WorldWideScience

Sample records for high momentum spectrometer

  1. Momentum and energy dependent resolution function of the ARCS neutron chopper spectrometer at high momentum transfer: Comparing simulation and experiment

    Science.gov (United States)

    Diallo, S. O.; Lin, J. Y. Y.; Abernathy, D. L.; Azuah, R. T.

    2016-11-01

    Inelastic neutron scattering at high momentum transfers (i.e. Q ≥ 20 A ˚), commonly known as deep inelastic neutron scattering (DINS), provides direct observation of the momentum distribution of light atoms, making it a powerful probe for studying single-particle motions in liquids and solids. The quantitative analysis of DINS data requires an accurate knowledge of the instrument resolution function Ri(Q , E) at each momentum Q and energy transfer E, where the label i indicates whether the resolution was experimentally observed i = obs or simulated i=sim. Here, we describe two independent methods for determining the total resolution function Ri(Q , E) of the ARCS neutron instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. The first method uses experimental data from an archetypical system (liquid 4He) studied with DINS, which are then numerically deconvoluted using its previously determined intrinsic scattering function to yield Robs(Q , E). The second approach uses accurate Monte Carlo simulations of the ARCS spectrometer, which account for all instrument contributions, coupled to a representative scattering kernel to reproduce the experimentally observed response S(Q , E). Using a delta function as scattering kernel, the simulation yields a resolution function Rsim(Q , E) with comparable lineshape and features as Robs(Q , E), but somewhat narrower due to the ideal nature of the model. Using each of these two Ri(Q , E) separately, we extract characteristic parameters of liquid 4He such as the intrinsic linewidth α2 (which sets the atomic kinetic energy ∼α2) in the normal liquid and the Bose-Einstein condensate parameter n0 in the superfluid phase. The extracted α2 values agree well with previous measurements at saturated vapor pressure (SVP) as well as at elevated pressure (24 bars) within experimental precision, independent of which Ri(Q , y) is used to analyze the data. The actual observed n0 values at each Q vary little with the

  2. The aerogel threshold Cherenkov detector for the high momentum spectrometer in Hall C at Jefferson lab

    Energy Technology Data Exchange (ETDEWEB)

    Razmik Asaturyan; Rolf Ent; Howard Fenker; David Gaskell; Garth Huber; Mark Jones; David Mack; Hamlet Mkrtchyan; Bert Metzger; Nadia Novikoff; Vardan Tadevosyan; William Vulcan; Stephen Wood

    2004-11-09

    We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of {pi}/K/p, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n = 1.03 and n = 1.015 allow one to reach {approx}10{sup -3} proton and 10{sup -2} kaon rejection in the 1-5 GeV/c momentum range with pion detection efficiency better than 99% (97%). The detector response shows no significant position dependence due to a diffuse light collection technique. The diffusion box was equipped with 16 Photonis XP4572 PMT's. The mean number of photoelectrons in saturation was {approx}16 and {approx}8, respectively. Moderate particle identification is feasible near threshold.

  3. Development and characterization of a multiple-coincidence ion-momentum imaging spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Laksman, J.; Céolin, D.; Månsson, E. P.; Sorensen, S. L.; Gisselbrecht, M. [Department of Synchrotron Radiation Research, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-15

    The design and performance of a high-resolution momentum-imaging spectrometer for ions which is optimized for experiments using synchrotron radiation is presented. High collection efficiency is achieved by a focusing electrostatic lens; a long drift tube improves mass resolution and a position-sensitive detector enables measurement of the transverse momentum of ions. The optimisation of the lens for particle momentum measurement at the highest resolution is described. We discuss the overall performance of the spectrometer and present examples demonstrating the momentum resolution for both kinetics and for angular measurements in molecular fragmentation for carbon monoxide and fullerenes. Examples are presented that confirm that complete space-time focussing is possible for a two-field three-dimensional imaging spectrometer.

  4. Momentum spectrometer for electron-electron coincidence studies on superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wallauer, Robert; Voss, Stefan; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schoeffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Schmidt-Boecking, Horst; Doerner, Reinhard [Institut fuer Kernphysik, Universitaet Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Foucar, Lutz [Max Planck Advanced Study Group, Center for Free Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg (Germany); Max-Planck-Institut fuer medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg (Germany); Kanigel, Amit [Technion, Technion City, 32000 Haifa (Israel); Campuzano, Juan Carlos [University of Illinois at Chicago, 601 S. Morgan St., Chicago, Illinois 60607 (United States); Jeschke, Harald; Valenti, Roser [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); and others

    2012-10-15

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 {pi} solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  5. Parallel data acquisition system for electron momentum spectrometer

    CERN Document Server

    Pang, W N

    1999-01-01

    A parallel data acquisition system has been developed for the study of electron impact ionization of atoms and molecules. The system has a large data storage capacity providing good experimental resolution and system flexibility. The system is used to collect and analyze data from electron momentum spectroscopy experiment. Results from electron momentum spectroscopy experiments on C sub 4 H sub 1 sub 0 molecules, at an incident energy of 1200 eV, are presented to demonstrate the performance of the system. (author)

  6. Does high harmonic generation conserve angular momentum?

    CERN Document Server

    Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren

    2013-01-01

    High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...

  7. Exclusive processes at high momentum transfer

    CERN Document Server

    Radyushkin, Anatoly; Stoker, Paul

    2002-01-01

    This book focuses on the physics of exclusive processes at high momentum transfer and their description in terms of generalized parton distributions, perturbative QCD, and relativistic quark models. It covers recent developments in the field, both theoretical and experimental.

  8. Realization of matching conditions for high-resolution spectrometers

    CERN Document Server

    Fujita, H; Berg, G P A; Bacher, A D; Foster, C C; Hara, K; Hatanaka, K; Kawabata, T; Noro, T; Sakaguchi, H; Shimbara, Y; Shinada, T; Stephenson, E J; Ueno, H; Yosoi, M

    2002-01-01

    For precise measurements of nuclear-reaction spectra using a beam from an accelerator, a high-resolution magnetic spectrometer is a powerful tool. The full capability of a magnetic spectrometer, however, can be achieved only if the characteristics of the beam coming from the accelerator are matched to those required by the spectrometer by properly adjusting the beam line conditions. The matching methods, lateral dispersion matching, focus matching and also the kinematic correction compensate the spectrum line-broadening effects caused by the beam momentum spread and reaction kinematics. In addition, angular dispersion matching should be performed if good resolution of the scattering angle is important. Diagnostic methods developed to realize these matching conditions for the spectrometers K600 at IUCF and Grand Raiden at RCNP are presented.

  9. Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, David Jonathan [Univ. of Glasgow, Scotland (United Kingdom)

    2004-01-01

    The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p ($\\vec{γ}$, γ' \\vec{p}$) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.

  10. A Very High Momentum Particle Identification Detector

    CERN Document Server

    Acconcia, T V; Barile, F; Barnafoldi, G G; Bellwied, R; Bencedi, G; Bencze, G; Berenyi, D; Boldizsar, L; Chattopadhyay, S; Cindolo, F; Chinellato, D D; D'Ambrosio, S; Das, D; Das-Bose, L; Dash, A K; De Cataldo, G; De Pasquale, S; Di Bari, D; Di Mauro, A; Futo, E; Garcia, E; Hamar, G; Harton, A; Iannone, G; Jimenez, R T; Kim, D W; Kim, J S; Knospe, A; Kovacs, L; Levai, P; Nappi, E; Markert, C; Martinengo, P; Mayani, D; Molnar, L; Olah, L; Paic, G; Pastore, C; Patimo, G; Patino, M E; Peskov, V; Pinsky, L; Piuz F; Pochybova, S; Sgura, I; Sinha, T; Song, J; Takahashi, J; Timmins, A; Van Beelen, J B; Varga, D; Volpe, G; Weber, M; Xaplanteris, L; Yi, J; Yoo, I K

    2014-01-01

    The construction of a new detector is proposed to extend the capabilities of ALICE in the high transverse momentum (pT) region. This Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-track basis in the 5 GeV/c < p < 25 GeV/c momentum range and provides ALICE with new opportunities to study parton-medium interactions at LHC energies. The VHMPID covers up to 30% of the ALICE central barrel and presents sufficient acceptance for triggered- and tagged-jet studies, allowing for the first time identified charged hadron measurements in jets. This Letter of Intent summarizes the physics motivations for such a detector as well as its layout and integration into ALICE.

  11. A Study of High Transverse Momentum Eta Meson Production

    Energy Technology Data Exchange (ETDEWEB)

    Skow, Dana Duane [Univ. of Rochester, NY (United States)

    1990-01-01

    Production of high transverse momentum ($P_T$) $\\eta$ (eta) mesons by hadron beams with incident momentum of 530 GeV/c ($\\sqrt{s}$ = 31.6 GeV) has been measured using the E706 spectrometer at FNAL. The $\\gamma\\gamma$ decay mode was studied using data from the highly segmented liquid argon calorimeter in E706. Results are presented for inclusive $\\eta$ production for $\\pi^-$ and $p$ beams on a beryllium target, and compared to inclusive $\\pi^0$ production. Data cover the range of transverse momentum of 3.5 < $P_T$ < 10 GeV /c and rapidity $\\mid y \\mid$ < 0.7. The integrated ratio of inclusive $\\eta$ production for incident $K^-$ and $\\pi^-$ at 530 GeV/c ($K^- Be \\to \\eta X/\\pi^- Be \\to \\eta X$) was found to be 1.32 ± 0.32 measured for the range 3.5 < 6.0 Ge V/c with rapidity $\\mid y \\mid$ < 1.0.

  12. The high sensitivity double beta spectrometer TGV

    Science.gov (United States)

    Briancon, Ch.; Brudanin, V. B.; Egorov, V. G.; Janout, Z.; Koníček, J.; Kovalík, A.; Kovalenko, V. E.; Kubašta, J.; Pospíšil, S.; Revenko, A. V.; Rukhadze, N. I.; Salamatin, A. V.; Sandukovsky, V. G.; Štekl, I.; Timkin, V. V.; Tsupko-Sitnikov, V. V.; Vorobel, V.; Vylov, Ts.

    1996-02-01

    A high sensitivity double beta spectrometer TGV (Telescope Germanium Vertical) has been developed. It is based on 16 HPGe detectors of volume 1200 × 6 mm 3 each in the same cryostat. The TGV spectrometer was proposed for the study of ultrarare nuclear processes (e.g. 2νββ, 0νββ, 2νEC/EC). Details of the TGV spectrometer construction are described, the principles of background suppression, the results of Monte Carlo simulations and the results of test background measurements (in Dubna and Modane underground laboratory) are provided.

  13. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  14. High orbital angular momentum harmonic generation

    CERN Document Server

    Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O

    2016-01-01

    We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realised in any nonlinear optical Kerr media supporting three-wave interactions.

  15. VAMOS: a VAriable MOde high acceptance Spectrometer

    CERN Document Server

    Savajols, H

    1999-01-01

    The study of reactions induced by the future SPIRAL beams at GANIL requires new techniques: the low intensity of secondary beams implies the need of a very high efficiency detection system ; the study of nearly or completely unknown nuclei, over a wide range of masses and energies, needs a very efficient method for attributing a reaction product to a nucleus. The VAriable MOde high acceptance Spectrometer VAMOS is being designed and built especially for this purpose.

  16. AFP and ALFA detectors as a momentum spectrometer system - feasibility study

    CERN Document Server

    ABDUL KHALEK, Rabah

    2015-01-01

    We consider a possibility to measure a leading proton momentum using simultaneously the AFP and ALFA detectors. The idea is based on the simple fact that the proton trajectory through the magnetic field between the AFP and ALFA$_{1}$ detectors, depends on the proton's momentum loss $\\xi$. The feasibility of the proton momentum measurement is directly related to the availability of the magnetic fields and their configuration, the overlap between ALFA and AFP detectors and their resolutions as well as energy losses and the multiple scattering effect that could wash away little actions from the magnets on the proton.

  17. Dynamics of quantum liquids at high momentum

    Energy Technology Data Exchange (ETDEWEB)

    Tanatar, B.; Talbot, E.F.; Glyde, H.R.

    1987-12-01

    The dynamic form factor S(Q,..omega..) in liquid /sup 3/He and /sup 4/He is evaluated in the wave-vector transfer range 3less than or equal toQless than or equal to15 A/sup -1/. The input is the pair interatomic potential, developed by Aziz et al. The S(Q,..omega..) is calculated within the random-phase approximation (RPA) which becomes valid when h-dash-barQ is much larger than the average momentum in the liquid. A T-matrix approximation represents the interaction appearing in the RPA. The aim is to explore how well S(Q,..omega..) can be described for 3less than or equal toQless than or equal to15 A/sup -1/ from first principles. In /sup 3/He, we find S(Q,..omega..) is a broad, nearly Gaussian function, centered just below the recoil frequency having a width and shape that agrees well with experiment. It does, however, have tails at high frequency which make important contributions to its moments. In /sup 4/He, S(Q,..omega..) is a more sharply peaked function which also agrees quite well with experiment. We are able to reproduce the oscillations in the peak position and in the width of S(Q,..omega..) with Q in liquid /sup 4/He observed by Martel et al. In the present model, these oscillations originate from oscillations in the magnitude of the T-matrix interaction with Q. The corresponding oscillations are predicted to be very small and probably unobservable in liquid /sup 3/He.

  18. The high-acceptance dielectron spectrometer HADES

    Science.gov (United States)

    Agakichiev, G.; Agodi, C.; Alvarez-Pol, H.; Atkin, E.; Badura, E.; Balanda, A.; Bassi, A.; Bassini, R.; Bellia, G.; Belver, D.; Belyaev, A. V.; Benovic, M.; Bertini, D.; Bielcik, J.; Böhmer, M.; Boiano, C.; Bokemeyer, H.; Bartolotti, A.; Boyard, J. L.; Brambilla, S.; Braun-Munzinger, P.; Cabanelas, P.; Castro, E.; Chepurnov, V.; Chernenko, S.; Christ, T.; Coniglione, R.; Cosentino, L.; Dahlinger, M.; Daues, H. W.; Destefanis, M.; Díaz, J.; Dohrmann, F.; Dressler, R.; Durán, I.; Dybczak, A.; Eberl, T.; Enghardt, W.; Fabbietti, L.; Fateev, O. V.; Fernández, C.; Finocchiaro, P.; Friese, J.; Fröhlich, I.; Fuentes, B.; Galatyuk, T.; Garabatos, C.; Garzón, J. A.; Genolini, B.; Gernhäuser, R.; Gilardi, C.; Gilg, H.; Golubeva, M.; González-Díaz, D.; Grosse, E.; Guber, F.; Hehner, J.; Heidel, K.; Heinz, T.; Hennino, T.; Hlavac, S.; Hoffmann, J.; Holzmann, R.; Homolka, J.; Hutsch, J.; Ierusalimov, A. P.; Iori, I.; Ivashkin, A.; Jaskula, M.; Jourdain, J. C.; Jurkovic, M.; Kämpfer, B.; Kajetanowicz, M.; Kanaki, K.; Karavicheva, T.; Kastenmüller, A.; Kidon, L.; Kienle, P.; Kirschner, D.; Koenig, I.; Koenig, W.; Körner, H. J.; Kolb, B. W.; Kopf, U.; Korcyl, K.; Kotte, R.; Kozuch, A.; Krizek, F.; Krücken, R.; Kühn, W.; Kugler, A.; Kulessa, R.; Kurepin, A.; Kurtukian-Nieto, T.; Lang, S.; Lange, J. S.; Lapidus, K.; Lehnert, J.; Leinberger, U.; Lichtblau, C.; Lins, E.; Lippmann, C.; Lorenz, M.; Magestro, D.; Maier, L.; Maier-Komor, P.; Maiolino, C.; Malarz, A.; Marek, T.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Migneco, E.; Mishra, D.; Morinière, E.; Mousa, J.; Münch, M.; Müntz, C.; Naumann, L.; Nekhaev, A.; Niebur, W.; Novotny, J.; Novotny, R.; Ott, W.; Otwinowski, J.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pérez Cavalcanti, T.; Petri, M.; Piattelli, P.; Pietraszko, J.; Pleskac, R.; Ploskon, M.; Pospísil, V.; Pouthas, J.; Prokopowicz, W.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Ritman, J.; Roche, G.; Rodriguez-Prieto, G.; Rosenkranz, K.; Rosier, P.; Roy-Stephan, M.; Rustamov, A.; Sabin-Fernandez, J.; Sadovsky, A.; Sailer, B.; Salabura, P.; Salz, C.; Sánchez, M.; Sapienza, P.; Schäfer, D.; Schicker, R. M.; Schmah, A.; Schön, H.; Schön, W.; Schroeder, C.; Schroeder, S.; Schwab, E.; Senger, P.; Shileev, K.; Simon, R. S.; Skoda, M.; Smolyankin, V.; Smykov, L.; Sobiella, M.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Stelzer, H.; Ströbele, H.; Stroth, J.; Sturm, C.; Sudoł, M.; Suk, M.; Szczybura, M.; Taranenko, A.; Tarantola, A.; Teilab, K.; Tiflov, V.; Tikhonov, A.; Tlusty, P.; Toia, A.; Traxler, M.; Trebacz, R.; Troyan, A. Yu.; Tsertos, H.; Turzo, I.; Ulrich, A.; Vassiliev, D.; Vázquez, A.; Volkov, Y.; Wagner, V.; Wallner, C.; Walus, W.; Wang, Y.; Weber, M.; Wieser, J.; Winkler, S.; Wisniowski, M.; Wojcik, T.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y. V.; Zeitelhack, K.; Zentek, A.; Zhou, P.; Zovinec, D.; Zumbruch, P.

    2009-08-01

    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18° to 85° , a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range ( 0.1 < p < 1.0 GeV/ c . This paper describes the main features and the performance of the detector system.

  19. SHARAQ spectrometer for high-resolution studies for RI-induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michimasa, S., E-mail: mitimasa@cns.s.u-tokyo.ac.jp [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Takaki, M.; Sasamoto, Y. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Dozono, M. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nishi, T. [Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Ota, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Baba, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Baba, T. [Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Fujii, T.; Go, S.; Kawase, S.; Kikuchi, Y.; Kisamori, K.; Kobayashi, M.; Kubota, Y.; Lee, C.S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Matsubara, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Miki, K. [RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Miya, H. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); and others

    2013-12-15

    Highlights: • Report on recent achievement of the SHARAQ spectrometer. • Demonstration of two ion optics modes for high-resolution spectroscopy. • Discussion on measured transport matrix elements by comparison with designed values. • Demonstration of event-by-event momentum tagging by the achromatic transport. • Achievement of momentum resolution of 1/8100 by the dispersion-matching transport. -- Abstract: The SHARAQ spectrometer and High-Resolution Beamline, which began operation in March 2009, have been put into use for six experiments using charge exchange reactions with radioactive isotope beams. For experiments at SHARAQ, detector developments and ion optics studies continue to improve performance in high-resolution nuclear spectroscopy. We have introduced improved timing resolution with CVD diamond detectors, high count-rate beamline tracking detectors and development of multi-particle detection by cathode-readout drift chambers. Ion-optics studies for the high-resolution achromatic (HA) and dispersion-matching (DM) transport modes are also reported here. Momentum tagging in the HA mode demonstrated an improvement in spectroscopic resolution with respect to the momentum spread of the radioactive beam. For the DM transportation mode, a momentum resolution of 1/8100 (FWHM) was achieved by taking into account the positions and angles of the beam at the third focal plane of BigRIPS.

  20. spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Hedelius

    2016-08-01

    Full Text Available Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON. However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.

  1. Neutron–proton bremsstrahlung as a possible probe of high-momentum component in nucleon momentum distribution

    Directory of Open Access Journals (Sweden)

    Hui Xue

    2016-04-01

    Full Text Available Neutron-proton bremsstrahlung in intermediate energy nucleus–nucleus collisions is proposed as a possible probe to study the high-momentum component in nucleon momentum distribution of finite nucleus. Based on the Boltzmann–Uehling–Uhlenbeck (BUU transport model, the effects of high-momentum component on the production of bremsstrahlung photons in the reaction of C12+12C collisions at different incident beam energies are studied. It is found that the high-momentum component increases the high-energy bremsstrahlung photon production remarkably. Furthermore, the ratio of photon production at different incident beam energies is suggested as a potential observable to probe the high-momentum component in nucleon momentum distribution of finite nucleus.

  2. Maximization of the acceptance and momentum resolution of the ATLAS muon spectrometer with novel drift-tube and resistive plate chambers

    CERN Document Server

    Schwegler, Philipp; The ATLAS collaboration

    2014-01-01

    The ATLAS muon spectrometer provides high momentum resolution up to transverse muon momenta in the TeV range in almost the full pseudo-rapidity interval of −2.7 < η < 2.7. The acceptance of the muon spectrometer is currently limited by uninstrumented regions in the vicinity of η = 0 to provide space for cables and services of the inner detector and the calorimeters and in the feet region due to space limitations. A large fraction of these acceptance gaps will successively be closed by installing novel small monitored drift tube (sMDT) chambers with tubes of half the diameter of the present MDT chambers and novel resistive plate chambers (RPC) with smaller gas gaps and higher spatial resolution. The reduced size of the chambers without loss of measurement points does not only make it possible to equip the originally uninstrumented regions with tracking and trigger chambers, but also to operate the new chambers under the highly increased background radiation levels expected for the operation of the mu...

  3. High sensitivity field asymmetric ion mobility spectrometer.

    Science.gov (United States)

    Chavarria, Mario A; Matheoud, Alessandro V; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 10 12 V/A with an effective equivalent input noise level down to about 1 fA/Hz 1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  4. High sensitivity field asymmetric ion mobility spectrometer

    Science.gov (United States)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  5. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  6. Tunable orbital angular momentum in high-harmonic generation.

    Science.gov (United States)

    Gauthier, D; Ribič, P Rebernik; Adhikary, G; Camper, A; Chappuis, C; Cucini, R; DiMauro, L F; Dovillaire, G; Frassetto, F; Géneaux, R; Miotti, P; Poletto, L; Ressel, B; Spezzani, C; Stupar, M; Ruchon, T; De Ninno, G

    2017-04-05

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light-matter interactions, and the disentanglement and independent control of the intrinsic and extrinsic components of the photon's angular momentum at short-wavelengths. The methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.

  7. Relativistic Thermodynamics: Transverse Momentum Distributions in High-Energy Physics

    CERN Document Server

    Cleymans, J.

    2012-01-01

    Transverse momentum distributions measured by the STAR and PHENIX collaborations at the Relativistic Heavy Ion Collider and by the ALICE, ATLAS and CMS collaborations at the Large Hadron Collider can be considered in the framework of relativistic thermodynamics using the Tsallis distribution. Theoretical issues are clarified concerning the thermodynamic consistency in the case of relativistic high energy quantum distributions. An improved form is proposed for describing the transverse momentum distribution and fits are presented together with estimates of the parameter q and the temperature T.

  8. Multi-leptons with high transverse momentum at HERA

    NARCIS (Netherlands)

    Aaron, F. D.; Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Martin, M. Aldaya; Alexa, C.; Alimujiang, K.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Antunovic, B.; Arneodo, M.; Asmone, A.; Aushev, V.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J. C.; Blohm, C.; Bold, T.; Boos, E. G.; Borodin, M.; Borras, K.; Boscherini, D.; Boudry, V.; Boutle, S. K.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Brock, I.; Brownson, E.; Brugnera, R.; Bruemmer, N.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Buschhorn, G.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Cantun Avila, K. B.; Capua, M.; Carlin, R.; Cassol-Brunner, F.; Catterall, C. D.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Cholewa, A.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J. G.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; D'Agostini, G.; Dainton, J. B.; Dal Corso, F.; Daum, K.; Deak, M.; de Boer, Y.; de Favereau, J.; Delcourt, B.; Del Degan, M.; del Peso, J.; Delvax, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; De Wolf, E. A.; Diaconu, C.; Dobur, D.; Dodonov, V.; Dolgoshein, B. A.; Dossanov, A.; Doyle, A. T.; Drugakov, V.; Dubak, A.; Durkin, L. S.; Dusini, S.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P. F.; Eskreys, A.; Falkiewicz, A.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Fischer, D. -J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Fourletov, S.; Gabathuler, E.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Goettlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grell, B. R.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Helebrant, C.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K. H.; Hochman, D.; Hoffmann, D.; Holm, U.; Hori, R.; Horisberger, R.; Horton, K.; Hreus, T.; Huettmann, A.; Iacobucci, G.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H. -P.; Janssen, X.; Januschek, F.; Jimenez, M.; Jones, T. W.; Jonsson, L.; Jung, A. W.; Jung, H.; Juengst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I. I.; Katzy, J.; Kaur, M.; Kaur, P.; Kenyon, I. R.; Keramidas, A.; Khein, L. A.; Kiesling, C.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kollar, D.; Kooijman, P.; Korzhavina, I. A.; Kostka, P.; Kotanski, A.; Koetz, U.; Kowalski, H.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krueger, K.; Kulinski, P.; Kuprash, O.; Kutak, K.; Kuze, M.; Kuzmin, V. A.; Landon, M. P. J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Leibenguth, G.; Lendermann, V.; Levchenko, B. B.; Levonian, S.; Libov, V.; Limentani, S.; Ling, T. Y.; Lipka, K.; Liptaj, A.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lohmann, W.; Loehr, B.; Lohrmann, E.; Loizides, J. H.; Loktionova, N.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukasik, J.; Lukina, O. Yu.; Luzniak, P.; Lytkin, L.; Maeda, J.; Magill, S.; Makankine, A.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Marage, P.; Margotti, A.; Marini, G.; Marti, Ll.; Martyn, H. -U.; Mastroberardino, A.; Matsumoto, T.; Mattingly, M. C. K.; Maxfield, S. J.; Mehta, A.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Michels, V.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Moreau, F.; Mozer, M. U.; Mudrinic, M.; Mueller, K.; Murin, P.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, Th.; Nicholass, D.; Niebuhr, C.; Nigro, A.; Nikiforov, A.; Ning, Y.; Noor, U.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R. J.; Nozicka, M.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Olsson, J. E.; Osman, S.; Ota, O.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G. D.; Pawlak, J. M.; Pawlik, B.; Pejchal, O.; Pelfer, P. G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piec, S.; Piotrzkowski, K.; Pitzl, D.; Placakythe, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Povh, B.; Preda, T.; Proskuryakov, A. S.; Przybycien, M.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Raspiareza, A.; Raval, A.; Ravdandorj, T.; Reeder, D. D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roland, B.; Roloff, P.; Ron, E.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J. E.; Rurikova, Z.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Samson, U.; Sankey, D. P. C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schoeffel, L.; Schoenberg, V.; Schoening, A.; Schoerner-Sadenius, T.; Schultz-Coulon, H. -C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shaw-West, R. N.; Shcheglova, L. M.; Shehzadi, R.; Shtarkov, L. N.; Shushkevich, S.; Singh, I.; Skillicorn, I. O.; Sloan, T.; Slominski, W.; Smiljanic, I.; Smith, W. H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sorokin, Iu.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stella, B.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Sunar, D.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Tchoulakov, V.; Terron, J.; Theedt, T.; Thompson, G.; Thompson, P. D.; Tiecke, H.; Tokushuku, K.; Toll, T.; Tomasz, F.; Tomaszewska, J.; Traynor, D.; Truoel, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turnau, J.; Tymieniecka, T.; Urban, K.; Uribe-Estrada, C.; Valkarovha, A.; Vallee, C.; Van Mechelen, P.; Trevino, A. Vargas; Vazdik, Y.; Vazquez, M.; Verbytskyi, A.; Vinokurova, S.; Vlasov, N. N.; Volchinski, V.; Volynets, O.; von den Driesch, M.; Walczak, R.; Abdullah, W. A. T. Wan; Wegener, D.; Whitmore, J. J.; Whyte, J.; Wing, M.; Wissing, Ch.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wuensch, E.; Yaguees-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zacek, J.; Zalesak, J.; Zarnecki, A. F.; Zawiejski, L.; Zeuner, W.; Zhautykov, B. O.; Zhokin, A.; Zichichi, A.; Zimmermann, T.; Zohrabyan, H.; Zolko, M.; Zomer, F.; Zotkin, D. S.; Zus, R.

    2009-01-01

    Events with at least two high transverse momentum leptons (electrons or muons) are studied using the H1 and ZEUS detectors at HERA with an integrated luminosity of 0.94 fb(-1). The observed numbers of events are in general agreement with the Standard Model predictions. Seven di- and tri-lepton

  9. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  10. Electron Scattering From High-Momentum Neutrons in Deuterium

    CERN Document Server

    Klimenko, A V; Ambrozewicz, P; Anghinolo, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Biselli, A S; Bltmann, S; Boiarinov, S; Bouchigny, S; Bradford, R; Branford, D; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Cazes, A; Chen, S; Cole, P L; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Cummings, J P; Dashyan, N B; De Sanctis, E; De Vita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Eugenio, P; Fatemi, R; Fedotov, G; Fersch, R G; Feuerbach, R J; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gonenc, A; Gordon, C I O; Gothe, R W; Grioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Jüngst, H G; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kossov, M; Kramer, L H; Kubarovski, V; Kuhn, S E; Kuleshov, S V; Kühn, J; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Li, J; Livingston, K; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S S; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R C; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Mutchler, G S; Müller, J; Nadel-Turonski, P; Napolitano, J; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatie, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A V; Stepanyan, S; Stokes, B E; Stoler, P; Strauch, S; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S I; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B

    2006-01-01

    We report results from an experiment measuring the semi-inclusive reaction $d(e,e'p_s)$ where the proton $p_s$ is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass $W^{*}$, backward proton momentum $\\vec{p}_{s}$ and momentum transfer $Q^{2}$. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that ...

  11. MERTIS: a highly integrated IR imaging spectrometer

    Science.gov (United States)

    Walter, I.; Hirsch, H.; Jahn, H.; Knollenberg, J.; Venus, H.

    2006-08-01

    With a background of several instrument developments in the past the German Aerospace Center in Berlin proposed for ESA's deep space mission BepiColombo an imaging spectrometer which meets the challenges of limited technical resources and a very special operational environment. An 80-channel push broom-type spectrometer has been drafted and it s development has been started under the name MERTIS (MErcury Radiometer and Thermal Infrared Spectrometer). The instrument is dedicated to the mineralogy surface science and thermal characteristics studies of the innermost planet. It is based on modern un-cooled micro-bolometer technology and all-reflective optics design. The operation concept principle is characterised by intermediate scanning of the planet, deep space and black bodies as calibration targets. A miniaturised radiometer is included for low level temperature measurements. Altogether the system shall fit into a CD-package sized cube and weigh less than 3 kg. The paper will present the instrument architecture of MERTIS, its design status and will show the results of first components being built.

  12. Electron momentum density and the momentum density of positron annihilation pairs in alkali metals: high-momentum components

    Energy Technology Data Exchange (ETDEWEB)

    Sob, M.

    1985-08-01

    The valence electron momentum density (EMD) and the momentum density of positron annihilation pairs (MDAP) are calculated ab initio for alkali metals from Li to Cs. It is shown that the proportion of valence electrons having their momenta within the central Fermi surface ranges from 75% (Cs) to 93% (Na); the momenta of the remaining valence electrons lie in the Umklapp Fermi surfaces centred at the surrounding reciprocal lattice points. In the calculation of the MDAP, various enhancement factors describing the effect of the many-body electron-positron interaction are examined; it seems that the recent model of enhancement of Umklapp terms presented by Sormann et al is not fully adequate. A relation between the EMD and MDAP is briefly discussed and the connection between the occupation of the central Fermi surface and other parameters of the electronic structure is pointed out.

  13. Efficient polarization of high-angular-momentum systems

    CERN Document Server

    Rochester, Simon; Raizen, Mark; Pustelny, Szymon; Auzinsh, Marcis; Budker, Dmitry

    2016-01-01

    We propose methods of optical pumping that are applicable to open, high-angular-momentum transitions in atoms and molecules, for which conventional optical pumping would lead to significant population loss. Instead of applying circularly polarized cw light, as in conventional optical pumping, we propose to use techniques for coherent population transfer (e.g., adiabatic fast passage) to arrange the atoms so as to increase the entropy removed from the system with each spontaneous decay from the upper state. This minimizes the number of spontaneous-emission events required to produce a stretched state, thus reducing the population loss due to decay to other states. To produce a stretched state in a manifold with angular momentum J, conventional optical pumping requires about 2J spontaneous decays per atom; one of our proposed methods reduces this to about log_2(2J), while another of the methods reduces it to about one spontaneous decay, independent of J.

  14. Electron Scattering From a High-Momentum Neutron in Deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, Alexei [Old Dominion Univ., Norfolk, VA (United States)

    2004-05-01

    The deuterium nucleus is a system of two nucleons (proton and neutron) bound together. The configuration of the system is described by a quantum-mechanical wave function and the state of the nucleons at a given time is not know a priori. However, by detecting a backward going proton of moderate momentum in coincidence with a reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred if we assume that the proton was a spectator to the reaction. This method, known as spectator tagging, was used to study the electron scattering from high-momentum neutrons in deuterium. The data were taken with a 5.765 GeV polarized electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. The accumulated data cover a wide kinematic range, reaching values of the invariant mass of the unobserved final state W* up to 3 GeV. A data sample of approximately 5 - 105 events, with protons detected at large scattering angles (as high as 136 degrees) in coincidence with the forward electrons, was selected. The product of the neutron structure function with the initial nucleon momentum distribution F2n. S was extracted for different values of W*, backward proton momenta ps and momentum transfer Q2. The data were compared to a calculation based on the spectator approximation and using the free nucleon form factors and structure functions. A strong enhancement in the data, not reproduced by the model, was observed at cos(thetapq) > -0.3 (where theta{sub pq} is the proton scattering angle relative to the direction of the momentum transfer) and can be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. The bound nucleon structure function F2n was studied in the region cos(thetapq) < -0.3 as a function of W* and scaling variable x*. At high spectator proton momenta the struck neutron is

  15. Multi-lepton production at high transverse momentum at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2009-06-15

    A search for events containing two or more high-transverse-momentum isolated leptons has been performed in ep collisions with the ZEUS detector at HERA using the full collected data sample, corresponding to an integrated luminosity of 480 pb{sup -1}. The number of observed events has been compared with the prediction from the Standard Model, searching for possible deviations, especially for multi- lepton events with invariant mass larger than 100 GeV. Good agreement with the Standard Model has been observed. Total and differential cross sections for di-lepton production have been measured in a restricted phase space dominated by photon-photon collisions. (orig.)

  16. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  17. CHIRON – A new high resolution spectrometer for CTIO

    Directory of Open Access Journals (Sweden)

    Marcy G.W.

    2011-07-01

    Full Text Available Small telescopes can play an important role in the search for exoplanets because they offer an opportunity for high cadence observations that are not possible with large aperture telescopes. However, there is a shortage of high resolution spectrometers for precision Doppler planet searches. We report on an innovative design for CHIRON, an inexpensive spectrometer that we are building for the 1.5-m telescope at CTIO in Chile. The resolution will be R >80.000, the spectral format spanning 410 to 880 nm. The total throughput of the telescope and spectrometer will be better than 12%, comparable with the efficiency of state-of-the-art spectrometers. The design is driven by the requirements for precision Doppler searches for exoplanets using an iodine cell. The optical layout is a classical echelle with 140 mm beam size. The bench-mounted spectrometer will be fibre-fed followed by an image slicer. An apochromatic refractor is used as the camera. Image quality and throughput of the design are excellent over the full spectral range. Extensive use of commercially available components and avoidance of complicated custom optics are key for quick and resource-efficient implementation.

  18. Multi-leptons with high transverse momentum at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; Max-Planck-Inst., Muenchen (Germany); Abt, I. [Max-Planck-Inst., Muenchen (DE)] (and others)

    2009-07-15

    Events with at least two high transverse momentum leptons (electrons or muons) are studied using the H1 and ZEUS detectors at HERA with an integrated luminosity of 0.94 fb{sup -1}. The observed numbers of events are in general agreement with the Standard Model predictions. Seven di- and tri-lepton events are observed in e{sup +}p collision data with a scalar sum of the lepton transverse momenta above 100 GeV while 1.94{+-}0.17 events are expected. Such events are not observed in e{sup -}p collisions for which 1.19{+-}0.12 are predicted. Total visible and differential di-electron and di-muon photoproduction cross sections are extracted in a restricted phase space dominated by photon-photon collisions. (orig.)

  19. Multi-Leptons with High Transverse Momentum at HERA

    CERN Document Server

    Aaron, F.D.; Abt, I.; Adamczyk, L.; Adamus, M.; Aldaya Martin, M.; Alexa, C.; Alimujiang, K.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Antunovic, B.; Arneodo, M.; Asmone, A.; Aushev, V.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Bamberger, A.; Barakbaev, A.N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J.C.; Blohm, C.; Bold, T.; Boos, E.G.; Borodin, M.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Boutle, S.K.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Brock, I.; Brownson, E.; Brugnera, R.; Brummer, N.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Buschhorn, G.; Bussey, P.J.; Butterworth, J.M.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Carlin, R.; Cassol-Brunner, F.; Catterall, C.D.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Cholewa, A.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J.G.; Cooper-Sarkar, A.M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; D'Agostini, G.; Dainton, J.B.; Dal Corso, F.; Daum, K.; Deak, M.; de Boer, Y.; de Favereau, J.; Delcourt, B.; Del Degan, M.; del Peso, J.; Delvax, J.; Dementiev, R.K.; De Pasquale, S.; Derrick, M.; Devenish, R.C.E.; De Wolf, E.A.; Diaconu, C.; Dobur, D.; Dodonov, V.; Dolgoshein, B.A.; Dossanov, A.; Doyle, A.T.; Drugakov, V.; Dubak, A.; Durkin, L.S.; Dusini, S.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P.F.; Eskreys, A.; Falkiewicz, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M.I.; Figiel, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Fourletov, S.; Gabathuler, E.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gladilin, L.K.; Gladkov, D.; Glasman, C.; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu.A.; Gottlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grell, B.R.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J.C.; Hartmann, H.; Hartner, G.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K.H.; Hochman, D.; Hoffmann, D.; Holm, U.; Hori, R.; Horisberger, R.; Horton, K.; Hreus, T.; Huttmann, A.; Iacobucci, G.; Ibrahim, Z.A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.P.; Janssen, M.E.; Janssen, X.; Januschek, F.; Jimenez, M.; Jones, T.W.; Jonsson, L.; Jung, A.W.; Jung, H.; Jungst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I.I.; Katzy, J.; Kaur, M.; Kaur, P.; Kenyon, I.R.; Keramidas, A.; Khein, L.A.; Kiesling, C.; Kim, J.Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Koffeman, E.; Kogler, R.; Kollar, D.; Kooijman, P.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kowalski, H.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kulinski, P.; Kuprash, O.; Kutak, K.; Kuze, M.; Kuzmin, V.A.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Leibenguth, G.; Lendermann, V.; Levchenko, B.B.; Levonian, S.; Levy, A.; Li, G.; Libov, V.; Limentani, S.; Ling, T.Y.; Lipka, K.; Liptaj, A.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lohmann, W.; Lohr, B.; Lohrmann, E.; Loizides, J.H.; Loktionova, N.; Long, K.R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukasik, J.; Lukina, O.Yu.; Luzniak, P.; Lytkin, L.; Maeda, J.; Magill, S.; Makankine, A.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Marage, P.; Margotti, A.; Marini, G.; Marti, Ll.; Martin, J.F.; Martyn, H.U.; Mastroberardino, A.; Matsumoto, T.; Mattingly, M.C.K.; Maxfield, S.J.; Mehta, A.; Melzer-Pellmann, I.A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J.D.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, Th.; Newman, P.R.; Nicholass, D.; Niebuhr, C.; Nigro, A.; Nikiforov, A.; Ning, Y.; Noor, U.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R.J.; Nozicka, M.; Nuncio-Quiroz, A.E.; Oh, B.Y.; Okazaki, N.; Oliver, K.; Olivier, B.; Olkiewicz, K.; Olsson, J.E.; Osman, S.; Ota, O.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G.D.; Paul, E.; Pawlak, J.M.; Pawlik, B.; Pejchal, O.; Pelfer, P.G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piec, S.; Piotrzkowski, K.; Pitzl, D.; Placakythe, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Polini, A.; Povh, B.; Preda, T.; Proskuryakov, A.S.; Przybycien, M.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Raval, A.; Ravdandorj, T.; Reeder, D.D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y.D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roland, B.; Roloff, P.; Ron, E.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Samson, U.; Sankey, D.P.C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A.A.; Saxon, D.H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schonberg, V.; Schoning, A.; Schorner-Sadenius, T.; Schultz-Coulon, H.C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shaw-West, R.N.; Shcheglova, L.M.; Shehzadi, R.; Shimizu, S.; Shtarkov, L.N.; Shushkevich, S.; Singh, I.; Skillicorn, I.O.; Sloan, T.; Slominski, W.; Smiljanic, I.; Smith, W.H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sorokin, Iu.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stella, B.; Stern, A.; Stewart, T.P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Sunar, D.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk, J.; Szuba, D.; Szuba, J.; Tapper, A.D.; Tassi, E.; Tchoulakov, V.; Terron, J.; Theedt, T.; Thompson, G.; Thompson, P.D.; Tiecke, H.; Tokushuku, K.; Toll, T.; Tomasz, F.; Tomaszewska, J.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turnau, J.; Tymieniecka, T.; Urban, K.; Uribe-Estrada, C.; Valkarovha, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vazquez, M.; Verbytskyi, A.; Vinokurova, S.; Vlasov, N.N.; Volchinski, V.; Volynets, O.; von den Driesch, M.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Whitmore, J.J.; Whyte, J.; Wiggers, L.; Wing, M.; Wissing, Ch.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wunsch, E.; Yagues-Molina, A.G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zacek, J.; Zalesak, J.; Zarnecki, A.F.; Zawiejski, L.; Zeuner, W.; Zhang, Z.; Zhautykov, B.O.; Zhokin, A.; Zhou, C.; Zichichi, A.; Zimmermann, T.; Zohrabyan, H.; Zolko, M.; Zomer, F.; Zotkin, D.S.; Zus, R.

    2009-01-01

    Events with at least two high transverse momentum leptons (electrons or muons) are studied using the H1 and ZEUS detectors at HERA with an integrated luminosity of 0.94 fb^{-1}. The observed numbers of events are in general agreement with the Standard Model predictions. Seven di- and tri-lepton events are observed in e^+p collision data with a scalar sum of the lepton transverse momenta above 100 GeV while 1.94+-0.17 events are expected. Such events are not observed in e^-p collisions for which 1.19+-0.12 are predicted. Total visible and differential di-electron and di-muon photoproduction cross sections are extracted in a restricted phase space dominated by photon-photon collisions.

  20. Miniature high-performance infrared spectrometer for space applications

    Science.gov (United States)

    Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh

    2017-11-01

    Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.

  1. High-power 95 GHz pulsed electron spin resonance spectrometer

    Science.gov (United States)

    Hofbauer, W.; Earle, K. A.; Dunnam, C. R.; Moscicki, J. K.; Freed, J. H.

    2004-05-01

    High-field/high-frequency electron spin resonance (ESR) offers improved sensitivity and resolution compared to ESR at conventional fields and frequencies. However, most high-field/high-frequency ESR spectrometers suffer from limited mm-wave power, thereby requiring long mm-wave pulses. This precludes their use when relaxation times are short, e.g., in fluid samples. Low mm-wave power is also a major factor limiting the achievable spectral coverage and thereby the multiplex advantage of Fourier transform ESR (FTESR) experiments. High-power pulses are needed to perform two-dimensional (2D) FTESR experiments, which can unravel the dynamics of a spin system in great detail, making it an excellent tool for studying spin and molecular dynamics. We report on the design and implementation of a high-power, high-bandwidth, pulsed ESR spectrometer operating at 95 GHz. One of the principal design goals was the ability to investigate dynamic processes in aqueous samples at physiological temperatures with the intent to study biological systems. In initial experiments on aqueous samples at room temperature, we achieved 200 MHz spectral coverage at a sensitivity of 1.1×1010√s spins and a dead time of less than 50 ns. 2D-electron-electron double resonance experiments on aqueous samples are discussed to demonstrate the practical application of such a spectrometer.

  2. Probing the high momentum component of the deuteron at high Q^2.

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, Werner; Ambrozewicz, Pawel; Aniol, Konrad; Arrington, John; Batigne, Guillaume; Bosted, Peter; Camsonne, Alexandre; Chang, C; Chen, Jian-Ping; Choi, Seonho; Deur, Alexandre; Epstein, Martin; Finn, John; Frullani, Salvatore; Furget, Christophe; Garibaldi, Franco; Gayou, Olivier; Gilman, Ronald; Hansen, Jens-Ole; Hayes, David; Higinbotham, Douglas; Hinton, Wendy; Hyde, Charles; Ibrahim, Hassan; De Jager, Cornelis; Jiang, Xiaodong; Jones, Mark; Kaufman, Lisa; Klein, Andreas; Kox, Serge; Kramer, Laird; Kumbartzki, Gerfried; Laget, Jean; LeRose, John; Lindgren, Richard; Margaziotiz, Demetrius; Markowitz, Pete; McCormick, Kathy; Meziani, Zein-Eddine; Michaels, Robert; Milbrath, Brian; Mitchell, Joseph; Monaghan, Peter; Moteabbed, Maryam; Moussiegt, Pierre; Nasseripour, Rakhsha; Paschke, Kent; Perdrisat, Charles; Piasetzky, Eliazer; Punjabi, Vina; Qattan, Issam; Quemener, Gilles; Ransome, Ronald; Raue, Brian; Real, Jean-Sebastien; Reinhold, Joerg; Reitz, Bodo; Roche, Rikki; Roedelbronn, Michael; Saha, Arunava; Slifer, Karl; Solvignon-Slifer, Patricia; Sulkosky, Vincent; Ulmer, Paul; Voutier, Eric; Weinstein, Lawrence; Wojtsekhowski, Bogdan

    2011-12-01

    The {sup 2}H(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c){sup 2} was measured over a kinematical range that made it possible to study this reaction for a set of fixed missing momenta as a function of the neutron recoil angle {theta}{sub nq} and to extract missing momentum distributions for fixed values of {theta}{sub nq} up to 0.55 GeV/c. In the region of 35{sup o} {le} {theta}{sub nq} {le} 45{sup o} recent calculations, which predict that final state interactions are small, agree reasonably well with the experimental data. Therefore these experimental reduced cross sections provide direct access to the high momentum component of the deuteron momentum distribution in exclusive deuteron electro-disintegration.

  3. Angular Momentum Evolution Of Disk Galaxies At High Redshift

    Science.gov (United States)

    Okamura, Taku; Kazuhiro, Shimasaku; Ryota, Kawamata

    2017-06-01

    The stellar disk size of a galaxy depends on the fraction of the dark-halo mass settled as disk stars, m★= M★/Mdh, and the fraction of the dark-halo angular momentum transferred to the disk, j★ = J★/Jdh. Since j★ is also determined by various star-formation related mechanisms such as inflows and feedbacks, measuring j★ and m★ at high redshifts is needed to understand the formation history of disk galaxies. We use the 3D-HST GOODS-S, COSMOS, and AEGIS imaging data and photo-z catalogs to examine j★ and m★ for star-forming galaxies at z 2,3,4, when disks are actively forming. We find that the j★/m★ ratio is roughly constant at ≃ 0.8 for all three redshifts over the entire halo mass range examined. This high ratio is close to those of local disk galaxies but a factor of a few higher than predicted (at z 2) by galaxy formation models. We also find that a significant fraction of our galaxies appear to be unstable against bar formation.

  4. Johann Spectrometer for High Resolution X-ray Spectroscopy

    Science.gov (United States)

    Machek, Pavel; Welter, Edmund; Caliebe, Wolfgang; Brüggmann, Ulf; Dräger, Günter; Fröba, Michael

    2007-01-01

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 μm thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5×1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  5. The PNL high-transmission three-stage mass spectrometer

    Science.gov (United States)

    Stoffels, J. J.; Ells, D. R.; Bond, L. A.; Freedman, P. A.; Tattersall, B. N.; Lagergren, C. R.

    1992-12-01

    We have constructed a three-stage isotope-ratio mass spectrometer of unique ion-optical design that achieves high ion transmission efficiency and high abundance sensitivity. The spectrometer has tandem 90 deg deflection magnets with boundaries 18 deg off normal. The magnet drift lengths are 1.48 times the 27-cm radius of deflection. This extended geometry gives a mass dispersion equivalent to a 40-cm-radius magnet with normal boundaries. The first magnet renders the ion beam parallel in the vertical plane and provides a focus in the horizontal plane of mass dispersion. The second magnet brings the beam to a stigmatic focus. This novel ion-optical design gives 100 percent transmission without the need for intermediate focusing lenses. It also provides a 16 percent increase in mass resolution over the traditional tandem geometry with normal magnet boundaries. Complete transmission of ions is maintained through a third-stage cylindrical electric sector of 38-cm radius, which provides increased isotope-abundance sensitivity. The isotope-abundance sensitivity of the new mass spectrometer is an order of magnitude better than similar instruments with normal magnet boundaries. This is because the vertical focusing of the ion beam prevents ion scattering from the top and bottom of the flight tube. The measured values of the isotope-abundance sensitivity one-half mass unit away from the rhenium ion peaks at masses 185 and 187 are M - 1/2 = (6.5 +/- 0.5)(10)(exp -10) and M + 1/2 = (3.1 +/- 0.8)(10)(exp -10). By extrapolation, the uranium isotope-abundance sensitivity is M - 1 = 1(10)(exp -10). Construction of the instrument was facilitated by using standard commercial mass spectrometer components.

  6. Measurement of total angular momentum values of high-lying even ...

    Indian Academy of Sciences (India)

    Measurement of total angular momentum values of high-lying even-parity atomic states of samarium by spectrally resolved laser-induced fluorescence technique. A K PULHANI∗, M L SHAH, G P GUPTA and B M SURI. Laser and Plasma Technology Division, Bhabha Atomic Research Centre,. Mumbai 400 085, India.

  7. Measurement of total angular momentum values of high-lying even ...

    Indian Academy of Sciences (India)

    Spectrally resolved laser-induced fluorescence technique was used to uniquely assign total angular momentum () values to high-lying even-parity energy levels of atomic samarium. Unique value assignment was done for seven energy levels in the energy region 34,800–36,200 cm-1 , recently observed and reported in ...

  8. A high resolution, low background fast neutron spectrometer

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S; Adams, J M; Nico, J S; Thompson, A K

    2002-01-01

    We discuss the possibility to create a spectrometer of full absorption based on liquid scintillator doped with enriched sup 6 Li. Of specific interest, the spectrometer will have energy resolution estimated to lie in the range 5-10% for 14 MeV neutrons. It will be sensitive to fluxes from 10 sup - sup 4 to 10 sup 6 cm sup - sup 2 s sup - sup 1 above a threshold of 1 MeV in a gamma-background of up to 10 sup 4 s sup - sup 1. The detector's efficiency will be determined by the volume of the scintillator only (approx 3 l) and is estimated to be 0.2-10%. The main reason for the poor resolution of an organic scintillator based spectrometer of full absorption is a non-linear light-yield of the scintillator for recoil protons. The neutron energy is occasionally distributed among recoil protons, and due to non-linear light-yield the total amount of light from all recoil protons ambiguously determines the initial neutron energy. The high-energy resolution will be achieved by compensation of the non-linear light-yield ...

  9. Novel High Transverse Momentum Phenomena in Hadronic and Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2009-04-10

    I discuss a number of novel phenomenological features of QCD in high transverse momentum reactions. The presence of direct higher-twist processes, where a proton is produced directly in the hard subprocess, can explain the 'baryon anomaly' - the large proton-to-pion ratio seen at RHIC in high centrality heavy ion collisions. Direct hadronic processes can also account for the deviation from leading-twist PQCD scaling at fixed x{sub T} = 2 p{sub T}/{radical}s. I suggest that the 'ridge' --the same-side long-range rapidity correlation observed at RHIC in high centrality heavy ion collisions is due to the imprint of semihard DGLAP gluon radiation from initial-state partons which have transverse momenta biased toward the trigger. A model for early thermalization of the quark-gluon medium is also outlined. Rescattering interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing--all leading-twist dynamics not incorporated in the light-front wavefunctions of the target computed in isolation. Anti shadowing is shown to be quark flavor specific and thus different in charged and neutral deep inelastic lepton-nucleus scattering. I also discuss other aspects of quantum effects in heavy ion collisions, such as tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and the important consequences of color-octet intrinsic heavy quark distributions in the proton for particle and Higgs production at high x{sub F}. I also discuss how the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories allows one to compute the analytic form of frame-independent light

  10. Momentum Enhancement due to Crater Ejecta during Hypervelocity Impact of Highly Porous and Consolidated Rock

    Science.gov (United States)

    Walker, James; Chocron, Sidney; Grosch, Donald; Durda, Daniel; Housen, Kevin

    2017-06-01

    Experiments were performed with impacts of 2.54- to 4.45-cm-diameter aluminum spheres at 2.1 km/s into both consolidated rock (granite) and highly porous rock (pumice). Measured in these experiments was the momentum enhancement -- that is, how much momentum is transferred to the rock by the impactor. The transferred momentum is greater than the impactor due to the crater ejecta. The momentum enhancement is characterized by β , which is the ratio of the momentum transferred to the target and the momentum of the impactor. High speed video recorded the impact event, the ejecta from the target, and the motion of the target (hung in a ballistic pendulum arrangement). Constitutive models of rock that include porosity and crush-up behavior when incorporated into impact physics codes (specifically CTH and EPIC) show good agreement with crater depth, but they do not show good agreement with momentum enhancement. This paper will review the data and place it in the context of other momentum enhancement data, including the nonlinear effect of scale size. It will also explore the difficulties in large-scale numerical modeling of the momentum enhancement. An application of this data is determining the effectiveness of deflecting asteroids and comet nuclei by hypervelocity impacts.

  11. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  12. A hemispherical high-pressure xenon gamma radiation spectrometer

    CERN Document Server

    Kessick, R

    2002-01-01

    A prototype hemispherical high-pressure xenon gamma radiation spectrometer was designed, constructed and tested. The detector consists of a pair of concentric hemispherical electrodes contained inside a thin-walled stainless steel pressure dome. Detector performance parameters such as energy resolution, linearity and vibration sensitivity were determined and compared to previous cylindrical and planar designs. Without a Frisch grid, the hemispherical detector provides a total room temperature energy resolution of 6% at 662 keV and is relatively insensitive to acoustic interference.

  13. Instruction manual for ORNL tandem high abundance sensitivity mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H.; McKown, H.S.; Chrisite, W.H.; Walker, R.L.; Carter, J.A.

    1976-06-01

    This manual describes the physical characteristics of the tandem mass spectrometer built by Oak Ridge National Laboratory for the International Atomic Energy Agency. Specific requirements met include ability to run small samples, high abundance sensitivity, good precision and accuracy, and adequate sample throughput. The instrument is capable of running uranium samples as small as 10/sup -12/ g and has an abundance sensitivity in excess of 10/sup 6/. Precision and accuracy are enhanced by a special sweep control circuit. Sample throughput is 6 to 12 samples per day. Operating instructions are also given.

  14. Study of $\\overline{p}$-Nucleus Interaction with a High Resolution Magnetic Spectrometer

    CERN Multimedia

    2002-01-01

    This experiment uses the high resolution, large solid angle and large momentum acceptance magnetic spectrometer SPES~II to study the interaction between @* and complex nuclei in the following experiments: \\\\ \\\\ \\item 1)~~~~A(@*, @*)A. Angular distribution of @* elastically scattered from |1|2C, |4|0Ca and |2|0|8Pb. \\item 2)~~~~A(@*, @*')A*. Excitation energy spectra and some angular distributions of @* inelastically scattered from |1|2C, |4|0Ca and |2|0|8Pb up to an excitation energy of &prop.~100~MeV. \\item 3)~~~~A(@*, p)A^z^-^1 (@*). Excitation energy spectra for knock out reaction on |6Li, |1|2C, |6|3Cu and |2|0|9Bi at several angles. \\end{enumerate}\\\\ \\\\ Any beam momentum between 300 MeV/c and 800 MeV/c will be suitable for this experiment. In order to vary the effect of strong absorption of @* by nuclei, elastic and inelastic scattering will be performed at two or three different @* momenta (depending on the way LEAR will be operated) down to 300~MeV/c.

  15. Identification of high momentum charged hadrons in ALICE:. detector performance and perspectives

    Science.gov (United States)

    Volpe, G.

    2010-04-01

    The results obtained by the RHIC experiments at BNL from high energy nucleus-nucleus collisions have shown the importance of identifying high momentum charged hadrons. At LHC, the relevant range for particle identification is expected to be wider than at RHIC, i.e. well above 10 GeV/c. In the ALICE experiment, dedicated to the study of heavy-ion collisions at LHC energies, particles with momentum below 10 GeV/c are identified by high-quality particle identification detectors based on the measurements of ionization energy losses in the Time-Projection-Chamber (TPC), Time-of- Flight (TOF) and Cherenkov radiation (HMPID). At higher momenta, statistical identification of hadrons is envisaged by measuring the ionization energy loss in the relativistic rise momentum region of the TPC. However, since the topology of the jets having a baryon leading particle may be different than those with a meson leading particle, it will also be necessary to identify track by track the highest momentum particles. For this reason, a proposal for an up-grade of the high momentum particle identification is being considered. Such an upgrade would consist of a ring imaging Cherenkov detector, called VHMPID (Very High Momentum Particle IDentification), exploiting the focusing properties of a segmented spherical mirror and using C4F10 as Cherenkov radiator. Characteristics and expected performance of the ALICE high momentum identification systems and of the VHMPID will be reviewed in this paper.

  16. The high-precision Penning trap mass spectrometer PENTATRAP

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Andreas; Bekker, Hendrik; Blaum, Klaus; Goncharov, Mikhail; Hoekel-Schmoeger, Christian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Boehm, Christine [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Extreme Matter Institute EMMI, Helmholtz Gemeinschaft, Darmstadt (Germany); Crespo Lopez-Urrutia, Jose; Eliseev, Sergey; Repp, Julia; Roux, Christian; Sturm, Sven [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Novikov, Yuri [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Ulmer, Stefan [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama (Japan)

    2013-07-01

    Currently, the high-precision Penning trap mass spectrometer PENTATRAP is being built up at the Max-Planck-Institut fuer Kernphysik, Heidelberg, Germany. It aims at mass-ratio measurements of medium- to high-Z elements with uncertainties of a few parts in 10{sup 12}. Mass-ratios will be determined by the measurement of cyclotron frequency-ratios in the strong magnetic field of the trap. The experiment will host five identical cylindrical Penning traps and will allow for simultaneous cyclotron frequency determinations in all measurement traps. It will feature access to highly charged ions provided by EBITs. Measurements at PENTATRAP will contribute to various fields of physics. For example, input parameters for neutrino mass determinations will be provided with measurements of Q-values of relevant β-transitions. The current status of the experiment will be outlined in the talk.

  17. A high performance angle-resolving electron spectrometer

    CERN Document Server

    Rossnagel, K; Skibowski, M; Harm, S

    2001-01-01

    We report on our new versatile photoelectron spectrometer Angular Spectrometer for Photoelectrons with High Energy REsolution (ASPHERE) which is part of beamline W3.2 (photon energies from 5 to 40 eV) but also compatible with beamline BW3 (40-1500 eV) at the Hamburger Synchrotronstrahlungslabor (HASYLAB). ASPHERE is a 180 deg. spherical analyzer (r sub 0 =100 mm) with a four-element input lens and is mounted on a two-axes goniometer with computer-controlled stepper motors which enables sequential angle-scanned measurements. The input lens is equipped with an iris aperture so that the angular resolution can be continuously adjusted from 0.2 deg. to 5 deg. sign . The fringe field of the condenser has been corrected for by tilting the angle of the input lens against the base plane of the hemispheres resulting in an overall energy resolution of 10 meV. To improve the speed of data acquisition three standard channeltron detectors are installed in the image plane of the analyzer which will be replaced by a multidet...

  18. ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC

    CERN Document Server

    Valderanis, Chrysostomos; The ATLAS collaboration

    2015-01-01

    ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC The luminosity of the LHC will increase up to 2x10^34 cm-2s-1 after the long shutdown in 2019 (phase-1 upgrade) and up to 7x10^34 cm-2s-1 after the long shutdown in 2025 (phase-2 upgrade). In order to cope with the increased particle fluxes, upgrades are envisioned for the ATLAS muon spectrometer. At phase-1, the current innermost stations of the ATLAS muon endcap tracking system (the Small Wheels) will be upgraded with 2x4-layer modules of Micromega detectors, sandwiched by two 4 layer modules of small strip Thin Gap Chambers on either side. Each 4-layer module of the so-called New Small Wheels covers a surface area of approximately 2 to 3 m2 for a total active area of 1200 m2 each for the two technologies. On such large area detectors, the mechanical precision (30 \\mu m along the precision coordinate and 80 \\mu m along the beam) is a key point and must be controlled and monitored along the process of construction and integration. The design and re...

  19. Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Syritsyn, Sergey [Stony Brook Univ., NY (United States); Gambhir, Arjun S. [College of William and Mary, Williamsburg, VA (United States); Musch, Bernhard U. [Univ. of Regensburg (Germany); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.

  20. Azimuthal angular correlations in high transverse momentum dijet events

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The azimuthal angle correlation between the two jets with the largest transverse momenta in inclusive 2-jet topologies, close to the back-to-back configuration, is measured for several regions of the leading jet transverse momentum. Measurements of the same observable requiring the presence of extra jets are also presented. The analysis is based on proton-proton collision data collected with the CMS experiment at a center-of-mass energy of $13~\\mathrm{TeV}$ corresponding to an integrated luminosity of $35.9~\\mathrm{fb}^{-1}$. The results are compared to predictions using Monte Carlo event generators which combine perturbative QCD calculations up to next-to-leading-order accuracy with contributions from parton showers, hadronization, and multiparton interactions.

  1. The Suzaku High Resolution X-Ray Spectrometer

    Science.gov (United States)

    Kelley, Richard L.; Mitsuda, Kazuhisa; Allen, Christine A.; Arsenovic, Petar; Audley, Michael D.; Bialas, Thomas G.; Boyce, Kevin R.; Boyle, Robert F.; Breon, Susan R.; Brown, Gregory V.; Cottam, Jean; Dipirro, Michael J.; Fujimoto, Ryuichi; Furusho, Tae; Gendreau, Keith C.; Gochar, Gene G.; Gonzalez, Oscar; Hirabayashi, Masayuki; Holt, Stephen S.; Inoue, Hajime; Ishida, Manabu; Ishisaki, Yoshitaka; Jones, Carol S.; Keski-Kuha, Ritva; Kilbourne, Caroline A.; McCammon, Dan; Morita, Umeyo; Moseley, S. Harvey; Mott, Brent; Narasaki, Katsuhiro; Ogawara, Yoshiaki; Ohashi, Takaya; Ota, Naomi; Panek, John S.; Porter, F. Scott; Serlemitsos, Aristides; Shirron, Peter J.; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tveekrem, June L.; Volz, Stephen M.; Yamamoto, Mikio; Yamasaki, Noriko Y.

    2007-01-01

    The X-Ray Spectrometer (XRS) has been designed to provide the Suzaku Observatory with non-dispersive, high-resolution X-ray spectroscopy. As designed, the instrument covers the energy range 0.3 to 12keV, which encompasses the most diagnostically rich part of the X-ray band. The sensor consists of a 32-channel array of X-ray microcalorimeters, each with an energy resolution of about 6eV. The very low temperature required for operation of the array (60mK) is provided by a four-stage cooling system containing a single-stage adiabatic demagnetization refrigerator, a superfluid-helium cryostat, a solid-neon dewar, and a single-stage, Stirling-cycle cooler. The Suzaku/XRS is the first orbiting X-ray microcalorimeter spectrometer and was designed to last more than three years in orbit. The early verification phase of the mission demonstrated that the instrument worked properly and that the cryogen consumption rate was low enough to ensure a mission lifetime exceeding 3 years. However, the liquid-He cryogen was completely vaporized two weeks after opening the dewar guard vacuum vent. The problem has been traced to inadequate venting of the dewar He and Ne gases out of the spacecraft and into space. In this paper we present the design and ground testing of the XRS instrument, and then describe the in-flight performance. An energy resolution of 6eV was achieved during pre-launch tests and a resolution of 7eV was obtained in orbit. The slight degradation is due to the effects of cosmic rays.

  2. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation

    Science.gov (United States)

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-03-01

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams -or “structured attosecond light springs”- with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging.

  3. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation.

    Science.gov (United States)

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-03-10

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams -or "structured attosecond light springs"- with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging.

  4. Alignment and Characterization of High Uniformity Imaging Spectrometers

    Science.gov (United States)

    Bender, Holly A.; Mouroulis, Pantazis; Eastwood, Michael L.; Green, Robert O.; Geier, Sven; Hochberg, Eric B.

    2011-01-01

    Imaging spectrometers require precise adjustments, in some cases at the sub-micrometer level, in order to achieve auniform response over both the spectral and spatial dimensions. We describe a set of measurement techniques and theircorresponding alignment adjustments to achieve the 95% or higher uniformity specifications required for Earthobservingimaging spectrometers. The methods are illustrated with measurements from the Next Generation Imaging Spectrometer system that has been built at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  5. A spectrometer for study of high mass objects created in relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.A.; Barish, K.N.; Batsouli, S.; Bennett, M.J.; Bennett, S.J.; Chikanian, A.; Coe, S.D.; Cormier, T.M.; Davies, R.R.; De Cataldo, G.; Dee, P.; Diebold, G.E.; Dover, C.B.; Ewell, L.A.; Emmet, W.; Fachini, P.; Fadem, B.; Finch, L.E.; George, N.K.; Giglietto, N.; Greene, S.V.; Haridas, P.; Hill, J.C. E-mail: jhill@iastate.edu; Hirsch, A.S.; Hoversten, R.A.; Huang, H.Z.; Jaradat, H.; Kim, B.; Kumar, B.S.; Lajoie, J.G.; Lainis, T.; Lewis, R.A.; Li, Q.; Li, Y.; Libby, B.; Majka, R.D.; Miller, T.E.; Munhoz, M.G.; Nagle, J.L.; Petridis, A.; Pless, I.A.; Pope, J.K.; Porile, N.T.; Pruneau, C.; Rabin, M.S.Z.; Reid, J.D.; Rimai, A.; Riso, J.; Rose, A.; Rotondo, F.S.; Sandweiss, J.; Scharenberg, R.P.; Skank, H.; Slaughter, A.J.; Sleage, G.; Smith, G.A.; Spinelli, P.; Srivastava, B.K.; Tincknell, M.L.; Toothacker, W.S.; Van Buren, G.; Wilson, W.K.; Wohn, F.K.; Wolin, E.J.; Xu, Z.; Zhao, K

    1999-11-21

    Experiment E864 at the Brookhaven AGS accelerator uses a high sensitivity, large acceptance spectrometer, designed to search for strangelets and other novel forms of matter produced in high-energy heavy ion collisions. The spectrometer has excellent acceptance and rate capabilities for measuring the production properties of known particles and nuclei such as p-bar, d-bar and {sup 6}He. The experiment uses a magnetic spectrometer and employs redundant time of flight and position detectors and a hadronic calorimeter. In this paper we describe the design and performance of the spectrometer.

  6. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS)

    Science.gov (United States)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.

    2007-07-01

    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  7. High Resolution Imaging Spectrometer (HIRIS): Science and Instrument

    Science.gov (United States)

    Goetz, Alexander F. H.; Davis, Curtiss O.

    1991-01-01

    The High Resolution Imaging Spectrometer (HIRIS) is a facility instrument slated for flight on the second of the EOS-A series of platforms. HIRIS is designed to acquire 24-km wide, 30-m pixel images in 192 spectral bands simultaneously in the 0.4-2.45-micrometer wavelength region. With pointing mirrors it can sample any place on Earth, except the poles, every two days. HIRIS operates at the intermediate scale between the human and the global and therefore links studies of Earth surface processes to global monitoring carried out by lower-resolution instruments. So far, over 50 science data products from HIRIS images have been identified in the fields of atmospheric gases, clouds, snow and ice, water, vegetation, and rocks and soils. The key attribute of imaging spectrometry that makes it possible to derive quantitative information from the data is the large number of contiguous spectral bands. Therefore spectrum matching techniques can be applied. Such techniques are not possible with present-day, multispectral scanner data.

  8. Combined momentum collimation studies in a high-intensity rapid cycling proton synchrotron

    Directory of Open Access Journals (Sweden)

    Jing-Yu Tang

    2011-05-01

    Full Text Available Momentum collimation in a high-intensity rapid cycling synchrotron (RCS is a very important issue. Based on the two-stage collimation principle, a combined momentum collimation method is proposed and studied in detail here. The method makes use of the combination of secondary collimators in both the longitudinal and transverse planes. The primary collimator is placed at a high-dispersion location of an arc, and the longitudinal and transverse secondary collimators are in the same arc and in the adjacent downstream dispersion-free long straight section, respectively. The particles with positive momentum deviations will be scattered and degraded by a carbon scraper and then collected mainly by the transverse collimators, whereas the particles with negative momentum deviations will be scattered by a tantalum scraper and mainly collected by the longitudinal secondary collimators. This is to benefit from the different effects of protons passing through a high atomic number material and a low atomic number material, as the former produces relatively more scattering than the latter for the same energy loss. The studies also reveal that momentum collimation is strongly dependent on the transverse beam correlation that comes from the injection painting. The relevant requirements on the lattice design are also discussed, especially for compact rings. The multiparticle simulations using both TURTLE and ORBIT codes are presented to show the physical images of the collimation method, which was carried out with the input of the RCS of China Spallation Neutron Source.

  9. The phenomenon of nucleon emission at high angular momentum ...

    Indian Academy of Sciences (India)

    We present here an elaborate study of the neutron [3] and proton separation energies of high spin hot nuclei like 156Er, 166Er, 168Yb and 188Hg. Abrupt decrease in the neutron separation energies around I «55 for 166Er and 168Yb is observed for excitation energies. E£ «45 MeV. It is conjectured that for these two nuclei, ...

  10. Turbulent exchange of energy, momentum, and reactive gases between high vegetation and the atmospheric boundary layer

    NARCIS (Netherlands)

    Shapkalijevski, M.M.

    2017-01-01

    This thesis deals with the representation of the exchange of energy, momentum and chemically reactive compounds between the land, covered by high vegetation, and the lowest part of the atmosphere, named as atmospheric boundary layer (ABL). The study presented in this thesis introduces the roughness

  11. TFTR horizontal high-resolution Bragg x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hill, K.W.; Bitter, M.; Tavernier, M.; Diesso, M.; von Goeler, S.; Johnson, G.; Johnson, L.C.; Sauthoff, N.R.; Schechtman, N.; Sesnic, S.; Tenney, F.; Young, K.M.

    1984-11-01

    A bent quartz crystal spectrometer of the Johann type with a spectral resolution of lambda/..delta..lambda = 10,000 to 25,000 is used on TFTR to determine central plasma parameters from the spectra of heliumlike and lithiumlike metal impurity ions (Ti, Cr, Fe, and Ni). The spectra are observed along a central radial chord and are recorded by a position sensitive multiwire proportional counter with a spatial resolution of 250. Standard delay-line time-difference readout is employed. The data are histogrammed and stored in 64k of memory providing 128 time groups of 512-channel spectra. The central ion temperature and the toroidal plasma rotation are inferred from the Doppler broadening and Doppler shift of the K lines. The central electron temperature, the distribution of ionization states, and dielectronic recombination rates are obtained from satellite-to-resonance line ratios. The performance of the spectrometer is demonstrated by measurements of the Ti XXI K radiation.

  12. Development of a Bragg spectrometer for experiments with highly charged ions at storage rings

    Science.gov (United States)

    Banas, D.; Jagodzinski, P.; Pajek, M.; Stöhlker, Th; Trassinelli, M.; Beyer, H. F.; Reuschl, R.; Spillmann, U.

    2007-03-01

    The construction and results of the Monte-Carlo ray-tracing simulations for a low energy x-ray crystal spectrometer designed for future experiments at the ESR storage ring with fast highly charged ions are presented. The spectrometer has a radius of the Rowland circle R = 0.5 m and operates in the Johann geometry. The x-rays emitted from a source are di.racted by spherically bent silicon Si(111) crystal and registered by two-dimensional deep depleted back-illuminated CCD camera. The estimated spectrometer e.ciency, calculated according to a dynamical theory of x-ray di.raction is about 10-6. The energy resolution of the spectrometer obtained from the simulations is about 0.5 eV. influence of the source size and Doppler broadening on the spectrometer resolution is discussed.

  13. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Science.gov (United States)

    Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose; Bullock, James S.; Joung, M. Ryan; Devriendt, Julien; Ceverino, Daniel; Kereš, Dušan; Hopkins, Philip F.; Faucher-Giguère, Claude-André

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ˜4 times more specific angular momentum in cold halo gas (λ cold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  14. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R. [Department of Mathematical Sciences, California Baptist University, 8432 Magnolia Ave., Riverside, CA 92504 (United States); Maller, Ariyeh H. [Department of Physics, New York City College of Technology, 300 Jay St., Brooklyn, NY 11201 (United States); Oñorbe, Jose [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bullock, James S. [Center for Cosmology, Department of Physics and Astronomy, The University of California at Irvine, Irvine, CA 92697 (United States); Joung, M. Ryan [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Devriendt, Julien [Department of Physics, University of Oxford, The Denys Wilkinson Building, Keble Rd., Oxford OX1 3RH (United Kingdom); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Kereš, Dušan [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Hopkins, Philip F. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Faucher-Giguère, Claude-André [Department of Physics and Astronomy and CIERA, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208 (United States)

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas ( λ {sub cold} ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  15. A versatile, highly-efficient, high-resolution von Hamos Bragg crystal x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Vane, C.R.; Smith, M.S.; Raman, S.

    1988-01-01

    An efficient, high-resolution, vertical-focusing, Bragg crystal x-ray spectrometer has been specifically designed and constructed for use in measurements of x rays produced in collisions of energetic heavy ions. In this report the design and resulting operational characteristics of the final instrument are fully described. A wide variety of sample data is also included to illustrate the utility of this device in several areas of research. 14 refs., 38 figs.

  16. Investigating fusion dynamics at high angular momentum via fission cross sections

    Science.gov (United States)

    Palshetkar, C. S.; Hinde, D. J.; Williams, E.; Ramachandran, K.; Dasgupta, M.; Cook, K. J.; Wakhle, A.; Jeung, D. Y.; Rafferty, D. C.; McNeil, S. D.; Carter, I. P.; Luong, D. H.

    2017-11-01

    A quantitative understanding of fusion dynamics at high angular momentum is attempted employing experimental fission cross sections as a probe and carrying out a simultaneous description of the fusion and fission cross sections at above barrier energies. For this, experimental fission fragment angular distributions for three systems: 16O+148Sm, 28Si+136Ba and 40Ca+124Sn, all forming the same compound nucleus 164Yb at similar excitation energies, have been measured at four beam energies above their respective capture barriers. A simultaneous description of the angle integrated fission cross sections and evaporation residue/fusion cross sections available in literature for the systems is carried out using coupled-channels and statistical model calculations. Fission cross sections, which are most sensitive to the changes in angular momentum, provide very stringent constraints for model calculations thus indicating the need of precision evaporation residue as well as fission cross sections in such studies. A large diffuseness (ao>0.65 fm) of the nuclear potential gives the best reproduction of the experimental data. In addition, different coupling schemes give very different angular momentum distributions, which, in turn, give very different fission cross section predictions. Both these observations hint at the explanation that depending on energy dissipation of the interacting nuclei occurring inside or outside the fusion pocket, very different fission cross sections can result due to heavily altered angular momentum and thus justifies the sensitivity of fission cross sections used as probes in the present work.

  17. New measurements of high-momentum nucleons and short-range structures in nuclei

    CERN Document Server

    Fomin, N; Asaturyan, R; Benmokhtar, F; Boeglin, W; Bosted, P; Bruell, A; Bukhari, M H S; Chudakov, E; Clasie, B; Connell, S H; Dalton, M M; Daniel, A; Day, D B; Dutta, D; Ent, R; Fassi, L El; Fenker, H; Filippone, B W; Garrow, K; Gaskell, D; Hill, C; Holt, R J; Horn, T; Jones, M K; Jourdan, J; Kalantarians, N; Keppel, C E; Kiselev, D; Kotulla, M; Lindgren, R; Lung, A F; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Mkrtchyan, H; Navasardyan, T; Niculescu, G; Opper, A K; Perdrisat, C; Potterveld, D H; Punjabi, V; Qian, X; Reimer, P E; Roche, J; Rodriguez, V M; Rondon, O; Schulte, E; Seely, J; Segbefia, E; Slifer, K; Smith, G R; Solvignon, P; Tadevosyan, V; Tajima, S; Tang, L; Testa, G; Trojer, R; Tvaskis, V; Vulcan, W F; Wasko, C; Wesselmann, F R; Wood, S A; Wright, J; Zheng, X

    2011-01-01

    We present new, high-Q^2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.

  18. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  19. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamaka)

    Science.gov (United States)

    Lu, B.; Wang, F.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.; Fu, J.; Li, Y.; Wan, B.

    2012-10-01

    Two imaging x-ray crystal spectrometers, the so-called "poloidal" and "tangential" spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (Ti), electron temperature (Te) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  20. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak.

    Science.gov (United States)

    Lu, B; Wang, F; Shi, Y; Bitter, M; Hill, K W; Lee, S G; Fu, J; Li, Y; Wan, B

    2012-10-01

    Two imaging x-ray crystal spectrometers, the so-called "poloidal" and "tangential" spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T(i)), electron temperature (T(e)) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  1. The Influence of Using Momentum and Impulse Computer Simulation to Senior High School Students’ Concept Mastery

    Science.gov (United States)

    Kaniawati, I.; Samsudin, A.; Hasopa, Y.; Sutrisno, A. D.; Suhendi, E.

    2016-08-01

    This research is based on students’ lack of mastery of physics abstract concepts. Thus, this study aims to improve senior high school students’ mastery of momentum and impulse concepts with the use of computer simulation. To achieve these objectives, the research method employed was pre experimental design with one group pre-test post-test. A total of 36 science students of grade 11 in one of public senior high school in Bandung became the sample in this study. The instruments utilized to determine the increase of students’ concept mastery were pretest and posttest in the form of multiple choices. After using computer simulations in physics learning, students’ mastery of momentum and impulse concept has increased as indicated by the normalized gain of 0.64 with the medium category.

  2. Intrinsic origin of the high order angular momentum terms in a nuclear rotation Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Minkov, N [Institute of Nuclear Research and Nuclear Energy, 72 Tzarigrad Road, Sofia 1784 (Bulgaria); Yotov, P [Institute of Nuclear Research and Nuclear Energy, 72 Tzarigrad Road, Sofia 1784 (Bulgaria); Jolos, R V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Scheid, W [Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany)

    2007-02-15

    A nuclear Hamiltonian with high order terms in the collective angular momentum operators is constructed by applying the method of contact transformations to a Hamiltonian including intrinsic particle motion and Coriolis interaction. In the space of intrinsic variables, the coefficients of the transformed Hamiltonian appear as matrix elements depending on the intrinsic angular momentum. Their transformation properties under the time reversal assure the time-reversal invariance of the Hamiltonian in the collective space. It is shown that the intrinsic matrix elements correspond to the coefficients in the point-symmetry-based quadrupole-octupole rotation Hamiltonian. In this framework, the developed formalism gives an insight into the intrinsic origin of the high order effects in the rotation motion of complex-deformed nuclei.

  3. Description of High-Energy pp Collisions Using Tsallis Thermodynamics: Transverse Momentum and Rapidity Distributions

    CERN Document Server

    Marques, L.; Deppman, A.

    2015-01-01

    A systematic analysis of transverse momentum and rapidity distributions measured in high-energy proton - proton (pp) collisions for energies ranging from 53 GeV to 7 TeV using Tsallis thermodynamics is presented. The excellent description of all transverse momentum spectra obtained in earlier analyses is confirmed and extended. All energies can be described by a single Tsallis temperature of 68 +/- 5 MeV at all beam energies and particle types investigated (43 in total). The value of the entropic index, q, shows a wider spread but is always close to q approx 1.146. These values are then used to describe the rapidity distributions using a superposition of two Tsallis fireballs along the rapidity axis. It is concluded that the hadronic system created in high-energy p - p collisions between 53 GeV and 7 TeV can be seen as obeying Tsallis thermodynamics.

  4. Coarse graining the Bethe-Goldstone equation: Nucleon-nucleon high-momentum components

    Science.gov (United States)

    Simo, I. Ruiz; Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz

    2017-11-01

    The δ -shell representation of the nuclear force allows a simplified treatment of nuclear correlations. We show how this applies to the Bethe-Goldstone equation as an integral equation in coordinate space with a few mesh points, which is solved by inversion of a five-dimensional square matrix in the single channel cases and a 10 ×10 matrix for the tensor-coupled channels. This allows us to readily obtain the high-momentum distribution, for all partial waves, of a back-to-back correlated nucleon pair in nuclear matter. We find that the probability of finding a high-momentum correlated neutron-proton pair is about 18 times that of a proton-proton one, as a result of the strong tensor force, thus confirming in an independent way previous results and measurements.

  5. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    Science.gov (United States)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  6. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  7. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  8. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    Science.gov (United States)

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  9. Nucleon resonance electroproduction at high momentum transers: Results from SLAC and suggestions for CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Keppel, C. [Virginia Union Univ., Richmond, VA (United States)

    1994-04-01

    Nucleon resonance electroproduction results from SLAC Experiment E14OX are presented. A CEBAF facility with doubled energy would enable similar high momentum transfer measurements to be made with greater accuracy. Of particular interest are the Delta P{sub 33}(1232) resonance form factor and R = {sigma}{sub L}/{sigma}{sub T}, the ratio of the longitudinal and transverse components of the cross section. A suggestion is made to study these quantities in conjunction with Bloom-Gilman duality.

  10. Image Evaluation of the High Resolution VUV Spectrometer at SURF II by Ray Tracing

    OpenAIRE

    Das, N. C.; Madden, R. P.; Seyoum, H. M.

    1998-01-01

    A high resolution VUV spectroscopic facility has been in use for several years at SURF II, the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology in Gaithersburg, Maryland. At this facility, a combination of three cylindrical mirrors is utilized to focus the light originating in the storage ring onto the horizontal entrance slit of the spectrometer. The spectrometer uses a 6.65 m concave grating having a groove density of 4800 lines/mm in the off-...

  11. The Omicron Spectrometer

    CERN Document Server

    Allardyce, B W

    1976-01-01

    It is intended to build a spectrometer with a large solid angle and a large momentum acceptance at the reconstructed synchrocyclotron at CERN. This spectrometer will have an energy resolution of about 1 MeV for particles with momenta up to about 400 MeV/c.

  12. A muon trigger upgrade with high transverse momentum resolution for the ATLAS detector at the High-Luminosity LHC

    CERN Document Server

    Horii, Y; The ATLAS collaboration

    2014-01-01

    The Level-1 trigger for muons in ATLAS is based on trigger chambers (RPCs, TGCs) with excellent time resolution which are able to identify muons coming from a particular beam crossing. It is proposed to use precision tracking chambers (MDTs) for improving the transverse momentum resolution at the Level-1 trigger for the phase II of the LHC, the so-called High-Luminosity LHC. We present the new trigger algorithm and the architecture of the electronics as well as a prototype test. We demonstrate the performance for a transverse momentum threshold of 20 GeV using experimental data.

  13. Highly efficient angularly resolving x-ray spectrometer optimized for absorption measurements with collimated sources

    Science.gov (United States)

    Šmíd, M.; Gallardo González, I.; Ekerfelt, H.; Björklund Svensson, J.; Hansson, M.; Wood, J. C.; Persson, A.; Mangles, S. P. D.; Lundh, O.; Falk, K.

    2017-06-01

    Highly collimated betatron radiation from a laser wakefield accelerator is a promising tool for spectroscopic measurements. Therefore, there is a requirement to create spectrometers suited to the unique properties of such a source. We demonstrate a spectrometer which achieves an energy resolution of 1800 ) and is angularly resolving the x-ray emission allowing the reference and spectrum to be recorded at the same time. The single photon analysis is used to significantly reduce the background noise. Theoretical performance of various configurations of the spectrometer is calculated by a ray-tracing algorithm. The properties and performance of the spectrometer including the angular and spectral resolution are demonstrated experimentally on absorption above the K-edge of a Cu foil backlit by a laser-produced betatron radiation x-ray beam.

  14. High resolution beam line for the Grand Raiden spectrometer

    CERN Document Server

    Wakasa, T; Fujita, Y; Berg, G P A; Fujimura, H; Fujita, H; Itoh, M; Kamiya, J; Kawabata, T; Nagayama, K; Noro, T; Sakaguchi, H; Shimbara, Y; Takeda, H; Tamura, K; Ueno, H; Uchida, M; Uraki, M; Yosoi, M

    2002-01-01

    We have designed and constructed a new beam line which can accomplish both lateral and angular dispersion matching with the Grand Raiden spectrometer. In dispersive mode, lateral and angular dispersions of the beam line are b sub 1 sub 6 =37.1 m and b sub 2 sub 6 =-20.0 rad, respectively, to satisfy matching conditions for Grand Raiden. In achromatic mode, the beam line satisfies the double achromatic condition of b sub 1 sub 6 =b sub 2 sub 6 =0. The magnifications of the beam line are (M sub x ,M sub y)=(-0.98,0.89) and (-1.00,-0.99) for dispersive and achromatic modes, respectively. In the commissioning experiments, we have succeeded to separate the first excited 2 sup + state of sup 1 sup 6 sup 8 Er with E sub x =79.8 keV clearly from the ground state in the (p,p') reaction. We achieved energy resolutions of DELTA E=13.0+-0.3 and 16.7+-0.3 keV in full width at half-maximum for 295 and 392 MeV protons, respectively. These energy resolutions agree with the resolving power of Grand Raiden for an object size o...

  15. R and D on high momentum particle identification with a pressurized Cherenkov radiator

    Energy Technology Data Exchange (ETDEWEB)

    Agócs, A.G. [Wigner RCP of the HAS, Budapest (Hungary); Barile, F. [INFN Sezione di Bari and Universit´a degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Barnaföldi, G.G. [Wigner RCP of the HAS, Budapest (Hungary); Bellwied, R. [University of Houston, Houston (United States); Bencédi, G.; Bencze, G.; Berényi, D.; Boldizsár, L. [Wigner RCP of the HAS, Budapest (Hungary); Chattopadhyay, S. [Saha Institute of Nuclear Physics, Kolkata (India); Chinellato, D.D. [University of Houston, Houston (United States); Cindolo, F. [University of Salerno, Salerno (Italy); Cossyleon, K. [Chicago State University, Chicago, IL (United States); Das, D.; Das, K.; Das-Bose, L. [Saha Institute of Nuclear Physics, Kolkata (India); De Cataldo, G.; Di Bari, D. [INFN Sezione di Bari and Universit´a degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Di Mauro, A. [CERN, CH1211 Geneva 23 (Switzerland); Futó, E. [Wigner RCP of the HAS, Budapest (Hungary); Garcia-Solis, E. [Chicago State University, Chicago, IL (United States); and others

    2014-12-01

    We report on the R and D results for a Very High Momentum Particle Identification (VHMPID) detector, which was proposed to extend the charged hadron track-by-track identification in the momentum range from 5 to 25 GeV/c in the ALICE experiment at CERN. It is a RICH detector with focusing geometry using pressurized perfluorobutane (C{sub 4}F{sub 8}O) as a Cherenkov radiator. A MWPC with a CsI photocathode was investigated as the baseline option for the photon detector. The results of beam tests performed on RICH prototypes using both liquid C{sub 6}F{sub 14} radiator (in proximity focusing geometry for reference measurements) and pressurized C{sub 4}F{sub 8}O gaseous radiator will be shown in this paper. In addition, we present studies of a CsI based gaseous photon detector equipped with a MWPC having an adjustable anode–cathode gap, aiming at the optimization of the chamber layout and performance in the detection of single photoelectrons. - Highlights: • Pressurized and heated C{sub 4}F{sub 8}O was used as Cherenkov radiator gas. • A Cherenkov angle resolution of 1.5 mrad was achieved. • The separation of electrons, pions, and kaons in a large momentum range is shown.

  16. Momentum-resolved resonant inelastic X-ray scattering on a single crystal under high pressure.

    Science.gov (United States)

    Yoshida, Masahiro; Ishii, Kenji; Jarrige, Ignace; Watanuki, Tetsu; Kudo, Kazutaka; Koike, Yoji; Kumagai, Ken'ichi; Hiraoka, Nozomu; Ishii, Hirofumi; Tsuei, Ku-Ding; Mizuki, Jun'ichiro

    2014-01-01

    A single-crystal momentum-resolved resonant inelastic X-ray scattering (RIXS) experiment under high pressure using an originally designed diamond anvil cell (DAC) is reported. The diamond-in/diamond-out geometry was adopted with both the incident and scattered beams passing through a 1 mm-thick diamond. This enabled us to cover wide momentum space keeping the scattering angle condition near 90°. Elastic and inelastic scattering from the diamond was drastically reduced using a pinhole placed after the DAC. Measurement of the momentum-resolved RIXS spectra of Sr2.5Ca11.5Cu24O41 at the Cu K-edge was thus successful. Though the inelastic intensity becomes weaker by two orders than the ambient pressure, RIXS spectra both at the center and the edge of the Brillouin zone were obtained at 3 GPa and low-energy electronic excitations of the cuprate were found to change with pressure.

  17. A high precision flat crystal spectrometer compatible for ultra-high vacuum light source

    Science.gov (United States)

    Yang, Y.; Xiao, J.; Lu, D.; Shen, Y.; Yao, K.; Chen, C.; Hutton, R.; Zou, Y.

    2017-11-01

    We report on a flat crystal spectrometer (FCS) featuring a differently pumped rotary feedthrough and double detectors connected to a crystal chamber by extendable bellows built at the Shanghai EBIT Laboratory. It was designed to overcome defects such as oil contamination, little distance from the detector to the crystal and others of an early FCS equipped at the same laboratory, but still keeps a large detectable angle range of detectors and brings new features and functions such as the Bond method measurement and double-crystal measurement which are based on the two-detector and large bellow design. This new FCS could cover an energy range of measurable photons from 570 eV to 10 keV and reach a vacuum better than 6 × 10-10 Torr and thus is compatible for coupling directly to ultra-high vacuum light sources. Off-line tests of the FCS were undertaken where Kα x-rays from solid titanium were measured and analyzed. Measurements of transitions in He-like argon ions were performed when the spectrometer was directly connected to Shanghai EBIT, and the width of the x-ray source was monitored simultaneously using an x-ray slit imaging system. An observed spectral line broadening was 0.869 eV corresponding to a resolving power of 3600, including Doppler broadening of the x-ray source. Taking account of the measured source width, we made simulations using the SHADOW 3 code and got a nominal resolving power of 6500 for the spectrometer. This high nominal resolving power is due to a longer distance from the crystal to the detector, comparing with that in the early FCS.

  18. High-resolution two-grating spectrometer for dual wavelength spectral imaging.

    Science.gov (United States)

    Gornushkin, I B; Omenetto, N; Smith, B W; Winefordner, J D

    2004-11-01

    A two-grating high-resolution spectrometer for dual wavelength imaging is demonstrated based on the standard Czerny-Turner mounting with an auxiliary grating and a mirror. A two-dimensional charge-coupled device (CCD) detector in the spectrometer focal plane allows simultaneous detection of two spectral intervals. Each spectrometer grating is driven by a high-precision stepper motor interfaced to a computer via home-made software. The software allows fast tuning of the gratings to a desirable spectral interval anywhere between 200 nm and 800 nm. The spectral interval widths are 2-3 nm for a ''high-resolution'' (2400 grooves/mm) grating and 4-5 nm for a ''low-resolution'' (1200 grooves/mm) grating. The resolution varies between 0.01 nm and 0.02 nm depending on the grating used. The performance of the spectrometer is demonstrated by detecting spectrally resolved images from a back-illuminated template and from a laser-induced plasma. The spectrometer can be useful for two-line spectroscopic diagnostics or can be expanded for multi-element spectral analysis.

  19. A new Thomson Spectrometer for high energy laser-driven beams diagnostic

    Science.gov (United States)

    Cirrone, G. A. P.; Tramontana, A.; Candiano, G.; Carpinelli, M.; Cavallaro, S.; Cutroneo, M.; Cuttone, G.; De Martinis, C.; Giove, D.; Krása, J.; Korn, G.; Maggiore, M.; Margarone, D.; Pisciotta, P.; Prokůpek, J.; Romano, F.; Schillaci, F.; Scuderi, V.; Torrisi, L.; Velyhan, A.

    2014-08-01

    Thomson Spectrometers (TPs) are widely used for beam diagnostic as they provide simultaneous information on charge over mass ratio, energy and momentum of detected ions. A new TP design has been realized at INFN-LNS within the LILIA (Laser Induced Light Ion Acceleration) and ELIMED (MEDical application at ELI-Beamlines) projects. This paper reports on the construction details of the TP and on its experimental tests performed at PALS laboratory in Prague, with the ASTERIX IV laser system. Reported data are obtained with polyethylene and polyvinyl alcohol solid targets, they have been compared with data obtained from other detectors. Consistency among results confirms the correct functioning of the new TP. The main features, characterizing the design, are a wide acceptance of the deflection sector and a tunability of the, partially overlapping, magnetic and electric fields that allow to resolve ions with energy up to about 40 MeV for protons.

  20. Reconstruction of high-dimensional states entangled in orbital angular momentum using mutually unbiased measurements

    CSIR Research Space (South Africa)

    Giovannini, D

    2013-06-01

    Full Text Available : QELS_Fundamental Science, San Jose, California United States, 9-14 June 2013 Reconstruction of High-Dimensional States Entangled in Orbital Angular Momentum Using Mutually Unbiased Measurements D. Giovannini1, ⇤, J. Romero1, 2, J. Leach3, A.... Dudley4, A. Forbes4, 5 and M. J. Padgett1 1 School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom 2 Department of Physics, SUPA, University of Strathclyde, Glasgow G4 ONG, United Kingdom 3 School of Engineering...

  1. Study of high momentum eta' production in B --> eta'Xs.

    Science.gov (United States)

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-08-06

    We measure the branching fraction for the charmless semi-inclusive process B --> eta'Xs, where the eta' meson has a momentum in the range 2.0 to 2.7 GeV/c in the upsilon4S center-of-mass frame and Xs represents a system comprising a kaon and zero to four pions. We find B(B --> eta'Xs) = [3.9 +/- 0.8(stat) +/- 0.5(syst) +/- 0.8(model)] x 10(-4). We also obtain the Xs mass spectrum and find that it fits models predicting high masses.

  2. On J/ψ and Υ Transverse Momentum Distributions in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Bao-Chun Li

    2017-01-01

    Full Text Available The transverse momentum distributions of final-state particles are very important for high energy collision physics. In this work, we investigate J/ψ and Υ meson distributions in the framework of a particle-production source, where Tsallis statistics are consistently incorporated. The results are in good agreement with the experimental data in p-p and p-Pb collisions at LHC energies. The temperature of the emission source and the nonequilibrium degree of the collision system are extracted.

  3. Calibration of a high resolution grating soft x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Magee, E. W.; Dunn, J.; Brown, G. V.; Cone, K. V.; Park, J.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.; Beiersdorfer, P.

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10–50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  4. Optimization of linear-wavenumber spectrometer for high-resolution spectral domain optical coherence tomography

    Science.gov (United States)

    Wu, Tong; Sun, Shuaishuai; Wang, Xuhui; Zhang, Haiyan; He, Chongjun; Wang, Jiming; Gu, Xiaorong; Liu, Youwen

    2017-12-01

    Nonlinear detection of the spectral interferograms in wavenumber (k) space degrades the depth-dependent signal sensitivity in conventional linear-in- λ spectrometer based spectral domain optical coherence tomography (SDOCT). Linear- k spectrometer enables high sensitivity SDOCT imaging without the need of resampling the digitized non-linear-in- k data. Here we report an effective optimization method for linear- k spectrometer used in a high-resolution SDOCT system. The design parameters of the linear- k spectrometer, including the material of the dispersive prism, the prism vertex angle, and the rotation angle between the grating and prism, are optimized through the numerical simulation of the spectral interference signal. As guided by the optimization results, we constructed the linear- k spectrometer based SDOCT system and evaluated its imaging performances. The axial resolution of the system can be maintained to be higher than 9 . 1 μm throughout the imaging depth range of 2.42 mm. The sensitivity was experimentally measured to be 91 dB with - 6 dB roll-off within the depth range of 1.2 mm.

  5. High-resolution Laue-type DuMond curved crystal spectrometer.

    Science.gov (United States)

    Szlachetko, M; Berset, M; Dousse, J-Cl; Hoszowska, J; Szlachetko, J

    2013-09-01

    We report on a high-resolution transmission-type curved crystal spectrometer based on the modified DuMond slit geometry. The spectrometer was developed at the University of Fribourg for the study of photoinduced X-ray spectra. K and L X-ray transitions with energies above about 10 keV can be measured with an instrumental resolution comparable to their natural linewidths. Construction details and operational characteristics of the spectrometer are presented. The variation of the energy resolution as a function of the focal distance and diffraction order is discussed. The high sensitivity of the spectrometer is demonstrated via the 2s-1s dipole-forbidden X-ray transition of Gd which could be observed despite its extremely low intensity. The precision of the instrument is illustrated by comparing the sum of the energies of the Au K-L2 and L2-M3 cascading transitions with the energy of the crossover K-M3 transition as well as by considering the energy differences of the Gd Kα1 X-ray line measured at five different diffraction orders. Finally, to demonstrate the versatility of the spectrometer, it is shown that the latter can also be used for in-house extended X-ray absorption fine structure measurements.

  6. Correlations Between High Transverse Momentum Hadrons in $\\pi^\\pm p$, $K^{-} p$ and $p p$ Collisions at 200-GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Stanek, Robert Walter [Univ. of Illinois, Chicago, IL (United States)

    1980-01-01

    This thesis presents a study of the quantum number correlations between secondary hadrons produced in a high transverse momentum reaction involving proton and meson beams incident on hydrogen at 200 GeV/c. Events with a single trigger particle having pT in the range between 1.5 GeV/c and 4.5 GeV/c and produced between $67^0 \\le 0^* \\le 104^0$ are investigated using information from a multiparticle spectrometer at Fermilab. These trigger particles are identified as either a $\\pi^{\\pm} , K^{\\pm}$ or $p^{\\pm}$ . Ratios of the cross sections for producing these various triggers are found and compared to several hard scattering models. We also look in a ±45° azimuthal wedge 180° opposite the trigger particle and study the ratio of relatively fast positive hadrons to negative hadrons for different trigger types.

  7. A Very High Momentum Particle Identification Detector for the ALICE experiment

    Science.gov (United States)

    Mayani, Daniel

    2011-04-01

    The main purpose of the ALICE experiment at CERN is to identify and study the quark-gluon plasma (QGP) in heavy ion collisions at the LHC. Among others, hadrochemistry allows for a detailed insight into the characteristics of the high temperature and density system created in these events. It is therefore important to be able to identify charged particles on a track by track basis. Moreover, results from high energy nucleus-nucleus collisions obtained by other experiments (e.g. at RHIC) indicate that it is imperative to extend the detection capability of ALICE to higher momenta. To meet these challenges, we propose the construction of the Very High Momentum Particle Identification Detector (VHMPID), which aims to identify charged pions, kaons, protons and antiprotons in the momentum range of 10 GeV/cMWPC based CsI photon counter. In addition, we will present the advances in the development of an alternative multi-THGEM based CsI photon detector.

  8. Preliminary results on the muon reconstruction efficiency, momentum resolution, and momentum scale in ATLAS 2012 pp collision data

    CERN Document Server

    The ATLAS collaboration

    2013-01-01

    The ATLAS experiment identifies and reconstructs muons with two high precision tracking systems, the Inner Detector and the Muon Spectrometer, which provide independent measurements of the muon momentum. This note summarizes the performance of the muon reconstruction algorithms and the data-driven techniques used for the measurements as derived from a dataset corresponding to an integrated luminosity of $20.4$~fb$^{-1}$ of $8$~TeV $pp$ collisions recorded in 2012. We also describe the corrections to be applied to simulation to reproduce the efficiency, momentum resolution and scale observed in experimental data. Finally, we introduce a method to determine the momentum uncertainty using the muon track fit uncertainty.

  9. Quantum Key Distribution with High Order Fibonacci-like Orbital Angular Momentum States

    Science.gov (United States)

    Pan, Ziwen; Cai, Jiarui; Wang, Chuan

    2017-08-01

    The coding space in quantum communication could be expanded to high-dimensional space by using orbital angular momentum (OAM) states of photons, as both the capacity of the channel and security are enhanced. Here we present a novel approach to realize high-capacity quantum key distribution (QKD) by exploiting OAM states. The innovation of the proposed approach relies on a unique type of entangled-photon source which produces entangled photons with OAM randomly distributed among high order Fiboncci-like numbers and a new physical mechanism for efficiently sharing keys. This combination of entanglement with mathematical properties of high order Fibonacci sequences provides the QKD protocol immunity to photon-number-splitting attacks and allows secure generation of long keys from few photons. Unlike other protocols, reference frame alignment and active modulation of production and detection bases are unnecessary.

  10. High resolution spectrometer concepts for high temperature EXAFS measurements and 1D imaging of ignition capsules on NIF

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Gao, L.; Kraus, B.; Efthimion, P. C.; Schneider, M. B.; Thorn, D. B.; Coppari, F.; Ping, Y.; Killebrew, K. L.; Macphee, A. G.; Kauffman, R. L.; Beiersdorfer, P.

    2017-10-01

    X-ray spectrometer concepts for two applications on NIF are being studied. An Extended X-ray Absorption Fine Structure (EXAFS) spectrometer will determine temperature at high pressure of dynamically compressed materials, by measuring K and L3 absorption edges at energies from 7112 to 18000 eV. A Johann geometry with spherically or toroidally bent crystals will avoid source-size broadening for spectral resolving power (E/ ΔE) of 6000. Energy-range selection is by crystal choice. The second is a 1D imaging spectrometer to measure the spatial distribution of plasma parameters to study stagnation of ignition capsules, based on either spherical or conical crystals with large spatial magnification. The desired spatial resolution is 5 μm. Predicted performance and prototype spectrometer measurements will be presented.

  11. Momentum transfer using variable gaseous plasma ion beams and creation of high aspect ratio microstructures

    Science.gov (United States)

    Maurya, Sanjeev Kumar; Paul, Samit; Shah, Jay Kumar; Chatterjee, Sanghamitro; Bhattacharjee, Sudeep

    2017-03-01

    Intense gaseous ion beams are created from compact microwave plasmas confined in a multicusp magnetic field. The wave frequency (ω) is comparable to the electron plasma frequency (ωpe) and ≫ the ion plasma frequency (ωpi); therefore, the heavier plasma (ions) are least disturbed by the high frequency electromagnetic waves. By changing the experimental gas, ion beams of different species are obtained, which expands the applicability of the ion beams. For the same applied accelerating potential, the controllability of the beam current owing to different velocities for different ionic species adds to the enhanced functionality. The ion beams are utilized to create a variety of microstructures by direct writing on metallic substrates, and microstructures of a high aspect ratio (ar = line width/depth) in the range of 100-1000 are created by varying the ion species and writing speed. For fixed species (Ga) and low current (1 pA) focused ion beam systems, typically ar ˜ 2.0 to 9.3 may be realized in a single beam scan. A parameter called current normalized force, defined as the momentum transfer per unit time, normalized with the beam current helps in understanding the different momentum transferred to the target sample upon impact by the ion beams of variable species. A mathematical formulation is developed to demonstrate this aspect.

  12. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    Science.gov (United States)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  13. High Energy Collisions on Tandem Time-of-Flight Mass Spectrometers

    Science.gov (United States)

    Cotter, Robert J.

    2013-05-01

    Long before the introduction of matrix-assisted laser desorption/ionization (MALDI), electrospray ionization (ESI), Orbitraps, and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were, nonetheless, some clear advantages for sectors over their low collision energy counterparts. Time-of-flight (TOF) mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective, we recount our own journey to produce high performance TOFs and tandem TOFs, describing the basic theory, problems, and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages, and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging, and the characterization of microorganisms.

  14. Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision

    Science.gov (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-01-01

    In this paper, we reported the laboratory spectral calibration of an ultraviolet (UV) Fourier transform imaging spectrometer (FTIS). A short overview of the designed UV-FTIS, which feature with a Cassegrain objective, an Offner relay optics system and a spatial-and-temporal modulation Michelson structure, is given. The experimental setup of spectral calibration is described, including details of the light source and integrating sphere. A high pressure mercury lamp was used to acquire reference spectrum. We calculated the all optical path difference (OPD) to achieve spectral response of every wavelength sample and divided the position of reference peak to subpixel to increase the precision of spectral calibration. The spectrum of spectral calibration show two weakly responded peaks, which was validated by reference spectrum of fiber optic spectrometer. The deviation of wavelength calibration is low to establish a best spectrometer resolution. The results of spectral calibration can meet the requirements of the UV-FTIS application.

  15. Development of a highly-sensitive Penning ionization electron spectrometer using the magnetic bottle effect

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro; Miyauchi, Naoya; Yamakita, Yoshihiro, E-mail: yamakita@uec.ac.jp [Department of Engineering Science, Graduate School of Informatics and Engineering The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan)

    2016-02-01

    This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(2{sup 3}S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.

  16. High momentum transfer inelastic muon scattering and test of scale invariance at NAL

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.Wendell, (Spokesperson); /Princeton U.; Hand, L.N.; /Cornell U., LNS

    1970-06-01

    We propose a relatively simple first stage experiment with muons in the 50-150 GeV range. The experiment is designed to optimize conditions for testing scale invariance while providing some information about the final state, as a test of various theories of high energy interactions. The proposed use of an iron spectrometer and of a high Z (>1) target with a low intensity ({approx}10{sup 6}/sec) muon beam should greatly reduce the cost and complexity of the experiment and especially ease the construction of the beam. It may even be possible to make an adequate muon beam for this purpose from the planned 3.5 mrad high intensity pion beam. A higher intensity muon beam can be used to extend the range in q{sup 2}. Information gained in this first experiment could greatly assist the planning of a more sophisticated experiment proposed for the high intensity {mu} beam.

  17. High transverse momentum dijet cross section measurements in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Dossanov, Aziz

    2013-06-15

    The measurement of high transverse momentum differential dijet cross sections in photoproduction at HERA in the {gamma}p center-of-mass energy 101momentum of the two leading jets, P{sub T,1st,2nd}>15.0 GeV and pseudorapidities in the range of -0.5<{eta}{sub 1st,2nd}<2.5 are required. In order to suppress background and be able to compare the cross sections with reliable and safe pQCD NLO predictions an invariant mass of the two leading jets M{sub 12}>40.0 GeV is required. Single differential dijet cross sections are measured, including cross sections in the direct and resolved photon enhanced regions. In order to study the contribution of partons interacting in the hard process, which are sensitive to the jet pseudorapidities, three different topologies of jets pseudorapidities are investigated. Single differential cross sections as a function of proton momentum fraction, taken by the interacting parton, x{sub P}, the fraction of photon momentum, x{sub {gamma}}, the angle between the incoming and outgoing partons in the hard scatter, vertical stroke cos {theta}{sup *} vertical stroke are presented. Additionally, the cross sections as a function of the invariant mass of dijets, M{sub 12}, anti {eta}=({eta}{sub 1st}+{eta}{sub 2nd})/2, anti P{sub T}=(P{sub T,1st}+P{sub T,2nd})/2 and P{sub T,1st} are also presented. The data are compared to predictions from the Pythia event generator, based on the LO matrix elements and parton showers, and to the NLO QCD calculations corrected for hadronization effects.

  18. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    NARCIS (Netherlands)

    Jaspers, R.J.E.; Scheffer, M.; Kappatou, A.; Valk, N.C.J. van der; Durkut, M.; Snijders, B.; Marchuk, O.; Biel, W.; Pokol, G.I.; Erdei, G.; Zoletnik, S.; Dunai, D.

    2012-01-01

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm 2sr to comply with the measurement requirements [S. Tugarinov, Rev. Sci. Instrum. 74, 2075

  19. High energy X-ray spectrometer on the Chandrayaan-1 mission to ...

    Indian Academy of Sciences (India)

    The Chandrayaan-1 mission to the Moon scheduled for launch in late 2007 will include a high energy X-ray spectrometer (HEX) for detection of naturally occurring emissions from the lunar surface due to radioactive decay of ... Space Astronomy and Instrumentation Division, ISRO Satellite Center, Bangalore 560 017, India.

  20. A high resolution X-ray crystal spectrometer to study electron and ...

    Indian Academy of Sciences (India)

    We have studied fast ion–atom and electron–atom collision processes using a reconditioned high resolution X-ray spectrometer. The X-rays, generated by the collisions, are dispersed by a curved ADP crystal (Johansson geometry) and detected by a gas proportional counter. A self-written LabVIEW based program has ...

  1. Highly sensitive solids mass spectrometer uses inert-gas ion source

    Science.gov (United States)

    1966-01-01

    Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.

  2. A muon trigger upgrade with high transverse momentum resolution for the ATLAS detector at the High-Luminosity LHC

    CERN Document Server

    Horii, Yasuyuki; The ATLAS collaboration

    2015-01-01

    The Level-1 trigger for muons of the ATLAS experiment is based on trigger chambers with excellent time resolution which identifies muons coming from a particular beam crossing. To cope with a stringent constraint on the trigger rates expected at the phase II of the LHC, the socalled High-Luminosity LHC, it is proposed to include precision tracking chambers in the Level-1 muon trigger for improving the transverse momentum resolution. The rate of a single muon trigger with a transverse momentum threshold of 20 GeV is estimated to reduce to about half in an entire pseudorapidity region by introducing the proposed upgrade. An architecture of the electronics includes an additional priority readout chain, which is independent of the standard and asynchronous readout. A demonstrator of the frontend electronics has been developed and an initial test based on cosmic muons shows a resolution of position measurements consistent with a simulation.

  3. R&D on high momentum particle identification with a pressurized Cherenkov radiator

    Science.gov (United States)

    Agócs, A. G.; Barile, F.; Barnafo¨ldi, G. G.; Bellwied, R.; Bencédi, G.; Bencze, G.; Berényi, D.; Boldizsár, L.; Chattopadhyay, S.; Chinellato, D. D.; Cindolo, F.; Cossyleon, K.; Das, D.; Das, K.; Das-Bose, L.; De Cataldo, G.; Di Bari, D.; Di Mauro, A.; Futó, E.; Garcia-Solis, E.; Hamar, G.; Harton, A.; Jayarathna, S. P.; Jimenez, R. T.; Kim, D. W.; Kim, J. S.; Knospe, A.; Lévai, P.; Markert, C.; Martinengo, P.; Molnar, L.; Nappi, E.; Oláh, L.; Paić, G.; Pastore, C.; Patino, M. E.; Peskov, V.; Pinsky, L.; Piuz, F.; Piyarathna, D. B.; Pochybová, S.; Sgura, I.; Sinha, T.; Song, J.; Timmins, A.; Van Beelen, J. B.; Varga, D.; Volpe, G.; Weber, M.; Xaplanteris, L.; Yi, J.; Yoo, I.-K.

    2014-12-01

    We report on the R&D results for a Very High Momentum Particle Identification (VHMPID) detector, which was proposed to extend the charged hadron track-by-track identification in the momentum range from 5 to 25 GeV/c in the ALICE experiment at CERN. It is a RICH detector with focusing geometry using pressurized perfluorobutane (C4F8O) as a Cherenkov radiator. A MWPC with a CsI photocathode was investigated as the baseline option for the photon detector. The results of beam tests performed on RICH prototypes using both liquid C6F14 radiator (in proximity focusing geometry for reference measurements) and pressurized C4F8O gaseous radiator will be shown in this paper. In addition, we present studies of a CsI based gaseous photon detector equipped with a MWPC having an adjustable anode-cathode gap, aiming at the optimization of the chamber layout and performance in the detection of single photoelectrons.

  4. Mixing Characteristics of Coaxial Injectors at High Gas to Liquid Momentum Ratios

    Science.gov (United States)

    Strakey, P. A.; Talley, D. G.; Hutt, J. J.

    1999-01-01

    A study of the spray of a swirl coaxial gas-liquid injector operating at high gas to liquid momentum ratios is reported. Mixing and droplet size characteristics of the swirl injector are also compared to a shear coaxial injector, currently being used in the Space Shuttle Main Engine fuel preburner. The injectors were tested at elevated chamber pressures using water as a LOX simulant and nitrogen and helium as gaseous hydrogen simulants. The elevated chamber pressure allowed for matching of several of the preburner injector conditions including; gas to liquid momentum ratio, density ratio and Mach number. Diagnostic techniques used to characterize the spray included; strobe back-light imaging, laser sheet spray imaging, mechanical patternation, and a phase Doppler interferometry. Results thus far indicate that the radial spreading of the swirl coaxial spray is much less than was reported in previous studies of swirl injectors operating at atmospheric back-pressure. The swirl coaxial spray does, however, exhibit a smaller overall droplet size which may be interpreted as an increase in local mixing.

  5. High accuracy magnetic field mapping of the LEP spectrometer magnet

    CERN Document Server

    Roncarolo, F

    2000-01-01

    The Large Electron Positron accelerator (LEP) is a storage ring which has been operated since 1989 at the European Laboratory for Particle Physics (CERN), located in the Geneva area. It is intended to experimentally verify the Standard Model theory and in particular to detect with high accuracy the mass of the electro-weak force bosons. Electrons and positrons are accelerated inside the LEP ring in opposite directions and forced to collide at four locations, once they reach an energy high enough for the experimental purposes. During head-to-head collisions the leptons loose all their energy and a huge amount of energy is concentrated in a small region. In this condition the energy is quickly converted in other particles which tend to go away from the interaction point. The higher the energy of the leptons before the collisions, the higher the mass of the particles that can escape. At LEP four large experimental detectors are accommodated. All detectors are multi purpose detectors covering a solid angle of alm...

  6. High-twist production of prompt single photons at large transverse momentum

    Science.gov (United States)

    Berger, Edmond L.

    1982-07-01

    Quantitative predictions are presented for a specific hard-scattering reaction πN-->γX in which both the incident meson and the produced prompt photon couple directly in the QCD amplitude. The process leads to a highly constrained class of events at large pT in which the photon momentum is balanced by that of a recoil quark jet, with no spectator jet of final-state particles emerging along the beam axis. Normalized absolutely in terms of the electromagnetic form factor of the pion, Fπ(Q2), the cross section provides a lower bound on the total pT-6 high-twist contribution to the inclusive prompt photon yield.

  7. Characterisation of a Thin Fully Depleted SOI Pixel Sensor with High Momentum Charged Particles

    CERN Document Server

    Battaglia, Marco; Contarato, Devis; Denes, Peter; Giubilato, Piero; Mattiazzo, Serena; Pantano, Devis

    2012-01-01

    This paper presents the results of the characterisation of a thin, fully depleted pixel sensor manufactured in SOI technology on high-resistivity substrate with high momentum charged particles. The sensor is thinned to 70 $\\mu$m and a thin phosphor layer contact is implanted on the back-plane. Its response is compared to that of thick sensors of same design in terms of signal and noise, detection efficiency and single point resolution based on data collected with 300 GeV pions at the CERN SPS. We observe that the charge collected and the signal-to-noise ratio scale according to the estimated thickness of the sensitive volume and the efficiency and single point resolution of the thinned chip are comparable to those measured for the thick sensors.

  8. Excited baryon form-factors at high momentum transfer at CEBAF at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Stoler, P. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.

  9. High-capacity millimetre-wave communications with orbital angular momentum multiplexing

    National Research Council Canada - National Science Library

    Yan, Yan; Xie, Guodong; Lavery, Martin P J; Huang, Hao; Ahmed, Nisar; Bao, Changjing; Ren, Yongxiong; Cao, Yinwen; Li, Long; Zhao, Zhe; Molisch, Andreas F; Tur, Moshe; Padgett, Miles J; Willner, Alan E

    2014-01-01

    .... Such orbital angular momentum based multiplexing can potentially increase the system capacity and spectral efficiency of millimetre-wave wireless communication links with a single aperture pair...

  10. High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface.

    Science.gov (United States)

    Tang, Ruikai; Li, Xiongjie; Wu, Wenjie; Pan, Haifeng; Zeng, Heping; Wu, E

    2015-04-20

    The orbital angular momentum (OAM) of light shows great potential in quantum communication. The transmission wavelength for telecom is usually around 1550 nm, while the common quantum information storage and processing devices based on atoms, ions or NV color centers are for photons in visible regime. Here we demonstrate a quantum information interface based on the frequency upconversion for photons carrying OAM states from telecom wavelength to visible regime by sum-frequency generation with high quantum conversion efficiency. The infrared photons at 1558 nm carrying different OAM values were converted to the visible regime of 622.2 nm, and the OAM value of the signal photons was well preserved in the frequency upconversion process with pump beam in Gaussian profile.

  11. A Study of High Transverse Momentum Electrons Produced in pp Collisions at 540 GeV

    DEFF Research Database (Denmark)

    Bagnaia, P; Kofoed-Hansen, O.

    1984-01-01

    intermediate vector bosonW ±, which subsequently decays into an electron and a neutrino. We study theW production and decay properties. Further-more, we refine our results on the production and decay of the neutral vector bosonZ 0. Finally, we compare the experimental results to the predictions of the standard......The production of electrons with very high transverse momentum has been studied in the UA2 experiment at the CERN [`(p)]ppp collider ( Öss =540 GeV). From a sample of events containing an electron candidate withp T >15 GeV/c, we extract a clear signal resulting from the production of the charged...

  12. Soft-gluon resummation for single-particle inclusive hadroproduction at high transverse momentum

    Energy Technology Data Exchange (ETDEWEB)

    Catani, Stefano [INFN, Sezione di Firenze and Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino, Florence (Italy); Grazzini, Massimiliano, E-mail: grazzini@physik.uzh.ch [Institut für Theoretische Physik, Universität Zürich, CH-8057 Zürich (Switzerland); Torre, Alessandro [Institut für Theoretische Physik, Universität Zürich, CH-8057 Zürich (Switzerland)

    2013-09-21

    We consider the cross section for one-particle inclusive production at high transverse momentum in hadronic collisions. We present the all-order resummation formula that controls the logarithmically-enhanced perturbative QCD contributions to the partonic cross section in the threshold region, at fixed rapidity of the observed parton (hadron). The explicit resummation up to next-to-leading logarithmic accuracy is supplemented with the computation of the general structure of the near-threshold contributions to the next-to-leading order cross section. This next-to-leading order computation allows us to extract the one-loop hard-virtual amplitude that enters into the resummation formula. This is a necessary ingredient to explicitly extend the soft-gluon resummation beyond the next-to-leading logarithmic accuracy. These results equally apply to both spin-unpolarized and spin-polarized scattering processes.

  13. The ALICE high momentum particle identification system: An overview after the first Large Hadron Collider run

    CERN Document Server

    Martinengo, P

    2011-01-01

    The ALICE High Momentum Particle Identification RICH detector (HMPID) was installed, with its 10 m(2) of Cesium Iodide (CsI) photo-cathodes, in the ALICE experiment at the Large Hadron Collider (LHC) in 2006. Since then, it has been thoroughly commissioned, together with its auxiliary systems, with cosmic rays and particles from beam dump/splash events recorded during various LHC injection tests in 2008 and 2009. Finally, the HMPID has successfully detected particles produced by the first proton-proton collisions at LHC in winter 2009. The present paper reviews the experience gained during the commissioning phase and summarizes the present status of the detector. Preliminary results concerning the detector performance are also reported. (C) 2010 Elsevier B.V. All rights reserved.

  14. VAMOS: A variable mode high acceptance spectrometer for identifying reaction products induced by SPIRAL beams

    CERN Document Server

    Savajols, H

    2003-01-01

    The study of reactions induced by the SPIRAL beams at GANIL requires new techniques: the low intensity of secondary beams implies the need of a very high efficiency detection system; the study of nearly or completely unknown nuclei, over a wide range of masses and energies, needs a very efficient method for attributing a reaction product to a nucleus. The variable mode high acceptance spectrometer VAMOS is being designed and built especially for this purpose.

  15. High Resolution Transmission Grating Spectrometer for Edge Toroidal Rotation Measurements of Tokamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, A; May, M; Beiersdorfer, P; Magee, E; Lawrence, M; Terry, J; Rice, J

    2004-04-29

    We present a high throughput (f/3) visible (3500 - 7000 Angstrom) Doppler spectrometer for toroidal rotation velocity measurements of the Alcator C-Mod tokamak plasma. The spectrometer has a temporal response of 1 ms and a rotation velocity sensitivity of {approx}10{sup 5} cm/s. This diagnostic will have a tangential view and map out the plasma rotation at several locations along the outer half of the minor radius (r/a > 0.5). The plasma rotation will be determined from the Doppler shifted wavelengths of D{sub alpha} and magnetic and electric dipole transitions of highly ionized impurities in the plasma. The fast time resolution and high spectral resolving power are possible due to a 6' diameter circular transmission grating that is capable of {lambda}/{Delta}{lambda} {approx} 15500 at 5769 Angstrom in conjunction with a 50 {micro}m slit.

  16. High-resolution XES and RIXS studies with a von Hamos Bragg crystal spectrometer

    CERN Document Server

    Hoszowska, J; 10.1016/j.elspec.2004.02.005

    2004-01-01

    The high-resolution von Hamos Bragg crystal spectrometer was constructed for the study of K X-ray emission from low-Z elements and L and M X-ray spectra of medium to high Z elements. Recently, this instrument was applied to high-resolution XES and RIXS studies using X-ray synchrotron radiation at the ID21 and BM5 beamlines at the ESRF. An outline of the spectrometer design and performance characteristics will be given. The studies deal with the energy dependent KL double photoexcitation of argon, the L3 and M1 atomic- level widths of elements 54

  17. Guided-wave high-performance spectrometers for the MEOS miniature earth observation satellite

    Science.gov (United States)

    Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Jamroz, Wes; Sloan, James; Cloutis, Edward

    2017-11-01

    The MEOS Miniature Earth Observing Satellite is a low-cost mission being developed for the Canadian Space Agency with international collaborations that will innovatively combine remote correlated atmospheric/land-cover measurements with the corresponding atmospheric and ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of the surface ecosystems. MEOS will provide lower tropospheric CO2, CH4, CO, N2O, H2O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of innovative miniature line-imaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 1-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. To facilitate the mission accommodation on a low-cost microsat with a net payload mass under 22 kg, groundbreaking miniature guided-wave spectrometers with advanced optical filtering and coding technologies will be employed based on MPBC's patented IOSPEC technologies. The data synergy requirements for each view will be innovatively met using two complementary miniature line-imaging spectrometers to provide broad-band measurements from 1200 to 2450 nm at about 1.2 nm/pixel bandwidth using a multislit binary-coded MEMS-IOSPEC and simultaneous high-resolution multiple microchannels at 0.03 nm FWHM using the revolutionary FP-IOSPEC Fabry-Perot guided-wave spectrometer concept. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk

  18. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  19. Deep learning as a tool to distinguish between high orbital angular momentum optical modes

    Science.gov (United States)

    Knutson, E. M.; Lohani, Sanjaya; Danaci, Onur; Huver, Sean D.; Glasser, Ryan T.

    2016-09-01

    The generation of light containing large degrees of orbital angular momentum (OAM) has recently been demon- strated in both the classical and quantum regimes. Since there is no fundamental limit to how many quanta of OAM a single photon can carry, optical states with an arbitrarily high difference in this quantum number may, in principle, be entangled. This opens the door to investigations into high-dimensional entanglement shared between states in superpositions of nonzero OAM. Additionally, making use of non-zero OAM states can allow for a dramatic increase in the amount of information carried by a single photon, thus increasing the information capacity of a communication channel. In practice, however, it is difficult to differentiate between states with high OAM numbers with high precision. Here we investigate the ability of deep neural networks to differentiate between states that contain large values of OAM. We show that such networks may be used to differentiate be- tween nearby OAM states that contain realistic amounts of noise, with OAM values of up to 100. Additionally, we examine how the classification accuracy scales with the signal-to-noise ratio of images that are used to train the network, as well as those being tested. Finally, we demonstrate the simultaneous classification of < 100 OAM states with greater than 70 % accuracy. We intend to verify our system with experimentally-produced classi- cal OAM states, as well as investigate possibilities that would allow this technique to work in the few-photon quantum regime.

  20. Observation of Single Isolated Electrons of High Transverse Momentum in Events with Missing Transverse Energy at the CERN pp Collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    We report the results of a search for single isolated electrons of high transverse momentum at the CERN collider. Above 15 GeV/c, four events are found having large missing transverse energy along a direction opposite in azimuth to that of the high-pT electron. Both the configuration of the events...

  1. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  2. Electronic structure and positron annihilation in alkali metals: isolation of ionic core contribution and valence high-momentum components

    Energy Technology Data Exchange (ETDEWEB)

    Sob, M. (Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie)

    1985-01-01

    Momentum densities of annihilation pairs from valence as well as from ionic core electrons in alkali metals are calculated ab initio and compared with the experimental results. It is shown that the valence high-momentum components constitute a great deal (23-34% in Na-Cs and probably even more in Li) of the Gaussian part of the angular correlation curves. The average core enhancement factor ..gamma..sub(c) ranges from 1.5 (Li) to 7.1 (Cs) and may be well expressed by a logarithmic function of ionic core polarizability. The presented values of ..gamma..sub(c) are much higher than the core enhancement factors in the high-momentum (> approx. 15 mrad) region which, according to the recent theory of Bonderup, Andersen and Lowy, should not be very different from unity.

  3. High precision electric gate for time-of-flight ion mass spectrometers

    Science.gov (United States)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  4. Construction of high resolution beam line for SHARAQ spectrometer at RIKEN RI Beam Factory

    Science.gov (United States)

    Yanagisawa, Yoshiyuki; Kubo, Toshiyuki; Kusaka, Kensuke; Ohtake, Masao; Yoshida, Koichi; Ohnishi, Tetsuya; Sasamoto, Yoshiko; Saito, Akito; Uesaka, Tomohiro; Shimoura, Susumu; Kawabata, Takahiro; Noji, Shumpei; Sakai, Hideyuki

    2009-10-01

    A high resolution beam line [1] has been constructed for the SHARAQ spectrometer [2] at RIKEN RI Beam Factory (RIBF), in order to achieve dispersion matching that allows high resolution measurement at the focal plane of the spectrometer. This beam line is formed by the existing BigRIPS separator [3] at RIBF and a newly constructed beam line that diverges from BigRIPS and leads to the target position of SHARAQ. The ion optics is so designed that it can be operated in the dispersion matching mode. The new part of the beam line consists of two 30-degree bend dipoles, three quadrupole singlets and three superconducting quadrupole triplets. Recently the beam line has been successfully commissioned together with the SHARAQ spectrometer. Overview of the beam line will be reported. [1] T. Kawabata et al.: Nucl. Instr. and Meth. B 266 (2008) 4201. [2] T. Uesaka et al.: Nucl. Instr. and Meth. B 266 (2008) 4218. [3] T. Kubo: Nucl. Instr. and Meth. B 204 (2003) 97.

  5. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  6. Measurement of high-mass dilepton production with the CMS-TOTEM Precision Proton Spectrometer

    CERN Document Server

    Shchelina, Ksenia

    2017-01-01

    The measurements of dilepton production in photon-photon fusion with the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) are presented. For the first time, exclusive dilepton production at high masses have been observed in the CMS detector while one or two outgoing protons are measured in CT-PPS using around 10~${\\rm fb}^{-1}$ of data accumulated in 2016 during high-luminosity LHC operation. These first results show a good understanding, calibration and alignment of the new CT-PPS detectors installed in 2016.

  7. Compact high-resolution echelle-AOTF NIR spectrometer for atmospheric measurements

    Science.gov (United States)

    Korablev, Oleg I.; Bertaux, Jean-Loup; Vinogradov, Imant I.; Kalinnikov, Yurii K.; Nevejans, D.; Neefs, E.; Le Barbu, T.; Durry, G.

    2017-11-01

    A new concept of a high-resolution near-IR spectrometer consisting of an echelle grating combined with an acousto-optic tunable filter (AOTF) for separation of diffraction orders, is developed for space-borne studies of planetary atmospheres. A compact design with no moving parts within the mass budget of 3-5 kg allows to reach the resolving power λ/Δλ of 20000-30000. Only a small piece of spectrum in high diffraction orders can be measured at a time, but thanks to flexibility of the AOTF electrical tuning, such pieces of spectrum can be measured randomly and rapidly within the spectral range. This development can be used for accurate measurements of important atmospheric gases, such as CO2 in terrestrial atmosphere, isotopic ratios and minor gases. A spectrometer, based on this principle, SOIR (Solar Occultation InfraRed) is being built for Venus Express (2005) ESA mission. Instruments based on this principle have high potential for the studies of the Earth, in particular for measurements of isotopes of water in the lower atmosphere, either in solar occultation profiling (tangent altitude solar glint for integral quantities of the components. Small size of hardware makes them ideal for micro-satellites, which are now agile enough to provide necessary pointing for solar occultation or glint observations. Also, the atmosphere of Mars has never been observed at local scales with such a high spectral resolution. A laboratory prototype consisting of 275-mm echelle spectrometer with Hamamatsu InGaAs 512-pixel linear array and the AOTF has demonstrated λ/Δλ≍30000 in the spectral range of 1-1.7 μm. The next set up, covering the spectral ranges of 1-1.7 μm and 2.3-4.3 μm, and the Venus Express SOIR are briefly discussed.

  8. Soft x-ray blazed transmission grating spectrometer with high resolving power and extended bandpass

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander Robert; Schattenburg, Mark

    2016-04-01

    A number of high priority questions in astrophysics can be addressed by a state-of-the-art soft x-ray grating spectrometer, such as the role of Active Galactic Nuclei in galaxy and star formation, characterization of the Warm-Hot Intergalactic Medium and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, as well as stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (> 1,000 cm2), high resolving power (R = λ/Δλ > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology. Still significantly higher performance can be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission. CAT gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. They are high-efficiency blazed transmission gratings that consist of freestanding, ultra-high aspect-ratio grating bars fabricated from silicon-on-insulator (SOI) wafers using advanced anisotropic dry and wet etch techniques. Blazing is achieved through grazing-incidence reflection off the smooth grating bar sidewalls. The reflection properties of silicon are well matched to the soft x-ray band. Nevertheless, CAT gratings with sidewalls made of higher atomic number elements allow extension of the CAT grating principle to higher energies and larger dispersion angles. We show x-ray data from metal-coated CAT gratings and demonstrate efficient blazing to higher energies and larger blaze angles than possible with silicon alone. We also report on measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing mirror pair from Goddard Space Flight Center and CAT gratings, to be

  9. Research of high power and stable laser in portable Raman spectrometer based on SHINERS technology

    Science.gov (United States)

    Cui, Yongsheng; Yin, Yu; Wu, Yulin; Ni, Xuxiang; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The intensity of Raman light is very weak, which is only from 10-12 to 10-6 of the incident light. In order to obtain the required sensitivity, the traditional Raman spectrometer tends to be heavy weight and large volume, so it is often used as indoor test device. Based on the Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) method, Raman optical spectrum signal can be enhanced significantly and the portable Raman spectrometer combined with SHINERS method will be widely used in various fields. The laser source must be stable enough and able to output monochromatic narrow band laser with stable power in the portable Raman spectrometer based on the SHINERS method. When the laser is working, the change of temperature can induce wavelength drift, thus the power stability of excitation light will be affected, so we need to strictly control the working temperature of the laser, In order to ensure the stability of laser power and output current, this paper adopts the WLD3343 laser constant current driver chip of Wavelength Electronics company and MCU P89LPC935 to drive LML - 785.0 BF - XX laser diode(LD). Using this scheme, the Raman spectrometer can be small in size and the drive current can be constant. At the same time, we can achieve functions such as slow start, over-current protection, over-voltage protection, etc. Continuous adjustable output can be realized under control, and the requirement of high power output can be satisfied. Max1968 chip is adopted to realize the accurate control of the laser's temperature. In this way, it can meet the demand of miniaturization. In term of temperature control, integral truncation effect of traditional PID algorithm is big, which is easy to cause static difference. Each output of incremental PID algorithm has nothing to do with the current position, and we can control the output coefficients to avoid full dose output and immoderate adjustment, then the speed of balance will be improved observably. Variable

  10. Tsallis Statistical Interpretation of Transverse Momentum Spectra in High-Energy pA Collisions

    Directory of Open Access Journals (Sweden)

    Bao-Chun Li

    2015-01-01

    Full Text Available In Tsallis statistics, we investigate charged pion and proton production for pCu and pPb interactions at 3, 8, and 15 GeV/c. Two versions of Tsallis distribution are implemented in a multisource thermal model. A comparison with experimental data of the HARP-CDP group shows that they both can reproduce the transverse momentum spectra, but the improved form gives a better description. It is also found that the difference between q and q′ is small when the temperature T = T′ for the same incident momentum and angular interval, and the value of q is greater than q′ in most cases.

  11. Measuring the temporal coherence of a high harmonic generation setup employing a Fourier transform spectrometer for the VUV/XUV

    Energy Technology Data Exchange (ETDEWEB)

    Terschlüsen, J.A., E-mail: Joachim.Terschluesen@physics.uu.se; Agåker, M.; Svanqvist, M.; Plogmaker, S.; Nordgren, J.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J.

    2014-12-21

    In this experiment we used an 800 nm laser to generate high-order harmonics in a gas cell filled with Argon. Of those photons, a harmonic with 42 eV was selected by using a time-preserving grating monochromator. Employing a modified Mach–Zehnder type Fourier transform spectrometer for the VUV/XUV it was possible to measure the temporal coherence of the selected photons to about 6 fs. We demonstrated that not only could this kind of measurement be performed with a Fourier transform spectrometer, but also with some spatial resolution without modifying the XUV source or the spectrometer.

  12. Study of the drift properties of high pressure drift tubes for the ATLAS muon spectrometer

    CERN Document Server

    Branchini, Paolo; Ceradini, Filippo; Graziani, Enrico; Iodice, Mauro; Orestano, Domizia; Passeri, Antonio; Petrucci, Fabrizio; Tagliaventi, S; Tonazzo, Alessandra

    2004-01-01

    High pressure drift tubes chambers, MDT, are used as precision tracking detectors in the muon spectrometer of the ATLAS experiment at the Large Hadron Collider. MDT chambers, operated at 3 bar absolute pressure with 93% argon 7% carbon dioxide gas mixture, were tested with cosmic rays at the Roma TRE test site and their properties upon variations of the operating conditions are discussed. The possibility to improve the tube spatial resolution measuring a fraction of the collected charge, exploiting the final version of the MDT read-out electronics, is considered.

  13. Small mass spectrometer with extended measurement capabilities at high pressures. [for planetary atmosphere analysis

    Science.gov (United States)

    Von Zahn, U.; Mauersberger, K.

    1978-01-01

    For the in situ investigation of planetary atmospheres a small Mattauch-Herzog mass spectrometer has been developed. Its high-pressure performance has been improved by incorporating differential pumping between the ion source and the analyzing fields, shortening the path-length as well as increasing the extraction field in the ion source. In addition doubly ionized and dissociated ions are used for mass analysis. These measures make possible operation up to 0.01 millibars. Results of laboratory tests related to linearity, dynamic range, and mass resolution are presented, in particular for CO2.

  14. High resolution THz gas spectrometer based on semiconductor and superconductor devices

    Directory of Open Access Journals (Sweden)

    Anfertev V.

    2017-01-01

    Full Text Available The high resolution THz gas spectrometer consists of a synthesizer based on Gunn generator with a semiconductor superlattice frequency multiplier as a radiation source, and an NbN hot electron bolometer in a direct detection mode as a THz radiation receiver was presented. The possibility of application of a quantum cascade laser as a local oscillator for a heterodyne receiver which is based on an NbN hot electron bolometer mixer is shown. The ways for further developing of the THz spectroscopy were outlined.

  15. Study of $ \\bar{p} $ and $ \\bar{n} $ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer

    CERN Document Server

    2002-01-01

    % PS201 Study of $\\bar{p}$ and $\\bar{n}$ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer \\\\ \\\\OBELIX is designed to study exclusive final states of antiproton and antineutron annihilations at low energies with protons and nuclei. \\\\ \\\\The physics motivations of the experiment are:\\\\ \\\\\\begin{itemize} \\item (gg, ggg), hybrids ($ q \\bar{q} g $), multiquarks ($ q q \\bar{q} \\bar{q} $) and light mesons ($ q \\bar{q} $) produced in $ N \\bar{N} $ annihilations and study of their spectroscopy and decays. Also broad structures will be searched for by comparing identical decay modes in exclusive final states of the same type occuring from initial states with different angular momentum or isospin. \\item Study of the dynamics of $ N \\bar{N} $ interactions and of the dependence of the final and intermediate resonant states of annihilation upon the quantum numbers of the initial $ N \\bar{N} $ state (angular momentum: S and P-wave in $\\bar{p}p $ at...

  16. A high-resolution x-ray spectrometer for a kaon mass measurement

    Science.gov (United States)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  17. Micro-Spec: An Ultracompact, High-sensitivity Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2014-01-01

    High-performance, integrated spectrometers operating in the far-infrared and submillimeter ranges promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a 4 inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (micron-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of (is) approximately 90% has been developed for initial demonstration and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  18. Fiber-coupled high resolution infrared array spectrometer for the Kuiper Airborne Observatory

    Science.gov (United States)

    Glenar, D. A.; Reuter, D.; Mumma, M. J.; Chin, G.; Wiedemann, G.; Jennings, D.

    1990-01-01

    A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.

  19. A High Rigidity Spectrometer for the Facility for Rare Isotope Beams.

    Science.gov (United States)

    Zegers, Remco

    2017-01-01

    The High Rigidity Spectrometer (HRS) will be the centerpiece experimental tool of the Facility for Rare-Isotope Beams (FRIB) fast-beam program. The fast-beam program has tremendous discovery potential, enabling experiments with beam intensities of a few ions per second or less through the luminosity afforded by thick targets. The high magnetic rigidity of the HRS (up to 8 Tm) will match the rigidities at which rare-isotope production yields at the FRIB fragment separator are maximum across the entire chart of nuclei and enable experiments with the most neutron-rich nuclei available at FRIB. Gain factors in luminosity of ten or more are achievable compared to running with existing spectrometers, which have a maximum rigidity of 4 Tm, with the highest gains for the most neutron-rich unstable isotopes. To enable a broad spectrum of experiments, the HRS will accommodate different ion-optical modes and provide the flexibility to run in coincidence with a diverse set of other detector systems, such as the Gamma Ray Energy Tracking Array (GRETA) and the Modular Neutron Array (MoNA-LISA). In the presentation, an overview of the scientific opportunities with the HRS and the present layout, based on ion-optical and magnet-feasibility studies, will be given. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office for Nuclear Physics, under Award Number DE-SC0014554.

  20. Search for Dark Matter in events with a hight- p$_T$ photon and high missing transverse momentum in ATLAS

    CERN Document Server

    Ratti, M G

    2016-01-01

    We present the results of a search for new particles in events with a high-pT photon and high missing transverse momentum with the ATLAS experiment at the LHC. The analysis is performed on the data collected by ATLAS at a centre of mass energy of 8TeV and corresponding to a total integrated luminosity of 20.3 fb$^{−1}$. No excess has been found with respect to the Standard Model expectation. A modelindependent upper limit on the fiducial cross section for the production of events with a photon and large missing transverse momentum is set. Exclusion limits on the direct pair production of dark matter candidates are presented.

  1. High Momentum Particle Identification Detector The Study of Cesium Iodide Quantum Efficiency Dependency on Substrate Material, Temperature and Quartz Window

    CERN Document Server

    Wisna, Gde Bimananda M

    2014-01-01

    The Cesium Iodide (CsI) is used as a material for detecting Cherenkov radiation produced by high momentum particle in High Momentum Particle Identification Detector (HMPID) at ALICE Experiment at CERN. This work provides investigation and analysis of The Quantum Efficiency (QE) result of CsI which is deposited on five samples substrates such as copper passivated red, copper passivated yellow, aluminium, copper coated with nickel and copper coated with nickel then coated with gold. The measurement of five samples is held under temperature $60^{0}$ C and $25^{0}$ C (room temperature) and also with optical quartz window which can be adjusted to limit the wavelength range which reach the CsI. The result shows there are dependency of substrate, temperature due to enhancement effect and also quartz windows usage on QE of CsI. The results of five samples is then compared and analyzed.

  2. Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, T., E-mail: nishizawa@wisc.edu; Nornberg, M. D.; Den Hartog, D. J. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Craig, D. [Wheaton College, Wheaton, Illinois 60187 (United States)

    2016-11-15

    The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier’s cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

  3. Modified Thomson spectrometer design for high energy, multi-species ion sources.

    Science.gov (United States)

    Gwynne, D; Kar, S; Doria, D; Ahmed, H; Cerchez, M; Fernandez, J; Gray, R J; Green, J S; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Ruiz, J A; Schiavi, A; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2014-03-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.

  4. Comparing Erlang Distribution and Schwinger Mechanism on Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2016-01-01

    Full Text Available We study the transverse momentum spectra of J/ψ and Υ mesons by using two methods: the two-component Erlang distribution and the two-component Schwinger mechanism. The results obtained by the two methods are compared and found to be in agreement with the experimental data of proton-proton (pp, proton-lead (p-Pb, and lead-lead (Pb-Pb collisions measured by the LHCb and ALICE Collaborations at the large hadron collider (LHC. The related parameters such as the mean transverse momentum contributed by each parton in the first (second component in the two-component Erlang distribution and the string tension between two partons in the first (second component in the two-component Schwinger mechanism are extracted.

  5. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF).

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Efthimion, P C; Ellis, R; Gao, L; Maddox, J; Pablant, N A; Schneider, M B; Chen, H; Ayers, S; Kauffman, R L; MacPhee, A G; Beiersdorfer, P; Bettencourt, R; Ma, T; Nora, R C; Scott, H A; Thorn, D B; Kilkenny, J D; Nelson, D; Shoup, M; Maron, Y

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s 2 -1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s 2 -1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  6. [Design and study of a high resolution vacuum ultraviolet imaging spectrometer carried by satellite].

    Science.gov (United States)

    Yu, Lei; Lin, Guan-yu; Qu, Yi; Wang, Shu-rong; Wang, Long-qi

    2011-12-01

    A high resolution vacuum ultraviolet imaging spectrometer prototype carried by satellite applied to the atmosphere detection of particles distribution in 115-300 nm was developed for remote sensing. First, based on the analysis of advanced loads, the optical system including an off-axis parabolic mirror as the telescope and Czerny-Turner structure as the imaging spectrometer was chosen Secondly, the 2-D photon counting detector with MCP was adopted for the characteristic that the radiation is weak in vacuum ultraviolet waveband. Then the geometric method and 1st order differential calculation were introduced to improve the disadvantages that aberrations in the traditional structure can not be corrected homogeneously to achieve perfect broadband imaging based on the aberration theory. At last, an advanced example was designed. The simulation and calculation of results demonstrate that the modulation transfer function (MTF) of total field of view is more than 0.6 in the broadband, and the spectral resolution is 1.23 nm. The structure is convenient and predominant. It proves that the design is feasible.

  7. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer

    Directory of Open Access Journals (Sweden)

    Akifumi Takanabe

    2017-02-01

    Full Text Available A fast, high-accuracy universal polarimeter was developed using a charge-coupled device (CCD spectrometer (CCD-HAUP, to carry out simultaneous optical anisotropic (linear birefringence, LB; linear dichroism, LD and chiroptical (circular birefringence, CB; circular dichroism, CD measurements on single crystals without any pretreatment, in the visible region between 400–680 nm. The principle of the HAUP method is to measure the intensities of emergent light passing through a polarizer, a crystal sample, and then an analyzer, as the azimuth angles of the polarizer and analyzer are independently altered. The CCD-HAUP has the unique feature that white transmitted light intensity can be measured using a CCD spectrometer, compared with the generalized HAUP (G-HAUP system in which monochromatic transmitted light is measured using a photomultiplier. The CCD-HAUP measurements across the entire wavelength region are completed within the G-HAUP measurement time for a single wavelength. The CCD-HAUP drastically reduces the measurement time for a dataset to only 1.5 h, from the 24 h required for the G-HAUP system. LB, LD, CB, and CD measurements of single crystals of α-quartz and enantiomeric photomechanical salicylidenephenylethylamines before, during, and after ultraviolet light irradiation show results comparable to those obtained using the G-HAUP system. The newly developed system is very effective for samples susceptible to degradation induced by external stimuli, such as light and heat.

  8. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF)

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Ellis, R.; Gao, L.; Maddox, J.; Pablant, N. A.; Schneider, M. B.; Chen, H.; Ayers, S.; Kauffman, R. L.; MacPhee, A. G.; Beiersdorfer, P.; Bettencourt, R.; Ma, T.; Nora, R. C.; Scott, H. A.; Thorn, D. B.; Kilkenny, J. D.; Nelson, D.; Shoup, M.; Maron, Y.

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s2-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s2-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  9. Image Evaluation of the High Resolution VUV Spectrometer at SURF II by Ray Tracing.

    Science.gov (United States)

    Das, N C; Madden, R P; Seyoum, H M

    1998-01-01

    A high resolution VUV spectroscopic facility has been in use for several years at SURF II, the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology in Gaithersburg, Maryland. At this facility, a combination of three cylindrical mirrors is utilized to focus the light originating in the storage ring onto the horizontal entrance slit of the spectrometer. The spectrometer uses a 6.65 m concave grating having a groove density of 4800 lines/mm in the off-plane Eagle mounting. In preparation for the installation of an array detector in the exit image plane, a ray tracing program has been formulated and spot diagrams have been constructed by plotting the coordinates of the points of intersection of the diffracted rays with the image plane, which is tangent to the Rowland circle. In creating the spot diagrams, we have considered both parallel and tilted configurations of the entrance slit with respect to the grating grooves. It is shown that the line widths of the spectral images can be reduced when the entrance slit is properly tilted. Finally, we have estimated the spectral widths of the images when they are recorded on an array detector placed tangent to the Rowland circle. We conclude that an image spectral width of 0.41 pm to 0.88 pm in first order can be achieved over the wavelength region of 40 nm to 120 nm.

  10. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.

    Science.gov (United States)

    Gallien, Sebastien; Domon, Bruno

    2014-08-01

    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  11. Development and Operation of High-throughput Accurate-wavelength Lens-based Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Ronald E

    2014-07-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy < 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  12. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Armitage, J. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Baig, F.; Boniface, K. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Boudjemline, K. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Bueno, J. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Charles, E. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Drouin, P-L. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Erlandson, A., E-mail: Andrew.Erlandson@cnl.ca [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Gallant, G. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Gazit, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Godin, D.; Golovko, V.V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Howard, C. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Hydomako, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); and others

    2015-10-21

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  13. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Science.gov (United States)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V. V.; Howard, C.; Hydomako, R.; Jewett, C.; Jonkmans, G.; Liu, Z.; Robichaud, A.; Stocki, T. J.; Thompson, M.; Waller, D.

    2015-10-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  14. High-grade, compact spectrometers for Earth observation from SmallSats

    Science.gov (United States)

    van der Wal, L. F.; de Goeij, B. T. G.; Jansen, R.; Oosterling, J. A. J.; Snijders, B.

    2016-10-01

    The market for nano- and microsatellites is developing rapidly. There is a strong focus on 2D imaging of the Earth's surface, with limited possibilities to obtain spectral information. More demanding applications, such as monitoring trace gases, aerosols or water quality still require advanced imaging instruments, which are large, heavy and expensive. In recent years TNO has investigated and developed different innovative designs to realize advanced spectrometers for space applications in a more compact and cost-effective manner. This offers multiple advantages: a compact instrument can be flown on a much smaller platform (nano- or microsatellite); a low-cost instrument opens up the possibility to fly multiple instruments in a satellite constellation, improving both global coverage and temporal sampling (e.g. to study diurnal processes); a constellation of low-cost instruments may provide added value to the larger scientific and operational satellite missions (e.g. the Copernicus Sentinel missions); and a small, lightweight spectrometer can also be mounted easily on a high-altitude UAV (offering high spatial resolution). Last but not least, a low-cost instrument may allow to break through the `cost spiral': lower cost will allow to take more risk and thus progress more quickly. This may lead to a much faster development cycle than customary for current Earth Observation instruments. To explore the potential of a constellation of low-cost instruments a consortium of Dutch partners was formed, which currently consists of Airbus Defence and Space Netherlands, ISISpace, S and T and TNO. In this paper we will illustrate this new design approach by using the most advanced design of a hyperspectral imaging spectrometer (named `Spectrolite') as an example. We will discuss the different design and manufacturing techniques that were used to realize this compact and low-cost design. Laboratory tests as well as the first preliminary results of airborne measurements with the

  15. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  16. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Science.gov (United States)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  17. Development of a High Resolution X-ray Spectrometer on the National Ignition Facility

    Science.gov (United States)

    Gao, L.; Kraus, B.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Liedahl, D.; Macphee, A. G.; Le, H. P.; Thorn, D.; Nelson, D.

    2017-10-01

    A high-resolution x-ray spectrometer has been designed, calibrated, and deployed on the National Ignition Facility (NIF) to measure plasma parameters for a Kr-doped surrogate capsule imploded at NIF conditions. Two conical crystals, each diffracting the He α and He β complexes respectively, focus the spectra onto a steak camera photocathode for time-resolved measurements with a temporal resolution of NIF experimental results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  18. Calibration of a high harmonic spectrometer by laser induced plasma emission.

    Science.gov (United States)

    Farrell, J P; McFarland, B K; Bucksbaum, P H; Gühr, M

    2009-08-17

    We present a method that allows for a convenient switching between high harmonic generation (HHG) and accurate calibration of the vacuum ultraviolet (VUV) spectrometer used to analyze the harmonic spectrum. The accurate calibration of HHG spectra is becoming increasingly important for the determination of electronic structures. The wavelength of the laser harmonics themselves depend on the details of the harmonic geometry and phase matching, making them unsuitable for calibration purposes. In our calibration mode, the target resides directly at the focus of the laser, thereby enhancing plasma emission and suppressing harmonic generation. In HHG mode, the source medium resides in front or after the focus, showing enhanced HHG and no plasma emission lines. We analyze the plasma emission and use it for a direct calibration of our HHG spectra. (c) 2009 Optical Society of America

  19. Factorization breaking in high-transverse-momentum charged-hadron production at the Tevatron?

    Science.gov (United States)

    Albino, S; Kniehl, B A; Kramer, G

    2010-06-18

    We compare the transverse-momentum (pT) distribution of inclusive light-charged-particle production measured by the CDF Collaboration at the Fermilab Tevatron with the theoretical prediction evaluated at next-to-leading order in quantum chromodynamics using fragmentation functions recently determined through a global data fit. While in the lower pT range the data agree with the prediction within the theoretical error or slightly undershoot it, they significantly exceed it in the upper pT range, by several orders of magnitude at the largest values of pT, potentially challenging the factorization theorem.

  20. Study of gas Cherenkov detectors for high momentum charged particle identification

    CERN Document Server

    Volpe, G; García, E; Di Mauro, A; Nappi, E; Martinengo, P; Shileev, K A; Paic, G

    2007-01-01

    We present here an exhaustive study of the possibilities offered by a combination of a gas radiator of the highest index of refraction commercially available (C5F12) with the proven concept of large area CsI photocathodes instrumenting either a multiwire chamber or a GEM detector. We will present two geometries. One of them is proximity-focusing, nevertheless allows identification in a large momentum range. The second geometry deals with the possibilities of using focusing with a spherical mirror. Simulations of the performance are presented.

  1. (p,2p) study of high-momentum components at 2. 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Treuhaft, R.N.

    1982-07-01

    A (p,2p) experiment designed to isolate interactions with small numbers of fast nuclear constituents is described. Special attention is paid to the experimental manifestation and description of a correlated pair of nucleons in the nucleus. Phase space calculations are presented for the proton-pair three-body final state and for final states with larger number of particles. The Two Armed Spectrometer System (TASS) is described in detail. The data suggest the possibility of isolating an interaction with one or two nucleons in the nucleus which may have momenta far in excess of those described in a Fermi gas model.

  2. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms

  3. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  4. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R. J. E.; Scheffer, M. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, Eindhoven (Netherlands); Kappatou, A. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Nieuwegein (Netherlands); Valk, N. C. J. van der; Durkut, M.; Snijders, B. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands); Marchuk, O.; Biel, W. [Institut fuer Energie und Klimaforschung-IEK-4 Forschungszentrum, Juelich GmbH, 52425 Juelich (Germany); Pokol, G. I. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Erdei, G. [Department of Atomic Physics, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Zoletnik, S.; Dunai, D. [WIGNER RCP, RMKI, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary)

    2012-10-15

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm{sup 2}sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  5. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITERa)

    Science.gov (United States)

    Jaspers, R. J. E.; Scheffer, M.; Kappatou, A.; van der Valk, N. C. J.; Durkut, M.; Snijders, B.; Marchuk, O.; Biel, W.; Pokol, G. I.; Erdei, G.; Zoletnik, S.; Dunai, D.

    2012-10-01

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm2sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)], 10.1063/1.1537443. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  6. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Science.gov (United States)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  7. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Finlay, P.; Breitenfeldt, M.; Porobic, T.; Wursten, E.; Couratin, C.; Soti, G.; Severijns, N. [KU Leuven University, Instituut voor Kern-en Stralingsfysica, Leuven (Belgium); Ban, G.; Fabian, X.; Flechard, X.; Lienard, E. [Normandie Univ., ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, Caen (France); Beck, M.; Friedag, P.; Weinheimer, C. [Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Glueck, F.; Kozlov, V.Y. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Herlert, A. [FAIR, Darmstadt (Germany); Knecht, A. [KU Leuven University, Instituut voor Kern-en Stralingsfysica, Leuven (Belgium); CERN, PH Department, Geneva (Switzerland); Tandecki, M. [TRIUMF, Vancouver BC (Canada); Traykov, E. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Van Gorp, S. [RIKEN, Atomic Physics Laboratory, Saitama (Japan); Zakoucky, D. [ASCR, Nuclear Physics Institute, Rez (Czech Republic)

    2016-07-15

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β{sup +} decay of {sup 35}Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2 ns and position resolution of 0.1 mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for {sup 35}Ar decay using the WITCH spectrometer. (orig.)

  8. Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data

    Science.gov (United States)

    Ern, M.; Hoffmann, L.; Preusse, P.

    2017-01-01

    In order to reduce uncertainties in modeling the stratospheric circulation, global observations of gravity wave momentum flux (GWMF) vectors are required for comparison with distributions of resolved and parametrized GWMF in global models. For the first time, we derive GWMF vectors globally from data of a nadir-viewing satellite instrument: we apply a 3-D method to an Atmospheric Infrared Sounder (AIRS) temperature data set that was optimized for gravity wave (GW) analysis. For January 2009, the resulting distributions of GW amplitudes and of net GWMF highlight the importance of GWs in the polar vortex and the summertime subtropics. Net GWMF is preferentially directed opposite to the background wind, and, interestingly, it is dominated by large-amplitude GWs of relatively long horizontal wavelength. For convective GW sources, these large horizontal scales are in contradiction with traditional thoughts. However, the observational filter effect needs to be kept in mind when interpreting the results.

  9. Electroproduction of Eta Mesons in the S11(1535) Resonance Region at High Momentum Transfer

    CERN Document Server

    Dalton, M M; Ahmidouch, A; Angelescu, T; Arrington, J; Asaturyan, R; Baker, O K; Benmouna, N; Bertoncini, C; Böglin, W; Bosted, P E; Breuer, H; Christy, M E; Connell, S H; Cui, Y; Danagulyan, S; Day, D; Dodario, T; Dunne, J A; Dutta, D; Khayari, N El; Ent, R; Fenker, H C; Frolov, V V; Gan, L; Gaskell, D; Hafidi, K; Hinton, W; Holt, R J; Horn, T; Huber, G M; Hungerford, E; Jiang, X; Jones, M K; Joo, K; Kalantarians, N; Kelly, J J; Keppel, C E; Kubarovski, V; Li, Y; Liang, Y; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Mkrtchyan, H; Moziak, B; Navasardyan, T; Niculescu, G; Niculescu, I; Opper, A K; Ostapenko, T; Reimer, P E; Reinhold, J; Roche, J; Rock, S E; Schulte, E; Segbefia, E; Smith, C; Smith, G R; Stoler, P; Tadevosyan, V; Tang, L; Tvaskis, V; Ungaro, M; Uzzle, A; Vidakovic, S; Villano, A; Vulcan, W F; Wang, M; Warren, G; Wesselmann, F R; Wojtsekhowski, B; Wood, S A; Xu, C; Yuan, L; Zheng, X; Zhu, H

    2008-01-01

    The differential cross-section for the process p(e,e'p)eta has been measured at Q2 ~ 5.7 and 7.0 (GeV/c)2 for centre-of-mass energies from threshold to 1.8 GeV, encompassing the S11(1535) resonance, which dominates the channel. This is the highest momentum transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A_1/2, for the production of the S11(1535) resonance, is extracted from the data. This quantity appears to begin scaling as 1/Q3, a predicted signal of the dominance of perturbative QCD, at Q2 ~ 5 (GeV/c)2.

  10. Development and capabilities of the new 253 Ultra high resolution, gas source mass spectrometer

    Science.gov (United States)

    Clog, M. D.; Ellam, R. M.; Hilkert, A.; Schwieters, J. B.; Deerberg, M.

    2016-12-01

    The growing interest in clumped and position-specific isotope geochemistry drives the development of gas source mass spectrometers capable of overcoming the technical challenges that limits our capabilities. The main challenges is reaching a mass resolving power high enough to be able to resolve the species of interest from isobars (contaminants, isotopologues with different isotopes and products of ion source chemistry). Applications to natural samples also requires the ability to make measurements at the sub-permil level for low-intensity ion beams. It is thus also necessary for those instruments to have a high abundance sensitivity, high resolution to avoid the need for peak stripping schemes and a high stability of the signal intensities and peak positions in the image plane of the mass spectrometer. We present here the capabilities of the production series version of the ThermoFisher Scientific 253 Ultra, whose design is an iteration of the Caltech 253 Ultra prototype. It is a double-focusing, multi-collection instrument able to reach a mass resolving power of up to 48,000. Over 30 minutes, the standard deviation of the peak position at mass 44 was 20 micro a.m.u. (0.5 ppm). It is equipped with 9 Faraday cups (8 movable) and 4 ion counters (3 movable, the last one located behind a retardation lens). Without using the retardation lens, around mass 40, the abundance sensitivity at .5 a.m.u. is 1ppm, and at 3 a.m.u. drops to 100 ppb. One of movable Faraday cup and one of the movable ion counters have a narrow entrance slit, to allow for peak separation (for example, to measure separately 13CH3D and 12CD2H2). After integration on ion counters of beams ranging from 100 to 10⁵ cps for several hours, the standard error on the ratio of these peaks to ion beams measured on a Faraday cup was within 10% of the counting statistics error. Overall, the 253 Ultra is showing great potential for the development of clumped and position-specific isotope geochemistry.

  11. High-throughput spectrometer designs in a compact form-factor: principles and applications

    Science.gov (United States)

    Norton, S. M.

    2013-05-01

    Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.

  12. Development in High-Density Cobra Fiber Positioners for the Subaru Telescope's Prime Focus Spectrometer

    Science.gov (United States)

    Fisher, Charles D.; Braun, David F.; Kaluzny, Joel V.; Seiffert, Mic D.; Dekany, Richard G.; Ellis, Richard S.; Smith, Roger S.

    2012-01-01

    The Prime Focus Spectrograph (PFS) is a fiber fed multi-object spectrometer for the Subaru Telescope that will conduct a variety of targeted surveys for studies of dark energy, galaxy evolution, and galactic archaeology. The key to the instrument is a high density array of fiber positioners placed at the prime focus of the Subaru Telescope. The system, nicknamed "Cobra", will be capable of rapidly reconfiguring the array of 2394 optical fibers to the image positions of astronomical targets in the focal plane with high accuracy. The system uses 2394 individual "SCARA robot" mechanisms that are 7.7mm in diameter and use 2 piezo-electric rotary motors to individually position each of the optical fibers within its patrol region. Testing demonstrates that the Cobra positioner can be moved to within 5 micrometers of an astronomical target in 6 move iterations with a success rate of 95%. The Cobra system is a key aspect of PFS that will enable its unprecedented combination of high-multiplex factor and observing efficiency on the Subaru telescope. The requirements, design, and prototyping efforts for the fiber positioner system for the PFS are described here as are the plans for modular construction, assembly, integration, functional testing, and performance validation.

  13. High-sensitivity, portable, tunable imaging X-ray spectrometer based on a spherical crystal and MCP

    CERN Document Server

    Monot, P; Dobosz, S; D'Oliveira, P; Hulin, S; Bougeard, M; Faenov, A Y; Pikuz, T A; Skobelev, I Y

    2002-01-01

    A portable (200x100x100 mm sup 3), high-luminosity, spherically bent crystal spectrometer was designed to measure very low emissivity X-ray spectra of different elements with spatial resolution in a wide spectral range (1.2-19.6 A). A large (50x15 mm sup 2) open aperture mica spherically bent crystal with R=150 mm was used as dispersive and focusing element. This spectrometer was associated with a large sensitive area (phi=40 mm) micro-channel plates assembly. This apparatus provides simultaneously high spectral (lambda/delta lambda approx 1800) and spatial (100-200 mu m) resolutions. Its large tunability allowed, without any adjustment of the spectrometer set-up, to record spectra in the 1.38-17.5 A wavelength range. We used the X-ray emission of femtosecond laser-produced plasmas from different materials ((CF sub 2) sub n , CaF sub 2 , Cu, Al) to test the spectrometer. Thanks to the high sensitivity (high collection efficiency) of the system, high quality space-resolved X-ray spectra of Fluorine and Aluminu...

  14. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Gates, D; Monticello, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-07-29

    A high-resolution X-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for LHD. This instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of < 2 cm and ≥ 10 ms. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD.

  15. Objectives and layout of a high-resolution x-ray imaging crystal spectrometer for the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M.; Hill, K.; Gates, D.; Monticello, D.; Neilson, H.; Reiman, A.; Roquemore, A. L. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Morita, S.; Goto, M.; Yamada, H. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Rice, J. E. [Plasma Fusion Center, MIT, Cambridge, Massachusetts 02139-4307 (United States)

    2010-10-15

    A high-resolution x-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for the large helical device (LHD). This instrument will record spatially resolved spectra of helium-like Ar{sup 16+} and will provide ion temperature profiles with spatial and temporal resolutions of <2 cm and {>=}10 ms, respectively. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data.

  16. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    Science.gov (United States)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  17. A 750MHz and a 8GHz High Bandwidth Digital FFT Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The scope of this project is to to develop a wide bandwidth, low power, and compact single board digital Fast Fourier Transform spectrometer (FFTS) optimized for the...

  18. Compact High-Resolution Broad-Band Terahertz Fabry-Perot Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to develop a compact scanning Fabry-Perot spectrometer, for satellite far-infrared astronomy and Earth remote sensing, that operates at wavelengths...

  19. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer.

    Science.gov (United States)

    DeCarlo, Peter F; Kimmel, Joel R; Trimborn, Achim; Northway, Megan J; Jayne, John T; Aiken, Allison C; Gonin, Marc; Fuhrer, Katrin; Horvath, Thomas; Docherty, Kenneth S; Worsnop, Doug R; Jimenez, Jose L

    2006-12-15

    The development of a new high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is reported. The high-resolution capabilities of this instrument allow the direct separation of most ions from inorganic and organic species at the same nominal m/z, the quantification of several types of organic fragments (CxHy, CxHyOz, CxHyNp, CxHyOzNp), and the direct identification of organic nitrogen and organosulfur content. This real-time instrument is field-deployable, and its high time resolution (0.5 Hz has been demonstrated) makes it well-suited for studies in which time resolution is critical, such as aircraft studies. The instrument has two ion optical modes: a single-reflection configuration offers higher sensitivity and lower resolving power (up to approximately 2100 at m/z 200), and a two-reflectron configuration yields higher resolving power (up to approximately 4300 at m/z 200) with lower sensitivity. The instrument also allows the determination of the size distributions of all ions. One-minute detection limits for submicrometer aerosol are <0.04 microg m(-3) for all species in the high-sensitivity mode and <0.4 microg m(-3) in the high-resolution mode. Examples of ambient aerosol data are presented from the SOAR-1 study in Riverside, CA, in which the spectra of ambient organic species are dominated by CxHy and CxHyOz fragments, and different organic and inorganic fragments at the same nominal m/z show different size distributions. Data are also presented from the MIRAGE C-130 aircraft study near Mexico City, showing high correlation with independent measurements of surrogate aerosol mass concentration.

  20. The construction of a high resolution crystal backscattering spectrometer HERMES I

    Energy Technology Data Exchange (ETDEWEB)

    Larese, J.Z.

    1998-11-01

    There is a need in the United States for a state-of-the-art, cold-neutron, crystal backscattering spectrometer (CBS) designed to investigate the structure and dynamics of condensed matter systems by the simultaneous utilization of long wavelength elastic diffraction and high-energy-resolution inelastic scattering. Cold neutron spectroscopy with CBS-type instruments has already made many important contributions to the study of atomic and molecular diffusion in biomaterials, polymers, semiconductors, liquid crystals, superionic conductors and the like. Such instruments have also been invaluable for ultra high resolution investigations of the low-lying quantum tunneling processes that provide direct insight into the dynamical response of solids at the lowest energies. Until relatively recently, however, all such instruments were located at steady-state reactors. This proposal describes HERMES I (High Energy Resolution Machines I) a CBS intended for installation at the LANSCE pulsed neutron facility of Los Alamos National Laboratory. As explained in detail in the main text, the authors propose to construct an updated, high-performance CBS which incorporates neutron techniques developed during the decade since IRIS was built, i.e., improved supermirror technology, a larger area crystal analyzer and high efficiency wire gas detectors. The instrument is designed in such a way as to be readily adaptable to future upgrades. HERMES I, they believe, will substantially expand the range and flexibility of neutron investigations in the United States and open new and potentially fruitful directions for condensed matter exploration. This document describes a implementation plan with a direct cost range between $4.5 to 5.6 M and scheduled duration of 39--45 months for identified alternatives.

  1. Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    CERN Document Server

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauer, G.; Beauchemin, P.H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Berge, D.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R.E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H.S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K.L.; Cabrera, S.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S.H.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J.P.; Chung, K.; Chung, W.H.; Chung, Y.S.; Chwalek, T.; Ciobanu, C.I.; Ciocci, M.A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J.C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; De Cecco, S.; Deisher, A.; De Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; d'Errico, M.; Di Canto, A.; di Giovanni, G.P.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, T.; Dube, S.; Ebina, Koji; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H.C.; Farrington, S.; Fedorko, W.T.; Feild, R.G.; Feindt, M.; Fernandez, J.P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M.J.; Franklin, M.; Freeman, J.C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J.E.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J.L.; Ginsburg, C.M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S.R.; Halkiadakis, E.; Han, B.Y.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R.F.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hickman, M.; Hidas, D.; Hill, C.S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.C.; Hughes, R.E.; Hurwitz, M.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jha, M.K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K.K.; Jun, S.Y.; Jung, J.E.; Junk, T.R.; Kamon, T.; Kar, D.; Karchin, P.E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, H.W.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Korytov, A.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulkarni, N.P.; Kurata, M.; Kwang, S.; Laasanen, A.T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R.L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; LeCompte, T.; Lee, E.; Lee, H.S.; Lee, J.S.; Lee, S.W.; Leone, S.; Lewis, J.D.; Lin, C.J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D.O.; Liu, C.; Liu, T.; Lockyer, N.S.; Loginov, A.; Lovas, L.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C.P.; Martin, A.; Martin, V.; Martinez, M.; Martinez-Ballarin, R.; Mastrandrea, P.; Mathis, M.; Mattson, M.E.; Mazzanti, P.; McFarland, K.S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M.N.; Moon, C.S.; Moore, R.; Morello, M.J.; Morlock, J.; Movilla Fernandez, P.; Mulmenstadt, J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M.S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramanov, A.A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D.E.; Penzo, A.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W.K.; Santi, L.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E.E.; Schmidt, M.A.; Schmidt, M.P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A.J.; Slaunwhite, J.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G.L.; Suh, J.S.; Sukhanov, A.; Suslov, I.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thome, J.; Thompson, G.A.; Thomson, E.; Tipton, P.; Ttito-Guzman, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vazquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R.G.; Wagner, R.L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S.M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W.C.; Whitehouse, B.; Whiteson, D.; Wicklund, A.B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H.H.; Wilson, M.G.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wolfe, H.; Wright, T.; Wu, X.; Wurthwein, F.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Yu, S.S.; Yun, J.C.; Zanetti, A.; Zeng, Y.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2010-01-01

    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \\eta-\\phi space; toward, away, and transverse, where \\phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam...

  2. Eta Production at High Transverse Momentum by Negative 520 GeV/c Pions Incident on Beryllium and Copper Targets

    Energy Technology Data Exchange (ETDEWEB)

    Roser, Robert Martin [Univ. of Rochester, NY (United States)

    1994-01-01

    This thesis presents a measurement of the production of high transverse momentum 17 mesons by a 520 GeV /c $\\sqrt{s}$ = 31.2) $\\pi^-$ beam using data collected during the 1990 fixed target run of Fermilab experiment E706. E706 is a second generation fixed target experiment designed to measure direct-photon production in hadron-nucleus collisions. These data provide a clean test of perturbative QCD and serve as a valuable tool for probing hadronic structure. The $\\gamma\\gamma$ decay mode of the $\\eta$ meson was studied using data from a highly segmented electromagnetic lead liquid argon sampling calorimeter. Results are presented for inclusive $\\eta$ production by $\\pi^-$ beams on both beryllium and copper targets. The $\\eta$ to $\\pi^0$ production ratio and the nuclear dependence of the $\\eta$ production cross section are also reported. These results are for $\\eta$'s in the transverse momentum range 3.5 to 9 Ge V / c and the center of mass rapidity range -0.75 to 0.75, and are the highest energy results ever obtained for inclusive $\\eta$ production using a $\\pi^-$ beam.

  3. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Science.gov (United States)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-09-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.

  4. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Science.gov (United States)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-01-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing. PMID:27615808

  5. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    CERN Document Server

    Ren, Yongxiong; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E

    2016-01-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we multiplex and transmit four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam, we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the higher-rate link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the lower rates, a green laser diode is directly modulated. Finally, we s...

  6. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  7. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  8. HIRIS, the instrument and its science. [High Resolution Imaging Spectrometer for EOS platforms

    Science.gov (United States)

    Goetz, Alexander F. H.; Davis, Curtiss O.

    1992-01-01

    The High Resolution Imaging Spectrometer (HIRIS) is a facility instrument slated for flight on the second EOS series AM platforms. HIRIS is designed to acquire 24 km wide, 30 m pixel images in 192 spectral bands simultaneously in the 0.4-2.45 micron wavelength region. With pointing mirrors it can sample any place on Earth, except the poles, every 2 days. HIRIS operates at the intermediate scale between the human and the global and therefore links studies of Earth surface processes to global monitoring carried out by lower resolution instruments. So far, over 50 science data products from HIRIS images have been identified in the fields of atmospheric gases, clouds, snow and ice, water, vegetation, and rocks and soils. The key attribute of imaging spectrometry that makes it possible to derive quantitative information from the data is the large number of contiguous, spectral bands. Therefore, spectrum-matching techniques can be applied. Such techniques are not possible with present-day, multispectral scanner data.

  9. The Astro-H High Resolution Soft X-Ray Spectrometer

    Science.gov (United States)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarell, Phillip; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; hide

    2016-01-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  10. Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration

    Science.gov (United States)

    Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.

    2013-01-01

    This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.

  11. Turbulent fluxes of momentum and heat over land in the High-Arctic summer: the influence of observation techniques

    Directory of Open Access Journals (Sweden)

    Anna Sjöblom

    2014-06-01

    Full Text Available Different observation techniques for atmospheric turbulent fluxes of momentum and sensible heat were tested in a High-Arctic valley in Svalbard during two consecutive summers (June–August in 2010 and 2011. The gradient method (GM and the bulk method (BM have been compared to the more direct eddy covariance method (ECM in order to evaluate if relatively robust and cheap instrumentation with low power consumption can be used as a means to increase the number of observations, especially at remote locations where instruments need to be left unattended for extended periods. Such campaigns increase knowledge about the snow-free surface exchange processes, an area which is relatively little investigated compared to snow-covered ground. The GM agreed closely to the ECM, especially for momentum flux where the two methods agree within 5%. For sensible heat flux, the GM produces, on average, approximately 40% lower values for unstable stratification and 67% lower for stable stratification. However, this corresponds to only 20 and 12 W m−2, respectively. The BM, however, shows a greater scatter and larger differences for both parameters. In addition to testing these methods, radiation properties were measured and the surface albedo was found to increase through the summer, from approximately 0.1 to 0.2. The surface energy budget shows that the sensible heat flux is usually directed upwards for the whole summer, while the latent heat flux is upwards in June, but becomes downward in July and August.

  12. High transverse momentum resonance production in Pb-Pb, pp and p-Pb collisions at LHC

    CERN Document Server

    Nayak, Kishora

    2015-01-01

    Resonance production in heavy-ion collisions is expected to be a sensitive probe to the proper- ties of strongly interacting matter produced in such collisions. The production of resonances at high transverse momentum will help us to understand the mechanism of particle production and parton energy loss in the medium formed in ultra-relativistic heavy-ion collisions. We report the measurements of K ∗ 0 ( τ ∼ 4 fm/ c ) and φ ( τ ∼ 42 fm/ c ) production at high transverse momen- tum in pp, p–Pb and Pb–Pb collisions at LHC energies and nuclear modification factors. These measurements are compared to corresponding results for the other produced hadrons like charged kaons and protons. Some aspects of resonance production and particle production in general are discussed.

  13. A modular microsatellite bus with a high energy particle spectrometer in a responsive space environment

    Science.gov (United States)

    Voss, David Lee

    The United States has come to depend on satellites as an indispensible part of our economy, playing a role in credit verification, inventory tracking, imaging, communications, space and terrestrial weather monitoring, defense, and many other functions. Due to the dependence on satellites the need to rapidly replace (days rather than years) a loss of a space asset has grown for both military and civilian programs. However, the traditional spacecraft is a one-of-a-kind design that provides for a high degree of capability, but comes with a high cost (>$100million), a long fabrication schedule (>5 years), and technology that lags far behind ground-based equivalent hardware due to the fabrication and launch process. More specifically the space weather community faces an aging fleet of spacecrafts with many needing replacement in the near future, creating a critical need for a continuation of space weather measurements. In order to keep up, a paradigm shift in spacecraft design is required. Basing the design of the instruments, subsystems, and structure around a set of common interfaces reduces costs associated with one-of-a-kind designs, and allows for a rapid assembly of components during spacecraft integration. A set of common interfaces is proposed in this work that applies to the entire spacecraft system and was developed through the Thunderstorm and Effects Scientific Nanosatellite and the Boston University Student Satellite for Application and Training A capable space weather instrument that was designed following traditional design practices is discussed and illustrates the need for the new paradigm. This 18 pixel imaging electron spectrometer was developed for the US Air Force's Demonstration and Science Experiments Satellite. The set of common interfaces discussed in this work aligns closely with many emerging satellite technologies such as CubeSats, Space Plug and Play, the Interplanetary Internet, and the fractionated satellite concept. The relationship

  14. A high-resolution mass spectrometer to measure atmospheric ion composition

    Directory of Open Access Journals (Sweden)

    H. Junninen

    2010-08-01

    Full Text Available In this paper we present recent achievements on developing and testing a tool to detect the composition of ambient ions in the mass/charge range up to 2000 Th. The instrument is an Atmospheric Pressure Interface Time-of-Flight Mass Spectrometer (APi-TOF, Tofwerk AG. Its mass accuracy is better than 0.002%, and the mass resolving power is 3000 Th/Th. In the data analysis, a new efficient Matlab based set of programs (tofTools were developed, tested and used. The APi-TOF was tested both in laboratory conditions and applied to outdoor air sampling in Helsinki at the SMEAR III station. Transmission efficiency calibrations showed a throughput of 0.1–0.5% in the range 100–1300 Th for positive ions, and linearity over 3 orders of magnitude in concentration was determined. In the laboratory tests the APi-TOF detected sulphuric acid-ammonia clusters in high concentration from a nebulised sample illustrating the potential of the instrument in revealing the role of sulphuric acid clusters in atmospheric new particle formation. The APi-TOF features a high enough accuracy, resolution and sensitivity for the determination of the composition of atmospheric small ions although the total concentration of those ions is typically only 400–2000 cm−3. The atmospheric ions were identified based on their exact masses, utilizing Kendrick analysis and correlograms as well as narrowing down the potential candidates based on their proton affinities as well isotopic patterns. In Helsinki during day-time the main negative ambient small ions were inorganic acids and their clusters. The positive ions were more complex, the main compounds were (polyalkyl pyridines and – amines. The APi-TOF provides a near universal interface for atmospheric pressure sampling, and this key feature will be utilized in future laboratory and field studies.

  15. Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers

    Directory of Open Access Journals (Sweden)

    M. Gisi

    2011-01-01

    Full Text Available A new system to very precisely couple radiation of a moving source into a Fourier Transform Infrared (FTIR Spectrometer is presented. The Camtracker consists of a homemade altazimuthal solar tracker, a digital camera and a homemade program to process the camera data and to control the motion of the tracker. The key idea is to evaluate the image of the radiation source on the entrance field stop of the spectrometer. We prove that the system reaches tracking accuracies of about 10 arc s for a ground-based solar absorption FTIR spectrometer, which is significantly better than current solar trackers. Moreover, due to the incorporation of a camera, the new system allows to document residual pointing errors and to point onto the solar disk center even in case of variable intensity distributions across the source due to cirrus or haze.

  16. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Science.gov (United States)

    Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Altukhov, A. B.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Nersesyan, N. S.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.

    2016-09-01

    A gamma-ray spectrometer based on LaBr3(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr3(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 107 s-1. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr3(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1-5 ms.

  17. Rapid and Deep Proteomes by Faster Sequencing on a Benchtop Quadrupole Ultra-High-Field Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Jersie-Christensen, Rosa R; Batth, Tanveer Singh

    2014-01-01

    Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage is evalu......Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage...... in less than 24 hours of analysis time by offline high pH reversed-phase peptide fractionation from which we identify more than 140,000 unique peptide sequences. This is comparable to state-of-the-art multi-day, multi-enzyme efforts. Finally the acquisition methods are evaluated for single-shot...

  18. The SPEDE spectrometer arXiv

    CERN Document Server

    Papadakis, P.; O'Neill, G.G.; Borge, M.J.G.; Butler, P.A.; Gaffney, L.P.; Greenlees, P.T.; Herzberg, R.-D.; Illana, A.; Joss, D.T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R.D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of {\\gamma} rays and conversion electrons in Coulomb-excitation experiments using radioactive ion beams.

  19. Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Zhang, Junke; Wang, Yuesi; Huang, Xiaojuan; Liu, Zirui; Ji, Dongsheng; Sun, Yang

    2015-06-01

    Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better understanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30±30 μg m-3, which was higher than in summer (13±6.9 μg m-3). The elemental analysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, respectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.

  20. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  1. High energy X-γ ray spectrometer on the Chandrayaan-1 mission to ...

    Indian Academy of Sciences (India)

    correlation between K, U and Th. While the Apollo mission experiments used NaI scintillator as the detector, a Bismuth Germanate (BGO) scintilla- tion detector having better energy resolution was used in the Lunar Prospector mission. The recent. Mars Odyssey mission had a γ-ray spectrometer that used a large germanium ...

  2. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  3. Search for physics beyond the standard model in events with high-momentum Higgs bosons and missing transverse momentum in proton-proton collisions at 13 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Pieters, Maxim; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Seva, Tomislav; Starling, Elizabeth; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Vit, Martina; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; David, Pieter; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Medina Jaime, Miguel; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Elgammal, Sherif; Khalil, Shaaban; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Leloup, Clément; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Kucher, Inna; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Coubez, Xavier; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Juillot, Pierre; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lattaud, Hugues; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Zhang, Sijing; Khvedelidze, Arsen; Rurua, Lali; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; De Wit, Adinda; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Meyer, Mareike; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Stefaniuk, Nazar; Tholen, Heiner; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Kasieczka, Gregor; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Marconi, Daniele; Multhaup, Jens; Niedziela, Marek; Nowatschin, Dominik; Peiffer, Thomas; Perieanu, Adrian; Reimers, Arne; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Kousouris, Konstantinos; Papakrivopoulos, Ioannis; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Vámi, Tamás Álmos; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chauhan, Sushil; Chawla, Ridhi; Dhingra, Nitish; Gupta, Rajat; Kaur, Anterpreet; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Sharma, Sandeep; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Bhowmik, Debabrata; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Rout, Prasant Kumar; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Singh, Bipen; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Di Florio, Adriano; Errico, Filippo; Fiore, Luigi; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Iemmi, Fabio; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Latino, Giuseppe; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Passaseo, Marina; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Tiko, Andres; Torassa, Ezio; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bianchini, Lorenzo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Castello, Roberto; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chadeeva, Marina; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Popova, Elena; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Blinov, Vladimir; Shtol, Dmitry; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Babaev, Anton; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Bachiller, Irene; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Duarte Campderros, Jordi; Fernandez, Marcos; Fernández Manteca, Pedro José; Garcia-Ferrero, Juan; García Alonso, Andrea; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Prieels, Cédric; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pantaleo, Felice; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pitters, Florian Michael; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Klijnsma, Thomas; Lustermann, Werner; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Brzhechko, Danyyl; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Neutelings, Izaak; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Nazlim Agaras, Merve; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Di Maria, Riccardo; Elwood, Adam; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Komm, Matthias; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Strebler, Thomas; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Morton, Alexander; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Stolp, Dustin; Taylor, Devin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Zhang, Fengwangdong; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Citron, Matthew; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Bunn, Julian; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; MacDonald, Emily; Mulholland, Troy; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Cheng, Yangyang; Chu, Jennifer; Datta, Abhisek; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kortelainen, Matti J; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Savoy-Navarro, Aurore; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Weimin; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Dittmer, Susan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Modak, Atanu; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Harris, Philip; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Zhaozhong, Shi; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Salfeld-Nebgen, Jakob; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Rekovic, Vladimir; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Woods, Nathaniel

    2017-01-01

    A search for physics beyond the standard model in events with one or more high-momentum Higgs bosons, H, decaying to pairs of b quarks in association with missing transverse momentum is presented. The data, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, were collected with the CMS detector at the LHC in proton-proton collisions at the center-of-mass energy $\\sqrt{s} = $ 13 TeV. The analysis utilizes a new b quark tagging technique based on jet substructure to identify jets from $\\mathrm{H}\\to\\mathrm{b}\\mathrm{\\bar{b}}$. Events are categorized by the multiplicity of H-tagged jets, jet mass, and the missing transverse momentum. No significant deviation from standard model expectations is observed. In the context of supersymmetry (SUSY), limits on the cross sections of pair-produced gluinos are set, assuming that gluinos decay to quark pairs, H (or Z), and the lightest SUSY particle, LSP, through an intermediate next-to-lightest SUSY particle, NLSP. With large mass splitting between the NLSP and LS...

  4. Search for physics beyond the standard model in events with high-momentum Higgs bosons and missing transverse momentum in proton-proton collisions at 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Sirunyan, Albert M; et al.

    2017-12-22

    A search for physics beyond the standard model in events with one or more high-momentum Higgs bosons, H, decaying to pairs of b quarks in association with missing transverse momentum is presented. The data, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, were collected with the CMS detector at the LHC in proton-proton collisions at the center-of-mass energy $\\sqrt{s}=$ 13 TeV. The analysis utilizes a new b quark tagging technique based on jet substructure to identify jets from H$\\to$bb. Events are categorized by the multiplicity of H-tagged jets, jet mass, and the missing transverse momentum. No significant deviation from standard model expectations is observed. In the context of supersymmetry (SUSY), limits on the cross sections of pair-produced gluinos are set, assuming that gluinos decay to quark pairs, H (or Z), and the lightest SUSY particle, LSP, through an intermediate next-to-lightest SUSY particle, NLSP. With large mass splitting between the NLSP and LSP, and 100% NLSP branching fraction to H, the lower limit on the gluino mass is found to be 2010 GeV.

  5. Rapid and Deep Proteomes by Faster Sequencing on a Benchtop Quadrupole Ultra-High-Field Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Jersie-Christensen, Rosa R; Batth, Tanveer Singh

    2014-01-01

    Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage is evalu......Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage...... per second or up to 600 new peptides sequenced per gradient minute. We identify 4400 proteins from one microgram of HeLa digest using a one hour gradient, which is an approximately 30% improvement compared to previous instrumentation. In addition, we show very deep proteome coverage can be achieved...

  6. Pursuing STEM and related careers: The role of math self-efficacy and high school math and science courses in building momentum

    Science.gov (United States)

    Ramp, Laura K.

    Education policy over the past decade has often focused on increasing participation in science, technology, engineering, and mathematics (STEM) fields. A number of studies indicate that the STEM pipeline "leaks," as individuals who pursue STEM college majors do not follow through with occupations in these fields. Using data from the Education Longitudinal Study (ELS) of 2002 and from the General Social Surveys (GSS) for 2010, 2012, and 2014, I expand the concept of STEM momentum to explore how momentum builds in high school and carries into postsecondary enrollment and occupations. In addition, with the GSS data, participants are grouped by age to explore any patterns that may emerge in aligning outcomes with shifts in the labor market and in policy. Moreover, the occupations included as STEM and applied STEM are expanded to include occupations in these fields that require any level of education or certification above a high school diploma. I find that math self-efficacy and high school math and science coursework completed matter for building STEM momentum. This momentum carries into postsecondary enrollment and college major selection. The momentum built from math self-efficacy and high school math and science coursework completed carries indirectly into occupation through college major. In terms of labor market and policy shifts, I find that there appears to be increases in participation in STEM fields by females and different racial groups, although, gaps remain. I find that the STEM pipeline not only continues to "leak" for STEM fields, but it also "leaks" for applied STEM fields.

  7. A PbWO4-based Neutral Particle Spectrometer in Hall C at 12 GeV JLab

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Tanja [Catholic University of America , Washington, DC

    2015-02-01

    The Neutral Particle Spectrometer is a standalone electromagnetic calorimeter capable of detecting high energy photons from, for instance, DVCS or π0 decay with good energy and spatial resolution in a high rate environment. It can be used together with the Hall C high-momentum spectrometers for a suite of experiments with the underlying scientific objective of studying quark dynamics through exclusive and semi-inclusive reactions.

  8. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  9. Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    Science.gov (United States)

    Antier, S.; Ferrando, P.; Limousin, O.; Caroli, E.; Curado da Silva, R. M.; Blondel, C.; Chipaux, R.; Honkimaki, V.; Horeau, B.; Laurent, P.; Maia, J. M.; Meuris, A.; Del Sordo, S.; Stephen, J. B.

    2015-06-01

    Since the initial exploration of the X- and soft γ-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars, black holes, and Active Galactic Nuclei are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical processes in these high energy sources, allowing the discrimination between competing models which may otherwise all be consistent with other types of measurement. This is why most of the projects for the next generation of space missions covering the few tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability, in this energy range, is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The compact hard X-ray imaging spectrometer module, developed in CEA with the generic name of "Caliste" module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility (ESRF). These results, obtained at 200 and 300 keV, demonstrate the capability of these modules to detect Compton events and to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. For example, applying an optimized selection to our data set, equivalent to select 90° Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78 ± 0.06 in the 200-300 keV range. The polarization angle and fraction are derived with accuracies of approximately 1° and 5 % respectively for both CdZnTe and CdTe crystals. The

  10. Study of an electromagnetic calorimeter for HADES (High Acceptance Di-Electron Spectrometer); Etude d`un calorimetre electromagnetique pour HADES (High Acceptance Di-Electron Spectrometer)

    Energy Technology Data Exchange (ETDEWEB)

    Pienne, Cyril [Universite Blaise Pascal, Clermont-Ferrand 2, (CNRS), 63 - Aubiere (France). U.F.R. de Recherche Scientifique et Technique

    1996-11-27

    The physics context of this work is the study of heavy ion collisions at relativistic energies where dielectron are chosen as a probe of the produced hot and dense nuclear matter. The experimental set-up in construction, the HADES spectrometer, is designed to study the decays of {rho}, {omega}, {phi} mesons into e{sup +}e{sup -} pairs inside the excited medium. The goal is to show that restoration of chiral symmetry, theoretically predicted, manifests itself through the in-medium properties of particles, mesons in particular. Moreover, another goal is the study of electromagnetic form factors of hadrons which are involved in production of dileptons, test of a vector dominance model (VDM) in particular. In the case of the {omega}, its Dalitz decay is not well understood, and the use of a calorimeter could help to solve this mystery. In addition, a calorimeter could provide a redundant characterisation of electrons and positrons. Our work consisted in studying two materials: lead glass and lead tungstate. In the first case, only simulations have been made and led to the following conclusions: - energy resolution ({sigma}{sub E}/E) = 3.89/{radical}E+5.2(%); - spatial resolution ({sigma}{sub x,y}) = 0.14/{radical}E+0.73(cm); - possibility of separation e/h, e/{mu}; - accurate study of the {omega} for factor via its Dalitz decay. The study of lead tungstate began with test of quality and homogeneity of crystal samples in order to check that they have similar properties.. Experiments were performed at the MAMI microtron in Mainz (Germany) with electrons of 180, 450, 855 MeV energy and yielded the following results, never obtained so far: - energy resolution ({sigma}{sub E}/E) = 2.45/{radical}E+97(%); - spatial resolution ({approx_equal} 0.3 cm); - time resolution ({sigma}){approx}1.41 ps at 8.55 MeV for T = 20 deg. C. (author) 52 refs., 90 figs., 30 tabs.

  11. Symmetry energy of cold nucleonic matter within a relativistic mean field model encapsulating effects of high-momentum nucleons induced by short-range correlations

    Science.gov (United States)

    Cai, Bao-Jun; Li, Bao-An

    2016-01-01

    It is well known that short-range nucleon-nucleon correlations (SRC) from the tensor components and/or the repulsive core of nuclear forces lead to a high- (low-)momentum tail (depletion) in the single-nucleon momentum distribution above (below) the nucleon Fermi surface in cold nucleonic matter. Significant progress was made recently in constraining the isospin-dependent parameters characterizing the SRC-modified single-nucleon momentum distribution in neutron-rich nucleonic matter using both experimental data and microscopic model calculations. Using the constrained single-nucleon momentum distribution in a nonlinear relativistic mean field (RMF) model, we study the equation of state (EOS) of asymmetric nucleonic matter (ANM), especially the density dependence of nuclear symmetry energy Esym(ρ ) . First, as a test of the model, the average nucleon kinetic energy extracted recently from electron-nucleus scattering experiments using a neutron-proton dominance model is well reproduced by the RMF model incorporating effects of the SRC-induced high-momentum nucleons, while it is significantly under predicted by the RMF model using a step function for the single-nucleon momentum distribution as in free Fermi gas (FFG) models. Second, consistent with earlier findings within nonrelativistic models, the kinetic symmetry energy of quasinucleons is found to be Esymkin(ρ0) =-16.94 ±13.66 MeV which is dramatically different from the prediction of Esymkin(ρ0) ≈12.5 MeV by FFG models at nuclear matter saturation density ρ0=0.16 fm-3 . Third, comparing the RMF calculations with and without the high-momentum nucleons using two sets of model parameters both reproducing identically all empirical constraints on the EOS of symmetric nuclear matter (SNM) and the symmetry energy of ANM at ρ0, the SRC-modified single-nucleon momentum distribution is found to make the Esym(ρ ) more concave around ρ0 by softening it significantly at both subsaturation and suprasaturation

  12. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    Science.gov (United States)

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  13. Mobile high-resolution time-of-flight mass spectrometer for in-situ analytics

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Johannes; Ebert, Jens [II. Physikalisches Institut, JLU, Giessen (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [II. Physikalisches Institut, JLU, Giessen (Germany); GSI, Darmstadt (Germany)

    2011-07-01

    A compact multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been developed. For the first time it allows for mass measurements with a resolving power exceeding 100000 and sub ppm accuracy in a mobile device. Thus it allows to resolve isobars and enables to accurately determine the composition and structure of biomolecules. The MR-TOF-MS consists of an atmospheric pressure interface for DESI and REIMS, ion cooler, ion trap, time-of-flight analyzer, MCP detector and DAQ. Vacuum system components, power supplies as well as electronics are mounted together with the ion optical spectrometer parts on a single frame with a total volume of 0.8 m{sup 3}. Applications of the device within the AmbiProbe research program include in-situ mass spectrometry such as real-time tissue recognition in electrosurgery, identification of mycotoxins and analysis of soil samples for environmental studies.

  14. A high resolution X-ray crystal spectrometer to study electron and ...

    Indian Academy of Sciences (India)

    satellite lines of Al have been studied in collision with 3–12 keV electrons and 40 MeV. C. 4+ ions. In ion collisions as large as ... bilities to resolve complex multiplet structures in the atomic spectra. Following the first crystal spectrometer .... The Bragg's equation (nλ = 2d sin θ) and slope of the straight line (nrot vs. sin θ, not ...

  15. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  16. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  17. High transverse momentum inclusive neutral pion production in d+Au collisions at RHIC

    NARCIS (Netherlands)

    Grebenyuk, O.|info:eu-repo/dai/nl/304848883; Mischke, A.|info:eu-repo/dai/nl/325781435; Stolpovsky, A.

    2006-01-01

    Preliminary results are presented on high pT inclusive neutral pion production in d+Au collisions at sNN = 200 GeV in the pseudo-rapidity range 0 <η <1. Photons from the decay π0 → γγ are detected in the Barrel Electromagnetic Calorimeter of the STAR experiment at RHIC. The analysis procedure is

  18. THE INFLUENCE OF ANGULAR-MOMENTUM ON DOUBLE ELECTRON-CAPTURE BY HIGHLY CHARGED IONS

    NARCIS (Netherlands)

    POSTHUMUS, JH; LUKEY, P; MORGENSTERN, R

    1992-01-01

    Double electron capture during collisions of highly charged ions with H-2 or He is studied by measuring and analysing energy spectra of the resulting autoionization electrons and by comparing the experimentally determined population probabilities for the various states with those calculated from a

  19. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization

    Science.gov (United States)

    He, Yugui; Feng, Jiwen; Zhang, Zhi; Wang, Chao; Wang, Dong; Chen, Fang; Liu, Maili; Liu, Chaoyang

    2015-08-01

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for 1H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo 1H MRI at 0.35 T.

  20. A Novel Technique for Raman Analysis of Highly Radioactive Samples Using Any Standard Micro-Raman Spectrometer.

    Science.gov (United States)

    Colle, Jean-Yves; Naji, Mohamed; Sierig, Mark; Manara, Dario

    2017-04-12

    A novel approach for the Raman measurement of nuclear materials is reported in this paper. It consists of the enclosure of the radioactive sample in a tight capsule that isolates the material from the atmosphere. The capsule can optionally be filled with a chosen gas pressurized up to 20 bars. The micro-Raman measurement is performed through an optical-grade quartz window. This technique permits accurate Raman measurements with no need for the spectrometer to be enclosed in an alpha-tight containment. It therefore allows the use of all options of the Raman spectrometer, like multi-wavelength laser excitation, different polarizations, and single or triple spectrometer modes. Some examples of measurements are shown and discussed. First, some spectral features of a highly radioactive americium oxide sample (AmO2) are presented. Then, we report the Raman spectra of neptunium oxide (NpO2) samples, the interpretation of which is greatly improved by employing three different excitation wavelengths, 17O doping, and a triple mode configuration to measure the anti-stokes Raman lines. This last feature also allows the estimation of the sample surface temperature. Finally, data that were measured on a sample from Chernobyl lava, where phases are identified by Raman mapping, are shown.

  1. Exploring the Physics Limitations of Compact High Gradient Accelerating Structures Simulations of the Electron Current Spectrometer Setup in Geant4

    CERN Document Server

    Van Vliet, Philine Julia

    2017-01-01

    The high field gradient of 100 MV/m that will be applied to the accelerator cavities of the Compact Linear Collider (CLIC), gives rise to the problem of RF breakdowns. The field collapses and a plasma of electrons and ions is being formed in the cavity, preventing the RF field from penetrating the cavity. Electrons in the plasma are being accelerated and ejected out, resulting in a breakdown current up to a few Amp`eres, measured outside the cavities. These breakdowns lead to luminosity loss, so reducing their amount is of great importance. For this, a better understanding of the physics behind RF breakdowns is needed. To study these breakdowns, the XBox 2 test facility has a spectrometer setup installed after the RF cavity that is being conditioned. For this report, a simulation of this spectrometer setup has been made using Geant4. Once a detailed simulation of the RF field and cavity has been made, it can be connected to this simulation of the spectrometer setup and used to recreate the data that has b...

  2. Analysis of toroidal momentum dissipation by non-axisymmetric fields in high beta, low aspect ratio tokamak experiments

    Science.gov (United States)

    Zhu, Wubiao

    Sustained passive stabilization of ideal MHD modes in tokamaks and the spherical torus (ST) can be obtained by maintaining high plasma rotation. However, the rotation has been theoretically predicted and experimentally found to decay, eliminating passive stabilization and impeding sustainment of high beta. Understanding the physical mechanisms leading to plasma momentum dissipation is extremely important to determine how the favorable plasma rotation can be sustained and maximized and how the plasma rotation profile can be controlled in the future tokamaks. The present work first quantitatively examines the agreement between electromagnetic torque theory and localized resonant plasma rotation damping by resistive MHD instabilities. The drag caused by the interaction of the tearing mode with the wall eddy currents can quantitatively explain localized resonant plasma toroidal rotation damping induced by the tearing mode. The remainder of the study focuses on quantitative comparison of theory to the observed global plasma rotation damping by applied non-axisymmetric fields and ideal MHD instabilities. Plasmas with beta below, approaching, and above the calculated no-wall beta limit are created to study the non-resonant plasma toroidal rotation damping physics. At low beta, external applied field perturbations are used to study the braking effects of n = 1 and n = 3 field configurations. At beta close to the no-wall limit, resonant field amplification (RFA)/stabilized RWM effects are added to the model in computing the braking magnetic field. At beta well above the no-wall limit, the unstable RWM damps the plasma rotation strongly, and the theoretically computed mode eigenfunction is used to determine the field. An NBI source term, resonant EM torque, fluid viscous force and neoclassical toroidal viscosity (NTV) torque in both plateau and collisionless 1/nu are included in the model. Inclusion of a broad toroidal and poloidal field spectrum is required for quantitative

  3. Maintaining Participation and Momentum in Longitudinal Research Involving High-Risk Families

    Science.gov (United States)

    Graziotti, Ann L.; Hammond, Jane; Messinger, Daniel S.; Bann, Carla M.; Miller-Loncar, Cynthia; Twomey, Jean E.; Bursi, Charlotte; Woldt, Eunice; Nelson, Jay Ann; Fleischmann, Debra; Alexander, Barbara

    2012-01-01

    Purpose The purpose of the current study was to identify and describe strategies available to optimize retention of a high-risk research cohort and assist in the recovery of study participants following participant dropout. Design and Methods The Maternal Lifestyle Study (MLS), which investigated the effects of prenatal substance exposure (cocaine or opiates) on child outcome, is a prospective longitudinal follow-up study that extended from birth through 15 years of age. Retention strategies to maximize participation and factors that might negatively impact compliance were examined over the course of five follow-up phases. Findings At the conclusion of the 15-year visits, MLS had successfully maintained compliance at 76%. Retention rates did not differ by exposure group. Conclusions Maintaining ongoing participation of enrolled study subjects is a critical element of any successful longitudinal study. Strategies that can be used to reengage and maintain participants in longitudinal research include persistence, flexibility with scheduling, home visits, long-distance trips, increased incentives, and development of a computerized tracking system. Establishing rapport with families and ensuring confidentiality contributed to overall participant retention. The use of multiple tracking techniques is essential. Clinical Relevance Researchers are challenged to maintain participants in longitudinal studies to ensure the integrity of their research. PMID:22458928

  4. Determination of the gluon polarisation in the nucleon in the production of hadrons with high transverse momentum at Compass; Determination de la polarisation des gluons dans le nucleon par la production de hadrons a grande impulsion transverse a COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Procureur, S

    2006-07-15

    The main goal of the COMPASS experiment at CERN is the determination of the gluon polarisation in the nucleon, V. For this, the helicity asymmetry of the photon gluon fusion process is measured, in the scattering of polarized muons on a polarised deuteron target. This process can be tagged by the production of hadrons with high transverse momentum (pT), that allows to get a large statistics. On the other hand, a physical background remains and complicates the extraction of V. This PhD thesis presents different studies performed to optimize the determination of c in this channel. In particular, a study of the alignment of the 200 detection planes is presented, leading to an improvement of the spectrometer resolution. Performances of the 12 Micromegas detectors have also been determined during 2004 run. Then, the asymmetries obtained in the analysis of 2002 to 2004 data are calculated, for various high PT selections: production of 1 or 2 hadrons, at low or high Q2. An optimization of the selection, based on a neural network, has also been developed, and a detailed study of the experimental false asymmetry has been performed. V extraction is then described, based on Monte Carlo simulations (using PYTHIA or LEPTO). For the first time, the asymmetry of the so-called resolved photon processes is estimated. An improvement on the reconstruction of nucleon momentum fraction carried by the gluon is also proposed, by reconstructing pseudo-jets. Finally, small values obtained for GG are discussed, in terms of constraints on the gluon contribution to the nucleon spin. (author)

  5. Smartphone Spectrometers

    Directory of Open Access Journals (Sweden)

    Andrew J.S. McGonigle

    2018-01-01

    Full Text Available Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a ‘lab in a phone’ capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades.

  6. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Directory of Open Access Journals (Sweden)

    Guillaume Ducournau

    2009-11-01

    Full Text Available A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  7. Search for new phenomena in events with a highly energetic jet and missing transverse momentum with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387867

    This thesis present the search for new phenomena in events with a highly energetic jet and large missing transverse momentum at ATLAS with data collected in Run 2 during 2015 and 2016 corresponding to 36.1 fb-1. This search, also referred to as 'monojet search' exhibits a unique sensitivity to BSM models predicting heavy particles that may escape the detector untraced. If an object, such as a jet, recoils against these particles a monojet signature is produced. The search exploits the discrimination power of the E_{T}^{miss} spectrum between background and BSM signals. The E_{T}^{miss} spectrum is fitted in 10 bins in four orthogonal control regions simultaneously to estimate the background contribution in the signal region and determine the probability of various signal hypothesis from the observed data distribution. The fit model relies on state of the art theory predictions concerning NLO QCD and nNLO EW corrections to the major V+jets backgrounds and uses as well data driven techniques. Therefore, the pr...

  8. Momentum and angular correlations study in $\\pi^{-}$ nuclei jets at high energies using emulsion telescopes technique with magnetic field

    CERN Multimedia

    2002-01-01

    This experiment aims at studying angular and momentum correlations between particles in high energy hadron jets, using emulsion telescopes technique. \\\\ \\\\ The aim of the experimental arrangement is to obtain the highest possible accuracy in angular data. The ordinary emulsion technique is known to be limited in precision by distorsion phenomena. We have developed a technique which is able to flow emulsion on both sides of glass sheets. We measure the co-ordinates of the tracks at the glass surfaces. All possible shrinkage and distorsions are eliminated. \\\\ \\\\ We use telescope units made of glass sheets, 60 $\\mu$m thick with 30 $\\mu$m emulsion on both sides; the telescopes we use contain 10 units whose position is measured before the experiment with an accuracy of about 5 $\\mu$m in the transverse direction, using an opticle rule. It is of about 1 $\\mu$m after geometrical fit on the beam tracks. In the longitudinal direction the accuracies are, respectively, 100 $\\mu$m and 10 $\\mu$m. If the target position is ...

  9. Accurate label-free protein quantitation with high- and low-resolution mass spectrometers.

    Science.gov (United States)

    Krey, Jocelyn F; Wilmarth, Phillip A; Shin, Jung-Bum; Klimek, John; Sherman, Nicholas E; Jeffery, Erin D; Choi, Dongseok; David, Larry L; Barr-Gillespie, Peter G

    2014-02-07

    Label-free quantitation of proteins analyzed by tandem mass spectrometry uses either integrated peak intensity from the parent-ion mass analysis (MS1) or features from fragment-ion analysis (MS2), such as spectral counts or summed fragment-ion intensity. We directly compared MS1 and MS2 quantitation by analyzing human protein standards diluted into Escherichia coli extracts on an Orbitrap mass spectrometer. We found that summed MS2 intensities were nearly as accurate as integrated MS1 intensities, and both outperformed MS2 spectral counting in accuracy and linearity. We compared these results to those obtained from two low-resolution ion-trap mass spectrometers; summed MS2 intensities from LTQ and LTQ Velos instruments were similar in accuracy to those from the Orbitrap. Data from all three instruments are available via ProteomeXchange with identifier PXD000602. Abundance measurements using MS1 or MS2 intensities had limitations, however. While measured protein concentration was on average well-correlated with the known concentration, there was considerable protein-to-protein variation. Moreover, not all human proteins diluted to a mole fraction of 10(-3) or lower were detected, with a strong falloff below 10(-4) mole fraction. These results show that MS1 and MS2 intensities are simple measures of protein abundance that are on average accurate but should be limited to quantitation of proteins of intermediate to higher fractional abundance.

  10. High-energy e- /e+ spectrometer via coherent interaction in a bent crystal

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander

    2018-01-01

    We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.

  11. A vacuum double-crystal spectrometer for reference-free highly charged ions X-ray spectroscopy

    CERN Document Server

    Amaro, P; Schlesser, S; Gumberidze, Alexandre; Kessler, Ernest G; Henins, Albert; Bigot, E -O Le; Trassinelli, M; Isac, Jean-Michel; Travers, Pascal; Guerra, Mauro; Santos, J P; Indelicato, Paul

    2012-01-01

    We have built a vacuum double crystal spectrometer, which coupled to an electron-cyclotron resonance ion source, allows to measure low-energy x-ray transitions in highly-charged ions with accuracies of the order of a few parts per million. We describe in detail the instrument and its performances. Furthermore, we present a few spectra of transitions in Ar$^{14+}$, Ar$^{15+}$ and Ar$^{16+}$. We have developed an \\emph{ab initio} simulation code that allows us to obtain accurate line profiles. It can reproduce experimental spectra with unprecedented accuracy. The quality of the profiles allows the direct determination of line width.

  12. High-performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis

    DEFF Research Database (Denmark)

    Williamson, James C; Edwards, Alistair V G; Verano-Braga, Thiago

    2016-01-01

    We present basic workups and quantitative comparisons for two current generation Orbitrap mass spectrometers, the Q Exactive Plus and Orbitrap Fusion Tribrid, which are widely considered two of the highest performing instruments on the market. We assessed the performance of two quantitative methods...... on both instruments, namely label-free quantitation and stable isotope labeling using isobaric tags, for studying the heat shock response in Escherichia coli. We investigated the recently reported MS3 method on the Fusion instrument and the potential of MS3-based reporter ion isolation Synchronous...... Precursor Selection (SPS) and its impact on quantitative accuracy. We confirm that the label-free approach offers a more linear response with a wider dynamic range than MS/MS-based isobaric tag quantitation and that the MS3/SPS approach alleviates but does not eliminate dynamic range compression. We...

  13. A tandem time–of–flight spectrometer for negative–ion/positive–ion coincidence measurements with soft x-ray excitation

    Energy Technology Data Exchange (ETDEWEB)

    Stråhlman, Christian, E-mail: Christian.Strahlman@maxlab.lu.se; Sankari, Rami; Nyholm, Ralf [MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund (Sweden); Kivimäki, Antti [Consiglio Nazionale delle Ricerche—Istituto Officina dei Materiali, Laboratorio TASC, 34149 Trieste (Italy); Richter, Robert [Elettra–Sincrotrone Trieste, Area Science Park, 34149 Trieste (Italy); Coreno, Marcello [Consiglio Nazionale delle Ricerche—Istituto di Struttura della Materia, 34149 Trieste (Italy)

    2016-01-15

    We present a newly constructed spectrometer for negative–ion/positive–ion coincidence spectroscopy of gaseous samples. The instrument consists of two time–of–flight ion spectrometers and a magnetic momentum filter for deflection of electrons. The instrument can measure double and triple coincidences between mass–resolved negative and positive ions with high detection efficiency. First results include identification of several negative–ion/positive–ion coincidence channels following inner-shell photoexcitation of sulfur hexafluoride (SF{sub 6})

  14. Coulombic Transformation in Momentum Space

    Science.gov (United States)

    Yamaguchi, M.; Kamada, H.; Glöckle, W.

    2013-08-01

    We studied the Coulombic transformation of potential in momentum space. The Coulombic transformation is defined as a unitary transformation in momentum space, which is equivalent of the Coulomb-Fourier transformation in coordinate space. The analytic continuation scheme avoids the difficulty which is occurred from the singularity of the Coulomb wave function in momentum space. We adopted the point method to perform the analytic continuation. The validity of the new scheme is checked by comparing with the analytic solution for the Malfliet-Tjon potential. Numerical calculation of the integration was done by separating into four intervals. We demonstrate the high accuracy of our calculation.

  15. Micro-Spec: An Ultra-Compact, High-Sensitivity Spectrometer for Far-Infrared and Sub-Millimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2013-01-01

    High-performance, integrated spectrometers operating in the far-infrared and sub-millimeter promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a four-inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (mu-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of approx. 90% has been developed for initial demonstration, and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  16. A Microchannel Inlet to Reduce High-Velocity Impact Fragmentation of Molecules in Orbital and Fly-by Mass Spectrometers

    Science.gov (United States)

    Turner, Brandon; Anupriya, Anupriya; Sevy, Eric; Austin, Daniel E.

    2017-10-01

    Closed source neutral mass spectrometers are often used on flyby missions to characterize the molecular components of planetary exospheres. In a typical closed source, neutrals are thermalized as they deflect off the walls within a spherical antechamber prior to ionization and mass analysis. However, the high kinetic energy of each molecule as it impacts the chamber can lead to fragmentation before the ionization region is reached. Due to this fragmentation, the original composition of the molecule can be altered, leading to ambiguous identification.Even knowing the fragmentation pathways that occur may not allow deconvolution of data to give the correct composition. Only stable, volatile fragments will be observed in the subsequent mass spectrometer and different organic compounds likely give similar fragmentation products. Simply detecting these products will not lead to unambiguous identication of the precursor molecules. Here, we present a hardware solution to this problem—an inlet that reduces the fragmentation of molecules that impact at high velocities.We present a microchannel inlet that reduces the impact fragmentation by allowing the molecules to dissipate kinetic energy faster than their respective dissociation lifetimes. Preliminary calculations indicate that impact-induced fragmentation will be reduced up to three orders of magnitude compared with conventional closed sources by using this inlet. The benefits of such an inlet apply to any orbital or flyby velocity. The microchannel inlet enables detection of semi-volatile molecules that were previously undetectable due to impact fragmentation.

  17. Balance maintenance in high-speed motion of humanoid robot arm-based on the 6D constraints of momentum change rate.

    Science.gov (United States)

    Zhang, Da-song; Xiong, Rong; Wu, Jun; Chu, Jian

    2014-01-01

    Based on the 6D constraints of momentum change rate (CMCR), this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot's two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm's joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance.

  18. Balance Maintenance in High-Speed Motion of Humanoid Robot Arm-Based on the 6D Constraints of Momentum Change Rate

    Directory of Open Access Journals (Sweden)

    Da-song Zhang

    2014-01-01

    Full Text Available Based on the 6D constraints of momentum change rate (CMCR, this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot’s two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm’s joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance.

  19. Simulation of High Resolution Vibrational and Electronic Spectra with a Multifrequency Virtual Spectrometer

    Science.gov (United States)

    Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo

    2013-06-01

    Moving from the common practice of extracting numerical data from experiment to be compared with quantum mechanical (QM) results toward a direct vis-à-vis} comparison of experimental and simulated spectra would strongly reduce any arbitrariness in analysis of complex experimental outcomes and allow a proper account of the information connected to both position and shape of spectral bands. The development of such ``virtual ab initio spectrometers'' for a wide range of wavelengths has been one of our major research goals in the last years [1,2]. Recent methodological advances from our group allow simulation of optical (IR, Raman, UV-vis, etc.) spectra line-shapes for medium-to-large closed- and open-shell molecular systems. Vibrational spectra are computed including anharmonicities through perturbative corrections while electronic spectra line-shapes are simulated accounting for the vibrational structure. Well resolved and accurate theoretical spectra provide data as close as possible to the results directly available from experiment allowing to avoid ambiguities in analysis of the latter. Several examples illustrating interpretation, assignment or revision of experimental spectra for prototypes of bio-molecular systems (phenyl radical, glycine, thymine, pyrimidine, anisole dimer) will be presented. 1. V. Barone, A. Baiardi, M. Biczysko, J. Bloino, C. Cappelli, F. Lipparini Phys. Chem. Chem. Phys, 14, 12404, 2012 2. M. Biczysko, J. Bloino, G. Brancato, et al. Theor. Chem. Acc. 113, 1201, 2012

  20. Study of high-energy nucleus-nucleus interactions with the enlarged NA10 dimuon spectrometer

    CERN Multimedia

    Dimuon production is studied in $^{16}$0 - $^{238}$U and $^{32}$S - $^{238}$U collisions at the maximum possible luminosity of $\\sim10^{7}$ interactions per pulse using the NA10 spectrometer to which beam counters, an active segmented target and an electromagnetic calorimeter have been added. Thermal dimuons are expected to be emitted from a quark-gluon plasma at a detectable rate in the 1-3 GeV/c$^{2}$ transverse mass range, and to differ from ordinary dimuons by their $P_{T}$ and rapidity distribution. Particular emphasis is put on the $J/\\psi$ meson whose $\\mu\\mu$ decays are studied in detail. It is expected to be suppressed when a quark-gluon plasma is formed (Debye screening of the colour field). The correlations of the dimuon variables with charged multiplicity and neutral energy flow distributions are studied event by event. The energy density is estimated from the measured transverse neutral energy. Also $p$ - $^{228}$U collisions are studied in the same apparatus with the purpose of establishing a da...

  1. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  2. Measurement of $W$ boson angular distributions in events with high transverse momentum jets at $\\sqrt{s}=$ 8 TeV using the ATLAS detector

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; López, Jorge Andrés; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spannowsky, Michael; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2017-02-10

    The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton--proton collisions at a centre-of-mass energy $\\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.

  3. Measurement of W boson angular distributions in events with high transverse momentum jets at s=8 TeV using the ATLAS detector

    Directory of Open Access Journals (Sweden)

    M. Aaboud

    2017-02-01

    Full Text Available The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy s=8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1. The focus is on the contributions to W+jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.

  4. A high-intensity low-momentum separated antiproton beam for the study of annihilations at rest

    CERN Document Server

    Bassompierre, G; Dalpiaz, P; Dalpiaz, P F; Ferro-Luzzi, M; Gissinger, G; Jacquey, S; Peroni, C; Schmitt, F M; Schneegans, M; Tecchio, L B

    1977-01-01

    The main features of the low-momentum separated antiproton beam built at the CERN Proton Synchrotron to allow the stopping of a large number of antiprotons are described. An effective stopping rate of 1000 antiproton per 10/sup 12/ protons on the Ps internal target is obtained. Results of the measurement of the rate of reaction pp to h /sup +/h/sup -/ in a 50 cm long liquid hydrogen target are given to illustrate the stopping and monitoring techniques. (6 refs).

  5. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  6. Profiling hot and dense nuclear medium with high transverse momentum hadrons produced in d+Au and Au+Au collisions by the PHENIX experiment at RHIC

    Directory of Open Access Journals (Sweden)

    Sakaguchi Takao

    2014-03-01

    Full Text Available PHENIX measurements of high transverse momentum (pT identified hadrons in d+Au and Au+Au collisions are presented. The nuclear modification factors (RdA and RAA for π0 and ƞ are found to be very consistent in both collision systems, respectively. Using large amount of p + p and Au+Au datasets, the fractional momentum loss (Sloss and the path-length dependent yield of π0 in Au+Au collisions are obtained. The hadron spectra in the most central d+Au and the most peripheral Au+Au collisions are studied. The spectra shapes are found to be similar in both systems, but the yield is suppressed in the most peripheral Au+Au collisions.

  7. Precision Drift Chambers for the Atlas Muon Spectrometer

    CERN Document Server

    INSPIRE-00215825; Kortner, O.; Kroha, H.; Manz, A.; Mohrdieck, S.; Zhuravlov, V.

    2003-01-01

    ATLAS is a detector under construction to explore the physics at the Large Hadron Collider at CERN. It has a muon spectrometer with an excellent momentum resolution of 3-10%, provided by three layers of precision monitored-drift-tube chambers in a toroidal magnetic field. A single drift tube measures a track point with a mean resolution close to 100 micron, even at the expected high neutron and gamma background rates. The tubes are positioned within the chamber with an accuracy of 20 microns, achieved by elaborate construction and assembly monitoring procedures.

  8. Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

  9. Transversal momentum of the electroweak gauge boson and forward jets in high energy factorisation at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Deak, Michal

    2010-06-15

    Fixed order perturbation theory is not able to describe the transversal momentum spectrum of a electro-weak gauge boson. It is needed to resum whole classes of enhanced logarithmic terms. Depending on the phase space region different classes of logarithmic terms can be important. There are different approaches to sum such logarithmic terms including evolution equations of parton density functions. The evolution equation DGLAP which is valid for integrated parton density functions can be used to effectively produce unintegrated parton density functions using parton shower algorithm, but this approach involves kinematical approximations. With opening of phase space region {lambda}{sup 2}{sub QCD} << {mu}{sup 2} << s at the LHC approaches based on the BFKL and the CCFM equations are becoming more relevant. The BFKL and the CCFM equations define genuine unintegrated parton density functions which can be convoluted with matrix elements with off-shell initial state gluons. The off-shell matrix element for Z/W+Q anti Q production was calculated the Monte Carlo Cascade based on the CCFM evolution equation was used to study the phenomenology of this process concentrated on observables connected with the electro-weak gauge boson for the LHC kinematics. The widening of the peak of the transversal momentum spectrum of the electroweak boson is observed and discussed. The forward jet production using unintegrated parton density functions and off-shell matrix elements at the LHC was studied as a probe for small-x dynamics. Differences in azimuthal decorrelation and harder forward jet transversal momentum spectrum are discussed. (orig.)

  10. What is momentum?

    Science.gov (United States)

    Roche, J.

    2006-09-01

    Momentum is commonly defined as 'mass times velocity'. However, this cannot be a general definition, since it does not include other types of momentum, including macroscopic radiation momentum or the momentum of a photon. Rankine coined a general definition for energy. Is it possible to describe a corresponding definition of momentum? 'There is a part of everything which is unexplored...Even in the smallest thing there is something in it which is unknown. We must find it'. Gustav Flaubert (1821-1880) quoted by Guy de Maupassant (1850-1893) [144].

  11. Nuclear structure effects of the nuclei {sup 152,154,156}Dy at high excitation energy and large angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V. [Analisis Numerico, Facultad de Informatica, Universidad Politecnica de Madrid, E-28660 Madrid (Spain); Egido, J.L. [Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)

    1995-06-01

    Using the finite-temperature Hartree-Fock-Bogoliubov formalism we analyze the properties of the nuclei {sup 152,154,156}Dy at the quasicontinuum region from {ital I}=0{h_bar} to 70{h_bar} and excitation energy up to approximately 16 MeV. We discuss energy gaps, shapes, moments of inertia, and entropy among others. The role of shape fluctuations is studied in the frame of classical statistics and we find large effects on several observables. A very rich structure is found in terms of excitation energy and angular momentum.

  12. A Measurement of Spin Asymmetries in Quasi-Real Photo-Production of Hadrons with High Transverse Momentum at COMPASS

    CERN Document Server

    Kuhn, Roland

    2007-01-01

    During 2002–2004, the COMPASS experiment at the CERN SPS has recorded 1.5 fb−1 of deep inelastic scattering events with polarized muon beam and polarized deuterium target. The cross section for singleinclusive charged hadron production in dependence on the hadron’s transverse momentum pT is extracted. A PYTHIA and GEANT simulation is used to obtain the acceptance correction factors. The double spin asymmetry $A^{hd}_{LL}$ is measured in the region 1 GeV/c < pT < 3:5 GeV/c, the pT dependence of which is connected to the gluon polarization $\\DeltaG$.

  13. On a low intensity 241Am Compton spectrometer for measurement ...

    Indian Academy of Sciences (India)

    Am γ-ray Compton spectrometer is presented. The planar spectrometer is based on a small disc source with the shortest geometry. Measurement of the momentum density of polycrystalline Al is used to evaluate the performance of the new design. The measured profile is in good agreement with the existing theoretical data ...

  14. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  15. Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN anti pp collider

    Energy Technology Data Exchange (ETDEWEB)

    Banner, M.; Bloch, P.; Lancon, E.; Loucatos, S.; Mansoulie, B.; Polverel, M.; Roussarie, A.; Teiger, J.; Zaccone, H. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Battiston, R. (Perugia Univ. (Italy). Dipartimento di Fisica

    1983-03-17

    We report the results of a search for single isolated electrons of high transverse momentum at the CERN anti pp collider. Above 15 GeV/c, four events are found having large missing transverse energy along a direction opposite in azimuth to that of the high-psub(T) electron. Both the configuration of the events and their number are consistent with the expectations from the process anti p + p -> Wsup(+-) + anything, with W -> e/sup +/v, where Wsup(+-) is the charged Intermediate Vector Boson postulated by the unified electroweak theory.

  16. Disentangling random thermal motion of particles and collective expansion of source from transverse momentum spectra in high energy collisions

    Science.gov (United States)

    Wei, Hua-Rong; Liu, Fu-Hu; Lacey, Roy A.

    2016-12-01

    In the framework of a multisource thermal model, we describe experimental results of the transverse momentum spectra of final-state light flavor particles produced in gold-gold (Au-Au), copper-copper (Cu-Cu), lead-lead (Pb-Pb), proton-lead (p-Pb), and proton-proton (p -p) collisions at various energies, measured by the PHENIX, STAR, ALICE, and CMS Collaborations, by using the Tsallis-standard (Tsallis form of Fermi-Dirac or Bose-Einstein), Tsallis, and two- or three-component standard distributions which can be in fact regarded as different types of ‘thermometers’ or ‘thermometric scales’ and ‘speedometers’. A central parameter in the three distributions is the effective temperature which contains information on the kinetic freeze-out temperature of the emitting source and reflects the effects of random thermal motion of particles as well as collective expansion of the source. To disentangle both effects, we extract the kinetic freeze-out temperature from the intercept of the effective temperature (T) curve as a function of particle’s rest mass (m 0) when plotting T versus m 0, and the mean transverse flow velocity from the slope of the mean transverse momentum ( ) curve as a function of mean moving mass (\\overline{m}) when plotting versus \\overline{m}.

  17. Very Low-Cost, Rugged, High-Vacuum System for Mass Spectrometers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA, DoD, DHS, and commercial industry have a pressing need for miniaturized, rugged, low-cost high-vacuum systems. Recent advances in sensor technology at NASA and...

  18. Very Low-Cost, Rugged, High-Vacuum System for Mass Spectrometers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA, the DoD, DHS, and commercial industry have a pressing need for miniaturized, rugged, low-cost, high vacuum systems. Recent advances in sensor technology at...

  19. A high-resolution electrostatic spectrometer for the investigation of near-surface layers in solids by high-resolution Rutherford backscattering with MeV ions

    Science.gov (United States)

    Enders, Th.; Rilli, M.; Carstanjen, H. D.

    1992-02-01

    The paper reports on a high-resolution electrostatic spectrometer for MeV ions and its use for investigating surfaces and near-surface layers of solids by high-resolution Rutherford backscattering spectroscopy (HRBS). The spectrometer has been set up at the 6 MV Pelletron accelerator of the Max-Planck-Institut für Metallforschung, Stuttgart, over the last few years and has recently been operated successfully. The instrument consists of a cylinder type, 100° electrostatic analyzer (radius: 700 mm, gap width: 20 mm) and a system of electrostatic quadrupole lenses which focus those ions emitted from the target parallel to the optical axis onto the entrance slit of the analyzer, thus minimizing kinematic errors in the energy resolution. A variable slit system allows one to choose between a maximum in energy resolution or in ion count rate. The analyzed ions are registered simultaneously with a position sensitive Si-surface barrier detector. The maximum ion energy to be analyzed is about 2 MeV for singly charged ions. The relative energy resolution of the instrument is better than 3 × 10 -4. The overall resolution as obtained in an actual HRBS measurement with 1 MeV 4He + ions amounts to 1.44 keV, thus providing a depth resolution of 0.88 nm at ion incidence of 22.5° to the surface normal or 0.17 nm for oblique incidence of the ion beam (10° to the normal) in Au. Besides the description of the spectrometer and its capabilities, this paper will give examples of various applications. They include studies of the oxidation of metal surfaces, of island formation on surfaces, and of electron capture processes of fast ions in the near surface region.

  20. Concept of a Stand-Alone Muon Trigger with High Transverse Momentum Resolution for the ATLAS Detector at the High-Luminosity LHC

    CERN Document Server

    Horii, Yasuyuki; The ATLAS collaboration

    2014-01-01

    The ATLAS trigger uses a three-level trigger system. The level-1 (L1) trigger for muons with high transverse momentum pT in ATLAS is based on fast chambers with excellent time resolution which are able to identify muons coming from a particular beam crossing. These trigger chambers also provide a fast measurement of the muon transverse momenta, however with limited accuracy caused by the moderate spatial resolution along the deflecting direction of the magnetic field. The higher luminosity foreseen for Phase-II puts stringent limits on the L1 trigger rates. A way to control these rates is the improvement of the spatial resolution of the triggering device which drastically sharpens the turn-on curve of the L1 trigger. To do this, the precision tracking chambers (MDT) can be used in the L1 trigger, if the corresponding trigger latency is increased as planned. The trigger rate reduction is accomplished by strongly decreasing the rate of triggers from muons with pT lower than a predefined threshold (typically 20 ...

  1. Gravity wave momentum fluxes in the MLT—Part II: Meteor radar investigations at high and midlatitudes in comparison with modeling studies

    Science.gov (United States)

    Placke, Manja; Hoffmann, Peter; Becker, Erich; Jacobi, Christoph; Singer, Werner; Rapp, Markus

    2011-06-01

    For the analysis of gravity waves the method presented by Hocking (2005) is used, which enables us to derive wind variances and gravity wave momentum fluxes in the mesosphere and lower thermosphere from all-sky interferometric meteor radar wind measurements considering waves and variances with periods less than 2 h. A sensitivity study for the applicability of this method has been performed for the first time using a mechanistic general circulation model with high spatial resolution and explicit description of gravity waves. Wind variances and momentum fluxes have been determined from the model directly and by Hocking’s method. Results of both methods are in good agreement except for vertical wind variances in case of weak vertical winds, which in the model are of the order of 1 m/s, whereas short period gravity waves estimated by meteor radar lead to larger vertical winds with a smaller ratio between horizontal and vertical wind fluctuations. A latitudinal comparison of mean annual variations of wind variances and momentum fluxes has been performed using meteor radar measurements at the high latitude site Andenes (69.3°N, 16.0°E) and the midlatitude site Juliusruh (54.6°N, 13.4°E). A semi-annual variation of the activity of short period gravity waves has been found having stronger magnitudes at high latitudes. The mean zonal winds show the typical summer wind reversal that shifts to higher altitudes from middle to high latitudes. Finally, the coupling between gravity waves and the mean background circulation is investigated based on long-term measurements at Andenes and the midlatitude site Collm (51.3°N, 13.0°E) during a period from 2004 to 2009.

  2. Introducing High School Students to NMR Spectroscopy through Percent Composition Determination Using Low-Field Spectrometers

    Science.gov (United States)

    Bonjour, Jessica L.; Pitzer, Joy M.; Frost, John A.

    2015-01-01

    Mole to gram conversions, density, and percent composition are fundamental concepts in first year chemistry at the high school or undergraduate level; however, students often find it difficult to engage with these concepts. We present a simple laboratory experiment utilizing portable nuclear magnetic resonance spectroscopy (NMR) to determine the…

  3. Computer Spectrometers

    Science.gov (United States)

    Dattani, Nikesh S.

    2017-06-01

    Ideally, the cataloguing of spectroscopic linelists would not demand laborious and expensive experiments. Whatever an experiment might achieve, the same information would be attainable by running a calculation on a computer. Kolos and Wolniewicz were the first to demonstrate that calculations on a computer can outperform even the most sophisticated molecular spectroscopic experiments of the time, when their 1964 calculations of the dissociation energies of H_2 and D_{2} were found to be more than 1 cm^{-1} larger than the best experiments by Gerhard Herzberg, suggesting the experiment violated a strict variational principle. As explained in his Nobel Lecture, it took 5 more years for Herzberg to perform an experiment which caught up to the accuracy of the 1964 calculations. Today, numerical solutions to the Schrödinger equation, supplemented with relativistic and higher-order quantum electrodynamics (QED) corrections can provide ro-vibrational spectra for molecules that we strongly believe to be correct, even in the absence of experimental data. Why do we believe these calculated spectra are correct if we do not have experiments against which to test them? All evidence seen so far suggests that corrections due to gravity or other forces are not needed for a computer simulated QED spectrum of ro-vibrational energy transitions to be correct at the precision of typical spectrometers. Therefore a computer-generated spectrum can be considered to be as good as one coming from a more conventional spectrometer, and this has been shown to be true not just for the H_2 energies back in 1964, but now also for several other molecules. So are we at the stage where we can launch an array of calculations, each with just the atomic number changed in the input file, to reproduce the NIST energy level databases? Not quite. But I will show that for the 6e^- molecule Li_2, we have reproduced the vibrational spacings to within 0.001 cm^{-1} of the experimental spectrum, and I will

  4. A Study of Large Transverse Momentum Phenomena

    CERN Multimedia

    2002-01-01

    This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...

  5. Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids.

    Science.gov (United States)

    Ellis, S R; Soltwisch, J; Paine, M R L; Dreisewerd, K; Heeren, R M A

    2017-06-29

    Coupling laser post-ionisation with a high resolving power MALDI Orbitrap mass spectrometer has realised an up to ∼100-fold increase in the sensitivity and enhanced the chemical coverage for MALDI-MS imaging of lipids relative to conventional MALDI. This could constitute a major breakthrough for biomedical research.

  6. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography – photodiode array – electrospray ionisation mass spectrometer

    NARCIS (Netherlands)

    Han, J.; Wanrooij, J.; van Bommel, M.; Quye, A.

    2017-01-01

    This research makes the first attempt to apply Ultra High Performance Liquid Chromatography (UHPLC) coupled to both Photodiode Array detection (PDA) and Electrospray Ionisation Mass Spectrometer (ESI–MS) to the chemical characterisation of common textile dyes in ancient China. Three different

  7. Rapid Detection of Gas Hazards and Leaks with an Atmospheric Sampling, High Resolution, Mass Spectrometer with Low Pumping Requirements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Miniaturization of mass spectrometers is restricted almost exclusively by the ability of small vacuum pumps to remove gas loads during operation of the instrument....

  8. Observation of $\\pi^{0}$ mesons with large transverse momentum in high-energy proton-proton collisions

    CERN Document Server

    Büsser, F W; Camilleri, L L; Cool, R L; Di Lella, L; Gladding, G; Lederman, Leon Max; Litt, L; Placci, A; Pope, B G; Segler, S L; Smith, A M; Yoh, J K; Zavattini, E

    1973-01-01

    Invariant cross-sections are presented for the inclusive reaction p+p to pi /sup 0/+anything. Measurements of large transverse momentum pi /sup 0/'s (2.5 GeV/c

  9. A measurement of spin asymmetries in quasi-real photo-production of hadrons with high transverse momentum at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, R.

    2007-07-15

    During 2002-2004, the COMPASS experiment at the CERN SPS has recorded 1.5 fb{sup -1} of deep inelastic scattering events with polarized muon beam and polarized deuterium target. The cross section for single-inclusive charged hadron production in dependence on the hadron's transverse momentum p{sub T} is extracted. A PYTHIA and GEANT simulation is used to obtain the acceptance correction factors. The double spin asymmetry A{sub LL}{sup b,d} is measured in the region 1 GeV/c

  10. Magneto-thermal Reconnection Processes, Related Angular Momentum Transport issues and Formation of High Energy Particle Populations

    Science.gov (United States)

    Coppi, B.; Basu, B.; Fletcher, A.

    2016-10-01

    The two-fluid theory of magnetic reconnection, when the longitudinal electron thermal conductivity is relatively large, shows that the perturbed electron temperature tends to become singular in the presence of a reconnected field component and an electron temperature gradient. A transverse thermal diffusivity can remove this singularity while a finite ``inductivity'' can remove the singularity of the corresponding plasma displacement. Then i) a new ``magneto-thermal reconnection'' producing mode, driven by the electron temperature gradient, is found; ii) the characteristic widths of the layers where reconnection takes place remain significant even when the relevant macroscopic distances are very large; iii) modes with phase velocities both in the electron diamagnetic velocity direction and in the opposite one are found. Their growth rates depend on small dissipative factors. The found modes can extract angular momentum from the plasma and thereby sustain a ``spontaneous rotation'' process. Sponsored by the U.S. D.O.E.

  11. Pengembangan Alat Peraga Momentum dengan Sistem Sensor

    OpenAIRE

    Rahma, Upik; Desnita, Desnita; Raihanati, Raihanati

    2015-01-01

    Abstract This research aims to develop the props with the concept of momentum by using motion sensors. The method used is a method of research and development (Research and Development). In the implementation of the study outlines the development of research carried out in two stages: Theoretical and Empirical. Results of this research is a props momentum that has been developed and can be used by high school teachers who will perform physical demonstration of the momentum of an object. This ...

  12. Determination of high-energy fragmentation of protonated peptides using a beqq hybrid mass spectrometer.

    Science.gov (United States)

    Burlet, O; Orkiszewski, R S; Gaskell, S J

    1993-06-01

    A hybrid tandem instrument of BEqQ geometry was used to determine high-energy decomposition of protonated peptides, such as side-chain fragmentation yielding d n and w n ions. The transmission through both E and Q of such product ions, formed in the second field-free region, permits improved mass resolution and confident mass assignment. The experimental technique may involve synchronous scanning of E and Q, or, for the purpose of identification of specific products, limited-range scanning of either E or Q with the other analyzer fixed. These techniques are not equivalent, with respect to product ion transmission, to the double focusing of product ions achieved with four-sector instruments but nevertheless represent a critical improvement over conventional mass-analyzed ion kinetic energy spectrometry analyses. Fragmentation of protonated peptides occurring in the second field-free region inside and outside the collision cell were distinguished by floating the collision cell above ground potential. Mass filtering using Q confirmed the mass assignments. The data indicate that product ions resulting from spontaneous decomposition are in some instances quantitatively more significant than those resulting from high-energy collisional activation. Furthermore, the differentiation of the products of low- and high-energy processes should facilitate spectral interpretation.

  13. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  14. High-resolution mid-IR spectrometer based on frequency upconversion

    DEFF Research Database (Denmark)

    Hu, Qi; Dam, Jeppe Seidelin; Pedersen, Christian

    2012-01-01

    We demonstrate a novel approach for high-resolution spectroscopy based on frequency upconversion and postfiltering by means of a scanning Fabryx2013;Perot interferometer. The system is based on sum-frequency mixing, shifting the spectral content from the mid-infrared to the near-visible region al......-frequency 1064xA0;nm laser. We investigate water vapor emission lines from a butane burner and compare the measured results to model data. The presented method we suggest to be used for real-time monitoring of specific gas lines and reference signals....

  15. A diamond 14 MeV neutron energy spectrometer with high energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, Takehiro, E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shin-ichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Watanabe, Hideyuki [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292 (Japan)

    2016-02-15

    A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the {sup 12}C(n, α){sup 9}Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported.

  16. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    Science.gov (United States)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  17. Highly segmented CVD diamond detectors and high-resolution momentum measurements in knockout reactions; Hochsegmentierte CVD Diamant Detektoren und hochaufloesende Impulsmessungen in Knockout Reaktionen

    Energy Technology Data Exchange (ETDEWEB)

    Schwertel, Sabine

    2009-11-26

    In recent years knockout reactions have proven to be important tools for investigations of the structure of light exotic nuclei. In spring 2006 an experiment was performed with the fragment separator at GSI in Darmstadt to extend this method to medium-mass nuclei with energies of about 400 AMeV. An experiment with a stable and well-known {sup 48}Ca primary beam was performed as a reference. The FRS was set for the reaction {sup 56}Ti{yields}{sup 55}Ti. Because of the high acceptance of the FRS, mother and daughter nuclei of one-neutron knockout reactions in the Sc isotopes {sup 51,52,53,54,55}Sc were also transported with high efficiency. These are investigated in the first part of this thesis. Inclusive cross sections of 77(10) mbarn for one-neutron knockout from {sup 48}Ca and 78(12) mbarn, 99(15) mbarn, 101(15) mbarn, 113(17) mbarn and 72(14) mbarn for knockout from {sup 51,52,53,54,55}Sc, respectively, were measured for the first time. For the Sc isotopes the reduction factors are close to 1. For the one-neutron knockout reactions in {sup 48}Ca and the Sc isotopes, respectively, the momentum distributions could be measured with a relative resolution of 0.17-0.27 %. From the momentum distributions spectroscopic factors of the involved orbitals could be extracted. In the future, further knockout experiments should be performed using the R{sup 3}B setup at FAIR. The available beam intensity will be up to four orders of magnitude higher. As the beam has to be tracked from the dispersive plane of the Super-FRS up to the R{sup 3}B target, radiation hard detectors are needed. In the framework of this thesis extensive measurements were performed at the tandem accelerator in Munich with numerous small (10 x 10 mm{sup 2}) test detectors. Samples using new manufacturing methods were characterized. A dose of some 10{sup 11} ions/mm{sup 2} was determined as a limit for the exposure of the material with heavy ions of high ionisation density. It could be shown that even

  18. A high-field magnetic resonance imaging spectrometer using an oven-controlled crystal oscillator as the local oscillator of its radio frequency transceiver.

    Science.gov (United States)

    Liang, Xiao; Tang, Xin; Tang, Weinan; Gao, Jia-Hong

    2014-09-01

    A home-made high-field magnetic resonance imaging (MRI) spectrometer with multiple receiving channels is described. The radio frequency (RF) transceiver of the spectrometer consists of digital intermediate frequency (IF) circuits and corresponding mixing circuits. A direct digital synthesis device is employed to generate the IF pulse; the IF signal from a down-conversion circuit is sampled and followed by digital quadrature detection. Both the IF generation and the IF sampling use a 50 MHz clock. An oven-controlled crystal oscillator, which has outstanding spectral purity and a compact circuit, is used as the local oscillator of the RF transceiver. A digital signal processor works as the pulse programmer of the spectrometer, as a result, 32 control lines can be generated simultaneously while an event is triggered. Field programmable gate array devices are utilized as the auxiliary controllers of the IF generation, IF receiving, and gradient control. High performance, including 1 μs time resolution of the soft pulse, 1 MHz receiving bandwidth, and 1 μs time resolution of the gradient waveform, is achieved. High-quality images on a 1.5 T MRI system using the spectrometer are obtained.

  19. Development of High Resolution X-Ray spectrometers for the Investigation of Bioinorganic Chemistry in Metalloproteins

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Owen Byron [Univ. of California, Davis, CA (United States)

    2007-01-01

    Metals play as varied a role in biology as the proteins they are part of. They are involved in structure formation, they help transfer material and information, and they catalyze chemical reactions. Other proteins transport material or information, such as hemoglobin that distributes O2 and takes up CO2, or insulin that signals cells to increase glucose uptake in response to high blood glucose levels. Again other proteins promote chemical reactions, such as photosystem II responsible for photosynthetic oxygen evolution or nitrogenase which catalyzes the reduction of N2 to NH3. All of these proteins require the presence of a metal ion for their activity.

  20. Conception of broadband stigmatic high-resolution spectrometers for the soft X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, E A; Shatokhin, A N; Ragozin, E N [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    We formulate an approach to the development of stigmatic high-resolution spectral instruments for the soft X-ray range (λ ≤ 300 Å), which is based on the combined operation of normalincidence multilayer mirrors (including broadband aperiodic ones) and grazing-incidence reflection gratings with nonequidistant grooves (so-called VLS gratings). A concave multilayer mirror serves to produce a slightly astigmatic image of the radiation source (for instance, an entrance slit), and the diffraction grating produces a set of its dispersed stigmatic spectral images. The width of the operating spectral region is determined by the aperiodic structure of the multilayer mirror and may range up to an octave in wavelength. (laser applications and other topics in quantum electronics)

  1. Progress, Performance, and Prospects of Ultra-High Resolution Microcalorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Andrew Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States)

    2017-01-23

    In 2005 the LANL/NIST team used a single high-resolution microcalorimeter detector to measure the gamma-ray spectrum of a plutonium sample. After more than a decade of research and development on this topic, both the technology and our general understanding of its capabilities have advanced greatly, such that a progress review is now timely. We examine the scenario of a large-scale reprocessing plant and conclude that current non-destructive analysis (NDA) methods are inadequate to safeguard such a facility to the desired levels, leading to undesirable dependence on massspectrometry (MS) destructive analysis (DA). The development of microcalorimeter detectors is intended to close the performance gap between NDA and DA methods to address the needs of nuclear facilities.

  2. Advanced Materials and Processes for High Energy Resolution Room Temperature Gamma Ray Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Douglas S. McGregor

    2007-12-12

    A significant amount of progress has been achieved in the development of the novel vacuum distillation method described in the proposal. The process for the purification of Te was fully developed and characterized in a series of trials. The purification effect was confirmed with GDMS sample analysis and indicates the process yields very high purity Te metal. Results of this initial process study have been submitted for publication in the Proceedings of the SPIE and will be presented on August 28, 2007 at the SPIE Optics and Photonics 2007 conference in San Diego, CA. Concurrent to the development of the Te process, processes for the purification of Cd, Zn, and Mn have also progressed. The development of the processes for Cd and Zn are nearly complete, while the development of the process for Mn is still in its infancy. It is expected that a full characterization of the Cd process will be completed within the next quarter, followed by Zn. Parallel to those characterization studies, efforts will be made to further develop the Mn purification process. Zone melting work for Te and Cd has also been efforted as per the project work schedule. Initial trials have been completed and the processes developed. Characterization of the results will be completed within the first fiscal year. Finally, an apparatus for the zone refinement of Cd, Zn, and Mn has been constructed and initial trials are set to begin shortly.

  3. Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer

    Science.gov (United States)

    Scott, Jill R.; Tremblay, Paul L.

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  4. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan)] [and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  5. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00406842; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner Sphere Spectrometers (BSS). The extended- range BSS that was used for this work, consists of 7 spheres with an overall response to neutrons up to 2 GeV. A 3He detector is used as a thermal counter in the centre of each sphere. In the context of this thesis the BSS was calibrated in monoenergetic neutron fields at low and intermediate energies. It was also used for measurements in several high energy mixed fields. These measurements have led to the calculation of neutron yields and spectral fluences from unshielded targets....

  6. Toward Large FOV High-Resolution X-Ray Imaging Spectrometer: Microwave Multiplexed Readout of 32 TES Microcalorimeters

    Science.gov (United States)

    Yoon, Wonsik; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Miniussi, Antoine R.; hide

    2017-01-01

    We performed a small-scale demonstration at GSFC of high-resolution x-ray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space based x-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 50 mK stage of our laboratory ADR. Using a ROACH2 FPGA at room temperature, we simultaneously read out 32 pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to RF SQUIDs. The resonators are spaced 6 MHz apart (at approx. 5.9 GHz) and have quality factors of approximately 15,000. Using flux-ramp modulation frequencies of 160 kHz we have achieved spectral resolutions of 3 eV FWHM on each pixel at 6 keV. We will present the measured system-level noise and maximum slew rates, and briefly describe the implications for future detector and readout design.

  7. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer

    Directory of Open Access Journals (Sweden)

    M. Furger

    2017-06-01

    Full Text Available The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb showed excellent correlation between the compared methods, with r2 values  ≥  0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28 and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.

  8. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer

    Science.gov (United States)

    Furger, Markus; Cruz Minguillón, María; Yadav, Varun; Slowik, Jay G.; Hüglin, Christoph; Fröhlich, Roman; Petterson, Krag; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background) periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb) showed excellent correlation between the compared methods, with r2 values ≥ 0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28) and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.

  9. Present status of the Cauchois-type Compton Scattering Spectrometer at SPring-8

    CERN Document Server

    Itou, M; Ohata, T; Mizumaki, M; Deb, A; Sakurai, Y; Sakai, N

    2001-01-01

    A new X-ray spectrometer has been installed in the BL08W beamline at SPring-8 for high-resolution Compton scattering measurements using 90-120 keV X-rays. The spectrometer consists of a Cauchois-type triple-crystal analyzer and a quasi position sensitive detector with four slits. The detector works not only as a position-sensitive detector but also as an energy sensitive detector, which allows for low background noise measurements. An overall resolution of 0.10 atomic units in momentum space has been achieved at the incident X-ray energy of 115 keV. Compton profiles of niobium have been measured along the [1 0 0] and [1 1 0] directions in order to demonstrate the performance of the spectrometer.

  10. High-Throughput Two-Dimensional Infrared (2D IR) Spectroscopy Achieved by Interfacing Microfluidic Technology with a High Repetition Rate 2D IR Spectrometer.

    Science.gov (United States)

    Tracy, Kathryn M; Barich, Michael V; Carver, Christina L; Luther, Bradley M; Krummel, Amber T

    2016-12-01

    The precision control of microfluidic technology was successfully interfaced with a 100 kHz two-dimensional infrared (2D IR) spectrometer to observe the sensitivity of the anion cyanate (OCN-) to the surrounding solvent environment in a high-throughput manner. Producing high-throughput 2D IR spectroscopy measurements allows us to observe the vibrational response of cyanate in mixed solvent environments. Changes in solvation environment around the cyanate ion yield frequency shifts from 2150 to 2165 cm-1 when moving from a pure dimethylformamide solvent environment to a pure methanol environment. 2D IR spectra were captured laterally across microfluidic devices tailored to produce a tunable gradient to observe the OCN- vibrational response to mixed solvent environments. These experiments reveal that there is no preferential solvation of cyanate in this system; instead, a more complex local solvent environment is observed.

  11. Lessons learned with the SAGE spectrometer

    Science.gov (United States)

    Sorri, J.; Papadakis, P.; Cox, D. M.; Greenlees, P. T.; Herzberg, R. D.; Jones, P.; Julin, R.; Konki, J.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Uusitalo, J.

    2012-05-01

    The SAGE spectrometer combines a high-efficiency γ-ray detection system with an electron spectrometer. Some of the design features have been known to be problematic and surprises have come up during the early implementation of the spectrometer. Tests related to bismuth germanate Compton-suppression shields, electron detection efficiency and an improved cooling system are discussed in the paper.

  12. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  13. Introducing Conservation of Momentum

    Science.gov (United States)

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  14. Comprehensive investigation of the angular transmission in magnetic spectrometers

    CERN Document Server

    Pereira-Conca, J; Schmidt, K H

    2003-01-01

    Magnetic spectrometers are largely used in experimental nuclear physics. These devices allow one to perform precise measurements of the reaction kinematics or to separate and fully identify the reaction residues for nuclear-dynamics and structure studies. They can also be used as separators to produce radioactive nuclear beams. However, all these applications are affected by the limited transmission of the reaction residues through the spectrometer. The final transmission depends on the ion-optical characteristics and the mechanical constraints of the spectrometer but also on the kinematic properties of the considered nuclei. The ion optics are characterised by the bending and focusing powers of the magnetic elements which constitute the spectrometer. The reaction mechanism determines the kinematics of the particles. The transmission losses in any magnetic spectrometer can be attributed to its limited acceptance in longitudinal momentum and angle. The limitation in longitudinal momentum can be overcome by com...

  15. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  16. Value and Momentum Everywhere

    DEFF Research Database (Denmark)

    Asness, Clifford S.; Moskowitz, Tobias J.; Heje Pedersen, Lasse

    across asset classes than passive exposures to the asset classes themselves. However, value and momentum are negatively correlated both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three factor model. Global funding liquidity risk......We study the returns to value and momentum strategies jointly across eight diverse markets and asset classes. Finding consistent value and momentum premia in every asset class, we further find strong common factor structure among their returns. Value and momentum are more positively correlated...... is a partial source of these patterns, which are identifiable only when examining value and momentum simultaneously across markets. Our findings present a challenge to existing behavioral, institutional, and rational asset pricing theories that largely focus on U.S. equities....

  17. An ion trap time-of-flight mass spectrometer with high mass resolution for cold trapped ion experiments

    Science.gov (United States)

    Schmid, P. C.; Greenberg, J.; Miller, M. I.; Loeffler, K.; Lewandowski, H. J.

    2017-12-01

    Trapping molecular ions that have been sympathetically cooled with laser-cooled atomic ions is a useful platform for exploring cold ion chemistry. We designed and characterized a new experimental apparatus for probing chemical reaction dynamics between molecular cations and neutral radicals at temperatures below 1 K. The ions are trapped in a linear quadrupole radio-frequency trap and sympathetically cooled by co-trapped, laser-cooled, atomic ions. The ion trap is coupled to a time-of-flight mass spectrometer to readily identify product ion species and to accurately determine trapped ion numbers. We discuss, and present in detail, the design of this ion trap time-of-flight mass spectrometer and the electronics required for driving the trap and mass spectrometer. Furthermore, we measure the performance of this system, which yields mass resolutions of m/Δm ≥ 1100 over a wide mass range, and discuss its relevance for future measurements in chemical reaction kinetics and dynamics.

  18. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.

    2012-01-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal...

  19. A prototype experiment to study charmed particle production and decay using a Holographic High Resolution Hydrogen Chamber (HOLEBC) and the European Hybrid Spectrometer

    CERN Multimedia

    2002-01-01

    The high resolution hydrogen bubble chamber LEBC has already been used in experiments at the SPS to detect particles with lifetime $\\geq 5 \\times 10^{-13}$s (NA13 & NA16). \\\\\\\\For this experiment, a new version of LEBC called HOLEBC, has been constructed. This chamber and the NA26 version of the spectrometer have been used with classical optics in the NA27 experiment. A significant improvement in resolution was achieved ($\\simeq$ 20 microns compared with $\\simeq$ 40 $\\mu$m in LEBC) and hence a good sensitivity to all (known) charmed particle decays. The development of holographic recording techniques with HOLEBC is in progress. \\\\\\\\The prototype NA26 experiment is designed to evaluate the feasibility of the high sensitivity, high resolution holographic hydrogen bubble chamber technique and evaluate various possible charm selective triggers using the information from the spectrometer.

  20. Design Parameters and Objectives of a High-­Resolution X-­ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Gates, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-05-19

    A high-resolution X-ray imaging crystal spectrometer, whose instrumental concept was thoroughly tested on NSTX and Alcator C-Mod, is presently being designed for LHD. The instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of 1 cm and > 10 ms which are obtained by a tomographic inversion of the spectral data, using the stellarator equilibrium reconstruction codes, STELLOPT and PIES. Since the spectrometer will be equipped with radiation hardened, high count rate, PILATUS detectors,, it is expected to be operational for all experimental conditions on LHD, which include plasmas of high density and plasmas with auxiliary RF and neutral beam heating. The special design features required by the magnetic field structure at LHD will be described.

  1. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J (Inventor); Stimac, Robert M. (Inventor)

    2017-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer (IMS) achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250 degrees Centigrade, and is uniquely sensitive, particularly to explosive chemicals.

  2. Detailed study of parton energy loss via measurement of fractional momentum loss of high pT hadrons in heavy ion collisions

    Science.gov (United States)

    Sakaguchi, Takao; PHENIX Collaboration

    2017-02-01

    PHENIX measurement of the fractional momentum loss (δp T/p T) of high p T identified hadrons are presented. The δp T/p T of high p T π 0 which are computed from 39 GeV Au+Au up to 2.76 TeV Pb+Pb are found to vary by a factor of six. We plotted the δp T/p T against several global variables, N part, N qp and dN ch/dη, and found global features. It was found that 200 GeV Au+Au points are merging into the central 2.76 TeV Pb+Pb points when plotting δp T/p T against dN ch/dη.

  3. Liulin silicon semiconductor spectrometers as cosmic ray monitors at the high mountain observatories Jungfraujoch and Lomnicky stit

    Czech Academy of Sciences Publication Activity Database

    Kubančák, Ján; Ambrožová, Iva; Butikofer, R.; Kudela, K.; Langer, R.; Davídková, Marie; Ploc, Ondřej; Malušek, A.

    2014-01-01

    Roč. 9, JUL (2014), P07018 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : dosimetry concepts and apparatus * spectrometers * analysis and statistical methods Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.399, year: 2014

  4. Value and Momentum Everywhere

    DEFF Research Database (Denmark)

    Asness, Clifford S.; Moskowitz, Tobias; Heje Pedersen, Lasse

    2013-01-01

    are negatively correlated with each other, both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three-factor model. Global funding liquidity risk is a partial source of these patterns, which are identifiable only when examining value......We find consistent value and momentum return premia across eight diverse markets and asset classes, and a strong common factor structure among their returns. Value and momentum returns correlate more strongly across asset classes than passive exposures to the asset classes, but value and momentum...

  5. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  6. Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2012-02-01

    Full Text Available Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML, equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE – a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1 species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz of gaseous pollutants (e.g. HCHO, NO2, NO, O3, and CO2, etc., black carbon (BC, and particle number concentrations and size distributions. Particulate organics varied dramatically during periods with high traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA, a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate and oxygenated OA (OOA showed much smoother variations indicating minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60% with HOA accounting for a major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ∼120 nm and 500 nm (vacuum

  7. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, F. P., E-mail: fpsturm@lbl.gov [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institut für Kernphysik, Universität Frankfurt, Max-von-Laue Str. 1, D-60438 Frankfurt (Germany); Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Belkacem, A.; Weber, Th. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ranitovic, P. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged H6720 (Hungary)

    2016-06-15

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  8. Surface Plasmon Based Spectrometer

    Science.gov (United States)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  9. Critical-angle transmission grating technology development for high resolving power soft x-ray spectrometers on Arcus and Lynx

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Song, Jungki; Kolodziejczak, Jeffery; Gaskin, Jessica A.; O'Dell, Stephen L.; Cheimetz, Peter; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; La Caria, Marlis-Madeleine; Schattenburg, Mark L.

    2017-08-01

    Soft x-ray spectroscopy with high resolving power (R = λ/Δλ) and large effective area (A) addresses numerous unanswered science questions about the physical laws that lead to the structure of our universe. In the soft x-ray band R > 1000 can currently only be achieved with diffraction grating-based spectroscopy. Criticalangle transmission (CAT) gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (relaxed alignment tolerances and temperature requirements, transparent at higher energies, low mass), resulting in minimal mission resource requirements, while greatly improving figures of merit. Diffraction efficiency > 33% and R > 10, 000 have been demonstrated for CAT gratings. Last year the technology has been certified at Technology Readiness Level 4 based on a probe class mission concept. The Explorer-scale (A > 450 cm2 , R > 2500) grating spectroscopy Arcus mission can be built with today's CAT grating technology and has been selected in the current Explorer round for a Phase A concept study. Its figure of merit for the detection of weak absorption lines will be an order of magnitude larger than current instruments on Chandra and XMM-Newton. Further CAT grating technology development and improvements in the angular resolution of x-ray optics can provide another order of magnitude improvement in performance, as is envisioned for the X-ray Surveyor/Lynx mission concept currently under development for input into the 2020 Decadal Survey. For Arcus we have tested CAT gratings in a spectrometer setup in combination with silicon pore optics (SPO) and obtained resolving power results that exceed Arcus requirements before and after environmental testing of the gratings. We have recently fabricated the largest (32 mm x 32 mm) CAT gratings to date, and plan to increase grating size further. We mounted two of these large gratings to frames and aligned them in the

  10. Experimental investigation of the hyperfine spectra of Pr I-lines: Discovery of new fine structure levels with high angular momentum

    Science.gov (United States)

    Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius

    2014-05-01

    We present 66 even and 58 odd parity newly discovered fine structure levels of Pr I with high angular momentum: J = 15/2, 17/2 and 19/2 and 21/2. Spectral lines in the range 4200 Å to 7500 Å were experimentally investigated using laser induced fluorescence spectroscopy in a hollow cathode discharge lamp. The levels were discovered by analysis of the recorded hyperfine patterns of the investigated transitions. More than 800 spectral lines could be classified with help of these levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50025-7

  11. Identification of high transverse momentum top quarks in pp collisions at $\\sqrt{s}$ = 8 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spannowsky, Michael; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-01-01

    This paper presents studies of the performance of several jet-substructure techniques, which are used to identify hadronically decaying top quarks with high transverse momentum contained in large-radius jets. The efficiency of identifying top quarks is measured using a sample of top-quark pairs and the rate of wrongly identifying jets from other quarks or gluons as top quarks is measured using multijet events collected with the ATLAS experiment in 20.3 fb$^{-1}$ of 8 TeV proton-proton collisions at the Large Hadron Collider. Predictions from Monte Carlo simulations are found to provide an accurate description of the performance. The techniques are compared in terms of signal efficiency and background rejection using simulations, covering a larger range in jet transverse momenta than accessible in the dataset. Additionally, a novel technique is developed that is optimized to reconstruct top quarks in events with many jets.

  12. High depth resolution ERD of light elements by means of an electrostatic spectrometer for MeV ions in combination with a time of flight technique

    Science.gov (United States)

    Jamecsny, S.; Carstanjen, H. D.

    1997-02-01

    At the Max-Planck-Institut für Metallphysik in Stuttgart, Germany, a 6 MV Pelletron accelerator is being used for surface analysis using high resolution RBS and ERD of hydrogen by means of an electrostatic spectrometer. While for ERD analysis of hydrogen a thin foil in front of the detector is sufficient to eliminate the background of backscattered particles, for the ERD analysis of heavier elements, e.g., oxygen, the recording of a second parameter of the detected particles is necessary to separate particles of the same energy, but of different mass and charge state. For this purpose a set-up was installed that combines the high energy resolution of the spectrometer with a measurement of the time of flight of the ions through the spectrometer using a chopped ion beam. The measurement of depth profiles of elements lighter than argon, with a depth resolution in the few monolayer range, is now possible. The technique is demonstrated by the analysis of the oxidation of aluminum single crystal surfaces. The experiments revealed a strong anisotropy in the oxidation. The technique also allows to measure charge state dependent depth profiles. Measurements of backscattering of Ne and Ar ions on Au and of recoil O ions from Ta2O5 and Al2O3 have been performed. From the measurements charge state distributions after the ion-atom collision and mean free path lengths for electron capture and loss are derived.

  13. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    Science.gov (United States)

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-11-01

    A time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum is presented. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

  14. Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies

    Science.gov (United States)

    Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

    2013-04-01

    Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such

  15. Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC

    Science.gov (United States)

    Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2016-09-01

    The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.

  16. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  17. The heavy-ion magnetic spectrometer PRISMA

    Energy Technology Data Exchange (ETDEWEB)

    Stefanini, A.M. E-mail: alberto.stefanini@lnl.infn.it; Corradi, L.; Maron, G.; Pisent, A.; Trotta, M.; Vinodkumar, A.M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F.; De Rosa, A.; Inglima, G.; Pierroutsakou, D.; Romoli, M.; Sandoli, M.; Pollarolo, G.; Latina, A

    2002-04-22

    PRISMA is a magnetic spectrometer for heavy ions under construction at Legnaro, with very large solid angle (80 msr), wide momentum acceptance ({+-} 10%) and good mass resolution via TOF measurement; it will be dedicated to the study of nuclear dynamics and nuclear structure with stable and exotic ion beams. This is a review of its main features and of the present status of the project.

  18. A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution

    Science.gov (United States)

    Bitter, M.; Hill, K. W.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N.; Beiersdorfer, P.; Chen, H.

    2013-10-01

    This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from laser-produced plasmas with a high (sub-ns) time resolution. The spectrometer consists of a convex, spherically bent crystal, which images individual spectral lines as perfectly straight lines across multiple, sequentially gated, strip detectors. Since the Bragg-reflected rays are divergent, the distance between detector and crystal is arbitrary and can be chosen to optimize the experimental arrangement with respect to detector parameters. The spectrometer concept was verified in proof-of-principle experiments by imaging the L β1- and L β2-lines of tungsten, at 9.6735 and 9.96150 keV, from a micro-focus x-ray tube with a tungsten target onto a two-dimensional pixilated Pilatus detector, using a convex, spherically bent Si-422 crystal with a radius of curvature R of 500 mm. These experimental results will be presented. Work supported by DOE contract DE-AC02-09CH11466.

  19. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    Science.gov (United States)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  20. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    Science.gov (United States)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  1. Digital Spectrometers for Interplanetary Science Missions

    Science.gov (United States)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  2. The GRAVITY spectrometers: optical qualification

    Science.gov (United States)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    the arrangement, direction of spectral dispersion and shift of polarization channels for both spectrometers, and the curvature of the spectra in the science spectrometer. In Section 2 we determine the best focus position of the detectors. The overall contrast of images at different positions of the detector stage is computed with the standard deviation of pixel values in the spectra containing region. In Section 3 we analyze high dynamic range images for each spectrometer and resolution obtained at the afore determined best focus positions. We deduce the ensquared energy from the FWHM of Gaussian fits perpendicular to the spectra.

  3. Time Series Momentum

    DEFF Research Database (Denmark)

    Moskowitz, Tobias J.; Ooi, Yao Hua; Heje Pedersen, Lasse

    2012-01-01

    We document significant “time series momentum” in equity index, currency, commodity, and bond futures for each of the 58 liquid instruments we consider. We find persistence in returns for one to 12 months that partially reverses over longer horizons, consistent with sentiment theories of initial...... under-reaction and delayed over-reaction. A diversified portfolio of time series momentum strategies across all asset classes delivers substantial abnormal returns with little exposure to standard asset pricing factors and performs best during extreme markets. Examining the trading activities...... of speculators and hedgers, we find that speculators profit from time series momentum at the expense of hedgers....

  4. Pengembangan Alat Peraga Momentum dengan Sistem Sensor

    Directory of Open Access Journals (Sweden)

    Upik Rahma

    2015-12-01

    Full Text Available Abstract This research aims to develop the props with the concept of momentum by using motion sensors. The method used is a method of research and development (Research and Development. In the implementation of the study outlines the development of research carried out in two stages: Theoretical and Empirical. Results of this research is a props momentum that has been developed and can be used by high school teachers who will perform physical demonstration of the momentum of an object. This tool can also be used as a media demonstration teacher for high school students to explain the physics of matter other. From the test results Viewer tool development momentum in SMAN 100 Jakarta indicate that the tool has been able to meet the expectations of teachers and learners in the orientation of the development of the various needs of props for high school students in the learning process of physics. Based on the results of this study concluded that, with the development of props momentum sensor system has met the criteria of props as a medium of learning physics. Keywords: learning media devlopment, learning media momentum with sensor systems, instructional media. Abstrak Penelitian ini bertujuan mengembangkan alat peraga dengan konsep momentum dengan menggunakan sensor gerak. Metode penelitian yang digunakan adalah metode penelitian pengembangan (Research and Development. Dalam pelaksanaan penelitian secara garis besar penelitian pengembangan dilaksanakan dalam dua tahap yaitu Teoritik dan Empiris. Hasil penelitian ini adalah sebuah alat peraga momentum yang sudah dikembangkan dan dapat digunakan oleh guru SMA yang akan melakukan peragaan fisika tentang momentum suatu benda. Alat ini juga dapat dipakai guru sebagai media demonstrasi bagi siswa SMA untuk menjelaskan materi fisika lainnya. Dari hasil uji coba pengembangan Alat Peraga Momentum di SMAN 100 Jakarta menunjukan bahwa alat telah mampu memenuhi harapan bagi guru dan peserta didik dalam

  5. The Brillouin spectrometer BRISP at the ILL

    Science.gov (United States)

    Aisa, D.; Aisa, S.; Babucci, E.; Barocchi, F.; Cunsolo, A.; D'Anca, F.; De Francesco, A.; Formisano, F.; Gahl, T.; Guarini, E.; Jahn, S.; Laloni, A.; Mutka, H.; Orecchini, A.; Petrillo, C.; Pilgrim, W.-C.; Piluso, A.; Sacchetti, F.; Suck, J.-B.; Venturi, G.

    2006-11-01

    In recent years several experiments carried out by means of inelastic X-ray and neutron scattering on liquid and amorphous systems have shown that collective modes exist in the low-momentum region well beyond the hydrodynamic limit. To expand the potentialities of the neutron technique in this field, a small-angle inelastic spectrometer operated at thermal neutron energies has been designed, built and installed at the high-flux reactor of the Institut Laue Langevin in Grenoble (France). The instrument is designed to take advantage of the high neutron flux available at the thermal source of the reactor thus enabling experiments at incoming neutron energies from 20 up to 120 meV and scattering angles as low as 0.5∘. A hybrid configuration which couples a crystal monochromator and a time of flight final energy analysis is exploited. Preliminary tests obtained with the large-area (≃1.5 m2) position-sensitive detector are presented.

  6. Measurement of the 12C(e,e'p)11B Two-Body Breakup Reaction at High Missing Momentum Values

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, P; Shneor, R; Subedi, R; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertin, P; Bertozzi, W; Boeglin, W; Chen, J P; Choi, Seonho; Chudakov, E; Ciofi degli-Atti, C; Cisbani, E; Cosyn, W; Craver, B; de Jager, C W; Feuerbach, R J; Folts, E; Frullani, S; Garibaldi, F; Gayou, O; Gilad, S; Gilman, R; Glamazdin, O; Gomez, J; Hansen, O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; Jans, E; Jiang, X; Jiang, Y; Kaufman, L; Kelleher, A; Kolarkar, A; Kuchina, E; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Morita, H; Nanda, S; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Reitz, B; Ron, G; Rosner, G; Ryckebusch, J; Saha, A; Sawatzky, B; Segal, J; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Thompson, N; Ulmer, P E; Urciuoli, G M; Voutier, E; Wang, K; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Yao, H; Zheng, X; Zhu, L

    2014-08-01

    The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. The theoretical calculations agree well with the data up to a missing momentum value of 325 MeV/c and then diverge for larger missing momenta. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV/c.

  7. Measurement of the 12C(e,e'p)11B Two-Body Breakup Reaction at High Missing Momentum Values

    CERN Document Server

    Monaghan, P; Subedi, R; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertin, P; Bertozzi, W; Boeglin, W; Chen, J P; Choi, Seonho; Chudakov, E; Atti, C Ciofi degli; Cisbani, E; Cosyn, W; Craver, B; de Jager, C W; Feuerbach, R J; Folts, E; Frullani, S; Garibaldi, F; Gayou, O; Gilad, S; Gilman, R; Glamazdin, O; Gomez, J; Hansen, O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; Jans, E; Jiang, X; Jiang, Y; Kaufman, L; Kelleher, A; Kolarkar, A; Kuchina, E; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Morita, H; Nanda, S; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Reitz, B; Ron, G; Rosner, G; Ryckebusch, J; Saha, A; Sawatzky, B; Segal, J; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Thompson, N; Ulmer, P E; Urciuoli, G M; Voutier, E; Wang, K; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Yao, H; Zheng, X; Zhu, L

    2013-01-01

    The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. The theoretical calculations agree well with the data up to a missing momentum value of 325 MeV/c and then diverge for larger missing momenta. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV/c.

  8. Momentum sharing in imbalanced Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  9. Performance of a First-Level Muon Trigger with High Momentum Resolution Based on the ATLAS MDT Chambers for HL-LHC

    CERN Document Server

    Gadow, P.; Kortner, S.; Kroha, H.; Müller, F.; Richter, R.

    2016-01-01

    Highly selective first-level triggers are essential to exploit the full physics potential of the ATLAS experiment at High-Luminosity LHC (HL-LHC). The concept for a new muon trigger stage using the precision monitored drift tube (MDT) chambers to significantly improve the selectivity of the first-level muon trigger is presented. It is based on fast track reconstruction in all three layers of the existing MDT chambers, made possible by an extension of the first-level trigger latency to six microseconds and a new MDT read-out electronics required for the higher overall trigger rates at the HL-LHC. Data from $pp$-collisions at $\\sqrt{s} = 8\\,\\mathrm{TeV}$ is used to study the minimal muon transverse momentum resolution that can be obtained using the MDT precision chambers, and to estimate the resolution and efficiency of the MDT-based trigger. A resolution of better than $4.1\\%$ is found in all sectors under study. With this resolution, a first-level trigger with a threshold of $18\\,\\mathrm{GeV}$ becomes fully e...

  10. Induced Angular Momentum

    Science.gov (United States)

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  11. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer.

    Science.gov (United States)

    Ozbek, N; Baysal, A

    2015-02-01

    The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Positron Annihilation 3-D Momentum Spectrometry by Synchronous 2D-ACAR and DBAR

    Science.gov (United States)

    Burggraf, Larry W.; Bonavita, Angelo M.; Williams, Christopher S.; Fagan-Kelly, Stefan B.; Jimenez, Stephen M.

    2015-05-01

    A positron annihilation spectroscopy system capable of determining 3D electron-positron (e--e+) momentum densities has been constructed and tested. In this technique two opposed HPGe strip detectors measure angular coincidence of annihilation radiation (ACAR) and Doppler broadening of annihilation radiation (DBAR) in coincidence to produce 3D momentum datasets in which the parallel momentum component obtained from the DBAR measurement can be selected for annihilation events that possess a particular perpendicular momentum component observed in the 2D ACAR spectrum. A true 3D momentum distribution can also be produced. Measurement of 3-D momentum spectra in oxide materials has been demonstrated including O-atom defects in 6H SiC and silver atom substitution in lithium tetraborate crystals. Integration of the 3-D momentum spectrometer with a slow positron beam for future surface resonant annihilation spectrometry measurements will be described. Sponsorship from Air Force Office of Scientific Research

  13. Determination of the {ital S}-wave scattering length in pionic deuterium with a high resolution crystal spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chatellard, D.; Egger, J.; Jeannet, E. [Institut de Physique de l`Universite, Breguet 1, CH-2000 Neuchatel (Switzerland); Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.; Schroeder, H.; Sigg, D.; Zhao, Z.G. [Institut fuer Teilchenphysik der Eidgenoessische Technische Hochschule Zuerich, CH-5232 Villigen PSI (Switzerland); Aschenauer, E.C.; Gabathuler, K.; Hauser, P.; Simons, L.M. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Rusi, A.J.; Hassani, E. [Ecole Mohammadia des Ingenieurs, Rabat (Morocco)

    1995-05-22

    The pionic deuterium 3{ital P}{minus}1{ital S} x-ray transition was measured with a quartz crystal spectrometer in combination with a cyclotron trap and charge coupled device detectors. The strong interaction shift and total decay width of the 1{ital S} level are {epsilon}{sub 1{ital S}}(shift)=2.48{plus_minus}0.10 eV (repulsive), {Gamma}{sub 1{ital S}}(width)=1.02{plus_minus}0.21 eV, where the statistical and systematic errors were added linearly. They yield the total pionic deuterium {ital S}-wave scattering length: {ital a}{sub {pi}{sup {minus}}{ital d}}= {minus}0.0264({plus_minus}0.0011)+{ital i}0.0054({plus_minus}0.0011){ital m}{sub {pi}}{sup {minus}1}.

  14. A First-Level Muon Trigger Based on the ATLAS Muon Drift Tube Chambers With High Momentum Resolution for LHC Phase II

    CERN Document Server

    Richter, R; The ATLAS collaboration; Ott, S; Kortner, O; Fras, M; Gabrielyan, V; Danielyan, V; Fink, D; Nowak, S; Schwegler, P; Abovyan, S

    2014-01-01

    The Level-1 (L1) trigger for muons with high transverse momentum (pT) in ATLAS is based on chambers with excellent time resolution, able to identify muons coming from a particular beam crossing. These trigger chambers also provide a fast pT-measurement of the muons, the accuracy of the measurement being limited by the moderate spatial resolution of the chambers along the deflecting direction of the magnetic field (eta-coordinate). The higher luminosity foreseen for Phase-II puts stringent limits on the L1 trigger rates, and a way to control these rates would be to improve the spatial resolution of the triggering system, drastically sharpening the turn-on curve of the L1 trigger. To do this, the precision tracking chambers (MDT) can be used in the L1 trigger, provided the corresponding trigger latency is increased as foreseen. The trigger rate reduction is accomplished by strongly decreasing the rate of triggers from muons with pT lower than a predefined threshold (typically 20 GeV), which would otherwise trig...

  15. Performance of a compact detector package for the out-of-plane spectrometer system

    CERN Document Server

    Zhou, Z L; Böglin, W; Sarty, A J; Alarcon, R; Beck, R; Bernstein, A; Bertozzi, W; Botto, T; Bourgeois, P; Calarco, J; Casagrande, F; Chen, J; Comfort, J R; Dale, D; Distler, M O; Dodson, G; Dolfini, S M; Dooley, A; Dow, K; Epstein, M; Farkhondeh, M; Georgakopoulos, S V; Gilad, S; Hicks, R; Holtrop, M; Hotta, A; Jiang, X; Joo, K; Jordan, D; Kaloskamis, N I; Karabarbounis, A; Kirkpatrick, J; Kowalski, S; Kunz, C; Liyanage, N K; Mandeville, J B; Margaziotis, D J; McIlvain, T; Mertz, C K; Milner, R; Miskimen, R; Nakagawa, I; Papanicolas, C N; Pavan, M M; Peterson, G; Ramírez, A; Rowntree, D; Sato, Y; Shaw, J; Six, E; Sobczynski, S; Soong, S B; Sparveris, N; Stave, S; Stiliaris, S; Tamae, T; Tieger, D; Tschalär, C; Tsentalovich, G; Turchinetz, W E; Vellidis, C; Warren, G A; Weinstein, L B; Williamson, S E; Young, A; Zhao, J; Zwart, T

    2002-01-01

    We report on the design and performance of compact detector packages currently installed in the four magnetic out-of-plane spectrometers for electron scattering experiments at the MIT-Bates Linear Accelerator Center. The detector packages have been designed to meet the mechanical requirements arising from out-of-plane particle detection. They offer good trajectory and momentum reconstruction, particle identification and time-of-flight measurements for electrons, pions, protons, and deuterons with large momentum bites and in broad kinematical ranges and high luminosities. The detectors have so far been used with great success in out-of-plane measurements of sup 1 sup 2 C(e->,e'p), sup 2 H(e->,e'p), virtual Compton scattering below pion threshold and in studies of the N-> DELTA transition in both exclusive reaction channels sup 1 H(e->,e'p)pi sup 0 and sup 1 H(e->,e'pi sup +)n.

  16. The chemical composition and mineralogy of meteorites measured with very high spatial resolution by a laser mass spectrometer for in situ planetary research

    Science.gov (United States)

    Brigitte Neuland, Maike; Mezger, Klaus; Tulej, Marek; Frey, Samira; Riedo, Andreas; Wurz, Peter; Wiesendanger, Reto

    2017-04-01

    The knowledge of the chemical composition of moons, comets, asteroids or other planetary bodies is of particular importance for the investigation of the origin and evolution of the Solar System. High resolution in situ studies on planetary surfaces can yield important information on surface heterogeneity, basic grain mineralogy and chemical composition of surface and subsurface. In turn, these data are the basis for our understanding of the physical and chemical processes which led to the formation and alteration of planetary material [1]. We investigated samples of Allende and Sayh al Uhaymir with a highly miniaturised laser mass spectrometer (LMS), which has been designed and built for in situ space research [2,3]. Both meteorite samples were investigated with a spatial resolution of about 10μm in lateral direction. The high sensitivity and high dynamic range of the LMS allow for quantitative measurements of the abundances of the rock-forming and minor and trace elements with high accuracy [4]. From the data, the modal mineralogy of micrometre-sized chondrules can be inferred [5], conclusions about the condensation sequence of the material are possible and the sensitivity for radiogenic elements allows for dating analyses of the investigated material. We measured the composition of various chondrules in Allende, offering valuable clues about the condensation sequence of the different components of the meteorite. We explicitly investigated the chemical composition and heterogeneity of the Allende matrix with an accuracy that cannot be reached by the mechanical analysis methods that were and are widely used in meteoritic research. We demonstrate the capabilities for dating analyses with the LMS. By applying the U-Th-dating method, the age of the SaU169 sample could be determined. Our analyses show that the LMS would be a suitable instrument for high-quality quantitative chemical composition measurements on the surface of a celestial body like a planet, moon or

  17. Performance of 20 Ci 137Cs γ-ray Compton spectrometer for the ...

    Indian Academy of Sciences (India)

    The in-house 137Cs spectrometer is very useful for the measurement of momentum densities of heavy materials. The performance of the machine is assessed using aluminum, terbium and mercury samples and the exper- imental data from comparable apparatus. Keywords. Compton scattering; electron momentum density; ...

  18. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS).

    Science.gov (United States)

    Han, Fei; Li, Yanting; Mao, Xinjuan; Xu, Rui; Yin, Ran

    2016-05-01

    In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  20. Quantum Heuristics of Angular Momentum

    Science.gov (United States)

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  1. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  2. Performance of 20 Ci 137Cs γ-ray Compton spectrometer for the ...

    Indian Academy of Sciences (India)

    ... than the conventional 241Am Compton spectrometers. The in-house 137Cs spectrometer is very useful for the measurement of momentum densities of heavy materials. The performance of the machine is assessed using aluminum, terbium and mercury samples and the experimental data from comparable apparatus.

  3. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes.

    Science.gov (United States)

    Zhu, Guoxuan; Hu, Ziyang; Wu, Xiong; Du, Cheng; Luo, Wenyong; Chen, Yujie; Cai, Xinlun; Liu, Jie; Zhu, Jiangbo; Yu, Siyuan

    2018-01-22

    We propose and demonstrate a scalable mode division multiplexing scheme based on orbital angular momentum modes in ring core fibers. In this scheme, the high-order mode groups of a ring core fiber are sufficiently de-coupled by the large differential effective refractive index so that multiple-input multiple-output (MIMO) equalization is only used for crosstalk equalization within each mode group. We design and fabricate a graded-index ring core fiber that supports 5 mode groups with low inter-mode-group coupling, small intra-mode-group differential group delay, and small group velocity dispersion slope over the C-band for the high-order mode groups. We implement a two-dimensional wavelength- and mode-division multiplexed transmission experiment involving 10 wavelengths and 2 mode groups each with 4 OAM modes, transmitting 32 GBaud Nyquist QPSK signals over all 80 channels. An aggregate capacity of 5.12 Tb/s and an overall spectral efficiency of 9 bit/s/Hz over 10 km are realized, only using modular 4x4 MIMO processing with 15 taps to recover signals from the intra-mode-group mode coupling. Given the fixed number of modes in each mode group and the low inter-mode-group coupling in ring core fibres, our scheme strikes a balance in the trade-off between system capacity and digital signal processing complexity, and therefore has good potential for capacity upscaling at an expense of only modularly increasing the number of mode-groups with fixed-size (4x4) MIMO blocks.

  4. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  5. BNL multiparticle spectrometer software

    Energy Technology Data Exchange (ETDEWEB)

    Saulys, A.C.

    1984-01-01

    This paper discusses some solutions to problems common to the design, management and maintenance of a large high energy physics spectrometer software system. The experience of dealing with a large, complex program and the necessity of having the program controlled by various people at different levels of computer experience has led us to design a program control structure of mnemonic and self-explanatory nature. The use of this control language in both on-line and off-line operation of the program will be discussed. The solution of structuring a large program for modularity so that substantial changes to the program can be made easily for a wide variety of high energy physics experiments is discussed. Specialized tools for this type of large program management are also discussed.

  6. The response of a Bonner Sphere spectrometer to charged hadrons

    CERN Document Server

    Agosteo, S; Fassò, A; Silari, M

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n, xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semithick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors wer...

  7. Construction and test of high precision drift-tube (sMDT) chambers for the ATLAS muon spectrometer

    CERN Document Server

    Nowak, Sebastian; Kroha, Hubert; Schwegler, Philipp; Sforza, Federico

    2014-01-01

    For the upgrade of the ATLAS muon spectrometer in March 2014 new muon tracking chambers (sMDT) with drift-tubes of 15 mm diameter, half of the value of the standard ATLAS Monitored Drift-Tubes (MDT) chambers, and 10~$\\mu$m positioning accuracy of the sense wires have been constructed. The new chambers are designed to be fully compatible with the present ATLAS services but, with respect to the previously installed ATLAS MDT chambers, they are assembled in a more compact geometry and they deploy two additional tube layers that provide redundant rack information. The chambers are composed of 8 layers of in total 624 aluminium drift-tubes. The assembly of a chamber is completed within a week. A semi-automatized production line is used for the assembly of the drift-tubes prior to the chamber assembly. The production procedures and the quality control tests of the single components and of the complete chambers will be discussed. The wire position in the completed chambers have been measured by using a coordinate me...

  8. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  9. Bulk Fermi surface and momentum density in heavily doped La2?xSrxCuO4 using high-resolution Compton scattering and positron annihilation spectroscopies

    NARCIS (Netherlands)

    Al-Sawai, W.; Barbiellini, B.; Sakurai, Y.; Itou, M.; Mijnarends, P.E.; Markiewicz, R.S.; Kaprzyk, S.; Wakimoto, S.; Fujita, M.; Basak, S.; Lin, H.; Wang, Y.J.; Eijt, S.W.H.; Schut, H.; Yamada, K.; Bansil, A.

    2012-01-01

    We have observed the bulk Fermi surface (FS) in an overdoped (x=0.3) single crystal of La2?xSrxCuO4 by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative

  10. Chaotic eigenfunctions in momentum space

    CERN Document Server

    Bäcker, A; Bäcker, Arnd; Schubert, Roman

    1999-01-01

    We study eigenstates of chaotic billiards in the momentum representation and propose the radially integrated momentum distribution as useful measure to detect localization effects. For the momentum distribution, the radially integrated momentum distribution, and the angular integrated momentum distribution explicit formulae in terms of the normal derivative along the billiard boundary are derived. We present a detailed numerical study for the stadium and the cardioid billiard, which shows in several cases that the radially integrated momentum distribution is a good indicator of localized eigenstates, such as scars, or bouncing ball modes. We also find examples, where the localization is more strongly pronounced in position space than in momentum space, which we discuss in detail. Finally applications and generalizations are discussed.

  11. High-efficiency cross-beam magnetic electron-impact source for improved miniature Mattauch-Herzog mass spectrometer performance

    Science.gov (United States)

    Hadjar, O.; Fowler, W. K.

    2012-06-01

    We describe a newly designed cross-beam magnetic electron-impact ion source (CBM-EI). We demonstrate its superiority in comparison with a conventional source (CB-EI) when used with a commercial miniature sector-field-type, non-scanning mass spectrometer featuring Mattauch-Herzog geometry (MH-MS) and a permanent sector-field magnet. This paper clearly shows the value of the CBM-EI for enhancing MH-MS sensitivity. Unlike secondary electron-multiplier type detectors, the pixelated detector (IonCCD™) used in the commercial MH-MS has no gain. The MH-MS/IonCCD system is therefore challenged to compete with time-of-flight and quadrupole MS systems due to their higher ion transmissions and detector gains. Using the new CBM-EI, we demonstrate an instrument sensitivity increase of 20-fold to 100-fold relative to the CB-EI-equipped instrument. This remarkable signal increase by the simple addition of the magnet assembly arises from the magnet-induced gyromotion of the thermionic electrons, which vastly increases the effective path length of the electrons through the ionization region, and the collimated nature of the electron flux, which optimizes the ion transmission through the 100-μm object slit of the MH-MS. Some or all of the realized sensitivity increase may be exchanged for an increase in resolution and/or mass range through the use of a narrower object slit, or for a reduction in ion-source pressure to limit quenching. The CBM-EI should facilitate development of a differentially pumped ion source to extend the lifetime of the filament, especially in otherwise intractable applications associated with oxidizing and corrosive samples.

  12. A High Performance Digital Time Interval Spectrometer: An Embedded, FPGA-Based System With Reduced Dead Time Behaviour

    Directory of Open Access Journals (Sweden)

    Arkani Mohammad

    2015-12-01

    Full Text Available In this work, a fast 32-bit one-million-channel time interval spectrometer is proposed based on field programmable gate arrays (FPGAs. The time resolution is adjustable down to 3.33 ns (= T, the digitization/discretization period based on a prototype system hardware. The system is capable to collect billions of time interval data arranged in one million timing channels. This huge number of channels makes it an ideal measuring tool for very short to very long time intervals of nuclear particle detection systems. The data are stored and updated in a built-in SRAM memory during the measuring process, and then transferred to the computer. Two time-to-digital converters (TDCs working in parallel are implemented in the design to immune the system against loss of the first short time interval events (namely below 10 ns considering the tests performed on the prototype hardware platform of the system. Additionally, the theory of multiple count loss effect is investigated analytically. Using the Monte Carlo method, losses of counts up to 100 million events per second (Meps are calculated and the effective system dead time is estimated by curve fitting of a non-extendable dead time model to the results (τNE = 2.26 ns. An important dead time effect on a measured random process is the distortion on the time spectrum; using the Monte Carlo method this effect is also studied. The uncertainty of the system is analysed experimentally. The standard deviation of the system is estimated as ± 36.6 × T (T = 3.33 ns for a one-second time interval test signal (300 million T in the time interval.

  13. Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids.

    Science.gov (United States)

    Vu, Ngoc; Brown, Jeffery; Giles, Kevin; Zhang, Qibin

    2017-09-15

    The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics. Copyright © 2017 John Wiley & Sons, Ltd.

  14. High Precision, Absolute Total Column Ozone Measurements from the Pandora Spectrometer System: Comparisons with Data from a Brewer Double Monochromator and Aura OMI

    Science.gov (United States)

    Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader

    2012-01-01

    We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.

  15. The high-resolution cross-dispersed echelle white-pupil spectrometer of the McDonald Observatory 2.7-m telescope

    Science.gov (United States)

    Tull, Robert G.; Macqueen, Phillip J.; Sneden, Christopher; Lambert, David L.

    1995-01-01

    A new high-resolution cross-dispersed echelle spectrometer has been installed at the coude focus of the McDonald Observatory 2.7-m telescope. Its primary goal was simultaneously to gather spectra over as much of the spectral range 3400 A to 1 micrometer as practical, at a resolution R identical with lambda/Delta lambda which approximately = 60,000 with signal-to-noise ratio of approximately 100 for stars down to magnitude 11, using 1-h exposures. In the instrument as built, two exposures are all that are needed to cover the full range. Featuring a white-pupil design, fused silica prism cross disperser, and folded Schmidt camera with a Tektronix 2048x2048 CCD used at either of two foci, it has been in regularly scheduled operation since 1992 April. Design details and performance are described.

  16. K∗(892)0 and φ meson production at high transverse momentum in pp and Pb-Pb collisions at √sNN =2.76 TeV

    NARCIS (Netherlands)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Janssen, M M; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C. D.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.C.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.|info:eu-repo/dai/nl/411263188; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.|info:eu-repo/dai/nl/371577810; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.|info:eu-repo/dai/nl/371578248; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Iga Buitron, S. A.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.|info:eu-repo/dai/nl/411885812; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.|info:eu-repo/dai/nl/411888056; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, O.; Dobrin, A.|info:eu-repo/dai/nl/372618715; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.|info:eu-repo/dai/nl/355502488; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L. C.; Grelli, A.|info:eu-repo/dai/nl/326052577; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L.D.|info:eu-repo/dai/nl/370530780; Keil, M.; Ketzer, B.; Mohisin Khan, M.; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.-S.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.|info:eu-repo/dai/nl/371571227; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.|info:eu-repo/dai/nl/362845670; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.|info:eu-repo/dai/nl/074064975; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, Seema; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.|info:eu-repo/dai/nl/355080192; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.|info:eu-repo/dai/nl/411295721; Strunz-Lehner, Christine; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.|info:eu-repo/dai/nl/355080400; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.|info:eu-repo/dai/nl/412461684; Marín, Alicia; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, Isabel M.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.|info:eu-repo/dai/nl/325781435; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.|info:eu-repo/dai/nl/369405870; Mohanty, B.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.|info:eu-repo/dai/nl/07051349X; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.|info:eu-repo/dai/nl/323375618; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, J.-W.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.|info:eu-repo/dai/nl/413319628; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H.P.|info:eu-repo/dai/nl/413332993; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singha, S.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J.M.|info:eu-repo/dai/nl/165585781; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, J. S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.|info:eu-repo/dai/nl/412860996; Van Hoorne, J. W.; Van Leeuwen, M.|info:eu-repo/dai/nl/250599171; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.|info:eu-repo/dai/nl/413533751; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.|info:eu-repo/dai/nl/369509307; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.

    2017-01-01

    The production of K∗(892)0 and φ(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at √sNN=2.76TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (pT) spectra have been

  17. High transverse momentum Hadron spectra at VSnn=17.3 GeV, in Pb+Pb and p+p collisions

    NARCIS (Netherlands)

    Alt, C.; Botje, M.A.J.|info:eu-repo/dai/nl/070139032; van Leeuwen, M.A.; Mischke, A.|info:eu-repo/dai/nl/325781435

    2008-01-01

    Transverse momentum spectra up to 4.5 GeV/c around midrapidity of pi^{+/-}, p, pbar, K^{+/-} in Pb+Pb reactions were measured at sqrt{s_{NN}}=17.3 GeV by the CERN-NA49 experiment. The nuclear modification factors R_{AA} for pi^{+/-} and R_{CP} for pi^{+/-},p,pbar,K^{+/-} were extracted and are

  18. Common suppression pattern of η and π0 mesons at high transverse momentum in Au+Au collisions at VsNN=200 GeV

    NARCIS (Netherlands)

    Peitzmann, T.

    2006-01-01

    Inclusive transverse momentum spectra of η mesons have been measured within pT=2–10 GeV/c at midrapidity by the PHENIX experiment in Au+Au collisions at VsNN=200 GeV. In central Au+Au the η yields are significantly suppressed compared to peripheral Au+Au, d+Au, and p+p yields scaled by the

  19. Study of High Energy Nucleus-Nucleus Interactions Using the $\\Omega^{'}$ Spectrometer Equipped with a Multiparticle High $p_{T}$ Detector

    CERN Document Server

    2002-01-01

    The experiment is looking for new physics in 200~GeV/c per nucleon sulphur-tungsten collisions in the $\\Omega$' spectrometer. In particular, we are looking for a quark gluon plasma signature in the increase of the production rate of strange and multistrange baryons and antibaryons. In view of the large number of secondaries, we are using a special detector arrangement, called a ``butterfly system'', which has a large acceptance for particles with 2.2~$\\leq$~ $y _{l}ab $ ~$\\leq$~3.2 and $p _{T} $ ~$>$~0.6 ~GeV/c and is insensitive to all the other particles.

  20. a 530-590 GHZ Schottky Heterodyne Receiver for High-Resolution Molecular Spectroscopy with Lille's Fast-Scan Fully Solid-State DDS Spectrometer

    Science.gov (United States)

    Pienkina, A.; Margulès, L.; Motiyenko, R. A.; Wiedner, Martina C.; Maestrini, Alain; Defrance, Fabien

    2017-06-01

    Laboratory spectroscopy, especially at THz and mm-wave ranges require the advances in instrumentation techniques to provide high resolution of the recorded spectra with precise frequency measurement that facilitates the mathematical treatment. We report the first implementation of a Schottky heterodyne receiver, operating at room temperature and covering the range between 530 and 590 GHz, for molecular laboratory spectroscopy. A 530-590 GHz non-cryogenic Schottky solid-state receiver was designed at LERMA, Observatoire de Paris and fabricated in partnership with LPN- CNRS (Laboratoire de Photonique et de Nanostructures), and was initially developed for ESA Jupiter Icy Moons Explorer (JUICE), intended to observe Jupiter and its icy moon atmospheres. It is based on a sub-harmonic Schottky diode mixer, designed and fabricated at LERMA-LPN, pumped by a Local Oscillator (LO), consisting of a frequency Amplifier/Multiplier chains (AMCs) from RPG (Radiometer Physics GmBh). The performance of the receiver was demonstrated by absorption spectroscopy of CH_3CH_2CN with Lille's fast-scan DDS spectrometer. A series of test measurements showed the receiver's good sensitivity, stability and frequency accuracy comparable to those of 4K QMC bolometers, thus making room-temperature Schottky receiver a competitive alternative to 4K QMC bolometers to laboratory spectroscopy applications. We will present the first results with such a combination of a compact room temperature Schottky heterodyne receiver and a fast-scan DDS spectrometer. J. Treuttel, L. Gatilova, A. Maestrini et al., 2016, IEEE Trans. Terahertz Science and Tech., 6, 148-155. This work was funded by the French ANR under the Contract No. ANR-13-BS05-0008-02 IMOLABS.

  1. The SAGE spectrometer

    Science.gov (United States)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Herzberg, R.-D.; Greenlees, P. T.; Butler, P. A.; Coleman-Smith, P. J.; Cox, D. M.; Cresswell, J. R.; Jones, P.; Julin, R.; Konki, J.; Lazarus, I. H.; Letts, S. C.; Mistry, A.; Page, R. D.; Parr, E.; Pucknell, V. F. E.; Rahkila, P.; Sampson, J.; Sandzelius, M.; Seddon, D. A.; Simpson, J.; Thornhill, J.; Wells, D.

    2014-03-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of -rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and -rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyväskylä and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method.

  2. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  3. MD 2179: Scraping of off-momentum halo after injection

    CERN Document Server

    Garcia Morales, Hector; Patecki, Marcin; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2018-01-01

    In this MD, a beam scraping was performed using the momentum primary collimator in IR3 where dispersion is high. A second scraping was performed using a TCSG in IR7 where dispersion is almost negligible. In such a way, we aim to disentangle the contribution of off-momentum particles to halo population. These scrapings will provide useful information to better understand the usual off-momentum losses we see at the start of the ramp. The MD results would also be used to benchmark simulations of off-momentum beam losses in order to gain confidence in simulation models.

  4. Portable Remote Imaging Spectrometer (PRISM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an UV-NIR (350nm to 1050 nm) portable remote imaging spectrometer (PRISM) for flight on a variety of airborne platforms with high SNR and response...

  5. TRISP: Three axes spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Thomas Keller

    2015-12-01

    Full Text Available TRISP, operated by the Max-Planck-Institute for Solid State Research, is a high-resolution neutron spectrometer combining the three axes and neutron resonance spin echo (NRSE techniques.

  6. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  7. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    ... sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an exponential form. The modelling results are compared and found to be in agreement with the experimental data at high energies.

  8. Determination of nitric oxide in purified air and high purity nitrogen gases with computer-controlled second derivative spectrometer

    National Research Council Canada - National Science Library

    Soichi OTSUKA; Takahiro YAMAMOTO; Kazuhiko SAKAMOTO; Issei IWAMOTO; Naoomi YAMAKI; Takashi KIMOTO

    1984-01-01

      Nitric oxide impurity in purified air and high purity nitrogen gases, which causes uncertain errors in setting zero level of a nitrogen oxides analyzer, was determined with a newly developed computer...

  9. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  10. Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\\sqrt{s}$ = 8 TeV proton--proton collisions using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiro