, Ilam , East Paydar and West Paydar. Out of the isolated strains, 39 bacterial strains showed beta haemolytic activity, further screening revealed the emulsifying activity and surface tension. 11 out of 43 tested emulsifiers were identified as possible biosurfactant producers and two isolates produced large surface tension reduction, indicating the high probability of biosurfactant production. Further investigation revealed that, two gram negative, oxidase negative, aerobic and coccoid rods isolates were the best producers and hence designated as IL-1, PAY-4. Whole culture broth of isolates reduced surface tension from 68 mN /m to 30 and 29.1mN/m, respectively, and were stable during exposure to high salinity (10%NaCl and elevated temperatures(120C for 15 min .

  5. Challenges of anamorphic high-NA lithography and mask making

    Science.gov (United States)

    Hsu, Stephen D.; Liu, Jingjing

    2017-06-01

    Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV `Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI', (2015) doi: 10

  6. Electrocoagulation with polarity switch for fast oil removal from oil in water emulsions.

    Science.gov (United States)

    Gobbi, Lorena C A; Nascimento, Izabela L; Muniz, Eduardo P; Rocha, Sandra M S; Porto, Paulo S S

    2018-05-01

    An electrocoagulation technique using a 3.5 L reactor, with aluminum electrodes in a monopolar arrangement with polarity switch at each 10 s was used to separate oil from synthetic oily water similar in oil concentration to produced water from offshore platforms. Up to 98% of oil removal was achieved after 20 min of processing. Processing time dependence of the oil removal and pH was measured and successfully adjusted to exponential models, indicating a pseudo first order behavior. Statistical analysis was used to prove that electrical conductivity and total solids depend significantly on the concentration of electrolyte (NaCl) in the medium. Oil removal depends mostly on the distance between the electrodes but is proportional to electrolyte concentration when initial pH is 8. Electrocoagulation with polarity switch maximizes the lifetime of the electrodes. The process reduced oil concentration to a value below that stipulated by law, proving it can be an efficient technology to minimize the offshore drilling impact in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Replacement of soybean oil by fish oil increases cytosolic lipases activities in liver and adipose tissue from rats fed a high-carbohydrate diets.

    Science.gov (United States)

    Rodrigues, Angélica Heringer; Moreira, Carolina Campos Lima; Neves, Maria José; Botion, Leida Maria; Chaves, Valéria Ernestânia

    2018-06-01

    Several studies have demonstrated that fish oil consumption improves metabolic syndrome and comorbidities, as insulin resistance, nonalcoholic fatty liver disease, dyslipidaemia and hypertension induced by high-fat diet ingestion. Previously, we demonstrated that administration of a fructose-rich diet to rats induces liver lipid accumulation, accompanied by a decrease in liver cytosolic lipases activities. In this study, the effect of replacement of soybean oil by fish oil in a high-fructose diet (FRUC, 60% fructose) for 8 weeks on lipid metabolism in liver and epididymal adipose tissue from rats was investigated. The interaction between fish oil and FRUC diet increased glucose tolerance and decreased serum levels of triacylglycerol (TAG), VLDL-TAG secretion and lipid droplet volume of hepatocytes. In addition, the fish oil supplementation increased the liver cytosolic lipases activities, independently of the type of carbohydrate ingested. Our results firmly establish the physiological regulation of liver cytosolic lipases to maintain lipid homeostasis in hepatocytes. In epididymal adipose tissue, the replacement of soybean oil by fish oil in FRUC diet did not change the tissue weight and lipoprotein lipase activity; however, there was increased basal and insulin-stimulated de novo lipogenesis and glucose uptake. Increased cytosolic lipases activities were observed, despite the decreased basal and isoproterenol-stimulated glycerol release to the incubation medium. These findings suggest that fish oil increases the glycerokinase activity and glycerol phosphorylation from endogenous TAG hydrolysis. Our findings are the first to show that the fish oil ingestion increases cytosolic lipases activities in liver and adipose tissue from rats treated with high-carbohydrate diets. Copyright © 2018. Published by Elsevier Inc.

  8. Monitoring of high refractive index edible oils using coated long period fiber grating sensors

    Science.gov (United States)

    Coelho, Luís.; Viegas, Diana; Santos, José Luís.; de Almeida, Jose Manuel M. M.

    2015-05-01

    Monitoring the quality of high refractive index edible oils is of great importance for the human health. Uncooked edible oils in general are healthy foodstuff, olive oil in particular, however, they are frequently used for baking and cooking. High quality edible oils are made from seeds, nuts or fruits by mechanical processes. Nevertheless, once the mechanical extraction is complete, up to 15% of the oil remains in oil pomace and in the mill wastewater, which can be extracted using organic solvents, often hexane. Optical fiber sensors based on long period fiber gratings (LPFG) have very low wavelength sensitivity when the surround refractive index is higher than the refractive index of the cladding. Titanium dioxide (TiO2) coated LPFG could lead to the realization of high sensitivity chemical sensor for the food industry. In this work LPFG coated with a TiO2 thin film were successfully used for to detect small levels of hexane diluted in edible oils and for real time monitoring the thermal deterioration of edible oils. For a TiO2 coating of 30 nm a wavelength sensitivity of 1361.7 nm/RIU (or 0.97 nm / % V/V) in the 1.4610-1.4670 refractive index range was achieved, corresponding to 0 to 12 % V/V of hexane in olive oil. A sensitivity higher than 638 nm/RIU at 225 ºC was calculated, in the 1.4670-1.4735 refractive index range with a detection limit of thermal deterioration of about 1 minute.

  9. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

    Science.gov (United States)

    Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2017-06-21

    The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to

  10. Synthesis and characterization of palm oil fuel ash (POFA) and metakaolin based geopolymer for possible application in nanocoating

    Science.gov (United States)

    Khan, Ihsan Ullah; Bhat, A. H.; Masset, Patrick J.; Khan, Farman Ullah; Rehman, Wajid Ur

    2016-11-01

    The main aim of this study was to synthesize and characterize highly amorphous geopolymer from palm oil fuel ash (POFA) and metakaolin, to be used as nanocoating. Geopolymers are man-made aluminosilicate materials that are amorphous analogues of zeolites. The geopolymers were made by condensing a mixture of raw materials metakaolin and palm oil fuel ash (POFA) with alkaline activator at a fixed ratio at room temperature. The kaolin type clay was calcined at 700 °C for 4hrs to transform it into amorphous metakaolin which is more reactive precursor for geopolymer formation. The characteristics of metakaolin and geopolymers (metakaolin and palm oil fuel ash based geopolymers) were analyzed by using x-ray fluorescence (XRF), Fourier transform infra-red spectrometry (FTIR), Thermogravimetric analysis (TG/DTA) and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDX). FTIR revealed the presence of Al-O and Si-O stretching vibrations of amorphous alumino-silicate structure for metakaolin, palm oil fuel ash and geopolymers. SEM-EDX images showed the presence of reaction product complementary to NASH (N = Na2O, A = Al2O3, S = SiO2, H = H2O) solid. The resulting geopolymers that were synthesized with NaOH/Na2SiO3 solution cured at 60 °C for 3 days. The results demonstrated the suitability of metakaolin and palm oil fuel ash (POFA) for synthesis of geopolymer at room temperatures.

  11. The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction

    Science.gov (United States)

    SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.

    2016-03-01

    Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.

  12. Olive oil and oxidative stress

    Directory of Open Access Journals (Sweden)

    Galli, Claudio

    2004-03-01

    Full Text Available In addition to the fatty acid profile of olive oil, which is high in the monounsaturated oleic acid and appears to be beneficial in reducing several risk factors for coronary heart disease and certain cancers, extra virgin olive oil contains a considerable amount of phenolic compounds, e.g. hydroxytyrosol and oleuropein, that are responsible for its peculiar taste and for its high stability. A body of evidence demonstrates that olive oil phenolics are powerful antioxidants. Although most of these studies have been carried out in vitro, some in vivo experiments confirm that olive oil phenolics are dose-dependently absorbed and that they retain their biological activities after ingestion. These data could in part explain the lower incidence of coronary heart disease in the Mediterranean area, where (extra virgin olive oil is the principal source of fat.La composición del aceite de oliva virgen extra se caracteriza por su contenido en ácidos grasos, fundamentalmente monoinsaturados (ácido oleico beneficiosos para reducir el riesgo de enfermedad coronaria, y en componentes menores, particularmente polifenoles (p.e. hidroxitirosol y oleuropeína responsables de su sabor y estabilidad. Diversos estudios demuestran el poder antioxidante de los compuestos fenólicos del aceite de oliva (virgen extra. Aunque la mayoría de ellos se han realizado in vitro, algunos in vivo parecen confirmar que los polifenoles se absorben dependiendo de la dosis y que retienen las actividades biológicas después de su ingestión. Estos resultados pueden explicar en parte la menor incidencia de enfermedad coronaria en los países del área Mediterránea, donde el aceite de oliva (extra virgen es la principal fuente de grasas.

  13. Mechanical lifter for recovering highly viscous oil and bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Rakhmanov, R N; Akhunov, A M; Asfandiyarov, Kh A; Maksutov, R A

    1982-01-01

    A mechanical lifter is described for recovering highly viscous oil and bitumens. The lifter differs from the known and has significant advantages over them. The lifter was made and tested on a stand well.

  14. Efficacy of phytosterols and fish-oil supplemented high-oleic-sunflower oil rich diets in hypercholesterolemic growing rats.

    Science.gov (United States)

    Alsina, Estefania; Macri, Elisa V; Lifshitz, Fima; Bozzini, Clarisa; Rodriguez, Patricia N; Boyer, Patricia M; Friedman, Silvia M

    2016-06-01

    Phytosterols (P) and fish-oil (F) efficacy on high-oleic-sunflower oil (HOSO) diets were assessed in hypercholesterolemic growing rats. Controls (C) received a standard diet for 8 weeks; experimental rats were fed an atherogenic diet (AT) for 3 weeks, thereafter were divided into four groups fed for 5 weeks a monounsaturated fatty acid diet (MUFA) containing either: extra virgin olive oil (OO), HOSO or HOSO supplemented with P or F. The diets did not alter body weight or growth. HOSO-P and HOSO-F rats showed reduced total cholesterol (T-chol), non-high-density lipoprotein-cholesterol (non-HDL-chol) and triglycerides and increased HDL-chol levels, comparably to the OO rats. Total body fat (%) was similar among all rats; but HOSO-F showed the lowest intestinal, epididymal and perirenal fat. However, bone mineral content and density, and bone yield stress and modulus of elasticity were unchanged. Growing hypercholesterolemic rats fed HOSO with P or F improved serum lipids and fat distribution, but did not influence material bone quality.

  15. Thyme Oil Encapsulated in Halloysite Nanotubes for Antimicrobial Packaging System.

    Science.gov (United States)

    Lee, Min Hyeock; Seo, Hyun-Sun; Park, Hyun Jin

    2017-04-01

    An antimicrobial capsule releasing thyme oil was developed using modified halloysite nanotubes (HNTs). In order to increase the pore volume, HNTs were treated with 5.0 mol/L NaOH solution, which resulted in the encapsulation of more thyme oil molecules inside the HNTs. The morphology of the raw HNTs and NaOH-treated HNTs (N-HNTs) was characterized using transmission electron microscopy and nitrogen adsorption-desorption analysis. The loading capacity increased from 180.7 ± 12.7 to 256.4 ± 16.7 mg thyme oil/g HNT after the NaOH treatment. The aerial release characteristics of thyme oil from both the HNT capsules were investigated in a closed-package atmosphere system at 4, 25, and 40 °C. The antimicrobial activity of the capsule against Escherichia coli O157:H7 was determined using the vapor phase assay. Moreover, the antimicrobial effects of the capsule against E. coli O157:H7, total mesophilic aerobic bacteria (MAB), and molds and yeasts (MY) on the surfaces of cherry tomatoes were investigated at 4 and 25 °C for 5 d. When the cherry tomatoes were exposed to the thyme oil-loaded N-HNT capsule, the number of E. coli O157:H7, MAB, and MY significantly reduced during storage. © 2017 Institute of Food Technologists®.

  16. Thermodynamic study of NaFe complex oxides. High temperature properties of Na sub 5 FeO sub 4 and Na sub 3 FeO sub 3

    CERN Document Server

    Furukawa, T

    2002-01-01

    In order to contribute the investigation into corrosion mechanism of the structural materials by leakage sodium, thermodynamic study of Na-Fe complex oxides formed by the reactions was carried out. Na sub 5 FeO sub 4 and Na sub 3 FeO sub 3 were used as the sample. Its high temperature properties (i.e. melting, solidification and transformation) were observed by Differential Scanning Calorimetry, DSC. Moreover, the original test named 'melting point confirmation test' was performed for the observation of traces of melting and solidification after the tests. Following contents have been obtained by this study. (1) Na sub 5 FeO sub 4 was stably as the solid without phase transformation and melting until 800degC. However, the compound was showing a tendency to change into Na sub 4 FeO sub 3 with temperature increasing under the low oxygen potential. (2) The stability of Na sub 3 FeO sub 3 is the same as that of Na sub 5 FeO sub 4 until 700degC. Over the temperature, the compound was changed differential compound ...

  17. Adsorption of Free Fatty Acid (FFA) in Low-Grade Cooking Oil Used Activated Natural Zeolite as Adsorbent

    Science.gov (United States)

    Larasati Tres Ayu Putranti, Monika; Kompiang Wirawan, Sang; Made Bendiyasa, I.

    2018-01-01

    Adsorption of free fatty acid (FFA) in low-grade cooking oil using active natural zeolite adsorbent was done as an effort to improve the quality of low-grade cooking oil so that it can fulfill the standard of fried oil which has been set on SNI 01-3741-2013. Adsorption was carried out with natural zeolite which activated with HCl and NaOH solution followed by the calcination process. The results showed that the NaOH activated zeolite decreased FFA content in low-grade cooking oil more than the HCl activated natural zeolite, with optimum NaOH concentration was 0.75 M. In the adsorption equilibrium analysis with temperature variation (25 °C, 40 °C, 80 °C ), obtained that adsorption of FFA with NaOH activated natural zeolite follows Adsorption Isotherm Freundlich Model with equilibrium constant value was 20,5873; 0,9629 dan 0,8053.

  18. The Dutch disease effect in a high versus low oil dependent countries

    OpenAIRE

    Allegret , Jean-Pierre; Benkhodja , Mohamed Tahar

    2014-01-01

    To investigate the main impacts of the recent increase of oil price on oil exporting economies, we estimate a DSGE model for a sample of 16 oil exporting countries (Algeria, Argentina, Ecuador, Gabon, Indonesia, Kuwait, Libya, Malaysia, Mexico, Nigeria, Oman, Russia, Saudi Arabia, United Arab Emirates, and Venezuela) over the period from 1980 to 2010, except for Russia where our sample begins in 1992. In order to distinguish between high-dependent and low-dependent countries, we use two indic...

  19. An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry

    DEFF Research Database (Denmark)

    Puértolas, Eduardo; Koubaa, Mohamed; Barba Orellana, Francisco Jose

    2016-01-01

    Oil recovery from oilseeds and fruits is one of the food processes where efficiency is the key to ensure profitability. Wastes and by-products generated during oil production process are, on the other hand, a great source of high-added value compounds that could be recovered in turn at a later...

  20. Fish oil supplementation prevents diabetes-induced nerve conduction velocity and neuroanatomical changes in rats.

    Science.gov (United States)

    Gerbi, A; Maixent, J M; Ansaldi, J L; Pierlovisi, M; Coste, T; Pelissier, J F; Vague, P; Raccah, D

    1999-01-01

    Diabetic neuropathy has been associated with a decrease in nerve conduction velocity, Na,K-ATPase activity and characteristic histological damage of the sciatic nerve. The aim of this study was to evaluate the potential effect of a dietary supplementation with fish oil [(n-3) fatty acids] on the sciatic nerve of diabetic rats. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (n = 20) were fed a nonpurified diet supplemented with either olive oil (DO) or fish oil (DM), and control animals (n = 10) were fed a nonpurified diet supplemented with olive oil at a daily dose of 0.5 g/kg by gavage for 8 wk. Nerves were characterized by their conduction velocity, morphometric analysis and membrane Na, K-ATPase activity. Nerve conduction velocity, as well as Na,K-ATPase activity, was improved by fish oil treatment. A correlation was found between these two variables (R = 0.999, P < 0.05). Moreover, a preventive effect of fish oil was observed on nerve histological damage [endoneurial edema, axonal degeneration (by 10-15%) with demyelination]. Moreover, the normal bimodal distribution of the internal diameter of myelinated fibers was absent in the DO group and was restored in the DM group. These data suggest that fish oil therapy may be effective in the prevention of diabetic neuropathy.

  1. Lemongrass Oil Granules AS Aedes Aegypti Larvicide

    OpenAIRE

    Mulyani, Sri

    2014-01-01

    One way to prevent the spread of Haemorrhage Dengue Fever is the use of abate. The use of abate as larvicides often complained causing an unpleasant smell, and can cause resistance. Lemongrass oil is reported to have activity as larvicides, and this study aims to make granules of lemongrass oil preparation, as well as determining the value of LC50, LC90 against larvae of Ae. aegypti instar III. The granules of lemongrass oil preparation are made with lactose filler and binder CMC-Na. Larvicid...

  2. Characteristics and Composition of a High Oil Yielding Castor Variety from Pakistan.

    Science.gov (United States)

    Panhwar, Tarique; Mahesar, Sarfaraz Ahmed; Mahesar, Abdul Waheed; Kandhro, Aftab Ahmed; Talpur, Farah Naz; Laghari, Zahid Hussain; Chang, Abdul Sattar; Hussain Sherazi, Syed Tufail

    2016-01-01

    Keeping in view the versatile applications of castor oil in cosmetic, pharmaceutical and recently as renewable source, the present work is a step towards the commercialization of castor on large scale in Pakistan. The current study introduces a castor variety with high oil content. Initially seeds were physically examined for some physical parameters. Seed moisture, ash content and linear dimensions such as length, width and thickness were found to be 4.53%, 6.44%, 12.24 mm, 8.31 mm and 5.67 mm, respectively. For oil extraction, Soxhlet method was used which resulted in the high oil content 54.0%. For quality assessment of oil, physicochemical parameters were checked according to official standard AOCS methods and compared with ASTM specifications. The determined parameters were as follows; specific gravity 0.953 g/cm(-3), refractive index 1.431, viscosity 672.0 mPas.s, moisture content 0.32%, FFA 0.14%, IV 83.61 gI2/100 g, PV 2.25 meq/Kg and SV 186.0 mgKOH/g. Furthermore, fatty acid analysis of oil showed that, most abundant fatty acid was ricinoleic acid 94.59%, followed by palmitic 0.31%, linoleic 1.84%, oleic (n-9) 2.05%, oleic (n-10) 0.22%, stearic 0.45% and eicosenoic acid 0.53%. The detected fatty acids were compared with registered variety and varieties of other regions.

  3. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    Science.gov (United States)

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani

    2012-02-17

    The current legislation requires the mandatory addition of biodiesel to all Brazilian road diesel oil A (pure diesel) marketed in the country and bans the addition of vegetable oils for this type of diesel. However, cases of irregular addition of vegetable oils directly to the diesel oil may occur, mainly due to the lower cost of these raw materials compared to the final product, biodiesel. In Brazil, the situation is even more critical once the country is one of the largest producers of oleaginous products in the world, especially soybean, and also it has an extensive road network dependent on diesel. Therefore, alternatives to control the quality of diesel have become increasingly necessary. This study proposes an analytical methodology for quality control of diesel with intention to identify and determine adulterations of oils and even fats of vegetable origin. This methodology is based on detection, identification and quantification of triacylglycerols on diesel (main constituents of vegetable oils and fats) by high performance liquid chromatography in reversed phase with UV detection at 205nm associated with multivariate methods. Six different types of oils and fats were studied (soybean, frying oil, corn, cotton, palm oil and babassu) and two methods were developed for data analysis. The first one, based on principal component analysis (PCA), nearest neighbor classification (KNN) and univariate regression, was used for samples adulterated with a single type of oil or fat. In the second method, partial least square regression (PLS) was used for the cases where the adulterants were mixtures of up to three types of oils or fats. In the first method, the techniques of PCA and KNN were correctly classified as 17 out of 18 validation samples on the type of oil or fat present. The concentrations estimated for adulterants showed good agreement with the reference values, with mean errors of prediction (RMSEP) ranging between 0.10 and 0.22% (v/v). The PLS method was

  4. A High-Fructose-High-Coconut Oil Diet Induces Dysregulating Expressions of Hippocampal Leptin and Stearoyl-CoA Desaturase, and Spatial Memory Deficits in Rats.

    Science.gov (United States)

    Lin, Ching-I; Shen, Chu-Fu; Hsu, Tsui-Han; Lin, Shyh-Hsiang

    2017-06-16

    We investigated the effects of high-fructose-high-fat diets with different fat compositions on metabolic parameters, hippocampal-dependent cognitive function, and brain leptin (as well as stearoyl-CoA desaturase (SCD1) mRNA expressions). Thirty-two male Wistar rats were divided into 3 groups, a control group ( n = 8), a high-fructose soybean oil group (37.5% of fat calories, n = 12), and a high-fructose coconut oil group (37.5% of fat calories, n = 12) for 20 weeks. By the end of the study, the coconut oil group exhibited significantly higher serum fasting glucose, fructosamine, insulin, leptin, and triglyceride levels compared to those of the control and soybean oil groups. However, hippocampal leptin expression and leptin receptor mRNA levels were significantly lower, while SCD1 mRNA was significantly higher in rats fed the high-fructose-high-coconut oil diet than in rats fed the other experimental diets. In addition, the coconut oil group spent significantly less time in the target quadrant on the probe test in the Morris water maze (MWM) task. Rats fed the high-fructose-high-coconut oil diet for 20 weeks were prone to develop hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia. These metabolic consequences may contribute to hippocampal-dependent memory impairment, accompanied by a lower central leptin level, and a higher SCD1 gene expression in the brain.

  5. Oil turbulence in the next decade. An essay on high oil prices in a supply-constrained world

    International Nuclear Information System (INIS)

    Jesse, J.H.; Van der Linde, C.

    2008-06-01

    A CIEP analysis of the recent development of demand and supply for crude oil indicates that the mismatch in supply and demand growth could cause tighter oil markets than we already experience today. In the World Energy Outlook 2007, the International Energy Agency (IEA) warned of a possible 'energy crunch'. But what was anticipated to happen in the first part of the next decade has been fast-forwarded to today, more than 5 years earlier, and could shake the very foundation of our energy systems if no action is undertaken. Without exaggeration, the recent developments in the international oil market are ground-breaking: a little over a year ago, in January 2007, the West Texas Intermediate crude oil price (WTI) traded for USD50 dollar a barrel. Within a year, the price doubled to USD100 per barrel in January 2008 and pushed through to over USD135 in June 2008, against the backdrop of the fresh market supposition about reaching a whopping USD200 per barrel in 2009. If this proves to be true, the world will not only have moved from an 'Oil Demand-led World' to an 'Oil Supply-constrained World' (since 2004) but, more importantly, will then also experience a radical change in the oil price formation. Until recently, the oil price was largely underpinned by the marginal cost of the last barrel needed to match demand, with some political and economic conjuncture mark-ups or -downs. As will be presented in this paper, the current high oil prices are still primarily driven by structural factors that can be well explained without resorting to blaming speculative investors playing the futures market or the low dollar. But if prices are heading towards USD200 a barrel in 12 months' time, or for that matter even to USD150 a barrel, other drivers will gain prominence over marginal costs as the main driver. In that case, OPEC will have accomplished a long-held wish: oil will then be priced at its real value in the Western world (for instance the economic value of mobility for

  6. Warming of olive oil processed by high hydrostatic pressure

    Czech Academy of Sciences Publication Activity Database

    Houška, M.; Kubásek, M.; Strohalm, J.; Landfeld, A.; Kamarád, Jiří

    2004-01-01

    Roč. 24, č. 2 (2004), s. 303-308 ISSN 0895-7959 R&D Projects: GA MZe EP9026 Keywords : olive oil * food processing * high pressure * warming Subject RIV: GM - Food Processing Impact factor: 0.504, year: 2004

  7. Biodiesel production from Jatropha curcas oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2010-12-15

    In view of the fast depletion of fossil fuel, the search for alternative fuels has become inevitable, looking at huge demand of diesel for transportation sector, captive power generation and agricultural sector, the biodiesel is being viewed a substitute of diesel. The vegetable oils, fats, grease are the source of feedstocks for the production of biodiesel. Significant work has been reported on the kinetics of transesterification of edible vegetable oils but little work is reported on non-edible oils. Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstocks for biodiesel production in India and limited work is reported on the kinetics of transesterification of high FFA containing oil. The present study reports a review of kinetics of biodiesel production. The paper also reveals the results of kinetics study of two-step acid-base catalyzed transesterification process carried out at pre-determined optimum temperature of 65 and 50 C for esterification and transesterification process, respectively, under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The yield of methyl ester (ME) has been used to study the effect of different parameters. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. This is the first study of its kind dealing with simplified kinetics of two-step acid-base catalyzed transesterification process carried at optimum temperature of both the steps which took about 6 h for complete conversion of TG to ME. (author)

  8. Inhibition of palm oil oxidation by zeolite nanocrystals.

    Science.gov (United States)

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  9. Variations in the growth, oil quantity and quality, and mineral nutrients of chamomile genotypes under salinity stress

    Directory of Open Access Journals (Sweden)

    Omid Askari-Khorasgani

    2017-03-01

    Full Text Available Understanding how plants respond to salinity, which severely restricts plant growth, productivity, and survival, is highly important in agriculture. Using three genotypes of Matricaria recutita L. (Shiraz, Ahvaz, and Isfahan with different sensitivity to NaCl, the effect of long-term (about 110 days NaCl treatments (2.5, 6, 9, and 12 dS*m-1 on crop growth, oil quality and quantity, and nutrient variations were investigated to underpin its agricultural management in the future. The adaptation strategy and plant responses were influenced by salinity level, genotype, and genotype × salinity interactions. With higher productivity compared to the Isfahan genotype, the Shiraz and Ahvaz genotypes had efficient Na+ exclusion at root surface as an avoidance strategy; however, under higher NaCl concentration, their higher performance were mainly attributed to the Na+ sequestration in root vacuoles and higher Ca2+/Na+, Mg2+/Na+, and root/shoot ratios as tolerance strategies. The higher oil yield and chamazulene percentage in the Isfahan genotype were not affected by salinity level and were only genotype dependent. Under 12 dS*m-1 NaCl, roots of the Shiraz and Ahvaz genotypes accumulated markedly higher Ca2+ (2.5% and 1.5% respectively and Mg2+ (1.6% and 1.3% respectively, required for membrane stability and chlorophyll synthesis, respectively, more than the Isfahan genotype (0.2% Ca and 0.1% Mg2+ and considerably more than the control plants to keep low concentrations of ion toxicity of Na2+ and Cl- in shoots. Overall, greater salt tolerance found in the Shiraz and Ahvaz genotypes could be due to a variety of mechanisms, including higher efficiency of nutrient uptake (Ca2+, Mg2+, and Zn2+, utilization (N, P, Ca2+, and Mg2+, compartmentation (Na in roots, and maintenance of higher root/shoot ratios. Taking flower and oil yield as well as chamazulene percentage into consideration, the findings recommended cultivation of the Ahvaz genotype in the absence of

  10. Short and long term modulation of tissue minerals concentrations following oral administration of black cumin (Nigella sativa L.) seed oil to laboratory rats.

    Science.gov (United States)

    Basheer, Irum; Qureshi, Irfan Zia

    2018-01-15

    Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017

  11. Levels of licury oil [“Syagrus coronata” (Martius Beccari] in crossbred Boer kids diet Níveis de óleo de licuri ["Syagrus coronata" (Martius Beccari] na dieta de cabritos ¾ Boer

    Directory of Open Access Journals (Sweden)

    Felicidade Margarida Macome

    2010-12-01

    Full Text Available The aim of this study was to determine the best level of licury oil in the diet, feed intake, digestibility, blood parameters and performance of ¾ Boer goats. 20 male goats were used, with an initial weight of 10.8kg/LW. The animals were fed with hay and concentrated mix supplemented with licury oil. The experiment lasted 70 days. Feed and feces samples were collected for determination of feed intake and digestibility. The intake of dry matter, ether extract, non fiber carbohydrates and total digestible nutrient presented quadratic effect with the addition of the oil. The plasma parameters were not affected with oil inclusion as well the intake of fiber fractions. Dry matter and crude protein digestibility were increased with the oil inclusion, although ether extract digestibility presented quadratic effect. The average daily gain and feed conversion of dry matter and ether extract showed a quadratic effect of adding oil. Based on performance and nutrient intake using this oil is not advantageous for feeding growing goats. However based on the other parameters, licury oil can be used up to 4.5% of the diet.Objetivou-se determinar o melhor nível de óleo de licuri na dieta de caprinos por intermédio do desempenho, consumo, digestibilidade, e parâmetros sanguíneos. Vinte cabritos, foram alimentados com proporções iguais de volumoso e concentrado e 0; 1,5; 3,0 e 4,5% de óleo de licuri (esses níveis consistiram nos tratamentos. O experimento durou 70 dias. Os animais foram pesados no inicio e no fim do experimento. Foram coletadas amostras do alimento, sobras, e das fezes, para determinação do consumo e digestibilidade. O consumo de matéria seca, extrato etéreo, carboidratos não-fibrosos e nutrientes digestíveis totais, tiveram efeito quadrático com a adição do óleo. Os parâmetros sanguíneos não foram influenciados pelos tratamentos, bem como o consumo das frações fibrosas. Os coeficientes de digestibilidade da matéria seca

  12. Recent Strategy of Biodiesel Production from Waste Cooking Oil and Process Influencing Parameters: A Review

    Directory of Open Access Journals (Sweden)

    A. Gnanaprakasam

    2013-01-01

    Full Text Available Cost of biodiesel produced from virgin vegetable oil through transesterification is higher than that of fossil fuel, because of high raw material cost. To minimize the biofuel cost, in recent days waste cooking oil was used as feedstock. Catalysts used in this process are usually acids, base, and lipase. Since lipase catalysts are much expensive, the usage of lipase in biodiesel production is limited. In most cases, NaOH is used as alkaline catalyst, because of its low cost and higher reaction rate. In the case of waste cooking oil containing high percentage of free fatty acid, alkaline catalyst reacts with free fatty acid and forms soap by saponification reaction. Also, it reduces the biodiesel conversions. In order to reduce the level of fatty acid content, waste cooking oil is pretreated with acid catalyst to undergo esterification reaction, which also requires high operating conditions. In this review paper, various parameters influencing the process of biofuel production such as reaction rate, catalyst concentration, temperature, stirrer speed, catalyst type, alcohol used, alcohol to oil ratio, free fatty acid content, and water content have been summarized.

  13. Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation.

    Science.gov (United States)

    Ao, Chenghong; Yuan, Wei; Zhao, Jiangqi; He, Xu; Zhang, Xiaofang; Li, Qingye; Xia, Tian; Zhang, Wei; Lu, Canhui

    2017-11-01

    Inspired from fishscales, membranes with special surface wettability have been applied widely for the treatment of oily waste water. Herein, a novel superhydrophilic graphene oxide (GO)@electrospun cellulose nanofiber (CNF) membrane was successfully fabricated. This membrane exhibited a high separation efficiency, excellent antifouling properties, as well as a high flux for the gravity-driven oil/water separation. Moreover, the GO@CNF membrane was capable to effectively separate oil/water mixtures in a broad pH range or with a high concentration of salt, suggesting that this membrane was quite promising for future real-world practice in oil spill cleanup and oily wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The use of microemulsion and flushing solutions to remediate diesel-polluted oil

    Energy Technology Data Exchange (ETDEWEB)

    Dnatas, T.N.C.; Moura, M.C.P.A.; Dants Neto, A.A; Pinheiro, F.S.H.T.; Barros Neto, E.L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica], E-mail: carlenise@eq.ufrn.br

    2007-07-15

    The applicability of a surfactant derived from coconut oil (saponified coconut oil - SCO) to remove diesel oil from contaminated soil was investigated. This surfactant was applied in aqueous solutions and in a microemulsion precursory solution (surfactant/cosurfactant/water). Bench-scale tests were carried out using both column and batch setups with artificially contaminated soil. Parameters tested, that have influence in microemulsion formation, include: cosurfactant nature, cosurfactant/surfactant ratio (C/S), and presence or absence of an electrolyte in the aqueous phase (NaCl). Upon construction of pseudo ternary phase diagrams it was observed that increasing C/S ratio and presence of electrolyte cause a reduction in the microemulsion region. Five washing solutions were tested: distilled water, distilled water with 0.5 wt.% NaCl, surfactant solution (0.5 wt.% SCO - above critical micelle concentration - CMC), and a microemulsion precursory solution with and without NaCl in its aqueous phase. It was observed that the formation of diesel-in-oil microemulsion makes easy the removal of contaminants from the used soil. It was found that in batch experiments a 74% contaminant removal can be achieved and in column experiments up to 75% diesel oil could be removed, showing the potential applicability of this surfactant in microemulsion systems for cleaning up contaminated sandy soils. (author)

  15. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    Science.gov (United States)

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    Science.gov (United States)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  17. Elasticity and expansion test performance of geopolymer as oil well cement

    Science.gov (United States)

    Ridha, S.; Hamid, A. I. Abd; Halim, A. H. Abdul; Zamzuri, N. A.

    2018-04-01

    History has shown that geopolymer cement provides high compressive strength as compared to Class G cement. However, the research had been done at ambient temperature, not at elevated condition which is the common oil well situation. In this research, the physical and mechanical properties performance of the oil well cement were investigated by laboratory work for two types of cement that are geopolymer and Class G cement. The cement samples were produced by mixing the cement according to the API standards. Class C fly ash was used in this study. The alkaline solution was prepared by mixing sodium silicate with NaOH solution. The NaOH solution was prepared by diluting NaOH pellets with distilled water to 8M. The cement samples were cured at a pressure of 3000 psi and a temperature of 130 °C to simulate the downhole condition. After curing, the physical properties of the cement samples were investigated using OYO Sonic Viewer to determine their elastic properties. Autoclave expansion test and compressive strength tests were conducted to determine the expansion value and the strength of the cement samples, respectively. The results showed that the geopolymer cement has a better physical and mechanical properties as compared with Class G cement at elevated condition.

  18. Comparative study of the methanolysis and ethanolysis of maize oils using alkaline catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, U.; Ibrahim, M.; Ali, S.; Adil, M.; Hina, S.; Bukhari, I. H.; Yunus, R.

    2012-11-01

    With an increasing population and economic development, fuel from renewable resources needs to be widely explored in order to fulfill the future energy demand. In the present study, bio diesel from maize oil using transesterification reactions with methanol and ethanol was evaluated in the presence of NaOCH{sub 3}, KOCH{sub 3}, NaOCH{sub 2}CH{sub 3}, KOCH{sub 2}CH{sub 3}, NaOH and KOH as catalysts. The influence of reaction variables such as the alcohol to oil molar ratio (3:1-15:1), catalyst concentration (0.25-1.50%) and reaction time (20-120 min) to achieve the maximum yield was determined at fixed reaction temperatures. The optimized variables in the case of methanolysis were 6:1 methanol to oil molar ratio (mol/ mol), 0.75% sodium methoxide concentration (wt%) and 90 min reaction time at 65 degree centigrade, which produced a yield of 97.1% methyl esters. A 9:1 ethanol to oil molar ratio (mol/mol), 1.00% sodium ethoxide concentration (wt%) and 120 min reaction time at 75 degree centigrade were found to produce the maximum ethyl ester yield of up to 85%. The methanolysis of maize oil was depicted more rapidly as compared to the ethanolysis of maize oil. Gas chromatography of the produced bio diesel from maize oil showed high levels of linoleic acid (up to 50.89%) followed by oleic acid (up to 36.00%), palmitic acid (up to 9.98%), oleic acid (up to 1.80%) and linolenic acid (up to 0.98%). The obtained fatty acid esters were further analyzed by fourier transform infrared spectroscopy (FTIR) to ensure the completion of transesterification. The fuel properties of the produced bio diesels i.e. kinematic viscosity, cetane number, oxidative stability, pour point, cloud point, cold filter plugging point, ash content, flash point, acid value, sulfur content, higher heating value, density, methanol content, free glycerol and bound glycerol were determined. The analyses were performed using the FTIR method and the results were compared to the bio diesel standards ASTM and

  19. Salinity alters curcumin, essential oil and chlorophyll of turmeric (Curcuma longa L.).

    Science.gov (United States)

    Mostajeran, A; Gholaminejad, A; Asghari, G

    2014-01-01

    Turmeric (Curcuma longa L.) is a perennial rhizomatous plant from the family of Zingibraceae, native in South Asia. The main components of turmeric are curcuminoids and essential oil which are responsible for turmeric characteristic such as odor and taste. Due to the large areas of saline land in Iran and less information related to cultivation of turmeric, in this research, the effect of salinity on growth, curcumin and essential oil of turmeric was evaluated. Rhizomes were planted in coco peat and perlite for germination. Then uniform germinated rhizomes transferred to hydroponic condition containing Hoagland's solution. Two months old plants were exposed to salinity (0, 20, 60 and 100 mM NaCl) for two months via hydroponic media using Hoagland's solution. Then dry weight of different plant parts, chlorophyll, curcumin and essential oil components of turmeric were determined. The result indicated that, dry weight reductions in 100 mM NaCl were 191%, 141%, 56%, 30% in leaf, pseudo-stem, root and rhizome, respectively (This is almost equal to 6.9, 2.87, 0.34 and 0.23 mg plant(-1) mM(-1)NaCl reduction of dry weight, respectively). The reductions in chlorophyll a and b are almost 3.32 and 0.79 μg/gFW respectively due to one unit addition of NaCl (P curcumin of rhizome for four months old plant versus three months were almost 5 fold for 0 mM NaCl and 2 fold for 100 mM NaCl due to one month of delay in harvest. Low salinity has positive effect in curcumin production but higher salinity (higher than 60 mM) had adverse effect and causes 24% reduction of curcumin compared to control plants. There were more para-cymene and terpineol in volatile oils of turmeric rhizome than the other components, most of the volatile oil compounds were unchanged or varied slightly as salinity changed.

  20. Effect of gamma irradiation on quality of olive fruits (Olea Europaea L. ), and its oil

    International Nuclear Information System (INIS)

    Al-Bashir, M.

    2000-12-01

    A study was conducted to investigate the effect of gamma radiation on accelerating the debittering steps of olive fruits, oil extractability and the quality of extracted oil. Olive fruits (Olea Europea. var. Surrany) were treated with 0, 1, 2, and 3 kGy of gamma irradiation at a dose rate of 669 Gy/hr., a part of these fruits was debittered in distilled water, the second was processed with NaOH (3.6% concentration) for 3 or 6 hr. Both treated fruits with a control part were kept in brine (5.6% sodium chloride) and stored for 12 months at room temperature. Portions of all these treated fruits were subjected to oil extraction by mechanical means immediately after treatment. During the debittering period (8 days) the total dissolved and inorganic dissolved solids, Na, K, Ca, electric conductivity (EC) and ph values were determined in wastewater (daily), whereas the peroxide value, iodine number and the total acidity were measured in the extracted oil. The results showed that gamma irradiation increased the total and inorganic dissolved solids, a and K in wastewater. The most significant effect was noticed when irradiated fruits were processed with NaOH for 3 hrs. as indicated by the values of total and inorganic dissolved solids, Na and K concentration in wastewater. All used doses of gamma radiation, increased the extractability of the oil from the treated fruits, the total acidity and the peroxide value of that oil. (Author)

  1. Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization

    International Nuclear Information System (INIS)

    Sinha, Shailendra; Agarwal, Avinash Kumar; Garg, Sanjeev

    2008-01-01

    Increased environmental awareness and depletion of resources are driving industry to develop viable alternative fuels from renewable resources that are environmentally more acceptable. Vegetable oil is a potential alternative fuel. The most detrimental properties of vegetable oils are its high viscosity and low volatility, and these cause several problems during their long duration usage in compression ignition (CI) engines. The most commonly used method to make vegetable oil suitable for use in CI engines is to convert it into biodiesel, i.e. vegetable oil esters using process of transesterification. Rice bran oil is an underutilized non-edible vegetable oil, which is available in large quantities in rice cultivating countries, and very little research has been done to utilize this oil as a replacement for mineral Diesel. In the present work, the transesterification process for production of rice bran oil methyl ester has been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized with the objective of producing high quality rice bran oil biodiesel with maximum yield. The optimum conditions for transesterification of rice bran oil with methanol and NaOH as catalyst were found to be 55 deg. C reaction temperature, 1 h reaction time, 9:1 molar ratio of rice bran oil to methanol and 0.75% catalyst (w/w). Rice bran oil methyl ester thus produced was characterized to find its suitability to be used as a fuel in engines. Results showed that biodiesel obtained under the optimum conditions has comparable properties to substitute mineral Diesel, hence, rice bran oil methyl ester biodiesel could be recommended as a mineral Diesel fuel substitute for compression ignition (CI) engines in transportation as well as in the agriculture sector

  2. Influence of CO{sup 2} on PVT properties of an oil crude at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nilo Ricardo; Bonet, Euclides Jose [Centro de Estudos de Petroleo (CEPETRO/UNICAMP), SP (Brazil); Elias Junior, Antonio; Trevisan, Osvair Vidal [Universidade Estadual de Campinas (DEP/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2012-07-01

    The current oil frontier in Brazil is in Santos and Campos Basins, where huge oil accumulations were identified recently. Well tests have shown high values of pressure and concentration of carbon dioxide in these reservoirs. The characterization of the fluids existing in the pores of the reservoir rocks is a task for the exploitation of the hydrocarbons. The objective of this work is to present the experimental set up that was assembled to perform PVT analysis for oils at high pressure, moderate temperature and high CO{sub 2} content, oils analogous to that found in the new Brazilian pre-salt discoveries. Samples of dead oil and synthetic gas were received at the laboratory, where the recombination was carried out to obtain live oil, with twelve mole percent CO{sub 2}. The fluids were maintained inside special cylinders, with a floating piston, separating two compartments, one with the test fluid and the other with hydraulic fluid. Pressure was provided by a positive displacement pump connected to the bottles. The experiments achieved pressures up to 70 MPa at constant temperature, conditions expected for the reservoir. Starting at the high pressure, the fluid volume was increased by withdrawing the hydraulic fluid from the cylinder. Pressure and volume were recorded to determine the bubble point and compressibility of the system. The pressure drop continued until the mixture was in the two phase region, finishing the constant composition expansion process. After that, the sample was re-pressurized and the PVT bottle was agitated to reach the thermodynamic equilibrium, when the live oil was at single phase again. An aliquot of this mixture was transferred, keeping their pressure and temperature conditions, to a high pressure viscometer and to a densimeter. Another portion of live oil was flashed to a test tube and to a gasometer, to render the gas oil ratio. Afterwards, successive additions of carbon dioxide increased its concentration in live oil to 15, 20 and 35

  3. Cloreto de sódio, benzocaína e óleo de cravo-da-índia na água de transporte de tilápia-do-nilo Sodium chloride, benzocaine and clove oil in tilapia transport water

    Directory of Open Access Journals (Sweden)

    José Ricardo Oliveira

    2009-07-01

    Full Text Available Testou-se a ação de diferentes concentrações de cloreto de sódio, benzocaína e óleo de cravo-da-índia na sobrevivência de alevinos e juvenis de tilápia (Oreochromis niloticus, linhagem chitralada, por 5 horas visando ao transporte. Utilizaram-se 1.350 alevinos (9,74 ± 0,04 g e 6,79 ± 0,01 cm e 270 juvenis (29,6 ± 0,06 g e 11,52 ± 0,01. Os peixes foram mantidos em jejum por 24 horas em quatro caixas de amianto (500 L com aeração constante. Em seguida, os peixes foram distribuídos em 54 sacos plásticos, capacidade para 5 L e mantidos em soluções de: cloreto de sódio nas concentrações de (0; 4; ou 8 g/L, benzocaína (0; 20; ou 40 mg/L e óleo de cravo (0; 2; ou 5 mg/L. O delineamento foi em blocos casualizados, com três repetições, em arranjo multifatorial, com três fatores: substâncias, peixes e concentrações de cada substância em estudo. Mensuraram-se, no início, os parâmetros oxigênio dissolvido, temperatura, pH, salinidade e amônia e, ao final do experimento, a glicose dos peixes. Maiores níveis de glicose foram registrados nos juvenis mantidos na água com óleo de cravo e cloreto de sódio. Não foi observada diferença significativa na sobrevivência entre os tipos de peixes e as substâncias. Entretanto, as dosagens de cloreto de sódio e benzocaína ocasionaram diferenças significativas na taxa de sobrevivência. A sobrevivência foi baixa nos alevinos com 0 g/L de cloreto de sódio e diferiu das dosagens 4 e 8 g/L. O óleo de cravo promoveu resultados similares, em todas as dosagens e substâncias, de taxas de glicose. Ao final do experimento, a sobrevivência foi satisfatória, com média geral de 97,26%, comprovando que as três substâncias podem ser usadas no transporte de alevinos e juvenis durante 5 horas. Sugere-se o cloreto de sódio por seu melhor custo-benefício.The action of different concentrations of sodium chloride, benzocaine and clove oil in the survival of fingerling and juvenile

  4. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    Science.gov (United States)

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  5. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    Directory of Open Access Journals (Sweden)

    Mercè Vilaseca

    2014-09-01

    Full Text Available Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  6. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    Science.gov (United States)

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides.

  7. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    Science.gov (United States)

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery.

    Science.gov (United States)

    Farias, Bárbara C S; Hissa, Denise C; do Nascimento, Camila T M; Oliveira, Samuel A; Zampieri, Davila; Eberlin, Marcos N; Migueleti, Deivid L S; Martins, Luiz F; Sousa, Maíra P; Moyses, Danuza N; Melo, Vânia M M

    2018-02-01

    Cyclic lipopeptides (CLPs) are non-ribosomal biosurfactants produced by Bacillus species that exhibit outstanding interfacial activity. The synthesis of CLPs is under genetic and environmental influence, and representatives from different families are generally co-produced, generating isoforms that differ in chemical structure and biological activities. This study to evaluate the effect of low and high NaCl concentrations on the composition and surface activity of CLPs produced by Bacillus strains TIM27, TIM49, TIM68, and ICA13 towards microbial enhanced oil recovery (MEOR). The strains were evaluated in mineral medium containing NaCl 2.7, 66, or 100 g L -1 and growth, surface tension and emulsification activity were monitored. Based on the analysis of 16S rDNA, gyrB and rpoB sequences TIM27 and TIM49 were assigned to Bacillus subtilis, TIM68 to Bacillus vallismortis, and ICA13 to Bacillus amyloliquefaciens. All strains tolerated up to 100-g L -1 NaCl, but only TIM49 and TIM68 were able to reduce surface tension at this concentration. TIM49 also showed emulsification activity at concentrations up to 66-g L -1 NaCl. ESI-MS analysis showed that the strains produced a mixture of CLPs, which presented distinct CLP profiles at low and high NaCl concentrations. High NaCl concentration favored the synthesis of surfactins and/or fengycins that correlated with the surface activities of TIM49 and TIM68, whereas low concentration favored the synthesis of iturins. Taken together, these findings suggest that the determination of CLP signatures under the expected condition of oil reservoirs can be useful in the guidance for choosing well-suited strains to MEOR.

  9. An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon

    Science.gov (United States)

    Austin, Kemen G.; Lee, Michelle E.; Clark, Connie; Forester, Brenna R.; Urban, Dean L.; White, Lee; Kasibhatla, Prasad S.; Poulsen, John R.

    2017-01-01

    Industrial-scale oil palm cultivation is rapidly expanding in Gabon, where it has the potential to drive economic growth, but also threatens forest, biodiversity and carbon resources. The Gabonese government is promoting an ambitious agricultural expansion strategy, while simultaneously committing to minimize negative environmental impacts of oil palm agriculture. This study estimates the extent and location of suitable land for oil palm cultivation in Gabon, based on an analysis of recent trends in plantation permitting. We use the resulting suitability map to evaluate two proposed approaches to minimizing negative environmental impacts: a High Carbon Stock (HCS) approach, which emphasizes forest protection and climate change mitigation, and a High Conservation Value (HCV) approach, which focuses on safeguarding biodiversity and ecosystems. We quantify the forest area, carbon stock, and biodiversity resources protected under each approach, using newly developed maps of priority species distributions and forest biomass for Gabon. We find 2.7-3.9 Mha of suitable or moderately suitable land that avoid HCS areas, 4.4 million hectares (Mha) that avoid HCV areas, and 1.2-1.7 Mha that avoid both. This suggests that Gabon’s oil palm production target could likely be met without compromising important ecosystem services, if appropriate safeguards are put in place. Our analysis improves understanding of suitability for oil palm in Gabon, determines how conservation strategies align with national targets for oil palm production, and informs national land use planning.

  10. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, Michail M.; Timmis, Kenneth N. [Microbial Ecology Group, Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig (Germany); Amro, Mohammed M.; Kessel, Dagobert G. [German Petroleum Institute, Clausthal-Zellerfeld (Germany); Bock, Michael; Boseker, Klaus [BGR, Federal Institute for Geoscience and Natural Resources, Hannover (Germany); Fredrickson, Herbert L. [Environmental Laboratory, Waterways Experimental Station, USAGE, Vicksburg, MS (United States)

    1997-07-15

    The ability of microorganisms isolated from oil reservoirs to increase oil recovery by in situ growth and metabolism following the injection of laboratory grown microbial cells and nutrients were studied. Four strains isolated from Northern German oil reservoirs at depths of 866 to 1520 m, and identified as Bacillus licheniformis, were characterized taxonomically and physiologically. All strains grew on a variety of substrates at temperatures of up to 55C and at salinities of up to 12% NaCl. Extracellular polymer production occurred both aerobically and anaerobically over a wide range of temperatures, pressures and salinities, though it was optimal at temperatures around 50C and at salinities between 5 and 10% NaCl. Strain BNP29 was able to produce significant amounts of biomass, polymer, fermentation alcohols and acids in batch culture experiments under simulated reservoir conditions. Oil recovery (core flooding) experiments with strain BNP29 and a sucrose-based nutrient were performed with lime-free and lime-containing, oil-bearing sandstone cores. Oil recovery efficiencies varied from 9.3 to 22.1% of the water flood residual oil saturation. Biogenic acid production that accompanied oil production, along with selective plugging, are important mechanisms leading to increased oil recovery, presumably through resulting changes in rock porosity and alteration of wettability. These data show that strain BNP29 exhibits potential for the development of enhanced oil recovery processes

  11. Removal of oil from water by bentonite

    International Nuclear Information System (INIS)

    Moazed, H.; Viraraghavan, T.

    1999-01-01

    Many materials, included activated carbon, peat, coal, fiberglass, polypropylene, organoclay and bentonite have been used for removing oils and grease from water. However, bentonite has been used only rarely for this purpose. In this study Na-bentonite was used to remove oil from oil-in-water emulsions of various kinds such as standard mineral oil, cutting oils, refinery effluent and produced water from production wells at Estevan, Saskatchewan. Removal efficiencies obtained were 85 to 96 per cent for cutting oils, 84 to 86 per cent for produced water and 54 to 87 per cent for refinery effluent. Bentonite proved to be more effective in the removal of oil from oil-in-water emulsions than from actual waste waters; up to 96 percent from oil-in-water emulsions to only 87 per cent from actual waste water. The percentage of oil removed was found to be a function of the amount of bentonite added and the adsorption time up to the equilibrium time. Result also showed that the Langmuir, Freundlich and BET isotherms are well suited to describe the adsorption of oil by bentonite from the various oily waters employed in this study. 15 refs

  12. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    Cha, Kyung Soo; Bae, Jeong Hwan

    2011-01-01

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. - Research highlights: → World economy experienced 'dual shocks', which were caused by skyrocketed oil prices and grain prices between 2007 and 2008. → Sharp increases in ethanol production in response to high oil prices were considered as a major driving force to 'ag-flation' in the United States. → Applying a time series econometric tool, called the 'structural vector auto-regression model', we evaluated relationship between ethanol production and corn prices. → The result shows that ethanol production affects corn prices in the short run, while corn prices are lowered as other corn demands (feed for livestock or export demand) decline in the long run.

  13. Production and refining of Dacryodes edulis “native pear” seeds oil

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... ml/g). Bleaching of 0.2% Na2CO3 degummed oil resulted in oil with peroxide value of 20 mgEq/Kg which ... Nigeria, Liberia, Cameroons and Zaire (Boungou, et al., .... Hui YJ Ed., John Wiley and Sons ... Robert Maxwell, pp.

  14. A high performance liquid chromatography method for determination of furfural in crude palm oil.

    Science.gov (United States)

    Loi, Chia Chun; Boo, Huey Chern; Mohammed, Abdulkarim Sabo; Ariffin, Abdul Azis

    2011-09-01

    A modified steam distillation method was developed to extract furfural from crude palm oil (CPO). The collected distillates were analysed using high performance liquid chromatography (HPLC) coupled with an ultraviolet diode detector at 284nm. The HPLC method allowed identification and quantification of furfural in CPO. The unique thermal extraction of CPO whereby the fresh fruit bunches (FFB) are first subjected to steam treatment, distinguishes itself from other solvent-extracted or cold-pressed vegetable oils. The presence of furfural was also determined in the fresh palm oil from FFB (without undergoing the normal extraction process), palm olein, palm stearin, olive oil, coconut oil, sunflower oil, soya oil and corn oil. The chromatograms of the extracts were compared to that of standard furfural. Furfural was only detected in CPO. The CPO consignments obtained from four mills were shown to contain 7.54 to 20.60mg/kg furfural. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Super-Hydrophobic High Throughput Electrospun Cellulose Acetate (CA) Nanofibrous Mats as Oil Selective Sorbents

    Science.gov (United States)

    Han, Chao

    The threat of oil pollution increases with the expansion of oil exploration and production activities, as well as the industrial growth around the world. Use of sorbents is a common method to deal with the oil spills. In this work, an advanced sorbent technology is described. A series of non-woven Cellulose Acetate (CA) nanofibrous mats with a 3D fibrous structure were synthesized by a novel high-throughput electrospinning technique. The precursor was solutions of CA/ acetic acid-acetone in various concentrations. Among them, 15.0% CA exhibits a superhydrophobic surface property, with a water contact angle of 128.95°. Its oil sorption capacity is many times higher the oil sorption capacity of the best commercial sorbent available in the market. Also, it showed good buoyancy properties on the water both as dry-mat and oil-saturated mat. In addition, it is biodegradable, easily available, easily manufactured, so the CA nanofibrous mat is an excellent candidate as oil sorbent for oil spill in water treatment.

  16. Catalytic Synthesis of Ethyl Ester From Some Common Oils ...

    African Journals Online (AJOL)

    Catalytic conversion of ethanol to fatty acid ethyl esters (FAEE) was carried out by homogeneous and heterogeneous transesterification of melon seed, shea butter and neem seed oils using NaOH, KOH and 5wt%CaO/Al2O3 catalyst systems respectively. Oil content of the seeds from n-hexane or hot water extract ranged ...

  17. Alterations of Na,K-ATPase isoenzymes in the rat diabetic neuropathy: protective effect of dietary supplementation with n-3 fatty acids.

    Science.gov (United States)

    Gerbi, A; Maixent, J M; Barbey, O; Jamme, I; Pierlovisi, M; Coste, T; Pieroni, G; Nouvelot, A; Vague, P; Raccah, D

    1998-08-01

    Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase alpha subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of alpha1- and alpha3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.

  18. High precision measurements of 26Naβ- decay

    Science.gov (United States)

    Grinyer, G. F.; Svensson, C. E.; Andreoiu, C.; Andreyev, A. N.; Austin, R. A.; Ball, G. C.; Chakrawarthy, R. S.; Finlay, P.; Garrett, P. E.; Hackman, G.; Hardy, J. C.; Hyland, B.; Iacob, V. E.; Koopmans, K. A.; Kulp, W. D.; Leslie, J. R.; MacDonald, J. A.; Morton, A. C.; Ormand, W. E.; Osborne, C. J.; Pearson, C. J.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Scraggs, H. C.; Schwarzenberg, J.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Wood, J. L.; Zganjar, E. F.

    2005-04-01

    High-precision measurements of the half-life and β-branching ratios for the β- decay of 26Na to 26Mg have been measured in β-counting and γ-decay experiments, respectively. A 4π proportional counter and fast tape transport system were employed for the half-life measurement, whereas the γ rays emitted by the daughter nucleus 26Mg were detected with the 8π γ-ray spectrometer, both located at TRIUMF's isotope separator and accelerator radioactive beam facility. The half-life of 26Na was determined to be T1/2=1.07128±0.00013±0.00021s, where the first error is statistical and the second systematic. The logft values derived from these experiments are compared with theoretical values from a full sd-shell model calculation.

  19. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Jin; Choi, Hyo Hyun [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Sohn, Chae Hoon, E-mail: chsohn@sejong.ac.kr [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  20. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    International Nuclear Information System (INIS)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-01

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  1. Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry

    Science.gov (United States)

    Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan

    2014-01-01

    A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.

  2. Production of high quality castile soap from high rancid olive oil

    Directory of Open Access Journals (Sweden)

    Girgis, Adel Y.

    2003-09-01

    Full Text Available Non-edible olive oil, characterized by high acid and peroxide values as well as deep in color and unpleasant odor, was used to produce a fine castile soap (soap sample nº. 1. Semi-fine virgin olive oil was also used to produce the standard castile soap (soap sample nº. 2. The obtained results illustrated that the unpleasant odor was disappeared in soap nº. 1 compared to the standard soap (weakly like oil. Also, there were remarkable that no high differences were observed in all physical and chemical properties (appearance, smooth surface, erosion from hand-washing, consistency, moisture content, total fatty acids, free alkali and salt content in the two fresh soap samples. Whilst, the color in soap sample nº. 1 was fuscous green color compared to the standard soap (which was white to pale yellow. Soap samples were stored on a shelf at room temperature for 6 months showed some changes in their chemical properties. On the other hand, physical properties of the above two samples were improved after the storage period (6 months where their structures became very firm with high lather volume and rates of their erosions from hand-washing were retrenched except, the color in soap sample nº. 1 was not improved which was dark green color. Therefore, the present study recommend to use non-edible olive oil as unusually fatty material to produce a fine castile soap (high smooth surface, fairly lather and high glossy appearance as an alternative to edible olive oil (which is very expensive and also to reduce the cost of castile soap manufacturing.Aceite de oliva no comestible, caracterizado por su alta acidez e índice de peróxido así como de su elevada coloración y sabor desagradable se utilizó para la producción de jabón fino tipo ‘‘Castilla’’ (muestra de jabón nº 1. Otro aceite de oliva semifino se empleo para la fabricación de jabón estándar tipo ‘‘Castilla’’. Los resultados mostraron

  3. Experimental unit to study motion of gas-liquid mixtures in vertical pipes for lifting highly viscous oils

    Energy Technology Data Exchange (ETDEWEB)

    Abishev, S K; Bulgakov, R R; Sakharov, V A

    1981-01-01

    Basic features are presented of a new experimental-research unit of gas-lift recovery of oil UGDN-2 for conditions of lifting the highly viscous oil. It is proposed that this unit be used to conduct experiments and to determine the calculated relationships of a gas-liquid lifter on fluids simulating highly viscous oil.

  4. PENGARUH KATALIS BASA (NaOH PADA TAHAP REAKSI TRANSESTERIFIKASI TERHADAP KUALITAS BIOFUEL DARI MINYAK TEPUNG IKAN SARDIN

    Directory of Open Access Journals (Sweden)

    Diah Probo Ningtyas

    2013-06-01

    Full Text Available Biofuel is an alternative diesel engine fuel is produced from oils/fats of plants and animals (including the fisheries industry waste through the esterification and transesterifiksi reactions. A transesterification is reaction to form esters and glycerol from trigliserin (fat/oil and bioalcohol (methanol or ethanol. Transesterification is an equilibrium reaction so that the presence of a catalyst can accelerate the achievement of a state of equilibrium. Process of the transesterification reaction of sardine flour oil waste with NaOH as base catalyst in producing biofuels was conducted.The research purpose has studied the influence of NaOH concentration in transesterification process and examinate its effect on the quality of biofuels production, conversion, and physic quality. The variables that analysed was the effect of NaOH concentration as catalyst (0.5%, 1.0%, 1.5%, and 2.0% from amount of oil and methanol in the transesterification reaction step. The result showed that the increasing NaOH concentration (0.5 - 1.5%, enhanced the biofuel conversion (%. The highest conversion of biofuels was achieved by using 1.50% NaOH (w/w with 45.34% biofuels conversion. The major component in the biofuels was methyl palmitate (20.31%. ASTM analysis data also supported that the biofuel product was in agreement with automotive diesel fuel specification.

  5. Destabilization of Oil-in-Water Emulsions Formed Using Highly Hydrolyzed Whey Proteins.

    Science.gov (United States)

    Agboola; Singh; Munro; Dalgleish; Singh

    1998-01-19

    Oil-in-water emulsions (4 wt % soy oil) were prepared with 0.5-5 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis), in a two-stage homogenizer using various first-stage pressures of 10.3, 20.6, and 34.3 MPa and a constant second-stage pressure of 3.4 MPa. Destabilization studies on the emulsions were carried out for up to 24 h, using both laser light scattering and confocal laser microscopy. It was found that emulsions formed with oiling off and coalescence at all homogenization pressures. Emulsions formed with 2, 3, and 4% WPH showed coalescence and creaming only, while slight flocculation but no creaming occurred in emulsions formed with 5% WPH. Furthermore, the apparent rate of coalescence increased with homogenization pressure but decreased with WPH concentration. In contrast, the surface concentration of WPH increased with the WPH concentration in the emulsions but decreased with homogenization pressure. Analysis of WPH by high-performance liquid chromatography showed an increase in the concentration of high molecular weight peptides at the droplet surface compared to the WPH solution. This was considered very important for the stability of these oil-in-water emulsions.

  6. Muscle-like high-stress dielectric elastomer actuators with oil capsules

    International Nuclear Information System (INIS)

    La, Thanh-Giang; Lau, Gih-Keong; Shiau, Li-Lynn; Wei-Yee Tan, Adrian

    2014-01-01

    Despite being capable of generating large strains, dielectric elastomer actuators (DEAs) are short of strength. Often, they cannot produce enough stress or as much work as that achievable by human elbow muscles. Their maximum actuation capacity is limited by the electrical breakdown of dielectric elastomers. Often, failures of these soft actuators are pre-mature and localized at the weakest spot under high field and high stress. Localized breakdowns, such as electrical arcing, thermal runaway and punctures, could spread to ultimately cause rupture if they were not stopped. This work shows that dielectric oil immersion and self-clearable electrodes nibbed the buds of localized breakdowns from DEAs. Dielectric oil encapsulation in soft-membrane capsules was found to help the DEA sustain an ultra-high electrical breakdown field of 835 MVm −1 , which is 46% higher than the electrical breakdown strength of the dry DEA in air at 570 MV m −1 . Because of the increased apparent dielectric strength, this oil-capsuled DEA realizes a higher maximum isotonic work density of up to 31.51Jkg −1 , which is 43.8% higher than that realized by the DEA in air. Meanwhile, it produces higher maximum isometric stress of up to 1.05 MPa, which is 75% higher than that produced by the DEA in air. Such improved actuator performances are comparable to those achieved by human flexor muscles, which can exert up to 1.2 MPa during elbow flexion. This muscle-like, high-stress dielectric elastomeric actuation is very promising to drive future human-like robots. (paper)

  7. The research of full automatic oil filtering control technology of high voltage insulating oil

    Science.gov (United States)

    Gong, Gangjun; Zhang, Tong; Yan, Guozeng; Zhang, Han; Chen, Zhimin; Su, Chang

    2017-09-01

    In this paper, the design scheme of automatic oil filter control system for transformer oil in UHV substation is summarized. The scheme specifically includes the typical double tank filter connection control method of the transformer oil of the UHV substation, which distinguishes the single port and the double port connection structure of the oil tank. Finally, the design scheme of the temperature sensor and respirator is given in detail, and the detailed evaluation and application scenarios are given for reference.

  8. Physical processes in high field insulating liquid conduction

    Science.gov (United States)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert

    2017-10-01

    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  9. Diets high in corn oil or extra-virgin olive oil differentially modify the gene expression profile of the mammary gland and influence experimental breast cancer susceptibility.

    Science.gov (United States)

    Moral, Raquel; Escrich, Raquel; Solanas, Montserrat; Vela, Elena; Ruiz de Villa, M Carme; Escrich, Eduard

    2016-06-01

    Nutritional factors, especially dietary lipids, may have a role in the etiology of breast cancer. We aimed to analyze the effects of high-fat diets on the susceptibility of the mammary gland to experimental malignant transformation. Female Sprague-Dawley rats were fed a low-fat, high-corn-oil, or high-extra-virgin olive oil (EVOO) diet from weaning or from induction. Animals were induced with 7,12-dimethylbenz[a]anthracene at 53 days and euthanized at 36, 51, 100 and 246 days. Gene expression profiles of mammary glands were determined by microarrays. Further molecular analyses were performed by real-time PCR, TUNEL and immunohistochemistry. Carcinogenesis parameters were determined at 105 and 246 days. High-corn-oil diet increased body weight and mass when administered from weaning. The EVOO diet did not modify these parameters and increased the hepatic expression of UCP2, suggesting a decrease in intake/expenditure balance. Both diets differentially modified the gene expression profile of the mammary gland, especially after short dietary intervention. Corn oil down-regulated the expression of genes related to immune system and apoptosis, whereas EVOO modified the expression of metabolism genes. Further analysis suggested an increase in proliferation and lower apoptosis in the mammary glands by effect of the high-corn-oil diet, which may be one of the mechanisms of its clear stimulating effect on carcinogenesis. The high-corn-oil diet strongly stimulates mammary tumorigenesis in association with modifications in the expression profile and an increased proliferation/apoptosis balance of the mammary gland.

  10. Oil spills

    International Nuclear Information System (INIS)

    Katsouros, M.H.

    1992-01-01

    The world annually transports 1.7 billion tons of oil by sea, and oil spills, often highly concentrated discharges, are increasing from a variety of sources. The author discusses sources of oils spills: natural; marine transportation; offshore oil production; atmospheric sources; municipal industrial wastes and runoff. Other topics include: the fate of the spilled oil; the effects of the oil; the response to oil spills; and prevention of oil spills. 30 refs., 1 fig., 4 tabs

  11. Fatty Amides from Crude Rice Bran Oil as Green Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    E. Reyes-Dorantes

    2017-01-01

    Full Text Available Due to its high oil content, this research proposes the use of an agroindustrial byproduct (rice bran as a sustainable option for the synthesis of corrosion inhibitors. From the crude rice bran oil, the synthesis of fatty amide-type corrosion inhibitors was carried out. The corrosion inhibitory capacity of the fatty amides was evaluated on an API X-70 steel using electrochemical techniques such as real-time corrosion monitoring and potentiodynamic polarization curves. As a corrosive medium, a CO2-saturated solution (3.5% NaCl was used at three temperatures (30, 50, and 70°C and different concentrations of inhibitor (0, 5, 10, 25, 50, and 100 ppm. The results demonstrate that the sustainable use of agroindustrial byproducts is a good alternative to the synthesis of environmentally friendly inhibitors with high corrosion inhibition efficiencies.

  12. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells.

    Science.gov (United States)

    Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang

    2016-10-14

    First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  13. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells

    Directory of Open Access Journals (Sweden)

    Yanjun Wang

    2016-10-01

    Full Text Available First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  14. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil

    Science.gov (United States)

    Liu, Sheng; Su, Jiancang; Fan, Xuliang

    2017-09-01

    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  15. Palm Oil

    Science.gov (United States)

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  16. Methyl Ester (Bio diesel) Production from Waste Cooking Vegetable Oil by Microwave Irradiation

    International Nuclear Information System (INIS)

    Khatun, M.S.; Khatun, M.A.; Khan, M.Z.H.; Debnath, M.

    2014-01-01

    In this study we tried to develop, test and optimize a batch microwave system using waste cooking vegetable oil (WCVO) that was used as bio diesel feedstock. Two catalysts, sodium hydroxide (NaOH) and potassium hydroxide (KOH) were tested in this study. Transesterification reactions between oil and methanol were carried out in presence of microwaves. It was observed that by using of microwaves, the reaction times were drastically reduced. As high as 99.5 % conversions could be achieved for 0.5% KOH concentration. Moreover, quality analysis of bio diesels according to international standards was performed and the samples were found to meet the necessary specifications. (author)

  17. Chemical content, antibacterial and antioxidant properties of essential oil extract from Tunisian Origanum majorana L. cultivated under saline condition.

    Science.gov (United States)

    Olfa, Baâtour; Mariem, Aouadi; Salah, Abbassi Mohamed; Mouhiba, BenNasri Ayachi

    2016-11-01

    Essential oils of marjoram were extracted from plants, growing under non-saline and saline condition (75mM NaCl). Their antioxidant and antibaterial activity against six bacteria (Enterococcus faecalis, Escherichia coli, Salmonella enteritidis, Listeria ivanovii, Listeria inocula, and Listeria monocytogenes) were assessed. Result showed that, (i) independently of salt treatment, marjoram essential oils inhibited the growth of most of the bacteria but in degrees. The least susceptible one was Enterococcus faecalis. (ii) Gram negative bacteria seemed more sensitive to treated essential oils than Gram positive ones. (iii) Compared to synthetic antibiotics, marjoram essential oils were more effective against E. coli, L. innocua and S. enteridis. This activity was due to their high antioxidant activity. Thus, essential oils of marjoram may be an alternative source of natural antibacterial and antioxidant agents.

  18. Óleo de soja e própolis na alimentação de cabras leiteiras Soybean oil and propolis in the diets of dairy goats

    Directory of Open Access Journals (Sweden)

    Rogério de Paula Lana

    2005-04-01

    Full Text Available Objetivou-se, neste experimento, verificar os efeitos da adição de óleo de soja e/ou de extrato etanólico de própolis na alimentação de cabras leiteiras sobre o consumo, a digestibilidade de nutrientes, a produção e composição do leite e alguns parâmetros de fermentação ruminal. Foram utilizadas dezesseis cabras Alpinas (quatro fistuladas no rúmen. Os animais foram alocados em quatro quadrados latinos 4x4, em arranjo fatorial 2x2 dos tratamentos. Foram adicionados ao concentrado 0 ou 120 g de óleo de soja e 0 ou 10 mL de extrato etanólico de própolis/animal/dia (30% p/v de própolis bruta moída em solução alcoólica a 70% em água. As dietas foram isoprotéicas, com 11,5% de PB, e compostas de 67% de silagem de milho e 33% de concentrado à base de fubá de milho e farelo de soja. O óleo de soja reduziu os consumos de matéria seca (%PV e g/kg PV0,75, de fibra em detergente neutro (FDN e de carboidratos não-fibrosos; diminuiu a digestibilidade da FDN; aumentou a digestibilidade da PB e do EE e o teor de nutrientes digestíveis totais (NDT; reduziu a produção e aumentou os percentuais de gordura, proteína e sólidos totais no leite; aumentou o pH; e reduziu a relação acetato:propionato no líquido ruminal. Houve interação entre óleo de soja e extrato etanólico de própolis, de modo que o óleo de soja reduziu os consumos de MS, MO e FDN (em kg/animal/dia somente na presença de própolis e aumentou o consumo de PB na ausência de própolis. O óleo de soja mostrou-se mais efetivo em alterar as variáveis analisadas que o extrato etanólico de própolis.The objective of this experiment was to verify the effects of soybean oil and/or ethanolic extract of propolis, in the diets of dairy goats, on intake, on digestibility of nutrients, on milk production and composition and some ruminal parameters. Sixteen Alpine female goats were used, in which four animals fistulated in the rumen. The animals were allocated in four 4

  19. The investigation for attaining the optimal yield of oil shale by integrating high temperature reactors

    International Nuclear Information System (INIS)

    Bhattacharyya, A.T.

    1984-03-01

    This work presents a systemanalytical investigation and shows how far a high temperature reactor can be integrated for achieving the optimal yield of kerogen from oil shale. About 1/3 of the produced components must be burnt out in order to have the required high temperature process heat. The works of IGT show that the hydrogen gasification of oil shale enables not only to reach oil shale of higher quality but also allows to achieve a higher extraction quantity. For this reason a hydro-gasification process has been calculated in this work in which not only hydrogen is used as the gasification medium but also two high temperature reactors are integrated as the source of high temperature heat. (orig.) [de

  20. Frying stability of high oleic sunflower oils as affected by composition of tocopherol isomers and linoleic acid content.

    Science.gov (United States)

    Aladedunye, Felix; Przybylski, Roman

    2013-12-01

    The influence of linoleic acid content and tocopherol isomeric composition on the frying performance of high oleic sunflower oil was evaluated during a 14-day restaurant style frying operation. At equal linoleic acid content, no significant difference was observed between high oleic sunflower oil containing only α-tocopherol and the sample containing a mixture of α-, γ-, and δ-isomers as measured by the amount of total polar components, oligomers, anisidine value, and free fatty acids. On the contrary, at similar tocopherol isomeric composition, high oleic sunflower oil containing lower amount of linoleic acid showed superior frying stability compared to the sample with a higher content of linoleic acid, suggesting that the frying performance of high oleic sunflower oil is dictated primarily by the level of linoleic acid, with the tocopherol isomeric composition of the oil having no significant influence. In all oil samples, the loss of γ-tocopherol was higher than the corresponding loss of α-tocopherol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. ENGLISH-IGBO GLOSSARY CREATION OF PALM OIL ...

    African Journals Online (AJOL)

    Dean SPGS NAU

    Abstract. The Igbo speaking people are well known for palm oil production ... ventures among other trades or occupations for which the Igbo are known. .... Q na-eme aka ntxtx vii. ..... Professionals – teachers, lawyers, writers, journalists and.

  2. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2010-01-01

    In the search of an alternative fuel to substitute diesel fuel, biodiesel appears as one of the most promising sources of energy for diesel engines because of its environmental advantages and also due to the evolution of the petroleum market. Refined oil is the conventional raw material for the production of this biofuel; however, its major disadvantage is the high cost of its production. Therefore, frying oils, waste oils, crude oils and/or acid oils are being tested as alternative raw materials; nevertheless, there will be some problems if a homogeneous basic catalyst (NaOH) is employed due to the high amount of free fatty acid present in the raw oil. In this work, the transesterification reaction of acid oil using solid resin, Dowex monosphere 550 A, was studied as an alternative process. Ethanol was employed to have a natural and sustainable final product. The reaction temperature's effects, the initial amount of free fatty acid, the molar ratio of alcohol/oil and the type of catalyst (homogeneous or heterogeneous) over the main reaction are analyzed and their effects compared. The results obtained show that the solid resin is an alternative catalyst to be used to produce fatty acid ethyl esters (FAEEs) by a transesterification reaction with a final conversion over 90%. On the other hand, the time required to achieve this conversion is bigger than the one required using conventional technology which employs a homogeneous basic catalyst. This reaction time needs to be optimized. (author)

  3. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance.

    Science.gov (United States)

    Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Lewandowski, Paul A; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S

    2016-09-01

    Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring. Copyright © 2016 the American Physiological Society.

  4. Evaluating cleansing effects on trace elements and stable isotope values in feathers of oiled birds.

    Science.gov (United States)

    Valladares, Sonia; Moreno, Roćio; Jover, Lluis; Sanpera, Carola

    2010-01-01

    Feathers of seabirds are widely used as a nondestructive tissue for pollution monitoring of trace elements, as well as convenient samples for trophic ecology studies by means of stable isotope analysis (SIA). Nevertheless, feathers can be occasionally impregnated with oil from deliberate ship discharges and from massive oil spill accidents. The feather structure makes them effective traps for particles and are subject to external contamination. It is unknown to what extent the oil adhered to feathers can change trace element concentrations or stable isotope signatures. This study has two primary objectives: (1) to assess if there are differences between trace element concentrations and stable isotope signatures of oiled and clean feathers, and (2) to determine if the cleansing of oiled feathers using commonly applied techniques such as sodium hydroxide (NaOH) washes in combination with an organic solvent (hexane) is more effective than using NaOH alone. In order to do this, we analysed trace elements (Se, Hg, Pb, Cu and Zn) and stable isotopes (delta(13)C and delta(15)N) of individual feathers of yellow-legged gulls (Larus michahellis) which were affected by the 2002 Prestige oil spill in Galicia (NW Spain). Two sets of feathers were analysed, one group were oil-free (Control group) and the other had oil adhered to its surface (Oiled group). We expected to find differences between control and oiled feathers when cleaning exclusively with NaOH and no differences when using hexane. Our results did not show significant differences between Control and Oiled groups as a consequence of the cleansing method used. Unexpectedly, the additional cleansing with hexane resulted in decreasing selenium concentrations and increasing zinc and delta(15)N values in all groups of feathers.

  5. Apricot and pumpkin oils reduce plasma cholesterol and triacylglycerol concentrations in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Ramadan, Mohamed F.

    2011-12-01

    Full Text Available Non-conventional oilseeds are being taken into greater consideration because their constituents have unique chemical properties and may increase the supply of edible oils. The purpose of the present study was to investigate the effect of apricot kernel oil (AO and pumpkin kernel oil (PO on the lipid profiles and liver functions of rats fed high fat diets. The high fat diet resulted in great alterations in plasma lipid profiles and liver functions. Twenty-four male albino rats were used over a 28 day period. The animals were divided into 4 groups, where group 1 represents the negative control which were a fed basal diet, while group 2 received a high fat diet to serve as the hypercholesterolemic group (positive control. The other two groups were given a high fat diet supplemented with AO and PO. Group 3 was treated daily with AO (1g/Kg body weight, while group 4 was treated with PO (1g/Kg body weight. The plasma lipid profile and liver functions in the different groups were determined after 14 and 28 days. The rats in the treated groups (AO and PO showed significantly lower levels of total cholesterol (TC, total triglycerides (TG, low density lipoprotein-cholesterol (LDL-C, alanine-aminotransferase (ALT and aspartateaminotransferase (AST activities as well as high levels of high density lipoprotein-cholesterol (HDL-C and total protein in comparison with the hypercholesterolemic group. It could be concluded that AO and PO under study are useful for the treatment of hypercholesterolemia.

    Las semillas oleaginosas no convencionales están siendo consideradas debido a que sus componentes tienen propiedades químicas únicas y pueden aumentar la oferta de los aceites comestibles. El propósito del presente estudio fue investigar el efecto de los aceites de semilla de albaricoque (AO y de calabaza (PO sobre los perfiles de lípidos y las funciones del hígado de ratas alimentadas con una dieta rica en grasas. Las dietas ricas en grasas dan lugar

  6. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    Science.gov (United States)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Abdelhalim I. A. Mohamed

    2017-01-01

    Full Text Available Emulsified water-in-oil (W/O systems are extensively used in the oil industry for water control and acid stimulation. Emulsifiers are commonly utilized to emulsify a water-soluble material to form W/O emulsion. The selection of a particular surfactant for such jobs is critical and certainly expensive. In this work, the impact of surfactant structure on the stability of W/O emulsions is investigated using the hydrophilic-lipophilic balance (HLB of the surfactant. Different commercial surfactants were evaluated for use as emulsifiers for W/O systems at high-temperature (up to 120°C high-salinity (221,673 ppm HTHS conditions. Diverse surfactants were examined including ethoxylates, polyethylene glycols, fluorinated surfactants, and amides. Both commercial Diesel and waste oil are used for the oleic phase to prepare the emulsified system. Waste oil has shown higher stability (less separation in comparison with Diesel. This work has successfully identified stable emulsified W/O systems that can tolerate HTHS environments using HLB approach. Amine Acetate family shows higher stability in comparison with Glycol Ether family and at even lower concentration. New insights into structure-surfactant stability relationship, beyond the HLB approach, are provided for surfactant selection.

  8. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    Science.gov (United States)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  9. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D., E-mail: david.lambertin@cea.fr; Poulesquen, A.; Frizon, F.

    2015-09-15

    Highlights: • Formulation with 20 vol.% of oil in a geopolymer have been successful tested. • Oil waste is encapsulated as oil droplets in metakaolin-based geopolymer. • Oil/geopolymer composite present good mechanical performance. • Carbon lixiviation of oil/geopolymer composite is very low. - Abstract: The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH{sup −}) are involved into diffusion process.

  10. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Second annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, M.J.

    1995-04-01

    {open_quotes}Investigation of Oil Recovery Improvement by Coupling an Interfacial Tension Agent and a Mobility Control Agent in Light Oil Reservoirs{close_quotes} is studying two major areas concerning co-injecting an interfacial tension reduction agent(s) and a mobility control agent. The first area defines the interactions of alkaline agents, surfactants, and polymers on a fluid-fluid and a fluid-rock basis. The second area concerns the economic improvement of the combined technology. This report continues the fluid-fluid interaction evaluations and begins the fluid-rock studies. Fluid-fluid interfacial tension work determined that replacing sodium ion with either potassium or ammonium ion in solutions with interfacial tension reduction up to 19,600 fold was detrimental and had little or no effect on alkali-surfactant solutions with interfacial tension reduction of 100 to 200 fold. Reservoir brine increases interfacial tension between crude oil and alkaline-surfactant solutions. Na{sub 2}CO{sub 3}-surfactant solutions maintained ultra low and low interfacial tension values better than NaOH-surfactant solutions. The initial phase of the fluid-rock investigations was adsorption studies. Surfactant adsorption is reduced when co-dissolved with alkali. Na{sub 2}CO{sub 3} and Na{sub 3}PO{sub 4} are more efficient at reducing surfactant adsorption than NaOH. When polymer is added to the surfactant solution, surfactant adsorption is reduced as well. When both polymer and alkali are added, polymer is the dominate component, reducing the Na{sub 2}CO{sub 3} and NaOH effect on adsorption. Substituting sodium ion with potassium or ammonium ion increased or decreased surfactant adsorption depending on surfactant structure with alkali having a less significant effect. No consistent change of surfactant adsorption with increasing salinity was observed in the presence or absence of alkali or polymer.

  11. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  12. Role of Fish Oil against Physiological Disturbances in Rats Brain Induced by Sodium Fluoride and/or Gamma Rays

    International Nuclear Information System (INIS)

    Said, U.Z.; El-Tahawy, N.A.; Ibrahim, F.R.; Kamal, G.M.; EL-Sayed, T.M.

    2015-01-01

    The impacts of environmental and occupational exposure to ionizing radiation and to long-term intake of high levels of fluoride have caused health problems and increasingly alarming in recent years. Fish oil omega-3 (polyunsaturated fatty acids essential fatty acids) is found in the highest concentrations in fish oil, claim a plethora of health benefits. The objective of the present study was to evaluate the role of fish oil rich in omega-3 fatty acids on sodium fluoride (NaF) and or gamma (γ) rays in inducing neurological and biochemical disturbances in rat’s brain cerebral hemispheres. The results revealed that whole body exposure to γ- radiation at 6 Gy applied as fractionated doses (1.5 Gy x 4 times) and/or chronic receipt of NaF solution (0.13 mg/Kg/day) for a period of 28 days, significantly increased brain fluoride and calcium content, decreased level of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and induced brain oxidative stress which led to neurotransmitters dysfunction. Supplementation of treated rats with fish oil, via gavages, at a dose of 400 mg/kg body wt has significantly modulated oxidative stress and neurotransmitters alterations. It could be concluded that EPA and DHA, found in fish oil, could possibly protect brain from damaging free radicals and consequently minimize the severity of brain biochemical disturbances

  13. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water

    KAUST Repository

    Duong, Hoang Hanh Phuoc; Chung, Neal Tai-Shung

    2014-01-01

    Large amounts of oily wastewater have been produced from various industries. The main challenge of oily wastewater treatments is to separate the stable emulsified oil particles from water. Therefore, the aim of this study is to investigate the effectiveness of forward osmosis (FO) processes to treat the stable oil-water emulsions. The FO technique has been demonstrated successfully for the treatment of a wide range of oil-water emulsions from a low to a very high concentration up to 200,000. ppm. The dependence of separation performance on oily feed concentration and flow rate has been investigated. Water can be separated from oily feeds containing 500. ppm or 200,000. ppm emulsified oil at a relatively high flux of 16.5±1.2. LMH or 11.8±1.6. LMH respectively by using a thin film composite membrane PAN-TFC and 1. M NaCl as the draw solution. Moreover, this membrane can achieve an oil rejection of 99.88% to produce water with a negligible oil level. Due to the presence of emulsified oil particles in the oily feed solutions, the membrane fouling has been addressed in this study. Better anti-fouling TFC FO membranes are needed. © 2013 Elsevier B.V.

  14. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water

    KAUST Repository

    Duong, Hoang Hanh Phuoc

    2014-02-01

    Large amounts of oily wastewater have been produced from various industries. The main challenge of oily wastewater treatments is to separate the stable emulsified oil particles from water. Therefore, the aim of this study is to investigate the effectiveness of forward osmosis (FO) processes to treat the stable oil-water emulsions. The FO technique has been demonstrated successfully for the treatment of a wide range of oil-water emulsions from a low to a very high concentration up to 200,000. ppm. The dependence of separation performance on oily feed concentration and flow rate has been investigated. Water can be separated from oily feeds containing 500. ppm or 200,000. ppm emulsified oil at a relatively high flux of 16.5±1.2. LMH or 11.8±1.6. LMH respectively by using a thin film composite membrane PAN-TFC and 1. M NaCl as the draw solution. Moreover, this membrane can achieve an oil rejection of 99.88% to produce water with a negligible oil level. Due to the presence of emulsified oil particles in the oily feed solutions, the membrane fouling has been addressed in this study. Better anti-fouling TFC FO membranes are needed. © 2013 Elsevier B.V.

  15. Neutron activation analysis of trace metallic elements eluted from molecular sieves in the dehydration process of safflower oil

    International Nuclear Information System (INIS)

    Takasago, Masahisa; Kobayashi, Koichi; Taru, Yasunori; Takaoka, Kyo

    1992-01-01

    Dissolved water in safflower oil affects the autoxidation of this oil significantly. Molecular sieves were used to remove the dissolved water from the oil. This method is much simpler than that of distillation, and dissolved water can be removed to the same extent as that by distillation. But, due to the elution of many kinds of trace metallic elements in the oil dehydrated with molecular sieves, these elements were analyzed by neutron activation analysis. For a data comparison trace amounts of metallic elements in the oil dehydrated by distillation were also analyzed. Since the intensity of the γ ray-photoelectric peak of nuclide 28 Al was largest among the detected elements, this element was analyzed quantitatively and the other elements qualitatively. In safflower oil dehydrated with molecular sieves, 14 kinds of the elements (I, Br, Al, Mg, Si, V, Cl, Nd, Ta, Cr, Sb, Cs, Co, Na) were detected. Also, I, Br, Cl, Cr, Ta, Sb, and Al elements were detected in the oil dehydrated by distillation. The intensity of the photoelectric peak of nuclide except 28 Al was essentially the same as that in the oil dehydrated by distillation, but the intensity of 28 Al in the oil with molecular sieves was about 28 times stronger than that in distillation oil. In the molecular sieves, 19 impure elements in addition to the original constituents (Na, K, Al, si, O) were detected. It was Al, Na, Si, Nd, Cs, and Co along with impure elements may possibly have been eluted in the oil. Al element in safflower oil dehydrated with molecular sieves was analyzed quantitatively. 0.91 ppm of Al was detected in safflower oil. The eluted amount of Al in safflower oil dehydrated by distillation was 0.032 ppm. A larger amount of Al element was thus eluted into the oil dehydrated with molecular sieves than by distillation. (author)

  16. Fatty acid composition of commercial vegetable oils from the French market analysed using a long highly polar column

    Directory of Open Access Journals (Sweden)

    Vingering Nathalie

    2010-05-01

    Full Text Available The increasing concern for consumed fat by western populations has raised the question of the level and the quality of fat intake, especially the composition of fatty acids (FA and their impact on human health. As a consequence, consumers and nutritionists have requested updated publications on FA composition of food containing fat. In the present study, fourteen different kinds of edible oils (rapeseed, olive, hazelnut, argan, groundnut, grape seed, sesame, sunflower, walnut and organic walnut, avocado, wheat germ, and two combined oils were analysed for FA determination using a BPX-70 60 m highly polar GC column. Oils were classified according to the classification of Dubois et al. (2007, 2008. Monounsaturated FA (MUFA group oils, including rapeseed, olive, hazelnut, and avocado oils, contained mainly oleic acid (OA. Groundnut and argan oils, also rich in MUFA, showed in addition high linoleic acid (LA contents. In the polyunsaturated (PUFA group, grape seed oil presented the highest LA content while sunflower, sesame, and wheat germ oils showed noticeable MUFA amounts in addition to high PUFA contents. Walnut oils, also rich in LA, showed the highest linolenic acid (ALA content. The n-6/n-3 ratio of each oil was calculated. Trans-FA (TFA was also detected and quantified. Results were compared with the data published during the past decade, and the slight discrepancies were attributed to differences in origin and variety of seed-cultivars, and in seed and oil processes.

  17. Sedimentation and deformation of an aqueous sodium hydroxide drop in vegetable oil

    Science.gov (United States)

    White, Andrew; Hyacinthe, Hyaquino; Ward, Thomas

    2013-11-01

    The addition of water droplets in fuels is known to provide benefits such as decreased Nitrous Oxide NOx emissions. Unfortunately the shelf life of a water-fuel emulsion is limited by the sedimentation rate of the water droplets. It is well known that adding surfactants can significantly slow the sedimentation rate due to the introduction of Marangoni stresses. In the case of a vegetable oil fuel, adding sodium hydroxide (NaOH) to the water droplets will produce surfactants through saponification in the form of sodium-carboxylate salts. Pendant drops of aqueous NaOH solutions with pH between 11 and 13 will be suspended in several oils such as corn, olive, canola and soybean oil in order to measure the interfacial tension. The change in interfacial tension with time will be used to estimate the surfactant concentration and the saponification rate. Then individual drops will be placed in the oils to observe the settling velocity and drop deformation. NSF CBET.

  18. Efeito da combinação de óleo de soja e monensina na dieta sobre o consumo de matéria seca e a digestão em vacas lactantes Effect of monensin and soybean oil combination on dry matter intake and digestibility in diets fed to lactating cows

    Directory of Open Access Journals (Sweden)

    Eduardo da Costa Eifert

    2005-02-01

    Full Text Available Quatro vacas lactantes, fistuladas no rúmen, foram distribuídas em um quadrado latino (4x4, com 21 dias de período experimental, sendo os três últimos de avaliação, com a finalidade de avaliar os efeitos da combinação de óleo de soja e monensina sobre o consumo, a digestibilidade total e parcial dos nutrientes, os parâmetros ruminais e a síntese microbiana. Os animais foram dispostos em um arranjo fatorial (2x2 - presença ou ausência de óleo de soja (4% na MS e presença ou ausência de monensina na dieta (33 ppm e receberam dietas com 55% de silagem de milho e 45% de concentrado. Para avaliação da digestibilidade total e parcial, foram coletadas amostras de fezes e de digesta omasal, utilizando FDAi e Cr2O3 como indicadores. A presença de óleo reduziu o consumo alimentar, mas permitiu similar consumo de NDT. A digestibilidade total de nutrientes não foi afetada pelos tratamentos. A digestibilidade ruminal da FDN foi similar na presença de óleo e na presença de monensina, mas foi reduzida na combinação de ambos. O pH, a eficiência de síntese microbiana e o total de AGV do líquido ruminal foram similares entre os tratamentos. Observou-se interação entre óleo e monensina para a concentração de N-NH3, verificando-se menor valor para as dietas com óleo somente. A proporção de acetato foi reduzida tanto pelo óleo como pela monensina, mas em diferentes magnitudes, assim como na combinação. O propionato aumentou com monensina e com óleo, ao passo que o butirato diminuiu com óleo. A relação acetato:propionato foi reduzida na presença de óleo e de monensina. A síntese de proteína microbiana foi reduzida na presença de óleo e ainda mais quando o oléo foi associado à monensina. A combinação de óleo e monensina atua sobre a mesma população microbiana e a sensibilidade à ação da monensina é aumentada na presença de óleo. A limitação no consumo pelo enchimento ruminal, pela redução da

  19. The effect of dietary lipid saturation and monensin-Na on the CLA ...

    African Journals Online (AJOL)

    One diet contained no ionophore antibiotic and the other monensin-Na included at 165 g/ton. These two basal diets were supplemented, according to a 2 x 3 factorial design, with three lipid sources [i.e. 20 g/kg of either beef tallow, sunflower oil or a CLA oil concentrate] differing in saturation level and fatty acid profile.

  20. Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Modhar A.; Yusup, Suzana; Ahmad, Murni M. [Universiti Teknologi PETRONAS, Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-12-15

    Free fatty acids content plays an important role in selecting the appropriate route for biodiesel production. Oils with high content of free fatty acids can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. In the current study, an equivolume blend of crude rubber seed oil and crude palm oil is fed to the reaction with methanol as the alcohol of choice and sulfuric acid. Selected reaction parameters were optimized, using Taguchi method for design of experiments, to yield the lowest free fatty acid content in the final product. The investigated parameters include alcohol to oil ratio, temperature and amount of catalyst. The effect and significance of each parameter were then studied based on the fractional factorial design and verified by additional experiments. The optimum conditions for acid esterification which could reduce the free fatty acid content in the feedstock to lower than 0.6% (95% reduction) were 65 C, 15:1 methanol to oil ratio (by mole) and 0.5 wt% H{sub 2}SO{sub 4} after 3 h of reaction time. Temperature had been found to have the most effect on the reduction of free fatty acids followed by reactants ratio while increasing catalyst amount had nominal effect. (author)

  1. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  2. Esterification and Deacidification of a Waste Cooking Oil (TAN 68.81 mg KOH/g for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Zheng Xia

    2012-07-01

    Full Text Available Oils with high content of free fatty acid (FFA can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. The investigated parameters include methanol to oil ratio, temperature and amount of catalyst. The optimum conditions for acid esterification which could reduce FFA content in the feedstock to less than 1.88% (acid value 3.76 mg KOH/g waste cooking oil were 50 °C, 20% methanol to oil ratio (by volume and 0.4 vol.% H2SO4 after 5 h. However, oil with an acid value of more than 1 mg KOH/g oil cannot meet the alkaline catalyzed transesterification conditions. Under the conditions of NaOH concentration 0.5 N, excess alkali 15%, 60 °C, 40 min, the FFA removal rate for deacidification reached 77.11% (acid value 0.86 mg KOH/g esterified oil. The acid value of deacidification product was reduced below 0.86 mg KOH/g esterified oil, thus meeting the base-catalyzed trans-esterification conditions.

  3. Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

    2007-09-30

    power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant oil recovery performance reported in the literature. The second effort is a more fundamental study. It considers the effect of chemical structures of different naphthenic acids (NA) dissolved in decane as model oils that render calcite surfaces oil-wet to a different degree. NAs are common to crude oil and are at least partially responsible for the frequent observation that carbonate reservoirs are oil-wet. Because pure NA compounds are used, trends in wetting behavior can be related to NA molecular structure as measured by solid adsorption, contact angle and our novel, simple flotation test with calcite. Experiments with different surfactants and NA-treated calcite powder provide information about mechanisms responsible for sought after reversal to a water-wet state. Key findings include: (1) more hydrophobic NA's are more prone to induce oil-wetting, and (2) recovery of the model oil from limestone core was better with cationic surfactants, but one nonionic surfactant, Igepal CO-530, also had favorable results. This portion of the project included theoretical calculations to investigate key basic properties of several NAs such as their acidic strength and their relative water/oil solubility, and relate this to their chemical structure. The third category of this project focused on the recovery of a light crude oil from West Texas (McElroy Field) from a carbonate rock (limestone outcrop). For this effort, the first item was to establish a suite of surfactants that would be compatible with the McElroy Field brine. Those were examined further for

  4. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2016-01-01

    Full Text Available Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD. The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD supplement with perilla oil (POH for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  5. Hydrothermal dolomitization of the Bekhme formation (Upper Cretaceous), Zagros Basin, Kurdistan Region of Iraq: Record of oil migration and degradation

    Science.gov (United States)

    Mansurbeg, Howri; Morad, Daniel; Othman, Rushdy; Morad, Sadoon; Ceriani, Andrea; Al-Aasm, Ihsan; Kolo, Kamal; Spirov, Pavel; Proust, Jean Noel; Preat, Alain; Koyi, Hemin

    2016-07-01

    The common presence of oil seepages in dolostones is widespread in Cretaceous carbonate successions of the Kurdistan Region of Iraq. This integrated field, petrographic, chemical, stable C, O and Sr isotopes, and fluid inclusion study aims to link dolomitization to the origin and geochemical evolution of fluids and oil migration in the Upper Cretaceous Bekhme carbonates. Flux of hot basinal (hydrothermal) brines, which is suggested to have occurred during the Zagros Orogeny, resulted in dolomitization and cementation of vugs and fractures by coarse-crystalline saddle dolomite, equant calcite and anhydrite. The saddle dolomite and host dolostones have similar stable isotopic composition and formed prior to oil migration from hot (81-115 °C) basinal NaCl-MgCl2-H2O brines with salinities of 18-22 wt.% NaCl eq. The equant calcite cement, which surrounds and hence postdates saddle dolomite, has precipitated during oil migration from cooler (60-110 °C) NaCl-CaCl2-H2O brines (14-18 wt.% NaCl eq). The yellowish fluorescence color of oil inclusions in the equant calcite indicates that the oil had API gravity of 15-25° composition, which is lighter than present-day oil in the reservoirs (API of 10-17°). This difference in oil composition is attributed to oil degradation by the flux of meteoric water, which is evidenced by the low δ13C values (- 8.5‰ to - 3.9‰ VPDB) as well as by nil salinity and low temperature in fluid inclusions of late columnar calcite cement. This study demonstrates that linking fluid flux history and related diagenesis to the tectonic evolution of the basin provides important clues to the timing of oil migration, degradation and reservoir evolution.

  6. Oil and gas projects in Amazon: an environmental challenge; Projetos de petroleo e gas na Amazonia: um desafio ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Taam, Mauricio [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Cabral, Nelson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Regional Norte SMS ; Cardoso, Vanderlei [TRANSPETRO, Rio de Janeiro, RJ (Brazil). Gerencia de Seguranca, Meio Ambiente e Saude

    2004-07-01

    In the heart of the Amazon forest, some 600 km from the city of Manaus, the Brazilian Oil Company - PETROBRAS - is developing the 'URUCU PROJECT'. Consisting on 3 oil and gas production fields and 3 natural gas processing plant, 2 huge pipelines crossing the dense Amazon forest and its rivers and going towards COARI - the Fluvial Terminal of Solimoes river. Then, vessels and ferries, loads LGN to the north region and oil to feed the Manaus refinery plant. In a near future natural gas pipelines will connect COARI to Manaus and URUCU to Porto Velho. The whole project will allow energy supply to the less developed and isolated region of Brazil, and brings relief for the local population, but represents one of the biggest challenges for the oil and gas industry in terms of environmental sustainability for projects in very sensitive areas. The paper concludes that it is viable to face such a challenges counting on an Environmental Management System tailored to fit the region peculiarities, including a high level of Preparedness and Response for oil incidents, and last but never least assuming a respectful attitude towards the Amazon and its people. (author)

  7. Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage.

    Science.gov (United States)

    Rele, Aarti S; Mohile, R B

    2003-01-01

    Previously published results showed that both in vitro and in vivo coconut oil (CNO) treatments prevented combing damage of various hair types. Using the same methodology, an attempt was made to study the properties of mineral oil and sunflower oil on hair. Mineral oil (MO) was selected because it is extensively used in hair oil formulations in India, because it is non-greasy in nature, and because it is cheaper than vegetable oils like coconut and sunflower oils. The study was extended to sunflower oil (SFO) because it is the second most utilized base oil in the hair oil industry on account of its non-freezing property and its odorlessness at ambient temperature. As the aim was to cover different treatments, and the effect of these treatments on various hair types using the above oils, the number of experiments to be conducted was a very high number and a technique termed as the Taguchi Design of Experimentation was used. The findings clearly indicate the strong impact that coconut oil application has to hair as compared to application of both sunflower and mineral oils. Among three oils, coconut oil was the only oil found to reduce the protein loss remarkably for both undamaged and damaged hair when used as a pre-wash and post-wash grooming product. Both sunflower and mineral oils do not help at all in reducing the protein loss from hair. This difference in results could arise from the composition of each of these oils. Coconut oil, being a triglyceride of lauric acid (principal fatty acid), has a high affinity for hair proteins and, because of its low molecular weight and straight linear chain, is able to penetrate inside the hair shaft. Mineral oil, being a hydrocarbon, has no affinity for proteins and therefore is not able to penetrate and yield better results. In the case of sunflower oil, although it is a triglyceride of linoleic acid, because of its bulky structure due to the presence of double bonds, it does not penetrate the fiber, consequently resulting

  8. Application of Alkaline Waterflooding to a High Acidity Crude Oil Application de l'injection d'eau alcaline au cas d'un pétrole brut à forte acidité

    Directory of Open Access Journals (Sweden)

    Abdel-Waly A.

    2006-11-01

    Full Text Available The main objective of this work was to study the enhanced recovery of a high acidity crude oil (South Geisum crude by alkaline solutions. Different properties of South Geisum crude oil, namely acidity, interfacial tension, and contact angle, were investigated. Displacement tests were carried out to study the effect of alkaline slug concentration, slug size, oil alkali type, and temperature viscosity on recovery. South Geisum crude oil is a highly acidic crude (4. 38 mg KOH/g. It was found that the interfacial tension between crude oil and formation water decreases with increasing alkaline concentration until it reaches a minimum, after which it increases again with a further increase in alkaline concentration. Interfacial tension between crude oil and displacement water also decreases with increasing alkaline concentration. Contact angle measurements indicated oil-wetting conditions that increase by the addition of alkaline solutions. Displacement floods showed that, at the early stages of displacement, oil recovery increases with increasing alkaline concentration until it reaches a maximum at 4 % by weight NaOH concentration. Also, at such early stages, an excessive increase in alkaline concentration results in lower oil recovery. On the other hand, after the injection of many pore volumes of water, oil recovery is almost the same regardless of the alkaline concentration. It was found also that oil recovery increases with increasing alkaline slug size until it reaches a maximum at 15 % PV, after which increasing slug size results in decreasing oil recovery (this result has not as yet been reported in the literature. Sodium hydroxide slugs produce more oil recovery than sodium carbonate slugs. Oil recovery increases with increasing temperature (from 25 to 55°C and decreasing oil viscosity. Cet article traite de la récupération, au moyen de solutions alcalines, d'un pétrole brut à forte acidité (brut de Geisum-Sud. Différentes propri

  9. How bioavailable is highly weathered Deepwater Horizon oil?

    Science.gov (United States)

    Bostic, J.; Ziolkowski, L. A.; Reddy, C. M.; Aeppli, C.; Swarthout, B.

    2016-02-01

    Oiled sand patties continue to be deposited on northern Gulf of Mexico beaches five years after the Deepwater Horizon (DwH) oil spill. It is known that during the first 18 months post-spill, sand patties from DwH were chemically transformed, both biotically and abiotically, from wellhead release to beach deposition. However, the chemically transformed oil, which appears to become more polar over time, is not well understood in regards to its biodegradation potential. Biodegradation exerts a large control on the fate of spilled oil, representing a major conduit for its removal from the environment. To assess the bioavailability of this weathered oil, sand patties were collected from intertidal and supratidal zones of beaches in Florida, Alabama, and Mississippi in July 2015. Microbial biomarkers of the viable community, phospholipid fatty acids (PLFA), were detected on all samples collected. The PLFA distributions (mostly saturated and branched structures) and abundances (2 - 9 x 1013 cells/g sand patty) were similar across sampling locations. The positive correlation between PLFA abundance and surface area to volume ratios of sand patties indicates that microbes are preferentially inhabiting outside surfaces of the patties. We will present data on the radiocarbon (14C) content of PLFA to assess carbon (C) sources assimilated by microbes. 14C of PLFA is a powerful tool for assessing C sources assimilated in this setting. Oil has no 14C (Δ14C= -1000‰) while modern organic matter has relatively abundant 14C (Δ14C= 0‰). Fingerprinting analysis of biomarker ratios using comprehensive two-dimensional gas chromatography will be presented to ascertain if oil originated from DwH. The extent of the chemical transformation of the oil into more polar compounds will also be measured using thin layer chromatography. Results of this investigation aim to determine the bioavailability and ultimate fate of oiled sand patties that continue to wash ashore on Gulf of Mexico

  10. Hydration of vegetable oils for high-grade Diesel fuel components; Hydrierung von Pflanzenoelen zu hochwertigen Dieselkraftstoffkomponenten

    Energy Technology Data Exchange (ETDEWEB)

    Endisch, M.; Olschar, M.; Kuchling, T. [TU Bergakademie Freiberg (Germany); Balfanz, U. [BP AG, Global Fuels Technology, Bochum (Germany)

    2008-07-01

    The legally regulated admixture of biogenic fuel components for diesel fuels are actually realized in Germany by an admixture of vegetable oil methylester (e.g. from rapeseed oil). The paper describes the hydration of vegetable oils as alternative to this procedure. Infrared and {sup 13}NMR spectroscopy were used to analyse the reaction kinetics for rapeseed, soy been and palm oil hydration. Experimental results of investigations under operational conditions using a continuous test facility and different vegetable oils identified the possibilities of this technology. The technology allows the high-yield production of diesel fuel components with certain numbers higher than average.

  11. Development of high temperature resistant geomembranes for oil sands secondary containments

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A. [Layfield Environmental Systems Ltd., Edmonton, AB (Canada); Martin, D. [Layfield Geosynthetics and Industrial Fabrics Ltd., Edmonton, AB (Canada)

    2008-07-01

    Plastic liner materials are often adversely impacted by chemicals at elevated temperatures. Heat accelerates the oxidation of the polymeric chains, which in turn accelerates the degradation of the plastic. This paper discussed geomembrane containment systems placed under heated petroleum storage tanks at an oil sands processing plant. Various high temperature-resistant geomembrane materials were tested. Compatibility testing procedures for the various fluids contained by the systems were outlined. Installation procedures for the membranes were also discussed. The membrane systems were designed for use with heavy gas oil; light gas oil; and naphtha. Temperatures in the ground below the tanks were approximately 79 degrees C. Testing was done using sealed containers held in an oil bath at temperatures of 105 degrees C. Heat applied to the chemicals during the tests pressurized the test vessels. Liner materials used in the initial tests included an ester-based thermoplastic polyurethane liner; high density polyethylene (HDPE); linear low-density polyethylene (LLDPE), polypropylene (PP) olefins; polyvinyl chloride (PVC); and polyvinylidene (PVDF) materials. A second set of tests was then conducted using alloy materials and PVC. Heat stability tests demonstrated that the blue 0.75 mm alloy showed a tensile strength ratio within the industry's 15 per cent pass criteria. The samples were then tested with diluted bitumen and diluents at 65, 85 and 100 degrees C. The developed liners were installed underneath petroleum tanks with leak detection chambers. It was concluded that the geomembrane liners prevented the hot liquids from leaking. 4 refs., 8 tabs.

  12. Caracterização bioquímica de linhagens de soja com alto teor de proteína Biochemical characterization of high protein soybean lines

    Directory of Open Access Journals (Sweden)

    Rita Maria Alves de Moraes

    2006-05-01

    Full Text Available O objetivo deste trabalho foi caracterizar bioquimicamente duas isolinhas de soja com alto teor de proteína. O aumento do teor de proteína nas isolinhas foi acompanhado por redução no teor de óleo e de carboidratos totais. Em relação à composição aminoacídica, o aumento do teor de proteína promoveu acréscimo em todos os aminoácidos, exceto glicina, alanina, metionina, cisteína e tirosina, mantendo a relação enxofre/nitrogênio. A quantificação dos polipeptídios mostrou que o aumento do teor de proteína manteve inalterado o teor das proteínas 7S, promoveu aumento no teor das proteínas 11S e, conseqüentemente, da relação 11S/7S. Pode haver melhoria na qualidade do farelo de soja das isolinhas, uma vez que as proteínas 11S têm melhor qualidade nutricional do que as proteínas 7S.The objective of this work was to characterize high protein soybean near isogenic lines. The increasing of protein was followed by reducing of oil and carbohydrate. In respect to aminoacid composition, increasing of protein promoted a rising in all aminoacids, except for glycine, alanine, methionine, cysteine and tyrosine, although the ratio S/N has been kept. The measure of polypeptides showed that the increasing of protein did not alter the quantity of 7S proteins, provided increasing of 11S proteins and 11S/7S ratio. An improvement of meal quality in these lines can occur once the 11S proteins have a better nutritional quality than 7S proteins.

  13. REMEDIATION OF SOILS CONTAMINATED WITH MOTOR OIL BY HIGHLY BIODEGRADABLE SURFACTANTS

    Directory of Open Access Journals (Sweden)

    Ignacio Moya-Ramírez

    2014-06-01

    Full Text Available The remediation of a sandy soil contaminated with motor oil was studied by applying two different washing procedures: one discontinuous and the other continuous. In addition the capacity of three highly biodegradable surfactants, two synthetic (Glucopon 600 and Findet 1214N/23 and a biosurfactant from Bacillus subtilis, to enhance oil removal was tested. The results obtained with the continuous procedure were much better than those achieved with the discontinuous one, even in experiments conducted with distilled water. Both the addition of surfactants and the rise in temperature significantly increased the removal of the pollutant in experiments conducted with the discontinuous procedure, but the biosurfactant showed a higher capacity for soil remediation than the synthetic surfactants at concentrations close to its CMC. Conversely, when the continuous method was used, surfactant concentration seems to have a lower effect on motor oil removal, at least below the CMC.

  14. The Auto control System Based on InTouch Configuration software for High-gravity Oil Railway Tank Feeding

    Directory of Open Access Journals (Sweden)

    Xu De-Kai

    2015-01-01

    Full Text Available This paper provides automatic design for high-gravity oil railway tank feeding system of some refinery uses distributive control system. The system adopts the automatic system of Modicon TSX Quantum or PLC as monitor and control level and uses a PC-based plat form as principal computer running on the Microsoft Windows2000. An automatic control system is developed in the environment of InTouch configuration software. This system implements automatic high-gravity oil tank feeding with pump controlling function. And it combines automatic oil feeding controlling, pump controlling and tank monitoring function to implement the automation of oil feeding with rations and automatic control.

  15. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Falcone, Italia; Tsalouhidou, Sofia; Yepuri, Gayathri; Mougios, Vassilis; Dulloo, Abdul G; Liverini, Giovanna; Iossa, Susanna

    2012-09-01

    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.

  16. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    Science.gov (United States)

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  17. Selective induction of high-ouabain-affinity isoform of Na+-K+-ATPase by thyroid hormone

    International Nuclear Information System (INIS)

    Haber, R.S.; Loeb, J.N.

    1988-01-01

    The administration of thyroid hormone is known to result in an induction of the Na + -K + -adenosinetriphosphatase (Na + -K + -ATPase) in rat skeletal muscle and other thyroid hormone-responsive tissues. Since the Na + -K + -ATPase in a variety of mammalian tissues has recently been reported to exist in at least two forms distinguishable by differing affinities for the inhibitory cardiac glycoside ouabain. The authors have studied the effects of 3,3',5-triiodo-L-thyronine (T 3 ) treatment on these two forms of the enzyme in rat diaphragm. The inhibition of Na + -K + -ATPase activity in a crude membrane fraction by varying concentrations of ouabain conformed to a biphasic pattern consistent with the presence of two distinct isoforms with inhibition constants (K I s) for ouabain of ∼10 -7 and 10 -4 M, respectively. Measurement of the specific binding of [ 3 H]ouabain to these membranes confirmed the presence of a class of high-affinity ouabain binding sites with a dissociation constant (K d ) of slightly less than 10 -7 M, whose maximal binding capacity was increased by T 3 treatment by 185%. Binding studies in unfractionated homogenates of diaphragm similarly demonstrated the presence of high-affinity sites whose maximal binding capacity was increased by T 3 treatment. Quantitation of both the high- and low-ouabain-affinity forms of the Na + -K + -ATPase by ouabain-dependent phosphorylation from [ 32 P]orthophosphate confirmed that T 3 treatment markedly increased the number of high-affinity sites while having little effect on the number of low-affinity sites. These observations provide, to our knowledge, the first demonstration that these two forms of the Na + -K + -ATPase are subject to selective hormonal induction

  18. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  19. Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties

    International Nuclear Information System (INIS)

    Liu, Cai; Li, Jiangang; Zhao, Pengxiang; Guo, Wenli; Yang, Xiaoping

    2015-01-01

    This paper describes a high NaOH concentration hydrothermal soft chemical reaction to prepare Na 0.44 MnO 2 nanorods. In this process, Na-birnessite precursors and concentrated NaOH solution are introduced into the hydrothermal reaction. As a result, the hydrothermal time can be significantly shortened from 96 to 24 h, the hydrothermal temperature can be reduced from 205 to 180 °C and the yield of Na 0.44 MnO 2 can be increased from about 0.6 to about 2.4 g/(mL . day), respectively. Furthermore, the obtained Na 0.44 MnO 2 nanorods with one-dimensional tunnel structures exhibit favorable electrochemical lithium storage properties, which make them promising for the cathode materials of lithium-ion batteries

  20. Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation

    Science.gov (United States)

    Gao, Xiaojia; Wang, Xiufeng; Ouyang, Xiaoping; Wen, Cuie

    2016-01-01

    Removal of oils and organic solvents from water is an important global challenge for energy conservation and environmental protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report on a superhydrophobic and superoleophilic MoS2 nanosheet sponge (SMS) for highly efficient separation and absorption of oils or organic solvents from water. This novel sponge exhibits excellent absorption performance through a combination of superhydrophobicity, high porosity, robust stability in harsh conditions (including flame retardance and inertness to corrosive and different temperature environments) and excellent mechanical properties. The dip-coating strategy proposed for the fabrication of the SMS, which does not require a complicated process or sophisticated equipment, is very straightforward and easy to scale up. This finding shows promise for water remediation and oil recovery. PMID:27272562

  1. Traceability of PDO Olive Oil “Terra di Bari” Using High Resolution Melting

    Directory of Open Access Journals (Sweden)

    Cinzia Montemurro

    2015-01-01

    Full Text Available The aim of the research was to verify the applicability of microsatellite (SSR markers in High Resolution Melting (HRM analysis for the identification of the olive cultivars used in the “Terra di Bari” PDO extra virgin olive oil. A panel of nine cultivars, widespread in Apulia region, was tested with seventeen SSR primer pairs and the PCR products were at first analysed with a Genetic Analyzer automatic sequencer. An identification key was obtained for the nine cultivars, which showed an unambiguous discrimination among the varieties constituting the “Terra di Bari” PDO extra virgin olive oil: Cima di Bitonto, Coratina, and Ogliarola. Subsequently, an SSR based method was set up with the DCA18 marker, coupled with HRM analysis for the distinction of the Terra di Bari olive oil from non-Terra di Bari olive oil using different mixtures. Thus, this analysis enabled the distinction and identification of the PDO mixtures. Hence, this assay provided a flexible, cost-effective, and closed-tube microsatellite genotyping method, well suited to varietal identification and authentication analysis in olive oil.

  2. Proximate composition, extraction, characterization and comparative assessment of coconut (Cocos nucifera) and melon (Colocynthis citrullus) seeds and seed oils.

    Science.gov (United States)

    Obasi, N A; Ukadilonu, Joy; Eze, Eberechukwu; Akubugwo, E I; Okorie, U C

    2012-01-01

    Proximate composition, extraction, characterization and comparative assessment of Cocos nucifera and Colocynthis citrullus seeds and seed oils were evaluated in this work using standard analytical techniques. The results showed the percentage (%) moisture, crude fibre, ash, crude protein, lipids and total carbohydrate contents of the seeds as 7.51 and 4.27, 7.70 and 5.51, 1.02 and 2.94, 10.57 and 11.67, 47.80 and 50.42 and 32.84 and 29.47 while the calorific values were 553.99 and 567.32 Kcal/100 g for C. nucifera and C. citrullus, respectively. The two seed oils were odourless and at room temperature (30 degrees C) liquids, with a pale yellow to yellowish colouration. Lipid indices of the seed oils indicated the Acid Values (AV) as 2.06-6.36 mg NaOH g(-1) and 2.99-6.17 mg NaOH g(-1), Free Fatty Acids (FFA) as 1.03-3.18 and 1.49-3.09%, Saponification Values (SV) as 252.44-257.59 and 196.82-201.03 mg KOH g(-1), Iodine Values (IV) as 9.73-10.99 and 110.93-111.46 mg of I2 g(-1) of oil and Peroxide Values (PV) as 0.21-0.21 and 1.53-2.72 mg O2 kg(-1) for soxhlet-mechanical extracted C. nucifera and C. citrullus seed oils, respectively. The studied characteristics of the oil extracts in most cases compared favourably with most conventional vegetable oils sold in the Nigeria markets; however, there were some observed levels of significant differences in the values at p < or = 0.05. These results suggest that the seeds examined may be nutritionally potent and also viable sources of seed oils judging by their oil yield. The data also showed that the seed oils were edible inferring from their low AV and their corresponding low FFA contents. Industrially, the results revealed the seed oils to have great potentials in soap manufacturing industries because of their high SV. They were also shown to be non-drying due to their low IV which also suggested that the oils contain few unsaturated bonds and therefore have low susceptibility to oxidative rancidity and deterioration as

  3. Quantitative analysis of hydroperoxy-, keto- and hydroxy-dienes in refined vegetable oils.

    Science.gov (United States)

    Morales, Arturo; Marmesat, Susana; Dobarganes, M Carmen; Márquez-Ruiz, Gloria; Velasco, Joaquín

    2012-03-16

    Quantitative analysis of the main oxidation products of linoleic acid - hydroperoxy-, keto- and hydroxy-dienes - in refined oils is proposed in this study. The analytical approach consists of derivatization of TAGs into FAMEs and direct analysis by HPLC-UV. Two transmethylation methods run at room temperature were evaluated. The reactants were KOH in methanol in method 1 and sodium methoxide (NaOMe) in method 2. Method 1 was ruled out because resulted in losses of hydroperoxydienes as high as 90 wt%. Transmethylation with NaOMe resulted to be appropriate as derivatization procedure, although inevitably also gives rise to losses of hydroperoxydienes, which were lower than 10 wt%, and formation of keto- and hydroxy-dienes as a result. An amount of 0.6-2.1 wt% of hydroperoxydienes was transformed into keto- and hydroxy-dienes, being the formation of the former as much as three times higher. The method showed satisfactory sensitivity (quantification limits of 0.3 μg/mL for hydroperoxy- and keto-dienes and 0.6 μg/mL for hydroxydienes), precision (coefficients of variation ≤ 6% for hydroperoxydienes and ≤ 15% for keto- and hydroxy-dienes) and accuracy (recovery values of 85(± 4), 99(± 2) and 97.0(± 0.6) % for hydroperoxy-, keto- and hydroxy-dienes, respectively). The method was applied to samples of high-linoleic (HLSO), high-oleic (HOSO) and high-stearic high-oleic (HSHOSO) sunflower oils oxidized at 40 °C. Results showed that the higher the linoleic-to-oleic ratio, the higher were the levels of hydroperoxy-, keto- and hydroxy-dienes when tocopherols were completely depleted, i.e. at the end of the induction period (IP). Levels of 23.7, 2.7 and 1.1 mg/g oil were found for hydroperoxy-, keto- and hydroxy-dienes, respectively, in the HLSO when tocopherol was practically exhausted. It was estimated that hydroperoxydienes constituted approximately 100, 95 and 60% of total hydroperoxides in the HLSO, HOSO and HSHOSO, respectively, along the IP. Copyright © 2012

  4. Highly effective ionic liquids for biodiesel production from waste vegetable oils

    Directory of Open Access Journals (Sweden)

    Fathy A. Yassin

    2015-03-01

    Full Text Available As conventional energy sources deplete, the need for developing alternative energy resources which are environment friendly becomes more imperative. Vegetable oils are attracting increased interest in this purpose. The methanolysis of vegetable oil to produce a fatty acid methyl ester (FAME, i.e., biodiesel fuel was catalyzed by commercial ionic liquid and its chloride modification. The imidazolium chloride ionic liquid was frequently chosen for the synthesis of biodiesel. The dual-functionalized’ ionic liquid is prepared by a direct combination reaction between imidazolium cation and various metal chlorides such as CoCl2, CuCl2, NiCl2, FeCl3 and AlCl3. Imidazolium tetrachloroferrate was proved to be a selective catalyst for the methanolysis reaction at a yield of 97% when used at 1:10, catalyst: oil ratio for 8 h at 55 °C. Operational simplicity, reusability of the used catalyst for 8 times at least, high yields and no saponification are the key features of this methodology. The dynamic viscosity and density of the upgraded vegetable oil decreased from 32.1 cP and 0.9227 g/cm3 to 10.2 cP and 0.9044 g/cm3 respectively, compared to those of the base vegetable oil. The objective of this study was the synthesis and characterization of biodiesel using commercial ionic liquid and its chloride modification. The ionic liquid catalysts were characterized using FTIR, Raman spectroscopy, DSC, TG and UV.

  5. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    Science.gov (United States)

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Microbiological method for exploitation of oil deposits with a high mineralization of interstitial waters

    Energy Technology Data Exchange (ETDEWEB)

    Senyukov, V M; Yulbarisov, E M; Taldykina, N N; Shishenina, E P

    1970-07-01

    A literature review is made of microbiological processes suitable for secondary oil recovery. On the basis of literature data, basic experiments were conducted in the Arlansk field. This field has viscous oil, highly mineralized connate water (rho = 1.18) and permeability above 1,000 md. A mixture of aerobic and anaerobic bacteria with nutrient was injected through one well, then 650 cu m of fresh water was injected. Mineralogical and bacteriological analyses were made of produced fluids in nearby wells. Both aerobic and anaerobic bacteria were found in produced fluids, 600 m from the injection wells. On the basis of this result, it was concluded that microbiological processes can be used to increase secondary recovery of oil. However, no oil recovery data are presented. (10 refs.)

  7. Expression of a highly basic peroxidase gene in NaCl-adapted tomato cell suspensions.

    Science.gov (United States)

    Medina, M I; Botella, M A; Quesada, M A; Valpuesta, V

    1997-05-05

    A tomato peroxidase gene, TPX2, that is only weakly expressed in the roots of young tomato seedlings is highly expressed in tomato suspension cells adapted to high external NaCl concentration. The protein encoded by this gene, with an isolectric point value of approximately 9.6, is found in the culture medium of the growing cells. Our data suggest that the expression of TPX2 in the salt-adapted cells is not the result of the elicitation imposed by the in vitro culture or the presence of high NaCl concentration in the medium.

  8. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    International Nuclear Information System (INIS)

    Lee, Chien-Chiang; Chiu, Yi-Bin

    2011-01-01

    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  9. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chien-Chiang, E-mail: cclee@cm.nsysu.edu.tw; Chiu, Yi-Bin

    2011-03-15

    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  10. Penentuan Jumlah NaOH yang Dibutuhkan pada Unit Gliserin Destilasi dan Pemutihan dengan Parameter Bilangan Penyabunan

    OpenAIRE

    Damanik, Maria E.P

    2015-01-01

    Ecogreen Oleochemicals Co., is one of oleochemical industry manufacturing raw material of palm oil to be fatty acid, glycerine and alcohol. Before processing, characteristic treatment is necessary to do earlier is saponification value. Determination of saponification value can do by using titration method. Given the large number of NaOH, the low number of high influence saponification value. This data according to standart methode of Ecogreen Oleochemicals Co. 102401060

  11. Combined fish oil and high oleic sunflower oil supplements neutralize their individual effects on the lipid profile of healthy men.

    Science.gov (United States)

    Hlais, Sani; El-Bistami, Dunia; El Rahi, Berna; Mattar, Mélanie A; Obeid, Omar A

    2013-09-01

    Both n-3 and n-9 fatty acids share a common metabolic pathway and can potentially and individually improve cardiovascular disease risk factors. Dietary n-6 is known to weaken the efficacy of n-3 fatty acids due to competition for the same enzymes. Still unclear is whether a similar competition exists between n-3 and n-9 fatty acids. Thus, a 12-week intervention study was conducted to investigate the effect of different combinations of fish oil and high-oleic sunflower oil (OSO) on healthy subjects. Included were five groups (98 subjects): three groups received a fixed amount of n-9 (8 g/day) with varying amounts of n-3 (1, 2 or 4 g/day), one group was given n-3 fatty acids only (2 g/day) and another was given n-9 only (8 g/day). We found that fish oil supplement (2 g/day) was able to decrease TAG by about 13 %, this effect was diminished with the co-ingestion of n-9 (OSO). Intake of OSO (8 g/day) reduced both total and LDL cholesterol by about 10 %, this effect was reduced by the addition of fish oil. Both fish oil and OSO failed to have any significant effect on both glycemic and blood pressure parameters. In conclusion; the impact of oleic acid (n-9) on total and LDL cholesterol was altered by the addition fish oil (n-3). These effects may have been the result of enzymatic competition between the two types of fatty acids.

  12. Application of the High Temperature Gas Cooled Reactor to oil shale recovery

    International Nuclear Information System (INIS)

    Wadekamper, D.C.; Arcilla, N.T.; Impellezzeri, J.R.; Taylor, I.N.

    1983-01-01

    Current oil shale recovery processes combust some portion of the products to provide energy for the recovery process. In an attempt to maximize the petroleum products produced during recovery, the potentials for substituting nuclear process heat for energy generated by combustion of petroleum were evaluated. Twelve oil shale recovery processes were reviewed and their potentials for application of nuclear process heat assessed. The High Temperature Gas Cooled Reactor-Reformer/Thermochemical Pipeline (HTGR-R/TCP) was selected for interfacing process heat technology with selected oil shale recovery processes. Utilization of these coupling concepts increases the shale oil product output of a conventional recovery facility from 6 to 30 percent with the same raw shale feed rate. An additional benefit of the HTGR-R/TCP system was up to an 80 percent decrease in emission levels. A detailed coupling design for a typical counter gravity feed indirect heated retorting and upgrading process were described. Economic comparisons prepared by Bechtel Group Incorporated for both the conventional and HTGR-R/TCP recovery facility were summarized

  13. Edge placement error control and Mask3D effects in High-NA anamorphic EUV lithography

    Science.gov (United States)

    van Setten, Eelco; Bottiglieri, Gerardo; de Winter, Laurens; McNamara, John; Rusu, Paul; Lubkoll, Jan; Rispens, Gijsbert; van Schoot, Jan; Neumann, Jens Timo; Roesch, Matthias; Kneer, Bernhard

    2017-10-01

    To enable cost-effective shrink at the 3nm node and beyond, and to extend Moore's law into the next decade, ASML is developing a new high-NA EUV platform. The high-NA system is targeted to feature a numerical aperture (NA) of 0.55 to extend the single exposure resolution limit to 8nm half pitch. The system is being designed to achieve an on-product-overlay (OPO) performance well below 2nm, a high image contrast to drive down local CD errors and to obtain global CDU at sub-1nm level to be able to meet customer edge placement error (EPE) requirements for the devices of the future. EUV scanners employ reflective Bragg multi-layer mirrors in the mask and in the Projection Optics Box (POB) that is used to project the mask pattern into the photoresist on the silicon wafer. These MoSi multi-layer mirrors are tuned for maximum reflectivity, and thus productivity, at 13.5nm wavelength. The angular range of incident light for which a high reflectivity at the reticle can be obtained is limited to +/- 11o, exceeding the maximum angle occurring in current 0.33NA scanners at 4x demagnification. At 0.55NA the maximum angle at reticle level would extend up to 17o in the critical (scanning) direction and compromise the imaging performance of horizontal features severely. To circumvent this issue a novel anamorphic optics design has been introduced, which has a 4x demagnification in the X- (slit) direction and 8x demagnification in the Y- (scanning) direction as well as a central obscuration in the exit pupil. In this work we will show that the EUV high-NA anamorphic concept can successfully solve the angular reflectivity issues and provide good imaging performance in both directions. Several unique imaging challenges in comparison to the 0.33NA isomorphic baseline are being studied, such as the impact of the central obscuration in the POB and Mask-3D effects at increased NA that seem most pronounced for vertical features. These include M3D induced contrast loss and non

  14. High strength oil palm shell concrete beams reinforced with steel fibres

    Directory of Open Access Journals (Sweden)

    S. Poh-Yap

    2017-10-01

    Full Text Available The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC. The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.

  15. Design and development of a high efficiency tank for crude oil dehydration (i)

    International Nuclear Information System (INIS)

    Forero, Jorge Enrique; Ortiz Olga Patricia; Narino, Fredy Abelardo

    2008-01-01

    This paper introduces a new tank design for dehydrating and desalting large volumes of crude oils previously degasified, crude oil dehydration efficiency is reduced by gas presence in the emulsion interphase. The design presented in this paper is versatile (it is adaptable to any classical dehydration process), highly efficient in terms of separation (values usually greater than 90% and/or treated crude oil BSW less than 0,5% are ensured), low installation and operation costs, less consumption of additives. These are some of the advantages found in pilot tests plants and proven in industrial systems at the ECOPETROL S.A. production fields with treatment capacities from 14 to 50 KBD. Although this process also can be applied to other ranks of flow, maintaining the design critical conditions of each case in particular. This system does not exhibit the typical limitations shown by treatment traditional systems (FWKO, Gun Barrel, thermal and electrostatic separators, etc.) (Al-Ghamdi, 2007) since it can be easily adapted to system treatments for light, intermediate, and heavy crude oils and to treatments with BSW content ranging from a very low levels of ≤ 1% to very high levels ≥ 95%, values that are not unusual in production fields nowadays, especially where accelerated production methods are used

  16. Neutron activation analysis of trace metallic elements eluted from molecular sieves in the dehydration process of safflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Takasago, Masahisa; Kobayashi, Koichi; Taru, Yasunori; Takaoka, Kyo (Musashi Inst. of Tech., Tokyo (Japan))

    1992-11-01

    Dissolved water in safflower oil affects the autoxidation of this oil significantly. Molecular sieves were used to remove the dissolved water from the oil. This method is much simpler than that of distillation, and dissolved water can be removed to the same extent as that by distillation. But, due to the elution of many kinds of trace metallic elements in the oil dehydrated with molecular sieves, these elements were analyzed by neutron activation analysis. For a data comparison trace amounts of metallic elements in the oil dehydrated by distillation were also analyzed. Since the intensity of the [gamma] ray-photoelectric peak of nuclide [sup 28]Al was largest among the detected elements, this element was analyzed quantitatively and the other elements qualitatively. In safflower oil dehydrated with molecular sieves, 14 kinds of the elements (I, Br, Al, Mg, Si, V, Cl, Nd, Ta, Cr, Sb, Cs, Co, Na) were detected. Also, I, Br, Cl, Cr, Ta, Sb, and Al elements were detected in the oil dehydrated by distillation. The intensity of the photoelectric peak of nuclide except [sup 28]Al was essentially the same as that in the oil dehydrated by distillation, but the intensity of [sup 28]Al in the oil with molecular sieves was about 28 times stronger than that in distillation oil. In the molecular sieves, 19 impure elements in addition to the original constituents (Na, K, Al, si, O) were detected. It was Al, Na, Si, Nd, Cs, and Co along with impure elements may possibly have been eluted in the oil. Al element in safflower oil dehydrated with molecular sieves was analyzed quantitatively. 0.91 ppm of Al was detected in safflower oil. The eluted amount of Al in safflower oil dehydrated by distillation was 0.032 ppm. A larger amount of Al element was thus eluted into the oil dehydrated with molecular sieves than by distillation. (author).

  17. High-performance size-exclusion chromatography studies on the formation and distribution of polar compounds in camellia seed oil during heating*

    Science.gov (United States)

    Feng, Hong-xia; Sam, Rokayya; Jiang, Lian-zhou; Li, Yang; Cao, Wen-ming

    2016-01-01

    Camellia seed oil (CSO) is rich in oleic acid and has a high number of active components, which give the oil high nutritional value and a variety of biological activity. The aim of the present study was to determine the changes in the content and distribution of total polar compounds (TPC) in CSO during heating. TPC were isolated by means of preparative flash chromatography and further analyzed by high-performance size-exclusion chromatography (HPSEC). The TPC content of CSO increased from 4.74% to 25.29%, showing a significantly lower formation rate as compared to that of extra virgin olive oil (EVOO) and soybean oil (SBO) during heating. Furthermore, heating also resulted in significant differences (P<0.05) in the distribution of TPC among these oils. Though the content of oxidized triacylglycerol dimers, oxidized triacylglycerol oligomers, and oxidized triacylglycerol monomers significantly increased in all these oils, their increased percentages were much less in CSO than those in EVOO, indicating that CSO has a greater ability to resist oxidation. This work may be useful for the food oil industry and consumers in helping to choose the correct oil and to decide on the useful lifetime of the oil. PMID:27819135

  18. Logistics: Price Rises Incurred by High Oil Price

    Institute of Scientific and Technical Information of China (English)

    Lai Zhihui

    2011-01-01

    @@ "When the oil price grows by 100%, the logistic indus-try will see a price growth of 40%, while the logistics in-dustry a price rise of 35%, which means every price increase of 5% in the oil price will bring along that of 2% in this industry." said Liu Zongsheng, General Manager of Itochu Logistics Co., Ltd., on the seminar "Focusing on the eco-nomic consequences of raising oil price, interest rate and deposit reserve ratio", which was held recently.

  19. High Sensitivity Gravity Measurements in the Adverse Environment of Oil Wells

    Science.gov (United States)

    Pfutzner, Harold

    2014-03-01

    Bulk density is a primary measurement within oil and gas reservoirs and is the basis of most reserves calculations by oil companies. The measurement is performed with a gamma-ray source and two scintillation gamma-ray detectors from within newly drilled exploration and production wells. This nuclear density measurement, while very precise is also very shallow and is therefore susceptible to errors due to any alteration of the formation and fluids in the vicinity of the borehole caused by the drilling process. Measuring acceleration due to gravity along a well provides a direct measure of bulk density with a very large depth of investigation that makes it practically immune to errors from near-borehole effects. Advances in gravity sensors and associated mechanics and electronics provide an opportunity for routine borehole gravity measurements with comparable density precision to the nuclear density measurement and with sufficient ruggedness to survive the rough handling and high temperatures experienced in oil well logging. We will describe a borehole gravity meter and its use under very realistic conditions in an oil well in Saudi Arabia. The density measurements will be presented. Alberto Marsala (2), Paul Wanjau (1), Olivier Moyal (1), and Justin Mlcak (1); (1) Schlumberger, (2) Saudi Aramco.

  20. Analysis of High Quality Agar wood Oil Chemical Compounds By Means Of SPME/ GC-MS and Z-Score Technique

    International Nuclear Information System (INIS)

    Nurlaila Ismail; Mohd Ali Nor Azah; Mailina Jamil; Saiful Nizam Tajuddin; Mohd Nasir Taib

    2013-01-01

    Currently, the grading of the agar wood oil to the high and low quality is done using manually such as human trained grader. It was performed based on the agar wood oil physical properties such as human experience and perception and the oil colour, odor and long lasting aroma. Several researchers found that chemical profiles of the oil should be utilized to overcome the problem facing by manual techniques for example human nose cannot tolerate with the many oils at the same time, so that accurate result can be obtained in grading the agar wood oil. The analysis involved of SPME/ GC-MS and Z-score techniques have been proposed in this study to analyze the chemical compounds especially from the high quality samples of agar wood oil (Aquilariamalaccensis) from Malaysia. Two SPME fibers were used such as divinylbenzene-carbogen-polydimethylsiloxane (DVB-CAR-PDMS) and polydimethylsiloxane (PDMS) in extracting the oils compound under three different sampling temperature conditions such as 40, 60 and 80 degree Celsius. The chemical compounds extracted by SPME/ GC-MS were analyzed. The chemical compounds as identified by Z-score as significant compounds were discussed before the conclusion is made. It was found that 10-epi-γ-eudesmol, aromadendrene, β-agar ofuran, α-agar ofuran and γ-eudesmol were highlighted as significant for high quality agar wood oil and can be used as a marker compounds in classifying the agar wood oil. (author)

  1. Tin (II Chloride Catalyzed Esterification of High FFA Jatropha Oil: Experimental and Kinetics Study

    Directory of Open Access Journals (Sweden)

    Ratna Dewi Kusumaningtyas

    2014-05-01

    Full Text Available Biodiesel is one of the promising energy source alternatives to fossil fuel. To produce biodiesel in a more economical way, the employment of the low-cost feed stocks, such as non-edible oils with high free fatty acid (FFA, is necessary. Accordingly, the esterification reaction of FFA in vegetable oils plays an important role in the biodiesel production. In this work, esterification of FFA contained in Crude Jatropha Oil (CJO in the presence of tin (II chloride catalyst in a batch reactor has been carried out. The esterification reaction was conducted using methanol at the temperature of 40-60 °C for 4 hours. The effect of molar ratio of methanol to oil was studied in the range 15:1 to 120:1. The influence of catalyst loading was investigated in the range of 2.5 to 15% w/w oil. The optimum reaction conversion was obtained at 60 °C with the catalyst loading of 10% w/w oil and molar ratio of methanol to oil of 120:1. A pseudo-homogeneous reversible second order kinetic model for describing the esterification of FFA contained in CJO with methanol over tin (II chloride catalyst was developed based on the experimental data. The kinetic model can fit the data very well.

  2. Compositional modification of crude oil during oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yangming; Weng, Huanxin [Department of Earth Sciences, Zhejiang University, Hangzhou 310027 (China); Chen, Zulin; Chen, Qi [Petroleum Geochemistry Research Center, Jianghan Petroleum University, Jingzhou, Hubei (China)

    2003-05-01

    Ten crude oils from two recovery stages spanning 5-10-year interval of five productive wells in the Tarim Basin, northwest China were analyzed for their compositional modification during production process. Significant compositional changes in polar and nonpolar fractions between the previous oil samples and the latter ones were noted at both bulk and molecular level. The latter oil samples appear to contain more aromatic fraction and less asphaltenes and resin, and their gas chromatography (GC) data for whole oil show reduced alkanes with low molecular weight and enhanced high homologue relative to the previous oil samples. Compared with the oils collected from the previous recovery stage, the concentration of basic type of nitrogen-containing compounds and organic acids in oils from the latter recovery stage have a reducing trend, suggesting the occurrence of interaction between crude oil and reservoir rock.

  3. Giant Oil Fields - The Highway to Oil: Giant Oil Fields and their Importance for Future Oil Production

    International Nuclear Information System (INIS)

    Robelius, Fredrik

    2007-01-01

    Since the 1950s, oil has been the dominant source of energy in the world. The cheap supply of oil has been the engine for economic growth in the western world. Since future oil demand is expected to increase, the question to what extent future production will be available is important. The belief in a soon peak production of oil is fueled by increasing oil prices. However, the reliability of the oil price as a single parameter can be questioned, as earlier times of high prices have occurred without having anything to do with a lack of oil. Instead, giant oil fields, the largest oil fields in the world, can be used as a parameter. A giant oil field contains at least 500 million barrels of recoverable oil. Only 507, or 1 % of the total number of fields, are giants. Their contribution is striking: over 60 % of the 2005 production and about 65 % of the global ultimate recoverable reserve (URR). However, giant fields are something of the past since a majority of the largest giant fields are over 50 years old and the discovery trend of less giant fields with smaller volumes is clear. A large number of the largest giant fields are found in the countries surrounding the Persian Gulf. The domination of giant fields in global oil production confirms a concept where they govern future production. A model, based on past annual production and URR, has been developed to forecast future production from giant fields. The results, in combination with forecasts on new field developments, heavy oil and oil sand, are used to predict future oil production. In all scenarios, peak oil occurs at about the same time as the giant fields peak. The worst-case scenario sees a peak in 2008 and the best-case scenario, following a 1.4 % demand growth, peaks in 2018

  4. Changes in the Characteristics of Water-in-Oil-based High Internal ...

    African Journals Online (AJOL)

    Changes in the Characteristics of Water-in-Oil-based High Internal Phase Emulsion Containing Moringa Leaves Extract at Various Storage Conditions. ... Conclusion: Moringa HIPE showed stability and can be guided exclusively to protect skin against ultraviolet radiation-mediated oxidative damage. Keywords: Moringa ...

  5. Comparison of growth, serum biochemistries and n–6 fatty acid metabolism in rats fed diets supplemented with high-gamma-linolenic acid safflower oil or borage oil for 90 days

    Science.gov (United States)

    Tso, Patrick; Caldwell, Jody; Lee, Dana; Boivin, Gregory P.; DeMichele, Stephen J.

    2015-01-01

    Recently, steps have been taken to further developments toward increasing gamma-linolenic acid (GLA) concentration and lowering costs in plant seed oils using transgenic technology. Through identification and expression of a fungal delta-6 desaturase gene in the high linoleic acid safflower plant, the seeds from this genetic transformation produce oil with >40% GLA (high GLA safflower oil (HGSO)). The aim of the study was to compare the effects of feeding HGSO to a generally recognized as safe source of GLA, borage oil, in a 90 day safety study in rats. Weanling male and female Sprague–Dawley rats were fed a semi-synthetic, fat free, pelleted diet (AIN93G) supplemented with a 10% (wt/wt) oil blend containing HGSO or borage oil, with equivalent GLA levels. Results demonstrated that feeding diets containing HGSO or borage oil for 90 days had similar biologic effects with regard to growth characteristics, body composition, behavior, organ weight and histology, and parameters of hematology and serum biochemistries in both sexes. Metabolism of the primary n–6 fatty acids in plasma and organ phospholipids was similar, despite minor changes in females. We conclude that HGSO is biologically equivalent to borage oil and provides a safe alternative source of GLA in the diet. PMID:22265940

  6. Comparison of growth, serum biochemistries and n-6 fatty acid metabolism in rats fed diets supplemented with high-gamma-linolenic acid safflower oil or borage oil for 90 days.

    Science.gov (United States)

    Tso, Patrick; Caldwell, Jody; Lee, Dana; Boivin, Gregory P; DeMichele, Stephen J

    2012-06-01

    Recently, steps have been taken to further developments toward increasing gamma-linolenic acid (GLA) concentration and lowering costs in plant seed oils using transgenic technology. Through identification and expression of a fungal delta-6 desaturase gene in the high linoleic acid safflower plant, the seeds from this genetic transformation produce oil with >40% GLA (high GLA safflower oil (HGSO)). The aim of the study was to compare the effects of feeding HGSO to a generally recognized as safe source of GLA, borage oil, in a 90 day safety study in rats. Weanling male and female Sprague-Dawley rats were fed a semi-synthetic, fat free, pelleted diet (AIN93G) supplemented with a 10% (wt/wt) oil blend containing HGSO or borage oil, with equivalent GLA levels. Results demonstrated that feeding diets containing HGSO or borage oil for 90 days had similar biologic effects with regard to growth characteristics, body composition, behavior, organ weight and histology, and parameters of hematology and serum biochemistries in both sexes. Metabolism of the primary n-6 fatty acids in plasma and organ phospholipids was similar, despite minor changes in females. We conclude that HGSO is biologically equivalent to borage oil and provides a safe alternative source of GLA in the diet. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    Directory of Open Access Journals (Sweden)

    Huey Fang Teh

    Full Text Available To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.

  8. Violence in Venezuela: oil rent and political crisis Violência na Venezuela: renda petroleira e crise política

    Directory of Open Access Journals (Sweden)

    Roberto Briceño-León

    2006-06-01

    Full Text Available This article analyzes the changes in violence in Venezuela during the last forty years. It links the ups and downs of the oil revenues and the political crisis of the country to the changes in the homicide rates, which increased from 7 per 100 thousand inhabitants in 1970 to 12 in 1990, 19 in 1998 and 50 in 2003. The article characterizes Venezuela as a rentist society and shows its trajectory from rural violence to the beginning of urban violence, the guerilla movements of the 60s, the delinquent violence related to the abundance of oil revenues and the violence during the popular revolt and the sackings of 1989 in Caracas. After this, we analyze the coups d'état of 1992 and the influence the political violence exerted upon criminal violence. We describe the political and party changes in the country, their influence upon the stabilization of homicide rates since the mid-90s and their remarkable increase during the H. Chávez government. The article finishes with an analysis of the current situation, the official prohibition to publish statistics on homicides and with some thoughts about the perspective of greater violence in Venezuela.O presente artigo analisa as mudanças na violência ocorridas na Venezuela nos últimos quarenta anos, relacionadas com os altos e baixos da renda petroleira e com a crise política no país, fatos que contribuíram para um aumento nas taxas de homicídios: de 7 por cada cem mil habitantes em 1970 a 12 em 1990, 19 em 1998 e 50 no ano de 2003. O artigo caracteriza a Venezuela como sociedade rentista e, a partir daí, faz uma retrospecção cobrindo desde a violência rural até os inícios da violência urbana, o movimento guerrilheiro dos anos sessenta, a criminalidade resultando da abundância dos recursos petroleiros e a violência em decorrência da revolta popular e dos saques ocorridos em 1989 em Caracas. Em seguida são analisados os golpes de Estado de 1992 e o impacto que a violência política exerceu

  9. Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil.

    Science.gov (United States)

    Li, Jinhua; Wang, Guoming; Chen, Ming; Li, Jiedong; Yang, Yaoyao; Zhu, Qiuyan; Jiang, Xiaohuan; Wang, Zonghua; Liu, Haichao

    2014-10-01

    Three species of macroalgae (Ulva lactuca, Laminaria japonica and Gelidium amansii) were converted into liquid oils via deoxy-liquefaction. The elemental analysis, FTIR and GC-MS results showed that the three liquid oils were all mainly composed of aromatics, phenols, alkanes and alkenes, other oxygen-containing compounds, and some nitrogen-containing compounds though there were some differences in terms of their types or contents due to the different constituents in the macroalgae feedstocks. The oxygen content was only 5.15-7.30% and the H/C molar ratio was up to 1.57-1.73. Accordingly, the HHV of the three oils were 42.50, 41.76 and 40.00 MJ/kg, respectively. The results suggested that U. lactuca, L. japonica and G. amansii have potential as biomass feedstock for fuel and chemicals and that deoxy-liquefaction technique may be an effective way to convert macroalgae into high-quality liquid oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil.

    Science.gov (United States)

    Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun

    2016-10-04

    Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  11. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil

    Directory of Open Access Journals (Sweden)

    Ying-Ting Luo

    2016-10-01

    Full Text Available Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  12. Okra (Hibiscus esculentus) seed oil for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Anwar, Farooq; Nadeem, Muhammad [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Rashid, Umer [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Department of Industrial Chemistry, Government College University, Faisalabad 38000 (Pakistan); Ashraf, Muhammad [Department of Botany, University of Agriculture, Faisalabad 38040 (Pakistan)

    2010-03-15

    Biodiesel was derived from okra (Hibiscus esculentus) seed oil by methanol-induced transesterification using an alkali catalyst. Transesterification of the tested okra seed oil under optimum conditions: 7:1 methanol to oil molar ratio, 1.00% (w/w) NaOCH{sub 3} catalyst, temperature 65 C and 600 rpm agitation intensity exhibited 96.8% of okra oil methyl esters (OOMEs) yield. The OOMEs/biodiesel produced was analyzed by GC/MS, which showed that it mainly consisted of four fatty acids: linoleic (30.31%), palmitic (30.23%), oleic (29.09%) and stearic (4.93%). A small amount of 2-octyl cyclopropaneoctanoic acid with contribution 1.92% was also established. Fuel properties of OOMEs such as density, kinematic viscosity, cetane number, oxidative stability, lubricity, flash point, cold flow properties, sulfur contents and acid value were comparable with those of ASTM D 6751 and EN 14214, where applicable. It was concluded that okra seed oil is an acceptable feedstock for biodiesel production. (author)

  13. Analysis of quality of the biogasoils of palm oil and castor oil

    International Nuclear Information System (INIS)

    Benjumea, Pedro Nel; Agudelo, Jhon Ramiro; Benavides, Alirio Yovany

    2004-01-01

    Biodiesel is a fuel made from raw materials of renewable origin such as vegetable oils. The objective of this work is to make a quality analysis of two types of biodiesel made from raw materials available in Colombia such as palm oil and castor oil. Biodiesel from palm oil complies with the majority of technical requirements specified by ASTM standards D-975 y D-6751. A high cloud point is the main drawback of this kind of biodiesel. This is a consequence of its highly saturated chemical nature. On the other hand, biodiesel from castor oil presents more difficulties in order to be used in diesel engines because of having a low cetane index and a high viscosity

  14. High resolution laser spectroscopy of the D lines of on-line produced 21Na, 22Na, 24Na, 25Na using a new high sensitivity method of detection of optical resonances

    International Nuclear Information System (INIS)

    Huber, G.; Thibault, G.; Klapisch, R.; Duong, H.T.; Vialle, J.L.; Pinard, I.; Juncar, P.; Jacquinot, P.

    1975-01-01

    A polyisotopic sodium beam of 21 - 25 Na, produced by spallation of Al, was illuminated by a tunable dye laser. The atomic beam, analyzed by a sixpole magnet is then ionized and detected after a mass spectrometer. The results are the isotope shifts, nuclear magnetic moment and quadrupole moment of 25 Na [fr

  15. An experimental investigation of Na incorporation in cordierite in low P/high T metapelites

    Science.gov (United States)

    Tropper, Peter; Wyhlidal, Stefan; Haefeker, Udo A.; Mirwald, Peter W.

    2018-04-01

    The aim of this experimental study was to investigate the incorporation of Na in cordierite in metapelites as a function of temperature and pressure using natural quartzphyllite rocks as starting materials. The experiments were performed in a hydrothermal apparatus as well as a piston-cylinder apparatus with two natural quartzphyllite samples, which represent the protolith rocks of the hornfelses from the Brixen Granite contact aureole near Franzensfeste. Sample W shows high muscovite contents (57 wt%) and only accessory plagioclase while sample SP5 has high plagioclase (16 wt%) and lower muscovite contents (20 vol%). The experiments were done dry at pressures of 0.15, 0.3 and 0.6 GPa in a temperature range of 550 °C to 780 °C. The Na content of the newly formed cordierites shows a systematic variation and decreases linearly with increasing temperatures and no influence of pressure and melting on the Na contents of cordierite was observed. The experiments also show that the difference in mineral assemblage considerably shifts the obtained Na contents of cordierite. The P-independent temperature correlations for both sets of experiments can be described with the linear relationships: T (°C) = (Na [apfu] - 0.4052)/(-0.000487); R2 = 0.96; (±20 °C, calibration W) and T (°C) = (Na [apfu] - 0.3671)/(-0.000383); R2 = 0.94; (±15 °C, calibration SP5). The difference between the two temperatures is large and the SP5 experiments yield temperatures that are up to 100 °C higher. This is not unexpected since theoretical phase relations in the system NMASH predict different Na contents depending on the buffering assemblage (plagioclase vs. paragonite). On the other hand these T differences could also reflect disequilibrium behaviour in the SP5 experiments. Detailed micro-Raman spectroscopic investigations reveal that cordierites from both experiments show disordered structures but the SP5 experiments show a much higher degree of Si-Al disorder and the elevated Na

  16. Natural wrapping paper from banana (Musa paradisiaca Linn) peel waste with additive essential oils

    Science.gov (United States)

    Widiastuti Agustina, E. S.; Elfi Susanti, V. H.

    2018-05-01

    The research aimed to produce natural wrapping paper from banana (Musa Paradisiaca Linn.) peel waste with additive essentials oils. The method used in this research was alkalization. The delignification process is done with the use of NaOH 4% at the temperature of 100°C for 1.5 hours. Additive materials in the form of essential oils are added as a preservative and aroma agent, namely cinnamon oil, lemon oil, clove oil and lime oil respectively 2% and 3%. Chemical and physical properties of the produced papers are tested included water content (dry-oven method SNI ISO 287:2010), pH (SNI ISO 6588-1.2010), grammage (SNI ISO 536:2010) and brightness (SNI ISO 2470:2010). Testing results of each paper were compared with commercial wrapping paper. The result shows that the natural paper from banana peel waste with additive essential oil meets the standard of ISO 6519:2016 about Basic Paper for Laminated Plastic Wrapping Paper within the parameter of pH and water content. The paper produced also meet the standard of ISO 8218:2015 about Food Paper and Cardboard within the grammage parameter (high-grade grammage), except the paper with 2% lemon oil. The paper which is closest to the characteristic of commercial wrapping paper is the paper with the additive of 2% cinnamon oil, with pH of 6.95, the water content of 7.14%, grammage of 347.6 gram/m2 and the brightness level of 24.68%.

  17. Effects of tallow, choice white grease, palm oil, corn oil, or soybean oil on apparent total tract digestibility of minerals in diets fed to growing pigs.

    Science.gov (United States)

    Merriman, L A; Walk, C L; Parsons, C M; Stein, H H

    2016-10-01

    An experiment was conducted to determine the effect of supplementing diets fed to growing pigs with fat sources differing in their composition of fatty acids on the apparent total tract digestibility (ATTD) of minerals. A diet based on corn, potato protein isolate, and 7% sucrose was formulated. Five additional diets that were similar to the previous diet with the exception that sucrose was replaced by 7% tallow, choice white grease, palm oil, corn oil, or soybean oil were also formulated. Diets were formulated to contain 0.70% Ca and 0.33% standardized total tract digestible P. Growing barrows ( = 60; 15.99 ± 1.48 kg initial BW) were allotted to a randomized complete block design with 2 blocks of 30 pigs, 6 dietary treatments, and 10 replicate pigs per treatment. Experimental diets were provided for 12 d with the initial 5 d being the adaptation period. Total feces were collected for a 5-d collection period using the marker-to-marker approach, and the ATTD of minerals, ether extract, and acid hydrolyzed ether extract was calculated for all diets. Digestibility of DM was greater ( soybean oil compared with the diet containing choice white grease or the basal diet, with all other diets being intermediate. The ATTD of Ca, S, and P was greater ( soybean oil, corn oil, palm oil, or tallow than for pigs fed the basal diet or the diet containing choice white grease. The ATTD of Mg, Zn, Mn, Na, and K were not different among dietary treatments. The ATTD of ether extract was greater ( oil, corn oil, or soybean oil compared with the diet containing choice white grease, and the ATTD of acid hydrolyzed ether extract in the diet containing soybean oil was also greater ( oil, corn oil, or soybean oil may increase the ATTD of some macrominerals, but that appears not to be the case if choice white grease is used. There was no evidence of negative effects of the fat sources used in this experiment on the ATTD of any minerals.

  18. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  19. Preliminary use of cashew kernel oil in Clarias gariepinus fingerlings diet: comparison with fish oil and palm oil

    Directory of Open Access Journals (Sweden)

    Morgane Paul Magouana Anvo

    2017-04-01

    Full Text Available Abstract The present study was performed to investigate the effect of fish oil (FO, palm oil (PO, and cashew kernel oil (CKO as the dietary lipid sources on the growth performance, tissues fatty acids composition and economical profitability in Clarias gariepinus fingerlings. Three isonitrogenous (49.32%, isolipidic (15.18%, and isoenergetic (21 kJ/g diets were formulated, differed only to the added lipid source and coded accordingly as D1 (fish oil, D2 (palm oil, and D3 (cashew kernel oil. Catfish fingerlings (initial body weight = 2.43 ± 0.04 g were stocked at 1 fish/L and fed to trial diets at 5.6%. At the end of 8 weeks, C. gariepinus fingerlings fed with D1 and D3 had significantly identical growth and feed utilization efficiency. Those fed with D2 exhibited significantly and numerically low growth performance compared, respectively, to D1 and D3. Contrary to whole-body composition of fish, the muscle lipids fatty acids composition was influenced by the fatty acids profile of the dietary lipid sources. High net profit value (NPV of 24.59$, high investment cost analysis (ICA of 10.14$ and low benefit: cost ratio (BCR of 2.42 were observed in fish fed with D1 while those fed with D3 allowed to have high NPV (23.15$, low ICA (7.86$ and high BCR (2.95. Like others vegetable oils, cashew kernel oil can replace expensive fish oil in C. gariepinus fingerlings diet without negatively affecting its growth performances.

  20. [Laser induced fluorescence spectrum characteristics of common edible oil and fried cooking oil].

    Science.gov (United States)

    Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Chen, He; Guo, Pan; Ge, Xian-ying; Gao, Li-lei

    2013-09-01

    In order to detect the trench oil the authors built a trench oil rapid detection system based on laser induced fluorescence detection technology. This system used 355 nm laser as excitation light source. The authors collected the fluorescence spectrum of a variety of edible oil and fried cooking oil (a kind of trench oil) and then set up a fluorescence spectrum database by taking advantage of the trench oil detection system It was found that the fluorescence characteristics of fried cooking oil and common edible oil were obviously different. Then it could easily realize the oil recognition and trench oil rapid detection by using principal component analysis and BP neural network, and the overall recognition rate could reach as high as 97.5%. Experiments showed that laser induced fluorescence spectrum technology was fast, non-contact, and highly sensitive. Combined with BP neural network, it would become a new technique to detect the trench oil.

  1. Assessment of an oil palm population from Nigerian Institute for Oil ...

    African Journals Online (AJOL)

    Oil palm (Elaeis guineensis Jacq.), a monocotyledonous plant belonging to the Arecaceae family, is one of the most important oil crops in the world. In Nigeria, oil palm has benefited immensely from conventional breeding efforts resulting in high yields that have been achieved with this breeding material. However, oil palm ...

  2. Production of microbial oil with high oleic acid content by Trichosporon capitatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zong, Minhua [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640 (China); Li, Yuanyuan; Chen, Lei [School of Biosciences and Bioengineering, South China University of Technology, Guangzhou 510640 (China)

    2011-01-15

    Microbial oils with high unsaturated fatty acids content, especially oleic acid content, are good feedstock for high quality biodiesel production. Trichosporon capitatum was found to accumulate lipid with around 80% oleic acid and 89% total unsaturated fatty acids content on nitrogen-limited medium. In order to improve its lipid yield, effects of medium components and culture conditions on cell growth and lipid accumulation were investigated. Optimization of media resulted in a 61% increase in the lipid yield of T. capitatum after cultivation at 28 C and 160 rpm for 6 days. In addition, T. capitatum could grow well on cane molasses and afford a lipid yield comparable to that on synthetic nitrogen-limited medium. The biodiesel from the microbial oil produced by T. capitatum on cane molasses displayed a low cold filter plugging point (-15 C), and so T. capitatum might be a promising strain to provide lipid suitable for high quality biodiesel production. (author)

  3. Óleo essencial de aroeira-vermelha como aditivo na ração de frangos de corte Essential oil from Brazillian red pepper as an additive in broiler diet

    Directory of Open Access Journals (Sweden)

    Maria Aparecida da Silva

    2011-04-01

    Full Text Available Objetivou-se avaliar os efeitos da inclusão de óleo essencial de aroeira-vermelha (Schinus terebinthifolius Raddi como promotor de crescimento nas rações de frangos de corte sobre o desempenho e morfometria intestinal desses animais. Foram utilizados 300 pintos de um dia de vida, tipo corte, machos, linhagem Cobb. As aves foram alojadas em 20 boxes de 2m² (15 aves boxe-1, distribuídos em um delineamento inteiramente casualizado, em grupos de quatro (4 tratamentos e cinco (5 repetições, com 15 aves cada. Os grupos foram identificados como T1: dieta sem promotor de crescimento e sem óleo de aroeira-vermelha (controle negativo; T2: dieta com promotor de crescimento e sem óleo de aroeira (antimicrobiano e anticoccidiano - controle positivo; T3: dieta contendo somente antimicrobiano (bacitracina de zinco; T4: dieta com 0,4% de óleo de aroeira-vermelha. Não houve efeito significativo dos tratamentos sobre o desempenho animal (P>0,05. Contudo, quanto aos aspectos morfométricos dos intestinos verificou-se que, aos 21 dias de idade, os animais tratados com promotor de crescimento apresentaram maior relação vilo:cripta, que não diferiu dos tratados com 0,4% de óleo de aroeira-vermelha (P>0,05. As aves arraçoadas com uma dieta sem promotor de crescimento (sem antibiótico e anticoccidiano tiveram a menor relação vilo:cripta (P0,05. Neste estudo, não houve diferença significativa na profundidade das criptas de Lieberkühn e na altura das vilosidades entre os tratamentos (P>0,05. Concluiu-se que a adição de 0,4% de óleo de aroeira promoveu uma melhoria na superfície absortiva intestinal das aves, quando comparado com as aves alimentadas sem promotor de crescimento.The aim was to evaluate the effect of inclusion of Brazilian red pepper oil (Schinus terebinthifolius Raddi, as an additive in feed on performance and intestinal morphometry of broilers. A total of 300 day-old male chicks, Cobb, distributed in a randomized design in groups

  4. EXTRACTION OF OIL FROM PRESSED PALM OIL (Elaes guineensis FIBERS USING SUPERCRITICAL CO2

    Directory of Open Access Journals (Sweden)

    Luiz F. FRANÇA

    1997-12-01

    Full Text Available Residual fibers from palm oil production are a good source of carotene, since they contain more than 5% of the original oil, with about 5000 ppm of carotenoids. As carotenoids are thermosensitive molecules, supercritical CO2 can be used for oil recovery, because this technique employs low temperatures. In this work results of oil extraction experiments from pressed palm oil fibers are shown. Fibers were from AGROPALMA, an industry which is located in Tailândia (Pará, Brazil. Extractions were carried out at 200, 250 and 300 bar and at temperatures of 45 and 55oC. Oil was analyzed by UV/vis spectrophotometry for total carotene determination. Results showed a large increase in extraction rate from 200 to 250 bar and a small variation from 250 to 300 bar. The total amount of carotenes did not increase in the course of extraction at 300 bar, but it showed a large increase at 200 and at 250 bar. Free fatty acids are present in amounts larger than those found in commercial oils.As fibras residuais do processo de produção de óleo de palma (óleo de dendê, podem ser uma boa fonte de carotenos, pois contém, ainda, mais de 5% do óleo original, com cerca de 5.000 ppm de carotenóides. Como os carotenóides são moléculas termodegradáveis, é importante um estudo do emprego de CO2 supercrítico na extração deste óleo, visto que esta é uma técnica que emprega baixas temperaturas. Neste trabalho são mostrados os resultados de experimentos de extração do óleo das fibras prensadas de dendê, feitas a 200, 250 e 300 bar e temperaturas de 45 e 55oC. As fibras prensadas foram obtidas da produção industrial da indústria AGROPALMA, localizada em Tailândia (Pará, Brasil. O óleo obtido foi analisado por espectrofotometria UV/vis para a determinação do teor de carotenos totais. Os resultados mostram um aumento na taxa de extração entre 200 e 250 bar, mas esta variação foi pequena entre 250 e 300 bar. O teor de carotenos totais não aumenta

  5. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    Directory of Open Access Journals (Sweden)

    Syafrudin

    2018-01-01

    Full Text Available Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD. Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  6. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    Science.gov (United States)

    Syafrudin; Nugraha, Winardi Dwi; Agnesia, Shandy Sarima; Matin, Hashfi Hawali Abdul; Budiyono

    2018-02-01

    Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide) and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD). Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  7. Oil spill in Bombay high marine impacts

    Digital Repository Service at National Institute of Oceanography (India)

    pollutant contamination requires reliable baseline against which the measured environmental quality can be compared. Fortunately, the coastal waters of Murud are being periodically monitored under the Coastal Ocean Monitoring and Prediction System (COMAPS... avoidance reaction even at low concentration of oil in water. Moreover, the fish possesses an enzyme system which can deal with petroleum hydrocarbons in its tissues. Hence, fish kills due to oil pollution are rare and when occur, the numbers involved...

  8. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique.

    Science.gov (United States)

    Viswanathan, N B; Thomas, P A; Pandit, J K; Kulkarni, M G; Mashelkar, R A

    1999-03-08

    Emulsification-solvent removal methods have been widely used for encapsulating bioactive macromolecules like proteins and polypeptides in biodegradable polymers. We report, a (water-in-oil)-in-oil emulsion technique wherein proteins and polypeptides differing in molecular weight and shape were encapsulated in polymers of current biomedical interest. When an oil was used as the processing medium in combination with a carefully selected mixed solvent system such that a stable (w/o1/o2 emulsion is formed and solvents are removed by a combination of extraction and evaporation, the entrapment efficiency was high and the product nonporous. The entrapment efficiency of globular proteins exceeded 90% while that of fibrous proteins was around 70%. Fracture studies revealed that the polymer matrix was dense. The mechanism of entrapment involved solvent-induced precipitation of the protein as the microspheres were being formed. The principle of the method will find use in preparation of non-porous polymer microparticles with reduced burst effect.

  9. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  10. Influência da secagem do pequi (Caryocar brasiliense Camb. na qualidade do óleo extraído Influence of pequi drying (Caryocar brasiliense Camb. on the quality of the oil extracted

    Directory of Open Access Journals (Sweden)

    Ludmila Pereira Aquino

    2009-06-01

    Full Text Available O pequi (Caryocar brasiliense Camb. tem se destacado por ser um fruto oleaginoso e rico em carotenoides. A secagem é um processo utilizado na extração do óleo por hexano, mas a degradação dos carotenoides e óleo podem ocorrer. O objetivo deste trabalho foi avaliar a influência de diferentes métodos de secagem (ao sol, estufa ventilada a 40 e a 60 °C e do tempo (4 horas e até peso constante no rendimento e na qualidade do óleo extraído por hexano no extrator Soxhlet. Quando a polpa de pequi foi seca, 3% ou conteúdo menor de umidade e maior rendimento do óleo foi obtido (52 a 59%, base seca. Carotenoides totais foram maiores e índice de peróxido menores para a polpa desidratada a 40 °C em estufa ventilada, quando comparada com a secagem da polpa em estufa a 60 °C e ao sol. Estes resultados indicaram que a secagem em estufa a 40 °C por 19 horas resultou num maior rendimento do óleo e menor degradação térmica.Pequi (Caryocar brasiliense Camb has stood out for being an oleaginous fruit rich in carotenoids. Drying is widely used technique in the oil extraction process using hexane, but the degradation of oil and carotenoids may occur. The objective of this study was to evaluate the influence of different drying methods (sun, air-circulated drier at 40 and 60 °C and time (4 hours and up to constant weight on the yield and quality of the oil extracted using hexane using a soxhlet apparatus. When the pequi pulp was dried up to 3% or even lower, more oil yield was obtained (52-59%, dry basis. The total carotenoids contents obtained were higher and the peroxide index was lower for the pulp dried at 40 °C in an air-circulated drier when compared to drying at 60 °C in an air-ventilated drier and to sun drying technique. These results indicate that drying in an air-circulated drier at 40 °C for 19 hours resulted in higher oil yields with less heat degradation.

  11. Enhanced oil recovery with surfactant flooding

    Energy Technology Data Exchange (ETDEWEB)

    Buelow Sandersen, S.

    2012-05-15

    Understanding the underlying mechanisms of systems that exhibit liquid-liquid equilibrium (e.g. oil-brine systems) at reservoir conditions is an area of increasing interest within EOR. This is true both for complex surfactant systems as well as for oil and brine systems. It is widely accepted that an increase in oil recovery can be obtained through flooding, whether it is simple waterflooding, waterflooding where the salinity has been modified by the addition or removal of specific ions (socalled ''smart'' waterflooding) or surfactant flooding. High pressure experiments have been carried out in this work on a surfactant system (surfactant/ oil/ brine) and on oil/ seawater systems (oil/ brine). The high pressure experiments were carried out on a DBR JEFRI PVT cell, where a glass window allows observation of the phase behavior of the different systems at various temperatures and pressures inside the high pressure cell. Phase volumes can also be measured visually through the glass window using precision equipment. The surfactant system for which an experimental study was carried out consisted of the mixture heptane, sodium dodecyl sulfate (SDS)/ 1-butanol/ NaCl/ water. This system has previously been examined at ambient pressures and temperatures but this has been extended here to pressures up to 400 bar and to slightly higher temperatures (40 deg. C, 45 deg. C and 50 deg. C). Experiments were performed at constant salinity (6.56 %), constant surfactant-alcohol ratio (SAR) but with varying water-oil ratios (WOR). At all temperatures it was very clear that the effect of pressure was significant. The system changed from the two phase region, Winsor II, to the three phase region, Winsor III, as pressure increased. Increasing pressures also caused a shift from the three phase region (Winsor III), to a different two phase region, (Winsor I). These changes in equilibrium phase behavior were also dependent on the composition of the system. A number of

  12. The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chang, Tien-Chia; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-10-01

    The present study investigated the regulatory effects of fish oil and chitosan on the signals of hepatic lipid metabolism and the postulated mechanism in high-fat diet-induced obese rats. Diet supplementation of chitosan and fish oil efficiently suppressed the increased weights in body and livers of high-fat diet-fed rats. Supplementation of chitosan and fish oil significantly decreased the activities of hepatic lipid biosynthesis-related enzymes and efficiently regulated plasma lipoprotein homeostasis. Both chitosan and fish oil significantly ameliorated the alterations in the protein expressions of hepatic lipogenic transcription factors (LXRα and PPARα), and could also significantly regulate the downstream hepatic lipogenic genes (FAS, HMGCR, CYP7A1, FATP, FABP, AOX, and ABCA) expressions in high-fat diet-fed rats. These results suggest that both fish oil and chitosan exerts downregulative effects on hepatic lipid metabolism in high-fat diet-induced obese rats via the LXRα inhibition and PPARα activation, which further affect the expressions of hepatic lipogenesis-associated genes. Copyright © 2017. Published by Elsevier B.V.

  13. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.

    Science.gov (United States)

    Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot

    2017-09-19

    Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.

  14. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  15. Enhancement of antioxidative activity and cardiovascular protection in hamsters by camellia oil and soybean-camellia blended oil.

    Science.gov (United States)

    Chou, Ting-Yi; Lu, Yi-Fa; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2018-02-07

    The aim of this study was to examine the effects of several vegetable oils and blended oil composed of soybean and camellia oils on blood lipid reduction and antioxidative activity. Forty male hamsters were fed an AIN-93 G diet for 1 wk, followed by dividing into five groups: control group-1 was fed a low-fat diet containing 5% oil for 6 wk, and the other four groups were fed high-fat diets with group-2 containing 14% palm oil, group-3 containing 14% camellia oil, group-4 containing 14% soybean oil, and group-5 containing 14% blended oil (8.4% soybean oil and 5.6% camellia oil) along with 0.2% cholesterol and 0.1% bile acid. High-fat diets raised serum triacylglycerol, total cholesterol, and aspartate aminotransferase in hamsters without affecting alanine aminotransferase. Compared with palm oil-containing diet, the other three high-fat diets reduced serum total cholesterol, low-density lipoprotein cholesterol, and the ratio of low-density lipoprotein to high-density lipoprotein cholesterol with an opposite trend for liver total cholesterol. However, compared with the control group, the serum high-density lipoprotein cholesterol level was raised for all four high-fat diets. The higher the degree of oil unsaturation, the higher the serum thiobarbituric acid reactive substances and the lower the liver triacylglycerol level and activities of fatty acid synthase, glucose 6-phosphate dehydrogenase, and malic enzymes. Both soybean and blended oils lowered the antioxidative activity of liver. Camellia and blended oils were more efficient than soybean oil in elevating serum high-density lipoprotein cholesterol and decreasing the ratio of low-density lipoprotein to high-density lipoprotein cholesterol in hamsters. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo [Food Safety and Technology Research Centre, State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong Special Administrative Region (China); Shenzhen Key Laboratory of Food Biological Safety Control and State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen (China); Yao, Zhong-Ping, E-mail: zhongping.yao@polyu.edu.hk [Food Safety and Technology Research Centre, State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong Special Administrative Region (China); Shenzhen Key Laboratory of Food Biological Safety Control and State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen (China)

    2015-07-16

    Highlights: • Simplified sample preparation method for direct analysis of edible oils by MALDI-MS. • Establishment of a preliminary MALDI-MS spectral database of edible oils. • Rapid screening of mixed edible oils and gutter oils. - Abstract: Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils.

  17. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry

    International Nuclear Information System (INIS)

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping

    2015-01-01

    Highlights: • Simplified sample preparation method for direct analysis of edible oils by MALDI-MS. • Establishment of a preliminary MALDI-MS spectral database of edible oils. • Rapid screening of mixed edible oils and gutter oils. - Abstract: Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils

  18. East Africa, an oil geopolitics at high risk

    International Nuclear Information System (INIS)

    Auge, Benjamin

    2012-11-01

    As the Sub-Saharan African oil production has been concentrated in the Guinea Gulf countries since the 1950's, as this region remains the main African oil producer (Maghreb excluded), and as new discoveries has been made in Uganda in 2006 and exploration has been extended to neighbouring countries (Ethiopia, Kenya, Tanzania, Mozambique), this report first questions the situation of the exploration of the Albert Lake by proposing an overview of intervening actors, by commenting the political use of the debate about oil, by commenting the situation on the Congolese side of the lake, and by commenting how the lake is shared between Uganda and the Republic of Congo. In the next part, the author discusses the use and future of the Ugandan oil by outlining the role of the Essar company in the regional refining, and by evoking projects of regional pipelines. The last part addresses the status of exploration in other East African countries (Kenya, Ethiopia, South Sudan, Tanzania, Mozambique)

  19. Selection of High Oil Yielding Trees of Millettia pinnata (L.) Panigrahi, Vegetative Propagation and Growth in the Field

    OpenAIRE

    Ni Luh Arpiwi; I Made Sutha Negara; I Nengah Simpen

    2017-01-01

    Millettia pinnata (L.) Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field. The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to e...

  20. The Effects of Combination of High Intensity Intermittent Exercise and Supplement Flaxseed Oil 1 ICAM- Plasma Concentration in Male Rats

    Directory of Open Access Journals (Sweden)

    Y Khademi

    2017-01-01

    Full Text Available Introduction: Prevalence of cardiovascular diseases is rooted in inflammation and inflammation is along with the increase of ICAM-1. The aim of the present study was to review the effect of combination of high interval training and flaxseed oil supplementation on plasma concentration of ICAM-1 of rats. Methods: In this experimental study, 30 rats were selected and divided into six groups of five male rats, including (1 control, (2 training, (3 10 mg/kg Flaxseed oil, (4 30 mg/kg Flaxseed oil, (5 training with 10 mg/kg Flaxseed oil and (6 training with 30 mg/kg Flaxseed oil. Groups of 2, 5 and 6 were trained with high intensity interval training for 10 weeks and five sessions per week, also groups 3 to 6 received flaxseed oil for 10 weeks. For statistical analysis of data two way ANOVA test was used (p≤0.05. Results: 10 weeks  treating high intensity interval training  for 10 weeks had significant effect on the increase of the plasma concentration of ICAM-1 of male rats (p=0.001. Nevertheless, Taking 10 weeks 10 and 30 mg/kg flaxseed oil supplementation for 10 weeks has significant effect on reducing  the plasma concentration of ICAM-1 of rats (p=0.001. Training and taking flaxseed oil supplementation have interactional effect on reduingc the plasma concentration of ICAM-1 of male rats (p=0.001. Conclusion: Combination of high intensity interval training and flaxseed oil supplementation has interactional effects on the improvement of plasma concentration of ICAM-1 in male rats.

  1. Application of Technology of Hydrodynamic Cavitation Processing High-Viscosity Oils for the Purpose of Improving the Rheological Characteristics of Oils

    Science.gov (United States)

    Zemenkov, Y. D.; Zemenkova, M. Y.; Vengerov, A. A.; Brand, A. E.

    2016-10-01

    There is investigated the technology of hydrodynamic cavitational processing viscous and high-viscosity oils and the possibility of its application in the pipeline transport system for the purpose of increasing of rheological properties of the transported oils, including dynamic viscosity shear stress in the article. It is considered the possibility of application of the combined hydrodynamic cavitational processing with addition of depressor additive for identification of effect of a synergism. It is developed the laboratory bench and they are presented results of modeling and laboratory researches. It is developed the hardware and technological scheme of application of the developed equipment at industrial objects of pipeline transport.

  2. Analytical filtration model for nonlinear viscoplastic oil in the theory of oil production stimulation and heating of oil reservoir in a dual-well system

    Science.gov (United States)

    Ivanovich Astafev, Vladimir; Igorevich Gubanov, Sergey; Alexandrovna Olkhovskaya, Valeria; Mikhailovna Sylantyeva, Anastasia; Mikhailovich Zinovyev, Alexey

    2018-02-01

    Production of high-viscosity oil and design of field development systems for such oil is one of the most promising directions in the development of world oil industry. The ability of high-viscosity oil to show in filtration process properties typical for non-Newtonian systems is proven by experimental studies. Nonlinear relationship between the pressure gradient and the rate of oil flow is due to interaction of high-molecular substances, in particular, asphaltenes and tars that form a plastic structure in it. The authors of this article have used the analytical model of stationary influx of nonlinear viscoplastic oil to the well bottom in order to provide rationale for the intensifying impact on a reservoir. They also have analyzed the method of periodic heating of productive reservoir by means of dual-wells. The high-temperature source is placed at the bottom of the vertical well, very close to the reservoir; at the same time the side well, located outside the zone of expected rock damage, is used for production. Suggested method of systemic treatment of reservoirs with dual wells can be useful for small fields of high-viscosity oil. The effect is based on the opportunity to control the structural and mechanical properties of high-viscosity oil and to increase depletion of reserves.

  3. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  4. Enhancing results : solid expandable tubulars facilitate high-temperature oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.; Nylund, J.; Flaming, S. [Enventure Global Technology LLC, Calgary, AB (Canada)

    2010-07-01

    Steam-based recovery methods can provide a cost-effective approach to developing heavy oil and oil sands energy resources. This paper described a solid expandable tubular system designed to prevent damage without decreases in hole size. The pipe's permanent deformation creates an energized seal that cases off damaged tubulars. The new sealing systems allow for operations in the range of 270 degrees C. The system was comprised of mechanical retainers designed to hold the multi-component, high-temperature seal in place on the expandable casing. The seals are held in place by retainer rings designed to protect the seal in the hole as well as to provide increased anchoring capacity when the pipe is expanded and clad onto the base casing. The retainers are wrapped with a redundant standard seal material. The weight and size of the casings are individually configured for specific wells and are also designed to maintain consistency across multiple weight ranges. Details of the testing protocol used to ensure that the sealing system operated well in various oil production scenarios were presented, as well as the results of case studies conducted to demonstrate the system in the field. 6 refs., 1 tab., 2 figs.

  5. Technical and Economic Analysis of Injecting Enhancers into High-Paraffin Oil Heaters

    Science.gov (United States)

    Konakhina, I. A.; Khamidullina, G. R.; Khusnutdinova, E. M.

    2017-09-01

    This paper covers an algorithm of how to optimize the selection of preferred solutions to upgrade heat-exchange equipment. The algorithm is discussed in terms of high-paraffin oil heaters as compared with other heat-exchange surface features.

  6. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  7. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    Science.gov (United States)

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  8. Treatment of Liquid Oil Spill by Untreated and Treated Aswanly Clay ...

    African Journals Online (AJOL)

    The aim of this work is to use cheap, available and recyclable sorbents for oil spill clean – up. α -SiO2-Quartz, Na2Si2O5(OH)4, CaCO3, MgCO3, BaCO3, CaO, MgO, ... Characteristics of crude oil and Aswanly clay were investigated by FTIR, X – Ray Fluorescence, X – Ray Diffraction, pour point and centrifuge instruments.

  9. Changes in proximate composition and oil characteristics during flaxseed development

    Directory of Open Access Journals (Sweden)

    Herchi, W.

    2014-06-01

    Full Text Available Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS and High Performance Liquid Chromatography (HPLC are the two analytical methods that were used to characterize Triacylglycerols (TAGs during flaxseed development. The HPLC method of the oils showed the presence of 15 TAG species. In contrast to the HPLC chromatograms, the APPI-MS showed 17 peaks of TAG. APPI-MS is more rapid than the HPLC method (11 min. The iodine value of the oils showed a gradual increase, while the oil stability continuously decreased. Proximate composition during flaxseed development revealed that flaxseed is potentially a good source of dietary energy and protein. At full maturity, flaxseed contained 37% oil and 24% protein on a dry-weight basis; albumin was the major storage protein (53% of total storage proteins followed by globulin (33% and glutelin fractions (11%. Prolamins had the lowest percentage with 3%. α-amylase activity was higher in the mature seeds than the young ones.Fotoionización a presión atmosférica-Espectrometría de masas (APPI-MS y cromatografía líquida de alta resolución (HPLC son dos métodos de análisis que se utilizaron para caracterizar triglicéridos (TAGs durante el desarrollo de semillas de linaza. El método HPLC mostró la presencia de 15 especies de TAG, en contraste, los cromatogramas de APPI-MS mostraron 17 picos de TAG siendo el método APPI-MS más rápido que el de HPLC (11 min. El índice de yodo de los aceites mostró un aumento gradual, mientras que la estabilidad disminuyó continuamente. El estudio de la composición proximal de la linaza durante su desarrollo, mostró que esta semilla es una fuente potencialmente buena de energía y de proteína para la dieta. Al final de la maduración, la linaza contenía 37 % de aceite y 24 % de proteína sobre peso seco; albúmina fue la principal proteína de almacenamiento (53% sobre el total de las proteínas de almacenamiento seguido de la globulina (33 % y glutelina

  10. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  11. Stabilization of Softwood-Derived Pyrolysis Oils for Continuous Bio-oil Hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Olarte, Mariefel V.; Zacher, Alan H.; Padmaperuma, Asanga B.; Burton, Sarah D.; Job, Heather M.; Lemmon, Teresa L.; Swita, Marie S.; Rotness, Leslie J.; Neuenschwander, Gary N.; Frye, John G.; Elliott, Douglas C.

    2015-10-15

    The use of fast pyrolysis as a potential renewable liquid transportation fuel alternative to crude oil depends on successful catalytic upgrading to produce a refinery-ready product with oxygen content and qualities (i.e. specific functional group or compound content) that is compatible with the product’s proposed insertion point. Catalytic upgrading of bio-oil requires high temperature and pressure, while similar to crude oil hydrotreating, is not as straightforward for the thermally unstable pyrolysis oil. For years, a two-temperature zone, downflow trickle bed reactor was the state-of-the art for continuous operation. However, pressure excursion due to plug formation still occurred, typically at the high temperature transition zone, leading to a process shutdown within 140 h. Recently, a bio-oil pre-treatment process, together with a robust commercial catalyst, was found to be enabling the continuous operation of the two-zone hydroprocessing system. Here, we report the results on pre-treating bio-oil at 413 K and 8.4 MPa of flowing H2 (500 L H2/L bio-oil, 0.5 L bio-oil/L catalyst bed) and the attempts to characterize this oil product to understand the chemistry which enabled the long-term processing of bio-oil.

  12. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    Science.gov (United States)

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  13. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    Science.gov (United States)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  14. Uso de óleo na dieta de eqüinos submetidos ao exercício Use of oil in diet of equine under exercise

    Directory of Open Access Journals (Sweden)

    Fernando Mattos

    2006-08-01

    Full Text Available Objetivou-se com esta pesquisa avaliar, por meio de parâmetros hematofisiológicos, o desempenho atlético de cavalos submetidos a exercícios de média intensidade alimentados com dietas suplementadas com dois níveis de óleo vegetal (250 e 500 g/dia. Foram utilizados 18 eqüinos machos, castrados, sem raça definida, com faixa etária entre 4 e 8 anos de idade e peso corporal de 456±2,90 kg. Os animais foram distribuídos em um delineamento inteiramente aleatório, em um esquema de parcela subdividida no tempo, em que os tempos de coleta constituíram a subparcela e os níveis de óleo de soja (0, 250 e 500 g/cavalo/dia, a parcela. Os cavalos receberam, durante 30 dias, 8,40; 7,95 e 7,30 kg/dia das rações contendo 0, 250 e 500 g de óleo, respectivamente, divididas em três refeições diárias. Ao final dos 30 dias, foi realizado o exercício-teste com todos os cavalos, durante 2 horas, ao trote alongado. Foram avaliados, no início e final do exercício, os teores de glicose e lactato sangüíneos, o hematócrito e a temperatura corporal. As freqüências cardíaca e respiratória foram tomadas no início, 1 e 2 horas de exercício e 15 minutos após o exercício. Verificou-se efeito da interação tempos de coleta ´ níveis de óleo na dieta sobre os teores de glicose e lactato e valores de hematócrito, temperatura corporal, freqüência cardíaca e respiratória. A adição de 250 e 500 g de óleo na dieta de eqüinos submetidos ao exercício de média intensidade proporcionou melhora no desempenho hematofisiológico e, portanto, pode resultar em melhor desempenho atlético dos cavalos. Os cavalos que consumiram óleo na proporção de 500 g/dia apresentaram melhor recuperação pós-prova, confirmada pela freqüência cardíaca e pelo hematócrito.The objective of this research was to estimate, by haematophysiological parameters, the physical performance of horses under exercise of mid intensity and fed diets with two levels of

  15. Chemical composition of carrot seeds (Daucus carota L. cultivated in Turkey: characterization of the seed oil and essential oil

    Directory of Open Access Journals (Sweden)

    Chalchat, Jean Claude

    2007-12-01

    Full Text Available Chemical composition and physical properties were established in carrot (Daucus carota L. seeds from Konya, Turkey to investigate their potential uses. Mature seeds were evaluated for moisture, crude protein, crude oil, crude fiber, ash, HCl-insoluble ash, total carbohydrate, essential oil yield and weight of 1000 seeds. Also, relative density, refractive index, free fatty acids, peroxide value, iodine value, saponification number and unsaponifiable matter were determined in the seed oil. The main fatty acids identified by gas chromatography were petroselinic (59.35%, linoleic (11,82%, palmitic (10.01% and stearic (2.41% acids. Mineral contents (Al, Ca, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Se, Sr, V and Zn of seeds were also determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. The seeds were found to be rich in protein, fiber and ash. The essential oil and edible oil compositions of carrot seeds from Konya were investigated by GC and GC-MS. The oil yields of essential and edible oil from carrot seeds were established as 0.83% and 7.84%, respectively. The major constituents of seed essential oil were carotol (66.78%, daucene (8.74%, (Z,Z--farnesene (5.86%, germacrene D (2.34%, trans--bergamotene (2.41% and -selinene (2.20%. Whereas, carotol (30.55%, daucol (12.60% and copaenol (0.62% were the important components of edible carrot seed oil. However, the dominant component of both oils was carotol.Se determinó la composición química y las propiedades físicas de las semillas de zanahoria (Daucus carota L. obtenidas en Konya, Turquía, con objeto de investigar usos potenciales de las mismas. Se determinó la humedad, el peso, el contenido proteico, en aceite, en fibra, en ceniza, en ceniza insoluble en ácido clorhídrico, los carbohidratos totales, y el rendimiento de la obtención de aceite esencial a partir de 1000 semillas maduras. Asimismo se determinó la densidad relativa, el índice de refracci

  16. Growth responses of NaCl stressed rice (Oryza sativa L.) plants ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... Growth responses of NaCl stressed rice (Oryza sativa. L.) plants ... 2008), which is a real threat to human's food security. Existed situation may ..... content and composition of essential oil and minerals in black cumin. (Nigella ...

  17. The pass through of oil prices into euro area consumer liquid fuel prices in an environment of high and volatile oil prices

    Energy Technology Data Exchange (ETDEWEB)

    Meyler, Aidan [European Central Bank, Frankfurt am Main (Germany)

    2009-11-15

    Crude and refined oil prices have been relatively high and volatile on a sustained basis since 1999. This paper considers the pass through of oil prices into consumer liquid (i.e. petrol, diesel and heating) fuel prices in such an environment. The pass through of oil prices into consumer liquid fuel prices has already been addressed extensively in the literature. Nonetheless much of this literature has either focused on the United States or on a time period when oil prices were relatively stable, or has used monthly data. The main contribution of this paper is a comprehensive combination of many features that have been considered before but rarely jointly. These features include: (1) the analysis of the euro area as an aggregate and a large number of countries (the initial 12 member states); (2) the consideration of different time periods; (3) the modelling of the data in raw levels rather than in log levels. This turns out to have important implications for our findings; (4) the use of high frequency (weekly) data, which, as results will suggest, are the lowest frequency one should consider; (5) the investigation of the different stages of the production chain from crude oil prices to retail distribution - refining costs and margins, distribution and retailing costs and margins; (6) the examination of prices including and excluding taxes - excise and value-added; (7) the modelling of prices for three fuel types - passenger car petrol and diesel separately and home heating fuel oil; (8) lastly we also address the issue of possible asymmetries, allowing for the pass through to vary according to (a) whether price are increasing or decreasing and (b) whether price levels are above or below their equilibrium level. The main findings are as follows: First, as distribution and retailing costs and margins have been broadly stable on average, the modelling of the relationship between consumer prices excluding taxes and upstream prices in raw levels rather than in

  18. The pass through of oil prices into euro area consumer liquid fuel prices in an environment of high and volatile oil prices

    International Nuclear Information System (INIS)

    Meyler, Aidan

    2009-01-01

    Crude and refined oil prices have been relatively high and volatile on a sustained basis since 1999. This paper considers the pass through of oil prices into consumer liquid (i.e. petrol, diesel and heating) fuel prices in such an environment. The pass through of oil prices into consumer liquid fuel prices has already been addressed extensively in the literature. Nonetheless much of this literature has either focused on the United States or on a time period when oil prices were relatively stable, or has used monthly data. The main contribution of this paper is a comprehensive combination of many features that have been considered before but rarely jointly. These features include: (1) the analysis of the euro area as an aggregate and a large number of countries (the initial 12 member states); (2) the consideration of different time periods; (3) the modelling of the data in raw levels rather than in log levels. This turns out to have important implications for our findings; (4) the use of high frequency (weekly) data, which, as results will suggest, are the lowest frequency one should consider; (5) the investigation of the different stages of the production chain from crude oil prices to retail distribution - refining costs and margins, distribution and retailing costs and margins; (6) the examination of prices including and excluding taxes - excise and value-added; (7) the modelling of prices for three fuel types - passenger car petrol and diesel separately and home heating fuel oil; (8) lastly we also address the issue of possible asymmetries, allowing for the pass through to vary according to (a) whether price are increasing or decreasing and (b) whether price levels are above or below their equilibrium level. The main findings are as follows: First, as distribution and retailing costs and margins have been broadly stable on average, the modelling of the relationship between consumer prices excluding taxes and upstream prices in raw levels rather than in

  19. Oil flow in deep waters: comparative study between light oils and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Andreolli, Ivanilto [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Ultra deeper waters fields are being exploited due to technological development. Under this scenario, the flow design is accomplished through pipelines subjected to low temperature and high pressure. Moreover, these flow lines are usually long causing a fast fluid cooling, which may affect flow assurance in some cases. Problems during topsides production plant's restart might occur if the oil is viscous and even in steady state a significant different behavior can be noticed, if compared to a less viscous oil. A comparison between light and heavy oil through a case study with the objective to show some heavy oil flow particularities is the purpose of this paper. Permanent and transient analyses for a specific geometry are presented. The results showed that thermal and proper viscosity modeling are required for heavy oil flow, differently from that of light oil flow, due to the exponential viscosity dependence to temperature and because the predominant laminar regime. In addition, on heavier and heavier oil flow systems, it is essential to consider exportation system's restart. (author)

  20. Evaluation of some chemical and physical parameters of Sudanese crude oil

    International Nuclear Information System (INIS)

    Mohamed, Elsamoual Hamdn Alla

    2001-05-01

    In this study crude oil samples were collected from four fields, Higlieg, Alnar, Toma south, and Unity at Elmuglad basin. A total of 20 samples were analyzed for Na, Ca, Mn, Fe, Co, Ni, Zn, Cd, and Pb, using atomic absorption spectrophotometer (Aas). For these samples some physical parameters were determined using standard techniques employed by the American Society for Testing and Materials (Astm). The range of concentration for Na, Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb are 0.33-22.20, 0.0-3.29, 0.56-7.70, 0.13-0.74, 1.70-6.33, 0.43-1.21, 1.02-9.80, 0.16-7.05, 0.12-4.88, 0.09-0.58, 0.15-0.82. μg/g, respectively. The results were subjected to statistical analysis such multivariate regression and principal component analysis. These statistical techniques revealed that the element found in the crude oil can be considered as contributed by two sources the biological precursor of oil and surrounding rocks. Comparison of the data obtained in this work with the data reported in the literature showed that the trace elements contents of Sudanese crude oil in most cases has the lowest concentration of harmful element especially Ni, and Fe.(Author)

  1. Effect of a 6-month intervention with cooking oils containing a high concentration of monounsaturated fatty acids (olive and canola oils) compared with control oil in male Asian Indians with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Nigam, Priyanka; Bhatt, Suryaprakash; Misra, Anoop; Chadha, Davinder S; Vaidya, Meera; Dasgupta, Jharna; Pasha, Qadar M A

    2014-04-01

    We investigated the effects of dietary intervention with canola or olive oil in comparison with commonly used refined oil in Asian Indians with nonalcoholic fatty liver disease (NAFLD). This was a 6-month intervention study including 93 males with NAFLD, matched for age and body mass index (BMI). Subjects were randomized into three groups to receive olive oil (n=30), canola oil (n=33), and commonly used soyabean/safflower oil (control; n=30) as cooking medium (not exceeding 20 g/day) along with counseling for therapeutic lifestyle changes. The BMI, fasting blood glucose (FBG) and insulin levels, lipids, homeostasis model of assessment for insulin resistance (HOMA-IR), HOMA denoting β-cell function (HOMA-βCF), and disposition index (DI) were measured at pre- and post-intervention. Data were analyzed with one-way analysis of variance (ANOVA) and Tukey's Honestly Significant Difference multiple comparison test procedures. Olive oil intervention led to a significant decrease in weight and BMI (ANOVA, P=0.01) compared with the control oil group. In a comparison of olive and canola oil, a significant decrease in fasting insulin level, HOMA-IR, HOMA-βCF, and DI (Poil group. Pre- and post-intervention analysis revealed a significant increase in high-density lipoprotein level (P=0.004) in the olive oil group and a significant decrease in FBG (P=0.03) and triglyceride (P=0.02) levels in the canola oil group. The pre- and post-intervention difference in liver span was significant only in the olive (1.14 ± 2 cm; Poil groups. In the olive and canola oil groups, post-intervention grading of fatty liver was reduced significantly (grade I, from 73.3% to 23.3% and from 60.5% to 20%, respectively [Poil group no significant change was observed. Results suggest significant improvements in grading of fatty liver, liver span, measures of insulin resistance, and lipids with use of canola and olive oil compared with control oils in Asian Indians with NAFLD.

  2. Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism

    Directory of Open Access Journals (Sweden)

    Soontharapirakkul Kanteera

    2010-08-01

    Full Text Available Abstract Background When cells are exposed to high salinity conditions, they develop a mechanism to extrude excess Na+ from cells to maintain the cytoplasmic Na+ concentration. Until now, the ATPase involved in Na+ transport in cyanobacteria has not been characterized. Here, the characterization of ATPase and its role in Na+ transport of alkaliphilic halotolerant Aphanothece halophytica were investigated to understand the survival mechanism of A. halophytica under high salinity conditions. Results The purified enzyme catalyzed the hydrolysis of ATP in the presence of Na+ but not K+, Li+ and Ca2+. The apparent Km values for Na+ and ATP were 2.0 and 1.2 mM, respectively. The enzyme is likely the F1F0-ATPase based on the usual subunit pattern and the protection against N,N'-dicyclohexylcarbodiimide inhibition of ATPase activity by Na+ in a pH-dependent manner. Proteoliposomes reconstituted with the purified enzyme could take up Na+ upon the addition of ATP. The apparent Km values for this uptake were 3.3 and 0.5 mM for Na+ and ATP, respectively. The mechanism of Na+ transport mediated by Na+-stimulated ATPase in A. halophytica was revealed. Using acridine orange as a probe, alkalization of the lumen of proteoliposomes reconstituted with Na+-stimulated ATPase was observed upon the addition of ATP with Na+ but not with K+, Li+ and Ca2+. The Na+- and ATP-dependent alkalization of the proteoliposome lumen was stimulated by carbonyl cyanide m - chlorophenylhydrazone (CCCP but was inhibited by a permeant anion nitrate. The proteoliposomes showed both ATPase activity and ATP-dependent Na+ uptake activity. The uptake of Na+ was enhanced by CCCP and nitrate. On the other hand, both CCCP and nitrate were shown to dissipate the preformed electric potential generated by Na+-stimulated ATPase of the proteoliposomes. Conclusion The data demonstrate that Na+-stimulated ATPase from A. halophytica, a likely member of F-type ATPase, functions as an electrogenic Na

  3. Synthesis and Characterization of Ni/Hydrotalcite and Its Application in Hydrocracking Calophyllum Inophyllum Oil

    Directory of Open Access Journals (Sweden)

    Hafshah

    2016-12-01

    Full Text Available This research aims to synthesize hydrotalcite as an alternatives of catalyst support of hydrocracking of vegetable oils. Hydrotalcite can be synthesized in several ways, the most common is coprecipitation method. Hydrotalcite was synthesized using Mg/Al mole ratio of 1: 1, NaOH and Na2CO3 as base solutions. Ni/hydrotalcite catalyst was synthesized by incipicient wetness impregnation method with Ni impregnation of 10% w/w. The characterization of the crystal structure was determined by X-ray diffraction (XRD. The spesific surface area (SBET was determined by adsorption-desorption of nitrogen, it were obtained 201 m2/g after impregnation and 191 m2/g before impregntion. The test of performance of catalyst was conducted by hydrocracking reaction of Calophyllum inophyllum oil. The liquid products were analyzed by gas chromatography mass spectrometry (GC-MS. Hydrocracking process produced gasoline, kerosene, gas oil with yield of 0.36%, 2.45%, 54.88% respectively, conversion of 96.26% and selectivity of gas oil of 84.39%.

  4. Applying high-resolution melting (HRM) technology to olive oil and wine authenticity.

    Science.gov (United States)

    Pereira, Leonor; Gomes, Sónia; Barrias, Sara; Fernandes, José Ramiro; Martins-Lopes, Paula

    2018-01-01

    Olive oil and wine production have a worldwide economic impact. Their market reliability is under great concern because of the increasing number of fraud and adulteration attempts. The need for a traceability system in all its extension is crucial particularly for the cases of olive oils and wines with certified labels, in which only a limited number of olives and grapevine varieties, respectively, are allowed in a restricted well-defined geographical area. Molecular markers have been vastly applied to the food sector, and in particular High-Resolution DNA Melting technology has been successfully applied for olive oil and wine authentication, as part of the traceability system. In this review, the applications of HRM and their usefulness for this sector considering, Safety, Security and Authenticity will be reviewed. A broad overview of the HRM technique will be presented, focusing on the aspects that are crucial for its success, in particular the new generation of fluorescent dsDNA dyes used for amplicon detection and quantification, and the data analysis. A brief outlook on the olive oil and wine authenticity procedures, based on new DNA technology advances, and in which way this may influence the future establishment of a traceability system will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Water pollution potential of mineral oils with high content of polycyclic aromatic hydrocarbons (heavy fuel oil and neutral oil extracts); Untersuchungen zur Wassergefaehrdung durch Mineraloele mit hohen Gehalten an polycyclischen aromatischen Kohlenwasserstoffen (Heizoel Schwer und Extrakte)

    Energy Technology Data Exchange (ETDEWEB)

    Albers, G. [Mobil Schmierstoff GmbH, Hamburg (Germany)

    1999-01-01

    A data base on highly aromatic mineral oils has been compiled to classify mineral oil products according to their water-pollution potential (water hazard class or Wassergefaehrdungsklasse, WGK). This activity has been undertaken through the Commission for Water Hazardous Materials (Kommission Bewertung Wassergefaehrdender Stoffe, KBwS). In this special case, highly aromatic mineral oils containing a high concentration of polycyclic aromatic hydrocarbons (Polyaromatische Kohlenwasserstoffe, PAK) were evaluated. A test method for measuring the elution potential of PAK into water was developed on petroleum products with high viscosity and high freeze point. This method was applied to determine the solubility of 23 PAK (including 16 PAK according to EPA 610 and 6 PAK according to the German drinking water regulation (Trinkwasserverordnung, TVO)) from heavy fuel oil and neutral oil extract in the aqueous phase. For the 6 PAK, according to TVO, a sum limit of 0,2 {mu}g/l in drinking water is permitted by German legislation. This limit was not exceeded in any of the water phases examined. (orig.) [Deutsch] Fuer die Einstufung von Mineraloelprodukten in die Wassergefaehrdungsklassen (WGK) durch die Kommission Bewertung Wassergefaehrdender Stoffe ist es notwendig, Basisdaten zur Verfuegung zu stellen. Im speziellen Fall handelt es sich um die Bewertung von Mineraloelen, die sich durch einen hohen Gehalt an polycyclischen aromatischen Kohlenwasserstoffen (PAK) auszeichnen. Zur Eluierbarkeit von PAK`s aus Produkten mit hoher Viskosiaet bzw. mit hohem Stockpunkt wurde eine Pruefmethode entwickelt. Diese Methode wurde zur Bestimmung der Loeslichkeit von 23 PAK`s (16 PAK`s nach EPA-Liste incl. 6 PAK`s der TVO) aus den Mineraloelen Heizoel Schwer und Neutralextrakt in der Wasserphase eingesetzt. Fuer die PAK der TVO ist in der TVO ein Summengrenzwert von 0,2 {mu}g/l Trinkwasser angegeben. Dieser Grenzwert wurde in keiner der untersuchten Wasserphasen ueberschritten. (orig.)

  6. Are high oil prices a threat for the price stability?

    International Nuclear Information System (INIS)

    Mollerus, A.

    2000-01-01

    The high price for oil and the decreased value of the Euro increase the risks for the stability of prices. Still, the prospects for inflation are favorable for the Euro zone. Less favorable are the consequences for the Netherlands, while the inflation difference with the Euro zone appears to become bigger, in particular as a result of the new Tax regulations in the Netherlands

  7. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mirnezami

    2015-07-01

    Full Text Available The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhouse gas emissions—for example, the Kyoto 1998 agreement—seems to have had no effect on oil consumption in oil-producing countries.

  8. Genotype and year variability of the chemical composition of walnut oil of Moroccan seedlings from the high Atlas Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Kodad, O.; EstopaNan, G.; Juan, T.; Socias i Company, R.; Sindic, M.

    2016-07-01

    Protein and oil content, fatty acid composition and tocopherol concentration were determined for two years in the kernel of ten candidate walnut selections from the high Atlas Mountains in Morocco. Considerable variation between genotypes was found for all parameters. The ranges of protein content (11.58–14.5% of kernel dry weight, DW), oil content (54.4–67.48% of kernel DW), oleic (12.47–22.01% of total oil), linoleic (55.03–60.01%), linolenic (9.3–15.87%), palmitic (6.84–9.12%), and stearic (1.7–2.92%) acid percentages, ?-tocopherol (188.1–230.7 mg·kg-1 of oil), d-tocopherol (23.3–43.4 mg·kg-1), and a-tocopherol (8.9–16.57 mg·kg-1) contents agreed with previous results obtained from other commercial walnut cultivars. The effect of year was significant for all the chemical components, except for oil content and palmitic acid percentage. Some genotypes showed high oil contents and consistently high values of ?-tocopherol in both years of study. The introduction of these genotypes as new cultivars by vegetative propagation may result in a an increase in quality of the walnuts from the high Atlas Mountains of Morocco, and as a seed source for forest walnut propagation in the same region. (Author)

  9. [Determination of gossypol in edible vegetable oil with high performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Wenhua; Huang, Chaoqun; Xie, Wen; Shen, Li

    2014-06-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of gossypol in edible vegetable oil. The sample was extracted with ethyl alcohol by vortex-excited oscillation. The extract was cleaned up by 0.22 microm filter membrane and centrifuged for 5 min at 4 000 r/min after standing in a fridge at 4 degrees C for 30 min. The compound was separated on a C18 column (100 mm x 2.1 mm, 3.5 microm) with acetonitrile and 1% (v/v) formic acid aqueous solution as mobile phase. The detection of gossypol was carried out by LC-MS/MS with positive electrospray ionization under multiple reaction monitoring (MRM) mode using external standard method. The limits of quantification (S/N > 10) of gossypol in edible vegetable oil was 1 mg/kg. The recoveries were from 87.4% to 100% at the spiked levels of 1, 2, 200 mg/kg of gossypol in edible vegetable oil with the relative standard deviations (RSDs) between 3.9% and 12.2%. The method, with high sensitivity, good precision and high recovery, was suitable for the confirmation and quantification of gossypol residue in edible vegetable oil.

  10. Theoretical and experimental fundamentals of designing promising technological equipment to improve efficiency and environmental safety of highly viscous oil recovery from deep oil reservoirs

    Science.gov (United States)

    Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.

    2016-12-01

    The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.

  11. Biodegradation Capability of Some Bacteria Isolates to Use Lubricant Oil in Vitro

    Science.gov (United States)

    Ahda, Y.; Azhar, M.; Fitri, L.; Afnida, A.; Adha, G. S.; Alifa, W. N.; Handayani, D.; Putri, D. H.; Irdawati, I.; Chatri, M.

    2018-04-01

    Our previous study identified three species of bacteria, i.e. Alcaligenes sp., Bacillus spl, and Bacillus sp2 isolated from using lubricant oil-contaminated soil in a Padang’s workshop. However, its ability to degrade hydrocarbon were not known yet. In this extension study, we explore a wider area to find more hydrocarbonoclastic bacteria and examined its capability to degrade hydrocarbon in vitro. Seventeen isolates were characterized its capability using NA + used lubricant oil + tween + neutral red medium. Isolates A1, B2, D1 and D4 shows the high degradation index, whereas isolates A2, A3, A5, D2, B1, B3 and isolates A4, B4, D3 have medium and low degradation index, respectively. These potential hydrocarbonoclastic bacteria need in situ characterization to know their actual activities for bioremediation.

  12. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers

    International Nuclear Information System (INIS)

    Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    We report on the influence of core NA on thermal-induced mode instabilities (MI) in high power fiber amplifiers. The influence of core NA and the V-parameter on MI has been investigated numerically. It shows that core NA has a larger influence on MI for fibers with a smaller core-cladding-ratio, and the influence of core NA on the threshold is more obvious when the amplifiers are pumped at 915 nm. The dependence of the threshold on the V-parameter revealed that the threshold increases linearly as the V-parameter decreases when the V-parameter is larger than 3.5, and the threshold shows an exponential increase as the V-parameter decreases when the V-parameter is less than 3.5. We also discussed the effect of linewidth on MI, which indicates that the influence of linewidth can be neglected for a linewidth smaller than 1 nm when the fiber core NA is smaller than 0.07 and the fiber length is shorter than 20 m. Fiber amplifiers with different core NA were experimentally analyzed, which agreed with the theoretical predictions. (letter)

  13. Fish Oil and Microalga Omega-3 as Dietary Supplements: A Comparative Study on Cardiovascular Risk Factors in High-Fat Fed Rats.

    Science.gov (United States)

    Haimeur, Adil; Mimouni, Virginie; Ulmann, Lionel; Martineau, Anne-Sophie; Messaouri, Hafida; Pineau-Vincent, Fabienne; Tremblin, Gérard; Meskini, Nadia

    2016-09-01

    Dietary supplementation with marine omega-3 polyunsaturated fatty acids (n-3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n-3 PUFA rich food supplements (freeze-dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high-fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high-fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high-fat diet supplemented with 12 % of freeze-dried O. aurita. After 8 weeks rats fed with the high-fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high-fat diet-induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze-dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n-3 PUFA but also other bioactive compounds of the microalgae.

  14. Biodiesel from the seed oil of Treculia africana with high free fatty acid content

    Energy Technology Data Exchange (ETDEWEB)

    Adewuyi, Adewale [Redeemer' s University, Department of Chemical Sciences, Faculty of Natural Sciences, Redemption City, Ogun State (Nigeria); Oderinde, Rotimi A.; Ojo, David F.K. [University of Ibadan, Industrial Unit, Department of Chemistry, Ibadan, Oyo State (Nigeria)

    2012-12-15

    Oil was extracted from the seed of Treculia africana using hexane. The oil was characterized and used in the production of biodiesel. Biodiesel was produced from the seed oil of T. africana using a two-step reaction system. The first step was a pretreatment which involved the use of 2 % sulfuric acid in methanol, and secondly, transesterification reaction using KOH as catalyst. Saponification value of the oil was 201.70 {+-} 0.20 mg KOH/g, free fatty acid was 8.20 {+-} 0.50 %, while iodine value was 118.20 {+-} 0.50 g iodine/100 g. The most dominant fatty acid was C18:2 (44 %). The result of the method applied showed a conversion which has ester content above 98 %, flash point of 131 {+-} 1.30 C, and phosphorus content below 1 ppm in the biodiesel. The biodiesel produced exhibited properties that were in agreement with the European standard (EN 14214). This study showed that the high free fatty acid content of T. africana seed oil can be reduced in a one-step pretreatment of esterification reaction using H{sub 2}SO{sub 4} as catalyst. (orig.)

  15. Economic effects of peak oil

    International Nuclear Information System (INIS)

    Lutz, Christian; Lehr, Ulrike; Wiebe, Kirsten S.

    2012-01-01

    Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market. - Highlights: ► National and sectoral economic effects of peak oil until 2020 are modelled. ► The price elasticity of oil demand is low resulting in high price fluctuations. ► Oil shortage strongly affects transport and indirectly all other sectors. ► Global macroeconomic effects are comparable to the 2008/2009 crisis. ► Country effects depend on oil imports and productivity, and economic structures.

  16. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    OpenAIRE

    Seyed Reza Mirnezami

    2015-01-01

    The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhou...

  17. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    Science.gov (United States)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  18. Chemical and microbiological characterization of mangrove sediments after a large oil-spill in Guanabara Bay - RJ - Brazil Caracterização química e microbiológica de sedimentos de manguezal após um grande derramamento de óleo na Baia de Guanabara, RJ, Brasil

    OpenAIRE

    Maria do Carmo Maciel-Souza; Andrew Macrae; Antonia Garcia Torres Volpon; Patrícia Silva Ferreira; Leda Cristina Mendonça-Hagler

    2006-01-01

    Seventeen months after a 1,3 million L oil spill into Guanabara Bay, analyses of mangrove sediments showed that the three sites closest to the spill remain highly polluted (>10 µg-g-1 polyaromatic hydrocarbons). A fourth site was less polluted, from which most hydrocarbon degrading bacteria were isolated.Dezessete meses após um derramamento de 1,3 milhões de litros de óleo na Baía de Guanabara, análises de sedimento do manguezal mostraram que os três pontos de amostragem mais próximos d...

  19. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    OpenAIRE

    Bender,J. P.; Junges,A.; Franceschi,E.; Corazza,F. C.; Dariva,C.; Oliveira,J. Vladimir; Corazza,M. L.

    2008-01-01

    This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE), liquid-liquid (L...

  20. Geographical traceability of virgin olive oils from south-western Spain by their multi-elemental composition.

    Science.gov (United States)

    Beltrán, María; Sánchez-Astudillo, María; Aparicio, Ramón; García-González, Diego L

    2015-02-15

    The geographical traceability of virgin olive oil can be controlled by chemical species that are linked to the production area. Trace elements are among these species. The hypothesis is that the transfer of elements from the soil to the oil is subjected to minor variations and therefore this chemical information can be used for geographical traceability. In order to confirm this hypothesis, the trace elements of virgin olive oils from south-western Spain were analysed, and the same elements were determined in the corresponding olive-pomaces and soils. The differences in the concentration were studied according to cultivars and locations. Results show some coincidences in the selection of elements in soils (W, Fe, Na), olive-pomace (W, Fe, Na, Mg, Mn, Ca, Ba, Li) and olive oils (W, Fe, Mg, Mn, Ca, Ba, Li, Bi), which supports their utility in traceability. In the case of olive oils, 93% of the samples were correctly classified in their geographical origins (96% for Beas, 77% for Gibraleón, 91% for Niebla, and 100% for Sanlúcar de Guadiana). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Preparation of microcapsules containing different contents of different kinds of oils by a segregative coacervation method and their characterization

    Directory of Open Access Journals (Sweden)

    LIDIJA B. PETROVIĆ

    2010-05-01

    Full Text Available Microencapsulation of different oils was performed using a segregative coacervation method. In order to microencapsulate, 20 % oil-in-water (O/W emulsions were prepared in a continuous phase consisting of a 1 % mixture of hydroxypropylmethylcellulose (HPMC/sodium carboxymethylcellulose (NaCMC mass ratio (0.7/0.3 and various concentrations (0, 0.35 and 1 % of the anionic surfactant sodium dodecylsulfate (SDS. Various interactions between the components occur in the continuous phase of emulsions, which influence the structure and properties of the adsorption layer around the oil droplets. The formed HPMC/SDS complexes in the presence of NaCMC molecules undergo segregative phase separation and form a coacervate which adsorbs onto the oil droplets, forming the wall of the microcapsules. Sunflower oil, pumpkin seed oil and a mixture of sunflower and linseed oil were used as the core material. Microcapsules in the solid form were obtained by spray drying the emulsions. The stability of the emulsions, the particle size and particle size distribution of the emulsions and suspensions of microcapsules and the oil content of the microcapsules were determined. The influence of the oil kind on the properties of the microcapsules was also investigated. It was found that at 0.35 % SDS, a coacervate layer around the oil droplets forms a stabile, compact microcapsules wall, which prevents oil extraction. The kind of oil influences the properties of the emulsions and microcapsules, which is important in the selection of oils for microencapsulation by this method.

  2. Strength and Biot's coefficient for high-porosity oil- or water-saturated chalk

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling

    . The Biot coefficient states the degree of cementation or how the pore pressure contributes to the strain resulting from an external load for a porous material. It is here calculated from dynamic measurements and correlated with the strength of outcrop chalk characterized by the onset of pore collapse...... during hydrostatic loading. The hypothesis is that the Biot coefficient and the theory of poroelasticity may cover the fluid effect by including the increased fluid bulk modulus from oil to water. A high number of test results for both oil- and water-saturated high-porosity outcrop chalk show correlation......In the petroleum industry it is relevant to know the Biot coefficient for establishing the effective stresses present in both the overburden and for the reservoir interval. When depleting a reservoir it is important to estimate the settlement through the strain imposed by the effective stress. Also...

  3. High-pressure vapor-liquid equilibrium data for CO2-orange peel oil

    Directory of Open Access Journals (Sweden)

    G.R. Stuart

    2000-06-01

    Full Text Available Recently, there has been a growing interest in fractionating orange peel oil by the use of supercritical carbon dioxide (SCCO2. However, progress in this area has been hindered by the lack of more comprehensive work concerning the phase equilibrium behavior of the SCCO2-orange peel oil system. In this context, the aim of this work is to provide new phase equilibrium data for this system over a wide range of temperatures and pressures, permitting the construction of coexistence PT-xy curves as well as the P-T diagram. The experiments were performed in a high-pressure variable-volume view cell in the temperature range of 50-70ºC from 70 to 135 atm and in the CO2 mass fraction composition range of 0.35-0.98. Based on the experimental phase equilibrium results, appropriate operating conditions can be set for high-pressure fractionation purposes.

  4. Na+-Dependent High-Affinity Nitrate, Phosphate and Amino Acids Transport in Leaf Cells of the Seagrass Posidonia oceanica (L. Delile

    Directory of Open Access Journals (Sweden)

    Lourdes Rubio

    2018-05-01

    Full Text Available Posidonia oceanica (L. Delile is a seagrass, the only group of vascular plants to colonize the marine environment. Seawater is an extreme yet stable environment characterized by high salinity, alkaline pH and low availability of essential nutrients, such as nitrate and phosphate. Classical depletion experiments, membrane potential and cytosolic sodium measurements were used to characterize the high-affinity NO3−, Pi and amino acids uptake mechanisms in this species. Net uptake rates of both NO3− and Pi were reduced by more than 70% in the absence of Na+. Micromolar concentrations of NO3− depolarized mesophyll leaf cells plasma membrane. Depolarizations showed saturation kinetics (Km = 8.7 ± 1 μM NO3−, which were not observed in the absence of Na+. NO3− induced depolarizations at increasing Na+ also showed saturation kinetics (Km = 7.2 ± 2 mM Na+. Cytosolic Na+ measured in P. oceanica leaf cells (17 ± 2 mM Na+ increased by 0.4 ± 0.2 mM Na+ upon the addition of 100 μM NO3−. Na+-dependence was also observed for high-affinity l-ala and l-cys uptake and high-affinity Pi transport. All together, these results strongly suggest that NO3−, amino acids and Pi uptake in P. oceanica leaf cells are mediated by high-affinity Na+-dependent transport systems. This mechanism seems to be a key step in the process of adaptation of seagrasses to the marine environment.

  5. Evaluation of nano emulsion containing asphaltenes dispersant additive in dehydration of oil; Avaliacao de nanoemulsoes contendo aditivo dispersante de asfaltenos na desidratacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Priscila F. de; Rodrigues, Jessica S.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro/ Instituto de Macromoleculas/ Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: prisfrias@hotmail.com

    2011-07-01

    Due to the problem of the formation of emulsions type water-oil during oil production, new alternatives of the breakdown of these emulsions have been proposed over the years. Several polymers have been used to destabilize these emulsions and among them are those based on polyphenylene ether. The aim of this study was to develop nanoemulsions type oil / water, where an asphaltenes dispersant additive was dissolved in dispersed phase in order to evaluate them as a new alternative in the breakdown of oil emulsions. The nanoemulsions were prepared in the presence of surfactant based on polyoxide using a high pressure homogenizer (HPH). We obtained stable nanoemulsions for more than 30 days in the presence or absence of additive. These nanoemulsions were effective in water /oil phase separation, and the nanoemulsion containing the dispersant additive provided a faster separation of these phases. (author)

  6. Determination of nutrients and potentially toxic elements in Jatropha curcas seeds, oil and biodiesel using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Maciel, P.B.; Barros de, L.L.S.; Duarte, E.C.M.; Harder, M.N.C.; Abreu, Jr.C.H.; Villanueva, F.C.A.

    2013-01-01

    Biodiesel is a renewable and biodegradable fuel that can be used in diesel engines as a replacement for fossil diesel. A suitable alternative is to produce it from Jatropha curcas, which has high quality oil concentration. Nevertheless, the presence of particular chemical elements above certain limits can affect the product quality, leading to vehicle engine problems and acting as air pollution source. The objective of this work is to develop a method for the simultaneous determination of B, Na, Mg, P, S, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ba, and Pb in J. curcas seeds, oil and biodiesel using the inductively coupled plasma mass spectrometry (ICP-MS) technique. This material was evaluated because has been successfully employed in India for biodiesel production as well as in other places where there is an incentive to family farming, without affect the food chain. The oil was obtained from seeds via mechanical extraction and the biodiesel was achieved by oil transesterification. After optimization of the microwave digestion method for the different sample types, the samples were analyzed by ICP-MS. The certified reference material NIST SRM 1515 (apple leaves) and the recovery tests were carried out to ensure the accuracy of the proposed method, which made possible the quantification of several nutrients and potentially toxic elements in J. curcas seeds, oil and biodiesel, especially Na, K, Ca, Mg, P and S in biodiesel which are mandatory analyzed by Petroleum, Natural Gas and Biofuel National Agency (ANP). This work highlights the findings of the first study of potentially toxic and nutrient elements in the production chain steps seed-oil-biodiesel from J. curcas. (author)

  7. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family.

    Science.gov (United States)

    Ngahang Kamte, Stephane L; Ranjbarian, Farahnaz; Cianfaglione, Kevin; Sut, Stefania; Dall'Acqua, Stefano; Bruno, Maurizio; Afshar, Fariba Heshmati; Iannarelli, Romilde; Benelli, Giovanni; Cappellacci, Loredana; Hofer, Anders; Maggi, Filippo; Petrelli, Riccardo

    2018-07-30

    The Apiaceae family encompasses aromatic plants of economic importance employed in foodstuffs, beverages, perfumery, pharmaceuticals and cosmetics. Apiaceae are rich sources of essential oils because of the wealth of secretory structures (ducts and vittae) they are endowed with. The Apiaceae essential oils are available on an industrial level because of the wide cultivation and disposability of the bulky material from which they are extracted as well as their relatively cheap price. In the fight against protozoal infections, essential oils may represent new therapeutic options. In the present work, we focused on a panel of nine Apiaceae species (Siler montanum, Sison amomum, Echinophora spinosa, Kundmannia sicula, Crithmum maritimum, Helosciadium nodiflorum, Pimpinella anisum, Heracleum sphondylium and Trachyspermum ammi) and their essential oils as a model for the identification of trypanocidal compounds to be used as alternative/integrative therapies in the treatment of Human African trypanosomiasis (HAT) and as starting material for drug design. The evaluation of inhibitory effects of the Apiaceae essential oils against Trypanosoma brucei showed that some of them (E. spinosa, S. amomum, C. maritimum and H. nodiflorum) were active, with EC 50 in the range 2.7-10.7 μg/mL. Most of these oils were selective against T. brucei, except the one from C. maritimum that was highly selective against the BALB/3T3 mammalian cells. Testing nine characteristic individual components (α-pinene, sabinene, α-phellandrene, p-cymene, limonene, β-ocimene, γ-terpinene, terpinolene, and myristicin) of these oils, we showed that some of them had much higher selectivity than the oils themselves. Terpinolene was particularly active with an EC 50 value of 0.035 μg/mL (0.26 µM) and a selectivity index (SI) of 180. Four other compounds with EC 50 in the range 1.0-6.0 μg/mL (7.4-44 µM) had also good SI: α-pinene (>100), β-ocimene (>91), limonene (>18) and sabinene (>17

  8. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake.

    Science.gov (United States)

    Leaf, Alexander; Albert, Christine M; Josephson, Mark; Steinhaus, David; Kluger, Jeffrey; Kang, Jing X; Cox, Benjamin; Zhang, Hui; Schoenfeld, David

    2005-11-01

    The long-chain n-3 fatty acids in fish have been demonstrated to have antiarrhythmic properties in experimental models and to prevent sudden cardiac death in a randomized trial of post-myocardial infarction patients. Therefore, we hypothesized that these n-3 fatty acids might prevent potentially fatal ventricular arrhythmias in high-risk patients. Four hundred two patients with implanted cardioverter/defibrillators (ICDs) were randomly assigned to double-blind treatment with either a fish oil or an olive oil daily supplement for 12 months. The primary end point, time to first ICD event for ventricular tachycardia or fibrillation (VT or VF) confirmed by stored electrograms or death from any cause, was analyzed by intention to treat. Secondary analyses were performed for "probable" ventricular arrhythmias, "on-treatment" analyses for all subjects who had taken any of their oil supplements, and "on-treatment" analyses only of those subjects who were on treatment for at least 11 months. Compliance with double-blind treatment was similar in the 2 groups; however, the noncompliance rate was high (35% of all enrollees). In the primary analysis, assignment to treatment with the fish oil supplement showed a trend toward a prolonged time to the first ICD event (VT or VF) or of death from any cause (risk reduction of 28%; P=0.057). When therapies for probable episodes of VT or VF were included, the risk reduction became significant at 31%; P=0.033. For those who stayed on protocol for at least 11 months, the antiarrhythmic benefit of fish oil was improved for those with confirmed events (risk reduction of 38%; P=0.034). Although significance was not achieved for the primary end point, this study provides evidence that for individuals at high risk of fatal ventricular arrhythmias, regular daily ingestion of fish oil fatty acids may significantly reduce potentially fatal ventricular arrhythmias.

  9. Selective induction of high-ouabain-affinity isoform of Na sup + -K sup + -ATPase by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Haber, R.S.; Loeb, J.N. (Columbia Univ., New York, NY (USA))

    1988-12-01

    The administration of thyroid hormone is known to result in an induction of the Na{sup +}-K{sup +}-adenosinetriphosphatase (Na{sup +}-K{sup +}-ATPase) in rat skeletal muscle and other thyroid hormone-responsive tissues. Since the Na{sup +}-K{sup +}-ATPase in a variety of mammalian tissues has recently been reported to exist in at least two forms distinguishable by differing affinities for the inhibitory cardiac glycoside ouabain. The authors have studied the effects of 3,3{prime},5-triiodo-L-thyronine (T{sub 3}) treatment on these two forms of the enzyme in rat diaphragm. The inhibition of Na{sup +}-K{sup +}-ATPase activity in a crude membrane fraction by varying concentrations of ouabain conformed to a biphasic pattern consistent with the presence of two distinct isoforms with inhibition constants (K{sub I}s) for ouabain of {approximately}10{sup {minus}7} and 10{sup {minus}4} M, respectively. Measurement of the specific binding of ({sup 3}H)ouabain to these membranes confirmed the presence of a class of high-affinity ouabain binding sites with a dissociation constant (K{sub d}) of slightly less than 10{sup {minus}7}M, whose maximal binding capacity was increased by T{sub 3} treatment by 185%. Binding studies in unfractionated homogenates of diaphragm similarly demonstrated the presence of high-affinity sites whose maximal binding capacity was increased by T{sub 3} treatment. Quantitation of both the high- and low-ouabain-affinity forms of the Na{sup +}-K{sup +}-ATPase by ouabain-dependent phosphorylation from ({sup 32}P)orthophosphate confirmed that T{sub 3} treatment markedly increased the number of high-affinity sites while having little effect on the number of low-affinity sites. These observations provide, to our knowledge, the first demonstration that these two forms of the Na{sup +}-K{sup +}-ATPase are subject to selective hormonal induction.

  10. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine.

    Science.gov (United States)

    Bradshaw, Heather B; Leishman, Emma

    2016-05-01

    Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil.

  11. Plasma lipids and prothrombin time in rats fed palm oil and other commonly used fats in Egypt

    Directory of Open Access Journals (Sweden)

    Hussein, Mona M.

    1993-02-01

    Full Text Available Sprague-Dawley rats were fed for a total period of 8 weeks on six diets that were different in the source of their fat content. The fat content was provided either, palm oil or palm olein or corn oil or hydrogenated fat, or frying palm oil and mixture of corn oil + hydrogenated fat in the ratio (1:1. The latter was given to the control group. Animals fed these various experimental diets showed statistically significant differences in serum cholesterol and serum triglycerides content among all group. Increased HDL-cholesterol content was evident in animals fed on palm-olein and palm oil. The frying oil fed group showed lowest HDL-cholesterol content. In these experiments palm olein fed animals showed highest ratio of HDL-cholesterol to total cholesterol while the lowest ratio was shown in rats fed on frying oil. Prothrombin (PT and activated partial thromboplastin time (PTT showed higher values In palm oil, palm olein and corn oil diets as compared to all groups with each other.

    Ratas Sprague-Dawley fueron alimentadas durante un periodo total de 8 semanas con seis dietas diferentes en su contenido graso. El contenido graso fue proporcionado por aceite de palma u oleína de palma o aceite de maíz o grasa hidrogenada o aceite de palma de fritura y mezcla de aceite de maíz + grasa hidrogenada en la relación (1:1. El último fue dado al grupo de control. Los animales alimentados con las diferentes dietas experimentales mostraron diferencias significativas estadísticamente en el contenido en colesterol y triglicéridos en suero entre todos los grupos. El aumento en contenido HDL-colesterol fue evidente en animales alimentados con oleína de palma y aceite de palma. El grupo alimentado con aceite de fritura mostró el más bajo contenido en HDL-colesterol. En estos experimentos, los animales alimentados con oleína de palma mostraron la mayor relación de HDL-colesterol a colesterol total, mientras que la relación más baja fue mostrada

  12. Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications

    International Nuclear Information System (INIS)

    Colangelo, Gianpiero; Favale, Ernani; Risi, Arturo de; Laforgia, Domenico

    2012-01-01

    Highlights: ► This work reports experimental results for nanofluids using diathermic oil as base fluid. ► Nanofluids with CuO, Al 2 O 3 , ZnO and Cu, with different shapes and concentrations have been tested. ► Thermal conductivity enhancement of nanofluids with diathermic oil is higher than those with demineralized water. ► Better results were obtained with ZnO, for nanofluids with metal oxide nanoparticles. -- Abstract: The work reported in this paper shows the experimental results from a study on diathermic oil based nanofluids. Diathermic oil finds application in renewable energy, cogeneration and cooling systems. For example, it is used in solar thermodynamic or biomass plants, where high efficiency, compact volumes and high energy fluxes are required. Besides diathermic oil is very important in those applications where high temperatures are reached or where the use of water or vapor is not suitable. Therefore an improvement of diathermic oil thermo-physical properties, by using of nanoparticles, can increase the performance of the systems. In literature there are not many experimental data on diathermic oil based nanofluids because many experimental campaigns are focused on water nanofluids. Samples of nanofluids, with nanoparticles of CuO, Al 2 O 3 , ZnO and Cu, having different shapes and concentrations varying from 0.0% up to 3.0%, have been produced and their thermal conductivity has been measured by means of hot-wire technique, according to the standard ASTM D 2717-95. Measurements were carried out to investigate the effects of volume fraction, particle size of nanoparticles on the thermal conductivity of the nanofluid. The effect of temperature has been also investigated in the range 20–60 °C. A dependence was observed on the measured parameters and the results showed that the heat transfer performance of diathermic oil enhances more than water with the same nanoparticles.

  13. Comparison of lubricant properties of castor oil and commercial engine oil

    Directory of Open Access Journals (Sweden)

    Binfa Bongfa

    2015-06-01

    Full Text Available The tribological performance of crude Nigeria-based castor oil has been investigated and compared with that of a foreign, 20W-50 high quality crankcase oil, to see its suitability as base oil for lubricating oils in indigenous vehicle and power plants engines. The experiment was conducted using a four ball tester. The results showed that unrefined castor oil has superior friction reduction and load bearing capability in an unformulated form than the commercial oil; can compete favourably with the commercial oil in wear protection when formulated with suitable antiwear agent, hence can be a good alternative base stock for crankcase oils suitable for Nigeria serviced vehicles, and plants engines from tribological, environmental, and non-food competitive points of view.

  14. Thermal diffusivity estimation of the olive oil during its high-pressure treatment

    Czech Academy of Sciences Publication Activity Database

    Kubásek, M.; Houška, M.; Landfeld, A.; Strohalm, J.; Kamarád, Jiří; Žitný, R.

    2006-01-01

    Roč. 74, - (2006), s. 286-291 ISSN 0260-8774 R&D Projects: GA MZe QF3287 Institutional research plan: CEZ:AV0Z10100521 Keywords : olive oil * food processing * high pressure * thermal diffusivity Subject RIV: GM - Food Processing Impact factor: 1.696, year: 2006

  15. Calendula oil processing : seed classification, oil extraction, refining process development and oil quality aspects

    NARCIS (Netherlands)

    Janssens, R.J.J.

    2000-01-01

    The difference in Calendula oil quality from fractions obtained after seed classification is enormous. The oil quality varies from excellent to very poor, according to important aspects such as in the hulls and dust fraction, high free fatty acid values (13% vs. 0.6%) are found. This can be

  16. Oil spill model coupled to an ultra-high-resolution circulation model: implementation for the Adriatic Sea

    Science.gov (United States)

    Korotenko, K.

    2003-04-01

    An ultra-high-resolution version of DieCAST was adjusted for the Adriatic Sea and coupled with an oil spill model. Hydrodynamic module was developed on base of th low dissipative, four-order-accuracy version DieCAST with the resolution of ~2km. The oil spill model was developed on base of particle tracking technique The effect of evaporation is modeled with an original method developed on the base of the pseudo-component approach. A special dialog interface of this hybrid system allowing direct coupling to meteorlogical data collection systems or/and meteorological models. Experiments with hypothetic oil spill are analyzed for the Northern Adriatic Sea. Results (animations) of mesoscale circulation and oil slick modeling are presented at wabsite http://thayer.dartmouth.edu/~cushman/adriatic/movies/

  17. Asian oil demand

    International Nuclear Information System (INIS)

    Fesharaki, F.

    2005-01-01

    This conference presentation examined global oil market development and the role of Asian demand. It discussed plateau change versus cyclical movement in the global oil market; supply and demand issues of OPEC and non-OPEC oil; if high oil prices reduce demand; and the Asian oil picture in the global context. Asian oil demand has accounted for about 50 per cent of the global incremental oil market growth. The presentation provided data charts in graphical format on global and Asia-Pacific incremental oil demand from 1990-2005; Asia oil demand growth for selected nations; real GDP growth in selected Asian countries; and, Asia-Pacific oil production and net import requirements. It also included charts in petroleum product demand for Asia-Pacific, China, India, Japan, and South Korea. Other data charts included key indicators for China's petroleum sector; China crude production and net oil import requirements; China's imports and the share of the Middle East; China's oil exports and imports; China's crude imports by source for 2004; China's imports of main oil products for 2004; India's refining capacity; India's product balance for net-imports and net-exports; and India's trade pattern of oil products. tabs., figs

  18. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    Science.gov (United States)

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Some considerations on silicone oil in high-current and energy-disconnecting mechanisms

    International Nuclear Information System (INIS)

    Vogel, H.F.

    1984-03-01

    Silicone oil is considered inflammable. The dissociation products generated by an electric arc under silicone oil are known to form a highly explosive mixture with air. We calculate the arc energy required for dissociation to be 32 kJ per liter of gas mixture at standard pressure and temperature. We calculate the arc voltage gradient at a pressure of 50 atm and current density of 1 kA/mm 2 to be 0.5 kV/cm, resulting in an arc voltage of several kV, depending on the arc length. In a multikiloampere arc, the resulting arc power is likely to cause a pressure of many atmospheres in a shock wave

  20. High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics.

    Science.gov (United States)

    Barre, Douglas E; Mizier-Barre, Kazimiera A; Griscti, Odette; Hafez, Kevin

    2008-01-01

    Type 2 diabetes is characterized partially by elevated fasting blood serum glucose and insulin concentrations and the percentage of hemoglobin as HbA1c. It was hypothesized that each of blood glucose and its co-factors insulin and HbA1c and would show a more favorable profile as the result of flaxseed oil supplementation. Patients were recruited at random from a population pool responding to a recruitment advertisement in the local newspaper and 2 area physicians. Completing the trial were 10 flaxseed oil males, 8 flaxseed oil females, 8 safflower (placebo) oil males and 6 safflower oil females. Patients visited on two pre-treatment occasions each three months apart (visits 1 and 2). At visit 2 subjects were randomly assigned in double blind fashion and in equal gender numbers to take flaxseed oil or safflower oil for three further months until visit 3. Oil consumption in both groups was approximately 10 g/d. ALA intake in the intervention group was approximately 5.5 g/d. Power was 0.80 to see a difference of 1 mmol of glucose /L using 12 subjects per group with a p < 0.05. Flaxseed oil had no impact on fasting blood serum glucose, insulin or HbA1c levels. It is concluded that high doses of flaxseed oil have no effect on glycemic control in type 2 diabetics.

  1. Influence of oil and mineral characteristics on oil-mineral interaction

    International Nuclear Information System (INIS)

    Wood, P.A.; Lunel, T.; Daniel, F.; Swannell, R.; Lee, K.; Stoffyn-Egli, P.

    1998-01-01

    A laboratory study was conducted to simulate the process of oil-mineral interaction in seawater. Thirteen different crudes, emulsions and oil products were used in the study. The objective was to improve the fundamental understanding of the characteristics of oils and minerals that influence the process. The findings of an initial phase of studies based on the swirling flask and marine simulation procedures were also described. Oil content associated with flocs to oil and mineral characteristics were discussed. Emulsions were prepared at 10 degrees C by vigorously mixing the oil with excess artificial seawater in a Kilner jar using a high shear homogenizer. Topped oils were prepared by distillation to 250 degrees C. The biodegraded oil was prepared from the topped crude oil. Biodegradation was achieved over a 28 day period using natural seawater and naturally occurring hydrocarbon degraders. The relationships between oil concentration, oil density and mineral exchange capacity were determined. The study showed that greater oil concentrations in the water column could be expected with (1) the presence of mineral fines, (2) minerals with greater cation exchange rates, (3) minerals with finer sizes, and (4) oils of lower viscosity and density. It was determined that in coastal waters the viscosity of the oil/emulsion will likely be the main factor affecting oil-mineral interactions. The viscosity limit for allowing oil fines interaction is likely to be dependent on the energy in the coastal zone affected by the oil pollution. 18 refs., 5 tabs., 13 figs

  2. Enthalpy increment measurements of NaCrO2 using a high temperature Calvet calorimeter

    International Nuclear Information System (INIS)

    Iyer, V.S.; Jayanthi, K.; Ramarao, G.A.; Venugopal, V.; Sood, D.D.

    1991-01-01

    Enthalpy increment measurements on NaCrO 2 (s) were carried out in the temperature range 323 to 839 K using a high temperature Calvet micro calorimeter. The enthalpy increment values were least-squares fitted with temperature with the constraint that (Hdeg T - Hdeg 298 ) at 298.18 K equals zero, and can be given by: (Hdeg T - Hdeg 298 ) J/mol) ± 336 = -23515 + 75.364T(K) + 0.01256T 2 (K) (323 to 839 K). The first differential of the above equation with temperature gives the constant pressure molar heat capacity of NaCrO 2 (s), which is given by: Cdeg p (NaCrO 2 , s, T) (J/K mol) = 75.364 + 0.02512T(K). The thermal properties of NaCrO 2 (s) were calculated using the molar heat capacities from the present study and Sdeg(298 K) from the literature. (orig.)

  3. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).

    Science.gov (United States)

    Adil, Muhammad; Lee, Keanchuan; Mohd Zaid, Hasnah; Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for

  4. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR)

    Science.gov (United States)

    Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265–300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5–10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9–10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid

  5. Essential oil composition, phytotoxic and antifungal activities of Ruta chalepensis L. leaves from High Atlas Mountains (Morocco).

    Science.gov (United States)

    Bouajaj, Sana; Romane, Abderrahmane; Benyamna, Abdennaji; Amri, Ismail; Hanana, Mohsen; Hamrouni, Lamia; Romdhane, Mehrez

    2014-01-01

    This study aimed at the determination of chemical composition of essential oil obtained by hydrodistillation, and to evaluate their phytotoxic and antifungal activities. Leaves of Ruta chalepensis L. were collected from the region of Tensift Al Haouz (High Atlas Mountains) Marrakech, Morocco. The essential oil (oil yield is 0.56%) was analysed by GC-FID and GC/MS. Twenty-two compounds were identified and accounted for 92.4% of the total oil composition. The major components were undecan-2-one (49.08%), nonan-2-one (33.15%), limonene (4.19%) and decanone (2.71%). Antifungal ability of essential oils was tested by disc agar diffusion against five plant pathogenic fungi: Fusarium proliferatum, Fusarium pseudograminearum, Fusarium culmorum, Fusarium graminearum and Fusarium polyphialidicum. The oils were also tested in vitro for herbicidal activity by determining their influence on the germination and the shoot and root growth of two weed species, Triticum durum and Phalaris canariensis L.

  6. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    Science.gov (United States)

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Oil prices and long-run risk

    Science.gov (United States)

    Ready, Robert Clayton

    I show that relative levels of aggregate consumption and personal oil consumption provide an excellent proxy for oil prices, and that high oil prices predict low future aggregate consumption growth. Motivated by these facts, I add an oil consumption good to the long-run risk model of Bansal and Yaron [2004] to study the asset pricing implications of observed changes in the dynamic interaction of consumption and oil prices. Empirically I observe that, compared to the first half of my 1987--2010 sample, oil consumption growth in the last 10 years is unresponsive to levels of oil prices, creating an decrease in the mean-reversion of oil prices, and an increase in the persistence of oil price shocks. The model implies that the change in the dynamics of oil consumption generates increased systematic risk from oil price shocks due to their increased persistence. However, persistent oil prices also act as a counterweight for shocks to expected consumption growth, with high expected growth creating high expectations of future oil prices which in turn slow down growth. The combined effect is to reduce overall consumption risk and lower the equity premium. The model also predicts that these changes affect the riskiness of of oil futures contracts, and combine to create a hump shaped term structure of oil futures, consistent with recent data.

  8. Effects of High Carbon Dioxide Level on the Emergence of Oil Palm Pollinating Weevil, Elaeidobius Kamerunicus

    International Nuclear Information System (INIS)

    Amanina, N.S.; Hasnudin, M.Y.; Haniff, M.H.; Roslan, M.N.; A'fifah, A.R.; Ramle, M.

    2016-01-01

    Elaeidobius kamerunicus is the main pollinating insect of oil palm in Malaysia. The increase of ambient carbon dioxide (CO 2 ) may promote greater crop growth and yield of oil palm. However, E. kamerunicus' adaptability and survival under high CO 2 level are still unknown. An oil palm weevil emergence study was conducted in plant growth chambers with two CO 2 levels, 400 Parts Per Million and 800 Parts Per Million. The plant growth chambers were set at 27 degree celcius and 70% relative humidity for the entire study period. Spikelets were taken from apical, middle and basal regions of anthesising male inflorescences from 6-year old DxP palms under normal field conditions. The sampled spikelets were placed in clear plastic tubes with both open ends covered with muslin cloth. The emergence of adults was observed at two-day interval until 10 days after incubation. The total number of weevils which emerged from the spikelets at 400 Parts Per Million and 800 Parts Per Million CO 2 levels were 240 and 233 individuals, respectively. Doubling the ambient CO 2 level to 800 Parts Per Million had no effect on E. kamerunicus emergence in controlled condition. Further study on oil palm weevil adaptability and survival under high CO 2 level is needed to provide information on the effects of future climate change scenario and oil palm yield. (author)

  9. Evaluation of process variables in obtaining of organo clays; Avaliacao das variaveis de processo na obtencao de argilas organofilicas

    Energy Technology Data Exchange (ETDEWEB)

    Costa, D.L.; Cardoso, M.A.F.; Ferreira, H.S.; Neves, G.A.; Ferreira, H.C. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencais e Tecnologia. Unidade Academica de Engenharia de Materiais], e-mail: danubialisboa@gmail.com

    2008-07-01

    The Paraiba state is the greater producing of bentonite in Brazil, for several industrial uses. In this production the Na{sup +} bentonite are distinguished, that when treated with ionic surfactants are used in based oil drilling fluids. The national production of organoclays for based oil drilling fluids is very poor, so this product is imported by PETROBRAS, from America. This present work has as objective the study of involved basic organofilization variable process such as: speed of agitation, temperature and time of cure preparation of organoclays, using bentonite clays Brasgel PA and Cloisite NA{sup +}, later treated with the ionic surfactant Praepagem WB. Organoclays had been characterized by X-ray and swell of Foster to determine the organoclays compatibility with the oil ways and to correlate the variable studied with the gotten results. (author)

  10. Investigation on U - O - Na, Pu - O - Na and U,Pu - O - Na phase diagrams

    International Nuclear Information System (INIS)

    Pillon, S.

    1989-03-01

    The thermochemical interaction between the nuclear fuel (uranium and plutonium mixed oxides) and the sodium has been investigated and particularly the three phase diagrams: U - O - Na; Pu - O - Na; U,Pu - O - Na. High temperature neutron diffraction, microcalorimetry and powder X-ray diffraction were used for the characterization of the compounds synthetized. This study allowed to complete the knowledge about each of these diagrams and to measure some physical and thermal properties on the compounds. The limits on the modelization of the fuel-sodium interaction are discussed from the results of the UO 2 - Na reaction [fr

  11. A multi-stage oil-water-separating process design for the sea oil spill recovery robot

    Science.gov (United States)

    Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming

    2018-03-01

    Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.

  12. Effect of fermentation period on the organic acid and amino acid contents of Ogiri from castor oil bean seeds

    Directory of Open Access Journals (Sweden)

    Ojinnaka, M-T. C.

    2013-01-01

    Full Text Available Aims: To monitor the changes in the concentration of organic acid and amino acid contents during the fermentation of castor oil bean seed into ogiri.Methodology and results: In this study, ogiri, a Nigerian fermented food condiment was prepared from castor oil bean using Bacillus subtilis as a monoculture starter for the production of three different fermented castor oil bean condiment samples: B1 (0% NaCl/lime, B2 (2% NaCl, B3 (3% lime. Variations in the composition of the castor oil bean with fermentation over 96 h periods were evaluated for organic acid and amino acid contents using High Performance Liquid Chromatography. Organic acids were detected in the fermented castor oil bean samples as fermentation period increased to 96 h. Organic acids identified were oxalic, citric, tartaric, malic, succinic, lactic, formic, acetic, propionic and butyric acids. The lactic acid contents in sample B1 (0% NaCl/lime decreased initially and then increased as the fermentation period progressed. The value at 96 h fermentation was 1.336 µg/mL as against 0.775 µg/mL at 0 h fermentation. Sample B3 (3% lime had lactic acid content that increased as fermentation period increased with lactic acid content of 1.298 µg/mL at 96 h fermentation. The acetic acid content of sample B1 increased as fermentation progressed and at 96 h fermentation, its value was 1.204 µg/mL while those of B2 and B3 were 0.677 µg/mL and 1.401 µg/mL respectively. The three fermented castor oil bean samples also contained sufficient amount of amino acids. Sample B1 had the highest values in isoleucine glycine and histidine with values 1.382 µg/mL, 0.814 µg/mL and 1.022 µg/mL respectively while sample B2 had the highest value in leucine content with 0.915 µg/mL at 96 h fermentation, closely followed by sample B3 and B1 with 0.798 µg/mL and 0.205 µg/mL respectively. The results of amino acid analysis indicated a high concentration of all amino acids at 96 h of fermentation

  13. The effect of several crude oils and some petroleum distillation fractions on intestinal absorption in ducklings (Anas platyhynchos).

    Science.gov (United States)

    Crocker, A D; Cronshaw, J; Holmes, W N

    1975-01-01

    Ducklings given hypertonic saline drinking water show significant increases in the rates of Na+ and water transfer across the intestinal mucosa. These increased rates of transfer are maintained as long as the birds are fed dypertonic saline. Oral administration of a single small dose of crude oil had no effect on the basal rate of mucosal transfer in freshwater-maintained ducklings but the adaptive response of the mucosa is suppressed in birds given hypertonic saline. When crude oils from eight different geographical locations were tested, the degree of inhibition varied between them; the greatest and smallest degrees of inhibition being observed following administration of Kuwait and North Slope, Alaska, crude oils respectively. The effects of distallation fractions derived from two chemically different crude oils were also examined. The volume of each distallation fraction administered corresponded to its relative abundance in the crude oil from which it was derived. The inhibitory effect was not associated exclusively with the same distallation fractions from each oil. A highly naphthenic crude oil from the San Joaquin Valley, California, showed the greatest inhibitory activity in the least abundant (2%), low boiling point (smaller than 245 degrees C) fraction and the least inhibitory activity in the highest boiling point (greater than 482 degrees C) most abundant (47%) fraction. In contrast, a highly paraffinic crude oil from Paradox Basin, Utah, showed the greatest inhibitory effect with the highest boiling point fraction and a minimal effect with the lowest boiling point fraction; the relative abundances of these two fractions in the crude oil represented 27 and 28% respectively. Water-soluble extracts of both crude oils also had inhibitory effects on mucosal transfer rates and these roughly proportionate to the inhibitory potency of the low boiling point fraction of each oil. Weathered samples of San Joaquin Valley, California, and the Paradox Basin, Utah

  14. Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil

    KAUST Repository

    Wang, Weicheng

    2012-07-01

    Thermal hydrolysis of triglycerides to form free fatty acid (FFA) is a well-established industry practice. Recently, this process has been employed as a first step in the production of biofuels from lipids. To that end, batch and continuous hydrolysis of various feedstocks has been examined at the laboratory scale. Canola, the primary feedstock in this paper, camelina and algal oils were converted to high quality FFA. For the different reaction temperatures, the continuous hydrolysis system was found to provide better yields than the laboratory batch system. In addition, CFD simulation with ANSYS-CFX was used to model the performance and reactant/product separation in the continuous, counter-flow reactor. The effects of reaction temperature, water-to-oil ratio (ratio of water and oil volumetric inflow rate), and preheating of the reactants were examined experimentally. Optimization of these parameters has resulted in an improved, continuous process with high mass yields (89-93%, for reactor temperature of 260°C and water-to-oil ratio of 4:1) and energy efficiency (76%, for reactor temperature of 250°C and water-to-oil ratio of 2:1). Based on the product quality and energy efficiency considerations, the reactor temperature of 260°C and water-to-oil ratio of 4:1 have provided the optimal condition for the lab scale continuous hydrolysis reaction. © 2012 Elsevier B.V.

  15. Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil

    KAUST Repository

    Wang, Weicheng; Turner, Timothy L.; Stikeleather, Larry F.; Roberts, William L.

    2012-01-01

    Thermal hydrolysis of triglycerides to form free fatty acid (FFA) is a well-established industry practice. Recently, this process has been employed as a first step in the production of biofuels from lipids. To that end, batch and continuous hydrolysis of various feedstocks has been examined at the laboratory scale. Canola, the primary feedstock in this paper, camelina and algal oils were converted to high quality FFA. For the different reaction temperatures, the continuous hydrolysis system was found to provide better yields than the laboratory batch system. In addition, CFD simulation with ANSYS-CFX was used to model the performance and reactant/product separation in the continuous, counter-flow reactor. The effects of reaction temperature, water-to-oil ratio (ratio of water and oil volumetric inflow rate), and preheating of the reactants were examined experimentally. Optimization of these parameters has resulted in an improved, continuous process with high mass yields (89-93%, for reactor temperature of 260°C and water-to-oil ratio of 4:1) and energy efficiency (76%, for reactor temperature of 250°C and water-to-oil ratio of 2:1). Based on the product quality and energy efficiency considerations, the reactor temperature of 260°C and water-to-oil ratio of 4:1 have provided the optimal condition for the lab scale continuous hydrolysis reaction. © 2012 Elsevier B.V.

  16. US oil companies ready to take the high ground again

    International Nuclear Information System (INIS)

    Odell, P.

    1994-01-01

    In the 1930s, the petroleum industry, which essentially started in the United States of America (USA), was prevented from expanding its influence to Middle East petroleum producing countries because of the colonial control exercised by Britain, France and the Netherlands. However, with the Second World War, these relationships changed, and gradually the oil traded internationally became the principle source of energy on the world market. A well-known oil industry commentator and critic describes these developments and notes that since the Gulf War, the USA has drawn closer to Saudi Arabia, a major oil producer, and hence permitted U S. oil companies to dominate the world scene. (UK)

  17. Sleeving-back of horizontal wells to control downstream oil saturation and improve oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, M.; Saghr, A. M. [Bath Univ (United Kingdom)

    1998-12-31

    Air injection has become popular as an enhanced recovery technology, applicable over a wide variety of reservoir conditions including heavy, medium and light oils. One problem observed in light oil reservoirs is the tendency to desaturate the oil layer downstream of the moving front. This is particularly common in the case of thermal recovery processes. In this experiment designed to study ways to restrict the de-saturation of the oil layer, a modified horizontal producer well, incorporating a `sleeve-back` principal was used. The objective was to replicate the `toe-to-heel` displacement process occurring during heavy oil recovery, wherein downstream oil is essentially immobile due to its high viscosity. The `sleeve-back` of the well was achieved using a co-aligned, two-well assembly, so that the upstream section of the horizontal producer well was active, and continuously adjusted during propagation of the combustion front. The use of this continuous `sleeve-back` operation to control the level of de-saturation in the downstream section of a sand pack was successful as confirmed by the very high oil recovery achieved, equivalent to 93.5 per cent of oil in place. The level of CO{sub 2} production was also very high. The `sleeve-back` of the horizontal producer well made the light oil in-situ combustion more efficient compared to what would be expected in a fully-open well. The `sleeve-back` of the well also produced thermal contours in the sand pack that closely resembled those observed with heavy, highly viscous oil. By sealing-off the otherwise open well in the downstream part of the reservoir, the de-saturation of the oil layer was prevented. 9 refs., 4 tabs., 9 figs.

  18. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  19. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    Science.gov (United States)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  20. The solution of the problem of oil spill risk control in the Baltic Sea taking into account the processes of oil propagation and degradation

    Science.gov (United States)

    Aseev, Nikita; Agoshkov, Valery

    2015-04-01

    combined with the methodology of solution of oil spill risk control problem could provide the basis for oil spill simulation systems, systems of evaluation and control of oil spill risk and damage in seas or decision support systems. References V.I. Agoshkov. The methods of optimal control and adjoint equations in problems of mathematical physics. // Moscow: INM RAS, 2003, 256 p. (in Russian). V.I. Agoshkov, N.A. Aseev, I.S. Novikov. The methods of investigation and solution of the problems of local sources and local or integral observations. // Moscow: INM RAS, 2012. 151 p. (in Russian). N.A. Aseev, V.I. Agoshkov, V.B. Zalesny, R. Aps, P. Kujala, and J. Rytkonen. The problem of control of oil pollution risk in the Baltic Sea // Russ. J. Numer. Analysis and Math. Modelling, 2014, V 29, No. 2, 93-105. O. Liungman, J. Mattson. Scientific documentation of Seatrack Web; physical processes, algorithms and references, 2011. // https://stw-helcom.smhi.se/

  1. Recovery of different waste vegetable oils for biodiesel production: a pilot experience in Bahia State, Brazil.

    Science.gov (United States)

    Torres, Ednildo Andrade; Cerqueira, Gilberto S; Tiago, M Ferrer; Quintella, Cristina M; Raboni, Massimo; Torretta, Vincenzo; Urbini, Giordano

    2013-12-01

    In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH. The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Differences in phytotoxicity and dissipation between ionized and nonionized oil sands naphthenic acids in wetland plants.

    Science.gov (United States)

    Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Germida, James J

    2009-10-01

    Naphthenic acids (NAs) are composed of alkyl-substituted acyclic and cycloaliphatic carboxylic acids and, because they are acutely toxic to fish, are of toxicological concern. During the caustic hot-water extraction of oil from the bitumen in oil sands deposits, NAs become concentrated in the resulting tailings pond water. The present study investigated if dissipation of NAs occurs in the presence of hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus) to determine the potential for phytoremediation of these compounds. Plants were grown with oil sands NAs (pKa approximately 5-6) in medium at pH 7.8 (predominantly ionized NAs) and pH 5.0 (predominantly nonionized NAs) to determine if, by altering their chemical form, NAs may be more accessible to plants and, thus, undergo increased dissipation. Whereas the oil sands NA mixture in its nonionized form was more toxic to wetland plants than its ionized form, neither form appeared to be sequestered by wetland plants. The present study demonstrated that plants may selectively enhance the dissipation of individual nonionized NA compounds, which contributes to toxicity reduction but does not translate into detectable total NA dissipation within experimental error and natural variation. Plants were able to reduce the toxicity of a NA system over 30 d, increasing the median lethal concentration (LC50; % of hydroponic solution) of the medium for Daphnia magna by 23.3% +/- 8.1% (mean +/- standard error; nonionized NAs) and 37.0% +/- 2.7% (ionized NAs) as determined by acute toxicity bioassays. This reduction in toxicity was 7.3% +/- 2.6% (nonionized NAs) and 45.0% +/- 6.8% (ionized NAs) greater than that in unplanted systems.

  3. Deposition of highly oriented (K,Na)NbO3 films on flexible metal substrates

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Thydén, Karl; Bowen, Jacob R.

    2018-01-01

    In view of developing flexible, highly textured Pb-free piezoelectric thin films, (K,Na)NbO3 was deposited by chemical solution deposition on cube-textured Ni-W alloy substrates. After heat treatment, a strong (001)pc out-of-plane preferential orientation is created in the (K,Na)NbO3 layer, which...

  4. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    Science.gov (United States)

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Intensification of transferring the Kazakhstan high-congealed oil: challenges and advances

    Energy Technology Data Exchange (ETDEWEB)

    Maimakov, Tayhan P.; Boiko, Galinal; Lyubchenko, Nina P. [High education institute «UNAT», Almaty (Kazakhstan); Shaihutdinov, Yerengaip M. [Kazakh national technical university, Almaty (Kazakhstan)

    2008-07-01

    It were investigated the rheohgica! parameters of South-Turgay region crude oils at presence of novel pour point depressant additive DP-43/2005. It has shown that additive improves pour point and rheohgica; properties of crude oil mixture Kumkol-Akshabidak, inhibits wax deposition and can provide safe conditions of crude oil mixture transportation through pipeline at the cold season of year. Keywords: oil, temperature of fluidity loss, rheology, viscosity, oligomer depressor dopants.

  6. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  7. Two-stage continuous process of methyl ester from high free fatty acid mixed crude palm oil using static mixer coupled with high-intensity of ultrasound

    International Nuclear Information System (INIS)

    Somnuk, Krit; Smithmaitrie, Pruittikorn; Prateepchaikul, Gumpon

    2013-01-01

    Highlights: • Mixed crude palm oil was used in the two-step continuous process. • Two-step continuous process was performed using static mixer coupled with ultrasound. • The maximum obtained yield was 92.5 vol.% after the purification process. • The residence time less than 20 s was achieved in ultrasonic reactors. - Abstract: The two-stage continuous process of methyl ester from high free fatty acid (FFA) mixed crude palm oil (MCPO) was performed by using static mixer coupled with high-intensity of ultrasound. The 2 × 1000 W ultrasonic homogenizers were operated at 18 kHz frequency in the 2 × 100 mL continuous reactors. For the first-step, acid-catalyzed esterification was employed with 18 vol.% of methanol, 2.7 vol.% of sulfuric acid, 60 °C of temperature, and 20 L h −1 of MCPO flow rate, for reducing the acid value from 28 mg KOH g −1 to less than 2 mg KOH g −1 . For the second-step, base-catalyzed transesterification was carried out under 18 vol.% of methanol, 8 g KOH L −1 of oil, and 20 L h −1 of esterified oil flow rate at 30 °C. The high yields of esterified oil and crude biodiesel were attained within the residence time of less than 20 s in the ultrasonic reactors. The yields of each stage process were: 103.3 vol.% of esterified oil, 105.4 vol.% of crude biodiesel, and 92.5 vol.% of biodiesel when compared with 100 vol.% MCPO. The quality of the biodiesel meets the specification of biodiesel standard in Thailand

  8. High selectivity and stability of Mg-doped Al-MCM-41 for in-situ catalytic upgrading fast pyrolysis bio-oil

    International Nuclear Information System (INIS)

    Karnjanakom, Surachai; Suriya-umporn, Thanyamai; Bayu, Asep; Kongparakul, Suwadee; Samart, Chanatip; Fushimi, Chihiro; Abudula, Abuliti; Guan, Guoqing

    2017-01-01

    Highlights: • Mg-doped Al-MCM-41 was developed for in-situ catalytic upgrading of bio-oils. • Mg/Al-MCM-41 exhibited high selectivity to aromatic hydrocarbons. • The ratio of produced hydrocarbon reached up to 80% in upgraded bio-oil. • 1 wt.% Mg/Al-MCM-41 showed the highest catalytic activity. • Mg/Al-MCM-41 had stable reusability due to its coking inhabitation ability. - Abstract: In-situ catalytic upgrading of bio-oils derived from the fast pyrolysis of cellulose, lignin or sunflower stalk over Mg-doped Al-MCM-41 was investigated in details. It is found that Mg species with doping amounts ranged between 0.25 and 10 wt.% was well dispersed on Al-MCM-41, and that doping Mg on Al-MCM-41 effectively adjusted the acidity and basicity of the catalysts, resulting in significant improvement of bio-oil quality. Mg/Al-MCM-41 exhibited high selective conversion of bio-oils derived from cellulose, lignin or sunflower stalk to high value-added aromatic hydrocarbons via catalytic cracking, deoxygenation and aromatization. In the upgraded bio-oil, the relative total hydrocarbon amount reached up to approximately ≥80%, which consisted of aromatic hydrocarbon approximately 76% and aliphatic hydrocarbon approximately 4% for all feedstocks. The selectivity to the monocyclic aromatic hydrocarbons (MAHs) such as benzene, toluene and xylenes (BTXs) increased while the coke formed on the catalyst decreased with the increase in Mg doping amount. 1 wt.% Mg/Al-MCM-41 resulted in the highest relative total hydrocarbon amount in the upgraded bio-oil at lower catalytic deoxygenation temperature, and showed stable reusability for at least 5 cycles. It is expected that Mg/Al-MCM-41 can be widely applied for bio-oil upgrading in a practical process.

  9. [Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils].

    Science.gov (United States)

    Mao, Lisha; Liu, Honghe; Kang, Li; Jiang, Jie; Liao, Shicheng; Liu, Guihua; Deng, Pingjian

    2014-07-01

    To evaluate the efficiency of capsaicinoids to discriminate bio-waste oil from edible vegetable oil. 14 raw vegetable oils, 24 fried waste oils, 34 kitchen-waste oils, 32 edible non-peanut vegetable oil, 32 edible peanuts oil, 16 edible oil add flavorand and 11 refined bio-waste oils were prepared and examined for capsaicinoids including capsaicin, dihydrocapsaicin and nonylic acid vanillylamide. The detection results of the above samples were statistically tested based on sample category to assessment identify the effectiveness of the bio-waste oils with capsaicinoids. As a indicator, capsaincin was possessed of high detection sensitivity and has the highest efficiency to discern kitchen-waste oils and refined bio-waste oils samples from edible non-peanut vegetable oil correctly. The accuracy rate of identification were 100% and 90.1% respectively. There is the background in peanut oil. CONCLUSION Capsaicin added in cooking process can be retained in the refining process and hardly be removed in the refining process. In the case of fully eliminating the background interference, capsaicinoids can effectively identify bio-waste oils and edible vegetable oil in combination.

  10. Increasing oil recovery from heavy oil waterfloods

    Energy Technology Data Exchange (ETDEWEB)

    Brice, B.W. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[BP Exploration, Calgary, AB (Canada)

    2008-10-15

    In an effort to optimize waterflood strategies in Alaska, the authors examined the results of up to 50 years of waterflooding on 166 western Canadian waterfloods recovering oil of less than 30 degrees API. The study determined the best operating practices for heavy oil waterflooding by investigating the difference between waterflooding of heavy oil and lighter oil counterparts. Operators of light oil waterflooding are advised to begin waterflooding early and maintain the voidage replacement ratio (VRR) at 1. However, this study showed that it is beneficial to delay the start of waterflooding until a certain fraction of the original oil in place was recovered. Varying the VRR was also shown to correlate with increased ultimate recovery. This statistical study of 166 western Canadian waterfloods also examined the effect of injection strategy and the effect of primary production before waterflooding. Some pre-waterflood production and under injection time is advantageous for ultimate recovery by waterfloods. Specific recommendations were presented for waterfloods in reservoirs with both high and low API gravity ranges. Each range showed a narrow sweet spot window where improved recovery occurred. 27 refs., 13 figs.

  11. EFFECT OF DIFFERENT K2 HPO4, NaCl LEVELS AND TWO DIFFERENT TEMPARATURES ON SOME EMULSION PROPERTIES OF GOAT MEAT

    OpenAIRE

    Mustafa KARAKAYA; Hüsnü Yusuf GÖKALP; Ramazan BAYRAK

    1996-01-01

    Different levels of K2 HPO4 (0.00 %, 0.25 % and 0.50 %) and NaCl (2.5 % and 3.0 %) were added into goat meat, at the two different temperatures (11o C and 18o C) in order to investigate the emulsion properties in the model emulsion system. Emulsion capacity (EK), emulsion viscocity (EV), emulsion stability ratio (ES), the ratio of separated water (ESO) and oil (EYO) ratio from the emulsion, and the emulsion pH were determined. K2 HPO4 and NaCl levels and the oil temperatures have significant ...

  12. Physico-chemical properties of blends of palm olein with other vegetable oils

    Directory of Open Access Journals (Sweden)

    Mobin Siddique, Bazlul

    2010-12-01

    Full Text Available Palm oil (olein was blended with other edible oils for the enhancement of its market acceptability in terms of melting point depression and shelf life. The physico-chemical properties like viscosity, density, melting behavior, peroxide value (PV, saponification value (SV and iodine value (IV of four different binary blends with four vegetable oils were evaluated. Palm olein was found to be more stable against rancidity than the other oils. For the stability against oxidation and melting point depression the palm olein-canola (PO/CO blend was found to be better than the others. The Differential Scanning Calorimeter (DSC thermogram of the melting behavior of the blends traces some new polymorphs of the triglyceride. This study will help the oil producing industry to find out the most economically viable oil blends for cooking purposes, with maximum nutrition as well as desirable physico-chemical properties.

    Aceite de palma (oleína fue mezclada con otros aceites comestibles para aumentar su aceptabilidad en el mercado en términos de descenso del punto de fusión y mejora de su almacenamiento. Las propiedades físico-químicas tales como viscosidad, densidad, comportamiento en la fusión, valor de peróxidos (PV, valor de saponificación (SV e índice de yodo (IV de cuatro diferentes mezclas binarias con cuatro aceites vegetales fueron evaluadas. La oleína de palma fue más estable frente a la rancidez que otros aceites. En la estabilidad frente la oxidación y el descenso del punto de fusión, la mezcla de oleína de palma/canola (PO/CO fue mejor que las otras. Los termogramas del calorímetro diferencial de barrido (DSC referidos al comportamiento de fusión de las mezclas indican algunos nuevos polimorfismos de los triglicéridos. Este estudio podría ayudar a las empresas que elaboran aceites a encontrar los aceites económicamente más viables para cocinar, con buenas propiedades nutricionales, así como con unas propiedades f

  13. Postnatal fish oil supplementation in high-risk infants to prevent allergy: randomized controlled trial.

    Science.gov (United States)

    D'Vaz, N; Meldrum, S J; Dunstan, J A; Martino, D; McCarthy, S; Metcalfe, J; Tulic, M K; Mori, T A; Prescott, S L

    2012-10-01

    Relative deficiency of dietary omega 3 polyunsaturated fatty acids (n-3 PUFA) has been implicated in the rising allergy prevalence in Westernized countries. Fish oil supplementation may provide an intervention strategy for primary allergy prevention. The objective of this study was to assess the effect of fish oil n-3 PUFA supplementation from birth to 6 months of age on infant allergic disease. In a double-blind randomized controlled trial, 420 infants at high atopic risk received a daily supplement of fish oil containing 280 mg docosahexaenoic acid and 110 mg eicosapentaenoic acid or a control (olive oil), from birth to age 6 months. PUFA levels were measured in 6-month-old infants' erythrocytes and plasma and their mothers' breast milk. Eczema, food allergy, asthma and sensitization were assessed in 323 infants for whom clinical follow-up was completed at 12 months of age. At 6 months of age, infant docosahexaenoic acid and eicosapentaenoic acid levels were significantly higher (both P acid levels were lower (P = .003) in the fish oil group. Although n-3 PUFA levels at 6 months were associated with lower risk of eczema (P = .033) and recurrent wheeze (P = .027), the association with eczema was not significant after multiple comparisons and there was no effect of the intervention per se on the primary study outcomes. Specifically, between-group comparisons revealed no differences in the occurrence of allergic outcomes including sensitization, eczema, asthma, or food allergy. Postnatal fish oil supplementation improved infant n-3 status but did not prevent childhood allergic disease.

  14. A Study of the Distribution of Sodium Cations in the Zeolites NaX, NaY and ZnNaY Using Carbon Monoxide Adsorption and 23Na NMR Techniques

    Science.gov (United States)

    Seidel, A.; Boddenberg, B.

    1995-03-01

    The zeolites NaX, NaY, Zn(55)NaY, and Zn(74)NaY were investigated by means of carbon monoxide adsorption and with static and magic angle spinning (MAS) 23Na NMR spectroscopy. The Na+ distribution between the sodalite (ß)- and supercages of the fully hydrated zeolites NaX and NaY were found to agree with XRD results. In the hydrated zinc-exchanged zeolites the Na+ ions almost exclusively populate the ß-cages. The adsorption isotherms of CO in the dehydrated zeolites were analyzed quantitatively to yield the concentrations of Na+ residing in the supercages. The measured static and MAS 23Na NMR spectra were analyzed by comparing their widths and shapes with simulated central transition patterns and yield, inter alia, the concentrations of Na+ associated with the spectrum components. Arguments are put forward that 23Na NMR of dehydrated zeolites is well suited to distinguish Na+ cations in highly symmetric environments and mobile Na+ species from others located on general positions, but further resolution is hardly feasible.

  15. Free and sulphurized hopanoids and highly branched isoprenoids in immature lacustrine oil shales

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Grimalt, J.O.; Lopez, J.F.; Albaiges, J.; Leeuw, J.W. de

    1997-01-01

    A study of the solvent extracts of four samples from two immature oil shales from Tertiary lacustrine basins, Ribesalbes and Campins (southern European rift system), deposited under reducing conditions, has allowed the identification of S-containing hopanoids and novel highly branched isoprenoids

  16. Oil defect detection of electrowetting display

    Science.gov (United States)

    Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang

    2015-08-01

    In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.

  17. A safflower oil-based high fat/high-sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation

    DEFF Research Database (Denmark)

    Danneskiold-Samsøe, Niels Banhos; Andersen, Daniel; Radulescu, Ilinca Daria

    2017-01-01

    n-6 PUFA-rich diets are generally considered obesogenic in rodents. Here we examined how long-term intake of a high fat/high sucrose (HF/HS) diet based on safflower oil affected metabolism, inflammation and gut microbiota composition. We fed male C57BL/6J mice a HF/HS diet based on safflower oil...

  18. Oil shale commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    Warner, M.M.

    1981-09-01

    Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

  19. Performance evaluation of NEEM oil and HONGE Oil as cutting fluid in drilling operation of mild steel

    Science.gov (United States)

    Jyothi, P. N.; Susmitha, M.; Sharan, P.

    2017-04-01

    Cutting fluids are used in machining industries for improving tool life, reducing work piece and thermal deformation, improving surface finish and flushing away chips from the cutting zone. Although the application of cutting fluids increases the tool life and Machining efficiency, but it has many major problems related to environmental impacts and health hazards along with recycling & disposal. These problems gave provision for the introduction of mineral, vegetable and animal oils. These oils play an important role in improving various machining properties, including corrosion protection, lubricity, antibacterial protection, even emulsibility and chemical stability. Compared to mineral oils, vegetable oils in general possess high viscosity index, high flash point, high lubricity and low evaporative losses. Vegetable oils can be edible or non-edible oils and Various researchers have proved that edible vegetable oils viz., palm oil, coconut oil, canola oil, soya bean oil can be effectively used as eco-friendly cutting fluid in machining operations. But in present situations harnessing edible oils for lubricants formation restricts the use due to increased demands of growing population worldwide and availability. In the present work, Non-edible vegetable oil like Neem and Honge are been used as cutting fluid for drilling of Mild steel and its effect on cutting temperature, hardness and surface roughness are been investigated. Results obtained are compared with SAE 20W40 (petroleum based cutting fluid)and dry cutting condition.

  20. High Amounts of n-Alkanes in the Composition of Asphodelus aestivus Brot. Flower Essential Oil from Cyprus.

    Science.gov (United States)

    Polatoğlu, Kaan; Demirci, Betül; Can Başer, Kemal Hüsnü

    2016-10-01

    There is only a couple of reports indicating essential oil composition of Asphodelus species in the literature. However, from the members of this genus many non-volatile secondary metabolites were isolated. In Cyprus, Asphodelus aestivus Brot. can be found abundantly in all regions of the island. This plant has various ethnobotanical uses in Cyprus. There is no report on the volatiles nor the essential oil composition of A. aestivus. The smell of A. aestivus flowers resembles that of a cat pee which caught our attention. Therefore, we have carried out GC, GC/MS analysis of the essential oil (yield: 0.01 v/w) obtained from Asphodelus aestivus flowers. Seventeen compounds were identified in the essential oil comprising 96.2% of the oil. The major components of the essential oil were hexadecanoic acid 35.6%, pentacosane 17.4%, tricosane 13.4% and heptacosane 8.4%. In our results, we expected to see sulfur containing cat pee odorants due to the odor of the flower whereas high amounts of n-alkanes, saturated fatty acids and minor amounts of acyclic diterpenes were observed.

  1. Oil flow rate measurements using 198Au and total count technique

    International Nuclear Information System (INIS)

    Goncalves, Eduardo R.; Crispim, Verginia R.

    2013-01-01

    In industrial plants, oil and oil compounds are usually transported by closed pipelines with circular cross-section. The use of radiotracers in oil transport and processing industrial facilities allows calibrating flowmeters, measuring mean residence time in cracking columns, locate points of obstruction or leak in underground ducts, as well as investigating flow behavior or industrial processes such as in distillation towers. Inspection techniques using radiotracers are non-destructive, simple, economic and highly accurate. Among them, Total Count, which uses a small amount of radiotracer with known activity, is acknowledged as an absolute technique for flow rate measurement. A viscous fluid transport system, composed by four PVC pipelines with 13m length (12m horizontal and 1m vertical) and 1/2, 3/4, 1 and 2-inch gauges, respectively, interconnected by maneuvering valves was designed and assembled in order to conduct the research. This system was used to simulate different flow conditions of petroleum compounds and for experimental studies of flow profile in the horizontal and upward directions. As 198 Au presents a single photopeak (411,8 keV), it was the radioisotope chosen for oil labeling, in small amounts (6 ml) or around 200 kBq activity, and it was injected in the oil transport lines. A NaI scintillation detector 2'x 2', with well-defined geometry, was used to measure total activity, determine the calibration factor F and, positioned after a homogenization distance and interconnected to a standardized electronic set of nuclear instrumentation modules (NIM), to detect the radioactive cloud. (author)

  2. Time of expensive oil

    International Nuclear Information System (INIS)

    Roset, C.

    2006-01-01

    Consumer information, energy conservation and the development of renewable energies are the axis on which French authorities have based their new policy to face constant high oil prices. It seems possible to increase France's hydro-energy potential by 40% without putting at risk environmental policy. In 2005 the ratio of France's energy independence descended below 50% .In 2005 despite high oil prices the tax on oil products yielded 212 million euros less than it was expected in the budget. Saudi-arabia has been asked by the G 7 group to make the necessary investment to bring its oil production up to 12.5 million barrels a day by 2010. (A.C.)

  3. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Junhua; Yan, Pengfei; Luo, Langli; Qi, Xingguo; Rong, Xiaohui; Zheng, Jianming; Xiao, Biwei; Feng, Shuo; Wang, Chongmin; Hu, Yong-Sheng; Lin, Yuehe; Sprenkle, Vincent L.; Li, Xiaolin

    2017-10-01

    Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb2O3 from carbon coated Sb2O3 nanoparticles can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~554 mAh•g-1, good rate capability (315 mhA•g-1 at 10C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~130 Wh•kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0-4.0 V, ~1.5 times energy of full-cells with similar design using hard carbon anodes.

  4. AUTOMATED DETECTION OF OIL DEPOTS FROM HIGH RESOLUTION IMAGES: A NEW PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    A. O. Ok

    2015-03-01

    Full Text Available This paper presents an original approach to identify oil depots from single high resolution aerial/satellite images in an automated manner. The new approach considers the symmetric nature of circular oil depots, and it computes the radial symmetry in a unique way. An automated thresholding method to focus on circular regions and a new measure to verify circles are proposed. Experiments are performed on six GeoEye-1 test images. Besides, we perform tests on 16 Google Earth images of an industrial test site acquired in a time series manner (between the years 1995 and 2012. The results reveal that our approach is capable of detecting circle objects in very different/difficult images. We computed an overall performance of 95.8% for the GeoEye-1 dataset. The time series investigation reveals that our approach is robust enough to locate oil depots in industrial environments under varying illumination and environmental conditions. The overall performance is computed as 89.4% for the Google Earth dataset, and this result secures the success of our approach compared to a state-of-the-art approach.

  5. The effect of Na vapor on the Na content of chondrules

    Science.gov (United States)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-01-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the P(sub Na) for these experimental conditions to be in the 10(exp -6) atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable

  6. Influence of shaly sands on continuous steam injection oil recovering method; Influencia de areias argilosas na recuperacao de petroleo por injecao de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, J.M.D.; Rodrigues, M.A.F.; Galvao, E.R.V.P.; Barillas, J.L.M.; Mata, W.; Dutra Junior, T.V. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Steam flooding is one of the most used thermal recovery methods in Northeast Brazil, because of high occurrence of heavy oil reservoir. In this process, the oil into the reservoir is heated while reduces, substantially, its viscosity and improves the production. This process can be affected by various parameters, including reservoir heterogeneity and the presence of clay. This work studied the influence of the presence of shaly sand layers in the reservoir for this type of recovery. The studied models were synthetics, but the used reservoir data can be extrapolated to real situations of Potiguar Basin. The influence of reservoir parameters in this process is quite important to the oil industry, and some of them were tested, such as the horizontal permeability of the reservoir and clay, the vertical/horizontal permeability ratio, the influence of capillary pressure of shaly sand and how all heterogeneities are allowed to affect in the oil productivity. In this study the parameter of greater influence in the oil recovery was the horizontal permeability, and the configuration of the layer of clay and other parameters affected least the process. (author)

  7. Air injection low temperature oxidation process for enhanced oil recovery from light oil reservoirs

    International Nuclear Information System (INIS)

    Tunio, A.H.; Harijan, K.

    2010-01-01

    This paper represents EOR (Enhanced Oil Recovery) methods to recover unswept oil from depleted light oil reservoirs. The essential theme here is the removal of oxygen at LTO (Low Temperature Oxidation) from the injected air for a light oil reservoir by means of some chemical reactions occurring between oil and oxygen. In-situ combustion process, HTO (High Temperature Oxidation) is not suitable for deep light oil reservoirs. In case of light oil reservoirs LTO is more suitable to prevail as comparative to HTO. Few laboratory experimental results were obtained from air injection process, to study the LTO reactions. LTO process is suitable for air injection rate in which reservoir has sufficiently high temperature and spontaneous reaction takes place. Out comes of this study are the effect of LTO reactions in oxygen consumption and the recovery of oil. This air injection method is economic compared to other EOR methods i.e. miscible hydrocarbon gas, nitrogen, and carbon dioxide flooding etc. This LTO air injection process is suitable for secondary recovery methods where water flooding is not feasible due to technical problems. (author)

  8. Effect of Bombay high crude oil and its water-soluble fraction on growth and metabolism of diatom Thalassiosira sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parab, S.R.; Pandit, R.A.; Kadam, A.N.; Indap, M.M.

    Effect of Bombay high crude oil (BHC) and its water-soluble fraction (WSF) on growth and metabolism of the phytoplankton, Thalassiosira sp. was assessed. The study revealed the signs of acute toxicity at higher concentrations of crude oil (0...

  9. Small-scale semi-continuous reactor for the conversion of wood to fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Pepper, J M; Mathews, J F

    1983-04-01

    The design and operation of a small-scale semi-continuous reactor to convert aspen wood meal into an oil product is described. Modifications that reduce erosion/corrosion are also presented. Short residence times and relatively low operating pressures have been achieved for the reaction of aspen with CO and H2O in the presence of Na2CO3. Conversions, char formation, and the effect of sodium carbonate concentration on oil product are reported.

  10. Orange oil/water nanoemulsions prepared by high pressure homogenizer

    International Nuclear Information System (INIS)

    Kourniatis, Loretta R.; Spinelli, Luciana S.; Mansur, Claudia R.E.

    2010-01-01

    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  11. Chemical Modification of Waste Cotton Linters for Oil Spill Cleanup Application

    Science.gov (United States)

    Chattopadhyay, Debapriya; Umrigar, Keval

    2017-12-01

    The possibility of use of waste cotton linters as oil sorbents by chemical modification such as acetylation and cyanoethylation was studied. The acetylation process was carried out in presence of acetic anhydride using either H2SO4 or HClO4 as catalyst. The acetylation treatment time was 30, 60 and 120 min and treatment temperature was room temperature, 50 and 70 °C. For cyanoethylation, the waste cotton linters were pre-treated with 2, 5 and 10% NaOH. The treatment temperature for cyanoethylation was room temperature, 50 and 70 °C and treatment time was 30, 60 and 120 min. Both the chemical modification processes were optimized on the basis of oil absorption capacity of the chemically modified cotton fibre with the help of MATLAB software. The modified samples were tested for its oleophilicity in terms of oil absorption capacity, oil retention capacity, oil recovery capacity, reusability of sample and water uptake and buoyancy as oil sorbent. Chemically modified fibres were characterized by Fourier transform infra red spectrophotometer, scanning electron microscope and degree of substitutions.

  12. High-resolution phylogenetic analysis of residual bacterial species of fouled membranes after NaOCl cleaning.

    Science.gov (United States)

    Navarro, Ronald R; Hori, Tomoyuki; Inaba, Tomohiro; Matsuo, Kazuyuki; Habe, Hiroshi; Ogata, Atsushi

    2016-05-01

    Biofouling is one of the major problems during wastewater treatment using membrane bioreactors (MBRs). In this regard, sodium hypochlorite (NaOCl) has been widely used to wash fouled membranes for maintenance and recovery purposes. Advanced chemical and biological characterization was conducted in this work to evaluate the performance of aqueous NaOCl solutions during washing of polyacrylonitrile membranes. Fouled membranes from MBR operations supplemented with artificial wastewater were washed with 0.1% and 0.5% aqueous NaOCl solutions for 5, 10 and 30 min. The changes in organics composition on the membrane surface were directly monitored by an attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrometer. In addition, high-throughput Illumina sequencing of 16S rRNA genes was applied to detect any residual microorganisms. Results from ATR-FT-IR analysis indicated the complete disappearance of functional groups representing different fouling compounds after at least 30 min of treatment with 0.1% NaOCl. However, the biomolecular survey revealed the presence of residual bacteria even after 30 min of treatment with 0.5% NaOCl solution. Evaluation of microbial diversity of treated samples using Chao1, Shannon and Simpson reciprocal indices showed an increase in evenness while no significant decline in richness was observed. These implied that only the population of dominant species was mainly affected. The high-resolution phylogenetic analysis revealed the presence of numerous operational taxonomic units (OTUs) whose close relatives exhibit halotolerance. Some OTUs related to thermophilic and acid-resistant strains were also identified. Finally, the taxonomic analysis of recycled membranes that were previously washed with NaOCl also showed the presence of numerous halotolerant-related OTUs in the early stage of fouling. This further suggested the possible contribution of such chemical tolerance on their survival against NaOCl washing, which in turn

  13. A highly uniform ZnO/NaTaO3 nanocomposite: Enhanced self-sensitized degradation of colored pollutants under visible light

    International Nuclear Information System (INIS)

    Xing, Guanjie; Tang, Changhe; Zhang, Bo; Zhao, Lanxiao; Su, Yiguo; Wang, Xiaojing

    2015-01-01

    In this study, a highly uniform ZnO/NaTaO 3 composite was prepared via simple hydrothermal synthesis. XRD confirmed the composite was constructed by pure cubic phase of NaTaO 3 and hexagonal phase of ZnO. SEM analysis showed that as-prepared ZnO/NaTaO 3 shaped as an irregular ginger with an obviously smaller size than that of pure ZnO without obvious agglomeration. EDS mapping demonstrated that the four elements (Na, Ta, O, Zn) in the composite were very uniformly distributed. The photocatalytic behaviors of as-prepared composites were studied in the degradation of methylene blue both under UV and visible irradiation. The bare ZnO showed the highest activity with 99.8% methylene blue (MB) photodegraded in 70 min under UV light irradiation whereas 94% photodegraded rate was achieved for ZnO/NaTaO 3 . More importantly, the uniform composite of ZnO/NaTaO 3 exhibited effective degradation of methylene blue under visible light which can be attributed to the well dyes adsorption abilities and the high efficiency of electron separation, induced by the synergistic effect between ZnO and NaTaO 3 . It is confirmed the dye rather than a semiconductor is excited under visible light irradiation and a self-sensitized photocatalytic mechanism was then proposed based on the experimental results. - Graphical abstract: Visible light photocatalytic activity of ZnO/NaTaO 3 and proposed schematic of self-sensitization directed photogradation of MB. - Highlights: • Highly uniform ZnO/NaTaO 3 photocatalysts were fabricated by hydrothermal method. • ZnO/NaTaO 3 composite exhibited effective degradation of MB under visible light. • ZnO/NaTaO 3 composite effectively promoted dye adsorption and electrons separation. • A self-sensitized photocatalytic mechanism was proposed for the degradation of dye

  14. A new oil crisis?

    International Nuclear Information System (INIS)

    Haffner, R.C.G.; Van Herpt, I.R.Y.

    2000-01-01

    Recent developments in the oil market are discussed, focusing on the causes of recent price increase, expectations for the near future, why previous oil crises resulted into a recession, and the expected consequences of the oil price increase for the economic growth and inflation. The negative consequences of the high oil price for the European economy can be limited under the condition that claims for higher wages are moderate. 2 refs

  15. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon

    International Nuclear Information System (INIS)

    Gutiérrez-Vélez, Víctor H; DeFries, Ruth; Uriarte, María; Lim, Yili; Pinedo-Vásquez, Miguel; Padoch, Christine; Baethgen, Walter; Fernandes, Katia

    2011-01-01

    High-yield agriculture potentially reduces pressure on forests by requiring less land to increase production. Using satellite and field data, we assessed the area deforested by industrial-scale high-yield oil palm expansion in the Peruvian Amazon from 2000 to 2010, finding that 72% of new plantations expanded into forested areas. In a focus area in the Ucayali region, we assessed deforestation for high- and smallholder low-yield oil palm plantations. Low-yield plantations accounted for most expansion overall (80%), but only 30% of their expansion involved forest conversion, contrasting with 75% for high-yield expansion. High-yield expansion minimized the total area required to achieve production but counter-intuitively at higher expense to forests than low-yield plantations. The results show that high-yield agriculture is an important but insufficient strategy to reduce pressure on forests. We suggest that high-yield agriculture can be effective in sparing forests only if coupled with incentives for agricultural expansion into already cleared lands.

  16. The Asia-Pacific oil market : prospects for Canadian oil

    International Nuclear Information System (INIS)

    Fesharaki, F.

    2004-01-01

    The Asia-Pacific region is among the fastest growing oil markets for which analysts predict healthy growth rates due to high energy demands from developing countries such as China. Increased oil demand will mean new refining capacity needs and increased supplies of crude oil. The indigenous crude supply in the Asia-Pacific region is limited and unable to meet the region's needs. Imports are therefore expected to rise continuously. Although the Middle East will continue to be the dominant player in meeting these growing oil needs, Canada has an opportunity to diversify the supply source and play a significant role in meeting the energy needs of the Asia-Pacific region. tabs., figs

  17. Process for oil shale retorting

    Science.gov (United States)

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  18. Chemically evolving systems for oil recovery enhancement in heavy oil deposits

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory studies and field tests of new physicochemical technologies for enhanced oil recovery of heavy oil fields under natural development conditions and with thermal-steam stimulation using oil-displacing "smart" systems. The systems are based on surfactants and buffer systems. Their rheological and acid-base properties can be regulated by their chemical evolution directly in the formation. Field tests of the technologies carried out on high-viscosity oil deposit in the Usinskoye oilfield have shown that the EOR technologies are environmentally friendly and technologically effective.

  19. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene

    International Nuclear Information System (INIS)

    Önal, Eylem; Uzun, Başak Burcu; Pütün, Ayşe Eren

    2014-01-01

    Highlights: • We investigate to see the effect of HDPE addition on thermal decomposition of lignocellulosic materials. • Increasing the proportion of HDPE in mixtures increases the oil yields. • After co-pyrolysis applied, obtained oil is more stable due to having lower oxygen content and higher heating value. • The addition of HDPE to aS has a positive effect on fuel properties of obtained oil. - Abstract: Biomass from almond shell (aS) was co-pyrolyzed with high density polyethylene (HDPE) polymer to investigate the synergistic effects on the product yields and compositions. The pyrolysis temperature was selected as 500 °C, based on results of TGA-DTG. Co-pyrolysis of HDPE-biomass mixtures were pyrolysed with various proportions such as 1:0, 1:1, 1:2, 2:1 and 0:1. The yield of liquids produced during co-pyrolysis enhanced 23%, as the weight ratio of HDPE in the mixture was doubled. Obtained bio-oils were analyzed with using column chromatography, 1 H NMR, GC/MS, and FT-IR. According to analyses results, produced liquids by co-pyrolysis had higher carbon (26% higher) and hydrogen contents (78% higher), lower oxygen content (%86 less) with a higher heating value (38% higher) than those of biomass oil

  20. High-precision half-life determination for 21Na using a 4 π gas-proportional counter

    Science.gov (United States)

    Finlay, P.; Laffoley, A. T.; Ball, G. C.; Bender, P. C.; Dunlop, M. R.; Dunlop, R.; Hackman, G.; Leslie, J. R.; MacLean, A. D.; Miller, D.; Moukaddam, M.; Olaizola, B.; Severijns, N.; Smith, J. K.; Southall, D.; Svensson, C. E.

    2017-08-01

    A high-precision half-life measurement for the superallowed β+ transition between the isospin T =1 /2 mirror nuclei 21Na and 21Ne has been performed at the TRIUMF-ISAC radioactive ion beam facility yielding T1 /2=22.4506 (33 ) s, a result that is a factor of 4 more precise than the previous world-average half-life for 21Na and represents the single most precisely determined half-life for a transition between mirror nuclei to date. The contribution to the uncertainty in the 21Na F tmirror value due to the half-life is now reduced to the level of the nuclear-structure-dependent theoretical corrections, leaving the branching ratio as the dominant experimental uncertainty.

  1. Effect of sodium carbonate catalyst weight on production of bio-oil via thermochemical liquefaction of corncobs in ethanol-water solution

    Science.gov (United States)

    Sembodo, Bregas Siswahjono Tatag; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Lignocellulosic biomass has recently received serious attention as an energy source that can replace fossil fuels. Corncob is one of lignocellulosic biomass wastes, which can be further processed into bio-oil through thermochemical liquefaction process. Bio-oil is expected to be further processed into fuel oil. In this research the effect of Na2CO3 catalyst weight on the yield of bio-oil was investigated. The composition of bio-oil produced in this process was analyzed by GC-MS. Bio-oil formation rate were analyzed through mathematical model development. First model aasumed as an isothermal process, while second model was not. It is found that both models were able to provide a good approach to experimental data. The average reaction rate constants was obtained from isothermal model, while the activation energy level and collision factors were obtained from non-isothermal model. The reaction rate will increase by addition of Na2CO3 (0 - 0.5 g) as catalyst to 250 mL system solution, then the activation energy will decrease from 1964.265 joules/mole to 1029.994 joules/mole. The GC-MS analysis results showed that the bio-oil were contained of ester compounds, phenolic compounds, cyclic compunds, heterocyclic compounds, and poly-alcohols compounds.

  2. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  3. Production of Biodiesel from Waste Vegetable Oil via KM Micromixer

    Directory of Open Access Journals (Sweden)

    M. F. Elkady

    2015-01-01

    Full Text Available The production of biodiesel from waste vegetable oils through its pretreatment followed by transesterification process in presence of methanol was investigated using a KM micromixer reactor. The parameters affecting biodiesel production process such as alcohol to oil molar ratio, catalyst concentration, the presence of tetrahydrofuran (THF as a cosolvent, and the volumetric flow rates of inlet fluids were optimized. The properties of the produced biodiesel were compared with its parent waste oil through different characterization techniques. The presence of methyl ester groups at the produced biodiesel was confirmed using both the gas chromatography-mass spectrometry (GC-MS and the infrared spectroscopy (FT-IR. Moreover, the thermal analysis of the produced biodiesel and the comparable waste oil indicated that the product after the transesterification process began to vaporize at 120°C which makes it lighter than its parent oil which started to vaporize at around 300°C. The maximum biodiesel production yield of 97% was recorded using 12 : 1 methanol to oil molar ratio in presence of both 1% NaOH and THF/methanol volume ratio 0.3 at 60 mL/h flow rate.

  4. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs

    Directory of Open Access Journals (Sweden)

    Bo Liang

    2018-04-01

    Full Text Available To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55–65°C by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature (p < 0.05. Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.

  5. Oil-free bearing development for high-speed turbomachinery in distributed energy systems – dynamic and environmental evaluation

    Directory of Open Access Journals (Sweden)

    Tkacz Eliza

    2015-09-01

    Full Text Available Modern distributed energy systems, which are used to provide an alternative to or an enhancement of traditional electric power systems, require small size highspeed rotor turbomachinery to be developed. The existing conventional oil-lubricated bearings reveal performance limits at high revolutions as far as stability and power loss of the bearing are concerned. Non-conventional, oil-free bearings lubricated with the machine working medium could be a remedy to this issue. This approach includes a correct design of the machine flow structure and an accurate selection of the bearing type. Chosen aspects of the theoretical and experimental investigations of oil-free bearings and supports; including magnetic, tilting pad, pressurized aerostatic and hydrostatic bearings as well as some applications of oil-free bearing technology for highspeed turbomachinery; are described in the paper.

  6. Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E(2)P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump.

    Science.gov (United States)

    Mahmmoud, Yasser A; Christensen, S Brøgger

    2011-10-01

    Nigella sativa seed oil was found to contain a modulator of Na,K-ATPase. Separation analyses combined with (1)H NMR and GCMS identified the inhibitory fraction as a mixture of oleic and linoleic acids. These two fatty acids are specifically concentrated in several medicinal plant oils, and have particularly been implicated in decreasing high blood pressure. The ouabain binding site on Na,K-ATPase has also been implicated in blood pressure regulation. Thus, we aimed to determine how these two molecules modify pig kidney Na,K-ATPase. Oleic and linoleic acids did not modify reactions involving the E(1) (Na(+)) conformations of the Na,K-ATPase. In contrast, K(+) dependent reactions were strongly modified after treatment. Oleic and linoleic acids were found to stabilize a pump conformation that binds ouabain with high affinity, i.e., an ion free E(2)P form. Time-resolved binding assays using anthroylouabain, a fluorescent ouabain analog, revealed that the increased ouabain affinity is unique to oleic and linoleic acids, as compared with γ-linolenic acid, which decreased pump-mediated ATP hydrolysis but did not equally increase ouabain interaction with the pump. Thus, the dynamic changes in plasma levels of oleic and linoleic acids are important in the modulation of the sensitivity of the sodium pump to cardiac glycosides. Given the possible involvement of the cardiac glycoside binding site on Na,K-ATPase in the regulation of hypertension, we suggest oleic acid to be a specific chaperon that modulates interaction of cardiac glycosides with the sodium pump. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  7. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet.

    Science.gov (United States)

    Takeuchi, H; Matsuo, T; Tokuyama, K; Shimomura, Y; Suzuki, M

    1995-04-01

    The objectives of the present study were to examine the effects of dietary fats differing in fatty acid composition on diet-induced thermogenesis, sympathetic activity in brown adipose tissue and body fat accumulation in rats. Rats were meal-fed for 12 wk an isoenergetic diet based on lard, high oleic acid safflower oil, safflower oil or linseed oil, and norepinephrine turnover rates in brown adipose tissue were then estimated. Whole-body oxygen consumption after the meal indicated that diet-induced thermogenesis was significantly lower in rats fed the lard diet than in those fed the other diets. The norepinephrine turnover rate in the interscapular brown adipose tissue was also significantly lower in the lard diet group than in the other diet groups. The carcass fat content was significantly higher in the lard diet group than in the other diet groups, whereas the abdominal adipose tissue weights were the same in all diet groups. These results suggest that the intake of animal fats rich in saturated fatty acids, compared with the intake of vegetable oils rich in monounsaturated or polyunsaturated fatty acids, decreases diet-induced thermogenesis by a decline of sympathetic activity in brown adipose tissue, resulting in the promotion of body fat accumulation.

  8. Transesterification of jojoba oil, sunflower oil, neem oil, rocket seed oil and linseed oil by tin catalysts

    International Nuclear Information System (INIS)

    Shah, Mazloom; Tariq, Muhammad; Ali, Saqib; Guo, Qing-Xiang; Fu, Yao

    2014-01-01

    The methanolysis of jojoba oil has been studied in the presence of tin powder, dibutyltin diacetate (C 4 H 9 ) 2 Sn(OOCCH 3 ) 2 , dioctyltin diacetate (C 8 H 17 ) 2 Sn(OOCCH 3 ) 2 , dibutyltin oxide (C 4 H 9 ) 2 SnO, dioctyltin oxide (C 8 H 17 ) 2 SnO, diphenyltin oxide (C 6 H 5 ) 2 SnO, dibutyltin chloride dihydroxide (C 4 H 9 ) 2 Sn(OH) 2 Cl, butyltinhydroxide hydrate (C 4 H 9 )Sn(=O)OH.xH 2 O, Ni nanoparticles and Pd nanoparticles act as catalysts. Among these, 1 weight % of dibutyltin diacetate shows the maximum conversion. Then, methanolysis of sunflower oil, neem oil, rocket seed oil and linseed oil into methyl esters studied in the presence of 1% dibutyltin diacetate as a catalyst and was compared their percentage conversions. The experimental yield for the conversion of jojoba oil, sunflower oil, neem oil, rocket seed oil and linseed oil into biodiesel was found to be 71%, 51%, 50.78%, 40.90% and 39.66%, respectively. The experimental yield of the conversion of jojoba oil into methyl esters was found to be increased up to 96% by increasing reaction time, without emulsion formation. The synthesis of jojoba seed oil biodiesel (JSOB), soybean oil biodiesel (SOB), neem oil biodiesel (NOB), rocket seed oil biodiesel (RSOB) and linseed oil biodiesel (LSOB) was confirmed by NMR ( 1 H and 13 C) and FT-IR analyses of biodiesel. - Highlights: • Transesterification of jojoba oil into biodiesel by tin and nano catalysts. • 1 weight % dibutyltin diacetate showed highest yield at 60 °C. • Catalytic conversion comparison of five oils using dibutyltin diacetate • The experimental yield of the conversion of jojoba oil increased with time. • FT-IR and NMR ( 1 H and 13 C) characterization

  9. Upgrading of raw tall oil soap into fuel oils and lubricants; Raakasuovan jalostus poltto- ja voiteluoeljyksi

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A; Arpiainen, V; McKeough, P; Tapola, E; Haekkinen, R; Kuoppala, E; Koskela, K [VTT Energy, Jyvaeskylae (Finland). Energy Production Technologies

    1997-12-01

    Thermochemical processing of tall oil soap originating from various mixtures of birch and pine has been experimentally investigated. The organic matter of tall oil soap, which is a by- product of Kraft pulping, originates mainly from wood extractives. Conventional processing of tall oil soap involves acidulation with sulphuric acid to yield crude tall oil and subsequent distillation of the oil at centralised refineries. Because tall oil originating from birch wood is far less valuable than that from pine, there is an economic incentive in the Nordic countries to develop alternative conversion processes for the tall oil soap produced at pulp mills where birch is widely used as feedstock. Furthermore, thermochemical processing of tall oil soap does not introduce sulphur into the chemical recovery cycle. This would be a significant advantage in future mills employing closure of water circuits and/or sulphur-free pulping. In small-scale experiments tall oil soaps from wood mixtures with high birch content have been processed using both liquid-phase thermal treatment and pyrolysis. The liquid-phase thermal treatment at 450 deg C under a nitrogen atmosphere yielded a good-quality oil product at high yield (about 50 % of the energy content of the tall oil soap). In the atmospheric pyrolysis of birch tall oil soap a separation of inorganic and organic constituents was obtained. The energy value of the product gases was high. Both processes are promising, but the pyrolysis alternative has the greater economic potential, providing that the promising preliminary experimental results have given a true picture of the performance of the full-scale pyrolysis process. (orig.)

  10. Uppgrading of raw tall oil soap into fuel oils and lubricants; Raakasuovan jalostus poltto- ja voiteluoeljyksi

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A.; Arpiainen, V.; McKeough, P.; Tapola, E. [VTT Energy, Espoo (Finland)

    1998-12-31

    Thermochemical processing of tall oil soap originating from various mixtures of birch and pine has been experimentally investigated. The organic matter of tall oil soap, which is a by-product of kraft pulping, originates mainly from wood extractives. Conventional processing of tall oil soap involves acidulation with sulphuric acid to yield crude tall oil and subsequent distillation of the oil at centralised refineries. Because tall oil originating from birch wood is far less valuable than that from pine, there is an economic incentive in the Nordic countries to develop alternative conversion processes for the tall oil soap produced at pulp mills where birch is widely used as feedstock. Furthermore, thermochemical processing of tall oil soap does not introduce sulphur into the chemical recovery cycle. This would be a significant advantage in future mills employing closure of water circuits and/or sulphur-free pulping. In small-scale experiments tall oil soaps from wood mixtures with high birch content have been processed using both liquid-phase thermal treatment and pyrolysis. The liquid-phase thermal treatment at 450 deg C under a nitrogen atmosphere yielded a good-quality oil product at high yield (about 50% of the energy content of the tall oil soap). In the atmospheric pyrolysis of birch tall oil soap a separation of inorganic and organic constituents was obtained. The energy value of the product gases was high. Both processes are promising, but the pyrolysis alternative has the greater economic potential, providing that the promising preliminary experimental results have given a true picture of the performance of the full-scale pyrolysis process. (orig.)

  11. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  12. Avocado and olive oil methyl esters

    International Nuclear Information System (INIS)

    Knothe, Gerhard

    2013-01-01

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1 H and 13 C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  13. The comparative efficacy of stabilized stannous fluoride dentifrice, peroxide/baking soda dentifrice and essential oil mouthrinse for the prevention of gingivitis.

    Science.gov (United States)

    Beiswanger, B B; McClanahan, S F; Bartizek, R D; Lanzalaco, A C; Bacca, L A; White, D J

    1997-01-01

    This double-blind parallel-design clinical study compared the efficacy of a stabilized stannous fluoride dentifrice (Crest Plus Gum Care), baking soda and peroxide (NaF) dentifrice (Mentadent), and essential oil mouthrinse (Listerine) to a conventional NaF dentifrice (Crest) for the control of plaque, gingivitis and gingival bleeding over six months. Following an initial baseline examination and stratification, subjects received a complete oral prophylaxis and were distributed assigned test products. Following three and six months, subjects re-visited the clinic for examinations. Evaluations at baseline and at 3 and 6 months included soft tissue status. Löe-Silness gingivitis/gingival bleeding, Silness-Löe plaque and dental stain. Results subsequent to six months of product use were as follows: At six months, the stabilized stannous fluoride dentifrice was observed to produce statistically significant 17.5% reductions in gingivitis and 27.5% reductions in gingival bleeding relative to the NaF dentifrice. The combination of sodium fluoride dentifrice and essential oil mouthrinse produced statistically significant reductions of 7.4% in gingivitis and 10.8% in plaque as compared with the NaF dentifrice. The stabilized stannous fluoride dentifrice produced statistically significant reductions in both gingivitis (10.8%) and gingival bleeding (23.0%) relative to the combination of sodium fluoride dentifrice and essential oil mouthrinse. The baking soda and peroxide (NaF) dentifrice did not provide reductions in gingivitis, plaque or gingival bleeding as compared with the conventional NaF dentifrice. The stabilized stannous fluoride dentifrice provided statistically significant reductions in gingivitis as compared with the baking soda and peroxide dentifrice following six months of use, and both the essential oil mouthrinse and stabilized stannous fluoride dentifrice provided statistically significant reductions in gingivitis as compared with the baking soda and

  14. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  15. An assessment of high risk sexual behaviour and HIV transmission among migrant oil workers in the Niger Delta area of Nigeria.

    Science.gov (United States)

    Nwauche, C A; Akani, C I

    2006-06-01

    A cross--sectional behavioural survey undertaken amongst migrant oil-workers of an oil exploration outfit operating in the Niger-Delta of Nigeria with the aim of assessing the interplay of migrancy, high-risk sexual behaviour and HIV transmission. A total of 300 randomly selected migrant oil workers were assessed using structured questionnaires to evaluate key high - risk sexual behavioral parameters such as multiplicity of sexual partners, bisexuality (closet homosexuality), high grade sexual behaviour and lesbianism. Sampling period was two months with a control cohort of 200. The prevalence of high risk sexual behaviour (HRSB) amongst the migrant oil workers was found to be 7.7% while low-risk sexual behaviour (LRSB) was 92.3%. There was no record of HRSB in the control group. We did not also encounter any lesbian sexual orientation in this study. The distribution of HRSB amongst the migrant oil workers showed that the commonest variety was bisexuality (closet homosexuality) with 10(43.5%) followed by high-risk sexual behaviour 7(30.4%), while the least common was multiplicity of sexual partners with 6 (26.1%). Furthermore, majority of these individuals 19 (82.6%) were above the age of 35 years. The index of condom-use and acceptance was high. Here 14 (60.9%) found condom-use convenient while 13 (56.5%) regularly used the condom. This study confirms the existence of HRSB among migrant oil workers in the Niger delta. It is therefore advisable to focus interventionist and prevention programmes on this group which appear to be pivotal in the transmission and spread of HIV/AIDS in this environment.

  16. High strength H2S resistant steels and alloys for oil field tubular products

    International Nuclear Information System (INIS)

    Straatmann, J.A.; Grobner, P.J.

    1976-01-01

    New sources of oil and natural gas are more frequently occurring at greater depths in hostile surface and underground environments. The materials utilized in drilling and completing the wells require higher strength along with improved resistance to corrosive/embrittling attack by contaminants present in the deep, high pressure-high temperature formations. Higher strength steels having yield strengths in excess of 690 MPa and possessing improved resistance to sulfide stress corrosion cracking (SSC) have been developed and are currently being evaluated by the oil industry. The research to develop these new steels combined modifications of chemical compositions, heat treatment and processing variables. For most severe SSC environments and deep wells, it was necessary to provide even better alloys for tubular materials. The successful solution to the problem was found with the utilization of nickel-base alloys. These materials are being evaluated in commercial applications

  17. Selective Essential Oils from Spice or Culinary Herbs Have High Activity against Stationary Phase and Biofilm Borrelia burgdorferi.

    Science.gov (United States)

    Feng, Jie; Zhang, Shuo; Shi, Wanliang; Zubcevik, Nevena; Miklossy, Judith; Zhang, Ying

    2017-01-01

    Although the majority of patients with acute Lyme disease can be cured with the standard 2-4 week antibiotic treatment, about 10-20% of patients continue suffering from chronic symptoms described as posttreatment Lyme disease syndrome. While the cause for this is debated, one possibility is that persister bacteria are not killed by the current Lyme antibiotics and remain active in the system. It has been reported that essential oils have antimicrobial activities and some have been used by patients with persisting Lyme disease symptoms. However, the activity of essential oils against the causative agent Borrelia burgdorferi ( B. burgdorferi ) has not been well studied. Here, we evaluated the activity of 34 essential oils against B. burgdorferi stationary phase culture as a model for persister bacteria. We found that not all essential oils had activity against the B. burgdorferi stationary phase culture, with top five essential oils (oregano, cinnamon bark, clove bud, citronella, and wintergreen) at a low concentration of 0.25% showing high anti-persister activity that is more active than the known persister drug daptomycin. Interestingly, some highly active essential oils were found to have excellent anti-biofilm ability as shown by their ability to dissolve the aggregated biofilm-like structures. The top three hits, oregano, cinnamon bark, and clove bud completely eradicated all viable cells without any regrowth in subculture in fresh medium, whereas but not citronella and wintergreen did not have this effect. Carvacrol was found to be the most active ingredient of oregano oil showing excellent activity against B. burgdorferi stationary phase cells, while other ingredients of oregano oil p-cymene and α-terpinene had no apparent activity. Future studies are needed to characterize and optimize the active essential oils in drug combination studies in vitro and in vivo and to address their safety and pharmacokinetic properties before they can be considered as a

  18. Selective Essential Oils from Spice or Culinary Herbs Have High Activity against Stationary Phase and Biofilm Borrelia burgdorferi

    Science.gov (United States)

    Feng, Jie; Zhang, Shuo; Shi, Wanliang; Zubcevik, Nevena; Miklossy, Judith; Zhang, Ying

    2017-01-01

    Although the majority of patients with acute Lyme disease can be cured with the standard 2–4 week antibiotic treatment, about 10–20% of patients continue suffering from chronic symptoms described as posttreatment Lyme disease syndrome. While the cause for this is debated, one possibility is that persister bacteria are not killed by the current Lyme antibiotics and remain active in the system. It has been reported that essential oils have antimicrobial activities and some have been used by patients with persisting Lyme disease symptoms. However, the activity of essential oils against the causative agent Borrelia burgdorferi (B. burgdorferi) has not been well studied. Here, we evaluated the activity of 34 essential oils against B. burgdorferi stationary phase culture as a model for persister bacteria. We found that not all essential oils had activity against the B. burgdorferi stationary phase culture, with top five essential oils (oregano, cinnamon bark, clove bud, citronella, and wintergreen) at a low concentration of 0.25% showing high anti-persister activity that is more active than the known persister drug daptomycin. Interestingly, some highly active essential oils were found to have excellent anti-biofilm ability as shown by their ability to dissolve the aggregated biofilm-like structures. The top three hits, oregano, cinnamon bark, and clove bud completely eradicated all viable cells without any regrowth in subculture in fresh medium, whereas but not citronella and wintergreen did not have this effect. Carvacrol was found to be the most active ingredient of oregano oil showing excellent activity against B. burgdorferi stationary phase cells, while other ingredients of oregano oil p-cymene and α-terpinene had no apparent activity. Future studies are needed to characterize and optimize the active essential oils in drug combination studies in vitro and in vivo and to address their safety and pharmacokinetic properties before they can be considered as a

  19. High-pressure growth of NaMn7O12 crystals

    International Nuclear Information System (INIS)

    Gilioli, Edi; Calestani, Gianluca; Licci, Francesca; Paorici, Carlo; Gauzzi, Andrea; Bolzoni, Fulvio; Prodi, Andrea

    2006-01-01

    With the aim of producing large crystals of metastable NaMn 7 O 12 manganite, suitable for physical measurements (i.e.: RXS, Raman, EPR, STS, single-crystal neutron diffraction), we carried out a systematic investigation of the parameters controlling the growth of crystals, including the thermodynamic variables (T, P, and reagent composition) and the kinetic factors, such as reaction time and heating/cooling rate. By varying each parameter while maintaining constant the other ones, we found the thermodynamic conditions under which an optimum equilibrium is reached between the competing nucleation and growth rates. They were found to range between 400 and 700 o C (T) and between 20 and 60 Kbars (P), respectively. Under these conditions, we further optimized the growth process, by establishing the most appropriate growth duration (several hours), reagent type (pre-reacted precursor) and composition (presence of 0.4 mole% water and of 5% Na excess with respect to the stoichiometric composition). Typical crystals having several hundreds μm in linear sizes were reproducibly obtained, while the largest sample was about 800 μm. A description of the crystal growth mechanism, based on the experimental results, is also presented and discussed. It assumes that two different mechanisms control the crystal growth, depending on whether the crystallization is taking place outside the stability field, i.e. in presence of native reagents, or inside it, i.e. in a polycrystalline NaMn 7 O 12 phase matrix. In the first case, large crystal growth occurs thanks to the low nucleation and high diffusion rates, while in the second one the crystallization is due to the solid-state mechanism based on the free energy reduction caused by grain boundary migration. - Graphical abstract: Optical (a) and SEM images (b) of NaMn 7 O 12 crystals. Note the markers: 300 μm, top-right corner (a) and 40 μm, bottom left (b)

  20. EFFECT OF DIFFERENT K2 HPO4, NaCl LEVELS AND TWO DIFFERENT TEMPARATURES ON SOME EMULSION PROPERTIES OF GOAT MEAT

    Directory of Open Access Journals (Sweden)

    Mustafa KARAKAYA

    1996-03-01

    Full Text Available Different levels of K2 HPO4 (0.00 %, 0.25 % and 0.50 % and NaCl (2.5 % and 3.0 % were added into goat meat, at the two different temperatures (11o C and 18o C in order to investigate the emulsion properties in the model emulsion system. Emulsion capacity (EK, emulsion viscocity (EV, emulsion stability ratio (ES, the ratio of separated water (ESO and oil (EYO ratio from the emulsion, and the emulsion pH were determined. K2 HPO4 and NaCl levels and the oil temperatures have significant effect (p

  1. Getting the oil to the shore

    Energy Technology Data Exchange (ETDEWEB)

    Menin, J.A.; Meuter, P.

    2006-03-15

    Conveying highly corrosive fluids - hot water dissolved in salt and sulfide - is just one aspect of getting oil from the field to the shore. Brazilian oil company Petrobras had a requirement for high pressure pumps that could handle high viscosity fluids at its Campos off-shore oil field and be easily maintained. Joao Alberto Menin, Paul Meuter explains how Sulzer Pumps rose to the challenge. (author)

  2. Mining and oil. Oil shale's contribution to future oil supply; Bergbau und Oel. Der Beitrag des Oelschiefers zur Oelversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Eike von der [Linden Advisory, Dreieich (Germany)

    2012-05-15

    Crude oil contributes in Germany and globally approximately one third to the consumption of primary energies and actually is and in the foreseeable future will be the most important energy source. Recently shale oil as an unconventional oil has gained attention in public discussions. Depending on temperatures oil shale contains either already matured fluid shale oil or immature waxy kerogen. For determination of kerogen containing oil shale and shale oil common definitions for fluid hydrocarbons will be presented. Fluid hydrocarbons (molecular chains > C{sub 5}H{sub 12}) originate from animal substance which had been settled millions of years in sediments on sea- or lakebeds under anaerobic conditions. High pressure and high temperatures effect conversion to hydrocarbons. With sufficient permeability the liquid hydrocarbons migrate from the sediment as the source rock and get assembled in porous rocks under the cover of an impermeable rock strata, in so called entrapment structures. In case there is no impermeable rock strate the hydrocarbons will diffuse into the atmosphere. The hydrocarbons in entrapment structures are called conventional oil and are extracted by drilling wells. The extractable oil as part of the oil in place depends on the viscosity of the oil, the permeability of the host rock and applied exploitation methods which can affect pressure, viscosity and permeability. The exploitation achieves 30 to 50% of the oil in place. When the source rock consisting of strata hundreds of meters thick is not sufficiently permeable the matured hydrocarbons remain at its place of origination. These hydrocarbons are called shale oil and belong to the unconventional oil resources. For exploitation of shale oil by wells the source rock must be treated by intensive energy input, amongst others, by fracking which creates artificial permeability and by pressure which affects migration of the hydrocarbons to the well. The exploitation methods for shale oil do not

  3. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    Directory of Open Access Journals (Sweden)

    Bootello, M. A.

    2016-09-01

    Full Text Available The composition and distribution of fatty acids in triacylglycerol (TAG molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.La composición y distribución de los ácidos grasos en las moléculas de triglicéridos se consideran factores determinantes en las propiedades físicas de los aceites y grasas. La distribución de ácidos grasos en un determinado aceite o grasa puede caracterizarse mediante un coeficiente de asimetría α, calculado a partir de las composiciones de triglicéridos y de ácidos grasos en la posición sn-2 de la molécula de triglicérido mediante hidrólisis con lipasa. El aceite de girasol alto oleico-alto esteárico es una grasa estable y saludable, adecuada para reemplazar a los aceites vegetales hidrogenados y fracciones de palma en muchos productos alimentarios, como grasas plásticas y grasas de confitería. En el presente trabajo, se formularon diferentes aceites alto oleico-alto esteárico con diferente distribución de los ácidos grasos saturados en

  4. Seasonal variation in the essential oil of Pilocarpus microphyllus Stapf.

    Directory of Open Access Journals (Sweden)

    FRANCISCA S. N. TAVEIRA

    2003-03-01

    Full Text Available The essential oils of the leaves and fine stems of Pilocarpus microphyllus, collected on iron mineralized soil of the Serra de Carajás, Southeast of Pará State, Brazil, during the rainy and dry seasons, were obtained by hydrodistillation and analyzed by GC-MS. The main identified compounds were 2-tridecanone, beta-caryophyllene, 2-pentadecanone, caryophyllene oxide and germacrene D. Their percentage contents varied with the season, the greater values having been detected mainly in the rainy season. For 2-tridecanone and beta-caryophyllene the higher values were observed in the fine stem oils for the former, and in the leaf oils for the latter. For 2-pentadecanone, caryophyllene oxide and germacrene D they were also in the leaf oils. In general, the leaf oils were very distinguishable from those of fine stem oils, even in the same specimen.Os óleos essenciais das folhas e galhos finos de Pilocarpus microphyllus, coletado em solo mineralizado com ferro, na Serra de Carajás, Sudeste do Pará, Brasil, durante as estações chuvosa e seca, foram obtidos por hidrodestilação e analisados por GC-MS. Os principais compostos identificados foram 2-tridecanona, beta-cariofileno, 2-pentadecanona, óxido de cariofileno e germacreno D. Seus teores percentuais variam com a estação, embora os maiores valores tenham sido detectados principalmente na estação chuvosa. Para 2-tridecanona e beta-cariofileno os valores mais expressivos foram observados nos óleos de galhos finos, para o primeiro, e nos óleos das folhas, para o útimo. Para 2-pentadecanona, óxido de cariofileno e germacreno D, os valores mais altos foram, também, nos óleos das folhas. Em geral, os óleos das folhas se apresentaram muito distintos em relação aos galhos finos, assim como também no mesmo espécime.

  5. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    International Nuclear Information System (INIS)

    Sunarno; Rochmadi,; Mulyono, Panut; Budiman, Arief

    2016-01-01

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  6. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    Energy Technology Data Exchange (ETDEWEB)

    Sunarno [Chemical Engineering Department, Riau University, Kampus Binawidya KM 12,5 Pekanbaru 28293 (Indonesia); Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281 (Indonesia); Rochmadi,; Mulyono, Panut [Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281 (Indonesia); Budiman, Arief, E-mail: abudiman@ugm.ac.id [Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281(Indonesia); Center for Energy Studies, Gadjah Mada University, Sekip K1A, Yogyakarta 55281 (Indonesia)

    2016-06-03

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  7. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    Directory of Open Access Journals (Sweden)

    Ruihong Yang

    2016-04-01

    Full Text Available Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency.

  8. Selection of High Oil Yielding Trees of Millettia pinnata (L. Panigrahi, Vegetative Propagation and Growth in the Field

    Directory of Open Access Journals (Sweden)

    Ni Luh Arpiwi

    2017-09-01

    Full Text Available Millettia pinnata (L. Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field.  The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to evaluate the survival and growth of budded plants in the field. Pods were collected from 30 trees in Lovina Beach, Buleleng Regency, Bali. Oil was extracted from seeds using soxhlet with hexane as a solvent.  The high oil yielding trees were propagated by budding using root stocks grown from M. pinnata seeds.  Scions were taken from young branches of selected trees. Incision was made on rootstock and the same size of cut was made on a scion containing a single bud.  The scion was inserted to the incision of rootstock then closed tightly using plastic strips.   The plastic was removed when the scion grew into a little green shoot. One month after plastic removal, the scion union grew into a single shoot and then the budded plants were removed to polybags. Budded plants were planted in the field of Bukit Jimbaran, Badung Regency, Bali with 4 × 4 spacing. Results showed all budded plants successfully grow new shoots. Two months after planting the survival of budded plants was 100%. Plant height increased by 22.13 cm, stem diameter increased by 2.43 mm and the number of compound leaf increased by 2.08.  It can be concluded that four high oil yielding trees were selected from Lovina Beach and successfully propagated by budding. Survival of budded plants was 100% with vigorous growth.

  9. Effect of radiation on sodium and water transport in rat erythrocytes and possible repair using olive oil

    International Nuclear Information System (INIS)

    Othman, A.I.; El-Missiry, M.A.

    1991-01-01

    Gamma radiation dose 4 Gy was administered to whole rats, and sodium, water transport and sulfhydryl groups (-SH) contents of the erythrocytes were evaluated in vivo at postirradiation times 1, 3 and 7 days. The present results showed increased sodium and water gain associated with loss of sulfhydryl contents of the erythrocytes. These results are attributed to inhibition of Na pump activity and increased Na leakage into cells which increased the intracellular osmotic elements that lead to influx of water. These changes were secondary to the destruction of erythrocyte -SH groups which was investigated as a change in tertiary structure of the membrane proteins. Olive oil administered intraperitoneally resulted in restoration of the status of the studied parameters. We also noticed an increase in the amount of plasma unsaturated fatty acids including phospholipids. The relation between the reappearance of erythrocyte -SH groups and increased plasma phospholipids suggested a repair role for olive oil. This is through reconstitution of the Na-pump activity in erythrocytes by reactivation of (Na-K) ATPase stimulated by negatively charged plasma phospholipids.4 fig.,1 tab. i

  10. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    Directory of Open Access Journals (Sweden)

    J. P. Bender

    2008-09-01

    Full Text Available This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE, liquid-liquid (LLE and vapor-liquid-liquid (VLLE equilibrium were recorded. It was experimentally observed that, at a given temperature and surfactant content, an increase in the concentration of glycerol/oil ratio led to a pronounced increase in the slope of the liquid-liquid coexistence curve. A comparison with results reported for the same system but using propane as solvent showed that much lower pressure transition values are obtained when using n-butane.

  11. Modification of Oil Palm Plantation Wastes as Oil Adsorbent for Palm Oil Mill Effluent (POME)

    International Nuclear Information System (INIS)

    Noraisah Jahi; Ling, E.S.; Rizafizah Othaman; Suria Ramli

    2015-01-01

    This research was conducted to modify oil palm solid wastes chemically to become oil adsorbent for palm oil mill effluent (POME). The purpose of modification on oil palm leaves (OPL) and oil palm frond (OPF) was to change the hydrophilic nature to a more hydrophobic character. This study also exploited the production of sorbent materials with high efficiency in the oil uptake for POME from OPL and OPF. Chemical modification was carried out using 200 mL of 1.0 M lauric acid solution for 6 hrs at room temperature. The modified OPL and OPF were preceded to adsorption test for POME and the capacity of oil adsorbed was compared between them. FTIR analysis supported the modification to occur with the increase in a peak of C-H group and the presence of C=O originated from lauric acid structure chain. The hydrophobicity of modified OPL and OPF samples was supported by XRD and contact angle analysis with modified OPL became more hydrophobic than the modified OPF, which had been 38.15 % and 24.67 % respectively. Both the analyses proved that the result from the oil adsorption test on POME showed the presence of a new peak attribute at C=C stretching of aromatics for the oil in POME proved that it was attached on the sorbent materials. Based on SEM analysis, the perforated and rough surface had been observed on modified OPL and OPF samples because oil layers on OPL and OPF surfaces were observed on the modified samples after the adsorption test. All the analyses in the study agreed that the results from oil adsorption test showed that the modified OPL had higher adsorption capacity than the modified OPF with the percentage of oil uptake at 83.74 % and 39.84 % respectively. The prepared adsorbent showed the potential to be used as a low-cost adsorbent in oil for POME. (author)

  12. Modification of Lightweight Aggregates’ Microstructure by Used Motor Oil Addition

    Science.gov (United States)

    Franus, Małgorzata; Jozefaciuk, Grzegorz; Bandura, Lidia; Lamorski, Krzysztof; Hajnos, Mieczysław; Franus, Wojciech

    2016-01-01

    An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %–8 wt %) caused marked changes in the aggregates’ microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%–2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates’ bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms. PMID:28773964

  13. Modification of Lightweight Aggregates’ Microstructure by Used Motor Oil Addition

    Directory of Open Access Journals (Sweden)

    Małgorzata Franus

    2016-10-01

    Full Text Available An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite with used motor oil (1 wt %–8 wt % caused marked changes in the aggregates’ microstructure, measured by a combination of mercury porosimetry (MIP, microtomography (MT, and scanning electron microscopy. Maximum porosity was produced at low (1%–2% oil concentrations and it dropped at higher concentrations, opposite to the aggregates’ bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms.

  14. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  15. Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil

    Science.gov (United States)

    Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen

    2018-02-01

    CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.

  16. Combating oil spill problem using plastic waste

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Junaid, E-mail: junaidupm@gmail.com [Department of Chemical Engineering, University of Karachi (Pakistan); Ning, Chao; Barford, John [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); McKay, Gordon [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  17. Combating oil spill problem using plastic waste

    International Nuclear Information System (INIS)

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-01-01

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy

  18. Bohai and Yellow Sea Oil Spill Prediction System and Its Application to Huangdao ‘11.22’ Oil Spill Incident

    Science.gov (United States)

    Li, Huan; Li, Yan; Li, Cheng; Li, Wenshan; Wang, Guosong; Zhang, Song

    2017-08-01

    Marine oil spill has deep negative effect on both marine ecosystem and human activities. In recent years, due to China’s high-speed economic development, the demand for crude oil is increasing year by year in China, and leading to the high risk of marine oil spill. Therefore, it is necessary that promoting emergency response on marine oil spill in China and improving oil spill prediction techniques. In this study, based on oil spill model and GIS platform, we have developed the Bohai and Yellow sea oil spill prediction system. Combining with high-resolution meteorological and oceanographic forecast results, the system was applied to predict the drift and diffusion process of Huangdao ‘11.22’ oil spill incident. Although the prediction can’t be validated by some SAR images due to the lack of satellite observations, it still provided effective and referable oil spill behavior information to Maritime Safety Administration.

  19. Comparative analysis of fiscal terms for Alberta oil sands and international heavy and conventional oils

    International Nuclear Information System (INIS)

    Van Meurs, P.

    2007-01-01

    There are considerable differences between international heavy oil and Alberta oil sands projects, notably the high viscosity of the bitumen in the oil sands reservoirs. The oil sands bitumen do not flow to wells without heating the bitumen, thereby adding to the already high cost of Alberta oil sand operations. This report provided an economic comparison of Alberta oil sands and international heavy oil projects. It also included a brief scoping review to compare with conventional oil regimes. Full exploration costs including the costs of dry holes were allocated to conventional oil operations in order to obtain a proper comparison. This investigation included the costs of dry holes. The report was a follow up to an earlier study released on April 12, 2007 on the preliminary fiscal evaluation of Alberta oil sand terms. The report provided an economic framework and described project selection. It then provided a discussion of production, costs and price data. Four adjusted projects were presented and compared with Alberta. The Venezuelan royalty formula was also discussed. Last, the report provided a detailed fiscal analysis. Comparisons were offered with Cold Lake and Athabasca Mine. A review of some other fiscal systems applicable to conventional oil were also outlined. It was concluded that Alberta oil sands developments are very competitive. It would be possible to modestly increase government revenues, without affecting the international competitive position of Alberta with respect to conventional oil. There is also some possibility to increase the base royalty on the Alberta oil sands without losing competitiveness. tabs., figs

  20. Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste

    Science.gov (United States)

    Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.

    2018-03-01

    This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.