WorldWideScience

Sample records for high metabolic rate

  1. Palaeohistological Evidence for Ancestral High Metabolic Rate in Archosaurs.

    Science.gov (United States)

    Legendre, Lucas J; Guénard, Guillaume; Botha-Brink, Jennifer; Cubo, Jorge

    2016-11-01

    Metabolic heat production in archosaurs has played an important role in their evolutionary radiation during the Mesozoic, and their ancestral metabolic condition has long been a matter of debate in systematics and palaeontology. The study of fossil bone histology provides crucial information on bone growth rate, which has been used to indirectly investigate the evolution of thermometabolism in archosaurs. However, no quantitative estimation of metabolic rate has ever been performed on fossils using bone histological features. Moreover, to date, no inference model has included phylogenetic information in the form of predictive variables. Here we performed statistical predictive modeling using the new method of phylogenetic eigenvector maps on a set of bone histological features for a sample of extant and extinct vertebrates, to estimate metabolic rates of fossil archosauromorphs. This modeling procedure serves as a case study for eigenvector-based predictive modeling in a phylogenetic context, as well as an investigation of the poorly known evolutionary patterns of metabolic rate in archosaurs. Our results show that Mesozoic theropod dinosaurs exhibit metabolic rates very close to those found in modern birds, that archosaurs share a higher ancestral metabolic rate than that of extant ectotherms, and that this derived high metabolic rate was acquired at a much more inclusive level of the phylogenetic tree, among non-archosaurian archosauromorphs. These results also highlight the difficulties of assigning a given heat production strategy (i.e., endothermy, ectothermy) to an estimated metabolic rate value, and confirm findings of previous studies that the definition of the endotherm/ectotherm dichotomy may be ambiguous. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. High Yolk Testosterone Transfer Is Associated with an Increased Female Metabolic Rate.

    Science.gov (United States)

    Tschirren, Barbara; Ziegler, Ann-Kathrin; Canale, Cindy I; Okuliarová, Monika; Zeman, Michal; Giraudeau, Mathieu

    2016-01-01

    Yolk androgens of maternal origin are important mediators of prenatal maternal effects. Although in many species short-term benefits of exposure to high yolk androgen concentrations for the offspring have been observed, females differ substantially in the amount of androgens they transfer to their eggs. It suggests that costs for the offspring or the mother constrain the evolution of maternal hormone transfer. However, to date, the nature of these costs remains poorly understood. Unlike most previous work that focused on potential costs for the offspring, we here investigated whether high yolk testosterone transfer is associated with metabolic costs (i.e., a higher metabolic rate) for the mother. We show that Japanese quail (Coturnix japonica) females that deposit higher testosterone concentrations into their eggs have a higher resting metabolic rate. Because a higher metabolic rate is often associated with a shorter life span, this relationship may explain the negative association between yolk testosterone transfer and female longevity observed in the wild. Our results suggest that metabolic costs for the mother can balance the short-term benefits of yolk testosterone exposure for the offspring, thereby contributing to the maintenance of variation in maternal yolk hormone transfer in natural populations.

  3. Metabolic rate and thermal conductance of lemmings from high-arctic Canada and Siberia

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Agrell, J.; Lindström, A.

    2002-01-01

    The arctic climate places high demands on the energy metabolism of its inhabitants. We measured resting (RMR) and basal metabolic rates (BMR), body temperatures, and dry and wet thermal conductances in summer morphs of the lemmings Dicrostonyx groenlandicus and Lemmus trimucronatus in arctic Canada,

  4. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    DEFF Research Database (Denmark)

    Wone, B W M; Madsen, Per; Donovan, E R

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection...... on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols...... and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR...

  5. Helicoverpa armigera (Lepidoptera: Noctuidae) larvae that survive sublethal doses of nucleopolyhedrovirus exhibit high metabolic rates.

    Science.gov (United States)

    Bouwer, Gustav; Nardini, Luisa; Duncan, Frances D

    2009-04-01

    To determine the effect of sublethal doses of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearSNPV) on the metabolic rate of H. armigera, the respiration rates of third instar H. armigera larvae inoculated with sublethal doses of HearSNPV were evaluated. Respiration rates, measured as the rate of CO(2) production (VCO(2)), were recorded daily using closed-system respirometry. By 4 days post-inoculation (dpi), the metabolic rates of LD(25) or LD(75) survivors were significantly higher than that of uninoculated controls. When dose data were pooled, the VCO(2) values of larvae that survived inoculation (0.0288mlh(-1)), the uninoculated controls (0.0250mlh(-1)), and the larvae that did not survive inoculation (0.0199mlh(-1)) differed significantly from one another. At 4dpi, the VCO(2) of the uninoculated controls were significantly lower than the VCO(2) of inoculation survivors, but significantly higher than the VCO(2) of inoculation non-survivors. Inoculation survivors may have had high metabolic rates due to a combination of viral replication, organ damage, and an energy-intensive induced cellular immune response. The high 4dpi metabolic rate of inoculation survivors may reflect an effective immune response and may be seen as the metabolic signature of larvae that are in the process of surviving inoculation with HearSNPV.

  6. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate.

    Science.gov (United States)

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-04-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.

  7. Metabolic rate regulates L1 longevity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Inhwan Lee

    Full Text Available Animals have to cope with starvation. The molecular mechanisms by which animals survive long-term starvation, however, are not clearly understood. When they hatch without food, C. elegans arrests development at the first larval stage (L1 and survives more than two weeks. Here we show that the survival span of arrested L1s, which we call L1 longevity, is a starvation response regulated by metabolic rate during starvation. A high rate of metabolism shortens the L1 survival span, whereas a low rate of metabolism lengthens it. The longer worms are starved, the slower they grow once they are fed, suggesting that L1 arrest has metabolic costs. Furthermore, mutants of genes that regulate metabolism show altered L1 longevity. Among them, we found that AMP-dependent protein kinase (AMPK, as a key energy sensor, regulates L1 longevity by regulating this metabolic arrest. Our results suggest that L1 longevity is determined by metabolic rate and that AMPK as a master regulator of metabolism controls this arrest so that the animals survive long-term starvation.

  8. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate.

    Science.gov (United States)

    Carey, Nicholas; Harianto, Januar; Byrne, Maria

    2016-04-15

    Body size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad range in body size (two to three orders of magnitude difference in body mass), we addressed the impact of climate change on the sea urchin ITALIC! Heliocidaris erythrogrammain context with climate projections for southeast Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23°C) and two pH levels (7.5 and 8.0), at which they were maintained for 2 months. Identical experimental trials separated by several weeks validated the fact that a new physiological steady state had been reached, otherwise known as acclimation. The relationship between body size, temperature and acidification on the metabolic rate of ITALIC! H. erythrogrammawas strikingly stable. Both stressors caused increases in metabolic rate: 20% for temperature and 19% for pH. Combined effects were additive: a 44% increase in metabolism. Body size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body size all substantially affect metabolism and are highly consistent and

  9. Is the rate of metabolic ageing and survival determined by Basal metabolic rate in the zebra finch?

    Directory of Open Access Journals (Sweden)

    Bernt Rønning

    Full Text Available The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR, as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (P<0.1. Thus, the effect of BMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.

  10. Is the rate of metabolic ageing and survival determined by Basal metabolic rate in the zebra finch?

    Science.gov (United States)

    Rønning, Bernt; Moe, Børge; Berntsen, Henrik H; Noreen, Elin; Bech, Claus

    2014-01-01

    The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR), as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age) and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (PBMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.

  11. Low resting metabolic rate in exercise-associated amenorrhea is not due to a reduced proportion of highly active metabolic tissue compartments.

    Science.gov (United States)

    Koehler, Karsten; Williams, Nancy I; Mallinson, Rebecca J; Southmayd, Emily A; Allaway, Heather C M; De Souza, Mary Jane

    2016-08-01

    Exercising women with menstrual disturbances frequently display a low resting metabolic rate (RMR) when RMR is expressed relative to body size or lean mass. However, normalizing RMR for body size or lean mass does not account for potential differences in the size of tissue compartments with varying metabolic activities. To explore whether the apparent RMR suppression in women with exercise-associated amenorrhea is a consequence of a lower proportion of highly active metabolic tissue compartments or the result of metabolic adaptations related to energy conservation at the tissue level, RMR and metabolic tissue compartments were compared among exercising women with amenorrhea (AMEN; n = 42) and exercising women with eumenorrheic, ovulatory menstrual cycles (OV; n = 37). RMR was measured using indirect calorimetry and predicted from the size of metabolic tissue compartments as measured by dual-energy X-ray absorptiometry (DEXA). Measured RMR was lower than DEXA-predicted RMR in AMEN (1,215 ± 31 vs. 1,327 ± 18 kcal/day, P < 0.001) but not in OV (1,284 ± 24 vs. 1,252 ± 17, P = 0.16), resulting in a lower ratio of measured to DEXA-predicted RMR in AMEN (91 ± 2%) vs. OV (103 ± 2%, P < 0.001). AMEN displayed proportionally more residual mass (P < 0.001) and less adipose tissue (P = 0.003) compared with OV. A lower ratio of measured to DXA-predicted RMR was associated with lower serum total triiodothyronine (ρ = 0.38, P < 0.001) and leptin (ρ = 0.32, P = 0.004). Our findings suggest that RMR suppression in this population is not the result of a reduced size of highly active metabolic tissue compartments but is due to metabolic and endocrine adaptations at the tissue level that are indicative of energy conservation.

  12. Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers.

    Science.gov (United States)

    Sandbakk, Øyvind; Holmberg, Hans-Christer; Leirdal, Stig; Ettema, Gertjan

    2010-06-01

    The present study investigated metabolic rate (MR) and gross efficiency (GE) at moderate and high work rates, and the relationships to gross kinematics and physical characteristics in elite cross-country skiers. Eight world class (WC) and eight national level (NL) male sprint cross-country skiers performed three 5-min stages using the skating G3 technique, whilst roller skiing on a treadmill. GE was calculated by dividing work rate by MR. Work rate was calculated as the sum of power against gravity and frictional rolling forces. MR was calculated using gas exchange and blood lactate values. Gross kinematics, i.e. cycle length (CL) and cycle rate (CR) were measured by video analysis. Furthermore, the skiers were tested for time to exhaustion (TTE), peak oxygen uptake (VO(2peak)), and maximal speed (V(max)) on the treadmill, and maximal strength in the laboratory. Individual performance level in sprint skating was determined by FIS points. WC skiers did not differ in aerobic MR, but showed lower anaerobic MR and higher GE than NL skiers at a given speed (all P higher V(max) and TTE (all P better technique and to technique-specific power.

  13. Mice divergently selected for high and low basal metabolic rates evolved different cell size and organ mass.

    Science.gov (United States)

    Maciak, S; Bonda-Ostaszewska, E; Czarnołęski, M; Konarzewski, M; Kozłowski, J

    2014-03-01

    Evolution of metabolic rates of multicellular organisms is hypothesized to reflect the evolution of their cell architecture. This is likely to stem from a tight link between the sizes of cells and nuclei, which are expected to be inversely related to cell metabolism. Here, we analysed basal metabolic rate (BMR), internal organ masses and the cell/nucleus size in different tissues of laboratory mice divergently selected for high/low mass-corrected BMR and four random-bred mouse lines. Random-bred lines had intermediate levels of BMR as compared to low- and high-BMR lines. Yet, this pattern was only partly consistent with the between-line differences in cell/nucleus sizes. Erythrocytes and skin epithelium cells were smaller in the high-BMR line than in other lines, but the cells of low-BMR and random-bred mice were similar in size. On the other hand, the size of hepatocytes, kidney proximal tubule cells and duodenum enterocytes were larger in high-BMR mice than other lines. All cell and nucleus sizes were positively correlated, which supports the role of the nucleus in cell size regulation. Our results suggest that the evolution of high BMR involves a reduction in cell size in specialized tissues, whose functions are primarily dictated by surface-to-volume ratios, such as erythrocytes. High BMR may, however, also incur an increase in cell size in tissues with an intense transcription and translation, such as hepatocytes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  14. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.

    Science.gov (United States)

    Harrison, Jon F; Fewell, Jennifer H

    2002-10-01

    Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.

  15. Does basal metabolic rate drive eating rate?

    Science.gov (United States)

    Henry, Christiani Jeyakumar; Ponnalagu, Shalini; Bi, Xinyan; Forde, Ciaran

    2018-05-15

    There have been recent advances in our understanding of the drivers of energy intake (EI). However, the biological drivers of differences in eating rate (ER) remain less clear. Studies have reported that the fat-free mass (FFM) and basal metabolic rate (BMR) are both major components that contribute to daily energy expenditure (EE) and drive EI. More recently, a number of observations report that higher ER can lead to greater EI. The current study proposed that adults with a higher BMR and higher energy requirements would also exhibit higher ERs. Data on BMR, FFM, and ER were collected from 272 Chinese adults (91 males and 181 females) in a cross-sectional study. Analysis showed significant positive associations between BMR and ER (r s  = 0.405, p BMR explained about 15% of the variation in ER which was taken to be metabolically significant. This association provides metabolic explanation that the differences in an individual's BMR (hence energy requirements) may be correlated with ERs. This merits further research. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Metabolic rate determines haematopoietic stem cell self-renewal.

    Science.gov (United States)

    Sastry, P S R K

    2004-01-01

    The number of haematopoietic stem cells (HSCs) per animal is conserved across species. This means the HSCs need to maintain hematopoiesis over a longer period in larger animals. This would result in the requirement of stem cell self-renewal. At present the three existing models are the stochastic model, instructive model and the third more recently proposed is the chiaro-scuro model. It is a well known allometric law that metabolic rate scales to the three quarter power. Larger animals have a lower metabolic rate, compared to smaller animals. Here it is being hypothesized that metabolic rate determines haematopoietic stem cell self-renewal. At lower metabolic rate the stem cells commit for self-renewal, where as at higher metabolic rate they become committed to different lineages. The present hypothesis can explain the salient features of the different models. Recent findings regarding stem cell self-renewal suggest an important role for Wnt proteins and their receptors known as frizzleds, which are an important component of cell signaling pathway. The role of cGMP in the Wnts action provides further justification for the present hypothesis as cGMP is intricately linked to metabolic rate. One can also explain the telomere homeostasis by the present hypothesis. One prediction of the present hypothesis is with reference to the limit of cell divisions known as Hayflick limit, here it is being suggested that this is the result of metabolic rate in laboratory conditions and there can be higher number of cell divisions in vivo if the metabolic rate is lower. Copyright 2004 Elsevier Ltd.

  17. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea

    Science.gov (United States)

    van Oevelen, Dick

    2018-01-01

    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403

  18. Sleep-Dependent Modulation of Metabolic Rate in Drosophila.

    Science.gov (United States)

    Stahl, Bethany A; Slocumb, Melissa E; Chaitin, Hersh; DiAngelo, Justin R; Keene, Alex C

    2017-08-01

    Dysregulation of sleep is associated with metabolic diseases, and metabolic rate (MR) is acutely regulated by sleep-wake behavior. In humans and rodent models, sleep loss is associated with obesity, reduced metabolic rate, and negative energy balance, yet little is known about the neural mechanisms governing interactions between sleep and metabolism. We have developed a system to simultaneously measure sleep and MR in individual Drosophila, allowing for interrogation of neural systems governing interactions between sleep and metabolic rate. Like mammals, MR in flies is reduced during sleep and increased during sleep deprivation suggesting sleep-dependent regulation of MR is conserved across phyla. The reduction of MR during sleep is not simply a consequence of inactivity because MR is reduced ~30 minutes following the onset of sleep, raising the possibility that CO2 production provides a metric to distinguish different sleep states in the fruit fly. To examine the relationship between sleep and metabolism, we determined basal and sleep-dependent changes in MR is reduced in starved flies, suggesting that starvation inhibits normal sleep-associated effects on metabolic rate. Further, translin mutant flies that fail to suppress sleep during starvation demonstrate a lower basal metabolic rate, but this rate was further reduced in response to starvation, revealing that regulation of starvation-induced changes in MR and sleep duration are genetically distinct. Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  19. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    Exercise-induced maximum metabolic rate scaled to body mass by the fractal ... rate scaling is that exercise-induced maximum aerobic metabolic rate (MMR) is ... muscle stress limitation, and maximized oxygen delivery and metabolic rates.

  20. Evaluation of heart rate reserve and high-sensitivity C-reactive protein in individuals with and without metabolic syndrome in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Yosef Khaledi

    2012-06-01

    Full Text Available    BACKGROUND: Lack of heart rate increase proportionate to exercise causes poor prognosis. Moreover, inflammatory factors such as C-reactive protein (CRP are associated with atherosclerosis. The current study compared these two indices in individuals with and without metabolic syndrome in Isfahan, Iran.    METHODS: This study was performed on 203 people without and 123 patients with metabolic syndrome who were randomly selected from the participants of the Isfahan Cohort Study. The demographic data, waist circumference, blood pressure, height, and weight of the participants were recorded. Moreover, serum triglyceride (TG, fasting blood sugar (FBS, total cholesterol, high density lipoprotein (HDL, low density lipoprotein (LDL, and high-sensitivity CRP (hs-CRP levels were measured. Exercise test was carried out according to the Bruce standard protocol and heart rate reserve (HRR was determined and recorded. The age-adjusted data was analyzed using generalized linear regression and student's t-test in SPSS15.    RESULTS: The mean ages of participants without and with metabolic syndrome were 54.16 ± 8.61 and 54.29 ± 7.6 years, respectively. The corresponding values for mean LDL levels were 116.17 ± 24.04 and 120.12 ± 29.55 mg/dl. TG levels were 140.38 ± 61.65 and 259.99 ± 184.49 mg/dl for subjects without and with the metabolic syndrome, respectively. The mean FBS levels were 81.81 ± 9.90 mg/dl in the participants without the syndrome and 107.13 ± 48.46 mg/dl in those with metabolic syndrome. The mean systolic blood pressure was 116.06 ± 13.69 mmHg in persons without metabolic syndrome and 130.73 ± 15.15 mmHg in patients with the syndrome. The values for mean diastolic levels in the two groups were 76.52 ± 6.69 and 82.84 ± 8.7 mmHg, respectively. While the two groups were not significantly different in terms of HRR (P = 0.27, hs-CRP levels in the metabolic syndrome group was significantly higher than the other group (P = 0.02.

  1. Running and Metabolic Demands of Elite Rugby Union Assessed Using Traditional, Metabolic Power, and Heart Rate Monitoring Methods

    Science.gov (United States)

    Dubois, Romain; Paillard, Thierry; Lyons, Mark; McGrath, David; Maurelli, Olivier; Prioux, Jacques

    2017-01-01

    The aims of this study were (1) to analyze elite rugby union game demands using 3 different approaches: traditional, metabolic and heart rate-based methods (2) to explore the relationship between these methods and (3) to explore positional differences between the backs and forwards players. Time motion analysis and game demands of fourteen professional players (24.1 ± 3.4 y), over 5 European challenge cup games, were analyzed. Thresholds of 14.4 km·h-1, 20 W.kg-1 and 85% of maximal heart rate (HRmax) were set for high-intensity efforts across the three methods. The mean % of HRmax was 80.6 ± 4.3 % while 42.2 ± 16.5% of game time was spent above 85% of HRmax with no significant differences between the forwards and the backs. Our findings also show that the backs cover greater distances at high-speed than forwards (% difference: +35.2 ± 6.6%; pdemands of professional rugby games. The traditional and the metabolic-power approaches shows a close correlation concerning their relative values, nevertheless the difference in absolute values especially for the high-intensity thresholds demonstrates that the metabolic power approach may represent an interesting alternative to the traditional approaches used in evaluating the high-intensity running efforts required in rugby union games. Key points Elite/professional rugby union players Heart rate monitoring during official games Metabolic power approach PMID:28344455

  2. Running and Metabolic Demands of Elite Rugby Union Assessed Using Traditional, Metabolic Power, and Heart Rate Monitoring Methods

    Directory of Open Access Journals (Sweden)

    Romain Dubois, Thierry Paillard, Mark Lyons, David McGrath, Olivier Maurelli, Jacques Prioux

    2017-03-01

    Full Text Available The aims of this study were (1 to analyze elite rugby union game demands using 3 different approaches: traditional, metabolic and heart rate-based methods (2 to explore the relationship between these methods and (3 to explore positional differences between the backs and forwards players. Time motion analysis and game demands of fourteen professional players (24.1 ± 3.4 y, over 5 European challenge cup games, were analyzed. Thresholds of 14.4 km·h-1, 20 W.kg-1 and 85% of maximal heart rate (HRmax were set for high-intensity efforts across the three methods. The mean % of HRmax was 80.6 ± 4.3 % while 42.2 ± 16.5% of game time was spent above 85% of HRmax with no significant differences between the forwards and the backs. Our findings also show that the backs cover greater distances at high-speed than forwards (% difference: +35.2 ± 6.6%; p<0.01 while the forwards cover more distance than the backs (+26.8 ± 5.7%; p<0.05 in moderate-speed zone (10-14.4 km·h-1. However, no significant difference in high-metabolic power distance was found between the backs and forwards. Indeed, the high-metabolic power distances were greater than high-speed running distances of 24.8 ± 17.1% for the backs, and 53.4 ± 16.0% for the forwards with a significant difference (+29.6 ± 6.0% for the forwards; p<0.001 between the two groups. Nevertheless, nearly perfect correlations were found between the total distance assessed using the traditional approach and the metabolic power approach (r = 0.98. Furthermore, there is a strong association (r = 0.93 between the high-speed running distance (assessed using the traditional approach and the high-metabolic power distance. The HR monitoring methods demonstrate clearly the high physiological demands of professional rugby games. The traditional and the metabolic-power approaches shows a close correlation concerning their relative values, nevertheless the difference in absolute values especially for the high

  3. Metabolic rates of giant pandas inform conservation strategies

    Science.gov (United States)

    Fei, Yuxiang; Hou, Rong; Spotila, James R.; Paladino, Frank V.; Qi, Dunwu; Zhang, Zhihe

    2016-06-01

    The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction.

  4. Metabolic rates of giant pandas inform conservation strategies

    Science.gov (United States)

    Fei, Yuxiang; Hou, Rong; Spotila, James R.; Paladino, Frank V.; Qi, Dunwu; Zhang, Zhihe

    2016-01-01

    The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction. PMID:27264109

  5. High basal metabolic rates in shorebirds while in the Arctic: a circumpolar view

    NARCIS (Netherlands)

    Lindström, A.; Klaassen, M.R.J.

    2003-01-01

    The basal metabolic rate (BMR) of Old World long-distance-migrant shorebirds has been found to vary along their migration route. On average, BMR is highest in the Arctic at the start of fall migration, intermediate at temperate latitudes, and lowest on the tropical wintering grounds. As a test of

  6. The relationship of sleep with temperature and metabolic rate in a hibernating primate.

    Directory of Open Access Journals (Sweden)

    Andrew D Krystal

    Full Text Available STUDY OBJECTIVES: It has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology. MEASUREMENTS AND RESULTS: We find that during hibernation, non-REM sleep is absent in Cheirogaleus. Rather, periods of REM sleep occur during periods of relatively high ambient temperature, a pattern opposite of that observed in ground squirrels. Like ground squirrels, however, EEG is marked by ultra-low voltage activity at relatively low metabolic-rates. CONCLUSIONS: These findings confirm a sleep-temperature/metabolism link, though they also suggest that the relationship of sleep stage with temperature/metabolism is flexible and may differ across species or mammalian orders. The absence of non-REM sleep suggests that during hibernation in Cheirogaleus, like in the ground squirrel, the otherwise universal non-REM sleep homeostatic response is greatly curtailed or absent. Lastly, ultra-low voltage EEG appears to be a cross-species marker for extremely low metabolic-rate, and, as such, may be an attractive target for research on hibernation induction.

  7. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    Science.gov (United States)

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  8. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    Science.gov (United States)

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  9. Inbreeding effects on standard metabolic rate investigated at cold, benign and hot temperatures in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Jensen, Palle; Overgaard, Johannes; Loeschcke, Volker

    2014-01-01

    in replicated lines of inbred and outbred Drosophila melanogaster at stressful low, benign and stressful high temperatures. The lowest measurements of metabolic rate in our study are always associated with the low activity period of the diurnal cycle and these measurements therefore serve as good estimates...... of standard metabolic rate. Due to the potentially added costs of genetic stress in inbred lines we hypothesized that inbred individuals have increased metabolic rate compared to outbred controls and that this is more pronounced at stressful temperatures due to synergistic inbreeding by environment...... interactions. Contrary to our hypothesis we found no significant difference in metabolic rate between inbred and outbred lines and no interaction between inbreeding and temperature. Inbreeding however effected the variance; the variance in metabolic rate was higher between the inbred lines compared...

  10. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy.

    NARCIS (Netherlands)

    Fronczek, R.; Overeem, S.; Reijntjes, R.; Lammers, G.J.; Dijk, J.G.M.; Pijl, H.

    2008-01-01

    STUDY OBJECTIVES: We investigated autonomic balance and resting metabolic rate to explore their possible involvement in obesity in hypocretin/orexin-deficient narcoleptic subjects. METHODS: Resting metabolic rate (using indirect calorimetry) and variability in heart rate and blood pressure were

  11. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds

    Directory of Open Access Journals (Sweden)

    Kyle H. Elliott

    2013-04-01

    Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia. Because BMR and daily energy expenditure (DEE are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4 and triiodothyronine (T3 with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR. RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.

  12. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.

    Science.gov (United States)

    O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N

    2017-12-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.

  13. High basal metabolic rate does not elevate oxidative stress during reproduction in laboratory mice.

    Science.gov (United States)

    Brzęk, Paweł; Książek, Aneta; Ołdakowski, Łukasz; Konarzewski, Marek

    2014-05-01

    Increased oxidative stress (OS) has been suggested as a physiological cost of reproduction. However, previous studies reported ambiguous results, with some even showing a reduction of oxidative damage during reproduction. We tested whether the link between reproduction and OS is mediated by basal metabolic rate (BMR), which has been hypothesized to affect both the rate of radical oxygen species production and antioxidative capacity. We studied the effect of reproduction on OS in females of laboratory mice divergently selected for high (H-BMR) and low (L-BMR) BMR, previously shown to differ with respect to parental investment. Non-reproducing L-BMR females showed higher oxidative damage to lipids (quantified as the level of malondialdehyde in internal organ tissues) and DNA (quantified as the level of 8-oxodG in blood serum) than H-BMR females. Reproduction did not affect oxidative damage to lipids in either line; however, it reduced damage to DNA in L-BMR females. Reproduction increased catalase activity in liver (significantly stronger in L-BMR females) and decreased it in kidneys. We conclude that the effect of reproduction on OS depends on the initial variation in BMR and varies between studied internal organs and markers of OS.

  14. Vitamin C improves basal metabolic rate and lipid profile in alloxan ...

    Indian Academy of Sciences (India)

    MADU

    3.1 Effect of vitamin C administration on basal metabolic rate. The basal metabolic rate values in diabetic rats and control are presented in figure 1. The basal metabolic rate (BMR) in diabetic rats was 1.19 ± 0.15 ml/h/g, while the BMR in control rats was 0.76 ± 0.89 ml/h/g. The BMR value in diabetic rats treated with vitamin ...

  15. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level....... At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow...

  16. Environmental effects on energy metabolism and 86Rb elimination rates of fishes

    International Nuclear Information System (INIS)

    Peters, E.L.

    1994-01-01

    Relationships between energy metabolism and the turnover rates of number of important chemical and radiological elements (particularly the Group IA alkali metals: K, Rb, and Cs) have been observed in fishes. Using response surface statistics and fractional factorial ANOVA, the author examined the relative influences of temperature, salinity, food intake rate, mass, and their first order interactions on routine energy metabolism and 86 Rb elimination rates. Routine metabolic rates were increased primarily by increased temperature and salinity, with a strong body mass effect and a significant effect of food intake. 86 Rb elimination rates were increased primarily by increased temperature and salinity. There were no interactive effects between mass and either temperature or salinity for either routine energy metabolism or 86 Rb elimination rates. There was a significant interaction effect between temperature and salinity on routine energy metabolism rates, but not on 86 Rb elimination. The authors also observed a relationship between routine energy metabolism and 86 Rb elimination rates that may possibly be exploited as a means of estimating energy metabolic rates of fishes in the field. The statistical techniques used in this experiment have broad potential applications in assessing the contributions of combinations of environmental variables on contaminant kinetics, as well as in multiple toxicity testing, in that they greatly simplify experimental designs compared with traditional full-factorial methods

  17. Metabolic rates and biochemical compositions of Apostichopus japonicus (Selenka) tissue during periods of inactivity

    Science.gov (United States)

    Bao, Jie; Dong, Shuanglin; Tian, Xiangli; Wang, Fang; Gao, Qinfeng; Dong, Yunwei

    2010-03-01

    Estivation, hibernation, and starvation are indispensable inactive states of sea cucumbers Apostichopus japonicus in nature and in culture ponds. Generally, temperature is the principal factor that induces estivation or hibernation in the sea cucumber. The present study provided insight into the physiological adaptations of A. japonicus during the three types of inactivity (hibernation, estivation, and starvation) by measuring the oxygen consumption rates ( Vo2) and biochemical compositions under laboratory conditions of low (3°C), normal (17°C) and high (24°C) temperature. The results show that the characteristics of A. japonicus in dormancy (hibernation and estivation) states were quite different from higher animals, such as fishes, amphibians, reptiles, and mammals, but more closely resembled a semi-dormant state. It was observed that the shift in the A. japonicus physiological state from normal to dormancy was a chronic rather than acute process, indicated by the gradual depression of metabolic rate. While metabolic rates declined 44.9% for the estivation group and 71.7% for the hibernation group, relative to initial rates, during the 36 d culture period, metabolic rates were not maintained at constant levels during these states. The metabolic depression processes for sea cucumbers in hibernation and estivation appeared to be a passive and an active metabolic suppression, respectively. In contrast, the metabolic rates (128.90±11.70 μg/g h) of estivating sea cucumbers were notably higher (107.85±6.31 μg/g h) than in starving sea cucumbers at 17°C, which indicated that the dormancy mechanism here, as a physiological inhibition, was not as efficient as in higher animals. Finally, the principle metabolic substrate or energy source of sea cucumbers in hibernation was lipid, whereas in estivation they mainly consumed protein in the early times and both protein and lipid thereafter.

  18. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones.

    Science.gov (United States)

    Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra

    2014-02-15

    The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.

  19. Body Composition and Basal Metabolic Rate in Women with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Marina de Figueiredo Ferreira

    2014-01-01

    Full Text Available Objective. The aim of this study was to determine which of the seven selected equations used to predict basal metabolic rate most accurately estimated the measured basal metabolic rate. Methods. Twenty-eight adult women with type 2 diabetes mellitus participated in this cross-sectional study. Anthropometric and biochemical variables were measured as well as body composition (by absorptiometry dual X-ray emission and basal metabolic rate (by indirect calorimetry; basal metabolic rate was also estimated by prediction equations. Results. There was a significant difference between the measured and the estimated basal metabolic rate determined by the FAO/WHO/UNU (Pvalue<0.021 and Huang et al. (Pvalue≤0.005 equations. Conclusion. The calculations using Owen et al’s. equation were the closest to the measured basal metabolic rate.

  20. Basal metabolic rate and the rate of senescence in the great tit

    NARCIS (Netherlands)

    Bouwhuis, Sandra; Sheldon, Ben C.; Verhulst, Simon; Koteja, Pawel

    1. Between-individual variation in rates of senescence has recently been found to relate to natal and early-life conditions in several natural populations. Mechanistic theories of senescence have predicted between-individual variation in basal metabolic rate (BMR) to also underlie such variation in

  1. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    Science.gov (United States)

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  2. Body Composition and Basal Metabolic Rate in Women with Type 2 Diabetes Mellitus

    OpenAIRE

    de Figueiredo Ferreira, Marina; Detrano, Filipe; Coelho, Gabriela Morgado de Oliveira; Barros, Maria Elisa; Serrão Lanzillotti, Regina; Firmino Nogueira Neto, José; Portella, Emilson Souza; Serrão Lanzillotti, Haydée; Soares, Eliane de Abreu

    2014-01-01

    Objective. The aim of this study was to determine which of the seven selected equations used to predict basal metabolic rate most accurately estimated the measured basal metabolic rate. Methods. Twenty-eight adult women with type 2 diabetes mellitus participated in this cross-sectional study. Anthropometric and biochemical variables were measured as well as body composition (by absorptiometry dual X-ray emission) and basal metabolic rate (by indirect calorimetry); basal metabolic rate was als...

  3. Body composition and basal metabolic rate in Hidradenitis Suppurativa

    DEFF Research Database (Denmark)

    Miller, I M; Rytgaard, Helene Charlotte; Mogensen, U B

    2016-01-01

    BACKGROUND: Several studies have suggested an association between Hidradenitis Suppurativa (HS) and obesity. Obesity is often expressed as Body Mass Index (BMI). However, BMI lacks information on body composition. General obesity is a predictor of health status and cardiovascular risk, but body...... composition (e.g. abdominal fat) may be more so. Basal metabolic rate (BMR) is an expression of resting metabolism and may serve as a complementary tool when assessing the possibly underlying metabolism behind a persons' body composition. OBJECTIVE: To investigate the body composition and basal metabolic rate...... in individuals with HS compared with healthy controls. METHODS: We performed a cross-sectional study on both a hospital-based and population-based HS group and compared with controls using Bioelectrical Impedance Analysis to assess body composition. RESULTS: We identified a hospital-based HS group of 32 hospital...

  4. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    user

    2016-10-27

    Oct 27, 2016 ... maximum aerobic metabolic rate (MMR) is proportional to the fractal extent ... metabolic rate with body mass can be obtained by taking body .... blood takes place. ..... MMR and BMR is that MMR is owing mainly to respiration in skeletal .... the spectra of surface area scaling strategies of cells and organisms:.

  5. Fluctuating selection on basal metabolic rate.

    Science.gov (United States)

    Nilsson, Johan F; Nilsson, Jan-Åke

    2016-02-01

    BMR (Basal metabolic rate) is an important trait in animal life history as it represents a significant part of animal energy budgets. BMR has also been shown to be positively related to sustainable work rate and maximal thermoregulatory capacity. To this date, most of the studies have focused on the causes of interspecific and intraspecific variation in BMR, and fairly little is known about the fitness consequences of different metabolic strategies. In this study, we show that winter BMR affects local survival in a population of wild blue tits (Cyanistes caeruleus), but that the selection direction differs between years. We argue that this fluctuating selection is probably a consequence of varying winter climate with a positive relation between survival and BMR during cold and harsh conditions, but a negative relation during mild winters. This fluctuating selection can not only explain the pronounced variation in BMR in wild populations, but will also give us new insights into how energy turnover rates can shape the life-history strategies of animals. Furthermore, the study shows that the process of global warming may cause directional selection for a general reduction in BMR, affecting the general life-history strategy on the population level.

  6. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist.

    Science.gov (United States)

    Fei, Yuxiang; Hou, Rong; Spotila, James R; Paladino, Frank V; Qi, Dunwu; Zhang, Zhihe

    2017-01-01

    The red panda (Ailurus fulgens) has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342) in summer and 0.361 ml/g/h in winter (range 0.331-0.406), with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17), more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.

  7. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist.

    Directory of Open Access Journals (Sweden)

    Yuxiang Fei

    Full Text Available The red panda (Ailurus fulgens has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342 in summer and 0.361 ml/g/h in winter (range 0.331-0.406, with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17, more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.

  8. Thermal optimum for pikeperch (Sander lucioperca) and the use of ventilation frequency as a predictor of metabolic rate

    DEFF Research Database (Denmark)

    Frisk, Michael; Skov, Peter Vilhelm; Steffensen, John Fleng

    2012-01-01

    at six temperatures, ranging from 13 to 28 °C, in order to identify the temperature where pikeperch has the largest metabolic scope (MS). Between 13 and 25 °C, standard metabolic rates (SMR) increased as expected with a Q10=1.8 in response to increasing temperatures, while maximum metabolic rate (MMR...... consumption rate (M_ O2), during normoxia and progressive hypoxia. A strong correlation was found between fV and M_ O2 across all temperatures, and fV could predict M_ O2 with a high degree of accuracy in normoxia...

  9. Long-term effect of yogic practices on diurnal metabolic rates of healthy subjects

    Directory of Open Access Journals (Sweden)

    Chaya M

    2008-01-01

    Full Text Available Background: The metabolic rate is an indicator of autonomic activity. Reduced sympathetic arousal probably resulting in hypometabolic states has been reported in several yogic studies. Aim: The main objective of this study was to assess the effect of yoga training on diurnal metabolic rates in yoga practitioners at two different times of the day (at 6 a.m. and 9 p.m.. Methods and Material: Eighty eight healthy volunteers were selected and their metabolic rates assessed at 6 a.m. and 9 p.m. using an indirect calorimeter at a yoga school in Bangalore, India. Results and conclusions: The results show that the average metabolic rate of the yoga group was 12% lower than that of the non-yoga group ( P < 0.001 measured at 9 p.m. and 16% lower at 6 a.m. ( P < 0.001. The 9 p.m. metabolic rates of the yoga group were almost equal to their predicted basal metabolic rates (BMRs whereas the metabolic rate was significantly higher than the predicted BMR for the non-yoga group. The 6 a.m. metabolic rate was comparable to their predicted BMR in the non-yoga group whereas it was much lower in the yoga group ( P < 0.001. The lower metabolic rates in the yoga group at 6 a.m. and 9 p.m. may be due to coping strategies for day-to-day stress, decreased sympathetic nervous system activity and probably, a stable autonomic nervous system response (to different stressors achieved due to training in yoga.

  10. Long-term effect of yogic practices on diurnal metabolic rates of healthy subjects

    Directory of Open Access Journals (Sweden)

    Chaya M

    2008-01-01

    Full Text Available Background : The metabolic rate is an indicator of autonomic activity. Reduced sympathetic arousal probably resulting in hypometabolic states has been reported in several yogic studies. Aim : The main objective of this study was to assess the effect of yoga training on diurnal metabolic rates in yoga practitioners at two different times of the day (at 6 a.m. and 9 p.m.. Materials and Methods : Eighty eight healthy volunteers were selected and their metabolic rates assessed at 6 a.m. and 9 p.m. using an indirect calorimeter at a yoga school in Bangalore, India. Results and conclusions: The results show that the average metabolic rate of the yoga group was 12% lower than that of the non-yoga group ( P < 0.001 measured at 9 p.m. and 16% lower at 6 a.m. ( P < 0.001. The 9 p.m. metabolic rates of the yoga group were almost equal to their predicted basal metabolic rates (BMRs whereas the metabolic rate was significantly higher than the predicted BMR for the non-yoga group. The 6 a.m. metabolic rate was comparable to their predicted BMR in the non-yoga group whereas it was much lower in the yoga group ( P < 0.001. The lower metabolic rates in the yoga group at 6 a.m. and 9 p.m. may be due to coping strategies for day-to-day stress, decreased sympathetic nervous system activity and probably, a stable autonomic nervous system response (to different stressors achieved due to training in yoga.

  11. Tradeoffs between metabolic rate and spiracular conductance in discontinuous gas exchange of Samia cynthia (Lepidoptera, Saturniidae).

    Science.gov (United States)

    Moerbitz, Christian; Hetz, Stefan K

    2010-05-01

    The insect tracheal system is a unique respiratory system, designed for maximum oxygen delivery at high metabolic demands, e.g. during activity and at high ambient temperatures. Therefore, large safety margins are required for tracheal and spiracular conductance. Spiracles are the entry to the tracheal system and play an important role in controlling discontinuous gas exchange (DGC) between tracheal system and atmosphere in moth pupae. We investigated the effect of modulated metabolic rate (by changing ambient temperature) and modulated spiracular conductance (by blocking all except one spiracles) on gas exchange patterns in Samia pupae. Both, spiracle blocking and metabolic rates, affected respiratory behavior in Samia cynthia pupae. While animals showed discontinuous gas exchange cycles at lower temperatures with unblocked spiracles, the respiratory patterns were cyclic at higher temperatures, with partly blocked spiracles or a combination of these two factors. The threshold for the transition from a discontinuous (DGC) to a cyclic gas exchange ((cyc)GE) was significantly higher in animals with unblocked spiracles (18.7 nmol g(-1) min(-1) vs. 7.9 nmol g(-1) min(-1)). These findings indicate an important influence of spiracle conductance on the DGC, which may occur mostly in insects showing high spiracular conductances and low metabolic rates. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories

    Science.gov (United States)

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We reared juvenile Oncorhychus mykiss with low and high standard metabolic rates (SMR) under alternative thermal regimes to determine how these proximate factors influence life histories in a partially migratory salmonid fish. High SMR significantly decreased rates of freshwater maturation and increased rates of smoltification in females, but not...

  13. Is there a relationship between insect metabolic rate and mortality of mealworms Tenebrio molitor L. after insecticide exposure?

    Directory of Open Access Journals (Sweden)

    Justyna MALISZEWSKA

    2016-09-01

    Full Text Available Pesticides are known to affect insects metabolic rate and CO2 release patterns. In the presented paper metabolic rate and mortality of mealworms Tenebrio molitor L. exposed to four different insecticides was evaluated, to find out whether there is a relationship between mealworms sensitivity to pesticides and their metabolic rate. Tenebrio molitor mortality was determined after intoxication with pyrethroid, oxadiazine, neonicotinoid and organophosphate. Metabolic rate before and after intoxication with insecticides was also determined. The highest CO2 production and mortality rate was observed after mealworms exposition to neonicotinoid insecticide. The results suggest that high CO2 release after intoxication is adequate to the intensity of the non-specific action of the xenobiotic (e.g. hyperactivity of neuromuscular system, rather than the intensity of detoxification processes, and it is correlated with mealworms mortality.

  14. A quantitative theory of solid tumor growth, metabolic rate and vascularization.

    Directory of Open Access Journals (Sweden)

    Alexander B Herman

    Full Text Available The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately. Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto's paradox. Various implications for potential therapeutic strategies and further research are discussed.

  15. Evolution of mitochondrial DNA and its relation to basal metabolic rate.

    Science.gov (United States)

    Feng, Ping; Zhao, Huabin; Lu, Xin

    2015-08-01

    Energy metabolism is essential for the survival of animals, which can be characterized by maximum metabolic rate (MMR) and basal metabolic rate (BMR). Because of the crucial roles of mitochondria in energy metabolism, mitochondrial DNA (mtDNA) has been subjected to stronger purifying selection in strongly locomotive than weakly locomotive birds and mammals. Although maximum locomotive speed (an indicator of MMR) showed a negative correlation with the evolutionary rate of mtDNA, it is unclear whether BMR has driven the evolution of mtDNA. Here, we take advantage of the large amount of mtDNA and BMR data in 106 mammals to test whether BMR has influenced the mtDNA evolution. Our results showed that, in addition to the locomotive speed, mammals with higher BMR have subjected to stronger purifying selection on mtDNA than did those with lower BMR. The evolution of mammalian mtDNA has been modified by two levels of energy metabolism, including MMR and BMR. Our study provides a more comprehensive view of mtDNA evolution in relation to energy metabolism.

  16. Individual variation in metabolic reaction norms over ambient temperature causes low correlation between basal and standard metabolic rate

    NARCIS (Netherlands)

    Briga, Michael; Verhulst, Simon

    2017-01-01

    Basal metabolic rate (BMR) is often assumed to be indicative of the energy turnover at ambient temperatures (T-a) below the thermoneutral zone (SMR), but this assumption has remained largely untested. Using a new statistical approach, we quantified the consistency in nocturnal metabolic rate across

  17. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running.

    Science.gov (United States)

    Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Malisch, Jessica L; Garland, Theodore

    2005-06-01

    Selective breeding for high wheel-running activity has generated four lines of laboratory house mice (S lines) that run about 170% more than their control counterparts (C lines) on a daily basis, mostly because they run faster. We tested whether maximum aerobic metabolic rates (V(O2max)) have evolved in concert with wheel-running, using 48 females from generation 35. Voluntary activity and metabolic rates were measured on days 5+6 of wheel access (mimicking conditions during selection), using wheels enclosed in metabolic chambers. Following this, V(O2max) was measured twice on a motorized treadmill and twice during cold-exposure in a heliox atmosphere (HeO2). Almost all measurements, except heliox V(O2max), were significantly repeatable. After accounting for differences in body mass (S running speeds on the treadmill. However, running speeds and V(O2max) during voluntary exercise were significantly higher in S lines. Nevertheless, S mice never voluntarily achieved the V(O2max) elicited during their forced treadmill trials, suggesting that aerobic capacity per se is not limiting the evolution of even higher wheel-running speeds in these lines. Our results support the hypothesis that S mice have genetically higher motivation for wheel-running and they demonstrate that behavior can sometimes evolve independently of performance capacities. We also discuss the possible importance of domestication as a confounding factor to extrapolate results from this animal model to natural populations.

  18. Larval developmental rate, metabolic rate and future growth performance in Atlantic salmon

    DEFF Research Database (Denmark)

    Serrano, Jonathan Vaz; Åberg, Madelene; Gjoen, Hans Magnus

    2009-01-01

    , quantified as time to first feeding, and growth in later stages was demonstrated in Atlantic salmon (Salmo salar L.). The observed relationship between future growth and larval developmental rate suggests that sorting larvae by time to first feeding can be a potential tool to optimize feeding strategies...... and growth in commercial rearing of Atlantic salmon. Furthermore, the link between larval standard metabolic rate and developmental rate and future growth is discussed in the present study....

  19. Resting metabolic rate and postprandial thermogenesis in polycystic ovarian syndrome.

    Science.gov (United States)

    Segal, K R; Dunaif, A

    1990-07-01

    To determine whether the high frequency of obesity in women with polycystic ovary syndrome (PCO) is related to a defect in energy expenditure, resting metabolic rate (RMR) and the thermic response to a standard meal were compared in 10 obese PCO women, nine obese but otherwise normal women, and 11 lean women. All groups were matched with respect to age and fat-free mass and the two obese groups were matched for degree of obesity. RMR was measured by indirect calorimetry for 3 h on two days: (1) in the postabsorptive state; and (2) after a 720 kcal (3014 kJ) liquid mixed meal. The thermic effect of food, calculated as 3 h postprandial minus fasting RMR, was significantly greater for the lean [52.9 +/- 5.5 kcal/3 h (221 +/- 23 kJ/3 h)] than the obese [17.2 +/- 5.1 kcal/3 h (72 +/- 21 kJ/3 h)] and the PCO women [22.8 +/- 5.2 kcal/3 h (95 +/- 22 kJ/3)], P less than 0.001). The thermic effect of food was negatively related to percent body fat (r = -0.694, P less than 0.001). Resting metabolic rate did not differ significantly among the three groups, and was strongly related to fat-free mass (r = 0.687, P less than 0.001). These results confirm previous reports of blunted thermogenesis in obese individuals, but provide no evidence of altered resting metabolic rate or postprandial thermogenesis in women with PCO compared with normal women of similar degree of obesity.

  20. The scaling of maximum and basal metabolic rates of mammals and birds

    Science.gov (United States)

    Barbosa, Lauro A.; Garcia, Guilherme J. M.; da Silva, Jafferson K. L.

    2006-01-01

    Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here, we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as M, maximum heart rate as M, and muscular capillary density as M, in agreement with data.

  1. Thyroid hormones correlate with basal metabolic rate but not field metabolic rate in a wild bird species.

    Directory of Open Access Journals (Sweden)

    Jorg Welcker

    Full Text Available Thyroid hormones (TH are known to stimulate in vitro oxygen consumption of tissues in mammals and birds. Hence, in many laboratory studies a positive relationship between TH concentrations and basal metabolic rate (BMR has been demonstrated whereas evidence from species in the wild is scarce. Even though basal and field metabolic rates (FMR are often thought to be intrinsically linked it is still unknown whether a relationship between TH and FMR exists. Here we determine the relationship between the primary thyroid hormone triiodothyronine (T3 with both BMR and FMR in a wild bird species, the black-legged kittiwake (Rissa tridactyla. As predicted we found a strong and positive relationship between plasma concentrations of T3 and both BMR and mass-independent BMR with coefficients of determination ranging from 0.36 to 0.60. In contrast there was no association of T3 levels with either whole-body or mass-independent FMR (R(2 =0.06 and 0.02, respectively. In accordance with in vitro studies our data suggests that TH play an important role in modulating BMR and may serve as a proxy for basal metabolism in wild birds. However, the lack of a relationship between TH and FMR indicates that levels of physical activity in kittiwakes are largely independent of TH concentrations and support recent studies that cast doubt on a direct linkage between BMR and FMR.

  2. Thyroid Hormones Correlate with Basal Metabolic Rate but Not Field Metabolic Rate in a Wild Bird Species

    Science.gov (United States)

    Welcker, Jorg; Chastel, Olivier; Gabrielsen, Geir W.; Guillaumin, Jerome; Kitaysky, Alexander S.; Speakman, John R.; Tremblay, Yann; Bech, Claus

    2013-01-01

    Thyroid hormones (TH) are known to stimulate in vitro oxygen consumption of tissues in mammals and birds. Hence, in many laboratory studies a positive relationship between TH concentrations and basal metabolic rate (BMR) has been demonstrated whereas evidence from species in the wild is scarce. Even though basal and field metabolic rates (FMR) are often thought to be intrinsically linked it is still unknown whether a relationship between TH and FMR exists. Here we determine the relationship between the primary thyroid hormone triiodothyronine (T3) with both BMR and FMR in a wild bird species, the black-legged kittiwake (Rissa tridactyla). As predicted we found a strong and positive relationship between plasma concentrations of T3 and both BMR and mass-independent BMR with coefficients of determination ranging from 0.36 to 0.60. In contrast there was no association of T3 levels with either whole-body or mass-independent FMR (R2 = 0.06 and 0.02, respectively). In accordance with in vitro studies our data suggests that TH play an important role in modulating BMR and may serve as a proxy for basal metabolism in wild birds. However, the lack of a relationship between TH and FMR indicates that levels of physical activity in kittiwakes are largely independent of TH concentrations and support recent studies that cast doubt on a direct linkage between BMR and FMR. PMID:23437096

  3. Hemispherical dominance of glucose metabolic rate in the brain of the 'normal' ageing population

    NARCIS (Netherlands)

    Cutts, DA; Maguire, RP; Leenders, KL; Spyrou, NM

    2004-01-01

    In the 'normal' ageing brain a decrease in the cerebral metabolic rate has been determined across many brain regions. This study determines whether age differences would affect metabolic rates in regions and different hemispheres of the brain. The regional metabolic rate of glucose (rCMRGlu) was

  4. Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Mukherjee, Dola; Mukherjee, Ashutosh; Ghosh, Tapash Chandra

    2015-11-10

    Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex metabolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway genes is a prerequisite. In this study, evolutionary rate variation of primary and secondary metabolic pathway genes has been analyzed in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary dynamics of plant metabolism. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Increasing Winter Maximal Metabolic Rate Improves Intrawinter Survival in Small Birds.

    Science.gov (United States)

    Petit, Magali; Clavijo-Baquet, Sabrina; Vézina, François

    Small resident bird species living at northern latitudes increase their metabolism in winter, and this is widely assumed to improve their chances of survival. However, the relationship between winter metabolic performance and survival has yet to be demonstrated. Using capture-mark-recapture, we followed a population of free-living black-capped chickadees (Poecile atricapillus) over 3 yr and evaluated their survival probability within and among winters. We also measured the size-independent body mass (M s ), hematocrit (Hct), basal metabolic rate (BMR), and maximal thermogenic capacity (Msum) and investigated how these parameters influenced survival within and among winters. Results showed that survival probability was high and constant both within (0.92) and among (0.96) winters. They also showed that while M s , Hct, and BMR had no significant influence, survival was positively related to Msum-following a sigmoid relationship-within but not among winter. Birds expressing an Msum below 1.26 W (i.e., similar to summer levels) had a winter. Our data therefore suggest that black-capped chickadees that are either too slow or unable to adjust their phenotype from summer to winter have little chances of survival and thus that seasonal upregulation of metabolic performance is highly beneficial. This study is the first to document in an avian system the relationship between thermogenic capacity and winter survival, a proxy of fitness.

  6. Cellular metabolic rates from primary dermal fibroblast cells isolated from birds of different body masses.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-10-01

    The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [University of Massachusetts, Amherst

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  8. The metabolic clearance rate of corticosterone in lean and obese male Zucker rats

    International Nuclear Information System (INIS)

    White, B.D.; Corll, C.B.; Porter, J.R.

    1989-01-01

    The obese Zucker rat is an animal model of human juvenile-onset obesity. These rats exhibit numerous endocrine and metabolic abnormalities. Adrenalectomy of obese rats has been shown to reduce or reverse several of these abnormalities, thereby implying that corticosterone may contribute to the expression of obesity in this animal. Furthermore, it has been shown that the circadian rhythm of plasma corticosterone is disturbed in obese Zucker rats resulting in elevated morning plasma corticosterone concentrations in obese rats as compared to lean rats. In a effort to better elucidate the mechanism of the elevated morning levels of plasma corticosterone, the metabolic clearance rate of corticosterone was determined in the morning for lean and obese male Zucker rats (12 to 20 weeks). Additionally, the biliary and urinary excretion of labeled corticosterone and/or its metabolites were determined. The metabolic clearance rate of corticosterone was significantly greater in obese rats than in their lean counterparts. Both the metabolic clearance rate and the volume of compartments significantly correlated with body weight. No correlation was found between body weight and the elimination rate constant. The increased metabolic clearance rate of obese rats appeared to be due to an increase in the physiologic distribution of corticosterone and not to an alteration in the enzymes responsible for corticosterone metabolism. It appears that the metabolic clearance rate of corticosterone in obese Zucker rats does not contribute to elevated morning concentrations of plasma corticosterone previously observed in these animals. It suggests that the adrenal corticosterone secretion rate must actually be greater than one would expect from the plasma corticosterone concentrations alone

  9. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  10. Behavioral and physiological significance of minimum resting metabolic rate in king penguins.

    Science.gov (United States)

    Halsey, L G; Butler, P J; Fahlman, A; Woakes, A J; Handrich, Y

    2008-01-01

    Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.

  11. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment

    Directory of Open Access Journals (Sweden)

    Bo Jiang

    2017-03-01

    Full Text Available Metabolic abnormalities is a hallmark of cancer. About 100 years ago, Nobel laureate Otto Heinrich Warburg first described high rate of glycolysis in cancer cells. Recently more and more novel opinions about cancer metabolism supplement to this hypothesis, consist of glucose uptake, lactic acid generation and secretion, acidification of the microenvironment and cancer immune evasion. Here we briefly review metabolic pathways generating lactate, and discuss the function of higher lactic acid in cancer microenvironments.

  12. High energy reactions in normal metabolism and ageing of animals

    International Nuclear Information System (INIS)

    Avdonina, E.N.; Nesmeyanov, N.

    1983-01-01

    Processes involving reactions on highly excited states are thought to be of great importance for normal metabolism and aging. Excess energy of the organism is transferred to result in the formation of highly excited states of macromolecules. UV, visible light or ionizing radiation created partially by the organism itself can change metabolic process rates. According to the authors, aging is associated with the defects of macromolecules owing to high energy processes. Gerontological changes in biological materials result from the elimination of low molecular weight molecules and from the formation of unsaturated compounds. Crosslinking of the compounds, accumulation of collagen and connective tissues, the energetic overload of the organism are listed as important features of aging. (V.N.)

  13. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.

    Directory of Open Access Journals (Sweden)

    Meike T Wortel

    2018-02-01

    Full Text Available Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.

  14. Energy metabolism and the metabolic syndrome: does a lower basal metabolic rate signal recovery following weight loss?

    Science.gov (United States)

    Soares, Mario J; Cummings, Nicola K; Ping-Delfos, Wendy L Chan She

    2011-01-01

    To determine whether basal metabolic rate (BMR) was causally related to MetS, and to study the role of gender in this relationship. Seventy-two Caucasian subjects (43 women, 29 men) had changes in basal metabolic rate (BMR), carbohydrate oxidation rate (COR), fat oxidation rate (FOR) and prevalence of the metabolic syndrome (MetS) assessed in response to weight loss. There was a significant gender×MetS interaction in BMR at the start. Women with MetS had higher adjusted BMR, whilst men with MetS had lower adjusted BMR than their respective counterparts. Weight loss resulted in a significant decrease in fat mass (-5.2±0.31 kg, p=0.001), fat free mass (-2.3±0.27 kg, p=0.001), BMR (-549±58 kJ/d, p=0.001) and a decreased proportion of MetS (22/72, χ(2)=0.005). Subjects who recovered from MetS after weight loss (RMS) had ∼250 kJ/d significantly lower adjusted BMR compared to those who were never MetS (NMS, p=0.046) and those who still had MetS (MetS+, p=0.047). Regression analysis showed that change (Δ) in BMR was best determined by Δglucose×gender interaction (r(2)=23%), ΔFOR (r(2)=20.3%), ΔCOR (r(2)=19.4%) and Δtriglycerides (r(2)=7.8%). There is a sexual dimorphism of BMR in MetS. Overall, the data support the notion that alterations in BMR may be central to the etiopathogenesis of MetS. Copyright © 2012 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  15. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr.; Gillin, J.C.

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep

  16. Effect of Different Types of Food on Metabolic Rate in Rats | Azeez ...

    African Journals Online (AJOL)

    The method used in measuring the metabolic rate was by indirect calorimetry. Results showed that the different food- carbohydrate, protein and fat ingestion each, caused a significant increase (p<0.0001) when compared with the control metabolic rate. Comparing the effect of the three, protein ingestion caused the greatest ...

  17. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    OpenAIRE

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cel...

  18. The relationship between body mass and field metabolic rate among individual birds and mammals.

    Science.gov (United States)

    Hudson, Lawrence N; Isaac, Nick J B; Reuman, Daniel C

    2013-09-01

    1. The power-law dependence of metabolic rate on body mass has major implications at every level of ecological organization. However, the overwhelming majority of studies examining this relationship have used basal or resting metabolic rates, and/or have used data consisting of species-averaged masses and metabolic rates. Field metabolic rates are more ecologically relevant and are probably more directly subject to natural selection than basal rates. Individual rates might be more important than species-average rates in determining the outcome of ecological interactions, and hence selection. 2. We here provide the first comprehensive database of published field metabolic rates and body masses of individual birds and mammals, containing measurements of 1498 animals of 133 species in 28 orders. We used linear mixed-effects models to answer questions about the body mass scaling of metabolic rate and its taxonomic universality/heterogeneity that have become classic areas of controversy. Our statistical approach allows mean scaling exponents and taxonomic heterogeneity in scaling to be analysed in a unified way while simultaneously accounting for nonindependence in the data due to shared evolutionary history of related species. 3. The mean power-law scaling exponents of metabolic rate vs. body mass relationships were 0.71 [95% confidence intervals (CI) 0.625-0.795] for birds and 0.64 (95% CI 0.564-0.716) for mammals. However, these central tendencies obscured meaningful taxonomic heterogeneity in scaling exponents. The primary taxonomic level at which heterogeneity occurred was the order level. Substantial heterogeneity also occurred at the species level, a fact that cannot be revealed by species-averaged data sets used in prior work. Variability in scaling exponents at both order and species levels was comparable to or exceeded the differences 3/4-2/3 = 1/12 and 0.71-0.64. 4. Results are interpreted in the light of a variety of existing theories. In particular, results

  19. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    Science.gov (United States)

    Sadowska, Julita; Gębczyński, Andrzej K; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  20. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  1. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    Directory of Open Access Journals (Sweden)

    Ana Gabriela Jimenez

    Full Text Available In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR, proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR], using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  2. Increased metabolic turnover rate and transcapillary escape rate of albumin in long-term juvenile diabetics

    DEFF Research Database (Denmark)

    Parving, H H; Rossing, N; Sander, E

    1975-01-01

    The metabolic turnover rate and transcapillary escape rate of albumin were studied with 131I-labelled human albumin in nine patients with long-term diabetes mellitus. Retinopathy was present in all patients and nephropathy in four. Plasma albumin concentration and plasma volume were reduced (P...

  3. a metabolic wastage model for the rate-yield trade off

    Indian Academy of Sciences (India)

    A METABOLIC WASTAGE MODEL FOR THE RATE-YIELD TRADE OFF. There is a growth limiting step in which an intermediate metabolite (m) has to hit a target molecule (t). ... D= rate of diffusing out. S= the rate of formation of the metabolite. The equilibrium loss decides the yield. The no. of activated targets decide the rate ...

  4. Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in lake sturgeon Acipenser fulvescens.

    Directory of Open Access Journals (Sweden)

    Jon C Svendsen

    Full Text Available Animal metabolic rate is variable and may be affected by endogenous and exogenous factors, but such relationships remain poorly understood in many primitive fishes, including members of the family Acipenseridae (sturgeons. Using juvenile lake sturgeon (Acipenser fulvescens, the objective of this study was to test four hypotheses: 1 A. fulvescens exhibits a circadian rhythm influencing metabolic rate and behaviour; 2 A. fulvescens has the capacity to regulate metabolic rate when exposed to environmental hypoxia; 3 measurements of forced maximum metabolic rate (MMR(F are repeatable in individual fish; and 4 MMR(F correlates positively with spontaneous maximum metabolic rate (MMR(S. Metabolic rates were measured using intermittent flow respirometry, and a standard chase protocol was employed to elicit MMR(F. Trials lasting 24 h were used to measure standard metabolic rate (SMR and MMR(S. Repeatability and correlations between MMR(F and MMR(S were analyzed using residual body mass corrected values. Results revealed that A. fulvescens exhibit a circadian rhythm in metabolic rate, with metabolism peaking at dawn. SMR was unaffected by hypoxia (30% air saturation (O(2sat, demonstrating oxygen regulation. In contrast, MMR(F was affected by hypoxia and decreased across the range from 100% O(2sat to 70% O(2sat. MMR(F was repeatable in individual fish, and MMR(F correlated positively with MMR(S, but the relationships between MMR(F and MMR(S were only revealed in fish exposed to hypoxia or 24 h constant light (i.e. environmental stressor. Our study provides evidence that the physiology of A. fulvescens is influenced by a circadian rhythm and suggests that A. fulvescens is an oxygen regulator, like most teleost fish. Finally, metabolic repeatability and positive correlations between MMR(F and MMR(S support the conjecture that MMR(F represents a measure of organism performance that could be a target of natural selection.

  5. TT Mutant Homozygote of Is a Key Factor for Increasing Basal Metabolic Rate and Resting Metabolic Rate in Korean Elementary School Children

    Directory of Open Access Journals (Sweden)

    Jung Ran Choi

    2013-12-01

    Full Text Available We investigated the contribution of genetic variations of KLF5 to basal metabolic rate (BMR and resting metabolic rate (RMR and the inhibition of obesity in Korean children. A variation of KLF5 (rs3782933 was genotyped in 62 Korean children. Using multiple linear regression analysis, we developed a model to predict BMR in children. We divided them into several groups; normal versus overweight by body mass index (BMI and low BMR versus high BMR by BMR. There were no differences in the distributions of alleles and genotypes between each group. The genetic variation of KLF5 gene showed a significant correlation with several clinical factors, such as BMR, muscle, low-density lipoprotein cholesterol, and insulin. Children with the TT had significantly higher BMR than those with CC (p = 0.030. The highest muscle was observed in the children with TT compared with CC (p = 0.032. The insulin and C-peptide values were higher in children with TT than those with CC (p= 0.029 vs. p = 0.004, respectively. In linear regression analysis, BMI and muscle mass were correlated with BMR, whereas insulin and C-peptide were not associated with BMR. In the high-BMR group, we observed that higher muscle, fat mass, and C-peptide affect the increase of BMR in children with TT (p < 0.001, p < 0.001, and p = 0.018, respectively, while Rohrer's index could explain the usual decrease in BMR (adjust r2 = 1.000, p < 0.001, respectively. We identified a novel association between TT of KLF5 rs3782933 and BMR in Korean children. We could make better use of the variation within KLF5 in a future clinical intervention study of obesity.

  6. Metabolism and Aging : Effects of Cold Exposure on Metabolic Rate, Body Composition, and Longevity in Mice

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Daan, Serge; Schubert, Kristin A.; Visser, G. Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory ( Pearl 1928) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals,

  7. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    Science.gov (United States)

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  8. Basal metabolic rate and the mass of tissues differing in metabolic scope : Migration-related covariation between individual knots Calidris canutus

    NARCIS (Netherlands)

    Weber, TP; Piersma, T; Weber, Thomas P.

    To examine whether variability in the basal metabolic rate (BMR) of migrant shorebirds is a function of a variably sized metabolic machinery or of temporal changes in metabolic intensities at the tissue level, BMR, body composition and activity of cytochrome-c oxidase (CCO, a marker for maximum

  9. Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Cooper-Mullin, Clara; Calhoon, Elisabeth A; Williams, Joseph B

    2014-07-01

    Animal life-history traits fall within limited ecological space with animals that have high reproductive rates having short lives, a continuum referred to as a "slow-fast" life-history axis. Animals of the same body mass at the slow end of the life-history continuum are characterized by low annual reproductive output and low mortality rate, such as is found in many tropical birds, whereas at the fast end, rates of reproduction and mortality are high, as in temperate birds. These differences in life-history traits are thought to result from trade-offs between investment in reproduction or self-maintenance as mediated by the biotic and abiotic environment. Thus, tropical and temperate birds provide a unique system to examine physiological consequences of life-history trade-offs at opposing ends of the "pace of life" spectrum. We have explored the implications of these trade-offs at several levels of physiological organization including whole-animal, organ systems, and cells. Tropical birds tend to have higher survival, slower growth, lower rates of whole-animal basal metabolic rate and peak metabolic rate, and smaller metabolically active organs compared with temperate birds. At the cellular level, primary dermal fibroblasts from tropical birds tend to have lower cellular metabolic rates and appear to be more resistant to oxidative cell stress than those of temperate birds. However, at the subcellular level, lipid peroxidation rates, a measure of the ability of lipid molecules within the cell membranes to thwart the propagation of oxidative damage, appear not to be different between tropical and temperate species. Nevertheless, lipids in mitochondrial membranes of tropical birds tend to have increased concentrations of plasmalogens (phospholipids with antioxidant properties), and decreased concentrations of cardiolipin (a complex phospholipid in the electron transport chain) compared with temperate birds.

  10. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  11. Does basal metabolic rate predict weight gain?12

    Science.gov (United States)

    Anthanont, Pimjai; Jensen, Michael D

    2016-01-01

    Background: Some previous studies have indicated that a low basal metabolic rate (BMR) is an independent predictor of future weight gain, but low rates of follow-up and highly select populations may limit the ability to generalize the results. Objective: We assessed whether adults with a low BMR gain more weight than do adults with a high BMR who are living in a typical Western environment. Design: We extracted BMR, body-composition, demographic, and laboratory data from electronic databases of 757 volunteers who were participating in our research protocols at the Mayo Clinic between 1995 and 2012. Research study volunteers were always weight stable, had no acute illnesses and no confounding medication use, and were nonsmokers. The top and bottom 15th percentiles of BMR, adjusted for fat-free mass (FFM), fat mass, age, and sex, were identified. Follow-up electronic medical record system data were available for 163 subjects, which allowed us to determine their subsequent weight changes for ≥3 y (mean: ∼9.7 y). Results: By definition, the BMR was different in the high-BMR group (2001 ± 317 kcal/d; n = 86) than in the low-BMR group (1510 ± 222 kcal/d; n = 77), but they were comparable with respect to age, body mass index, FFM, and fat mass. Rates of weight gain were not greater in the bottom BMR group (0.3 ± 1.0 kg/y) than in the top BMR group (0.5 ± 1.5 kg/y) (P = 0.17). Conclusion: Adults with low BMRs did not gain more weight than did adults with high BMRs, implying that habitual differences in food intake or activity counterbalance variations in BMR as a risk factor for weight gain in a typical Western population. PMID:27581474

  12. Basal metabolic rate and risk-taking behaviour in birds.

    Science.gov (United States)

    Møller, A P

    2009-12-01

    Basal metabolic rate (BMR) constitutes the minimal metabolic rate in the zone of thermo-neutrality, where heat production is not elevated for temperature regulation. BMR thus constitutes the minimum metabolic rate that is required for maintenance. Interspecific variation in BMR in birds is correlated with food habits, climate, habitat, flight activity, torpor, altitude, and migration, although the selective forces involved in the evolution of these presumed adaptations are not always obvious. I suggest that BMR constitutes the minimum level required for maintenance, and that variation in this minimum level reflects the fitness costs and benefits in terms of ability to respond to selective agents like predators, implying that an elevated level of BMR is a cost of wariness towards predators. This hypothesis predicts a positive relationship between BMR and measures of risk taking such as flight initiation distance (FID) of individuals approached by a potential predator. Consistent with this suggestion, I show in a comparative analysis of 76 bird species that species with higher BMR for their body mass have longer FID when approached by a potential predator. This effect was independent of potentially confounding variables and similarity among species due to common phylogenetic descent. These results imply that BMR is positively related to risk-taking behaviour, and that predation constitutes a neglected factor in the evolution of BMR.

  13. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  14. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    International Nuclear Information System (INIS)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-01-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions

  15. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths.

    Directory of Open Access Journals (Sweden)

    Zuzana Starostová

    Full Text Available While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass.

  16. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths.

    Science.gov (United States)

    Starostová, Zuzana; Konarzewski, Marek; Kozłowski, Jan; Kratochvíl, Lukáš

    2013-01-01

    While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC) size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae) with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass.

  17. Encystment of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae coincides with increased metabolic rate and haematocrit in juvenile brown trout (Salmo trutta).

    Science.gov (United States)

    Filipsson, Karl; Brijs, Jeroen; Näslund, Joacim; Wengström, Niklas; Adamsson, Marie; Závorka, Libor; Österling, E Martin; Höjesjö, Johan

    2017-04-01

    Gill parasites on fish are likely to negatively influence their host by inhibiting respiration, oxygen transport capacity and overall fitness. The glochidia larvae of the endangered freshwater pearl mussel (FPM, Margaritifera margaritifera (Linnaeus, 1758)) are obligate parasites on the gills of juvenile salmonid fish. We investigated the effects of FPM glochidia encystment on the metabolism and haematology of brown trout (Salmo trutta Linnaeus, 1758). Specifically, we measured whole-animal oxygen uptake rates at rest and following an exhaustive exercise protocol using intermittent flow-through respirometry, as well as haematocrit, in infested and uninfested trout. Glochidia encystment significantly affected whole-animal metabolic rate, as infested trout exhibited higher standard and maximum metabolic rates. Furthermore, glochidia-infested trout also had elevated levels of haematocrit. The combination of an increased metabolism and haematocrit in infested fish indicates that glochidia encystment has a physiological effect on the trout, perhaps as a compensatory response to the potential respiratory stress caused by the glochidia. When relating glochidia load to metabolism and haematocrit, fish with low numbers of encysted glochidia were the ones with particularly elevated metabolism and haematocrit. Standard metabolic rate decreased with substantial glochidia loads towards levels similar to those of uninfested fish. This suggests that initial effects visible at low levels of encystment may be countered by additional physiological effects at high loads, e.g. potential changes in energy utilization, and also that high numbers of glochidia may restrict oxygen uptake by the gills.

  18. Hemispherical dominance of glucose metabolic rate in the brain of the 'normal' ageing population

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.

    2004-01-01

    In the 'normal' ageing brain a decrease in the cerebral metabolic rate has been determined across many brain regions. It is determined whether age differences would affect metabolic rates in regions and different hemispheres of the brain. The regional metabolic rate of glucose (rCMRGlu) was examined in a group of 72 subjects, ages 22 to 82 years, with 36 regions of interest chosen from both hemispheres of the cortex, midbrain and cerebellum. To determine metabolic rates the in-vivo technique of positron emission tomography (PET) was employed. Three age groups were chosen to compare hemispherical differences. In both young and intermediate age groups the left hemisphere had higher rCMRGlu values than those of the right for the majority of regions with, although less pronounced in the intermediate group. Importantly, the older age group displayed little difference between hemispheres. (author)

  19. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    Directory of Open Access Journals (Sweden)

    Zhai Hua-Ling

    2012-01-01

    Full Text Available Abstract Background There is a high prevalence of diabetes mellitus (DM and dyslipidemia in women with polycystic ovary syndrome (PCOS. The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C, n = 10; the andronate-treated group (Andronate, n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks; and the andronate-treated and high-fat diet group (Andronate+HFD, n = 10. The rate of glucose appearance (Ra of glucose, gluconeogenesis (GNG, and the rate of glycerol appearance (Ra of glycerol were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P P Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

  20. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs

    International Nuclear Information System (INIS)

    Busija, D.W.; Leffler, C.W.

    1987-01-01

    The authors examined effects of hypothermia on cerebral metabolic rate and cerebral blood flow in anesthetized, newborn pigs (1-4 days old). Cerebral blood flow (CBF) was determined with 15-μm radioactive microspheres. Regional CBF ranged from 44 to 66 ml·min -1 ·100 g -1 , and cerebral metabolic rate was 1.94 ± 0.23 ml O 2 ·100 g -1 ·min -1 during normothermia (39 degree C). Reduction of rectal temperature to 34-35 degree C decreased CBF and cerebral metabolic rate 40-50%. In another group of piglets, they examined responsiveness of the cerebral circulation to arterial hypercapnia during hypothermia. Although absolute values for normocapnic and hypercapnic CBF were reduced by hypothermia and absolute values for normocapnic and hypercapnic cerebrovascular resistance were increased, the percentage changes from control in these variables during hypercapnia were similar during normothermia and hypothermia. In another group of animals that were maintained normothermic and exposed to two episodes of hypercapnia, there was no attenuation of cerebrovascular dilation during the second episode. They conclude that hypothermia reduces CBF secondarily to a decrease in cerebral metabolic rate and that percent dilator responsiveness to arterial hypercapnia is unaltered when body temperature is reduced

  1. Intra-Seasonal Flexibility in Avian Metabolic Performance Highlights the Uncoupling of Basal Metabolic Rate and Thermogenic Capacity

    Science.gov (United States)

    Petit, Magali; Lewden, Agnès; Vézina, François

    2013-01-01

    Stochastic winter weather events are predicted to increase in occurrence and amplitude at northern latitudes and organisms are expected to cope through phenotypic flexibility. Small avian species wintering in these environments show acclimatization where basal metabolic rate (BMR) and maximal thermogenic capacity (MSUM) are typically elevated. However, little is known on intra-seasonal variation in metabolic performance and on how population trends truly reflect individual flexibility. Here we report intra-seasonal variation in metabolic parameters measured at the population and individual levels in black-capped chickadees ( Poecile atricapillus ). Results confirmed that population patterns indeed reflect flexibility at the individual level. They showed the expected increase in BMR (6%) and MSUM (34%) in winter relative to summer but also, and most importantly, that these parameters changed differently through time. BMR began its seasonal increase in November, while MSUM had already achieved more than 20% of its inter-seasonal increase by October, and declined to its starting level by March, while MSUM remained high. Although both parameters co-vary on a yearly scale, this mismatch in the timing of variation in winter BMR and MSUM likely reflects different constraints acting on different physiological components and therefore suggests a lack of functional link between these parameters. PMID:23840843

  2. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.

    Science.gov (United States)

    Rosewarne, P J; Wilson, J M; Svendsen, J C

    2016-01-01

    Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology. © 2016 The Fisheries Society of the British Isles.

  3. Basal metabolic rate is positively correlated with parental investment in laboratory mice

    Science.gov (United States)

    Sadowska, Julita; Gębczyński, Andrzej K.; Konarzewski, Marek

    2013-01-01

    The assimilation capacity (AC) hypothesis for the evolution of endothermy predicts that the maternal basal metabolic rate (BMR) should be positively correlated with the capacity for parental investment. In this study, we provide a unique test of the AC model based on mice from a long-term selection experiment designed to produce divergent levels of BMR. By constructing experimental families with cross-fostered litters, we were able to control for the effect of the mother as well as the type of pup based on the selected lines. We found that mothers with genetically determined high levels of BMR were characterized by higher parental investment capacity, measured as the offspring growth rate. We also found higher food consumption and heavier visceral organs in the females with high BMR. These findings suggested that the high-BMR females have higher energy acquisition abilities. When the effect of the line type of a foster mother was controlled, the pup line type significantly affected the growth rate only in the first week of life, with young from the high-BMR line type growing more rapidly. Our results support the predictions of the AC model. PMID:23282996

  4. Flexibility in metabolic rate confers a growth advantage under changing food availability.

    Science.gov (United States)

    Auer, Sonya K; Salin, Karine; Rudolf, Agata M; Anderson, Graeme J; Metcalfe, Neil B

    2015-09-01

    1. Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. 2. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. 3. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). 4. SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. 5. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species' resilience in the face of global change. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  5. TT Mutant Homozygote of Kruppel-like Factor 5 Is a Key Factor for Increasing Basal Metabolic Rate and Resting Metabolic Rate in Korean Elementary School Children.

    Science.gov (United States)

    Choi, Jung Ran; Kwon, In-Su; Kwon, Dae Young; Kim, Myung-Sunny; Lee, Myoungsook

    2013-12-01

    We investigated the contribution of genetic variations of KLF5 to basal metabolic rate (BMR) and resting metabolic rate (RMR) and the inhibition of obesity in Korean children. A variation of KLF5 (rs3782933) was genotyped in 62 Korean children. Using multiple linear regression analysis, we developed a model to predict BMR in children. We divided them into several groups; normal versus overweight by body mass index (BMI) and low BMR versus high BMR by BMR. There were no differences in the distributions of alleles and genotypes between each group. The genetic variation of KLF5 gene showed a significant correlation with several clinical factors, such as BMR, muscle, low-density lipoprotein cholesterol, and insulin. Children with the TT had significantly higher BMR than those with CC (p = 0.030). The highest muscle was observed in the children with TT compared with CC (p = 0.032). The insulin and C-peptide values were higher in children with TT than those with CC (p= 0.029 vs. p = 0.004, respectively). In linear regression analysis, BMI and muscle mass were correlated with BMR, whereas insulin and C-peptide were not associated with BMR. In the high-BMR group, we observed that higher muscle, fat mass, and C-peptide affect the increase of BMR in children with TT (p BMR (adjust r(2) = 1.000, p BMR in Korean children. We could make better use of the variation within KLF5 in a future clinical intervention study of obesity.

  6. Indices of heart rate variability as potential early markers of metabolic stress and compromised regulatory capacity in dried-off high-yielding dairy cows.

    Science.gov (United States)

    Erdmann, S; Mohr, E; Derno, M; Tuchscherer, A; Schäff, C; Börner, S; Kautzsch, U; Kuhla, B; Hammon, H M; Röntgen, M

    2017-10-25

    High performing dairy cows experience distinct metabolic stress during periods of negative energy balance. Subclinical disorders of the cow's energy metabolism facilitate failure of adaptational responses resulting in health problems and reduced performance. The autonomic nervous system (ANS) with its sympathetic and parasympathetic branches plays a predominant role in adaption to inadequate energy and/or fuel availability and mediation of the stress response. Therefore, we hypothesize that indices of heart rate variability (HRV) that reflect ANS activity and sympatho-vagal balance could be early markers of metabolic stress, and possibly useful to predict cows with compromised regulatory capacity. In this study we analysed the autonomic regulation and stress level of 10 pregnant dried-off German Holstein cows before, during and after a 10-h fasting period by using a wide range of HRV parameters. In addition heat production (HP), energy balance, feed intake, rumen fermentative activity, physical activity, non-esterified fatty acids, β-hydroxybutyric acid, cortisol and total ghrelin plasma concentrations, and body temperature (BT) were measured. In all cows fasting induced immediate regulatory adjustments including increased lipolysis (84%) and total ghrelin levels (179%), reduction of HP (-16%), standing time (-38%) and heart rate (-15%). However, by analysing frequency domain parameters of HRV (high-frequency (HF) and low-frequency (LF) components, ratio LF/HF) cows could be retrospectively assigned to groups reacting to food removal with increased or decreased activity of the parasympathetic branch of the ANS. Regression analysis reveals that under control conditions (feeding ad libitum) group differences were best predicted by the nonlinear domain HRV component Maxline (L MAX, R 2=0.76, threshold; TS=258). Compared with cows having L MAX values above TS (>L MAX: 348±17), those with L MAX values below TS (fasting with a shift of their sympatho-vagal balance

  7. Exceptional longevity and exceptionally high metabolic rates in anthropoid primates are linked to a major modification of the ubiquinone reduction site of cytochrome b.

    Science.gov (United States)

    Rottenberg, Hagai

    2014-10-01

    The maximal lifespan of Anthropoid primates (monkeys, apes and humans) exceed the lifespan of most other mammals of equal body mass. Unexpectedly, their exceptional longevity is associated with exceptionally high metabolic rates, in apparent contradiction to the Free Radical Theory of Aging. It was therefore suggested that in anthropoid primates (and several other taxa of mammals and birds) the mitochondrial electron transport complexes evolved to modify the relationship between basal electron transport and superoxide generation to allow for the evolution of exceptional longevity. Cytochrome b, the core protein of the bc1 complex is a major source of superoxide. The amino-acid sequence of cytochrome b evolved much faster in anthropoid than in prosimian primates, and most other mammals, resulting in a large change in the amino-acids composition of the protein. As a result of these changes cytochrome b in anthropoid primates is significantly less hydrophobic and contains more polar residues than other primates and most other mammals. Most of these changes are clustered around the reduction site of uboiquinone. In particular a key positively charged residue, arginine 313, that interacts with propionate D of heme bH, and thus raises its redox potential, is substituted in anthropoid primates with the neutral residue glutamine, most likely resulting in a lower redox potential of heme bH and faster reduction of ubiquinone at high proton motive force. It is suggested that these changes contribute to the observed increased rates of basal metabolism and reduce the rates of superoxide production, thus allowing for increased lifespan.

  8. Is there a relationship between insect metabolic rate and mortality of mealworms Tenebrio molitor L. after insecticide exposure?

    OpenAIRE

    MALISZEWSKA, Justyna; TĘGOWSKA, Eugenia

    2016-01-01

    Pesticides are known to affect insects metabolic rate and CO2 release patterns. In the presented paper metabolic rate and mortality of mealworms Tenebrio molitor L. exposed to four different insecticides was evaluated, to find out whether there is a relationship between mealworms sensitivity to pesticides and their metabolic rate. Tenebrio molitor mortality was determined after intoxication with pyrethroid, oxadiazine, neonicotinoid and organophosphate. Metabolic rate before and after intoxic...

  9. Correlations of metabolic rate and body acceleration in three species of coastal sharks under contrasting temperature regimes.

    Science.gov (United States)

    Lear, Karissa O; Whitney, Nicholas M; Brewster, Lauran R; Morris, Jack J; Hueter, Robert E; Gleiss, Adrian C

    2017-02-01

    The ability to produce estimates of the metabolic rate of free-ranging animals is fundamental to the study of their ecology. However, measuring the energy expenditure of animals in the field has proved difficult, especially for aquatic taxa. Accelerometry presents a means of translating metabolic rates measured in the laboratory to individuals studied in the field, pending appropriate laboratory calibrations. Such calibrations have only been performed on a few fish species to date, and only one where the effects of temperature were accounted for. Here, we present calibrations between activity, measured as overall dynamic body acceleration (ODBA), and metabolic rate, measured through respirometry, for nurse sharks (Ginglymostoma cirratum), lemon sharks (Negaprion brevirostris) and blacktip sharks (Carcharhinus limbatus). Calibrations were made at a range of volitional swimming speeds and experimental temperatures. Linear mixed models were used to determine a predictive equation for metabolic rate based on measured ODBA values, with the optimal model using ODBA in combination with activity state and temperature to predict metabolic rate in lemon and nurse sharks, and ODBA and temperature to predict metabolic rate in blacktip sharks. This study lays the groundwork for calculating the metabolic rate of these species in the wild using acceleration data. © 2017. Published by The Company of Biologists Ltd.

  10. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    International Nuclear Information System (INIS)

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G.

    1990-01-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states

  11. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    Science.gov (United States)

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed. Copyright © 2015 John Wiley & Sons, Inc.

  12. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    OpenAIRE

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth...

  13. Racial differences in the relationship between rate of nicotine metabolism and nicotine intake from cigarette smoking.

    Science.gov (United States)

    Ross, Kathryn C; Gubner, Noah R; Tyndale, Rachel F; Hawk, Larry W; Lerman, Caryn; George, Tony P; Cinciripini, Paul; Schnoll, Robert A; Benowitz, Neal L

    2016-09-01

    Rate of nicotine metabolism has been identified as an important factor influencing nicotine intake and can be estimated using the nicotine metabolite ratio (NMR), a validated biomarker of CYP2A6 enzyme activity. Individuals who metabolize nicotine faster (higher NMR) may alter their smoking behavior to titrate their nicotine intake in order to maintain similar levels of nicotine in the body compared to slower nicotine metabolizers. There are known racial differences in the rate of nicotine metabolism with African Americans on average having a slower rate of nicotine metabolism compared to Whites. The goal of this study was to determine if there are racial differences in the relationship between rate of nicotine metabolism and measures of nicotine intake assessed using multiple biomarkers of nicotine and tobacco smoke exposure. Using secondary analyses of the screening data collected in a recently completed clinical trial, treatment-seeking African American and White daily smokers (10 or more cigarettes per day) were grouped into NMR quartiles so that the races could be compared at the same NMR, even though the distribution of NMR within race differed. The results indicated that rate of nicotine metabolism was a more important factor influencing nicotine intake in White smokers. Specifically, Whites were more likely to titrate their nicotine intake based on the rate at which they metabolize nicotine. However, this relationship was not found in African Americans. Overall there was a greater step-down, linear type relationship between NMR groups and cotinine or cotinine/cigarette in African Americans, which is consistent with the idea that differences in blood cotinine levels between the African American NMR groups were primarily due to differences in CYP2A6 enzyme activity without titration of nicotine intake among faster nicotine metabolizers. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Determinants of inter-specific variation in basal metabolic rate.

    Science.gov (United States)

    White, Craig R; Kearney, Michael R

    2013-01-01

    Basal metabolic rate (BMR) is the rate of metabolism of a resting, postabsorptive, non-reproductive, adult bird or mammal, measured during the inactive circadian phase at a thermoneutral temperature. BMR is one of the most widely measured physiological traits, and data are available for over 1,200 species. With data available for such a wide range of species, BMR is a benchmark measurement in ecological and evolutionary physiology, and is often used as a reference against which other levels of metabolism are compared. Implicit in such comparisons is the assumption that BMR is invariant for a given species and that it therefore represents a stable point of comparison. However, BMR shows substantial variation between individuals, populations and species. Investigation of the ultimate (evolutionary) explanations for these differences remains an active area of inquiry, and explanation of size-related trends remains a contentious area. Whereas explanations for the scaling of BMR are generally mechanistic and claim ties to the first principles of chemistry and physics, investigations of mass-independent variation typically take an evolutionary perspective and have demonstrated that BMR is ultimately linked with a range of extrinsic variables including diet, habitat temperature, and net primary productivity. Here we review explanations for size-related and mass-independent variation in the BMR of animals, and suggest ways that the various explanations can be evaluated and integrated.

  15. Effects of high-carbohydrate and high-fat dietary treatments on measures of heart rate variability and sympathovagal balance.

    Science.gov (United States)

    Millis, Richard M; Austin, Rachel E; Bond, Vernon; Faruque, Mezbah; Goring, Kim L; Hickey, Brian M; Blakely, Raymond; Demeersman, Ronald E

    2009-07-17

    We tested the hypothesis that respiratory quotient (RQ) determines sympathovagal balance associated with metabolism of stored and dietary energy substrates. Six 18-20 year-old African-American males were studied after two control pretreatments of fasting and post-treatments of metabolizing high-fat and high-carbohydrate beverages. RQ, heart rate (HR), energy expenditure (EE) and blood pressure (BP) were recorded at rest and repeated 1 h-3 h after ingesting isocaloric high-carbohydrate and high-fat beverages. Sympathovagal modulation of HR was quantified by the low frequency/high frequency (LF/HF) ratio from fast Fourier transform (spectral) analysis of the electrocardiogram RR intervals during paced breathing at 0.2 Hz. Significance of differences of peak post-treatment values from controls was evaluated by analysis of covariance and of correlations by linear regression at Pcarbohydrate and high-fat treatments increased RQ, EE, HR and LF/HF with significant interactions between covariates. LF/HF values were not significant after eliminating covariance of RQ, EE and HR for the control vs. high-fat and for the high-fat vs. high-carbohydrate and after eliminating covariance of EE and HR for the control vs. high-carbohydrate treatments. Across the RQ values, correlations were significant for EE and LF/HF. These findings imply that high RQ and sympathetic modulation produced by metabolizing carbohydrate is associated with high resting energy expenditure. We conclude that respiratory quotient may be an important determinant of the LF/HF ratio in the heart rate variability spectrum, likely, by a respiratory chemosensory mechanism.

  16. Positron emission tomography assessment of cerebral glucose metabolic rates in autism spectrum disorder and schizophrenia.

    Science.gov (United States)

    Mitelman, Serge A; Bralet, Marie-Cecile; Mehmet Haznedar, M; Hollander, Eric; Shihabuddin, Lina; Hazlett, Erin A; Buchsbaum, Monte S

    2018-04-01

    Several models have been proposed to account for observed overlaps in clinical features and genetic predisposition between schizophrenia and autism spectrum disorder. This study assessed similarities and differences in topological patterns and vectors of glucose metabolism in both disorders in reference to these models. Co-registered 18 fluorodeoxyglucose PET and MRI scans were obtained in 41 schizophrenia, 25 ASD, and 55 healthy control subjects. AFNI was used to map cortical and subcortical regions of interest. Metabolic rates were compared between three diagnostic groups using univariate and multivariate repeated-measures ANOVA. Compared to controls, metabolic rates in schizophrenia subjects were decreased in the frontal lobe, anterior cingulate, superior temporal gyrus, amygdala and medial thalamic nuclei; rates were increased in the occipital cortex, hippocampus, basal ganglia and lateral thalamic nuclei. In ASD subjects metabolic rates were decreased in the parietal lobe, frontal premotor and eye-fields areas, and amygdala; rates were increased in the posterior cingulate, occipital cortex, hippocampus and basal ganglia. In relation to controls, subjects with ASD and schizophrenia showed opposite changes in metabolic rates in the primary motor and somatosensory cortex, anterior cingulate and hypothalamus; similar changes were found in prefrontal and occipital cortices, inferior parietal lobule, amygdala, hippocampus, and basal ganglia. Schizophrenia and ASD appear to be associated with a similar pattern of metabolic abnormalities in the social brain. Divergent maladaptive trade-offs, as postulated by the diametrical hypothesis of their evolutionary relationship, may involve a more circumscribed set of anterior cingulate, motor and somatosensory regions and the specific cognitive functions they subserve.

  17. Nonlinear temperature effects on multifractal complexity of metabolic rate of mice

    Directory of Open Access Journals (Sweden)

    Fabio A. Labra

    2016-10-01

    Full Text Available Complex physiological dynamics have been argued to be a signature of healthy physiological function. Here we test whether the complexity of metabolic rate fluctuations in small endotherms decreases with lower environmental temperatures. To do so, we examine the multifractal temporal scaling properties of the rate of change in oxygen consumption r(VO2, in the laboratory mouse Mus musculus, assessing their long range correlation properties across seven different environmental temperatures, ranging from 0 °C to 30 °C. To do so, we applied multifractal detrended fluctuation analysis (MF-DFA, finding that r(VO2 fluctuations show two scaling regimes. For small time scales below the crossover time (approximately 102 s, either monofractal or weak multifractal dynamics are observed depending on whether Ta  15 °C respectively. For larger time scales, r(VO2 fluctuations are characterized by an asymptotic scaling exponent that indicates multifractal anti-persistent or uncorrelated dynamics. For both scaling regimes, a generalization of the multiplicative cascade model provides very good fits for the Renyi exponents τ(q, showing that the infinite number of exponents h(q can be described by only two independent parameters, a and b. We also show that the long-range correlation structure of r(VO2 time series differs from randomly shuffled series, and may not be explained as an artifact of stochastic sampling of a linear frequency spectrum. These results show that metabolic rate dynamics in a well studied micro-endotherm are consistent with a highly non-linear feedback control system.

  18. Smaller size of high metabolic rate organs explains lower resting energy expenditure in Asian-Indian Than Chinese men.

    Science.gov (United States)

    Song, L L T; Venkataraman, K; Gluckman, P; Chong, Y S; Chee, M-W L; Khoo, C M; Leow, M-Ks; Lee, Y S; Tai, E S; Khoo, E Y H

    2016-04-01

    In Singapore, the obesity prevalence is disproportionately higher in the Asian-Indians and Malays than the Chinese. Lower resting energy expenditure (REE) may be a contributory factor. We explored the association between ethnicity and REE in Chinese, Asian-Indian and Malay men living in Singapore and determined the influence of body composition, mass/volume of high metabolic rate organs, represented by brain volume and trunk fat-free mass (FFM), and physical activity on ethnic differences. Two hundred and forty-four men from Singapore (n=100 Chinese, 70 Asian-Indians and 74 Malays), aged 21-40 years and body mass index of 18.5-30.0 kg m(-2), were recruited in this cross-sectional study. REE was assessed by indirect calorimetry and body composition by dual-energy X-ray absorptiometry. Brain volume was measured by magnetic resonance imaging. Physical activity was assessed by the Singapore Prospective Study Program Physical Activity Questionnaire. REE was significantly lower in Asian-Indians compared with that in Chinese after adjusting for body weight. FFM (total, trunk and limb) and total fat mass were important predictors of REE across all ethnic groups. Brain volume was positively associated with REE only in Malays. Moderate and vigorous physical activity was positively associated with REE only in Asian-Indians and Malays. The difference in REE between Asian-Indians and Chinese was attenuated but remained statistically significant after adjustment for total FFM (59±20 kcal per day), fat mass (67±20 kcal per day) and brain volume (54±22 kcal per day). The association between REE and ethnicity was no longer statistically significant after total FFM was replaced by trunk FFM (which includes heart, liver, kidney and spleen) but not when it was replaced by limb FFM (skeletal muscle). We have demonstrated a lower REE in Asian-Indians compared with Chinese who may contribute to the higher rates of obesity in the former. This difference could be accounted for

  19. Does growth rate determine the rate of metabolism in shorebird chicks living in the arctic?

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. Irene; Visser, G. Henk; Ricklefs, Robert E.

    2007-01-01

    We measured resting and peak metabolic rates (RMR and PMR, respectively) during development of chicks of seven species of shorebirds: least sandpiper (Calidris minutilla; adult mass 20 22 g), dunlin (Calidris alpina; 56-62 g), lesser yellowlegs (Tringa flavipes; 88-92 g), short-billed dowitcher

  20. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms.

    Science.gov (United States)

    Swanson, David L; McKechnie, Andrew E; Vézina, François

    2017-12-01

    Adaptive explanations for both high and low body mass-independent basal metabolic rate (BMR) in endotherms are pervasive in evolutionary physiology, but arguments implying a direct adaptive benefit of high BMR are troublesome from an energetic standpoint. Here, we argue that conclusions about the adaptive benefit of BMR need to be interpreted, first and foremost, in terms of energetics, with particular attention to physiological traits on which natural selection is directly acting. We further argue from an energetic perspective that selection should always act to reduce BMR (i.e., maintenance costs) to the lowest level possible under prevailing environmental or ecological demands, so that high BMR per se is not directly adaptive. We emphasize the argument that high BMR arises as a correlated response to direct selection on other physiological traits associated with high ecological or environmental costs, such as daily energy expenditure (DEE) or capacities for activity or thermogenesis. High BMR thus represents elevated maintenance costs required to support energetically demanding lifestyles, including living in harsh environments. BMR is generally low under conditions of relaxed selection on energy demands for high metabolic capacities (e.g., thermoregulation, activity) or conditions promoting energy conservation. Under these conditions, we argue that selection can act directly to reduce BMR. We contend that, as a general rule, BMR should always be as low as environmental or ecological conditions permit, allowing energy to be allocated for other functions. Studies addressing relative reaction norms and response times to fluctuating environmental or ecological demands for BMR, DEE, and metabolic capacities and the fitness consequences of variation in BMR and other metabolic traits are needed to better delineate organismal metabolic responses to environmental or ecological selective forces.

  1. Differential metabolic rates in prefrontal and temporal Brodmann areas in schizophrenia and schizotypal personality disorder.

    Science.gov (United States)

    Buchsbaum, Monte S; Nenadic, Igor; Hazlett, Erin A; Spiegel-Cohen, Jacqueline; Fleischman, Michael B; Akhavan, Arash; Silverman, Jeremy M; Siever, Larry J

    2002-03-01

    In an exploration of the schizophrenia spectrum, we compared cortical metabolic rates in unmedicated patients with schizophrenia and schizotypal personality disorder (SPD) with findings in age- and sex-matched normal volunteers. Coregistered magnetic resonance imaging (MRI) and positron emission tomography (PET) scans were obtained in 27 schizophrenic, 13 SPD, and 32 normal volunteers who performed a serial verbal learning test during tracer uptake. A template of Brodmann areas derived from a whole brain histological section atlas was used to analyze PET findings. Significantly lower metabolic rates were found in prefrontal areas 44-46 in schizophrenic patients than in normal volunteers. SPD patients did not differ from normal volunteers in most lateral frontal regions, but they had values intermediate between those of normal volunteers and schizophrenic patients in lateral temporal regions. SPD patients showed higher than normal metabolic rates in both medial frontal and medial temporal areas. Metabolic rates in Brodmann area 10 were distinctly higher in SPD patients than in either normal volunteers or schizophrenic patients.

  2. Evolution of basal metabolic rate in bank voles from a multidirectional selection experiment

    Science.gov (United States)

    Sadowska, Edyta T.; Stawski, Clare; Rudolf, Agata; Dheyongera, Geoffrey; Chrząścik, Katarzyna M.; Baliga-Klimczyk, Katarzyna; Koteja, Paweł

    2015-01-01

    A major theme in evolutionary and ecological physiology of terrestrial vertebrates encompasses the factors underlying the evolution of endothermy in birds and mammals and interspecific variation of basal metabolic rate (BMR). Here, we applied the experimental evolution approach and compared BMR in lines of a wild rodent, the bank vole (Myodes glareolus), selected for 11 generations for: high swim-induced aerobic metabolism (A), ability to maintain body mass on a low-quality herbivorous diet (H) and intensity of predatory behaviour towards crickets (P). Four replicate lines were maintained for each of the selection directions and an unselected control (C). In comparison to C lines, A lines achieved a 49% higher maximum rate of oxygen consumption during swimming, H lines lost 1.3 g less mass in the test with low-quality diet and P lines attacked crickets five times more frequently. BMR was significantly higher in A lines than in C or H lines (60.8, 56.6 and 54.4 ml O2 h−1, respectively), and the values were intermediate in P lines (59.0 ml O2 h−1). Results of the selection experiment provide support for the hypothesis of a positive association between BMR and aerobic exercise performance, but not for the association of adaptation to herbivorous diet with either a high or low BMR. PMID:25876844

  3. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    International Nuclear Information System (INIS)

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using [18F]fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men

  4. Metabolic rate and body temperature of an African sun bird ...

    African Journals Online (AJOL)

    1997-02-19

    Feb 19, 1997 ... has a wide distribution in southern Africa. ... sample the voltage output of the oxygen analyser every 2 min ... Bailey Bat thermocouple thermometer, and the system was .... A similar 50% drop in metabolic rate in finches at.

  5. High intensity interval training (HIIT) improves resting blood pressure, metabolic (MET) capacity and heart rate reserve without compromising cardiac function in sedentary aging men.

    Science.gov (United States)

    Grace, Fergal; Herbert, Peter; Elliott, Adrian D; Richards, Jo; Beaumont, Alexander; Sculthorpe, Nicholas F

    2017-05-13

    This study examined a programme of pre-conditioning exercise with subsequent high intensity interval training (HIIT) on blood pressure, echocardiography, cardiac strain mechanics and maximal metabolic (MET) capacity in sedentary (SED) aging men compared with age matched masters athletes (LEX). Using a STROBE compliant observational design, 39 aging male participants (SED; n=22, aged 62.7±5.2yrs) (LEX; n=17, aged=61.1±5.4yrs) were recruited to a study that necessitated three distinct assessment phases; enrolment (Phase A), following pre-conditioning exercise in SED (Phase B), then following 6weeks of HIIT performed once every five days by both groups before reassessment (Phase C). Hemodynamic, echocardiographic and cardiac strain mechanics were obtained at rest and maximal cardiorespiratory and chronotropic responses were obtained at each measurement phase. The training intervention improved systolic, mean arterial blood pressure, rate pressure product and heart rate reserve (each PHIIT. Echocardiography and cardiac strain measures were unremarkable apart from trivial increase to intra-ventricular septum diastole (IVSd) (PHIIT. A programme of preconditioning exercise with HIIT induces clinically relevant improvements in blood pressure, rate pressure product and encourages recovery of heart rate reserve in SED, while improving maximal MET capacity in both SED and LEX without inducing any pathological cardiovascular remodeling. These data add to the emerging repute of HIIT as a safe and promising exercise prescription to improve cardiovascular function and metabolic capacity in sedentary aging. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes.

    Science.gov (United States)

    Verrier, Delphine; Groscolas, René; Guinet, Christophe; Arnould, John P Y

    2009-11-01

    Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 +/- 3.3 days) were investigated at 7 mo of age. Within 4-6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate (5.9 +/- 0.1 ml O(2)xkg(-1)xday(-1)) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 +/- 10 kJxkg(-1)xday(-1)) and water influx (7.9 +/- 0.9 mlxkg(-1)xday(-1)) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as beta-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

  7. Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor.

    Science.gov (United States)

    Bjørge, Julie Dahl; Overgaard, Johannes; Malte, Hans; Gianotten, Natasja; Heckmann, Lars-Henrik

    2018-03-10

    Insects are increasingly used as a dietary source for food and feed and it is therefore important to understand how rearing conditions affect growth and development of these agricultural animals. Temperature is arguably the most important factor affecting metabolism and growth rate in insects. Here, we investigated how rearing temperature affected growth rate, growth efficiency and macronutrient composition in two species of edible beetle larvae: Alphitobius diaperinus and Tenebrio molitor. Growth rates of both species were quantified at temperatures ranging from 15.2 to 38.0 °C after which we measured protein and lipid content of the different treatment groups. Metabolic rate was measured in a similar temperature range by measuring the rate of O 2 consumption (V·O 2 ) and CO 2 production (V·CO 2 ) using repeated measures closed respirometry. Using these measurements, we calculated the growth efficiency of mealworms by relating the energy assimilation rate to the metabolic rate. Maximum daily growth rates were 18.3% and 16.6% at 31 °C, for A. diaperinus and T. molitor respectively, and we found that A. diaperinus was better at maintaining growth at high temperatures while T. molitor had superior growth at lower temperatures. Both species had highest efficiencies of energy assimilation in the temperature range of 23.3-31.0 °C, with values close to 2 J assimilated/J metabolised in A. diaperinus and around 4 J assimilated/J metabolised in T. molitor. Compared to "conventional" terrestrial livestock, both species of insects were characterised by high growth rates and very high energy conversion efficiency at most experimental temperatures. For A. diaperinus, lipid content was approximately 30% of dry mass and protein content approximately 50% of dry mass across most temperatures. Temperature had a greater influence on the body composition of T. molitor. At 31.0 °C the lipid and protein content was measured to 47.4% and 37.9%, respectively but lipid

  8. [Proceeding: Production rate, metabolic clearance rate and mean plasma concentration of cortisol in hyperthyroidism (author's transl)].

    Science.gov (United States)

    Linquette, M; Lefebvre, J; Racadot, A; Cappoen, J P

    1975-01-01

    The adrenocortical function was studied in 23 patients with hyperthyroidism and compared with a group of 15 normal subjects. Parameters of adrenal function were determined with 1,2(3)H-cortisol. The half-life of cortisol is significantly shortened in hyperthyroidism, as compared to normal subjects (49,5 +/- 6,6 min vs 68,3 +/- 10,5 min) and metabolic clearance rate is increased (418,5 +/- 89,5 L/24 h vs 237,5 +/- 48,5 L/24 h, for normal subjects). The production rate of cortisol, calculated from specific and cumulate activities of THE and THF is increased in hyperthyroidism expressed as mg/24 h or mg/m2/24 h (respectively : 26,7 +/- 7,8 mg/24 h vs 15,7 +/- 3 mg/24 h and 16,9 +/- 4,6 mg/m2/24 h vs 9,5 +/- 1,8 mg/m2/24 h). The mean plasma concentration, calculated as the radio (see article) is not statiscally different in hyperthyroid and normal subjects (6,8 +/- 2,1 microg/100 ml vs 7,3 +/- 1,9 microg/100 ml). 7 patients were reinvestigated after treatment of thyrotoxicosis when they were clinically and biologically in euthyroid state. All the values were normalized, without statistically significant difference from control (T 1/2 = 65,4 +/- 18 min, Metb Cl. Rate : 255 +/- 64,5 L/24 h, production rate : 15,6 +/- 1,8 mg/24 h and 9 +/- 1,4 mg/m2/24 h. mean plasma concentration : 6,8 +/- 2,8 microg/100 ml). Shortened cortisol half life, increased metabolic clearance rate and production rate, and normal mean plasma concentration have been reported in hyperthyroidism (Peterson, Copinschi, Gallagher). These changes, secondary to thyroid hormone excess, are the consequences of increased hepatic catabolism of cortisol. The activity of 11 OH steroid deshydrogenase is increased, as demonstrated by increased ratio (see article) in normal subjects (0,001 less than p less than 0,005). There is a high proportion of 17 kéto metabolites (E, DHE, THE) whose feed-back effect is weak as compared to 17 OH metabolites (F, DHF, THF). The hypothalamo-hypophyso-adrenal system is

  9. Hexamitiasis leads to lower metabolic rates in rainbow trout Oncorhynchus mykiss (Walbaum) juveniles.

    Science.gov (United States)

    Ogut, H; Parlak, R

    2014-12-01

    This study assessed the effects of Hexamita salmonis (Moore) on metabolism of rainbow trout Oncorhynchus mykiss (Walbaum) and its effect on the host's susceptibility to infectious pancreatic necrosis virus (IPNV) after antiparasitic treatment. Rainbow trout naturally infected with H. salmonis were treated with 10 mg metronidazole kg fish(-1) per day, and their physiological recovery was assessed through measuring resting metabolism on the 7th, 14th, 21st and 28th day after treatment. In addition, we exposed the naïve fish to H. salmonis and measured the resting metabolism (oxygen consumption as mg O2 kg(-1) per hour) on the 10th, 20th and 30th day after the exposure to assess the variation in metabolic rates after infection. Significantly lower rates of metabolic activity (P trout to IPNV remained unchanged in the presence of H. salmonis. Weight loss was significantly higher (P < 0.05) in infected than that in the parasite-free fish. Fish should be examined regularly for H. salmonis and treated immediately whether found to prevent economic losses and excessive size variation. © 2013 John Wiley & Sons Ltd.

  10. Mini-review: In vitro Metabolic Engineering for Biomanufacturing of High-value Products

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    Full Text Available With the breakthroughs in biomolecular engineering and synthetic biology, many valuable biologically active compound and commodity chemicals have been successfully manufactured using cell-based approaches in the past decade. However, because of the high complexity of cell metabolism, the identification and optimization of rate-limiting metabolic pathways for improving the product yield is often difficult, which represents a significant and unavoidable barrier of traditional in vivo metabolic engineering. Recently, some in vitro engineering approaches were proposed as alternative strategies to solve this problem. In brief, by reconstituting a biosynthetic pathway in a cell-free environment with the supplement of cofactors and substrates, the performance of each biosynthetic pathway could be evaluated and optimized systematically. Several value-added products, including chemicals, nutraceuticals, and drug precursors, have been biosynthesized as proof-of-concept demonstrations of in vitro metabolic engineering. This mini-review summarizes the recent progresses on the emerging topic of in vitro metabolic engineering and comments on the potential application of cell-free technology to speed up the “design-build-test” cycles of biomanufacturing. Keywords: Cell-free, Biosynthesis, Metabolic pathways, Design-build-test cycle

  11. Impact of a Metabolic Screening Bundle on Rates of Screening for Metabolic Syndrome in a Psychiatry Resident Outpatient Clinic

    Science.gov (United States)

    Wiechers, Ilse R.; Viron, Mark; Stoklosa, Joseph; Freudenreich, Oliver; Henderson, David C.; Weiss, Anthony

    2012-01-01

    Objective: Although it is widely acknowledged that second-generation antipsychotics are associated with cardiometabolic side effects, rates of metabolic screening have remained low. The authors created a quality-improvement (QI) intervention in an academic medical center outpatient psychiatry resident clinic with the aim of improving rates of…

  12. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Science.gov (United States)

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  13. Estimating fish swimming metrics and metabolic rates with accelerometers: the influence of sampling frequency.

    Science.gov (United States)

    Brownscombe, J W; Lennox, R J; Danylchuk, A J; Cooke, S J

    2018-06-21

    Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  15. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R. [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Jijakli, Kenan [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Engineering Division, Biofinery, Manhattan, KS (United States); Salehi-Ashtiani, Kourosh, E-mail: ksa3@nyu.edu [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates)

    2014-12-10

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  16. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth.

    Science.gov (United States)

    Kentner, David; Martano, Giuseppe; Callon, Morgane; Chiquet, Petra; Brodmann, Maj; Burton, Olga; Wahlander, Asa; Nanni, Paolo; Delmotte, Nathanaël; Grossmann, Jonas; Limenitakis, Julien; Schlapbach, Ralph; Kiefer, Patrick; Vorholt, Julia A; Hiller, Sebastian; Bumann, Dirk

    2014-07-08

    Shigella flexneri proliferate in infected human epithelial cells at exceptionally high rates. This vigorous growth has important consequences for rapid progression to life-threatening bloody diarrhea, but the underlying metabolic mechanisms remain poorly understood. Here, we used metabolomics, proteomics, and genetic experiments to determine host and Shigella metabolism during infection in a cell culture model. The data suggest that infected host cells maintain largely normal fluxes through glycolytic pathways, but the entire output of these pathways is captured by Shigella, most likely in the form of pyruvate. This striking strategy provides Shigella with an abundant favorable energy source, while preserving host cell ATP generation, energy charge maintenance, and survival, despite ongoing vigorous exploitation. Shigella uses a simple three-step pathway to metabolize pyruvate at high rates with acetate as an excreted waste product. The crucial role of this pathway for Shigella intracellular growth suggests targets for antimicrobial chemotherapy of this devastating disease.

  17. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.

    Science.gov (United States)

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.

  18. Determinants of intra-specific variation in basal metabolic rate.

    Science.gov (United States)

    Konarzewski, Marek; Książek, Aneta

    2013-01-01

    Basal metabolic rate (BMR) provides a widely accepted benchmark of metabolic expenditure for endotherms under laboratory and natural conditions. While most studies examining BMR have concentrated on inter-specific variation, relatively less attention has been paid to the determinants of within-species variation. Even fewer studies have analysed the determinants of within-species BMR variation corrected for the strong influence of body mass by appropriate means (e.g. ANCOVA). Here, we review recent advancements in studies on the quantitative genetics of BMR and organ mass variation, along with their molecular genetics. Next, we decompose BMR variation at the organ, tissue and molecular level. We conclude that within-species variation in BMR and its components have a clear genetic signature, and are functionally linked to key metabolic process at all levels of biological organization. We highlight the need to integrate molecular genetics with conventional metabolic field studies to reveal the adaptive significance of metabolic variation. Since comparing gene expressions inter-specifically is problematic, within-species studies are more likely to inform us about the genetic underpinnings of BMR. We also urge for better integration of animal and medical research on BMR; the latter is quickly advancing thanks to the application of imaging technologies and 'omics' studies. We also suggest that much insight on the biochemical and molecular underpinnings of BMR variation can be gained from integrating studies on the mammalian target of rapamycin (mTOR), which appears to be the major regulatory pathway influencing the key molecular components of BMR.

  19. Basal Metabolic Rate and Energy Expenditure of Rural Farmers in ...

    African Journals Online (AJOL)

    Measurement of basal metabolic rate (BMR) provides an important baseline for the determination of an individual's total energy requirement. The study sought to establish human energy expenditure of rural farmers in Magubike village in Tanzania, through determination of BMR, physical activity level (PAL) and total energy ...

  20. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18

    International Nuclear Information System (INIS)

    Baxter, L.R. Jr.; Phelps, M.E.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.; Selin, C.E.; Sumida, R.M.

    1985-01-01

    Cerebral metabolic rates for glucose were examined in patients with unipolar depression (N = 11), bipolar depression (N = 5), mania (N = 5), bipolar mixed states (N = 3), and in normal controls (N = 9) using positron emission tomography and fluorodeoxyglucose F 18. All subjects were studied supine under ambient room conditions with eyes open. Bipolar depressed and mixed patients had supratentorial whole brain glucose metabolic rates that were significantly lower than those of the other comparison groups. The whole brain metabolic rates for patients with bipolar depression increased going from depression or a mixed state to a euthymic or manic state. Patients with unipolar depression showed a significantly lower ratio of the metabolic rate of the caudate nucleus, divided by that of the hemisphere as a whole, when compared with normal controls and patients with bipolar depression

  1. Albuminuria and Glomerular Filtration Rate in Individuals with Type 1 Diabetes Mellitus: Contribution of Metabolic Syndrome.

    Science.gov (United States)

    Uribe-Wiechers, Ana Cecilia; Janka-Zires, Marcela; Almeda-Valdés, Paloma; López-Gutiérrez, Joel; Gómez-Pérez, Francisco J

    2015-01-01

    The development of metabolic syndrome has been described in patients with type 1 diabetes mellitus as the disease progresses over time. The purpose of this study is to assess the relationship between metabolic syndrome, albuminuria, and glomerular filtration rate, as well as to determine the prevalence of metabolic syndrome, in a group of Mexican patients with type 1 diabetes mellitus. We conducted a cross-sectional study that included patients with type 1 diabetes mellitus who were diagnosed over 10 years ago and who are seen at the Diabetes Intensive Control Clinic of the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran in Mexico City. The presence of metabolic syndrome was determined by using the National Cholesterol Education Program-Adult Treatment Panel III (ATP III) criteria. A total of 81 individuals were studied. The prevalence of metabolic syndrome was 18.5% (n = 15). A higher albuminuria was found in subjects with metabolic syndrome (34.9 mg/24 hours; 8.3-169.3) than in those without metabolic syndrome (9.0 mg/24 hours; 5.0-27.0; p = 0.02). Glomerular filtration rate was lower in patients with metabolic syndrome (95.3 ml/minute; [64.9-107.2] vs. 110.2 ml/minute [88.1-120.3]; p = 0.04). After classifying the population according to the number of metabolic syndrome criteria, a progressive increase in albuminuria and a progressive decrease in glomerular filtration rate were found with each additional metabolic syndrome criterion (p = 0.008 and p = 0.032, respectively). After adjusting for age, time from diagnosis, systolic blood pressure, triglycerides, HDL-cholesterol, and treatment with angiotensin receptor blockers or angiotensin converting enzyme inhibitors, we found that age, time from diagnosis, triglycerides, and HDL-cholesterol were independent factors associated with glomerular filtration rate (R2 = 0.286; p diabetes mellitus. Metabolic syndrome was present in 18.5% of this group of Mexican individuals with type 1 diabetes

  2. Standard metabolic rate is associated with gestation duration, but not clutch size, in speckled cockroaches Nauphoeta cinerea

    Directory of Open Access Journals (Sweden)

    Natalie G. Schimpf

    2012-09-01

    Metabolic rate varies significantly between individuals, and these differences persist even when the wide range of biotic and abiotic factors that influence metabolism are accounted for. It is important to understand the life history implications of variation in metabolic rate, but they remain poorly characterised despite a growing body of work examining relationships between metabolism and a range of traits. In the present study we used laboratory-bred families (one sire to three dams of Nauphoeta cinerea (Olivier (speckled cockroaches to examine the relationship between standard metabolic rate (SMR and reproductive performance (number of offspring and gestation duration. We show that SMR is negatively associated with female gestation duration. Age at mating is negatively associated with gestation duration for females, and mass is negatively associated with the average gestation duration of the females a male was mated with. In addition to the results in the current literature, the results from the present study suggest that the association between metabolism and life history is more complex than simple relationships between metabolism and various fitness traits. Future work should consider longitudinal, ontogenetic as well as selective and quantitative genetic breeding approaches to fully examine the associations between metabolism and fitness.

  3. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    Science.gov (United States)

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  4. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    International Nuclear Information System (INIS)

    Ackermann, R.F.; Lear, J.L.

    1989-01-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14 C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14 C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum

  5. Effects of season, temperature, and body mass on the standard metabolic rate of tegu lizards (Tupinambis merianae).

    Science.gov (United States)

    Toledo, Luís F; Brito, Simone P; Milsom, William K; Abe, Augusto S; Andrade, Denis V

    2008-01-01

    Abstract This study examined how the standard metabolic rate of tegu lizards, a species that undergoes large ontogenetic changes in body weight with associated changes in life-history traits, is affected by changes in body mass, body temperature, season, and life-history traits. We measured rates of oxygen consumption (Vo(2)) in 90 individuals ranging in body mass from 10.4 g to 3.75 kg at three experimental temperatures (17 degrees , 25 degrees , and 30 degrees C) over the four seasons. We found that standard metabolic rate scaled to the power of 0.84 of body mass at all experimental temperatures in all seasons and that thermal sensitivity of metabolism was relatively low (Q(10) approximately 2.0-2.5) over the range from 17 degrees to 30 degrees C regardless of body size or season. Metabolic rates did vary seasonally, being higher in spring and summer than in autumn and winter at the same temperatures, and this was true regardless of animal size. Finally, in this study, the changes in life-history traits that occurred ontogenetically were not accompanied by significant changes in metabolic rate.

  6. Effects of growth hormone transgenesis on metabolic rate, exercise performance and hypoxia tolerance in tilapia hybrids

    DEFF Research Database (Denmark)

    McKenzie, DJ; Martinez, R; Morales, A

    2003-01-01

    Swimming respirometry was employed to compare inactive metabolic rate (Rr), maximum metabolic rate (Rmax), resultant aerobic scope and maximum sustainable (critical) swimming speed (Ucrit), in growth hormone transgenic (GHT) and wild-type (W) tilapia Oreochromis sp. hybrids. Although the Rr of GHT...... tilapia was significantly (58%) higher than their W conspecifics, there were no significant differences in their net aerobic scope because GHT tilapia exhibited a compensatory increase in Rmax that was equal to their net increase in Rr. As a consequence, the two groups had the same Ucrit. The GHT and W...... tilapia also exhibited the same capacity to regulate oxygen uptake during progressive hypoxia, despite the fact that the GHT fish were defending a higher demand for O2. The results indicate that ectopic expression of GH raises metabolic rate in tilapia, but the fish compensate for this metabolic load...

  7. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    Science.gov (United States)

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-02-07

    The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small

  8. Mechanistic drivers of flexibility in summit metabolic rates of small birds.

    Directory of Open Access Journals (Sweden)

    David Swanson

    Full Text Available Flexible metabolic phenotypes allow animals to adjust physiology to better fit ecological or environmental demands, thereby influencing fitness. Summit metabolic rate (Msum = maximal thermogenic capacity is one such flexible trait. Skeletal muscle and heart masses and myocyte metabolic intensity are potential drivers of Msum flexibility in birds. We examined correlations of skeletal muscle and heart masses and pectoralis muscle citrate synthase (CS activity (an indicator of cellular metabolic intensity with Msum in house sparrows (Passer domesticus and dark-eyed juncos (Junco hyemalis to determine whether these traits are associated with Msum variation. Pectoralis mass was positively correlated with Msum for both species, but no significant correlation remained for either species after accounting for body mass (Mb variation. Combined flight and leg muscle masses were also not significantly correlated with Msum for either species. In contrast, heart mass was significantly positively correlated with Msum for juncos and nearly so (P = 0.054 for sparrows. Mass-specific and total pectoralis CS activities were significantly positively correlated with Msum for sparrows, but not for juncos. Thus, myocyte metabolic intensity influences Msum variation in house sparrows, although the stronger correlation of total (r = 0.495 than mass-specific (r = 0.378 CS activity with Msum suggests that both pectoralis mass and metabolic intensity impact Msum. In contrast, neither skeletal muscle masses nor pectoralis metabolic intensity varied with Msum in juncos. However, heart mass was associated with Msum variation in both species. These data suggest that drivers of metabolic flexibility are not uniform among bird species.

  9. Metabolic rate and evaporative water loss of Mexican Spotted and Great Horned Owls

    Science.gov (United States)

    Joseph L. Ganey; Russell P. Balda; Rudy M. King

    1993-01-01

    We measured rates of oxygen consumption and evaporative water loss (EWL) of Mexican Spotted (Strix occidentalis lucida) and Great Horned (Bubo virginianus) owls in Arizona. Basal metabolic rate averaged 0.84 ccO2. g-1. h-1...

  10. Physiological effects of bioceramic material: harvard step, resting metabolic rate and treadmill running assessments.

    Science.gov (United States)

    Leung, Ting-Kai; Kuo, Chia-Hua; Lee, Chi-Ming; Kan, Nai-Wen; Hou, Chien-Wen

    2013-12-31

    Previous biomolecular and animal studies have shown that a room-temperature far-infrared-rayemitting ceramic material (bioceramic) demonstrates physical-biological effects, including the normalization of psychologically induced stress-conditioned elevated heart rate in animals. In this clinical study, the Harvard step test, the resting metabolic rate (RMR) assessment and the treadmill running test were conducted to evaluate possible physiological effects of the bioceramic material in human patients. The analysis of heart rate variability (HRV) during the Harvard step test indicated that the bioceramic material significantly increased the high-frequency (HF) power spectrum. In addition, the results of RMR analysis suggest that the bioceramic material reduced oxygen consumption (VO2). Our results demonstrate that the bioceramic material has the tendency to stimulate parasympathetic responses, which may reduce resting energy expenditure and improve cardiorespiratory recovery following exercise.

  11. Adaptive changes in basal metabolic rate and thermogenesis in chronic undernutrition

    International Nuclear Information System (INIS)

    Shetty, P.S.

    1993-01-01

    Metabolic adaptation during chronic undernutrition represents a complex integration of several processes which affect the total energy expenditure of the individual. Basal metabolic rate (BMR) is reduced; reductions in BMR per unit fat free mass (FFM) is difficult to demonstrate. BMR changes in undernutrition reflect the low body weight as well as alterations in the composition of the FFM; more specifically changes in the ratio of viscera to muscle compartments of the FFM. Thermogenic responses to norepinephrine are transiently suppressed but recover rapidly on repeated stimulation. Dietary thermogenesis is enhanced possible the result of increases in tissue synthesis within the body. Changes in BMR and thermogenesis suggestive of an increase in metabolic efficiency is thus difficult to demonstrate in chronic undernutrition. (author). 15 refs, 2 figs, 7 tabs

  12. Water turnover rate and its metabolism in defaunated, refaunated and faunated male buffalo calves

    International Nuclear Information System (INIS)

    Chaudhary, L.C.; Srivastava, Arun

    1993-01-01

    In tropical countries like India, environment climatic conditions are variable throughout the year ranging from favourable to very hostile. The high temperature and humidity and often limited supply of water causes low productivity of livestock even when good quality of feed is supplied in required quantity. The turnover rate of water is related to environmental temperature, feed supply, protein or electrolyte content of the diet and also on physiological status of the animals.In the present experiment tritiated water dilution technique was used in an attempt to study the effect of removing ciliate protozoa from the rumen (defaunation) on water metabolism and its turnover rate in buffalo calves given wheat straw and concentrate mixture. (author). 18 refs., 2 tabs

  13. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  14. Molecular evolutionary rates are not correlated with temperature and latitude in Squamata: an exception to the metabolic theory of ecology?

    Science.gov (United States)

    Rolland, Jonathan; Loiseau, Oriane; Romiguier, Jonathan; Salamin, Nicolas

    2016-05-20

    The metabolic theory of ecology stipulates that molecular evolutionary rates should correlate with temperature and latitude in ectothermic organisms. Previous studies have shown that most groups of vertebrates, such as amphibians, turtles and even endothermic mammals, have higher molecular evolutionary rates in regions where temperature is high. However, the association between molecular evolutionary rates and temperature or latitude has never been tested in Squamata. We used a large dataset including the spatial distributions and environmental variables for 1,651 species of Squamata and compared the contrast of the rates of molecular evolution with the contrast of temperature and latitude between sister species. Using major axis regressions and a new algorithm to choose independent sister species pairs, we found that temperature and absolute latitude were not associated with molecular evolutionary rates. This absence of association in such a diverse ectothermic group questions the mechanisms explaining current pattern of species diversity in Squamata and challenges the presupposed universality of the metabolic theory of ecology.

  15. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer's disease using FDG-PET

    International Nuclear Information System (INIS)

    Mosconi, Lisa; Santi, Susan De; Li, Yi; Li, Juan; Zhan, Jiong; Boppana, Madhu; Tsui, Wai Hon; Leon, Mony J. de; Pupi, Alberto

    2006-01-01

    This study was designed to examine the utility of visual inspection of medial temporal lobe (MTL) metabolism in the diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD) using FDG-PET scans. Seventy-five subjects [27 normal controls (NL), 26 MCI, and 22 AD] with FDG-PET and MRI scans were included in this study. We developed a four-point visual rating scale to evaluate the presence and severity of MTL hypometabolism on FDG-PET scans. The visual MTL ratings were compared with quantitative glucose metabolic rate (MR glc ) data extracted using regions of interest (ROIs) from the MRI-coregistered PET scans of all subjects. A standard rating evaluation of neocortical hypometabolism was also completed. Logistic regressions were used to determine and compare the diagnostic accuracy of the MTL and cortical ratings. For both MTL and cortical ratings, high intra- and inter-rater reliabilities were found (p values glc measures (p values <0.001). The combination of MTL and cortical ratings significantly improved the diagnostic accuracy over the cortical rating alone, with 100% of AD, 77% of MCI, and 85% of NL cases being correctly identified. This study shows that the visual rating of MTL hypometabolism on PET is reliable, yields a diagnostic accuracy equal to the quantitative ROI measures, and is clinically useful and more sensitive than cortical ratings for patients with MCI. We suggest this method be further evaluated for its potential in the early diagnosis of AD. (orig.)

  16. Food composition influences metabolism, heart rate and organ growth during digestion in Python regius.

    Science.gov (United States)

    Henriksen, Poul Secher; Enok, Sanne; Overgaard, Johannes; Wang, Tobias

    2015-05-01

    Digestion in pythons is associated with a large increase in oxygen consumption (SDA), increased cardiac output and growth in visceral organs assisting in digestion. The processes leading to the large postprandial rise in metabolism in snakes is subject to opposing views. Gastric work, protein synthesis and organ growth have each been speculated to be major contributors to the SDA. To investigate the role of food composition on SDA, heart rate (HR) and organ growth, 48 ball pythons (Python regius) were fed meals of either fat, glucose, protein or protein combined with carbonate. Our study shows that protein, in the absence or presence of carbonate causes a large SDA response, while glucose caused a significantly smaller SDA response and digestion of fat failed to affect metabolism. Addition of carbonate to the diet to stimulate gastric acid secretion did not increase the SDA response. These results support protein synthesis as a major contributor to the SDA response and show that increased gastric acid secretion occurs at a low metabolic cost. The increase in metabolism was supported by tachycardia caused by altered autonomic regulation as well as an increased non-adrenergic, non-cholinergic (NANC) tone in response to all diets, except for the lipid meal. Organ growth only occurred in the small intestine and liver in snakes fed on a high protein diet. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. [Analysis of body composition and resting metabolic rate of 858 middle-aged and elderly people in urban area of Beijing].

    Science.gov (United States)

    Yu, D N; Xian, T Z; Wang, L J; Cheng, B; Sun, M X; Guo, L X

    2018-05-10

    Objective: To understand the overweight rate and obesity rate in middle-aged and elderly people in urban area of Beijing, and analyze the changes of body composition and resting metabolic rate with age. Methods: From November 2014 to December 2015, body composition measurement and resting metabolic rate detection were conducted among 858 people aged 51 to 99 years, including 760 men, 98 women, who received physical examination at Beijing Hospital. Results: The overweight rate was 51.4 % , and the obesity rate was 16.9 % . The overweight rate was 26.5 % and the obesity rate was 14.3 % in women, significantly lower than those in men (54.6 % and 17.2 % ) ( P area and resting metabolic rate in different age groups were different ( P area increased obviously ( P area increased significantly in age group 70- years ( P area of Beijing, and the rates were higher in men than in women. With the increase of age, the skeletal muscle volume, muscle index and resting metabolic rate gradually decreased, while the percentage of body fat and visceral fat area increased; Overweight and obese people had earlier changes in body composition and resting metabolic rate.

  18. Regional rates of myocardial fatty acid metabolism: comparison with coronary angiography and ventriculography.

    Science.gov (United States)

    Schad, N; Wagner, R K; Hallermeier, J; Daus, H J; Vattimo, A; Bertelli, P

    1990-01-01

    In 50 patients, 1 mCi 123I phenylpentadecanoic acid (IPPA) was injected at peak ergometric stress and 1500 frames were acquired (1 frame/s) with a high count rate gamma camera. Parametric images of rates of decrease and increase for different time intervals after stress were compared with coronary angiography and LV ventriculography, separately evaluating the 3 main coronary territories: 18/150 territories supplied by normal coronaries presented rather homogeneous regional clearing rates, whereas a gradual decrease in clearing rates towards the end of the territory (frequently with peripheral defects) was seen in all 87/150 territories with significant coronary narrowing. In local correspondence to clearing defects, initial IPPA accumulations could be observed with later onset of clearing between 10 and 25 min. 44/150 territories presented abnormal clearing rates, mostly with a patchy pattern, with normal coronary anatomy, but all except one had LV dysfunction and a clinical diagnosis of cardiomyopathy, diabetes mellitus or hypertensive disease. Twenty four of the 41 patients with CAD had, in correspondence to a prior myocardial infarction, minimum or missing metabolic activity frequently in circumscribed zones, partly separated by bridges of still viable tissue with preserved but reduced clearing rates.

  19. Heat dissipation does not suppress an immune response in laboratory mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2016-05-15

    The capacity for heat dissipation is considered to be one of the most important constraints on rates of energy expenditure in mammals. To date, the significance of this constraint has been tested exclusively under peak metabolic demands, such as during lactation. Here, we used a different set of metabolic stressors, which do not induce maximum energy expenditures and yet are likely to expose the potential constraining effect of heat dissipation. We compared the physiological responses of mice divergently selected for high (H-BMR) and low basal metabolic rate (L-BMR) to simultaneous exposure to the keyhole limpet haemocyanin (KLH) antigen and high ambient temperature (Ta). At 34°C (and at 23°C, used as a control), KLH challenge resulted in a transient increase in core body temperature (Tb) in mice of both line types (by approximately 0.4°C). Warm exposure did not produce line-type-dependent differences in Tb (which was consistently higher by ca. 0.6°C in H-BMR mice across both Ta values), nor did it result in the suppression of antibody synthesis. These findings were also supported by the lack of between-line-type differences in the mass of the thymus, spleen or lymph nodes. Warm exposure induced the downsizing of heat-generating internal organs (small intestine, liver and kidneys) and an increase in intrascapular brown adipose tissue mass. However, these changes were similar in scope in both line types. Mounting a humoral immune response in selected mice was therefore not affected by ambient temperature. Thus, a combined metabolic challenge of high Ta and an immune response did not appreciably compromise the capacity to dissipate heat, even in the H-BMR mice. © 2016. Published by The Company of Biologists Ltd.

  20. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion.

    Science.gov (United States)

    Gil, Juliana S; Drager, Luciano F; Guerra-Riccio, Grazia M; Mostarda, Cristiano; Irigoyen, Maria C; Costa-Hong, Valeria; Bortolotto, Luiz A; Egan, Brent M; Lopes, Heno F

    2013-12-01

    We explored whether high blood pressure is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with metabolic syndrome. We evaluated 135 consecutive overweight/obese patients. From this group, we selected 75 patients who were not under the regular use of medications for metabolic syndrome as defined by the current Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults criteria. The patients were divided into metabolic syndrome with and without high blood pressure criteria (≥130/≥85 mmHg). Compared to the 45 metabolic syndrome patients without high blood pressure, the 30 patients with metabolic syndrome and high blood pressure had significantly higher glucose, insulin, homeostasis model assessment insulin resistance index, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, uric acid and creatinine values; in contrast, these patients had significantly lower high-density lipoprotein-cholesterol values. Metabolic syndrome patients with high blood pressure also had significantly higher levels of retinol-binding protein 4, plasminogen activator inhibitor 1, interleukin 6 and monocyte chemoattractant protein 1 and lower levels of adiponectin. Moreover, patients with metabolic syndrome and high blood pressure had increased surrogate markers of sympathetic activity and decreased baroreflex sensitivity. Logistic regression analysis showed that high-density lipoprotein, retinol-binding protein 4 and plasminogen activator inhibitor-1 levels were independently associated with metabolic syndrome patients with high blood pressure. There is a strong trend for an independent association between metabolic syndrome patients with high blood pressure and glucose levels. High blood pressure, which may be related to the autonomic dysfunction, is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with metabolic syndrome.

  1. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion

    Directory of Open Access Journals (Sweden)

    Juliana S. Gil

    2013-12-01

    Full Text Available OBJECTIVES: We explored whether high blood pressure is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with metabolic syndrome. METHODS: We evaluated 135 consecutive overweight/obese patients. From this group, we selected 75 patients who were not under the regular use of medications for metabolic syndrome as defined by the current Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults criteria. The patients were divided into metabolic syndrome with and without high blood pressure criteria (≥130/≥85 mmHg. RESULTS: Compared to the 45 metabolic syndrome patients without high blood pressure, the 30 patients with metabolic syndrome and high blood pressure had significantly higher glucose, insulin, homeostasis model assessment insulin resistance index, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, uric acid and creatinine values; in contrast, these patients had significantly lower high-density lipoprotein-cholesterol values. Metabolic syndrome patients with high blood pressure also had significantly higher levels of retinol-binding protein 4, plasminogen activator inhibitor 1, interleukin 6 and monocyte chemoattractant protein 1 and lower levels of adiponectin. Moreover, patients with metabolic syndrome and high blood pressure had increased surrogate markers of sympathetic activity and decreased baroreflex sensitivity. Logistic regression analysis showed that high-density lipoprotein, retinol-binding protein 4 and plasminogen activator inhibitor-1 levels were independently associated with metabolic syndrome patients with high blood pressure. There is a strong trend for an independent association between metabolic syndrome patients with high blood pressure and glucose levels. CONCLUSIONS: High blood pressure, which may be related to the autonomic dysfunction, is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with

  2. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.

    Science.gov (United States)

    Kawaguchi, Hideo; Yoshihara, Kumiko; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2018-05-17

    L-Arabinose is the second most abundant component of hemicellulose in lignocellulosic biomass, next to D-xylose. However, few microorganisms are capable of utilizing pentoses, and catabolic genes and operons enabling bacterial utilization of pentoses are typically subject to carbon catabolite repression by more-preferred carbon sources, such as D-glucose, leading to a preferential utilization of D-glucose over pentoses. In order to simultaneously utilize both D-glucose and L-arabinose at the same rate, a modified metabolic pathway was rationally designed based on metabolome analysis. Corynebacterium glutamicum ATCC 31831 utilized D-glucose and L-arabinose simultaneously at a low concentration (3.6 g/L each) but preferentially utilized D-glucose over L-arabinose at a high concentration (15 g/L each), although L-arabinose and D-glucose were consumed at comparable rates in the absence of the second carbon source. Metabolome analysis revealed that phosphofructokinase and pyruvate kinase were major bottlenecks for D-glucose and L-arabinose metabolism, respectively. Based on the results of metabolome analysis, a metabolic pathway was engineered by overexpressing pyruvate kinase in combination with deletion of araR, which encodes a repressor of L-arabinose uptake and catabolism. The recombinant strain utilized high concentrations of D-glucose and L-arabinose (15 g/L each) at the same consumption rate. During simultaneous utilization of both carbon sources at high concentrations, intracellular levels of phosphoenolpyruvate declined and acetyl-CoA levels increased significantly as compared with the wild-type strain that preferentially utilized D-glucose. These results suggest that overexpression of pyruvate kinase in the araR deletion strain increased the specific consumption rate of L-arabinose and that citrate synthase activity becomes a new bottleneck in the engineered pathway during the simultaneous utilization of D-glucose and L-arabinose. Metabolome analysis

  3. Original communication: Basal metabolic rate in children with a solid tumor

    NARCIS (Netherlands)

    Broeder, den E.; Oeseburg, B.; Lippens, R.J.J.; Staveren, van W.A.; Sengers, R.C.A.; Hof, van 't M.A.; Tolboom, J.J.M.

    2001-01-01

    Objective: To study the level of and changes in basal metabolic rate (BMR) in children with a solid tumour at diagnosis and during treatment in order to provide a more accurate estimate of energy requirements for nutritional support. Design: An observational study. Setting: Tertiary care at the

  4. Effects of Contingency versus Constraints on the Body-Mass Scaling of Metabolic Rate

    Directory of Open Access Journals (Sweden)

    Douglas S. Glazier

    2018-01-01

    Full Text Available I illustrate the effects of both contingency and constraints on the body-mass scaling of metabolic rate by analyzing the significantly different influences of ambient temperature (Ta on metabolic scaling in ectothermic versus endothermic animals. Interspecific comparisons show that increasing Ta results in decreasing metabolic scaling slopes in ectotherms, but increasing slopes in endotherms, a pattern uniquely predicted by the metabolic-level boundaries hypothesis, as amended to include effects of the scaling of thermal conductance in endotherms outside their thermoneutral zone. No other published theoretical model explicitly predicts this striking variation in metabolic scaling, which I explain in terms of contingent effects of Ta and thermoregulatory strategy in the context of physical and geometric constraints related to the scaling of surface area, volume, and heat flow across surfaces. My analysis shows that theoretical models focused on an ideal 3/4-power law, as explained by a single universally applicable mechanism, are clearly inadequate for explaining the diversity and environmental sensitivity of metabolic scaling. An important challenge is to develop a theory of metabolic scaling that recognizes the contingent effects of multiple mechanisms that are modulated by several extrinsic and intrinsic factors within specified constraints.

  5. Four Weeks of Classical Altitude Training Increases Resting Metabolic Rate in Highly Trained Middle-Distance Runners.

    Science.gov (United States)

    Woods, Amy L; Sharma, Avish P; Garvican-Lewis, Laura A; Saunders, Philo U; Rice, Anthony J; Thompson, Kevin G

    2017-02-01

    High altitude exposure can increase resting metabolic rate (RMR) and induce weight loss in obese populations, but there is a lack of research regarding RMR in athletes at moderate elevations common to endurance training camps. The present study aimed to determine whether 4 weeks of classical altitude training affects RMR in middle-distance runners. Ten highly trained athletes were recruited for 4 weeks of endurance training undertaking identical programs at either 2200m in Flagstaff, Arizona (ALT, n = 5) or 600m in Canberra, Australia (CON, n = 5). RMR, anthropometry, energy intake, and hemoglobin mass (Hb mass ) were assessed pre- and posttraining. Weekly run distance during the training block was: ALT 96.8 ± 18.3km; CON 103.1 ± 5.6km. A significant interaction for Time*Group was observed for absolute (kJ.day -1 ) (F-statistic, p-value: F (1,8) =13.890, p = .01) and relative RMR (F (1,8) =653.453, p = .003) POST-training. No significant changes in anthropometry were observed in either group. Energy intake was unchanged (mean ± SD of difference, ALT: 195 ± 3921kJ, p = .25; CON: 836 ± 7535kJ, p = .75). A significant main effect for time was demonstrated for total Hb mass (g) (F (1,8) =13.380, p = .01), but no significant interactions were observed for either variable [Total Hb mass (g): F (1,8) =1.706, p = .23; Relative Hb mass (g.kg -1 ): F (1,8) =0.609, p = .46]. These novel findings have important practical application to endurance athletes routinely training at moderate altitude, and those seeking to optimize energy management without compromising training adaptation. Altitude exposure may increase RMR and enhance training adaptation,. During training camps at moderate altitude, an increased energy intake is likely required to support an increased RMR and provide sufficient energy for training and performance.

  6. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells.

    Science.gov (United States)

    Bibby, Susan R S; Jones, Deborah A; Ripley, Ruth M; Urban, Jill P G

    2005-03-01

    In vitro measurements of metabolic rates of isolated bovine nucleus pulposus cells at varying levels of oxygen, glucose, and pH. To obtain quantitative information on the interactions between oxygen and glucose concentrations and pH, and the rates of oxygen and glucose consumption and lactic acid production, for disc nucleus cells. Disc cells depend on diffusion from blood vessels at the disc margins for supply of nutrients. Loss of supply is thought to lead to disc degeneration, but how loss of supply affects nutrient concentrations in the disc is not known; nutrient concentrations within discs can normally only be calculated, because concentration measurements are invasive. However, realistic predictions cannot be made until there are data from measurements of metabolic rates at conditions found in the disc in vivo, i.e., at low levels of oxygen, glucose, and pH. A metabolism chamber was designed to allow simultaneous recording of oxygen and glucose concentrations and of pH. These concentrations were measured electrochemically with custom-built glucose and oxygen sensors; lactic acid was measured biochemically. Bovine nucleus pulposus cells were isolated and inserted into the chamber, and simultaneous rates of oxygen and glucose consumption and of lactic acid production were measured over a range of glucose, oxygen, and pH levels. There were strong interactions between rates of metabolism and oxygen consumption and pH. At atmospheric oxygen levels, oxygen consumption rate at pH 6.2 was 32% of that at pH 7.4. The rate fell by 60% as oxygen concentration was decreased from 21 to 5% at pH 7.4, but only by 20% at pH 6.2. Similar interactions were seen for lactic acid production and glucose consumption rates; we found that glycolysis rates fell at low oxygen and glucose concentrations and low pH. Equations were derived that satisfactorily predict the effect of nutrient and metabolite concentrations on rates of lactic acid production rate and oxygen consumption. Disc

  7. Metabolic syndrome but not obesity measures are risk factors for accelerated age-related glomerular filtration rate decline in the general population.

    Science.gov (United States)

    Stefansson, Vidar T N; Schei, Jørgen; Solbu, Marit D; Jenssen, Trond G; Melsom, Toralf; Eriksen, Bjørn O

    2018-05-01

    Rapid age-related glomerular filtration rate (GFR) decline increases the risk of end-stage renal disease, and a low GFR increases the risk of mortality and cardiovascular disease. High body mass index and the metabolic syndrome are well-known risk factors for patients with advanced chronic kidney disease, but their role in accelerating age-related GFR decline independent of cardiovascular disease, hypertension and diabetes is not adequately understood. We studied body mass index, waist circumference, waist-hip ratio and metabolic syndrome as risk factors for accelerated GFR decline in 1261 middle-aged people representative of the general population without diabetes, cardiovascular disease or kidney disease. GFR was measured as iohexol clearance at baseline and repeated after a median of 5.6 years. Metabolic syndrome was defined as fulfilling three out of five criteria, based on waist circumference, blood pressure, glucose, high-density lipoprotein cholesterol and triglycerides. The mean GFR decline rate was 0.95 ml/min/year. Neither the body mass index, waist circumference nor waist-hip ratio predicted statistically significant changes in age-related GFR decline, but individuals with baseline metabolic syndrome had a significant mean of 0.30 ml/min/year faster decline than individuals without metabolic syndrome in a multivariable adjusted linear regression model. This association was mainly driven by the triglyceride criterion of metabolic syndrome, which was associated with a significant 0.36 ml/min/year faster decline when analyzed separately. Results differed significantly when GFR was estimated using creatinine and/or cystatin C. Thus, metabolic syndrome, but not the body mass index, waist circumference or waist-hip ratio, is an independent risk factor for accelerated age-related GFR decline in the general population. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  9. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer's disease using FDG-PET

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, Lisa [New York University School of Medicine, Department of Psychiatry, New York, NY (United States); University of Florence, Department of Clinical Pathophysiology, Nuclear Medicine Unit, Florence (Italy); New York University School of Medicine, Center for Brain Health, New York, NY (United States); Santi, Susan De; Li, Yi; Li, Juan; Zhan, Jiong; Boppana, Madhu [New York University School of Medicine, Department of Psychiatry, New York, NY (United States); Tsui, Wai Hon; Leon, Mony J. de [New York University School of Medicine, Department of Psychiatry, New York, NY (United States); Nathan Kline Institute, Orangeburg, NY (United States); Pupi, Alberto [University of Florence, Department of Clinical Pathophysiology, Nuclear Medicine Unit, Florence (Italy)

    2006-02-01

    This study was designed to examine the utility of visual inspection of medial temporal lobe (MTL) metabolism in the diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD) using FDG-PET scans. Seventy-five subjects [27 normal controls (NL), 26 MCI, and 22 AD] with FDG-PET and MRI scans were included in this study. We developed a four-point visual rating scale to evaluate the presence and severity of MTL hypometabolism on FDG-PET scans. The visual MTL ratings were compared with quantitative glucose metabolic rate (MR{sub glc}) data extracted using regions of interest (ROIs) from the MRI-coregistered PET scans of all subjects. A standard rating evaluation of neocortical hypometabolism was also completed. Logistic regressions were used to determine and compare the diagnostic accuracy of the MTL and cortical ratings. For both MTL and cortical ratings, high intra- and inter-rater reliabilities were found (p values <0.001). The MTL rating was highly correlated with and yielded a diagnostic accuracy equivalent to the ROI MR{sub glc} measures (p values <0.001). The combination of MTL and cortical ratings significantly improved the diagnostic accuracy over the cortical rating alone, with 100% of AD, 77% of MCI, and 85% of NL cases being correctly identified. This study shows that the visual rating of MTL hypometabolism on PET is reliable, yields a diagnostic accuracy equal to the quantitative ROI measures, and is clinically useful and more sensitive than cortical ratings for patients with MCI. We suggest this method be further evaluated for its potential in the early diagnosis of AD. (orig.)

  10. Interleaved MRI/MRS study of muscle perfusion, oxygenation and high energy phosphate metabolism in normal subjects and Becker's myopathic patients

    International Nuclear Information System (INIS)

    Toussaint, J.F.; Brillault-Salvat, C.; Giacomini, E.; Bloch, G.; Duboc, D.; Jehenson, P.

    1998-01-01

    We present the first results of a study comparing patients suffering from Becker's myopathy and normal volunteers. We simultaneously assessed perfusion, oxygenation and high-energy phosphate metabolism using an interleaved NMR/NMRS approach. Muscle metabolism does not seem to differ in Becker's patients, except for myoglobin reoxygenation rates. (authors)

  11. Climate and foraging mode explain interspecific variation in snake metabolic rates.

    Science.gov (United States)

    Dupoué, Andréaz; Brischoux, François; Lourdais, Olivier

    2017-11-29

    The energy cost of self-maintenance is a critical facet of life-history strategies. Clarifying the determinant of interspecific variation in metabolic rate (MR) at rest is important to understand and predict ecological patterns such as species distributions or responses to climatic changes. We examined variation of MR in snakes, a group characterized by a remarkable diversity of activity rates and a wide distribution. We collated previously published MR data ( n = 491 observations) measured in 90 snake species at different trial temperatures. We tested for the effects of metabolic state (standard MR (SMR) versus resting MR (RMR)), foraging mode (active versus ambush foragers) and climate (temperature and precipitation) while accounting for non-independence owing to phylogeny, body mass and thermal dependence. We found that RMR was 40% higher than SMR, and that active foragers have higher MR than species that ambush their prey. We found that MR was higher in cold environments, supporting the metabolic cold adaptation hypothesis. We also found an additive and positive effect of precipitation on MR suggesting that lower MR in arid environments may decrease dehydration and energetic costs. Altogether, our findings underline the complex influences of climate and foraging mode on MR and emphasize the relevance of these facets to understand the physiological impact of climate change. © 2017 The Author(s).

  12. Reduced basal metabolic rate of migratory waders wintering in coastal Africa

    NARCIS (Netherlands)

    Kersten, M.; Bruinzeel, L.W.; Wiersma, P.; Piersma, T.

    1998-01-01

    We measured Basal Metabolic Rate (EMR) of 16 wader species (order Charadriiformes) on their wintering grounds in Africa. The allometric regression equation relating BMR to body mass: BMR (W) = 4.02 x M (kg)(0.724) runs parallel to that of waders in temperate areas, but at a 20% lower elevation.

  13. Environment, migratory tendency, phylogeny and basal metabolic rate in birds.

    Directory of Open Access Journals (Sweden)

    Walter Jetz

    Full Text Available Basal metabolic rate (BMR represents the minimum maintenance energy requirement of an endotherm and has far-reaching consequences for interactions between animals and their environments. Avian BMR exhibits considerable variation that is independent of body mass. Some long-distance migrants have been found to exhibit particularly high BMR, traditionally interpreted as being related to the energetic demands of long-distance migration. Here we use a global dataset to evaluate differences in BMR between migrants and non-migrants, and to examine the effects of environmental variables. The BMR of migrant species is significantly higher than that of non-migrants. Intriguingly, while the elevated BMR of migrants on their breeding grounds may reflect the metabolic machinery required for long-distance movements, an alternative (and statistically stronger explanation is their occupation of predominantly cold high-latitude breeding areas. Among several environmental predictors, average annual temperature has the strongest effect on BMR, with a 50% reduction associated with a 20 degrees C gradient. The negative effects of temperature variables on BMR hold separately for migrants and non-migrants and are not due their different climatic associations. BMR in migrants shows a much lower degree of phylogenetic inertia. Our findings indicate that migratory tendency need not necessarily be invoked to explain the higher BMR of migrants. A weaker phylogenetic signal observed in migrants supports the notion of strong phenotypic flexibility in this group which facilitates migration-related BMR adjustments that occur above and beyond environmental conditions. In contrast to the findings of previous analyses of mammalian BMR, primary productivity, aridity or precipitation variability do not appear to be important environmental correlates of avian BMR. The strong effects of temperature-related variables and varying phylogenetic effects reiterate the importance of

  14. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  15. Regional rates of myocardial fatty acid metabolism: Comparison with coronary angiography and ventriculography

    International Nuclear Information System (INIS)

    Schad, N.; Vattimo, A.; Bertelli, P.

    1990-01-01

    In 50 patients, 1 mCi 123 I phenylpentadecanoic acid (IPPA) was injected at peak ergometric stress and 1500 frames were acquired (1 frame/s) with a high count rate gamma camera. Parametric images of rates of decrease and increase for different time intervals after stress were compared with coronary angiography and LV ventriculography, separately evaluating the 3 main coronary territories: 18/150 territories supplied by normal coronaries presented rather homogeneous regional clearing rates, whereas a gradual decrease in clearing rates towards the end of the territory (frequently with peripheral defects) was seen in all 87/150 territories with significant coronary narrowing. In local correspondence to clearing defects, initial IPPA accumulations could be observed with later onset of clearing between 10 and 25 min. In all 44/150 territories presented abnormal clearing rates, mostly with a patchy pattern, with normal coronary anatomy, but all except one had LV dysfunction and a clinical diagnosis of cardiomyopathy, diabetes mellitus or hypertensive disease. Twenty four of the 41 patients with CAD had, in correspondence to a prior myocardial infarction, minimum or missing metabolic activity frequently in circumscribed zones, partly separated by bridges of still viable tissue with preserved but reduced clearing rates. (orig.)

  16. Essential fatty acids influence metabolic rate and tolerance of hypoxia in Dover sole ( Solea solea ) larvae and juveniles

    DEFF Research Database (Denmark)

    McKenzie, David; Lund, Ivar; Pedersen, Per Bovbjerg

    2008-01-01

    Dover sole (Solea solea, Linneaus 1758) were raised from first feeding on brine shrimp (Artemia sp.) with different contents and compositions of the essential fatty acids (EFA) arachidonic acid (ARA, 20:4n - 6); eicosapentaenoic acid (EPA, 20:5n - 3), and docosahexaenoic acid (DHA, 22:6n - 3......), and their metabolic rate and tolerance to hypoxia measured prior to and following metamorphosis and settlement. Four dietary Artemia preparations were compared: (1) un-enriched; (2) enriched with a commercial EFA mixture (Easy DHA SELCO Emulsion); (3) enriched with a marine fish oil combination (VEVODAR and Incromega...... DHA) to provide a high ratio of ARA to DHA, and (4) enriched with these fish oils to provide a low ratio of ARA to DHA. Sole fed un-enriched Artemia were significantly less tolerant to hypoxia than the other dietary groups. Larvae from this group had significantly higher routine metabolic rate (RMR...

  17. Quantitative Rates of Brain Glucose Metabolism Distinguish Minimally Conscious from Vegetative State Patients

    DEFF Research Database (Denmark)

    Stender, Johan; Kupers, Ron; Rodell, Anders

    2015-01-01

    of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global......The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function...... these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.Journal of Cerebral Blood Flow & Metabolism advance online publication, 8 October 2014; doi:10...

  18. A 7-day high protein hypocaloric diet promotes cellular metabolic adaptations and attenuates lean mass loss in healthy males

    OpenAIRE

    Matthew Furber; Ana Anton-Solanas; Emma Koppe; Charlotte Ashby; Michael Roberts; Justin Roberts

    2017-01-01

    Mitochondrial quantity and density are associated with increased oxidative metabolism. It has been demonstrated that a hypocaloric high fat/low carbohydrate (HF/LC) diet can up-regulate transcriptional markers of mitochondrial biogenesis; this was yet to be explored in vivo subsequent to a high protein/low carbohydrate (HP/LC) diet. Thus the aims of the study were to explore such diets on transcriptional markers or mitochondrial biogenesis, body composition and resting metabolic rate (RMR). F...

  19. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    Science.gov (United States)

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  20. Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos

    DEFF Research Database (Denmark)

    Pineda, L; Sawosz, E; Hotowy, A

    2012-01-01

    This investigation evaluated the effects of nanoparticles of silver (AgNano) and gold (AuNano) on metabolic rate (O(2) consumption, CO(2) production and heat production-HP) and the development of embryos from different breeds of broiler and layer chicken. Gaseous exchange was measured in an open......-air-circuit respiration unit, and HP was calculated for 10, 13, 16 and 19-day-old embryos. Relative chick and muscle weights were used as a measure of growth rate and development. AgNano but not AuNano increased the rates of O(2) consumption and HP of the layer embryos. The metabolic rate of broiler embryos...... was not affected by either of the treatments, but it was significantly higher compared to the layer embryos. Neither of the nanoparticles promoted nor depressed growth and development of the embryos, irrespective of breed. Although the metabolic rate of AgNano-injected layer embryos was significantly increased...

  1. Locomotor, Heart-Rate, and Metabolic Power Characteristics of Youth Women's Field Hockey: Female Athletes in Motion (FAiM) Study

    Science.gov (United States)

    Vescovi, Jason D.

    2016-01-01

    Purpose: The purpose of this study was to quantify the locomotor, heart-rate, and metabolic power characteristics of high-level youth female field hockey matches. Method: Players from the U21 and U17 Canadian women's national teams were monitored during a 4-match test series using Global Positioning System technology. Position (forward,…

  2. Basal metabolic rate in relation to body composition and daily energy expenditure in the field vole, Microtus agrestis

    NARCIS (Netherlands)

    Meerlo, P; Bolle, L; Visser, GH; Masman, D; Daan, S

    1997-01-01

    Basal metabolic rate in the field vole (Microtus agrestis) was studied in relation to body composition and daily energy expenditure in the field Daily energy expenditure was measured by means of doubly labelled water ((D2O)-O-18). In the same individuals, basal metabolic rate was subsequently

  3. Using in vitro derived enzymatic reaction rates of metabolism to inform pesticide body burdens in amphibians

    Science.gov (United States)

    Understanding how pesticide exposure to non-target species influences toxicity is necessary to accurately assess the ecological risks these compounds pose. To assess the potential metabolic activation of broad use pesticides in amphibians, in vitro and in vivo metabolic rate cons...

  4. Metabolic neural mapping in neonatal rats

    International Nuclear Information System (INIS)

    DiRocco, R.J.; Hall, W.G.

    1981-01-01

    Functional neural mapping by 14 C-deoxyglucose autoradiography in adult rats has shown that increases in neural metabolic rate that are coupled to increased neurophysiological activity are more evident in axon terminals and dendrites than neuron cell bodies. Regions containing architectonically well-defined concentrations of terminals and dendrites (neuropil) have high metabolic rates when the neuropil is physiologically active. In neonatal rats, however, we find that regions containing well-defined groupings of neuron cell bodies have high metabolic rates in 14 C-deoxyglucose autoradiograms. The striking difference between the morphological appearance of 14 C-deoxyglucose autoradiograms obtained from neonatal and adult rats is probably related to developmental changes in morphometric features of differentiating neurons, as well as associated changes in type and locus of neural work performed

  5. Basal metabolic rate scaled to body mass within species by the ...

    African Journals Online (AJOL)

    Basal metabolic rate scaled to body mass within species by the fractal dimension of the vascular system and body composition. ... The postulate bd = c is shown to hold for both these species within the limits of experimental error, with the crucian carp evidence being especially convincing, since b, c and d are estimated from ...

  6. Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees.

    Science.gov (United States)

    Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H

    2016-10-03

    Amputees using passive ankle-foot prostheses tend to expend more metabolic energy during walking than non-amputees, and reducing this cost has been a central motivation for the development of active ankle-foot prostheses. Increased push-off work at the end of stance has been proposed as a way to reduce metabolic energy use, but the effects of push-off work have not been tested in isolation. In this experiment, participants with unilateral transtibial amputation (N=6) walked on a treadmill at a constant speed while wearing a powered prosthesis emulator. The prosthesis delivered different levels of ankle push-off work across conditions, ranging from the value for passive prostheses to double the value for non-amputee walking, while all other prosthesis mechanics were held constant. Participants completed six acclimation sessions prior to a data collection in which metabolic rate, kinematics, kinetics, muscle activity and user satisfaction were recorded. Metabolic rate was not affected by net prosthesis work rate (p=0.5; R 2 =0.007). Metabolic rate, gait mechanics and muscle activity varied widely across participants, but no participant had lower metabolic rate with higher levels of push-off work. User satisfaction was affected by push-off work (p=0.002), with participants preferring values of ankle push-off slightly higher than in non-amputee walking, possibly indicating other benefits. Restoring or augmenting ankle push-off work is not sufficient to improve energy economy for lower-limb amputees. Additional necessary conditions might include alternate timing or control, individualized tuning, or particular subject characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate.

    Directory of Open Access Journals (Sweden)

    Maxi Meissner

    Full Text Available AIMS/HYPOTHESIS: Bile acid sequestrants (BAS reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS: Lean and diabetic db/db mice were treated with 2% (wt/wt in diet Colesevelam HCl (BAS for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13C]-glucose, [2-(13C]-glycerol, [1-(2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS: Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001, a ∼300% increased glucokinase flux (p = 0.001 and a ∼200% increased total hepatic glucose production rate (p = 0.0002. BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317 but not in liver (p = 0.189. Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030 and 3-fold in db/db mice (p = 0.002. CONCLUSIONS/INTERPRETATION: BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.

  8. Impact of concentration and rate of intraluminal drug delivery on absorption and gut wall metabolism of verapamil in humans.

    Science.gov (United States)

    Glaeser, Hartmut; Drescher, Siegfried; Hofmann, Ute; Heinkele, Georg; Somogyi, Andrew A; Eichelbaum, Michel; Fromm, Martin F

    2004-09-01

    In humans gut wall metabolism can be quantitatively as important as hepatic drug metabolism in limiting the systemic exposure to drugs after oral administration. However, it has been proposed that the role of gut wall metabolism might be overemphasized, because high luminal drug concentrations would lead to a saturation of gut wall metabolism. Therefore we investigated the impact of concentration and rate of intraluminal drug delivery on absorption (F(abs)) and gastrointestinal extraction (E(GI)) of a luminally administered cytochrome P450 (CYP) 3A4 substrate (verapamil) using a multilumen perfusion catheter in combination with a stable isotope technique. Two 20-cm-long, adjacent jejunal segments were isolated with the multilumen perfusion catheter in 7 subjects. In this study 80 mg of unlabeled verapamil (d0-verapamil 15 min) was infused into one segment over a 15-minute period, 80 mg of 3-fold deuterated verapamil (d3-verapamil 240 min) was administered over a 240-minute period into the other segment, and simultaneously, 5 mg of 7-fold deuterated verapamil (d7-verapamil) was injected intravenously over a 15-minute period. The rate of intraluminal drug delivery had only a modest effect on bioavailability of the verapamil isotopes (after correction for F abs ) (F/F abs d3-verapamil 240 min versus d0-verapamil 15 min, 0.24 +/- 0.10 versus 0.20 +/- 0.09; P d3-verapamil 240 min was 0.50 +/- 0.18 compared with 0.59 +/- 0.14 for d0 -verapamil 15 min ( P d0-verapamil 15 min ) correlated strongly with E GI (d3-verapamil 240 min ) (r = 0.94, P d0-verapamil 15 min /d3-verapamil 240 min (r = 0.62, P =.03). Substantial gut wall metabolism of verapamil occurs in humans and can be predicted from ex vivo data by use of shed enterocytes. The different intraluminal concentrations and rates of intraluminal drug delivery did not lead to a pronounced saturation of intestinal drug metabolism.

  9. Sex differences in metabolic rates in field crickets and their dipteran parasitoids.

    Science.gov (United States)

    Kolluru, G R; Chappell, M A; Zuk, M

    2004-11-01

    Sex differences in metabolic rate (MR) can result from dimorphism in the performance of energetically demanding activities. Male crickets (Teleogryllus oceanicus) engage in costly calling and aggressive activity not performed by females. Consistent with this difference, we found higher maximal MR, factorial scope, and fat content in males than females. T. oceanicus song is also costly because it attracts the parasitoid fly Ormia ochracea. Parasitized crickets had reduced maximal MR consistent with a metabolic cost to harboring larvae. This cost was greater for females, either because females invest more heavily into reproduction at the expense of metabolic capacity, or because males are under stronger selection to respond to infection. Little is known about O. ochracea outside of its auditory system and parasitic lifestyle. We observed greater resting MR in male flies, possibly reflecting a sex difference in the requirement for metabolic power output, because male flies perform potentially costly mating behavior not seen in females. We found a positive relationship between larval density within a cricket and pupal resting MR, suggesting that crickets in good condition are able to both harbor more larvae and produce larvae with higher resting MR. These results reveal a complex interplay between the metabolism of crickets and their fly parasitoids.

  10. [Study of Basal metabolic rate of 81 young adults aged 20-29 years old in Changsha].

    Science.gov (United States)

    Zhou, X; Mao, D Q; Luo, J Y; Wu, J H; Zhuo, Q; Li, Y M

    2017-07-06

    Objective: To determine the basal metabolic rate (BMR) of young adults aged between 20-29 years old in Changsha. Methods: We recruited volunteers to join in our research project from April to May, 2015. All recruited volunteers must meet the inclusion criteria: aged 20-29 years old, height between 164-180 centimeters in males and 154-167 centimeters in females, in good health condition, and with no habit of regular physical exercise in last year. Finally, 81 qualified volunteers were selected as research objects, including 43 males and 38 females. The BMR, resting lying metabolism rate and resting sitting metabolism rate of the subjects were detected, and the determined BMR was compared with the calculated results: from the adjusted Schofield equation. Results The BMR, resting lying metabolism rate and resting sitting metabolism rate among males were (166.10±22.09), (174.22±24.56), and (179.54±23.35) kJ·m(-2)·h(-1), respectively, which were all higher than those among females were (137.70±20.04), (149.79±19.25), and (167.78±26.02) kJ·m(-2)·h(-1), respectively, ( PBMR of males and females calculated from the adjusted Schofield equation were (160.83±3.93), and (140.29±4.18) kJ·m(-2)·h(-1), respectively, and there was no significantly statistical difference found between the determined BMR and the calculated results from Schofield equation (adjusted) classified by sex, all P values >0.05. Conclusion: The BMR of young adults aged 20-29 years old in Changsha was in the national average level, and the adjusted Schofield equation displayed fine accuracy in predicting BMR of young adults aged 20-29 years old in Changsha.

  11. A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon Halobacterium salinarum.

    Science.gov (United States)

    Todor, Horia; Dulmage, Keely; Gillum, Nicholas; Bain, James R; Muehlbauer, Michael J; Schmid, Amy K

    2014-09-01

    Co-ordinating metabolism and growth is a key challenge for all organisms. Despite fluctuating environments, cells must produce the same metabolic outputs to thrive. The mechanisms underlying this 'growth homeostasis' are known in bacteria and eukaryotes, but remain unexplored in archaea. In the model archaeon Halobacterium salinarum, the transcription factor TrmB regulates enzyme-coding genes in diverse metabolic pathways in response to glucose. However, H. salinarum is thought not to catabolize glucose. To resolve this discrepancy, we demonstrate that TrmB regulates the gluconeogenic production of sugars incorporated into the cell surface S-layer glycoprotein. Additionally, we show that TrmB-DNA binding correlates with instantaneous growth rate, likely because S-layer glycosylation is proportional to growth. This suggests that TrmB transduces a growth rate signal to co-regulated metabolic pathways including amino acid, purine, and cobalamin biosynthesis. Remarkably, the topology and function of this growth homeostatic network appear conserved across domains despite extensive alterations in protein components. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  12. Basal metabolic rate scaled to body mass between species by the ...

    African Journals Online (AJOL)

    The principal reason that basal metabolic rate (BMR) and MMR scale with different power exponents to whole body mass is that MMR is due mainly to respiration in skeletal muscle during exercise and BMR to respiration in the viscera during rest. It follows, therefore, from the self-similarity of the vascular system that BMR is ...

  13. A 7-day high protein hypocaloric diet promotes cellular metabolic adaptations and attenuates lean mass loss in healthy males

    Directory of Open Access Journals (Sweden)

    Matthew Furber

    2017-08-01

    Full Text Available Mitochondrial quantity and density are associated with increased oxidative metabolism. It has been demonstrated that a hypocaloric high fat/low carbohydrate (HF/LC diet can up-regulate transcriptional markers of mitochondrial biogenesis; this was yet to be explored in vivo subsequent to a high protein/low carbohydrate (HP/LC diet. Thus the aims of the study were to explore such diets on transcriptional markers or mitochondrial biogenesis, body composition and resting metabolic rate (RMR. Forty-five healthy male participants were randomly assigned one of four intervention diets: eucaloric high protein low carbohydrate (PRO-EM, hypocaloric high protein low carbohydrate (PRO-ER, eucaloric high carbohydrate (CHO-EM or hypocaloric high carbohydrate (CHO-ER. The macronutrient ratio of the high protein diet and high carbohydrate diets was 40:30:30% and 10:60:30% (PRO:CHO:FAT respectively. Energy intake for the hypocaloric diets were calculated to match resting metabolic rate. Participants visited the laboratory on 3 occasions each separated by 7 days. On each visit body composition, resting metabolic rate and a muscle biopsy from the vastus lateralis was collected. Prior to visit 1 and 2 habitual diet was consumed which was used as a control, between visit 2 and 3 the intervention diet was consumed continuously for 7-days. No group × time effect was observed, however in the PRO-ER group a significant increase in AMPK, PGC-1α, SIRT1 and SIRT3 mRNA expression was observed post diet intervention groups (p < 0.05. No change was observed in any of the transcriptional markers in the other 3 groups. Despite ∼30% reduction in calorie intake no difference in lean mass (LM loss was observed between the PRO-ER and CHO-EM groups. The results from this study suggest that a 7-day a high protein low carbohydrate hypocaloric diet increased AMPK, SIRT1 and PGC-1 α mRNA expression at rest, and also suggest that increased dietary protein may attenuate LM mass

  14. Temperature- and body mass-related variation in cyclic gas exchange characteristics and metabolic rate of seven weevil species: Broader implications.

    Science.gov (United States)

    Klok, C J; Chown, S L

    2005-07-01

    The influence of temperature on metabolic rate and characteristics of the gas exchange patterns of flightless, sub-Antarctic Ectemnorhinus-group species from Heard and Marion islands was investigated. All of the species showed cyclic gas exchange with no Flutter period, indicating that these species are not characterized by discontinuous gas exchange cycles. Metabolic rate estimates were substantially lower in this study than in a previous one of a subset of the species, demonstrating that open-system respirometry methods provide more representative estimates of standard metabolic rate than do many closed-system methods. We recommend that the latter, and especially constant-pressure methods, either be abandoned for estimates of standard metabolic rate in insects, or have their outputs subject to careful scrutiny, given the wide availability of the former. V(.)CO(2) increase with an increase in temperature (range: 0-15 degrees C) was modulated by an increase in cycle frequency, but typically not by an increase in burst volume. Previous investigations of temperature-related changes in cyclic gas exchange (both cyclic and discontinuous) in several other insect species were therefore substantiated. Interspecific mass-scaling of metabolic rate (ca. 0.466-0.573, excluding and including phylogenetic non-independence, respectively) produced an exponent lower than 0.75 (but not distinguishable from it or from 0.67). The increase of metabolic rate with mass was modulated by an increase in burst volume and not by a change in cycle frequency, in keeping with investigations of species showing discontinuous gas exchange. These findings are discussed in the context of the emerging macrophysiological metabolic theory of ecology.

  15. Direct monitoring by carbon-13 nuclear magnetic resonance spectroscopy of the metabolism and metabolic rate of 13C-labeled compounds in vivo.

    Science.gov (United States)

    Iida, K; Hidoh, O; Fukami, J; Kajiwara, M

    1991-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy has been used to observe the transformations of [1-13C]-D-glucose to [1,1'-13C2]-D-trehalose, and [3-13C]-L-alanine to [2-13C]-L-glutamic acid in the living body of Gryllodes sigillatus. [3-13C]-D-Alanine was not metabolized. The metabolic rate of [1-13C]-D-glucose was found to be altered by prior injection of boric acid.

  16. Basal metabolic rate declines during long-distance migratory flight in great knots

    NARCIS (Netherlands)

    Battley, PF; Dekinga, A; Dietz, MW; Piersma, T; Tang, SX; Hulsman, K; Battley, Phil F.; Tang, Sixian

    2001-01-01

    Great Knots (Calidris tenuirostris) make one of the longest migratory flights in the avian world, flying almost 5500 km from Australia to China during northward migration. We measured basal metabolic rate (BMR) and body composition in birds before and after this flight and found that BMR decreased

  17. Effect of copper nanoparticles on metabolic rate and development of chicken embryos

    DEFF Research Database (Denmark)

    Pineda, Lane Manalili; Sawosz, E.; Vadalasetty, K. P.

    2013-01-01

    The objective of the study was to investigate the effects of an in ovo injection of CuNano and the timing of injection on metabolic rate (O consumption and heat production, HP) and development of layer hatchlings. On day 1 of incubation, 192 fertile eggs from 29-week-old Lohmann breeder strain...... weights were used as a measure of hatchling development. In ovo injection of CuNano on different days during incubation significantly decreased O consumption and HP compared with the control group. The residual yolk sac weight in the treated groups was significantly higher than in the control group (P0.......05). Furthermore, the plasma concentrations of IgM and IgG and the mRNA expression of NF-kB and TNF-α were not affected (both; P>0.05), indicating the absence of inflammatory modulation by CuNano. These preliminary results demonstrated that CuNano, regardless of the day of injection, altered the metabolic rate...

  18. Association of metabolic syndrome and change in Unified Parkinson's Disease Rating Scale scores.

    Science.gov (United States)

    Leehey, Maureen; Luo, Sheng; Sharma, Saloni; Wills, Anne-Marie A; Bainbridge, Jacquelyn L; Wong, Pei Shieen; Simon, David K; Schneider, Jay; Zhang, Yunxi; Pérez, Adriana; Dhall, Rohit; Christine, Chadwick W; Singer, Carlos; Cambi, Franca; Boyd, James T

    2017-10-24

    To explore the association between metabolic syndrome and the Unified Parkinson's Disease Rating Scale (UPDRS) scores and, secondarily, the Symbol Digit Modalities Test (SDMT). This is a secondary analysis of data from 1,022 of 1,741 participants of the National Institute of Neurological Disorders and Stroke Exploratory Clinical Trials in Parkinson Disease Long-Term Study 1, a randomized, placebo-controlled trial of creatine. Participants were categorized as having or not having metabolic syndrome on the basis of modified criteria from the National Cholesterol Education Program Adult Treatment Panel III. Those who had the same metabolic syndrome status at consecutive annual visits were included. The change in UPDRS and SDMT scores from randomization to 3 years was compared in participants with and without metabolic syndrome. Participants with metabolic syndrome (n = 396) compared to those without (n = 626) were older (mean [SD] 63.9 [8.1] vs 59.9 [9.4] years; p metabolic syndrome experienced an additional 0.6- (0.2) unit annual increase in total UPDRS ( p = 0.02) and 0.5- (0.2) unit increase in motor UPDRS ( p = 0.01) scores compared with participants without metabolic syndrome. There was no difference in the change in SDMT scores. Persons with Parkinson disease meeting modified criteria for metabolic syndrome experienced a greater increase in total UPDRS scores over time, mainly as a result of increases in motor scores, compared to those who did not. Further studies are needed to confirm this finding. NCT00449865. © 2017 American Academy of Neurology.

  19. Evaluation of rate law approximations in bottom-up kinetic models of metabolism

    DEFF Research Database (Denmark)

    Du, Bin; Zielinski, Daniel C.; Kavvas, Erol S.

    2016-01-01

    mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law......Background: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws....... These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction...

  20. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    International Nuclear Information System (INIS)

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for 82 Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity

  1. Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism.

    Science.gov (United States)

    Mandrup, Camilla M; Egelund, Jon; Nyberg, Michael; Enevoldsen, Lotte Hahn; Kjær, Andreas; Clemmensen, Andreas E; Christensen, Anders Nymark; Suetta, Charlotte; Frikke-Schmidt, Ruth; Steenberg, Dorte Enggaard; Wojtaszewski, Jørgen F P; Hellsten, Ylva; Stallknecht, Bente M

    2018-02-01

    To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause. Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n = 20) women were included in a 3-month high-intensity exercise training intervention. Body composition was assessed by magnetic resonance imaging and dual-energy x-ray absorptiometry, whole body glucose disposal rate (GDR) by hyperinsulinemic euglycemic clamp (40 mU/m/min), and femoral muscle glucose uptake by positron emission tomography/computed tomography, using the glucose analog fluorodeoxyglucose, expressed as estimated metabolic rate (eMR). Insulin signaling was investigated in muscle biopsies. Age difference between groups was 4.5 years, and no difference was observed in body composition. Training increased lean body mass (estimate [95% confidence interval] 0.5 [0.2-0.9] kg, P training (eMR vastus lateralis muscle: 27.8 [19.6-36.0] μmol/min/kg, P training-induced increases in insulin sensitivity included increased expression of hexokinase (19.2 [5.0-24.7] AU, P = 0.02) and glycogen synthase (32.4 [15.0-49.8] AU, P high-intensity exercise training.

  2. Effect of dietary restriction on immune response of laboratory mice divergently selected for basal metabolic rate.

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2012-01-01

    To study whether dietary restriction (DR; 70% of ad lib. feeding)-elicited immunosuppression results from the trade-off between the costs of mounting an immune response and the metabolic costs of maintenance, we subjected mice from two divergent lines selected for high basal metabolic rate (H-BMR) and low BMR (L-BMR) to 4 wk of DR and then challenged them with keyhole limpet hemocyanin (KLH) antigen. Those line types differ genetically with respect to BMR and to the mass of metabolically expensive internal organs, which are larger in H-BMR mice. In mice of both line types, DR resulted in a significant reduction of body mass, an immune response, and the downsizing of spleen, lymph nodes, thymus, heart, and kidneys but not small intestines. DR resulted in a greater reduction of the spleen and lymph nodes in mice of the H-BMR line type, whereas the thymus was more affected in L-BMR line type. In contrast, immunization resulted in an increase of liver mass in DR mice of both line types. A comparison of the results of current and earlier studies on the same mouse line types suggests that metabolic trade-offs involving the costs of an immune response are more apparent when animals are forced to increase energy demands (e.g., by cold exposure) compared to when energy demands are decreased through DR. Our findings also suggest that divelrgent selection on BMR resulted in between-line-type differences in T-cell- and B-cell-mediated types of an immune response. More generally, our results indicate that production of a wide repertoire of antibodies is not correlated with high BMR.

  3. Investigations on the transport and metabolism of high density lipoprotein cholesteryl esters in African green monkeys

    International Nuclear Information System (INIS)

    Sorci-Thomas, M.G.

    1984-01-01

    The metabolic fate of circulating high density lipoprotein cholesteryl esters was studied in African green monkeys to determine the significance of the lipid transfer reaction on the catabolism of lipoprotein cholesteryl esters. A method of doubly labeling both moieties of lipoprotein cholesteryl esters with [ 3 He]cholesteryl oleate and cholesteryl [ 14 C]oleate was developed for the purpose of studying plasma cholesteryl ester metabolism in vivo. In these studies the total plasma [ 3 He]cholesterol turnover resulted in production rates, which ranged from 10-17 mg/kg day, similar to previously reported values in African green monkeys and in normal lipoproteinemic humans. In contrast to the production rates calculated from the decay of plasma 3 He-radioactivity, the production rates calculated from lipoproteins labeled with cholesteryl [ 14 C]oleate were approximately 2-3 times greater. In addition to these studies, a plasma cholesteryl ester transacylation activity was demonstrated in vitro when HDL containing doubly labeled cholesteryl esters were incubated with fresh plasma. These results demonstrated that high density lipoprotein cholesteryl esters undergo transacylation in vitro, resulting in release and reesterification of free [ 3 H]cholesterol

  4. Acute hypoxia increases the cerebral metabolic rate

    DEFF Research Database (Denmark)

    Vestergaard, Mark Bitsch; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob

    2016-01-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance im...

  5. Validity and reproducibility of resting metabolic rate measurements in rural Bangladeshi women: comparison of measurements obtained by Medgem and by Deltatrac device

    NARCIS (Netherlands)

    Alam, D.S.; Hulshof, P.J.M.; Roordink, D.; Meltzer, M.; Yunus, M.; Salam, M.A.; Raaij, van J.M.A.

    2005-01-01

    Objective:To assess reproducibility and validity of resting metabolic rate (RMR) of Bangladeshi women as measured with the MedGem device and using the Deltatrac metabolic monitor as a reference; and (2) to evaluate the FAO/WHO/UNU basal metabolic rate (BMR)-prediction equations. Design:In each of

  6. BATS RECOVERING FROM WHITE-NOSE SYNDROME ELEVATE METABOLIC RATE DURING WING HEALING IN SPRING.

    Science.gov (United States)

    Meierhofer, Melissa B; Johnson, Joseph S; Field, Kenneth A; Lumadue, Shayne S; Kurta, Allen; Kath, Joseph A; Reeder, DeeAnn M

    2018-04-04

      Host responses to infection with novel pathogens are costly and require trade-offs among physiologic systems. One such pathogen is the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) and has led to mass mortality of hibernating bats in eastern North America. Although infection with Pd does not always result in death, we hypothesized that bats that survive infection suffer significant consequences that negatively impact the ability of females to reproduce. To understand the physiologic consequences of surviving infection with Pd, we assessed differences in wing damage, mass-specific resting metabolic rate, and reproductive rate between little brown myotis ( Myotis lucifugus) that survived a winter in captivity after inoculation with Pd (WNS survivors) and comparable, uninfected bats. Survivors of WNS had significantly more damaged wing tissue and displayed elevated mass-specific metabolic rates compared with Pd-uninfected bats after emergence from hibernation. The WNS survivors and Pd-uninfected bats did not significantly differ in their reproductive capacity, at least in captivity. However, our metabolic data demonstrated greater energetic costs during spring in WNS survivors compared with uninfected bats, which may have led to other consequences for postpartum fitness. We suggest that, after surviving the energetic constraints of winter, temperate hibernating bats infected with Pd faced a second energetic bottleneck after emerging from hibernation.

  7. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome.

    Science.gov (United States)

    Larsen, I; Welde, B; Martins, C; Tjønna, A E

    2014-06-01

    Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ±  .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Science.gov (United States)

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  9. Prevalence of Metabolic Syndrome in Patients with HIV in the Era of Highly Active Antiretroviral Therapy.

    Science.gov (United States)

    Lombo, Bernardo; Alkhalil, Imran; Golden, Marjorie P; Fotjadhi, Irma; Ravi, Sreedhar; Virata, Michael; Lievano, Marta; Diez, Jose; Ghantous, Andre; Donohue, Thomas

    2015-05-01

    Since the introduction of combination antiretroviral therapy (cART) as the standard of care for HIV disease, there has been a precipitous decline in the death rate due to HIV/ AIDS. The purpose of this study was to report the prevalence of metabolic syndrome in HIV infected patients. Retrospective, cross-sectional, observational study of 259 patients with HIV infection treated with cART from an urban community hospital. Metabolic syndrome prevalence was defined using the International Diabetes Federation (IDF) and the U.S. National Cholesterol Education Program Adult Treatment Panel III (ATP III) criteria. Study patients were included regardless of the duration of cART. The prevalence of metabolic syndrome was 27% using IDF criteria and 26% using ATP III criteria. Logistic regression analysis found an association between treatment with the protease inhibitor darunavir and metabolic syndrome. (OR 3.32 with 95% confidence interval between 1.54 and 7.15). There is a high prevalence of metabolic syndrome and obesity in HIV patients treated with cART, especially those taking the protease inhibitor darunavir.

  10. Fructose, insulin resistance, and metabolic dyslipidemia

    Directory of Open Access Journals (Sweden)

    Adeli Khosrow

    2005-02-01

    Full Text Available Abstract Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia.

  11. Effects of angiotensin (1-7 on nephrosis of the mice with metabolic syndrome induced by high-salt and high-fat diet

    Directory of Open Access Journals (Sweden)

    Nan ZHU

    2013-11-01

    Full Text Available Objective  To establish a metabolic syndrome model of C57BL/6 mice by high-salt and high-fat diet, and investigate the effects of angiotensin converting enzyme 2 (ACE 2 and angiotensin (1-7 on renal damage in mice. Methods Fifty-six male C57BL/6 mice were randomly divided into 7 groups (8 each, and fed with normal diet (0.3% NaCl, 10% fat, high-salt diet (8% NaCl, 10% fat, high-fat diet (0.3% NaCl, 60% fat, high-salt and high-fat diet (8% NaCl, 60% fat, high-salt and high-fat diet with enalapril 20mg/(kg•d, with valsartan 50mg/(kg•d, and with valsartan 50mg/(kg•d plus Mas receptor antagonist (A-779 150ng/(kg•d, respectively for 16 weeks. Basal metabolic index including blood pressure, body weight, blood glucose and urinary albumin excretion rate (UAER were tested. After intraperitoneal anesthesia with chloral hydrate, the blood was collected from the carotid artery. Serum angiotensin Ⅱ and angiotensin (1-7 levels were detected by ELISA; Western blotting was performed to evaluate the expression of ACE 2 protein and collagen Ⅲ in renal tissue; renal pathological changes were observed by HE and Masson staining. Results The blood pressure, ratio of visceral fat weight/body weight, blood lipid, blood glucose and UAER increased significantly in the C57BL/6 mice fed with high-salt and high-fat diet for 16 weeks, and the renal fibrosis change was obvious, serum angiotensin Ⅱ level increased, expressions of ACE 2 and angiotensin (1-7 decreased significantly in the renal tissue. In different intervention groups, valsartan obviously alleviated the abnormal metabolism, ameliorated renal injury, promoted the expression of ACE2 and angiotensin (1-7 in the kidney and serum. However, no significant change was observed in the groups with intervention of enalapril or valsartan+A-779 compared with non-intervention group. Conclusions High-salt and high-fat diet can be used to successfully establish the model of metabolic syndrome in C57BL/6

  12. The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    Science.gov (United States)

    Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S

    2018-04-03

    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Metabolic safety-margins do not differ between cows of high and low genetic merit for milk production

    DEFF Research Database (Denmark)

    Knight, Christopher Harold; Alamer, Mohammed A; Sorensen, Annette

    2004-01-01

    Three galactopoietic stimuli, frequent milking (4X), bovine somatotrophin (bST) and thyroxine (T4) were used in an additive stair-step design to achieve maximum output (metabolic capacity) in six peak-lactation cows of high genetic merit (HT) and six of low genetic merit (LT). A further six of ea...... the commonly held belief that selective breeding of dairy cows for high milk production has rendered them markedly more susceptible to metabolic disturbances.......Three galactopoietic stimuli, frequent milking (4X), bovine somatotrophin (bST) and thyroxine (T4) were used in an additive stair-step design to achieve maximum output (metabolic capacity) in six peak-lactation cows of high genetic merit (HT) and six of low genetic merit (LT). A further six of each...... elevated heart rate and significant loss of body weight and condition compared with the combination of 4X and bST. As a result, treatments were discontinued, on an individual cow basis, before completion of this 6-week phase. Time on experiment did not differ between HT and LT. The results do not support...

  14. Use of the local false discovery rate for identification of metabolic biomarkers in rat urine following Genkwa Flos-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Zuojing Li

    Full Text Available Metabolomics is concerned with characterizing the large number of metabolites present in a biological system using nuclear magnetic resonance (NMR and HPLC/MS (high-performance liquid chromatography with mass spectrometry. Multivariate analysis is one of the most important tools for metabolic biomarker identification in metabolomic studies. However, analyzing the large-scale data sets acquired during metabolic fingerprinting is a major challenge. As a posterior probability that the features of interest are not affected, the local false discovery rate (LFDR is a good interpretable measure. However, it is rarely used to when interrogating metabolic data to identify biomarkers. In this study, we employed the LFDR method to analyze HPLC/MS data acquired from a metabolomic study of metabolic changes in rat urine during hepatotoxicity induced by Genkwa flos (GF treatment. The LFDR approach was successfully used to identify important rat urine metabolites altered by GF-stimulated hepatotoxicity. Compared with principle component analysis (PCA, LFDR is an interpretable measure and discovers more important metabolites in an HPLC/MS-based metabolomic study.

  15. Metabolic rates, enzyme activities and chemical compositions of some deep-sea pelagic worms, particularly Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida; Polychaeta)

    Science.gov (United States)

    Thuesen, Erik V.; Childress, James J.

    1993-05-01

    Investigations of metabolic rate, enzyme activity and chemical composition were undertaken on two abundant deep-sea pelagic worms: Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida; Polychaeta). Six other species of worms ( Pelagonemertes brinkmanni (Nemertea) and the following polychaetes: Pelagobia species A, Tomopteris nisseni, Tomopteris pacifica, Tomopteris species A, and Traviopsis lobifera) were captured in smaller numbers and used for comparison in the physiological and biochemical measurements. Polychaete worms had the highest oxygen consumption rates and, along with N. mirabilis, displayed significant size effects on metabolic rate. Poeobius meseres had the lowest rates of oxygen consumption and displayed no significant relationship of oxygen consumption rate to wet weight. No significant effect of size on the activities of citrate synthase, lactate dehydrogenase or pyruvate kinase was observed in P. meseres or N. mirabilis. Lipid content was higher than protein content for all the worms in this study. Carbohydrate was of little significance in these worms and was usually metabolic rates. It appears that polychaete worms as a group have higher metabolic rates than bathypelagic shrimps, copepods and fishes, and may be the animals with the highest metabolic rates in the bathypelagic regions of the world's oceans.

  16. Standard metabolic rate predicts growth trajectory of juvenile Chinese crucian carp (Carassius auratus under changing food availability

    Directory of Open Access Journals (Sweden)

    Ling-Qing Zeng

    2017-09-01

    Full Text Available Phenotypic traits vary greatly within populations and can have a significant influence on aspects of performance. The present study aimed to investigate the effects of individual variation in standard metabolic rate (SMR on growth rate and tolerance to food deprivation in juvenile Chinese crucian carp (Carassius auratus under varying levels of food availability. To address this issue, 19 high and 16 low SMR individuals were randomly assigned to a satiation diet for 3 weeks, whereas another 20 high and 16 low SMR individuals were assigned to a restricted diet (approximately 50% of satiation for the same period. Then, all fish were completely food-deprived for another 3 weeks. High SMR individuals showed a higher growth rate when fed to satiation, but this advantage of SMR did not exist in food-restricted fish. This result was related to improved feeding efficiency with decreased food intake in low SMR individuals, due to their low food processing capacity and maintenance costs. High SMR individuals experienced more mass loss during food deprivation as compared to low SMR individuals. Our results here illustrate context-dependent costs and benefits of intraspecific variation in SMR whereby high SMR individuals show increased growth performance under high food availability but had a cost under stressful environments (i.e. food shortage.

  17. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.

    Science.gov (United States)

    Jackson, Rachel W; Dembia, Christopher L; Delp, Scott L; Collins, Steven H

    2017-06-01

    The goal of this study was to gain insight into how ankle exoskeletons affect the behavior of the plantarflexor muscles during walking. Using data from previous experiments, we performed electromyography-driven simulations of musculoskeletal dynamics to explore how changes in exoskeleton assistance affected plantarflexor muscle-tendon mechanics, particularly for the soleus. We used a model of muscle energy consumption to estimate individual muscle metabolic rate. As average exoskeleton torque was increased, while no net exoskeleton work was provided, a reduction in tendon recoil led to an increase in positive mechanical work performed by the soleus muscle fibers. As net exoskeleton work was increased, both soleus muscle fiber force and positive mechanical work decreased. Trends in the sum of the metabolic rates of the simulated muscles correlated well with trends in experimentally observed whole-body metabolic rate ( R 2 =0.9), providing confidence in our model estimates. Our simulation results suggest that different exoskeleton behaviors can alter the functioning of the muscles and tendons acting at the assisted joint. Furthermore, our results support the idea that the series tendon helps reduce positive work done by the muscle fibers by storing and returning energy elastically. We expect the results from this study to promote the use of electromyography-driven simulations to gain insight into the operation of muscle-tendon units and to guide the design and control of assistive devices. © 2017. Published by The Company of Biologists Ltd.

  18. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    Science.gov (United States)

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  19. Mechanistic model of mass-specific basal metabolic rate: evaluation in healthy young adults.

    Science.gov (United States)

    Wang, Z; Bosy-Westphal, A; Schautz, B; Müller, M

    2011-12-01

    Mass-specific basal metabolic rate (mass-specific BMR), defined as the resting energy expenditure per unit body mass per day, is an important parameter in energy metabolism research. However, a mechanistic explanation for magnitude of mass-specific BMR remains lacking. The objective of the present study was to validate the applicability of a proposed mass-specific BMR model in healthy adults. A mechanistic model was developed at the organ-tissue level, mass-specific BMR = Σ( K i × F i ), where Fi is the fraction of body mass as individual organs and tissues, and K i is the specific resting metabolic rate of major organs and tissues. The Fi values were measured by multiple MRI scans and the K i values were suggested by Elia in 1992. A database of healthy non-elderly non-obese adults (age 20 - 49 yrs, BMI BMR of all subjects was 21.6 ± 1.9 (mean ± SD) and 21.7 ± 1.6 kcal/kg per day, respectively. The measured mass-specific BMR was correlated with the predicted mass-specific BMR (r = 0.82, P BMR, versus the average of measured and predicted mass-specific BMR. In conclusion, the proposed mechanistic model was validated in non-elderly non-obese adults and can help to understand the inherent relationship between mass-specific BMR and body composition.

  20. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome.

    Science.gov (United States)

    Kang, Seol-Jung; Kim, Eon-Ho; Ko, Kwang-Jun

    2016-06-01

    [Purpose] The purpose of this study was to investigate the effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness or female patients with metabolic syndrome. [Subjects and Methods] Subjects were randomly assigned to an exercise group (n=12) or a control group (n=11). Subjects in the exercise group performed aerobic exercise at 60-80% of maximum heart rate for 40 min 5 times a week for 12 weeks. The changes in metabolic syndrome risk factors, resting heart rate, physical fitness, and arterial stiffness were measured and analyzed before and after initiation of the exercise program to determine the effect of exercise. Arterial stiffness was assessed based on brachial-ankle pulse wave velocity (ba-PWV). [Results] Compared to the control group; The metabolic syndrome risk factors (weight, % body fat, waist circumference, systolic blood pressure, diastolic blood pressure, and HDL-Cholesterol) were significantly improved in the exercise: resting heart rate was significantly decreased; VO2max, muscle strength and muscle endurance were significantly increased; and ba-PWV was significantly decreased. [Conclusion] Aerobic exercise had beneficial effects on the resting heart rate, physical fitness, and arterial stiffness of patients with metabolic syndrome.

  1. Standard metabolic rates of early life stages of the diamondback terrapin (Malaclemys terrapin), an estuarine turtle, suggest correlates between life history changes and the metabolic economy of hatchlings.

    Science.gov (United States)

    Rowe, Christopher L

    2018-04-01

    I estimated standard metabolic rates (SMR) using measurements of oxygen consumption rates of embryos and unfed, resting hatchlings of the diamondback terrapin (Malaclemys terrapin) three times during embryonic development and twice during the early post-hatching period. The highest observed SMRs occurred during mid to late embryonic development and the early post-hatching period when hatchlings were still reliant on yolk reserves provided by the mother. Hatchlings that were reliant on yolk displayed per capita SMR 135 % higher than when measured 25 calendar days later after they became reliant on exogenous resources. The magnitude of the difference in hatchling SMR between yolk-reliant and exogenously feeding stages was much greater than that attributed to costs of digestion (specific dynamic action) observed in another emydid turtle, suggesting that processing of the yolk was not solely responsible for the observed difference. The pre-feeding period of yolk reliance of hatchlings corresponds with the period of dispersal from the nesting site, suggesting that elevated SMR during this period could facilitate dispersal activities. Thus, I hypothesize that the reduction in SMR after the development of feeding behaviors may reflect an energy optimization strategy in which a high metabolic expenditure in support of development and growth of the embryo and dispersal of the hatchling is followed by a substantial reduction in metabolic expenditure coincident with the individual becoming reliant on exogenous resources following yolk depletion. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Contaminants and energy expenditure in an Arctic seabird: Organochlorine pesticides and perfluoroalkyl substances are associated with metabolic rate in a contrasted manner.

    Science.gov (United States)

    Blévin, Pierre; Tartu, Sabrina; Ellis, Hugh I; Chastel, Olivier; Bustamante, Paco; Parenteau, Charline; Herzke, Dorte; Angelier, Frédéric; Gabrielsen, Geir W

    2017-08-01

    Basal metabolic rate (BMR), the minimal energetic cost of living in endotherms, is known to be influenced by thyroid hormones (THs) which are known to stimulate in vitro oxygen consumption of tissues in birds and mammals. Several environmental contaminants may act on energy expenditure through their thyroid hormone-disrupting properties. However, the effect of contaminants on BMR is still poorly documented for wildlife. Here, we investigated the relationships between three groups of contaminants (organochlorines (OCs), perfluoroalkyl substances (PFASs), and mercury) with metabolic rate (MR), considered here as a proxy of BMR and also with circulating total THs (thyroxine (TT4) and triiodothyronine (TT3)) in Arctic breeding adult black-legged kittiwakes (Rissa tridactyla) from Svalbard, during the chick rearing period. Our results indicate a negative relationship between the sum of all detected chlordanes (∑CHLs) and MR in both sexes whereas perfluorotridecanoate (PFTrA) and MR were positively related in females only. MR was not associated with mercury. Additionally, levels of TT3 were negatively related to ∑CHLs but not to PFTrA. The findings from the present study indicate that some OCs (in both sexes) and some PFASs (only in females) could disrupt fine adjustment of BMR during reproduction in adult kittiwakes. Importantly, highly lipophilic OCs and highly proteinophilic PFASs appear, at least in females, to have the ability to disrupt the metabolic rate in an opposite way. Therefore, our study highlights the need for ecotoxicological studies to include a large variety of contaminants which can act in an antagonistic manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.

    Science.gov (United States)

    Swanson, David L; Thomas, Nathan E; Liknes, Eric T; Cooper, Sheldon J

    2012-01-01

    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, M(sum) (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; M(sum) and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and M(sum) only) and examined correlations among these variables. We also measured BMR and M(sum) in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either M(sum) or MMR in juncos. Moreover, no significant correlation between M(sum) and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and M(sum) were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and M(sum) were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic

  4. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.

    Directory of Open Access Journals (Sweden)

    David L Swanson

    Full Text Available The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, M(sum (maximum thermoregulatory metabolic rate and MMR (maximum exercise metabolic rate in a hop-flutter chamber in winter for dark-eyed juncos (Junco hyemalis, American goldfinches (Carduelis tristis; M(sum and MMR only, and black-capped chickadees (Poecile atricapillus; BMR and M(sum only and examined correlations among these variables. We also measured BMR and M(sum in individual house sparrows (Passer domesticus in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either M(sum or MMR in juncos. Moreover, no significant correlation between M(sum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and M(sum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and M(sum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential

  5. Metabolic Syndrome and Short-Term Heart Rate Variability in Adults with Intellectual Disabilities

    Science.gov (United States)

    Chang, Yaw-Wen; Lin, Jin-Ding; Chen, Wei-Liang; Yen, Chia-Feng; Loh, Ching-Hui; Fang, Wen-Hui; Wu, Li-Wei

    2012-01-01

    Metabolic syndrome (MetS) increases the risk of cardiovascular events. Heart rate variability (HRV) represents autonomic functioning, and reduced HRV significantly increases cardiovascular mortality. The aims of the present paper are to assess the prevalence of MetS in adults with intellectual disabilities (ID), the difference in short-term HRV…

  6. Dietary supplement increases plasma norepinephrine, lipolysis, and metabolic rate in resistance trained men

    Directory of Open Access Journals (Sweden)

    Schilling Brian K

    2009-01-01

    Full Text Available Abstract Background Dietary supplements targeting fat loss and increased thermogenesis are prevalent within the sport nutrition/weight loss market. While some isolated ingredients have been reported to be efficacious when used at high dosages, in particular in animal models and/or via intravenous delivery, little objective evidence is available pertaining to the efficacy of a finished product taken by human subjects in oral form. Moreover, many ingredients function as stimulants, leading to increased hemodynamic responses. The purpose of this investigation was to determine the effects of a finished dietary supplement on plasma catecholamine concentration, markers of lipolysis, metabolic rate, and hemodynamics. Methods Ten resistance trained men (age = 27 ± 4 yrs; BMI = 25 ± 3 kg· m-2; body fat = 9 ± 3%; mean ± SD ingested a dietary supplement (Meltdown®, Vital Pharmaceuticals or a placebo, in a random order, double blind cross-over design, with one week separating conditions. Fasting blood samples were collected before, and at 30, 60, and 90 minutes post ingestion and were assayed for epinephrine (EPI, norepinephrine (NE, glycerol, and free fatty acids (FFA. Area under the curve (AUC was calculated for all variables. Gas samples were collected from 30–60 minutes post ingestion for measurement of metabolic rate. Heart rate and blood pressure were recorded at all blood collection times. Results AUC was greater for the dietary supplement compared to the placebo for NE (1332 ± 128 pg·mL-1·90 min-1 vs. 1003 ± 133 pg·mL-1·90 min-1; p = 0.03, glycerol (44 ± 3 μg·mL-1·90 min-1 vs. 26 ± 2 μg·mL-1·90 min-1; p -1·90 min-1 vs. 0.88 ± 0.12 mmol·L-1·90 min-1; p = 0.0003. No difference between conditions was noted for EPI AUC (p > 0.05. For all variables, values were highest at 90 minutes post ingestion. Total kilocalorie expenditure during the 30 minute collection period was 29.6% greater (p = 0.02 for the dietary supplement (35 ± 3

  7. Dynamics of pyruvate metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, Claus Rix; Jensen, Niels B.S.; Christensen, Bjarke

    2001-01-01

    The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end...... product. At a lower dilution rate, the pyruvate metabolism shifted towards mixed acid-product formation where formate, acetate, and ethanol were produced in addition to lactate. The regulation of the shift in pyruvate metabolism was investigated by monitoring the dynamic behavior of L. lactis...

  8. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Directory of Open Access Journals (Sweden)

    Viola Pavlova

    Full Text Available Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus. Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB congener, 2,2',4,4',55-hexaCB (CB153 in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  9. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-02

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  10. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-02-01

    Full Text Available Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO and Derbesia tenuissima (DT, in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  11. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. PMID:25648511

  12. Heart rate variability analysed by Poincaré plot in patients with metabolic syndrome

    Czech Academy of Sciences Publication Activity Database

    Kubíčková, A.; Kozumplík, J.; Nováková, Z.; Plachý, M.; Jurák, Pavel; Lipoldová, J.

    2016-01-01

    Roč. 49, č. 1 (2016), s. 23-28 ISSN 0022-0736 R&D Projects: GA ČR GAP102/12/2034 Institutional support: RVO:68081731 Keywords : heart rate variability * metabolic syndrome * Poincaré plot * tilt table test * controlled breathing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.514, year: 2016

  13. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  14. Diets supplemented with seaweed affect metabolic rate, innate immune, and antioxidant responses, but not individual growth rate in European seabass (Dicentrarchus labrax)

    DEFF Research Database (Denmark)

    Peixoto, Maria J.; Svendsen, Jon Christian; Malte, Hans

    2016-01-01

    This study investigated the effects of seaweed dietary supplementation on measures of fish performance including aerobic metabolism, digestive enzymes activity, innate immune status, oxidative damage, and growth rate using European seabass (Dicentrarchus labrax). Fish were fed for 49 days with th...

  15. Velocity, aerobic power and metabolic cost of whole body and arms only front crawl swimming at various stroke rates.

    Science.gov (United States)

    Morris, Kirstin S; Osborne, Mark A; Shephard, Megan E; Skinner, Tina L; Jenkins, David G

    2016-05-01

    Stroke rate (SR) has not been considered in previous research examining the relative roles of the limbs in front-crawl performance. This study compared velocity, aerobic power ([Formula: see text]) and metabolic cost (C) between whole body (WB) and arms only (AO) front-crawl swimming across various intensities while controlling SR. Twenty Australian national swimmers performed six 200 m front-crawl efforts under two conditions: (1) WB swimming and, (2) AO swimming. Participants completed the 200 m trials under three SR conditions: "low" (22-26 stroke-cycles min(-1)), "moderate" (30-34 stroke-cycles min(-1) and "high" (38-42 stroke-cycles min(-1)). [Formula: see text] was continuously measured, with C, velocity, SR, and kick rate calculated for each effort. Regardless of the SR condition and sex, AO velocity was consistently lower than WB velocity by ~11.0 % (p  0.01). When C was expressed as a function of velocity, WB and AO regression equations differed for males (p = 0.01) but not for females (p = 0.087). Kick rate increased as SR increased (p swimming is the same. Coaches should consider these results when prescribing AO sets if their intention is to reduce the metabolic load.

  16. Radiographic and metabolic response rates following image-guided stereotactic radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Grills, Inga S.; Wong, Ching-Yee Oliver; Galerani, Ana Paula; Chao, Kenneth; Welsh, Robert; Chmielewski, Gary; Yan Di; Kestin, Larry L.

    2011-01-01

    Purpose: To evaluate radiographic and metabolic response after stereotactic body radiotherapy (SBRT) for early lung tumors. Materials and methods: Thirty-nine tumors were treated prospectively with SBRT (dose = 48-60 Gy, 4-5 Fx). Thirty-six cases were primary NSCLC (T1N0 = 67%; T2N0 = 25%); three cases were solitary metastases. Patients were followed using CT and PET at 6, 16, and 52 weeks post-SBRT, with CT follow-up thereafter. RECIST and EORTC criteria were used to evaluate CT and PET responses. Results: At median follow-up of 9 months (0.4-26), RECIST complete response (CR), partial response (PR), and stable disease (SD) rates were 3%, 43%, 54% at 6 weeks; 15%, 38%, 46% at 16 weeks; 27%, 64%, 9% at 52 weeks. Mean baseline tumor volume was reduced by 46%, 70%, 87%, and 96%, respectively at 6, 16, 52, and 72 weeks. Mean baseline maximum standardized uptake value (SUV) was 8.3 (1.1-20.3) and reduced to 3.4, 3.0, and 3.7 at 6, 16, and 52 weeks after SBRT. EORTC metabolic CR/PR, SD, and progressive disease rates were 67%, 22%, 11% at 6 weeks; 86%, 10%, 3% at 16 weeks; 95%, 5%, 0% at 52 weeks. Conclusions: SBRT yields excellent RECIST and EORTC based response. Metabolic response is rapid however radiographic response occurs even after 1-year post treatment.

  17. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    OpenAIRE

    Kim, Hyerang; Lee, Saningun; Choue, Ryowon

    2011-01-01

    Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collec...

  18. A gas trapping method for high-throughput metabolic experiments.

    Science.gov (United States)

    Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E

    2018-01-01

    Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.

  19. Efficiency of rate and latency coding with respect to metabolic cost and time

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie

    2017-01-01

    Roč. 161, Nov 2017 (2017), s. 31-40 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : rate coding * temporal coding * metabolic cost * Fisher information Subject RIV: BD - Theory of Information OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 1.652, year: 2016

  20. The relationship between basal metabolic rate and daily energy expenditure in birds and mammals

    NARCIS (Netherlands)

    Ricklefs, RE; Konarzewski, M; Daan, S

    We examined the relationship between daily energy expenditure (DEE) and basal metabolic rate (BMR) in birds and mammals. Two models of the relationship between DEE and BMR were distinguished: a ''shared pathways'' model in which DEE replaces BMR in the active organism and a ''partitioned pathways''

  1. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism

    Directory of Open Access Journals (Sweden)

    Clare Stawski

    2017-12-01

    Full Text Available According to the “aerobic capacity model,” endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ and increasing at ambient temperatures (Ta below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles (Myodes glareolus have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (Tb during exposure to high Ta. To test these hypotheses we measured the RMR and Tb of selected and control voles at Ta from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the Tb of selected lines within the TNZ was greater than the Tb of control lines, particularly at the maximum measured Ta of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT is significantly lower in the selected lines, the LCT (26.1°C does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (−28.6°C than in control lines (−20.2°C. Thus, selection for high aerobic exercise performance, even though operating under

  2. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism.

    Science.gov (United States)

    Stawski, Clare; Koteja, Paweł; Sadowska, Edyta T

    2017-01-01

    According to the "aerobic capacity model," endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ) and increasing at ambient temperatures (T a ) below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles ( Myodes glareolus ) have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (T b ) during exposure to high T a . To test these hypotheses we measured the RMR and T b of selected and control voles at T a from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the T b of selected lines within the TNZ was greater than the T b of control lines, particularly at the maximum measured T a of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT) is significantly lower in the selected lines, the LCT (26.1°C) does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (-28.6°C) than in control lines (-20.2°C). Thus, selection for high aerobic exercise performance, even though operating under thermally

  3. Premigratory fat metabolism in hummingbirds: A rumsfeldian approach

    Directory of Open Access Journals (Sweden)

    Raul K. SUAREZ

    2013-06-01

    Full Text Available Hummingbird migration is a remarkable feat, given the small body sizes of migratory species, their high metabolic rates during flight and the long distances traveled using fat to fuel the effort. Equally remarkable is the ability of premigratory hummingbirds in the wild to accumulate fat, synthesized from sugar, at rates as high as 10% of body mass per day. This paper summarizes, using Rumsfeldian terminology, “known knowns” concerning the energetics of hummingbird migration and premigratory fattening. Energy metabolism during hover-feeding on floral nectar is fueled directly by dietary sugar through the pathway recently named the “sugar oxidation cascade”. However, flight without feeding for more than a few minutes requires shifting to fat as a fuel. It is proposed that behavior and metabolic fuel choice are coadapted to maximize the rate of fat deposition during premigratory fattening. The hummingbird liver appears to possess extraordinarily high capacities for fatty acid synthesis. The analysis of “known knowns” leads to identification of “known unknowns”, e.g., the fates of dietary glucose and fructose, the regulation of fat metabolism and metabolic interactions between liver and adipose tissue. The history of science behooves recognition of “unknown unknowns” that, when discovered serendipitously, might shed new light on fundamental mechanisms as well as human pathological conditions [Current Zoology 59 (3: 371–380, 2013].

  4. Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens.

    Science.gov (United States)

    Salar-García, María J; Bernal, Vicente; Pastor, José M; Salvador, Manuel; Argandoña, Montserrat; Nieto, Joaquín J; Vargas, Carmen; Cánovas, Manuel

    2017-02-08

    The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production. Optimal production of ectoines is conditioned by the interplay of carbon and nitrogen metabolisms. In this work, we set out to determine how nitrogen supply affects the production of ectoines. Chromohalobacter salexigens was challenged to grow in media with unbalanced carbon/nitrogen ratio. In C. salexigens, overflow metabolism and ectoines production are a function of medium composition. At low ammonium conditions, the growth rate decreased importantly, up to 80%. Shifts in overflow metabolism were observed when changing the C/N ratio in the culture medium. 13 C-NMR analysis of ectoines labelling revealed a high metabolic rigidity, with almost constant flux ratios in all conditions assayed. Unbalanced C/N ratio led to pyruvate accumulation, especially upon N-limitation. Analysis of an ect - mutant demonstrated the link between metabolic overflow and ectoine biosynthesis. Under non ectoine synthesizing conditions, glucose uptake and metabolic overflow decreased importantly. Finally, in fed-batch cultures, biomass yield was affected by the feeding scheme chosen. High growth (up to 42.4 g L -1 ) and volumetric ectoine yields (up to 4.21 g L -1 ) were obtained by minimizing metabolite overflow and nutrient accumulation in high density cultures in a low nitrogen fed-batch culture. Moreover, the yield coefficient calculated for the transformation of glucose into biomass was 30% higher in fed-batch than in the batch culture, demonstrating that the metabolic

  5. Avian basal metabolic rates : their association with body composition and energy expenditure in nature

    NARCIS (Netherlands)

    Daan, Serge; Masman, Dirkjan; Groenewold, Alex

    Measurements of basal metabolic rate (BMR), body water, fat, and lean dry mass of different organs were obtained in 22 bird species, ranging from 10.8 to 1,253 g body mass. Residuals of BMR (after subtracting BMR allometrically predicted from body mass) were positively correlated with residuals of

  6. Metabolic Rate and Climatic Fluctuations Shape Continental Wide Pattern of Genetic Divergence and Biodiversity in Fishes

    Science.gov (United States)

    April, Julien; Hanner, Robert H.; Mayden, Richard L.; Bernatchez, Louis

    2013-01-01

    Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes. PMID:23922969

  7. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol.

    Science.gov (United States)

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis; Chen, Jun; Lee, Sang Yup; Solem, Christian; Jensen, Peter Ruhdal

    2016-07-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for linking metabolic pathways to achieve redox balance and rescued growth. By comprehensive rerouting of metabolism, activation of respiration, and finally metal ion catalysis, we successfully managed to convert the homolactic bacterium Lactococcus lactis into a homo-diacetyl producer with high titer (95mM or 8.2g/L) and high yield (87% of the theoretical maximum). Subsequently, the pathway was extended to (S,S)-2,3-butanediol (S-BDO) through efficiently linking two metabolic pathways via chemical catalysis. This resulted in efficient homo-S-BDO production with a titer of 74mM (6.7g/L) S-BDO and a yield of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...... their mesophilic counterparts at similarly low temperatures....

  9. Metabolic rate of spiders (Pardosa prativage) feed on prey species of different diet quality measured by colorimetry

    DEFF Research Database (Denmark)

    Nielsen, Søren Achim; Kynde, Bjarke; Westh, Peter

    The metabolic rate was measured in the wolf spider Pardosa prativaga after preying different species of aphids, collembolans and fruit flies raised on common commercial medium. The activity of detoxification enzyme systems Glutathione S-Transferase (GST), Glutathione Peroxidase (GSTpx) was invest......The metabolic rate was measured in the wolf spider Pardosa prativaga after preying different species of aphids, collembolans and fruit flies raised on common commercial medium. The activity of detoxification enzyme systems Glutathione S-Transferase (GST), Glutathione Peroxidase (GSTpx......) was investigated for spiders preying the different species. The heat production of starved P. prativaga was ca. 1.5 mW per mg fresh weight. For specimens feed on fruit flies (Drosophila melanogaster) the heat production was appreciable higher whereas feed on the aphids Sitobion avenae and Rhopalosiphum padi...... the heat production was on the same level or lower than in the staved spiders. The variation of the observed metabolic changes was in concordance with the variations in enzyme activities....

  10. Metabolic and cardiac changes in high cholesterol-fructose-fed rats

    DEFF Research Database (Denmark)

    Axelsen, Lene N; Pedersen, Henrik D; Petersen, Jørgen S

    2010-01-01

    Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague-Dawley r......Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague...

  11. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    International Nuclear Information System (INIS)

    Koretsky, A.P.

    1984-01-01

    31 P NMR is a unique tool to study bioenergetics in living cells. The application of magnetization transfer techniques to the measurement of steady-state enzyme reaction rates provides a new approach to understanding the regulation of high energy phosphate metabolism. This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate were compared to whole kidney oxygen consumption and Na + reabsorption rates to derive ATP/O values. The problems associated with ATP synthesis rate measurements in kidney, e.g. the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed. In heart, the forward rate through creatine kinase was measured to be larger than the reverse rate. To account for the difference in forward and reverse rates a model is proposed based on the compartmentation of a small pool of ATP

  12. High population increase rates.

    Science.gov (United States)

    1991-09-01

    In addition to its economic and ethnic difficulties, the USSR faces several pressing demographic problems, including high population increase rates in several of its constituent republics. It has now become clear that although the country's rigid centralized planning succeeded in covering the basic needs of people, it did not lead to welfare growth. Since the 1970s, the Soviet economy has remained sluggish, which as led to increase in the death and birth rates. Furthermore, the ideology that held that demography could be entirely controlled by the country's political and economic system is contradicted by current Soviet reality, which shows that religion and ethnicity also play a significant role in demographic dynamics. Currently, Soviet republics fall under 2 categories--areas with high or low natural population increase rates. Republics with low rates consist of Christian populations (Armenia, Moldavia, Georgia, Byelorussia, Russia, Lithuania, Estonia, Latvia, Ukraine), while republics with high rates are Muslim (Tadzhikistan, Uzbekistan, Turkmenistan, Kirgizia, Azerbaijan Kazakhstan). The later group has natural increase rates as high as 3.3%. Although the USSR as a whole is not considered a developing country, the later group of republics fit the description of the UNFPA's priority list. Another serious demographic issue facing the USSR is its extremely high rate of abortion. This is especially true in the republics of low birth rates, where up to 60% of all pregnancies are terminated by induced abortions. Up to 1/5 of the USSR's annual health care budget is spent on clinical abortions -- money which could be better spent on the production of contraceptives. Along with the recent political and economic changes, the USSR is now eager to deal with its demographic problems.

  13. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet.

    Science.gov (United States)

    Clarke, K J; Whitaker, K W; Reyes, T M

    2009-02-01

    The central administration of apelin, a recently identified adipokine, has been shown to affect food and water intake. The present study investigated whether body weight could affect an animal's response to apelin. The effects of centrally-administered apelin-13 on food and water intake, activity and metabolic rate were investigated in adult male diet-induced obese (DIO) rats fed either a high fat (32%) or control diet. Rats were administered i.c.v. apelin-13, 15-30 min prior to lights out, and food and water intake, activity and metabolic rate were assessed. Intracerebroventricular administration of apelin-13 decreased food and water intake and respiratory exchange ratio in DIO rats on the control diet, but had no effect in DIO rats on the high-fat diet. In an effort to identify potential central mechanisms explaining the observed physiological responses, the mRNA level of the apelin receptor, APJ, was examined in the hypothalamus. A high-fat diet induced an up-regulation of the expression of the receptor. Apelin induced a down-regulation of the receptor, but only in the DIO animals on the high-fat diet. In conclusion, we have demonstrated a diminished central nervous system response to apelin that is coincident with obesity.

  14. Omega-3 Fatty Acid Supplementation for 12 Weeks Increases Resting and Exercise Metabolic Rate in Healthy Community-Dwelling Older Females.

    Directory of Open Access Journals (Sweden)

    Samantha L Logan

    Full Text Available Critical among the changes that occur with aging are decreases in muscle mass and metabolic rate and an increase in fat mass. These changes may predispose older adults to chronic disease and functional impairment; ultimately resulting in a decrease in the quality of life. Research has suggested that long chain omega-3 fatty acids, found predominantly in fatty fish, may assist in reducing these changes. The objective of this study was to evaluate the effect of fish oil (FO supplementation in a cohort of healthy, community-dwelling older females on 1 metabolic rate and substrate oxidation at rest and during exercise; 2 resting blood pressure and resting and exercise heart rates; 3 body composition; 4 strength and physical function, and; 5 blood measures of insulin, glucose, c-reactive protein, and triglycerides. Twenty-four females (66 ± 1 yr were recruited and randomly assigned to receive either 3g/d of EPA and DHA or a placebo (PL, olive oil for 12 wk. Exercise measurements were taken before and after 12 wk of supplementation and resting metabolic measures were made before and at 6 and 12 wk of supplementation. The results demonstrated that FO supplementation significantly increased resting metabolic rate by 14%, energy expenditure during exercise by 10%, and the rate of fat oxidation during rest by 19% and during exercise by 27%. In addition, FO consumption lowered triglyceride levels by 29% and increased lean mass by 4% and functional capacity by 7%, while no changes occurred in the PL group. In conclusion, FO may be a strategy to improve age-related physical and metabolic changes in healthy older females. Trial registration: ClinicalTrials.gov NCT01734538.

  15. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Drew, Brian G; Duffy, Stephen J; Formosa, Melissa F

    2009-01-01

    BACKGROUND: Low plasma high-density lipoprotein (HDL) is associated with elevated cardiovascular risk and aspects of the metabolic syndrome. We hypothesized that HDL modulates glucose metabolism via elevation of plasma insulin and through activation of the key metabolic regulatory enzyme, AMP...

  16. Embryos in the fast lane: high-temperature heart rates of turtles decline after hatching.

    Directory of Open Access Journals (Sweden)

    Wei-Guo Du

    Full Text Available In ectotherms such as turtles, the relationship between cardiovascular function and temperature may be subject to different selective pressures in different life-history stages. Because embryos benefit by developing as rapidly as possible, and can "afford" to expend energy to do so (because they have access to the yolk for nutrition, they benefit from rapid heart (and thus, developmental rates. In contrast, hatchlings do not have a guaranteed food supply, and maximal growth rates may not enhance fitness--and so, we might expect a lower heart rate, especially at high temperatures where metabolic costs are greatest. Our data on two species of emydid turtles, Chrysemys picta, and Graptemys pseudogeographica kohnii, support these predictions. Heart rates of embryos and hatchlings were similar at low temperatures, but heart rates at higher temperatures were much greater before than after hatching.

  17. Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak.

    Science.gov (United States)

    Polymeropoulos, E T; Heldmaier, G; Frappell, P B; McAllan, B M; Withers, K W; Klingenspor, M; White, C R; Jastroch, M

    2012-01-07

    Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.

  18. Feasible metabolisms in high pH springs of the Philippines.

    Science.gov (United States)

    Cardace, Dawn; Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Arcilla, Carlo A

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization.

  19. Metabolic rate and clothing insulation data of children and adolescents during various school activities

    NARCIS (Netherlands)

    Havenith, G.

    2007-01-01

    Data on metabolic rates (n = 0;81) and clothing insulation (n = 96) of school children and adolescents (A, primary school: age 9-10; B, primary school: age 10-11 year; C, junior vocational (technical) education: age 13-16 (lower level); D, same as C but at advanced level; and E, senior vocational

  20. Covariation of metabolic rates and cell size in coccolithophores

    Science.gov (United States)

    Aloisi, G.

    2015-08-01

    Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis and, to a lesser extent, calcification covary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature (below the optimum temperature for growth) produces the opposite effect. The magnitude of the coccosphere-size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere-size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. The coccolithophore database is strongly biased in favour of experiments with the coccolithophore Emiliania huxleyi (E. huxleyi; 82 % of database entries), and more experiments with other species are needed to understand whether these observations can be extended to coccolithophores in general. I

  1. Basal metabolic rate in free-living tropical birds: the influence of phylogenetic, behavioral, and ecological factors.

    Science.gov (United States)

    Bushuev, Andrey; Tolstenkov, Oleg; Zubkova, Ekaterina; Solovyeva, Eugenia; Kerimov, Anvar

    2018-02-01

    The majority of our knowledge of avian energetics is based on studies of birds from temperate and high latitudes. Using the largest existing sample of wild-caught Old World tropical species, we showed that birds from Southern Vietnam had lower basal metabolic rate (BMR) than temperate species. The strongest dissimilarity between tropical and temperate species was the low scaling exponent in the allometric relation between BMR and body mass in tropical birds (the regression slope was 0.573). The passerine migrants to temperate and high latitudes had higher BMR than tropical sedentary passerines. Body mass alone accounted for 93% of the variation in BMR (body mass ranged from 5 to 252 g). Contrary to some other studies, we did not find evidence besides the above mentioned that phylogeny, taxonomy, behavior, or ecology have a significant influence on BMR variation among tropical birds.

  2. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Weng-Yew Wong

    2012-10-01

    Full Text Available Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.

  3. Photons, photosynthesis, and high-performance computing: challenges, progress, and promise of modeling metabolism in green algae

    International Nuclear Information System (INIS)

    Chang, C H; Graf, P; Alber, D M; Kim, K; Murray, G; Posewitz, M; Seibert, M

    2008-01-01

    The complexity associated with biological metabolism considered at a kinetic level presents a challenge to quantitative modeling. In particular, the relatively sparse knowledge of parameters for enzymes with known kinetic responses is problematic. The possible space of these parameters is of high-dimension, and sampling of such a space typifies a combinatorial explosion of possible dynamic states. However, with sufficient quantitative transcriptomics, proteomics, and metabolomics data at hand, these challenges could be met by high-performance software with sampling, fitting, and optimization capabilities. With this in mind, we present the High-Performance Systems Biology Toolkit HiPer SBTK, an evolving software package to simulate, fit, and optimize metabolite concentrations and fluxes within the space of rate and binding parameters associated with detailed enzyme kinetic models. We present our chosen modeling paradigm for the formulation of metabolic pathway models, the means to address the challenge of representing such models in a precise and persistent fashion using the standardized Systems Biology Markup Language, and our second-generation model of H2-associated Chlamydomonas metabolism. Processing of such models for hierarchically parallelized simulation and optimization, job specification by the user through a GUI interface, software capabilities and initial scaling data, and the mapping of the computation to biological questions is also discussed. Moreover, we present near-term future software and model development goals

  4. High Dose Ascorbate Causes Both Genotoxic and Metabolic Stress in Glioma Cells

    Science.gov (United States)

    Castro, Maria Leticia; Carson, Georgia M.; McConnell, Melanie J.; Herst, Patries M.

    2017-01-01

    We have previously shown that exposure to high dose ascorbate causes double stranded breaks (DSBs) and a build-up in S-phase in glioblastoma (GBM) cell lines. Here we investigated whether or not this was due to genotoxic stress as well as metabolic stress generated by exposure to high dose ascorbate, radiation, ascorbate plus radiation and H2O2 in established and primary GBM cell lines. Genotoxic stress was measured as phosphorylation of the variant histone protein, H2AX, 8-oxo-7,8-dihydroguanine (8OH-dG) positive cells and cells with comet tails. Metabolic stress was measured as a decrease in NADH flux, mitochondrial membrane potential (by CMXRos), ATP levels (by ATP luminescence) and mitochondrial superoxide production (by mitoSOX). High dose ascorbate, ascorbate plus radiation, and H2O2 treatments induced both genotoxic and metabolic stress. Exposure to high dose ascorbate blocked DNA synthesis in both DNA damaged and undamaged cell of ascorbate sensitive GBM cell lines. H2O2 treatment blocked DNA synthesis in all cell lines with and without DNA damage. DNA synthesis arrest in cells with damaged DNA is likely due to both genotoxic and metabolic stress. However, arrest in DNA synthesis in cells with undamaged DNA is likely due to oxidative damage to components of the mitochondrial energy metabolism pathway. PMID:28737676

  5. Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance.

    Science.gov (United States)

    Wisniewska, Danuta Maria; Johnson, Mark; Teilmann, Jonas; Rojano-Doñate, Laia; Shearer, Jeanne; Sveegaard, Signe; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-06-06

    The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator's role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2-4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3-10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these "aquatic shrews," even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. High Rate Digital Demodulator ASIC

    Science.gov (United States)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  7. Hormonal contraception in obesity, the metabolic syndrome, and diabetes

    DEFF Research Database (Denmark)

    Skouby, S.O.

    2010-01-01

    The rate of obesity worldwide is currently at epidemic proportions. As part of obesity, the metabolic syndrome describes a clustering of metabolic abnormalities that increase the cardiovascular and diabetes risk. In particular, women from developing countries have diabetes in the reproductive age...... diabetes, hormonal contraception should therefore be part of the highly needed preconception care and metabolic control...

  8. Hormonal Contraception in obestiy, the metabolic syndrome, and diabetes

    DEFF Research Database (Denmark)

    Skouby, Sven O.

    2010-01-01

    The rate of obesity worldwide is currently at epidemic proportions. As part of obesity, the metabolic syndrome describes a clustering of metabolic abnormalities that increase the cardiovascular and diabetes risk. In particular, women from developing countries have diabetes in the reproductive age...... diabetes, hormonal contraception should therefore be part of the highly needed preconception care and metabolic control...

  9. Metabolic changes in malnutrition.

    Science.gov (United States)

    Emery, P W

    2005-10-01

    This paper is concerned with malnutrition caused by inadequate intake of all the major nutrients rather than deficiency diseases relating to a single micronutrient. Three common situations are recognised: young children in third world countries with protein-energy malnutrition; adults in the same countries who are chronically adapted to subsisting on marginally inadequate diets; and patients who become malnourished as a result of chronic diseases. In all these situations infectious diseases are often also present, and this complicates the interpretation of biochemical and physiological observations. The metabolic response to starvation is primarily concerned with maintaining a supply of water-soluble substrates to supply energy to the brain. Thus there is an initial rise in metabolic rate, reflecting gluconeogenic activity. As fasting progresses, gluconeogenesis is suppressed to minimise muscle protein breakdown and ketones become the main fuel for the brain. With chronic underfeeding the basal metabolic rate per cell appears to fall, but the mechanistic basis for this is not clear. The main adaptation to chronic energy deficiency is slow growth and low adult body size, although the reduction in energy requirement achieved by this is partially offset by the preservation of the more metabolically active organs at the expense of muscle, which has a lower metabolic rate. The interaction between malnutrition and the metabolic response to trauma has been studied using an animal model. The rise in energy expenditure and urinary nitrogen excretion following surgery were significantly attenuated in malnourished rats, suggesting that malnutrition impairs the ability of the body to mobilise substrates to support inflammatory and reparative processes. However, the healing process in wounded muscle remained unimpaired in malnutrition, suggesting that this process has a high biological priority.

  10. Female fibromyalgia patients: lower resting metabolic rates than matched healthy controls.

    Science.gov (United States)

    Lowe, John C; Yellin, Jackie; Honeyman-Lowe, Gina

    2006-07-01

    Many features of fibromyalgia and hypothyroidism are virtually the same, and thyroid hormone treatment trials have reduced or eliminated fibromyalgia symptoms. These findings led the authors to test the hypothesis that fibromyalgia patients are hypometabolic compared to matched controls. Resting metabolic rate (RMR) was measured by indirect calorimetry and body composition by bioelectrical impedance for 15 fibromyalgia patients and 15 healthy matched controls. Measured resting metabolic rate (mRMR) was compared to percentages of predicted RMR (pRMR) by fat-free weight (FFW) (Sterling-Passmore: SP) and by sex, age, height, and weight (Harris-Benedict: HB). Patients had a lower mRMR (4,306.31+/-1077.66 kJ vs 5,411.59+/-695.95 kJ, p=0.0028) and lower percentages of pRMRs (SP: -28.42+/-15.82% vs -6.83+/-12.55%, pBMI) best accounted for variability in controls' RMRs, age and fat weight (FW) did for patients. In the patient group, TSH level accounted for 28% of the variance in pain distribution, and free T3 (FT3) accounted for 30% of the variance in pressure-pain threshold. Patients had lower mRMR and percentages of pRMRs. The lower RMRs were not due to calorie restriction or low FFW. Patients' normal FFW argues against low physical activity as the mechanism. TSH, FT4, and FT3 levels did not correlate with RMRs in either group. This does not rule out inadequate thyroid hormone regulation because studies show these laboratory values do not reliably predict RMR.

  11. Phenotypic flexibility of traits related to energy acquisition in mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Ksiazek, Aneta; Czerniecki, Jan; Konarzewski, Marek

    2009-03-01

    Theoretical considerations suggest that one of the main factors determining phenotypic flexibility of the digestive system is the size (mass) of internal organs. To test this, we used mice from two lines selected for high and low levels of basal metabolic rate (BMR). Mice with higher BMRs also have larger internal organs and higher daily food consumption (C) under non-stressful conditions. We exposed animals from both lines to a sudden cold exposure by transferring them (without prior acclimation) from an ambient temperature of 23 degrees C to 5 degrees C. Cold exposure elicited a twofold increase in C and a 25% reduction of apparent digestive efficiency. For the same body mass-corrected C, small intestine, kidneys, heart and liver of cold-exposed low-BMR mice were smaller than those of the high-BMR line. Therefore, the internal organs of low-BMR animals were burdened with substantially higher metabolic loads (defined as C or digestible food intake per total mass of a particular organ). The mass-specific activity of citrate synthase (CS) in the liver and kidneys (but not heart) was also lower in the low-BMR mice. The magnitude of phenotypic flexibility of internal organ size and CS activity was strictly proportional to the organ mass (in the case of kidneys and liver, also mass-specific CS activity) prior to an increased energy demand. Thus, phenotypic flexibility had additive rather than multiplicative dynamics. Our results also suggest that variation in BMR positively correlates with the magnitude of an immediate spare capacity that fuels the initial response of internal organs to a sudden metabolic stress.

  12. Monitoring and prevalence rates of metabolic syndrome in military veterans with serious mental illness.

    Directory of Open Access Journals (Sweden)

    Sameed Ahmed M Khatana

    . With the high prevalence of metabolic syndrome seen in this population, there appears to be a need to intensify efforts to reduce this monitoring gap.

  13. Influence of a Gas Exchange Correction Procedure on Resting Metabolic Rate and Respiratory Quotient in Humans.

    Science.gov (United States)

    Galgani, Jose E; Castro-Sepulveda, Mauricio A

    2017-11-01

    The aim of this study was to determine the influence of a gas exchange correction protocol on resting metabolic rate (RMR) and respiratory quotient (RQ), assessed by a Vmax Encore 29n metabolic cart (SensorMedics Co., Yorba Linda, California) in overnight fasted and fed humans, and to assess the predictive power of body size for corrected and uncorrected RMR. Healthy participants (23 M/29 F; 34 ± 9 years old; 26.3 ± 3.7 kg/m 2 ) ingested two 3-hour-apart glucose loads (75 g). Indirect calorimetry was conducted before and hourly over a 6-hour period. Immediately after indirect calorimetry assessment, gas exchange was simulated through high-precision mass-flow regulators, which permitted the correction of RMR and RQ values. Uncorrected and corrected RMR and RQ were directly related at each time over the 6-hour period. However, uncorrected versus corrected RMR was 6.9% ± 0.5% higher (128 ± 7 kcal/d; P exchange in humans over a 6-hour period is feasible and provides information of improved accuracy. © 2017 The Obesity Society.

  14. Prevalence of lipodystrophy and metabolic syndrome among HIV positive individuals on Highly Active Anti-Retroviral treatment in Jimma, South West Ethiopia.

    Science.gov (United States)

    Berhane, Tsegay; Yami, Alemishet; Alemseged, Fessahaye; Yemane, Tilahun; Hamza, Leja; Kassim, Mehedi; Deribe, Kebede

    2012-01-01

    Use of highly active antiretroviral therapy has led to significant reductions in morbidity and mortality rates. However, these agents had also given rise to the metabolic and morphologic abnormalities which are modifiable risk factors for cardiovascular diseases. Evidences elsewhere indicate growing in prevalence of these problems but studies are lacking in Ethiopia. This study was conducted to determine the prevalence of HIV-associated lipodystrophy and metabolic syndrome in patients taking highly active antiretroviral therapy. A cross-sectional study was conducted in 2010 on a sample of 313 patients taking highly active antiretroviral therapy in Jimma University specialized hospital. Structured questionnaire was used to assess patients' sociodemographic characteristics and clinical manifestations of metabolic abnormalities. Checklists were used for reviewing charts about clinical manifestations of metabolic abnormalities and immunologic profile of patients. Data was cleaned, entered in and analyzed using SPSS for windows version 16.0. Metabolic syndrome was detected in 21.1% and HIV-lipodystrophy was detected 12.1% of patients. The factors found to be independently associated with metabolic syndrome were taking the antiretroviral therapy for more than 12 months (AOR=4.2; 95% CI=1.24-14.23) and female sex (AOR=2.30; 95% CI=1.0-5.27) and the factor found to be independently associated with HIV-lipodystrophy was taking the antiretroviral therapy (AOR=3.59; 95% CI=1.03-12.54) for more than 12 months. Metabolic abnormalities were relatively common in the study population. The problems were higher among those who took anti-retroviral treatment for longer duration. Therefore, regular screening for and taking action against the metabolic abnormalities is mandatory.

  15. Physiological Status Drives Metabolic Rate in Mediterranean Geckos Infected with Pentastomes.

    Directory of Open Access Journals (Sweden)

    Isabel C Caballero

    Full Text Available Negative effects of parasites on their hosts are well documented, but the proximate mechanisms by which parasites reduce their host's fitness are poorly understood. For example, it has been suggested that parasites might be energetically demanding. However, a recent meta-analysis suggests that they have statistically insignificant effects on host resting metabolic rate (RMR. It is possible, though, that energetic costs associated with parasites are only manifested during and/or following periods of activity. Here, we measured CO2 production (a surrogate for metabolism in Mediterranean geckos (Hemidactylus turcicus infected with a lung parasite, the pentastome Raillietiella indica, under two physiological conditions: rested and recently active. In rested geckos, there was a negative, but non-significant association between the number of pentastomes (i.e., infection intensity and CO2 production. In recently active geckos (chased for 3 minutes, we recorded CO2 production from its maximum value until it declined to a stationary phase. We analyzed this decline as a 3 phase function (initial decline, secondary decline, stationary. Geckos that were recently active showed, in the secondary phase, a significant decrease in CO2 production as pentastome intensity increased. Moreover, duration of the secondary phase showed a significant positive association with the number of pentastomes. These results suggest that the intensity of pentastome load exerts a weak effect on the metabolism of resting geckos, but a strong physiological effect on geckos that have recently been active; we speculate this occurs via mechanical constraints on breathing. Our results provide a potential mechanism by which pentastomes can reduce gecko fitness.

  16. Physiological Status Drives Metabolic Rate in Mediterranean Geckos Infected with Pentastomes.

    Science.gov (United States)

    Caballero, Isabel C; Sakla, Andrew J; Detwiler, Jillian T; Le Gall, Marion; Behmer, Spencer T; Criscione, Charles D

    2015-01-01

    Negative effects of parasites on their hosts are well documented, but the proximate mechanisms by which parasites reduce their host's fitness are poorly understood. For example, it has been suggested that parasites might be energetically demanding. However, a recent meta-analysis suggests that they have statistically insignificant effects on host resting metabolic rate (RMR). It is possible, though, that energetic costs associated with parasites are only manifested during and/or following periods of activity. Here, we measured CO2 production (a surrogate for metabolism) in Mediterranean geckos (Hemidactylus turcicus) infected with a lung parasite, the pentastome Raillietiella indica, under two physiological conditions: rested and recently active. In rested geckos, there was a negative, but non-significant association between the number of pentastomes (i.e., infection intensity) and CO2 production. In recently active geckos (chased for 3 minutes), we recorded CO2 production from its maximum value until it declined to a stationary phase. We analyzed this decline as a 3 phase function (initial decline, secondary decline, stationary). Geckos that were recently active showed, in the secondary phase, a significant decrease in CO2 production as pentastome intensity increased. Moreover, duration of the secondary phase showed a significant positive association with the number of pentastomes. These results suggest that the intensity of pentastome load exerts a weak effect on the metabolism of resting geckos, but a strong physiological effect on geckos that have recently been active; we speculate this occurs via mechanical constraints on breathing. Our results provide a potential mechanism by which pentastomes can reduce gecko fitness.

  17. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

    KAUST Repository

    Huete-Stauffer, Tamara Megan; Arandia-Gorostidi, Nestor; Dí az-Pé rez, Laura; Moran, Xose Anxelu G.

    2015-01-01

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We

  18. Assessing Metabolic Syndrome Through Increased Heart Rate During Exercise

    Directory of Open Access Journals (Sweden)

    Masoumeh Sadeghi

    2016-12-01

    Full Text Available The present study aimed to assess changes in resting and maximum heart rates as primary indicators of cardiac autonomic function in metabolic syndrome (MetS patients and to determine their value for discriminating MetS from non-MetS. 468 participants were enrolled in this cross-sectional study and assessed according to the updated adult treatment panel III (ATP-III definition of MetS. Resting and maximum heart rates were recorded following the Bruce protocol during an exercise. A receiver operating characteristic (ROC curve was used to identify the best cutoff point for discriminating MetS from the non-MetS state. 194 participants (41.5% were diagnosed as MetS. The mean resting heart rate (RHR was not statistically different between the two groups (P=0.078. However, the mean maximum heart (MHR rate was considerably higher in participants with MetS (142.37±14.84 beats per min compared to the non-MetS group (134.62±21.63 beats per min (P<0.001. In the MetS group, the MHR was positively correlated with the serum triglyceride level (β=0.185, P=0.033 and was inversely associated with age (β=-0.469, P<0.001. The MHR had a moderate value for discriminating MetS from the non-MetS state (c=0.580, P=0.004 with the optimal cutoff point of 140 beats per min. In MetS patients, the MHR was significantly greater compared to non-MetS subjects and was directly correlated with serum triglyceride levels and inversely with advanced age. Moreover, MHR can be used as a suspicious indicator for identifying MetS.

  19. Assessing Metabolic Syndrome Through Increased Heart Rate During Exercise.

    Science.gov (United States)

    Sadeghi, Masoumeh; Gharipour, Mojgan; Nezafati, Pouya; Shafie, Davood; Aghababaei, Esmaeil; Sarrafzadegan, Nizal

    2016-11-01

    The present study aimed to assess changes in resting and maximum heart rates as primary indicators of cardiac autonomic function in metabolic syndrome (MetS) patients and to determine their value for discriminating MetS from non-MetS. 468 participants were enrolled in this cross-sectional study and assessed according to the updated adult treatment panel III (ATP-III) definition of MetS. Resting and maximum heart rates were recorded following the Bruce protocol during an exercise. A receiver operating characteristic (ROC) curve was used to identify the best cutoff point for discriminating MetS from the non-MetS state. 194 participants (41.5%) were diagnosed as MetS. The mean resting heart rate (RHR) was not statistically different between the two groups (P=0.078). However, the mean maximum heart (MHR) rate was considerably higher in participants with MetS (142.37±14.84 beats per min) compared to the non-MetS group (134.62±21.63 beats per min) (P<0.001). In the MetS group, the MHR was positively correlated with the serum triglyceride level (β=0.185, P=0.033) and was inversely associated with age (β=-0.469, P<0.001). The MHR had a moderate value for discriminating MetS from the non-MetS state (c=0.580, P=0.004) with the optimal cutoff point of 140 beats per min. In MetS patients, the MHR was significantly greater compared to non-MetS subjects and was directly correlated with serum triglyceride levels and inversely with advanced age. Moreover, MHR can be used as a suspicious indicator for identifying MetS.

  20. Sugar Metabolism in Hummingbirds and Nectar Bats.

    Science.gov (United States)

    Suarez, Raul K; Welch, Kenneth C

    2017-07-12

    Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the "sugar oxidation cascade", the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.

  1. Sugar Metabolism in Hummingbirds and Nectar Bats

    Directory of Open Access Journals (Sweden)

    Raul K. Suarez

    2017-07-01

    Full Text Available Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the “sugar oxidation cascade”, the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.

  2. Physical activity, heart rate, metabolic profile, and estradiol in premenopausal women

    DEFF Research Database (Denmark)

    Emaus, Aina; Veierød, Marit B; Furberg, Anne-Sofie

    2008-01-01

    PURPOSE: To study whether physical inactive women with a tendency to develop metabolic syndrome have high levels of 17beta-estradiol (E2) of importance for breast cancer risk. METHODS: Two hundred and four healthy women of reproductive age were assessed for self-reported leisure-time physical...... to important biologic mechanisms operating between a sedentary lifestyle and an increased breast cancer risk....

  3. Interspecific Differences in Metabolic Rate and Metabolic Temperature Sensitivity Create Distinct Thermal Ecological Niches in Lizards (Plestiodon).

    Science.gov (United States)

    Watson, Charles M; Burggren, Warren W

    2016-01-01

    Three congeneric lizards from the southeastern United States (Plestiodon fasciatus, P. inexpectatus, and P. laticeps) exhibit a unique nested distribution. All three skink species inhabit the US Southeast, but two extend northward to central Ohio (P. fasciatus and P. laticeps) and P. fasciatus extends well into Canada. Distinct interspecific differences in microhabitat selection and behavior are associated with the cooler temperatures of the more Northern ranges. We hypothesized that interspecific differences in metabolic temperature sensitivity locally segregates them across their total range. Resting oxygen consumption was measured at 20°, 25° and 30°C. Plestiodon fasciatus, from the coolest habitats, exhibited greatly elevated oxygen consumption compared to the other species at high ecologically-relevant temperatures (0.10, 0.17 and 0.83 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Yet, P. inexpectatus, from the warmest habitats, exhibited sharply decreased oxygen consumption compared to the other species at lower ecologically-relevant temperatures (0.09, 0.27 and 0.42 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Plestiodon laticeps, from both open and closed microhabitats and intermediate latitudinal range, exhibited oxygen consumptions significantly lower than the other two species (0.057, 0.104 and 0.172 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Overall, Plestiodon showed metabolic temperature sensitivities (Q10s) in the range of 2-3 over the middle of each species' normal temperature range. However, especially P. fasciatus and P. inexpectatus showed highly elevated Q10s (9 to 25) at the extreme ends of their temperature range. While morphologically similar, these skinks are metabolically distinct across the genus' habitat, likely having contributed to their current distribution.

  4. Stable Breathing in Patients With Obstructive Sleep Apnea Is Associated With Increased Effort but Not Lowered Metabolic Rate.

    Science.gov (United States)

    de Melo, Camila M; Taranto-Montemurro, Luigi; Butler, James P; White, David P; Loring, Stephen H; Azarbarzin, Ali; Marques, Melania; Berger, Philip J; Wellman, Andrew; Sands, Scott A

    2017-10-01

    In principle, if metabolic rate were to fall during sleep in a patient with obstructive sleep apnea (OSA), ventilatory requirements could be met without increased respiratory effort thereby favoring stable breathing. Indeed, most patients achieve periods of stable flow-limited breathing without respiratory events for periods during the night for reasons that are unclear. Thus, we tested the hypothesis that in patients with OSA, periods of stable breathing occur when metabolic rate (VO2) declines. Twelve OSA patients (apnea-hypopnea index >15 events/h) completed overnight polysomnography including measurements of VO2 (using ventilation and intranasal PO2) and respiratory effort (esophageal pressure). Contrary to our hypothesis, VO2 did not differ between stable and unstable breathing periods in non-REM stage 2 (208 ± 20 vs. 213 ± 18 mL/min), despite elevated respiratory effort during stable breathing (26 ± 2 versus 23 ± 2 cmH2O, p = .03). However, VO2 was lowered during deeper sleep (244 to 179 mL/min from non-REM stages 1 to 3, p = .04) in conjunction with more stable breathing. Further analysis revealed that airflow obstruction curtailed metabolism in both stable and unstable periods, since CPAP increased VO2 by 14% in both cases (p = .02, .03, respectively). Patients whose VO2 fell most during sleep avoided an increase in PCO2 and respiratory effort. OSA patients typically convert from unstable to stable breathing without lowering metabolic rate. During sleep, OSA patients labor with increased respiratory effort but fail to satisfy metabolic demand even in the absence of overt respiratory events. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  5. Basal metabolic rate in free-living tropical birds: the influence of phylogenetic, behavioral, and ecological factors

    Science.gov (United States)

    Tolstenkov, Oleg; Zubkova, Ekaterina; Solovyeva, Eugenia; Kerimov, Anvar

    2018-01-01

    Abstract The majority of our knowledge of avian energetics is based on studies of birds from temperate and high latitudes. Using the largest existing sample of wild-caught Old World tropical species, we showed that birds from Southern Vietnam had lower basal metabolic rate (BMR) than temperate species. The strongest dissimilarity between tropical and temperate species was the low scaling exponent in the allometric relation between BMR and body mass in tropical birds (the regression slope was 0.573). The passerine migrants to temperate and high latitudes had higher BMR than tropical sedentary passerines. Body mass alone accounted for 93% of the variation in BMR (body mass ranged from 5 to 252 g). Contrary to some other studies, we did not find evidence besides the above mentioned that phylogeny, taxonomy, behavior, or ecology have a significant influence on BMR variation among tropical birds. PMID:29492036

  6. Resting metabolic rate of obese patients under very low calorie ketogenic diet

    OpenAIRE

    Gomez-Arbelaez, Diego; Crujeiras, Ana B.; Castro, Ana I.; Martinez-Olmos, Miguel A.; Canton, Ana; Ordoñez-Mayan, Lucia; Sajoux, Ignacio; Galban, Cristobal; Bellido, Diego; Casanueva, Felipe F.

    2018-01-01

    Background The resting metabolic rate (RMR) decrease, observed after an obesity reduction therapy is a determinant of a short-time weight regain. Thus, the objective of this study was to evaluate changes in RMR, and the associated hormonal alterations in obese patients with a very low-calorie ketogenic (VLCK)-diet induced severe body weight (BW) loss. Method From 20 obese patients who lost 20.2 kg of BW after a 4-months VLCK-diet, blood samples and body composition analysis, determined by DXA...

  7. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish.

    Science.gov (United States)

    Gingerich, Andrew James; Philipp, David P; Suski, Cory D

    2010-03-01

    The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

  8. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.

    2010-11-20

    The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

  9. A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates.

    Science.gov (United States)

    Bech, Claus; Chappell, Mark A; Astheimer, Lee B; Londoño, Gustavo A; Buttemer, William A

    2016-05-01

    Life history theory suggests that species experiencing high extrinsic mortality rates allocate more resources toward reproduction relative to self-maintenance and reach maturity earlier ('fast pace of life') than those having greater life expectancy and reproducing at a lower rate ('slow pace of life'). Among birds, many studies have shown that tropical species have a slower pace of life than temperate-breeding species. The pace of life has been hypothesized to affect metabolism and, as predicted, tropical birds have lower basal metabolic rates (BMR) than temperate-breeding birds. However, many temperate-breeding Australian passerines belong to lineages that evolved in Australia and share 'slow' life-history traits that are typical of tropical birds. We obtained BMR from 30 of these 'old-endemics' and ten sympatric species of more recently arrived passerine lineages (derived from Afro-Asian origins or introduced by Europeans) with 'faster' life histories. The BMR of 'slow' temperate-breeding old-endemics was indistinguishable from that of new-arrivals and was not lower than the BMR of 'fast' temperate-breeding non-Australian passerines. Old-endemics had substantially smaller clutches and longer maximal life spans in the wild than new arrivals, but neither clutch size nor maximum life span was correlated with BMR. Our results suggest that low BMR in tropical birds is not functionally linked to their 'slow pace of life' and instead may be a consequence of differences in annual thermal conditions experienced by tropical versus temperate species.

  10. Spatial variation in the relationship between performance and metabolic rate in wild juvenile Atlantic salmon

    Science.gov (United States)

    Grethe Robertsen; John D. Armstrong; Keith H. Nislow; Ivar Herfindal; Simon McKelvey; Sigurd Einum; Martin. Genner

    2014-01-01

    Maintenance of metabolic rate (MR, the energy cost of self-maintenance) is linked to behavioural traits and fitness and varies substantially within populations. Despite having received much attention, the causes and consequences of this variation remain obscure. Theoretically, such within-population variation in fitness-related traits can be maintained by environmental...

  11. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox

    DEFF Research Database (Denmark)

    Snoep, Jacky L.; Jensen, Peter Ruhdal; Groeneveld, Philip

    1994-01-01

    how, paradoxically, one can determine control of growth rate, of growth yield and of other fluxes in a chemostat. We develop metabolic control analysis for the chemostat. this analysis does not depend on the particular way in which specific growth rate varies with the concentration of the growth...

  12. Circulating Metabolic Profile of High Producing Holstein Dairy Cows

    Directory of Open Access Journals (Sweden)

    Aliasghar CHALMEH

    2015-07-01

    Full Text Available Assessing the metabolic profile based on the concept that the laboratory measurement of certain circulating components is a tool to evaluate metabolic status of dairy cows. Veterinarian also can evaluate the energy input-output relationships by assessing the metabolic profile to prevent and control of negative energy balance, metabolic disorders and nutritional insufficiencies. In the present study, 25 multiparous Holstein dairy cows were divided to 5 equal groups containing early, mid and late lactation, and far-off and close-up dry. Blood samples were collected from all cows through jugular venipuncture and sera were evaluated for glucose, insulin, β-hydroxybutyric acid (BHBA, non-esterified fatty acid (NEFA, cholesterol, triglyceride (TG, high, low and very low density lipoproteins (HDL, LDL and VLDL. Insulin levels in mid lactation and close-up dry cows were significantly higher than other groups (P<0.05 and the lowest insulin concentration was detected in far-off dry group. Serum concentrations of NEFA and BHBA in early and mid-lactation and close-up dry cows were significantly higher than late lactation and far-off dry animals (P<0.05. Baseline levels of cholesterol in mid and late lactation were significantly higher than other groups. The level of LDL in mid lactation cows was higher than others significantly, and its value in far-off dry cows was significantly lower than other group (P<0.05. It may be concluded that the detected changes among different groups induce commonly by negative energy balance, lactogenesis and fetal growth in each state. The presented metabolic profile can be considered as a tool to assess the energy balance in dairy cows at different physiologic states. It can be used to evaluate the metabolic situations of herd and manage the metabolic and production disorders.

  13. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction.

    Directory of Open Access Journals (Sweden)

    Katsunori Yoshikawa

    Full Text Available Arthrospira (Spirulina platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A. platensis NIES-39 including 746 metabolic reactions and 673 metabolites, and developed novel strategies to improve the production of valuable metabolites, such as glycogen and ethanol. The simulation results obtained using the metabolic model showed high consistency with experimental results for growth rates under several trophic conditions and growth capabilities on various organic substrates. The metabolic model was further applied to design a metabolic network to improve the autotrophic production of glycogen and ethanol. Decreased flux of reactions related to the TCA cycle and phosphoenolpyruvate reaction were found to improve glycogen production. Furthermore, in silico knockout simulation indicated that deletion of genes related to the respiratory chain, such as NAD(PH dehydrogenase and cytochrome-c oxidase, could enhance ethanol production by using ammonium as a nitrogen source.

  14. Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism.

    Science.gov (United States)

    Biswas, Ranjita; Wilson, Charlotte M; Giannone, Richard J; Klingeman, Dawn M; Rydzak, Thomas; Shah, Manesh B; Hettich, Robert L; Brown, Steven D; Guss, Adam M

    2017-01-01

    Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium Clostridium thermocellum is able to rapidly ferment cellulose to ethanol and other products. Recently, genes involved in H 2 production, including the hydrogenase maturase hydG and NiFe hydrogenase ech , were deleted from the chromosome of C. thermocellum . While ethanol yield increased, the growth rate of Δ hydG decreased substantially compared to wild type. Addition of 5 mM acetate to the growth medium improved the growth rate in C. thermocellum ∆hydG , whereas wild type remained unaffected. Transcriptomic analysis of the wild type showed essentially no response to the addition of acetate. However, in C. thermocellum ΔhydG , 204 and 56 genes were significantly differentially regulated relative to wild type in the absence and presence of acetate, respectively. Genes, Clo1313_0108-0125, which are predicted to encode a sulfate transport system and sulfate assimilatory pathway, were drastically upregulated in C. thermocellum ΔhydG in the presence of added acetate. A similar pattern was seen with proteomics. Further physiological characterization demonstrated an increase in sulfide synthesis and elimination of cysteine consumption in C. thermocellum ΔhydG . Clostridium thermocellum ΔhydGΔech had a higher growth rate than ΔhydG in the absence of added acetate, and a similar but less pronounced transcriptional and physiological effect was seen in this strain upon addition of acetate. Sulfur metabolism is perturbed in C. thermocellum ΔhydG strains, likely to increase flux through sulfate reduction to act either as an electron sink to balance redox reactions or to offset an unknown deficiency in sulfur assimilation.

  15. Alginate Immobilization of Metabolic Enzymes (AIME) for High ...

    Science.gov (United States)

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput screening (HTS) assays to assess chemical perturbations of molecular and cellular endpoints. A key criticism of using HTS assays for toxicity assessment is the lack of xenobiotic metabolism (XM) which precludes both metabolic detoxification as well as bioactivation of chemicals tested in vitro thereby mischaracterizing the potential risk posed by these chemicals. To address this deficiency, we have developed an extracellular platform to retrofit existing HTS assays with XM activity. This platform utilizes the S9 fraction of liver homogenate encapsulated in an alginate gel network which reduces the cytotoxicity caused by direct addition of S9 to cells in culture. Alginate microspheres containing encapsulated human liver S9 were cross-linked to solid supports extending from a 96-well plate lid and were assayed using a pro-luciferin substrate specific for CYP3A4 (IPA). We demonstrate that S9 was successfully encapsulated and remained enzymatically active post-encapsulation with 5-10X the CYP3A4 activity as compared to 1 µg solubilized human liver S9. Ketoconazole, a known inhibitor of human CYP3A4, inhibited CYP3A4 activity in a concentration-dependent manner (IC50: 0.27 µM) and inhibiti

  16. Oral insulin improves metabolic parameters in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    LEANDRO C. LIPINSKI

    2017-08-01

    Full Text Available ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL standard chow group; high fat diet low carbohydrates group (HFD and HFD plus daily oral 20U insulin gavage (HFD+INS. Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001, fasting glucose and triglycerides serum levels (p<0,05 an increased intestinal weight of distal ileum (P<0,05. Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05 in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.

  17. Length and GC content variability of introns among teleostean genomes in the light of the metabolic rate hypothesis.

    Science.gov (United States)

    Chaurasia, Ankita; Tarallo, Andrea; Bernà, Luisa; Yagi, Mitsuharu; Agnisola, Claudio; D'Onofrio, Giuseppe

    2014-01-01

    A comparative analysis of five teleostean genomes, namely zebrafish, medaka, three-spine stickleback, fugu and pufferfish was performed with the aim to highlight the nature of the forces driving both length and base composition of introns (i.e., bpi and GCi). An inter-genome approach using orthologous intronic sequences was carried out, analyzing independently both variables in pairwise comparisons. An average length shortening of introns was observed at increasing average GCi values. The result was not affected by masking transposable and repetitive elements harbored in the intronic sequences. The routine metabolic rate (mass specific temperature-corrected using the Boltzmann's factor) was measured for each species. A significant correlation held between average differences of metabolic rate, length and GC content, while environmental temperature of fish habitat was not correlated with bpi and GCi. Analyzing the concomitant effect of both variables, i.e., bpi and GCi, at increasing genomic GC content, a decrease of bpi and an increase of GCi was observed for the significant majority of the intronic sequences (from ∼ 40% to ∼ 90%, in each pairwise comparison). The opposite event, concomitant increase of bpi and decrease of GCi, was counter selected (from hypothesis that the metabolic rate plays a key role in shaping genome architecture and evolution of vertebrate genomes.

  18. Novel approach for evaluation of air change rate in naturally ventilated occupied spaces based on metabolic CO2 time variation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Markov, Detelin G.

    2014-01-01

    IAQ in many residential buildings relies on non-organized natural ventilation. Accurate evaluation of air change rate (ACR) in this situation is difficult due to the nature of the phenomenon - intermittent infiltration-exfiltration periods of mass exchange between the room air and the outdoor air...... at low rate. This paper describes a new approach for ACR evaluation in naturally ventilated occupied spaces. Actual metabolic CO2 time variation record in an interval of time is compared with the computed variation of metabolic CO2 for the same time interval under reference conditions: sleeping occupants...

  19. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction...... of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can...

  20. Comparison of metabolic substrates in alligators and several birds of prey.

    Science.gov (United States)

    Sweazea, Karen L; McMurtry, John P; Elsey, Ruth M; Redig, Patrick; Braun, Eldon J

    2014-08-01

    On average, avian blood glucose concentrations are 1.5-2 times those of mammals of similar mass and high concentrations of insulin are required to lower blood glucose. Whereas considerable data exist for granivorous species, few data are available for plasma metabolic substrate and glucoregulatory hormone concentrations for carnivorous birds and alligators. Birds and mammals with carnivorous diets have higher metabolic rates than animals consuming diets with less protein whereas alligators have low metabolic rates. Therefore, the present study was designed to compare substrate and glucoregulatory hormone concentrations in several birds of prey and a phylogenetically close relative of birds, the alligator. The hypothesis was that the combination of carnivorous diets and high metabolic rates favored the evolution of greater protein and fatty acid utilization leading to insulin resistance and high plasma glucose concentrations in carnivorous birds. In contrast, it was hypothesized that alligators would have low substrate utilization attributable to a low metabolic rate. Fasting plasma substrate and glucoregulatory hormone concentrations were compared for bald eagles (Haliaeetus leucocephalus), great horned owls (Bubo virginianus), red-tailed hawks (Buteo jamaicensis), and American alligators (Alligator mississippiensis). Avian species had high circulating β-hydroxybutyrate (10-21 mg/dl) compared to alligators (2.81 ± 0.16 mg/dl). In mammals high concentrations of this byproduct of fatty acid utilization are correlated with insulin resistance. Fasting glucose and insulin concentrations were positively correlated in eagles whereas no relationship was found between these variables for owls, hawks or alligators. Additionally, β-hydroxybutyrate concentrations were low in alligators. Similar to carnivorous mammals, ingestion of a high protein diet may have favored the utilization of fatty acids and protein for energy thereby promoting the development of insulin

  1. Exercise Intensity Modulation of Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Fábio S. Lira

    2012-01-01

    Full Text Available Lipid metabolism in the liver is complex and involves the synthesis and secretion of very low density lipoproteins (VLDL, ketone bodies, and high rates of fatty acid oxidation, synthesis, and esterification. Exercise training induces several changes in lipid metabolism in the liver and affects VLDL secretion and fatty acid oxidation. These alterations are even more conspicuous in disease, as in obesity, and cancer cachexia. Our understanding of the mechanisms leading to metabolic adaptations in the liver as induced by exercise training has advanced considerably in the recent years, but much remains to be addressed. More recently, the adoption of high intensity exercise training has been put forward as a means of modulating hepatic metabolism. The purpose of the present paper is to summarise and discuss the merit of such new knowledge.

  2. Gender dependent rate of metabolism of the opioid receptor-PET ligand [18F]fluoroethyl-diprenorphine

    International Nuclear Information System (INIS)

    Henriksen, G.; Spilker, M.E.; Hauser, A.I.; Boecker, H.; Schwaiger, M.; Wester, H.J.; Sprenger, T.; Platzer, S.; Toelle, T.R.

    2006-01-01

    Aim: The morphinane-derivate 6-O-(2-[ 18 F]fluoroethyl)-6-O-desmethyldiprenorphine ([ 18 F]FDPN) is a non-selective opioid receptor ligand currently used in positron emission tomography (PET). Correction for plasma metabolites of the arterial input function is necessary for quantitative measurements of [ 18 ]FDPN binding. A study was undertaken to investigate if there are gender dependent differences in the rate of metabolism of [ 18 F]FDPN. Methods: The rate of metabolism of [ 18 F]FDPN was mathematically quantified by fitting a bi-exponential function to each individual's dynamic metabolite data. Results: No statistically significant gender differences were found for age, weight, body mass index or dose. However, significant differences (p 18 F]FDPN faster than men. These differences were found in the contribution of the fast and slow kinetic components of the model describing the distribution of radioactive species in plasma, indicating a higher rate of enzyme-dependent degradation of [ 18 F]FDPN in women than in men. Conclusion: The findings reinforce the need for individualized metabolite correction during [ 18 F]FDPN-PET scans and also indicate that in certain cases, grouping according to gender could be performed in order to minimize methodological errors of the input function prior to kinetic analyses. (orig.)

  3. Metabolic assessments during extra-vehicular activity

    Science.gov (United States)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  4. Identical metabolic rate and thermal conductance in Rock Sandpiper (Calidris ptilocnemis) subspecies with contrasting nonbreeding life histories

    Science.gov (United States)

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; Piersma, Theunis

    2013-01-01

    Closely related species or subspecies can exhibit metabolic differences that reflect site-specific environmental conditions. Whether such differences represent fixed traits or flexible adjustments to local conditions, however, is difficult to predict across taxa. The nominate race of Rock Sandpiper (Calidris ptilocnemis) exhibits the most northerly nonbreeding distribution of any shorebird in the North Pacific, being common during winter in cold, dark locations as far north as upper Cook Inlet, Alaska (61°N). By contrast, the tschuktschorum subspecies migrates to sites ranging from about 59°N to more benign locations as far south as ~37°N. These distributional extremes exert contrasting energetic demands, and we measured common metabolic parameters in the two subspecies held under identical laboratory conditions to determine whether differences in these parameters are reflected by their nonbreeding life histories. Basal metabolic rate and thermal conductance did not differ between subspecies, and the subspecies had a similar metabolic response to temperatures below their thermoneutral zone. Relatively low thermal conductance values may, however, reflect intrinsic metabolic adaptations to northerly latitudes. In the absence of differences in basic metabolic parameters, the two subspecies’ nonbreeding distributions will likely be more strongly influenced by adaptations to regional variation in ecological factors such as prey density, prey quality, and foraging habitat.

  5. Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis.

    Science.gov (United States)

    Alsanea, Sary; Gao, Mingming; Liu, Dexi

    2017-05-01

    Reactive oxygen species generated as a by-product in metabolism play a central role in the development of obesity and obesity-related metabolic complications. The objective of the current study is to explore the possibility to block obesity and improve metabolic homeostasis via phloretin, a natural antioxidant product from apple tree leaves and Manchurian apricot. Both preventive and therapeutic activities of phloretin were assessed using a high-fat diet-induced obesity mouse model. Phloretin was injected intraperitoneally twice weekly into regular and obese mice fed a high-fat diet. The effects of phloretin treatment on body weight and composition, fat content in the liver, glucose and lipid metabolism, and insulin resistance were monitored and compared to the control animals. Phloretin treatment significantly blocks high-fat diet-induced weight gain but did not induce weight loss in obese animals. Phloretin improved glucose homeostasis and insulin sensitivity and alleviated hepatic lipid accumulation. RT-PCR analysis showed that phloretin treatment suppresses expression of macrophage markers (F4/80 and Cd68) and pro-inflammatory genes (Mcp-1 and Ccr2) and enhances adiponectin gene expression in white adipose tissue. In addition, phloretin treatment elevated the expression of fatty acid oxidation genes such as carnitine palmitoyltransferase 1a and 1b (Cpt1a and Cpt1b) and reduced expression of monocyte chemoattractant protein-1 (Mcp-1), de novo lipogenesis transcriptional factor peroxisome proliferator-activated receptor-γ 2 (Pparγ2), and its target monoacylglycerol O-acyltransferase (Mgat-1) genes. These results provide direct evidence to support a possible use of phloretin for mitigation of obesity and maintenance of metabolic homeostasis.

  6. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism

    DEFF Research Database (Denmark)

    Jansen, S W; Akintola, A A; Roelfsema, F

    2015-01-01

    hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring...... of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis...... may favour longevity without altering energy metabolism....

  7. High resolution NMR spectroscopy of physiological fluids: from metabolism to physiology

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Nicoli, F.; Torri, G.; Torri, J.; Kriat, M.; Sciaky, M.; Davin, A.; Viout, P.; Confort-Gouny, S.; Cozzone, P.J.

    1992-01-01

    High resolution NMR spectroscopy of physiological fluids provides quantitative, qualitative and dynamic information on the metabolic status of the interstitial and plasma compartments under a variety of pathophysiological conditions. The simultaneous detection and quantitation by NMR spectroscopy of numerous compounds of the intermediary metabolism offers a new insight in the understanding of the 'milieu interieur'.NMR spectroscopy of physiological fluids offers a unique way to define and monitor the global metabolic homeostasis in humans. The development of this analytical approach is still limited by the scarcity of pluridisciplinary teams able to fully exploit the wealth of information present on the NMR spectrum of a fluid. While application in pharmacology and toxicology is already established, the main areas of current development are cancer, hereditary metabolic disorders, organ transplantation and neurological diseases

  8. Ocean acidification alters early successional coral reef communities and their rates of community metabolism.

    Directory of Open Access Journals (Sweden)

    Sam H C Noonan

    Full Text Available Ocean acidification is expected to alter community composition on coral reefs, but its effects on reef community metabolism are poorly understood. Here we document how early successional benthic coral reef communities change in situ along gradients of carbon dioxide (CO2, and the consequences of these changes on rates of community photosynthesis, respiration, and light and dark calcification. Ninety standardised benthic communities were grown on PVC tiles deployed at two shallow-water volcanic CO2 seeps and two adjacent control sites in Papua New Guinea. Along the CO2 gradient, both the upward facing phototrophic and the downward facing cryptic communities changed in their composition. Under ambient CO2, both communities were dominated by calcifying algae, but with increasing CO2 they were gradually replaced by non-calcifying algae (predominantly green filamentous algae, cyanobacteria and macroalgae, which increased from ~30% to ~80% cover. Responses were weaker in the invertebrate communities, however ascidians and tube-forming polychaetes declined with increasing CO2. Differences in the carbonate chemistry explained a far greater amount of change in communities than differences between the two reefs and successional changes from five to 13 months, suggesting community successions are established early and are under strong chemical control. As pH declined from 8.0 to 7.8, rates of gross photosynthesis and dark respiration of the 13-month old reef communities (upper and cryptic surfaces combined significantly increased by 10% and 20%, respectively, in response to altered community composition. As a consequence, net production remained constant. Light and dark calcification rates both gradually declined by 20%, and low or negative daily net calcification rates were observed at an aragonite saturation state of <2.3. The study demonstrates that ocean acidification as predicted for the end of this century will strongly alter reef communities, and

  9. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates

    Directory of Open Access Journals (Sweden)

    Arike Liisa

    2011-02-01

    Full Text Available Abstract Background Lactococcus lactis is recognised as a safe (GRAS microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. Results Using glucose limited continuous cultivations, specific growth rate dependent metabolism of L. lactis including utilization of amino acids was studied based on extracellular metabolome, global transcriptome and proteome analysis. A new growth medium was designed with reduced amino acid concentrations to increase precision of measurements of consumption of amino acids. Consumption patterns were calculated for all 20 amino acids and measured carbon balance showed good fit of the data at all growth rates studied. It was observed that metabolism of L. lactis became more efficient with rising specific growth rate in the range 0.10 - 0.60 h-1, indicated by 30% increase in biomass yield based on glucose consumption, 50% increase in efficiency of nitrogen use for biomass synthesis, and 40% reduction in energy spilling. The latter was realized by decrease in the overall product formation and higher efficiency of incorporation of amino acids into biomass. L. lactis global transcriptome and proteome profiles showed good correlation supporting the general idea of transcription level control of bacterial metabolism, but the data indicated that substrate transport systems together with lower part of glycolysis in L. lactis were presumably under allosteric control. Conclusions The current study demonstrates advantages of the usage of strictly controlled continuous cultivation methods combined with multi-omics approach for quantitative understanding of amino acid and energy metabolism of L. lactis which is a valuable new knowledge for development of balanced growth media, gene manipulations for desired product

  10. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding.

    Directory of Open Access Journals (Sweden)

    Brittany V Martin-Murphy

    Full Text Available Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD. Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d(-/- mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD feeding. Compared with their WT counterparts, CD1d(-/- mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d(-/- mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.

  11. Lipid metabolism and body composition in Gclm(-/-) mice

    Energy Technology Data Exchange (ETDEWEB)

    Kendig, Eric L. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Chen, Ying [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045 (United States); Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Genter, Mary Beth; Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Shertzer, Howard G., E-mail: shertzhg@ucmail.uc.edu [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States)

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  12. Experimental sources of variation in avian energetics: estimated basal metabolic rate decreases with successive measurements.

    Science.gov (United States)

    Jacobs, Paul J; McKechnie, Andrew E

    2014-01-01

    Basal metabolic rate (BMR) is one of the most widely used metabolic variables in endotherm ecological and evolutionary physiology. Surprisingly few studies have investigated how BMR is influenced by experimental and analytical variables over and above the standardized conditions required for minimum normothermic resting metabolism. We tested whether avian BMR is affected by habituation to the conditions experienced during laboratory gas exchange measurements by measuring BMR five times in succession in budgerigars (Melopsittacus undulatus) housed under constant temperature and photoperiod. Both the magnitude and the variability of BMR decreased significantly with repeated measurements, from 0.410 ± 0.092 W (n = 9) during the first measurement to 0.285 ± 0.042 W (n = 9) during the fifth measurement. Thus, estimated BMR decreased by ∼30% within individuals solely on account of the number of times they had previously experienced the experimental conditions. The most likely explanation for these results is an attenuation with repeated exposure of the acute stress response induced by birds being handled and placed in respirometry chambers. Our data suggest that habituation to experimental conditions is potentially an important determinant of observed BMR, and this source of variation needs to be taken into account in future studies of metabolic variation among individuals, populations, and species.

  13. Paradoxical dissociation between heart rate and heart rate variability following different modalities of exercise in individuals with metabolic syndrome: The RESOLVE study.

    Science.gov (United States)

    Boudet, Gil; Walther, Guillaume; Courteix, Daniel; Obert, Philippe; Lesourd, Bruno; Pereira, Bruno; Chapier, Robert; Vinet, Agnès; Chamoux, Alain; Naughton, Geraldine; Poirier, Paul; Dutheil, Frédéric

    2017-02-01

    Aims To analyse the effects of different modalities of exercise training on heart rate variability (HRV) in individuals with metabolic syndrome (MetS). Methods and results Eighty MetS participants (aged 50-70 years) were housed and managed in an inpatient medical centre for 21 days, including weekends. Physical activity and food intake/diet were intensively monitored. Participants were randomly assigned into three training groups, differing only by intensity of exercise: moderate-endurance-moderate-resistance ( re), high-resistance-moderate-endurance ( Re), and moderate-resistance-high-endurance ( rE). HRV was recorded before and after the intervention by 24-hour Holter electrocardiogram. Although mean 24-hour heart rate decreased more in Re than re (-11.6 ± 1.6 vs. -4.8 ± 2.1%; P = 0.010), low frequency/high frequency decreased more in re than Re (-20.4 ± 5.5% vs. + 20.4 ± 9.1%; P = 0.002) and rE (-20.4 ± 5.5% vs. -0.3 ± 11.1%; P = 0.003). Very low frequency increased more in Re than re (+121.2 ± 35.7 vs. 42.9 ± 11.3%; P = 0.004). For all HRV parameters, rE ranged between re and Re values. Low frequency/high frequency changes were linked with visceral fat loss only in re (coefficient 5.9, 95% CI 1.9-10.0; P = 0.004). By day 21, HRV parameters of MetS groups (heart rate -8.6 ± 1.0%, standard deviation of R-R intervals + 34.0 ± 6.6%, total power + 63.3 ± 11.1%; P < 0.001) became closer to values of 50 aged-matched healthy controls. Conclusions A 3-week residential programme with intensive volumes of physical activity (15-20 hours per week) enhanced HRV in individuals with MetS. Participants with moderate intensity of training had greater improvements in sympathovagal balance, whereas those with high intensity in resistance training had greater decreases in heart rate and greater increases in very low frequency. Modality-specific relationships were observed between enhanced HRV

  14. Thermoregulation and energetics in hibernating black bears: metabolic rate and the mystery of multi-day body temperature cycles.

    Science.gov (United States)

    Tøien, Øivind; Blake, John; Barnes, Brian M

    2015-05-01

    Black bears overwintering in outdoor hibernacula in Alaska decrease metabolism to as low as 25 % basal rates, while core body temperature (T(b)) decreases from 37 to 38 °C to a mid-hibernation average of 33 °C. T b develops cycles of 1.6-7.3 days length within a 30-36 °C range, with no circadian component. We do not know the mechanism or function underlying behind the T(b) cycles, although bears avoid T(b) of bears with body mass (BM) from 35.5 to 116.5 kg while recording T(b), metabolic rate (M), and shivering. T b cycle length (0.8-11.2 days) shortened as T den decreased (partial R(2) = 0.490, p bears with low thermal conductance (TC) showed more variation in T b cycle length with changes in T(den) than did smaller bears with high TC. Minimum T b across cycles was not consistent. At low T(den) bears shivered both during rising and decreasing phases of T(b) cycles, with minimum shivering during the fastest drop in T(b). At higher T den the T b pattern was more irregular. Mean M through T(b) cycles was negatively correlated to T den below lower critical temperatures (1.4-10.4 °C). Minimum M (0.3509 W/kg ± 0.0121 SE) during mid-hibernation scaled to BM [M (W) = 1.217 × BM (kg)(0.6979), R(2) = 0.855, p bears with high TC had the same T(b) cycle length as bears with low TC except at high T(den), thus not supporting the hypothesis that cooling rate alone determines T(b) cycle length. We conclude that T(b) cycling is effected by control of thermoregulatory heat production, and T(b) cycling may not be present when hibernating bears use passive thermoregulation. More intense shivering in the rising phase of cycles may contribute to the prevention of muscle disuse atrophy. Bears hibernating in cold conditions use more energy during hibernation than in warmer conditions. At T den below lower critical temperature, no extra energy expenditure results from T b cycling compared to keeping a stable T(b.)

  15. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.

    Science.gov (United States)

    Terblanche, John S; Clusella-Trullas, Susana; Chown, Steven L

    2010-09-01

    Investigation of gas exchange patterns and modulation of metabolism provide insight into metabolic control systems and evolution in diverse terrestrial environments. Variation in metabolic rate in response to environmental conditions has been explained largely in the context of two contrasting hypotheses, namely metabolic depression in response to stressful or resource-(e.g. water) limited conditions, or elevation of metabolism at low temperatures to sustain life in extreme conditions. To deconstruct the basis for metabolic rate changes in response to temperature variation, here we undertake a full factorial study investigating the longer- and short-term effects of temperature exposure on gas exchange patterns. We examined responses of traits of gas exchange [standard metabolic rate (SMR); discontinuous gas exchange (DGE) cycle frequency; cuticular, respiratory and total water loss rate (WLR)] to elucidate the magnitude and form of plastic responses in the dung beetle, Scarabaeus spretus. Results showed that short- and longer-term temperature variation generally have significant effects on SMR and WLR. Overall, acclimation to increased temperature led to a decline in SMR (from 0.071+/-0.004 ml CO(2) h(-1) in 15 degrees C-acclimated beetles to 0.039+/-0.004 ml CO(2) h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) modulated by reduced DGE frequency (15 degrees C acclimation: 0.554+/-0.027 mHz, 20 degrees C acclimation: 0.257+/-0.030 mHz, 25 degrees C acclimation: 0.208+/-0.027 mHz recorded at 20 degrees C), reduced cuticular WLRs (from 1.058+/-0.537 mg h(-1) in 15 degrees C-acclimated beetles to 0.900+/-0.400 mg h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) and reduced total WLR (from 4.2+/-0.5 mg h(-1) in 15 degrees C-acclimated beetles to 3.1+/-0.5 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C). Respiratory WLR was reduced from 2.25+/-0.40 mg h(-1) in 15 degrees C-acclimated beetles to 1.60+/-0.40 mg h

  16. Changes in Body Compositions and Basal Metabolic Rates during Treatment of Graves’ Disease

    Directory of Open Access Journals (Sweden)

    Min Joo Kim

    2018-01-01

    Full Text Available Objectives. Because thyroid hormone is an important determinant of body weight and basal metabolic rate, we investigated the changes in the basal metabolic rate and body composition sequentially after treatment for Graves’ disease. Methods. A prospective cohort study was performed with six women newly diagnosed with Graves’ disease. During a 52-week treatment of methimazole, body composition, resting respiratory expenditure (REE, and handgrip strength were measured consecutively. Results. After methimazole treatment, body weight was initially increased (0–8 weeks, subsequently plateaued (8–24 weeks, and gradually decreased in the later period (24–52 weeks despite the decreased food intake. The measured REE was 40% higher than the predicted REE at baseline, and it gradually decreased after treatment. REE positively correlated with thyroid hormone levels, peripheral deiodinase activity, and thyroid’s secretory capacity. Body compositional analyses showed that the fat mass increased during an earlier period (4–12 weeks, while the lean mass increased significantly during the later period (26–52 weeks. Consistent with the lean mass changes, muscle strength also significantly increased during the later period. Conclusions. Treatment of Graves’ disease increased body weight and fat mass transiently with decreased REE. However, long-term compositional changes moved in a beneficial direction increasing lean mass and reinforcing muscle strength, following decreasing fat percentages.

  17. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-04-01

    Full Text Available High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by 1H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.

  18. Effects of pre- and postnatal polychlorinated biphenyl exposure on metabolic rate and thyroid hormones of white-footed mice

    Science.gov (United States)

    French, J.B.; Voltura, M.B.; Tomasi, T.E.

    2001-01-01

    Energy budgets have proven to be a valuable tool for predicting life history from physiological data in terrestrial vertebrates, yet these concepts have not been applied to the physiological effects of contaminants. Contaminants might affect energy budgets by imposing an additional metabolic cost or by reducing the overall amount of energy taken in; either process will reduce the energy available for production (i.e., growth or reproduction). This study examined whole animal energetic effects of polychlorinated biphenyl (PCB) exposure in white-footed mice (Peromyscus leucopus). Exposure to PCBs is known to reduce concentrations of plasma thyroid hormones, and thyroid hormones exert strong control over the rate of energy metabolism in mammals. Peromyscus leucopus that were proven breeders were fed PCBs in their food at 0, 10, and 25 ppm. Through lactation, offspring were exposed to PCB from conception and were maintained on the maternal diet to adulthood. No effects were seen on energy metabolism (O-2 consumption, measured in adulthood) or on growth, but there were large dose-dependent decreases in thyroid hormone concentrations, particularly T-4. The apparent disparity in our data between unchanged metabolic rates and 50% reductions in T-4 concentrations can be rationalized by noting that free T-3 (the fraction not bound to plasma protein) in treated mice was not significantly different from controls and that metabolism is most strongly influenced by free T-3. Overall, this study did not demonstrate any energetic consequences of PCB exposure in P. leucopus at dietary concentrations up to 25 ppm.

  19. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  20. High resolution deuterium NMR studies of bacterial metabolism

    International Nuclear Information System (INIS)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-01-01

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed

  1. Cerebral ketone body metabolism.

    Science.gov (United States)

    Morris, A A M

    2005-01-01

    Ketone bodies (KBs) are an important source of energy for the brain. During the neonatal period, they are also precursors for the synthesis of lipids (especially cholesterol) and amino acids. The rate of cerebral KB metabolism depends primarily on the concentration in blood; high concentrations occur during fasting and on a high-fat diet. Cerebral KB metabolism is also regulated by the permeability of the blood-brain barrier (BBB), which depends on the abundance of monocarboxylic acid transporters (MCT1). The BBB's permeability to KBs increases with fasting in humans. In rats, permeability increases during the suckling period, but human neonates have not been studied. Monocarboxylic acid transporters are also present in the plasma membranes of neurons and glia but their role in regulating KB metabolism is uncertain. Finally, the rate of cerebral KB metabolism depends on the activities of the relevant enzymes in brain. The activities vary with age in rats, but reliable results are not available for humans. Cerebral KB metabolism in humans differs from that in the rat in several respects. During fasting, for example, KBs supply more of the brain's energy in humans than in the rat. Conversely, KBs are probably used more extensively in the brain of suckling rats than in human neonates. These differences complicate the interpretation of rodent studies. Most patients with inborn errors of ketogenesis develop normally, suggesting that the only essential role for KBs is as an alternative fuel during illness or prolonged fasting. On the other hand, in HMG-CoA lyase deficiency, imaging generally shows asymptomatic white-matter abnormalities. The ability of KBs to act as an alternative fuel explains the effectiveness of the ketogenic diet in GLUT1 deficiency, but its effectiveness in epilepsy remains unexplained.

  2. Influence of segmental body composition and adiposity hormones on resting metabolic rate and substrate utilization in overweight and obese adults.

    Science.gov (United States)

    Hirsch, K R; Smith-Ryan, A E; Blue, M N M; Mock, M G; Trexler, E T

    2017-06-01

    Low resting metabolic rate (RMR) and high carbohydrate reliance at rest are associated with weight gain, but are highly variable in obese individuals. This study determined the relationship of total and segmental body composition and adiposity hormones with RMR and respiratory exchange ratio (RER) in overweight and obese adults. In 49 men (n = 23) and premenopausal women (n = 26) [mean ± SD; age = 35.0 ± 8.9 years; body mass index (BMI) = 33.6 ± 5.2 kg·m -2 ; percent body fat (%fat) = 40.0 ± 8.0%], RMR and RER were evaluated using indirect calorimetry. Total and segmental body composition [fat mass (FM), percent fat (%fat), lean mass (LM), visceral adipose tissue (VAT)] were estimated using dual-energy X-ray absorptiometry. Fasted blood and saliva samples were analyzed for insulin, leptin, estradiol, and cortisol. In men (M) and women (W), RMR significantly correlated (p  0.05). Segmental evaluation of body composition, specifically in the lower extremities and abdomen, may be an effective and efficient way to evaluate metabolic status. Sex-specific evaluations are also imperative.

  3. Dietary Omega-3 Fatty Acid Deficiency and High Fructose Intake in the Development of Metabolic Syndrome, Brain Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2013-07-01

    Full Text Available Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS. Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD, promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health.

  4. Understanding High Rate Behavior Through Low Rate Analog

    Science.gov (United States)

    2014-04-28

    challenges in high rate character- isation of polymers. The most important is that, owing to their low stress wavespeed, the structural response of...box’ tool, to provide supporting date for the rate dependent mechanical character- isation . Experiments were performed on a TA instruments Q800

  5. Prolonged non-metabolic heart rate variability reduction as a physiological marker of psychological stress in daily life

    NARCIS (Netherlands)

    Verkuil, B.; Brosschot, J.F.; Tollenaar, M.S.; Lane, R.D.; Thayer, J.F.

    2016-01-01

    BACKGROUND Prolonged cardiac activity that exceeds metabolic needs can be detrimental for somatic health. Psychological stress could result in such "additional cardiac activity." PURPOSE In this study, we examined whether prolonged additional reductions in heart rate variability (AddHRVr) can be

  6. Length and GC content variability of introns among teleostean genomes in the light of the metabolic rate hypothesis.

    Directory of Open Access Journals (Sweden)

    Ankita Chaurasia

    Full Text Available A comparative analysis of five teleostean genomes, namely zebrafish, medaka, three-spine stickleback, fugu and pufferfish was performed with the aim to highlight the nature of the forces driving both length and base composition of introns (i.e., bpi and GCi. An inter-genome approach using orthologous intronic sequences was carried out, analyzing independently both variables in pairwise comparisons. An average length shortening of introns was observed at increasing average GCi values. The result was not affected by masking transposable and repetitive elements harbored in the intronic sequences. The routine metabolic rate (mass specific temperature-corrected using the Boltzmann's factor was measured for each species. A significant correlation held between average differences of metabolic rate, length and GC content, while environmental temperature of fish habitat was not correlated with bpi and GCi. Analyzing the concomitant effect of both variables, i.e., bpi and GCi, at increasing genomic GC content, a decrease of bpi and an increase of GCi was observed for the significant majority of the intronic sequences (from ∼ 40% to ∼ 90%, in each pairwise comparison. The opposite event, concomitant increase of bpi and decrease of GCi, was counter selected (from <1% to ∼ 10%, in each pairwise comparison. The results further support the hypothesis that the metabolic rate plays a key role in shaping genome architecture and evolution of vertebrate genomes.

  7. Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development.

    Science.gov (United States)

    Moraes-Silva, Ivana Cinthya; Mostarda, Cristiano; Moreira, Edson Dias; Silva, Kleiton Augusto Santos; dos Santos, Fernando; de Angelis, Kátia; Farah, Vera de Moura Azevedo; Irigoyen, Maria Claudia

    2013-03-15

    High fructose consumption contributes to metabolic syndrome incidence, whereas exercise training promotes several beneficial adaptations. In this study, we demonstrated the preventive role of exercise training in the metabolic syndrome derangements in a rat model. Wistar rats receiving fructose overload in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) or kept sedentary (F) for 10 wk. Control rats treated with normal water were also submitted to exercise training (CT) or sedentarism (C). Metabolic evaluations consisted of the Lee index and glycemia and insulin tolerance test (kITT). Blood pressure (BP) was directly measured, whereas heart rate (HR) and BP variabilities were evaluated in time and frequency domains. Renal sympathetic nerve activity was also recorded. F rats presented significant alterations compared with all the other groups in insulin resistance (in mg · dl(-1) · min(-1): F: 3.4 ± 0.2; C: 4.7 ± 0.2; CT: 5.0 ± 0.5 FT: 4.6 ± 0.4), mean BP (in mmHG: F: 117 ± 2; C: 100 ± 2; CT: 98 ± 2; FT: 105 ± 2), and Lee index (in g/mm: F = 0.31 ± 0.001; C = 0.29 ± 0.001; CT = 0.27 ± 0.002; FT = 0.28 ± 0.002), confirming the metabolic syndrome diagnosis. Exercise training blunted all these derangements. Additionally, FS group presented autonomic dysfunction in relation to the others, as seen by an ≈ 50% decrease in baroreflex sensitivity and 24% in HR variability, and increases in sympathovagal balance (140%) and in renal sympathetic nerve activity (45%). These impairments were not observed in FT group, as well as in C and CT. Correlation analysis showed that both Lee index and kITT were associated with vagal impairment caused by fructose. Therefore, exercise training plays a preventive role in both autonomic and hemodynamic alterations related to the excessive fructose consumption.

  8. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  9. Water exchange rate in RAS and dietary inclusion of micro-minerals influence growth, body composition and mineral metabolism in common carp

    NARCIS (Netherlands)

    Antony Jesu Prabhu, P.; Kaushik, S.J.; Geurden, I.; Stouten, T.; Fontagné-dicharry, S.; Veron, V.; Mariojouls, C.; Verreth, J.A.J.; Eding, E.H.; Schrama, J.W.

    2017-01-01

    Recirculation aquaculture systems (RASs) operated at low water exchange rates are known to accumulate minerals in the water. This study examined the dietary mineral requirement and metabolism in common carp reared in RAS of contrasting water exchange rates. Two independent RAS (water exchange rates,

  10. Metabolism and thermoregulation in the tree shrew, Tupaia belangeri

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2012-05-01

    Full Text Available Maximum metabolic rate is a physiological limitation that is an important for animals' survival, reproduction and geographic. Basal metabolic rate (BMR, nonshivering thermogenesis (NST, and maximum metabolic rate (MMR were measured was in a small mammal species, Tupaia belangeri, which is a unique species of small-bodied mammals in the Oriental realm. Thermal neutral zone (TNZ was 30 - 35°C and BMR was 1.38±0.09 ml g-1 h-1. NST and MMR were 2.64±0.08 ml g-1 h-1 and 7.14±0.38 ml g-1 h-1 in summer, respectively. The ecophysiological properties of relatively high body temperature, wide TNZ, low BMR and thermogenic capacity enable this species to adapt to its environment.

  11. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae, a lizard dwell at altitudes higher than any other living lizards in the world.

    Directory of Open Access Journals (Sweden)

    Xiaolong Tang

    Full Text Available Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae, which inhabits high altitudes (4500 m and Phrynocephalusprzewalskii (Lacertilia: Agamidae, which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD and the HOAD/citrate synthase (CS ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.

  12. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2006-12-01

    Full Text Available Abstract Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases.

  13. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  14. [Measurement of regional cerebral metabolism rate of glucose in patients with Alzheimer's disease in different levels of severity].

    Science.gov (United States)

    Xiao, Shi-fu; Cao, Qiu-yun; Xue, Hai-bo; Liu, Yong-chang; Zuo, Chuan-tao; Jiang, Kai-da; Zhang, Ming-yuan

    2005-11-09

    To measure the changes of regional cerebral metabolism rate of glucose (rCMRglc) in patients with Alzheimer's disease (AD) and explore their value to diagnosis of AD. 10 patients with AD who met the diagnostic criteria of DSM-IV and 10 normal controls (NC) were assessed with (18)F-2-fluoro-deoxy-D-glucose positron emission tomography (PET). The two groups were matched in age, gender and education. The mean total scores of the mini-mental status examination (MMSE) were 16.5 +/- 6.1 for AD and 28.7 +/- 1.6 for NC. The mean total memory quotient of Wechsler Memory Scales (MQ) were 32.3 +/- 19.6 for AD and 93.1 +/- 9.0 for NC. Comparing to NC, the AD groups showed statistically significant decline of rCMRglc in frontal lobe, temporal lobe and the hippocampal formation with decreased rates ranged from 3.3% to 28.4% (P upper and middle frontal gyri, middle temporal gyrus, orbital gyrus and anterior cingulate gyrus, in which areas the metabolism decreased over 20% compared to NC. The hypo-metabolism was correlated to the severity of dementia. Discriminant analysis demonstrated that the variables of right inferior temporal gyrus, left upper temporal gyrus, left hippocampus and right insular lobe were entered into the discriminant functions and the total discriminant accuracy reached 100%. (18)F-FDG PET is a very sensitive tool in measurement of the changes of rCMRglc in patients with AD. The findings show a frontal-temporal type of metabolism in AD patients and suggest that hypo-metabolism in hippocampal formation and temporal lobe is helpful in early detection of AD.

  15. Intraspecific allometry of standard metabolic rate in green iguanas, Iguana iguana.

    Science.gov (United States)

    Maxwell, Lara K; Jacobson, Elliott R; McNab, Brian K

    2003-10-01

    To study the allometric relationship between standard metabolic rate and body mass (mass range 16-3627 g) in green iguanas, Iguana iguana (n=32), we measured rates of oxygen consumption (V(O(2))) at 30 degrees C during scotophase. The relationship could be described as: V(O(2))(ml h(-1))=0.478W(0.734). The resulting mass exponent was similar to the 3/4 power commonly used in interspecific curves (P>0.05), but differed from a proposed intraspecific value of 2/3 (Piguanas did not differ (P>0.05). The mass adjusted V(O(2)) was higher than predicted from generalized squamate curves. The mean mass exponent of intra-individual allometric equations of iguanas (n=7) at varying masses during ontogeny did not differ from that of the pooled equation, indicating that scaling of V(O(2)) is similar for both between and within individuals. Thermal acclimation, compensatory changes in V(O(2)) with prolonged exposure to a constant temperature, was not observed in juvenile iguanas (n=11) between 1 and 5 weeks of acclimation at 30 degrees C.

  16. A New View of Alcohol Metabolism and Alcoholism—Role of the High-Km Class Ⅲ Alcohol Dehydrogenase (ADH3

    Directory of Open Access Journals (Sweden)

    Youkichi Ohno

    2010-03-01

    , as alcohol intake increases. Furthermore, ADH3 is induced in damaged cells that have greater hydrophobicity, whereas ADH1 activity is lower when there is severe liver disease. These data suggest that chronic binge drinking and the resulting liver disease shifts the key enzyme in alcohol metabolism from low-Km ADH1 to high-Km ADH3, thereby reducing the rate of alcohol metabolism. The interdependent increase in the ADH3/ADH1 activity ratio and AUC may be a factor in the development of alcoholic liver disease. However, the adaptive increase in ADH3 sustains alcohol metabolism, even in patients with alcoholic liver cirrhosis, which makes it possible for them to drink themselves to death. Thus, the regulation of ADH3 activity may be important in preventing alcoholism development.

  17. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  18. Effect of temperature on the standard metabolic rates of juvenile and adult Exopalaemon carinicauda

    Science.gov (United States)

    Zhang, Chengsong; Li, Fuhua; Xiang, Jianhai

    2015-03-01

    Ridgetail white prawn ( Exopalaemon carinicauda) are of significant economic importance in China where they are widely cultured. However, there is little information on the basic biology of this species. We evaluated the effect of temperature (16, 19, 22, 25, 28, 31, and 34°C) on the standard metabolic rates (SMRs) of juvenile and adult E. carinicauda in the laboratory under static conditions. The oxygen consumption rate (OCR), ammonia-N excretion rate (AER), and atomic ratio of oxygen consumed to nitrogen consumed (O:N ratio) of juvenile and adult E. carinicauda were significantly influenced by temperature ( P 0.05). The O:N ratio in juveniles was significantly higher than that in the adults over the entire temperature range ( P values. Results from the present study may be used to guide pond culture production of E. carinicauda.

  19. High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT

    Directory of Open Access Journals (Sweden)

    Alexis Espinoza Salinas

    2014-06-01

    Full Text Available Introduction A number of cardiovascular risk factors characterizes the metabolic syndrome: insulin resistance (IR, low HDL cholesterol and high triglycerides. The aforementioned risk factors lead to elevated levels of abdominal adipose tissue, resulting in oxygen consumption deficiency. Purpose To verify the validity and applicability of using high intensity interval training (HIIT in subjects with metabolic syndrome and to answer the following question: Can HIIT improve peak oxygen consumption? Method The systematic review "Effects of aerobic interval training on exercise capacity and metabolic risk factors in individuals with cardiometabolic disorders" was analyzed. Results Data suggests high intensity aerobic interval training increases peak oxygen consumption by a standardized mean difference of 3.60 mL/kg-1/min-1 (95% confidence interval, 0.28-4.91. Conclusion In spite of the methodological shortcomings of the primary studies included in the systematic review, we reasonably conclude that implementation of high intensity aerobic interval training in subjects with metabolic syndrome, leads to increases in peak oxygen consumption.

  20. A protocol for generating a high-quality genome-scale metabolic reconstruction.

    Science.gov (United States)

    Thiele, Ines; Palsson, Bernhard Ø

    2010-01-01

    Network reconstructions are a common denominator in systems biology. Bottom-up metabolic network reconstructions have been developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process.

  1. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions.

    Science.gov (United States)

    Swanson, David L; Garland, Theodore

    2009-01-01

    Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.

  2. The interplay between aerobic metabolism and antipredator performance: vigilance is related to recovery rate after exercise

    Directory of Open Access Journals (Sweden)

    Shaun Steven Killen

    2015-04-01

    Full Text Available When attacked by a predator, fish respond with a sudden fast-start motion away from the threat. Although this anaerobically-powered swimming necessitates a recovery phase which is fuelled aerobically, little is known about links between escape performance and aerobic traits such as aerobic scope or recovery time after exhaustive exercise. Slower recovery ability or a reduced aerobic scope could make some individuals less likely to engage in a fast-start response or display reduced performance. Conversely, increased vigilance in some individuals could permit faster responses to an attack but also increase energy demand and prolong recovery after anaerobic exercise. We examined how aerobic scope and the ability to recover from anaerobic exercise relates to differences in fast-start escape performance in juvenile golden grey mullet at different acclimation temperatures. Individuals were acclimated to either 18, 22, or 26oC, then measured for standard and maximal metabolic rates and aerobic scope using intermittent flow respirometry. Anaerobic capacity and the time taken to recover after exercise were also assessed. Each fish was also filmed during a simulated attack to determine response latency, maximum speed and acceleration, and turning rate displayed during the escape response. Across temperatures, individuals with shorter response latencies during a simulated attack are those with the longest recovery time after exhaustive anaerobic exercise. Because a short response latency implies high preparedness to escape, these results highlight the trade-off between the increased vigilance and metabolic demand, which leads to longer recovery times in fast reactors. These results improve our understanding of the intrinsic physiological traits that generate inter-individual variability in escape ability, and emphasise that a full appreciation of trade-offs associated with predator avoidance and energy balance must include energetic costs associated with

  3. The effect of long term combined yoga practice on the basal metabolic rate of healthy adults

    Directory of Open Access Journals (Sweden)

    Nagendra HR

    2006-08-01

    Full Text Available Abstract Background Different procedures practiced in yoga have stimulatory or inhibitory effects on the basal metabolic rate when studied acutely. In daily life however, these procedures are usually practiced in combination. The purpose of the present study was to investigate the net change in the basal metabolic rate (BMR of individuals actively engaging in a combination of yoga practices (asana or yogic postures, meditation and pranayama or breathing exercises for a minimum period of six months, at a residential yoga education and research center at Bangalore. Methods The measured BMR of individuals practicing yoga through a combination of practices was compared with that of control subjects who did not practice yoga but led similar lifestyles. Results The BMR of the yoga practitioners was significantly lower than that of the non-yoga group, and was lower by about 13 % when adjusted for body weight (P Conclusion This study shows that there is a significantly reduced BMR, probably linked to reduced arousal, with the long term practice of yoga using a combination of stimulatory and inhibitory yogic practices.

  4. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population.

    Science.gov (United States)

    Wai, Ching Man; Zhang, Jisen; Jones, Tyler C; Nagai, Chifumi; Ming, Ray

    2017-10-11

    Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.

  5. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  6. Association between habitual coffee consumption and metabolic syndrome in type 1 diabetes.

    Science.gov (United States)

    Stutz, B; Ahola, A J; Harjutsalo, V; Forsblom, C; Groop, P-H

    2018-05-01

    In the general population, habitual coffee consumption is inversely associated with the metabolic syndrome, a syndrome that is rather common also in patients with type 1 diabetes. However, whether coffee intake is beneficially related to the metabolic syndrome also in type 1 diabetes, is not known. We, therefore, studied the potential association between coffee consumption and the metabolic syndrome in a large population of individuals with type 1 diabetes. Furthermore, we investigated whether coffee consumption is associated with insulin resistance (estimated glucose disposal rate, eGDR), kidney function (estimated glomerular filtration rate, eGFR), and low-grade chronic inflammation (high-sensitivity C-reactive protein, hsCRP). Data from 1040 participants in the Finnish Diabetic Nephropathy Study were included in these cross-sectional analyses. Metabolic syndrome was assumed if at least 3 of the following cardiovascular risk factors were present: central obesity, high blood pressure, low HDL-cholesterol concentration, high triglyceride concentration, and hyperglycaemia. Subjects were categorized based on self-reported daily coffee intake: non-consumers (metabolic syndrome. Moreover, any level of coffee consumption was associated with increased risk of the blood pressure-component. An increasing trend was observed in the eGFR with increasing coffee consumption. In type 1 diabetes, high coffee intake is associated with the metabolic syndrome, and especially its blood pressure-component. Copyright © 2018. Published by Elsevier B.V.

  7. Elevated Metabolites of Steroidogenesis and Amino Acid Metabolism in Preadolescent Female Children With High Urinary Bisphenol A Levels: A High-Resolution Metabolomics Study.

    Science.gov (United States)

    Khan, Adnan; Park, Hyesook; Lee, Hye Ah; Park, Bohyun; Gwak, Hye Sun; Lee, Hye-Ra; Jee, Sun Ha; Park, Youngja H

    2017-12-01

    Health risks associated with bisphenol A (BPA) exposure are controversially highlighted by numerous studies. High-resolution metabolomics (HRM) can confirm these proposed associations and may provide a mechanistic insight into the connections between BPA exposure and metabolic perturbations. This study was aimed to identify the changes in metabolomics profile due to BPA exposure in urine and serum samples collected from female and male children (n = 18) aged 7-9. Urine was measured for BPA concentration, and the children were subsequently classified into high and low BPA groups. HRM, coupled with Liquid chromatography-mass spectrometry/MS, followed by multivariate statistical analysis using MetaboAnalyst 3.0, were performed on urine to discriminate metabolic profiles between high and low BPA children as well as males and females, followed by further validation of our findings in serum samples obtained from same population. Metabolic pathway analysis showed that biosynthesis of steroid hormones and 7 other pathways-amino acid and nucleotide biosynthesis, phenylalanine metabolism, tryptophan metabolism, tyrosine metabolism, lysine degradation, pyruvate metabolism, and arginine biosynthesis-were affected in high BPA children. Elevated levels of metabolites associated with these pathways in urine and serum were mainly observed in female children, while these changes were negligible in male children. Our results suggest that the steroidogenesis pathway and amino acid metabolism are the main targets of perturbation by BPA in preadolescent girls. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Does basal metabolic rate contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological, ecological, and life-history variables.

    Science.gov (United States)

    White, Craig R; Seymour, Roger S

    2004-01-01

    Basal metabolic rate (BMR, mL O2 h(-1)) is a useful measurement only if standard conditions are realised. We present an analysis of the relationship between mammalian body mass (M, g) and BMR that accounts for variation associated with body temperature, digestive state, and phylogeny. In contrast to the established paradigm that BMR proportional to M3/4, data from 619 species, representing 19 mammalian orders and encompassing five orders of magnitude variation in M, show that BMR proportional to M2/3. If variation associated with body temperature and digestive state are removed, the BMRs of eutherians, marsupials, and birds do not differ, and no significant allometric exponent heterogeneity remains between orders. The usefulness of BMR as a general measurement is supported by the observation that after the removal of body mass effects, the residuals of BMR are significantly correlated with the residuals for a variety of physiological and ecological variables, including maximum metabolic rate, field metabolic rate, resting heart rate, life span, litter size, and population density.

  9. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring

    OpenAIRE

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    Background The mother?s consumption of high-fat food can affect glucose metabolism and the hypothalamic?pituitary?adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Methods Female rats were randomly divided into normal and high-fat diet groups and were fed in a...

  10. Evaluating the Risk of Metabolic Syndrome Based on an Artificial Intelligence Model

    OpenAIRE

    Chen, Hui; Xiong, Shenghua; Ren, Xuan

    2014-01-01

    Metabolic syndrome is worldwide public health problem and is a serious threat to people's health and lives. Understanding the relationship between metabolic syndrome and the physical symptoms is a difficult and challenging task, and few studies have been performed in this field. It is important to classify adults who are at high risk of metabolic syndrome without having to use a biochemical index and, likewise, it is important to develop technology that has a high economic rate of return to s...

  11. Metabolic syndrome in family practice in Jordan: a study of high-risk groups.

    Science.gov (United States)

    Yasein, N; Masa'd, D

    2011-12-01

    This study assessed the prevalence of the metabolic syndrome, and its components, as defined by Adult Treatment Panel III criteria in Jordanian patients attending a family practice clinic for management of cardiovascular risk factors. The sample was 730 randomly selected patients aged > or = 25 years. The prevalence of metabolic syndrome was 37.4% (31.7% in men; 41.0% in women). The prevalence increased with age in the total sample and in both sexes. High waist circumference showed the highest prevalence in the total sample (61.6%). Among females it ranked as the first criterion (73.5%). High serum triglyceride level showed the highest prevalence in males (50.2%). Differences between the sexes were significant. Family practitioners should be alerted to the importance of multiple risk factors in the metabolic syndrome.

  12. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex.

    Science.gov (United States)

    Sonnay, Sarah; Poirot, Jordan; Just, Nathalie; Clerc, Anne-Catherine; Gruetter, Rolf; Rainer, Gregor; Duarte, João M N

    2018-03-01

    Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (V NT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of V NT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes. © 2017 Wiley Periodicals, Inc.

  13. Effect of dietary restriction on metabolic, anatomic and molecular traits in mice depends on the initial level of basal metabolic rate.

    Science.gov (United States)

    Brzek, Pawel; Ksiazek, Aneta; Dobrzyn, Agnieszka; Konarzewski, Marek

    2012-09-15

    Dietary restriction (DR)-related delay of ageing is hypothesized to be mediated by the reduction of the metabolic rate (MR). However, studies on the effect of DR on MR have produced equivocal results. We demonstrated that this lack of congruency can be due to a variation in the initial level of MR within a given pool of experimental subjects. We subjected laboratory mice from two line types divergently selected for basal MR (BMR) to 30% DR lasting 6 months to test whether the effect of DR depends on the initial variation in BMR and peak MR. BMR and peak MR were independently affected by DR. The effect of DR was stronger in line types with higher initial levels of MR. Line-type-specific changes in the proportions of body components explained contrasting effects of DR on the mass-corrected BMR, which decreased in the high-BMR line type and did not change in the low-BMR line type. We conclude that the initial variation in MR can significantly affect response to DR. However, we found no association between the level of MR and mechanisms underlying the susceptibility to or protection against oxidative stress.

  14. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved....... The drop in metabolic activity associated with the diauxic shift in yeast proved more pronounced for the MBRT-derived curve compared with OD curves, consistent with a dramatic shift in the ratio between live and dead cells at this metabolic event. This method provides a tool with numerous applications, e.......g. characterizing the death phase of stationary phase cultures, or in drug screens with pathogenic yeasts....

  15. Factors affecting high-sensitivity cardiac troponin T elevation in Japanese metabolic syndrome patients

    Directory of Open Access Journals (Sweden)

    Hitsumoto T

    2015-03-01

    Full Text Available Takashi Hitsumoto,1 Kohji Shirai2 1Hitsumoto Medical Clinic, Yamaguchi, Japan; 2Department of Vascular Function (donated, Sakura Hospital, Toho University School of Medicine, Chiba, Japan Purpose: The blood concentration of cardiac troponin T (ie, high-sensitivity cardiac troponin T [hs-cTnT], measured using a highly sensitive assay, represents a useful biomarker for evaluating the pathogenesis of heart failure or predicting cardiovascular events. However, little is known about the clinical significance of hs-cTnT in metabolic syndrome. The aim of this study was to examine the factors affecting hs-cTnT elevation in Japanese metabolic syndrome patients. Patients and methods: We enrolled 258 metabolic syndrome patients who were middle-aged males without a history of cardiovascular events. We examined relationships between hs-cTnT and various clinical parameters, including diagnostic parameters of metabolic syndrome. Results: There were no significant correlations between hs-cTnT and diagnostic parameters of metabolic syndrome. However, hs-cTnT was significantly correlated with age (P<0.01, blood concentrations of brain natriuretic peptide (P<0.01, reactive oxygen metabolites (markers of oxidative stress, P<0.001, and the cardio–ankle vascular index (marker of arterial function, P<0.01. Furthermore, multiple regression analysis revealed that these factors were independent variables for hs-cTnT as a subordinate factor. Conclusion: The findings of this study indicate that in vivo oxidative stress and abnormality of arterial function are closely associated with an increase in hs-cTnT concentrations in Japanese metabolic syndrome patients. Keywords: troponin, metabolic syndrome, risk factor, oxidative stress, cardio–ankle vascular index

  16. Lipid metabolism and body composition in Gclm(−/−) mice

    International Nuclear Information System (INIS)

    Kendig, Eric L.; Chen, Ying; Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N.; Genter, Mary Beth; Nebert, Daniel W.; Shertzer, Howard G.

    2011-01-01

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate–cysteine ligase modifier subunit gene (Gclm(−/−)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(−/−) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(−/−) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(−/−) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(−/−) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(−/−) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(−/−) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(−/−) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: ► A high fat diet does not produce body weight and fat gain in Gclm(−/−) mice. ► A high fat diet does not induce steatosis or insulin resistance in Gclm(−/−) mice. ► Gclm(−/−) mice have high basal metabolism and mitochondrial oxygen consumption.

  17. Metabolic and oxidative stress markers in Wistar rats after 2?months on a high-fat diet

    OpenAIRE

    Auberval, Nathalie; Dal, St?phanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Val?rie; Sigrist, S?verine

    2014-01-01

    Background Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Materials and methods Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared ...

  18. Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise.

    Science.gov (United States)

    Hofmann, Peter

    2018-01-31

    There is ample evidence that regular moderate to vigorous aerobic physical activity is related to a reduced risk for various forms of cancer to suggest a causal relationship. Exercise is associated with positive changes in fitness, body composition, and physical functioning as well as in patient-reported outcomes such as fatigue, sleep quality, or health-related quality of life. Emerging evidence indicates that exercise may also be directly linked to the control of tumour biology through direct effects on tumour-intrinsic factors. Beside a multitude of effects of exercise on the human body, one underscored effect of exercise training is to target the specific metabolism of tumour cells, namely the Warburg-type highly glycolytic metabolism. Tumour metabolism as well as the tumour⁻host interaction may be selectively influenced by single bouts as well as regularly applied exercise, dependent on exercise intensity, duration, frequency and mode. High-intensity anaerobic exercise was shown to inhibit glycolysis and some studies in animals showed that effects on tumour growth might be stronger compared with moderate-intensity aerobic exercise. High-intensity exercise was shown to be safe in patients; however, it has to be applied carefully with an individualized prescription of exercise.

  19. Nonmonotonous changes of thymus nuclei lipid metabolism upon chronic gamma-radiation of rats at a dose-rate of 3 c Gy/Day

    International Nuclear Information System (INIS)

    Kulagina, T.P.; Kolomijtseva, I.K.; Moiseeva, S.A.; Kuzin, A.M.

    2000-01-01

    The dynamics of changes in the thymus nuclei lipid metabolism under chronic gamma-radiation in low doses with the dose rate of 3 cGy/day is studied. It is shown, that at the 25 cGy dose rate there takes place activation of exchange in the fatly-acid part of the phospholipid molecule with simultaneous activation of the cholesterol and fatty acids synthesis. The synthesis of cholesterol and fatty acids at 50 cGy remains activated, whereas metabolism of the fatty-acid part of the phospholipids molecule is sharply depressed. The identified changes reveal the similarity with the processes, proceeding by the apoptose induction. At the same time the dynamics of the thymocyte nuclei lipid exchange in the process of adaptation to the long radiation effect as nonmonotonous metabolic response to low dose impact is characterized for the first time [ru

  20. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19

    Energy Technology Data Exchange (ETDEWEB)

    Oh, You-Kwan; Kim, Mi-Sun [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Kim, Heung-Joo; Park, Sunghoon [Department of Chemical and Biochemical Engineering and Institute for Environmental Technology and Industry, Pusan National University, Busan 609-735 (Korea); Ryu, Dewey D.Y. [Biochemical Engineering Program, Department of Chemical Engineering and Material Science, University of California, Davis, CA 95616 (United States)

    2008-03-15

    For the newly isolated chemoheterotrophic bacterium Citrobacter amalonaticus Y19, anaerobic glucose metabolism and hydrogen (H{sub 2}) production pathway were studied using batch cultivation and an in silico metabolic-flux analysis. Batch cultivation was conducted under varying initial glucose concentration between 1.5 and 9.5 g/L with quantitative measurement of major metabolites to obtain accurate carbon material balance. The metabolic flux of Y19 was analyzed using a metabolic-pathway model which was constructed from 81 biochemical reactions. The linear optimization program MetaFluxNet was employed for the analysis. When the specific growth rate of cells was chosen as an objective function, the model described the batch culture characteristics of Ci. amalonaticus Y19 reasonably well. When the specific H{sub 2} production rate was selected as an objective function, on the other hand, the achievable maximal H{sub 2} production yield (8.7molH{sub 2}/mol glucose) and the metabolic pathway enabling the high H{sub 2} yield were identified. The pathway involved non-native NAD(P)-linked hydrogenase and H{sub 2} production from NAD(P)H which were supplied at a high rate from glucose degradation through the pentose phosphate pathway. (author)

  1. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    Directory of Open Access Journals (Sweden)

    Seong-Jong Lee

    2015-01-01

    Full Text Available The medicinal plants Artemisia iwayomogi (A. iwayomogi and Curcuma longa (C. longa radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM. In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg or curcumin (50 mg/kg. Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides, glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα. The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model.

  2. Differential Effects of High-Carbohydrate and High-Fat Diet Composition on Metabolic Control and Insulin Resistance in Normal Rats

    Science.gov (United States)

    Ble-Castillo, Jorge L.; Aparicio-Trapala, María A.; Juárez-Rojop, Isela E.; Torres-Lopez, Jorge E.; Mendez, Jose D.; Aguilar-Mariscal, Hidemi; Olvera-Hernández, Viridiana; Palma-Cordova, Leydi C.; Diaz-Zagoya, Juan C.

    2012-01-01

    The macronutrient component of diets is critical for metabolic control and insulin action. The aim of this study was to compare the effects of high fat diets (HFDs) vs. high carbohydrate diets (HCDs) on metabolic control and insulin resistance in Wistar rats. Thirty animals divided into five groups (n = 6) were fed: (1) Control diet (CD); (2) High-saturated fat diet (HSFD); (3) High-unsaturated fat diet (HUFD); (4) High-digestible starch diet, (HDSD); and (5) High-resistant starch diet (HRSD) during eight weeks. HFDs and HCDs reduced weight gain in comparison with CD, however no statistical significance was reached. Calorie intake was similar in both HFDs and CD, but rats receiving HCDs showed higher calorie consumption than other groups, (p < 0.01). HRSD showed the lowest levels of serum and hepatic lipids. The HUFD induced the lowest fasting glycemia levels and HOMA-IR values. The HDSD group exhibited the highest insulin resistance and hepatic cholesterol content. In conclusion, HUFD exhibited the most beneficial effects on glycemic control meanwhile HRSD induced the highest reduction on lipid content and did not modify insulin sensitivity. In both groups, HFDs and HCDs, the diet constituents were more important factors than caloric intake for metabolic disturbance and insulin resistance. PMID:22754464

  3. The Hunger Games: p53 regulates metabolism upon serine starvation.

    Science.gov (United States)

    Tavana, Omid; Gu, Wei

    2013-02-05

    Cancer cells reprogram their metabolism to support a high proliferative rate. A new study shows that, upon serine starvation, the tumor suppressor p53 activates p21 to shift metabolic flux from purine biosynthesis to glutathione production, which enhances cellular proliferation and viability by combating ROS (Maddocks et al., 2013). Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Uptake and metabolism of carbohydrates by Bradyrhizobium japonicum bacteroids

    International Nuclear Information System (INIS)

    Salminen, S.O.; Streeter, J.G.

    1987-01-01

    Bradyrhizobium japonicum bacteroids were isolated anaerobically and were supplied with 14 C-labeled trehalose, sucrose, UDP-glucose, glucose, or fructose under low O 2 (2% in the gas phase). Uptake and conversion of 14 C to CO 2 were measured at intervals up to 90 minutes. Of the five compounds studied, UDP-glucose was most rapidly absorbed but it was very slowly metabolized. Trehalose was the sugar most rapidly converted to CO 2 , and fructose was respired at a rate of at least double that of glucose. Sucrose and glucose were converted to CO 2 at a very low but measurable rate ( 2 at a rate 30 times greater than the conversion of carbon Number 6 to CO 2 , indicating high activity of the pentose phosphate pathway. Enzymes of the Entner-Doudoroff pathway were not detected in bacteroids, but very low activities of sucrose synthase and phosphofructokinase were demonstrated. Although metabolism of sugars by B. japonicum bacteroids was clearly demonstrated, the rate of sugar uptake was only 1/30 to 1/50 the rate of succinate uptake. The overall results support the view that, although bacteroids metabolize sugars, the rates are very low and are inadequate to support nitrogenase

  5. Cold-hearted bats: uncoupling of heart rate and metabolism during torpor at sub-zero temperatures.

    Science.gov (United States)

    Currie, Shannon E; Stawski, Clare; Geiser, Fritz

    2018-01-04

    Many hibernating animals thermoregulate during torpor and defend their body temperature ( T b ) near 0°C by an increase in metabolic rate. Above a critical temperature ( T crit ), animals usually thermoconform. We investigated the physiological responses above and below T crit for a small tree-dwelling bat ( Chalinolobus gouldii , ∼14 g) that is often exposed to sub-zero temperatures during winter. Through simultaneous measurement of heart rate ( f H ) and oxygen consumption ( V̇ O 2 ), we show that the relationship between oxygen transport and cardiac function is substantially altered in thermoregulating torpid bats between 1 and -2°C, compared with thermoconforming torpid bats at mild ambient temperatures ( T a 5-20°C). T crit for this species was at a T a of 0.7±0.4°C, with a corresponding T b of 1.8±1.2°C. Below T crit , animals began to thermoregulate, as indicated by a considerable but disproportionate increase in both f H and V̇ O 2 The maximum increase in f H was only 4-fold greater than the average thermoconforming minimum, compared with a 46-fold increase in V̇ O 2 The differential response of f H and V̇ O 2  to low T a was reflected in a 15-fold increase in oxygen delivery per heart beat (cardiac oxygen pulse). During torpor at low T a , thermoregulating bats maintained a relatively slow f H and compensated for increased metabolic demands by significantly increasing stroke volume and tissue oxygen extraction. Our study provides new information on the relationship between metabolism and f H in an unstudied physiological state that may occur frequently in the wild and can be extremely costly for heterothermic animals. © 2018. Published by The Company of Biologists Ltd.

  6. Feasible Metabolic Schema Associated with High pH Springs in the Philippines

    Directory of Open Access Journals (Sweden)

    DAWN eCARDACE

    2015-02-01

    Full Text Available A field campaign targeting high pH springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to evaluate feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs, and examine how the environment supports or prevents the function of certain microbial metabolisms.

  7. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents

    International Nuclear Information System (INIS)

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-01-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans. - Highlights: • Use metagenomics to analyze As metabolism genes in paddy soils with low-As content. • These genes were ubiquitous, abundant, and associated with diverse microbes. • pH as an important factor controlling their distribution in paddy soil. • Imply combinational effect of evolution and selection on As metabolism genes. - Metagenomics was used to analyze As metabolism genes in paddy soils with low-As contents. These genes were ubiquitous, abundant, and associated with diverse microbes.

  8. The effect of psychological stress on diet-induced thermogenesis and resting metabolic rate.

    Science.gov (United States)

    Weststrate, J A; Van der Kooy, K; Deurenberg, P; Hautvast, J G

    1990-04-01

    The effect of psychological stress on resting metabolic rate (RMR) and diet-induced thermogenesis (DIT) was assessed in 12 healthy young non-obese men of body weight 70.2 +/- 1.2 kg (mean +/- s.e.m.) and age 25 +/- 0.6 years. Two types of commercially available motion pictures (video films) were shown to the subjects during the measurements, ie stress-inducing horror films and as a control, romantic family films. The study was conducted according to a cross-over design. RMR and respiratory quotients were not significantly influenced by the type of film shown to the subjects. DIT, assessed over 4 h, was significantly increased by the stress-inducing treatment, 0.95 +/- 0.05 kJ/min (mean +/- s.e.m.) versus 0.76 +/- 0.06 kJ/min (control). No significant effect was observed of psychological stress on postprandial substrate oxidation rates, nutrient balances, and urinary catecholamine excretion.

  9. Redox balance is key to explaining full vs. partial switching to low-yield metabolism

    Directory of Open Access Journals (Sweden)

    van Hoek Milan JA

    2012-03-01

    Full Text Available Abstract Background Low-yield metabolism is a puzzling phenomenon in many unicellular and multicellular organisms. In abundance of glucose, many cells use a highly wasteful fermentation pathway despite the availability of a high-yield pathway, producing many ATP molecules per glucose, e.g., oxidative phosphorylation. Some of these organisms, including the lactic acid bacterium Lactococcus lactis, downregulate their high-yield pathway in favor of the low-yield pathway. Other organisms, including Escherichia coli do not reduce the flux through the high-yield pathway, employing the low-yield pathway in parallel with a fully active high-yield pathway. For what reasons do some species use the high-yield and low-yield pathways concurrently and what makes others downregulate the high-yield pathway? A classic rationale for metabolic fermentation is overflow metabolism. Because the throughput of metabolic pathways is limited, influx of glucose exceeding the pathway's throughput capacity is thought to be redirected into an alternative, low-yield pathway. This overflow metabolism rationale suggests that cells would only use fermentation once the high-yield pathway runs at maximum rate, but it cannot explain why cells would decrease the flux through the high-yield pathway. Results Using flux balance analysis with molecular crowding (FBAwMC, a recent extension to flux balance analysis (FBA that assumes that the total flux through the metabolic network is limited, we investigate the differences between Saccharomyces cerevisiae and L. lactis that downregulate the high-yield pathway at increasing glucose concentrations, and E. coli, which keeps the high-yield pathway functioning at maximal rate. FBAwMC correctly predicts the metabolic switching mode in these three organisms, suggesting that metabolic network architecture is responsible for differences in metabolic switching mode. Based on our analysis, we expect gradual, "overflow-like" switching behavior in

  10. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism

    Science.gov (United States)

    McWhorter, Todd J; Bakken, Bradley Hartman; Karasov, William H; del Rio, Carlos Martínez

    2005-01-01

    Twenty years ago, the highest active glucose transport rate and lowest passive glucose permeability in vertebrates were reported in Rufous and Anna's hummingbirds (Selasphorus rufus, Calypte anna). These first measurements of intestinal nutrient absorption in nectarivores provided an unprecedented physiological foundation for understanding their foraging ecology. They showed that physiological processes are determinants of feeding behaviour. The conclusion that active, mediated transport accounts for essentially all glucose absorption in hummingbirds influenced two decades of subsequent research on the digestive physiology and nutritional ecology of nectarivores. Here, we report new findings demonstrating that the passive permeability of hummingbird intestines to glucose is much higher than previously reported, suggesting that not all sugar uptake is mediated. Even while possessing the highest active glucose transport rates measured in vertebrates, hummingbirds must rely partially on passive non-mediated intestinal nutrient absorption to meet their high mass-specific metabolic demands. PMID:17148346

  11. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  12. Noise effect in metabolic networks

    International Nuclear Information System (INIS)

    Zheng-Yan, Li; Zheng-Wei, Xie; Tong, Chen; Qi, Ouyang

    2009-01-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states. (cross-disciplinary physics and related areas of science and technology)

  13. Ethnic disparities in metabolic syndrome in malaysia: an analysis by risk factors.

    Science.gov (United States)

    Tan, Andrew K G; Dunn, Richard A; Yen, Steven T

    2011-12-01

    This study investigates ethnic disparities in metabolic syndrome in Malaysia. Data were obtained from the Malaysia Non-Communicable Disease Surveillance-1 (2005/2006). Logistic regressions of metabolic syndrome health risks on sociodemographic and health-lifestyle factors were conducted using a multiracial (Malay, Chinese, and Indian and other ethnic groups) sample of 2,366 individuals. Among both males and females, the prevalence of metabolic syndrome amongst Indians was larger compared to both Malays and Chinese because Indians are more likely to exhibit central obesity, elevated fasting blood glucose, and low high-density lipoprotein cholesterol. We also found that Indians tend to engage in less physical activity and consume fewer fruits and vegetables than Malays and Chinese. Although education and family history of chronic disease are associated with metabolic syndrome status, differences in socioeconomic attributes do not explain ethnic disparities in metabolic syndrome incidence. The difference in metabolic syndrome prevalence between Chinese and Malays was not statistically significant. Whereas both groups exhibited similar obesity rates, ethnic Chinese were less likely to suffer from high fasting blood glucose. Metabolic syndrome disproportionately affects Indians in Malaysia. Additionally, fasting blood glucose rates differ dramatically amongst ethnic groups. Attempts to decrease health disparities among ethnic groups in Malaysia will require greater attention to improving the metabolic health of Malays, especially Indians, by encouraging healthful lifestyle changes.

  14. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    DEFF Research Database (Denmark)

    de Castro Barbosa, Thais; Ingerslev, Lars R; Alm, Petter S

    2016-01-01

    OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. METHODS: F0-male rats fed either HFD or chow diet......1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. CONCLUSION: Our results provide insight...... into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations....

  15. The effect of temperature and body weight on the routine metabolic rate and postprandial metabolic response in mulloway, Argyrosomus japonicus.

    Science.gov (United States)

    Pirozzi, Igor; Booth, Mark A

    2009-09-01

    Specific dynamic action (SDA) is the energy expended on the physiological processes associated with meal digestion and is strongly influenced by the characteristics of the meal and the body weight (BW) and temperature of the organism. This study assessed the effects of temperature and body weight on the routine metabolic rate (RMR) and postprandial metabolic response in mulloway, Argyrosomus japonicus. RMR and SDA were established at 3 temperatures (14, 20 and 26 degrees C). 5 size classes of mulloway ranging from 60 g to 1.14 kg were used to establish RMR with 3 of the 5 size classes (60, 120 and 240 g) used to establish SDA. The effect of body size on the mass-specific RMR (mg O(2) kg(-1) h(-1)) varied significantly depending on the temperature; there was a greater relative increase in the mass-specific RMR for smaller mulloway with increasing temperature. No statistical differences were found between the mass exponent (b) values at each temperature when tested against H(0): b=0.8. The gross RMR of mulloway (mg O(2) fish(-1) h(-1)) can be described as function of temperature (T; 14-26 degrees C) as: (0.0195T-0.0454)BW(g)(0.8) and the mass-specific RMR (mg O(2) kg(-1) h(-1)) can be described as: (21.042T-74.867)BW(g)(-0.2). Both SDA duration and time to peak SDA were influenced by temperature and body weight; SDA duration occurred within 41-89 h and peak time occurred within 17-38 h of feeding. The effect of body size on peak metabolic rate varied significantly depending on temperature, generally increasing with temperature and decreasing with increasing body size. Peak gross oxygen consumption (MO(2): mg O(2) fish(-1) h(-1)) scaled allometrically with BW. Temperature, but not body size, significantly affected SDA scope, although the difference was numerically small. There was a trend for MO(2) above RMR over the SDA period to increase with temperature; however, this was not statistically significant. The average proportion of energy expended over the SDA period

  16. Trophic position and metabolic rate predict the long-term decay process of radioactive cesium in fish: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Hideyuki Doi

    Full Text Available Understanding the long-term behavior of radionuclides in organisms is important for estimating possible associated risks to human beings and ecosystems. As radioactive cesium (¹³⁷Cs can be accumulated in organisms and has a long physical half-life, it is very important to understand its long-term decay in organisms; however, the underlying mechanisms determining the decay process are little known. We performed a meta-analysis to collect published data on the long-term ¹³⁷Cs decay process in fish species to estimate biological (metabolic rate and ecological (trophic position, habitat, and diet type influences on this process. From the linear mixed models, we found that 1 trophic position could predict the day of maximum ¹³⁷Cs activity concentration in fish; and 2 the metabolic rate of the fish species and environmental water temperature could predict ecological half-lives and decay rates for fish species. These findings revealed that ecological and biological traits are important to predict the long-term decay process of ¹³⁷Cs activity concentration in fish.

  17. The role of gut microbiota in the regulation of standard metabolic rate in female Periplaneta americana

    Directory of Open Access Journals (Sweden)

    Paul A. Ayayee

    2018-05-01

    Full Text Available Insect gut microbiota contribute significantly to host nutritional ecology. Disrupting insect gut microbial assemblages impacts nutrient provisioning functions, and can potentially affect host standard metabolic rate (SMR, a measure of host energy balance. In this study, we evaluated the effect of disrupting gut microbial assemblages on the SMR of female Periplaneta americana cockroaches fed dog food (DF, high protein/carbohydrate (p/c ratio, and cellulose-amended dog food (CADF, 30% dog food, 70% cellulose, low p/c ratio diets, supplemented with none, low, or high antibiotic doses. Bacterial loads decreased significantly between diet types (P = 0.04 and across antibiotic doses (P = 0.04. There was a significant diet type x antibiotic dose interaction on SMR of females on both diets (P = 0.05 by the end of the seven-day experimental period. In CADF-fed females, SMR decreased linearly with decreasing bacterial load. However, SMR of DF-fed females on the low dose was significantly higher than those in the control and high dose groups. This is interpreted as a diet-dependent response by low dose DF-fed females to the loss of nutritional services provided by gut bacteria. Severe reductions in bacterial load at high doses reduced SMR of females on both diet types. This study provides insights into the potential role of gut bacteria as modulators of host energy expenditure under varying dietary conditions.

  18. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    Science.gov (United States)

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  19. Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)

    Science.gov (United States)

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...

  20. Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum

    DEFF Research Database (Denmark)

    Iskandar, Christelle F.; Cailliez-Grimal, Catherine; Rahman, Abdur

    2016-01-01

    The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative...

  1. Effects of Time-Release Caffeine Containing Supplement on Metabolic Rate, Glycerol Concentration and Performance

    Directory of Open Access Journals (Sweden)

    Adam M. Gonzalez, Jay R. Hoffman, Adam J. Wells, Gerald T. Mangine, Jeremy R. Townsend, Adam R. Jajtner, Ran Wang, Amelia A. Miramonti, Gabriel J. Pruna, Michael B. LaMonica, Jonathan D. Bohner, Mattan W. Hoffman, Leonardo P. Oliveira, David H. Fukuda, Maren S. Fragala, Jeffrey R. Stout

    2015-06-01

    Full Text Available This study compared caffeine pharmacokinetics, glycerol concentrations, metabolic rate, and performance measures following ingestion of a time-release caffeine containing supplement (TR-CAF versus a regular caffeine capsule (CAF and a placebo (PL. Following a double-blind, placebo-controlled, randomized, cross-over design, ten males (25.9 ± 3.2 y who regularly consume caffeine ingested capsules containing either TR-CAF, CAF, or PL. Blood draws and performance measures occurred at every hour over an 8-hour period. Plasma caffeine concentrations were significantly greater (p < 0.05 in CAF compared to TR-CAF during hours 2-5 and significantly greater (p = 0.042 in TR-CAF compared to CAF at hour 8. There were no significant differences between trials in glycerol concentrations (p = 0.86 or metabolic measures (p = 0.17-0.91. Physical reaction time was significantly improved for CAF at hour 5 (p=0.01 compared to PL. Average upper body reaction time was significantly improved for CAF and TR-CAF during hours 1-4 (p = 0.04 and p = 0.01, respectively and over the 8-hour period (p = 0.04 and p = 0.001, respectively compared to PL. Average upper body reaction time was also significantly improved for TR-CAF compared to PL during hours 5-8 (p = 0.004. TR-CAF and CAF showed distinct pharmacokinetics yielding modest effects on reaction time, yet did not alter glycerol concentration, metabolic measures, or other performance measures.

  2. Metabolism of fluoranthene in different plant cell cultures and intact plants

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.; Harms, H.

    2000-05-01

    The metabolism of fluoranthene was investigated in 11 cell cultures of different plant species using a [{sup 14}C]-labeled standard. Most species metabolized less than 5% of fluoranthene to soluble metabolites and formed less than 5% nonextractable residues during the standardized 48-h test procedure. Higher metabolic rates were observed in lettuce (Lactuca sativa, 6%), wheat (Tricitum aestivum, 9%), and tomato (Lycopersicon esculentum, 15%). A special high metabolic rate of nearly 50% was determined for the rose species Paul's Scarlet. Chromatographic analysis of metabolites extracted from aseptically grown tomato plants proved that the metabolites detected in the cell cultures were also formed in the intact plants. Metabolites produced in tomato and rose cells from [{sup 14}C]-fluoranthene were conjugated with glucose, glucuronic acid, and other cell components. After acid hydrolyses, the main metabolite of both species was 1-hydroxyfluoranthene as identified by gas chromatography-mass spectrometry and high-performance liquid chromatography with diode array detection. The second metabolite formed by both species was 8-hydroxyfluoranthene. A third metabolite in tomatoes was 3-hydroxyfluoranthene.

  3. Differential effects of simple vs. complex carbohydrates on VLDL secretion rates and HDL metabolism in the guinea pig.

    Science.gov (United States)

    Fernandez, M L; Abdel-Fattah, G; McNamara, D J

    1995-04-28

    Guinea pigs were fed isocaloric diets containing 52% (w/w) carbohydrate, either sucrose or starch, to investigate effects of simple vs. complex carbohydrates on plasma VLDL and HDL metabolism. Plasma cholesterol concentrations were not different between dietary groups while plasma triacylglycerol (TAG) and VLDL cholesterol levels were significantly increased in animals fed the sucrose diet (P < 0.05). Hepatic VLDL TAG secretion rates measured following intravenous injection of Triton WR-1339 were not affected by carbohydrate type whereas the rate of apo B secretion was 1.9-fold higher in sucrose fed animals (P < 0.02). Nascent VLDL from the sucrose group contained less TAG per apo B suggesting that the higher plasma TAG in animals fed simple carbohydrates results from increased secretion of VLDL particles with lower TAG content. Sucrose fed animals exhibited higher concentrations of hepatic free cholesterol (P < 0.01) while hepatic TAG levels and acyl CoA:cholesterol acyltransferase (ACAT) activity were not different between groups. Plasma HDL cholesterol concentrations and composition, and plasma lecithin cholesterol acyltransferase (LCAT) activity were not affected by diet yet there was a positive correlation between HDL cholesteryl ester content and LCAT activities (r = 0.70, P < 0.05). Hepatic membranes from the sucrose group had a higher hepatic HDL binding protein number (Bmax) with no changes in the dissociation constant (Kd). These results suggest that at the same carbohydrate energy intake, simple sugars induce modest changes in HDL metabolism while VLDL metabolism is affected at multiple sites, as indicated by the higher concentrations of hepatic cholesterol, dissociation in the synthesis rates of VLDL components, and compositional changes in nascent and mature VLDL.

  4. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers

    Energy Technology Data Exchange (ETDEWEB)

    Miletto, M.; Williams, K.H.; N' Guessan, A.L.; Lovley, D.R.

    2011-04-01

    Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations, and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to

  5. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism.

    Science.gov (United States)

    Jansen, S W; Akintola, A A; Roelfsema, F; van der Spoel, E; Cobbaert, C M; Ballieux, B E; Egri, P; Kvarta-Papp, Z; Gereben, B; Fekete, C; Slagboom, P E; van der Grond, J; Demeneix, B A; Pijl, H; Westendorp, R G J; van Heemst, D

    2015-06-19

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism.

  6. High-sensitivity C-reactive protein predicts target organ damage in Chinese patients with metabolic syndrome

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Nie, Hai; He, Hongbo

    2007-01-01

    with metabolic syndrome. A total of 1082 consecutive patients of Chinese origin were screened for the presence of metabolic syndrome according to the National Cholesterol Education Program's Adult Treatment Panel III. High-sensitivity C-reactive protein and target organ damage, including cardiac hypertrophy......Observational studies established high-sensitivity C-reactive protein as a risk factor for cardiovascular events in the general population. The goal of this study was to determine the relationship between target organ damage and high-sensitivity C-reactive protein in a cohort of Chinese patients......, carotid intima-media thickness, and renal impairment, were investigated. The median (25th and 75th percentiles) of high-sensitivity C-reactive protein in 619 patients with metabolic syndrome was 2.42 mg/L (0.75 and 3.66 mg/L) compared with 1.13 mg/L (0.51 and 2.46 mg/L) among 463 control subjects (P

  7. Ovarian tumor-initiating cells display a flexible metabolism

    International Nuclear Information System (INIS)

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-01-01

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L FFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth

  8. Ovarian tumor-initiating cells display a flexible metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Angela S. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Roberts, Paul C. [Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA (United States); Frisard, Madlyn I. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Hulver, Matthew W., E-mail: hulvermw@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Schmelz, Eva M., E-mail: eschmelz@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States)

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  9. Community-based primary prevention programs decrease the rate of metabolic syndrome among socioeconomically disadvantaged women.

    Science.gov (United States)

    Gilstrap, Lauren Gray; Malhotra, Rajeev; Peltier-Saxe, Donna; Slicas, Donna; Pineda, Eliana; Culhane-Hermann, Catherine; Cook, Nakela; Fernandez-Golarz, Carina; Wood, Malissa

    2013-04-01

    Metabolic Syndrome (MetSyn) is one of the strongest predictors of type 2 diabetes (DM2) and cardiovascular disease (CVD). It is associated with a 4- to 10-fold increased risk of DM2 and a 2- to 3-fold increased risk of CVD. Low income and minority women have some of the highest rates of MetSyn. This study examines the effect of a unique, community based, primary prevention program on the rates of MetSyn and health habits. Sixty-four low income and minority women were enrolled in the HAPPY (Health Awareness and Primary Prevention in Your neighborhood) Heart Program in an eastern suburb of Boston. Over these 2 years, patients were evaluated by an interdisciplinary medical team: their primary physician, cardiologist, nutritionist, physical therapist, and health coach. The rate of MetSyn was measured at baseline, year 1, and year 2. Comparisons were made either using the paired t test for normally distributed variables or the Wilcoxon Sign test for non-normal variables. The rate of MetSyn fell from 64.7% at baseline to 34.9% at year 1 (p=0.01) and 28.2% at year 2 (p<0.001). This was driven by increases in high-density lipoprotein (HDL-C) (p<0.001) and decreases in blood pressure (p=0.05). Fasting blood glucose trended down, but the hemoglobin A1c (HbA1c) reached significance (decreasing from 6 to 5.8, p<0.01). Nutrition and exercise habits trended toward improvement. There were significant decreases in anxiety (p<0.001), depression (p=0.006) and stress (p=0.002). This lifestyle intervention program is effective at decreasing MetSyn in a socioeconomically disadvantaged, largely minority, female population. This program also decreases anxiety, stress, and depression among participants.

  10. Local cerebral metabolic rate of glucose (lCMRGlc) in treated and untreated patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Rougemont, D.; Baron, J.C.; Collard, P.; Bustany, P.; Comar, D.; Agid, Y.

    1983-06-01

    Local cerebral metabolic rate of glucose (lCMRGlc) was measured twice, using positron emission tomography and 18 F-Fluoro-2-deoxy-D-glucose ( 18 FDG), in 4 patients with Parkinson disease, first unmedicated and then treated with L-DOPA. Despite a dramatic clinical improvement, no significant changes in lCMRGlc could be detected. Moreover, no reproducible differences of lCMRGlc were found between patients with Parkinson disease and with normal brain

  11. Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17O and 31P MRS at ultra-high field.

    Science.gov (United States)

    Zhu, Xiao-Hong; Lu, Ming; Chen, Wei

    2018-07-01

    Brain energy metabolism relies predominantly on glucose and oxygen utilization to generate biochemical energy in the form of adenosine triphosphate (ATP). ATP is essential for maintaining basal electrophysiological activities in a resting brain and supporting evoked neuronal activity under an activated state. Studying complex neuroenergetic processes in the brain requires sophisticated neuroimaging techniques enabling noninvasive and quantitative assessment of cerebral energy metabolisms and quantification of metabolic rates. Recent state-of-the-art in vivo X-nuclear MRS techniques, including 2 H, 17 O and 31 P MRS have shown promise, especially at ultra-high fields, in the quest for understanding neuroenergetics and brain function using preclinical models and in human subjects under healthy and diseased conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    Science.gov (United States)

    Hursel, Rick; Martens, Eveline A P; Gonnissen, Hanne K J; Hamer, Henrike M; Senden, Joan M G; van Loon, Luc J C; Westerterp-Plantenga, Margriet S

    2015-01-01

    Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;Pprotein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;Psynthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;Pprotein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042±0.01 vs 0.045±0.01%/h;P = 0.620). In the overnight fasted state, adaptation to a low-protein intake (0.4 g/kg/d) does not result in a more negative whole-body protein balance and

  13. Effect of different saccharides on growth, sporulation rate and d ...

    African Journals Online (AJOL)

    MFCS

    2012-05-17

    May 17, 2012 ... general, high sporulation rate was related with high growth rate and high viable cell count (>1.5 x 1012 cfu/ml). .... The sterile culture medium (180 ml) in a 1000 ml Erlenmeyer flask was ... The column temperature was set at 85°C. A series of ..... inactivation of certain sugar-metabolizing operons, such as lac ...

  14. Phosphoinositide metabolism and metabolism-contraction coupling in rabbit aorta

    International Nuclear Information System (INIS)

    Coburn, R.F.; Baron, C.; Papadopoulos, M.T.

    1988-01-01

    The authors tested a hypothesis that metabolism-contraction coupling in vascular smooth muscle is controlled by the rate of delivery of energy to ATP-dependent reactions in the inositol phospholipid transduction system that generate second messengers exerting control on smooth muscle force. Rabbit aorta was contracted by norepinephrine (NOR) under conditions of normoxia and hypoxia, and changes in inositol phospholipid pool sizes and metabolic flux rates (J F ) were determined. J F was determined by labeling free cytosolic myo-inositol by incubation of unstimulated muscle with myo-[ 3 H]inositol and then measuring rates of incorporation of this isotope into inositol phospholipids and inositol phosphates when the muscle was activated by NOR. J F measured during maintenance of NOR-induced force was markedly inhibited during hypoxia to 40-50% of that determined during normoxia; rates of increases in inositol phosphate radioactivities were similarly depressed during NOR activation under hypoxia. The hypoxia-induced decrease in J F was associated with four- to fivefold increase in phosphatidylinositol 4-phosphate (PIP) total pool size, suggesting PIP kinase was inhibited and rate limiting. These data suggest that activation of inositol phospholipid metabolism, which generates inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol, is blunted under conditions where aerobic energy production is inhibited. Data are consistent with rate-limiting effects of decreased ATP delivery, or decreased phosphate potential, on PIP kinase and reactions that control resynthesis of phosphatidylinositol

  15. Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects

    DEFF Research Database (Denmark)

    Mougiakos, Ioannis; Bosma, Elleke F.; Ganguly, Joyshree

    2018-01-01

    High engineering efficiencies are required for industrial strain development. Due to its user-friendliness and its stringency, CRISPR-Cas-based technologies have strongly increased genome engineering efficiencies in bacteria. This has enabled more rapid metabolic engineering of both the model host...... the range of organisms in which it can be used to create novel production hosts. This review analyses the current status of prokaryotic metabolic engineering towards the production of biotechnologically relevant products, based on the exploitation of different CRISPR-related DNA/RNA endonuclease variants....

  16. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats.

    Directory of Open Access Journals (Sweden)

    Fang Xie

    Full Text Available To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD or high-fat, high-sucrose and high-salt diets (HFSSD relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG, insulin, free fatty acids (FFA, homeostasis model assessment-insulin resistance index (HOMA-IR, thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF as well as unmyelinated fibers (UMF in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension and prediabetic conditions (impaired fasting glucose could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.

  17. High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats

    Science.gov (United States)

    Hou, Jun-Feng; Jiao, Kai; Costigan, Michael; Chen, Jun

    2013-01-01

    To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals. PMID:23451227

  18. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Wang, Ou; Liu, Jia; Cheng, Qian; Guo, Xiaoxuan; Wang, Yong; Zhao, Liang; Zhou, Feng; Ji, Baoping

    2015-01-01

    The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ), the ferulic acid (FA) ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome parameters. Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations) for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR) index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG) content and lipogenesis-related gene expressions. In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect. OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD.

  19. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats.

    Directory of Open Access Journals (Sweden)

    Ou Wang

    Full Text Available The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ, the ferulic acid (FA ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD-induced metabolic syndrome parameters.Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG content and lipogenesis-related gene expressions.In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect.OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD.

  20. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    OpenAIRE

    Meyers, Allison M.; Mourra, Devry; Beeler, Jeff A.

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study ...

  1. Metabolic Trade-offs in Yeast are Caused by F1F0-ATP synthase

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Nielsen, Jens

    2016-01-01

    of intermediary metabolism and consequently metabolic trade-offs may take place. One such trade-off, aerobic fermentation, occurs in both yeast (the Crabtree effect) and cancer cells (the Warburg effect) and has been a scientific challenge for decades. Here we show, using flux balance analysis combined...... with in vitro measured enzyme specific activities, that fermentation is more catalytically efficient than respiration, i.e. it produces more ATP per protein mass. And that the switch to fermentation at high growth rates therefore is a consequence of a high ATP production rate, provided by a limited pool...

  2. Effects of pre-germinated brown rice treatment high-fat diet-induced metabolic syndrome in C57BL/6J mice.

    Science.gov (United States)

    Yen, Hsueh-Wei; Lin, Hui-Li; Hao, Chi-Long; Chen, Fu-Chih; Chen, Chun-Yun; Chen, Jia-Hao; Shen, Kuo-Ping

    2017-05-01

    To investigate using pre-germinated brown rice (PGBR) to treat metabolic syndrome, we fed one group of mice standard-regular-diet (SRD) for 20 weeks and another group of mice high-fat-diet (HFD) for 16 weeks. We subdivided them into HFD group and HFD + PGBR group whose dietary carbohydrate was replaced with PGBR for 4 weeks. The HFD group gained more weight, had higher blood pressure, heart rate, blood glucose and lipids, liver levels of TG, feces TG and bile acid, lower adipose levels of adipocytokine, lower skeletal muscle IR, IRS-1, IRS-2, PI3 K, Akt/PKB, GLUT-1, GLUT-4, GCK and PPAR-γ; higher liver SREBP-1, SCD-1, FAS, HMGCR, LDLR, CYP7α1 and PPAR-α, and higher adipose SREBP-1, SCD-1, FAS, and lower adipose PPAR-α and adiponectin. The HFD + PGBR group had clearly improved blood pressure, biochemical parameters and above proteins expressions. PGBR successful treatment of metabolic syndrome was achieved through improvements in glucose and lipid synthesis and metabolism.

  3. Validation of resting metabolic rate prediction equations for teenagers

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Santos da Fonseca

    2007-09-01

    Full Text Available The resting metabolic rate (RMR can be defi ned as the minimum rate of energy spent and represents the main component of the energetic outlay. The purpose of this study is to validate equations to predict the resting metabolic rate in teenagers (103 individuals, being 51 girls and 52 boys, with age between 10 and 17 years from Florianópolis – SC – Brazil. It was measured: the body weight, body height, skinfolds and obtained the lean and body fat mass through bioimpedance. The nonproteic RMR was measured by Weir’s equation (1949, utilizing AeroSport TEEM-100 gas analyzer. The studied equations were: Harry and Benedict (1919, Schofi eld (1985, WHO/FAO/UNU (1985, Henry and Rees (1991, Molnár et al. (1998, Tverskaya et al. (1998 and Müller et al. (2004. In order to study the cross-validation of the RMR prediction equations and its standard measure (Weir 1949, the following statistics procedure were calculated: Pearson’s correlation (r ≥ 0.70, the “t” test with the signifi cance level of p0.05 in relation to the standard measure, with exception of the equations suggested for Tverskaya et al. (1998, and the two models of Müller et al (2004. Even though there was not a signifi cant difference, only the models considered for Henry and Rees (1991, and Molnár et al. (1995 had gotten constant error variation under 5%. All the equations analyzed in the study in girls had not reached criterion of correlation values of 0.70 with the indirect calorimetry. Analyzing the prediction equations of RMR in boys, all of them had moderate correlation coeffi cients with the indirect calorimetry, however below 0.70. Only the equation developed for Tverskaya et al. (1998 presented differences (p ABSTRACT0,05 em relação à medida padrão (Weir 1949, com exceção das equações sugeridas por Tverskaya et al. (1998 e os dois modelos de Müller et al (2004. Mesmo não havendo diferença signifi cativa, somente os modelos propostos por Henry e Rees (1991

  4. A Metabolic Race

    Directory of Open Access Journals (Sweden)

    A.M.S. Costa et al.

    2017-07-01

    Full Text Available Metabolic Syndrome describes a set of metabolic risk factors that manifest in an individual and some aspects contribute to its appearance: genetic, overweight and the absence of physical activity. So, a board game was created to simulate the environment and routine experienced by UFF students that could contribute  to the development of Metabolic Syndrome. Players move along a simplified map of Niterói city, where places as Antônio Pedro Hospital (HUAP are pointed out. OBJECTIVES: This project aimed to develop an educational game to consolidate Metabolic Syndrome biochemical events. MATERIAL E METHODS: Each group receives a board, pins, dice, question, challenge and diagnostics cards. One student performs the family doctor function, responsable for delivering cards, reading activities and providing diagnosis to players when game is over.The scoring system is based on 3 criteria for Metabolic Syndrome diagnosis: glycemia, abdominal obesity and HDL cholesterol. At the end of game, it is possible to calculate the rates of each player and provide proportional diagnosis. The winner is the healthiest that first arrives at HUAP. RESULTS AND DISCUSSION: The game was applied to 50 students and only 10% classified the subject-matter as difficult. This finding highlight the need to establish new methods to enhance the teaching and learning process and decrease the students’ dificulties. Students evaluated the game as an important educational support and 85% of them agreed it complements  and consolidate the content discussed in classroom. Finally, the game was very highly rated by students according to their perception about their own performance while playing.  In addition, 95 % students pointed they would play again and 98% said they think games are able to optimize learning. CONCLUSIONS: It was possible not only to approximate biochemical phenomena to the students’ daily life, but also to solidify the theoretical concepts in a dynamic and fun

  5. Basal metabolic rate can evolve independently of morphological and behavioural traits.

    Science.gov (United States)

    Mathot, K J; Martin, K; Kempenaers, B; Forstmeier, W

    2013-09-01

    Quantitative genetic analyses of basal metabolic rate (BMR) can inform us about the evolvability of the trait by providing estimates of heritability, and also of genetic correlations with other traits that may constrain the ability of BMR to respond to selection. Here, we studied a captive population of zebra finches (Taeniopygia guttata) in which selection lines for male courtship rate have been established. We measure BMR in these lines to see whether selection on male sexual activity would change BMR as a potentially correlated trait. We find that the genetic correlation between courtship rate and BMR is practically zero, indicating that the two traits can evolve independently of each other. Interestingly, we find that the heritability of BMR in our population (h(2)=0.45) is markedly higher than was previously reported for a captive zebra finch population from Norway. A comparison of the two studies shows that additive genetic variance in BMR has been largely depleted in the Norwegian population, especially the genetic variance in BMR that is independent of body mass. In our population, the slope of BMR increase with body mass differs not only between the sexes but also between the six selection lines, which we tentatively attribute to genetic drift and/or founder effects being strong in small populations. Our study therefore highlights two things. First, the evolvability of BMR may be less constrained by genetic correlations and lack of independent genetic variation than previously described. Second, genetic drift in small populations can rapidly lead to different evolvabilities across populations.

  6. Local cerebral metabolic rate of glucose (lCMRGlc) in treated and untreated patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Rougemont, D; Baron, J C; Collard, P; Bustany, P; Comar, D; Agid, Y

    1983-06-01

    Local cerebral metabolic rate of glucose (lCMRGlc) was measured twice, using positron emission tomography and /sup 18/F-Fluoro-2-deoxy-D-glucose (/sup 18/FDG), in 4 patients with Parkinson disease, first unmedicated and then treated with L-DOPA. Despite a dramatic clinical improvement, no significant changes in lCMRGlc could be detected. Moreover, no reproducible differences of lCMRGlc were found between patients with Parkinson disease and with normal brain.

  7. Metabolic rate and thyroid activity of hens in relation to the state of feathering.

    Science.gov (United States)

    Pietras, M

    1981-01-01

    Heat production, rectal temperature and thyroid activity were determined in NH X Lg hens that were 40 and 80% defeathered. Within individual groups there was a significant increase in heat production only in hens that were 80% defeathered. In comparison with the control group, defeathered chickens had higher metabolic rates during each examined period. During the third week of the experiment there was a temporary drop in the rectal temperature of the experimental birds. After nine weeks chicken with the greatest degree of defeathering had the highest thyroid weight and the highest levels of thyroxin in the blood plasma.

  8. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  9. Metabolic surgery: quo vadis?

    Science.gov (United States)

    Ramos-Leví, Ana M; Rubio Herrera, Miguel A

    2014-01-01

    The impact of bariatric surgery beyond its effect on weight loss has entailed a change in the way of regarding it. The term metabolic surgery has become more popular to designate those interventions that aim at resolving diseases that have been traditionally considered as of exclusive medical management, such as type 2 diabetes mellitus (T2D). Recommendations for metabolic surgery have been largely addressed and discussed in worldwide meetings, but no definitive consensus has been reached yet. Rates of diabetes remission after metabolic surgery have been one of the most debated hot topics, with heterogeneity being a current concern. This review aims to identify and clarify controversies regarding metabolic surgery, by focusing on a critical analysis of T2D remission rates achieved with different bariatric procedures, and using different criteria for its definition. Indications for metabolic surgery for patients with T2D who are not morbidly obese are also discussed. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  10. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring.

    Directory of Open Access Journals (Sweden)

    Sarah J Borengasser

    Full Text Available The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosis, and lipogenic gene expression in the liver at weaning. However, the precise underlying mechanisms leading to metabolic dysregulation in the offspring remains unclear. Using a rat model of overfeeding-induced obesity, we previously demonstrated that exposure to maternal obesity from pre-conception to birth, is sufficient to program increased obesity risk in the offspring. Offspring of obese rat dams gain greater body weight and fat mass when fed high fat diet (HFD as compared to lean dam. Since, disruptions of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver, we examined the hypothesis that maternal obesity leads to perturbations of core clock components and thus energy metabolism in offspring liver. Offspring from lean and obese dams were examined at post-natal day 35, following a short (2 wk HFD challenge. Hepatic mRNA expression of circadian (CLOCK, BMAL1, REV-ERBα, CRY, PER and metabolic (PPARα, SIRT1 genes were strongly suppressed in offspring exposed to both maternal obesity and HFD. Using a mathematical model, we identified two distinct biological mechanisms that modulate PPARα mRNA expression: i decreased mRNA synthesis rates; and ii increased non-specific mRNA degradation rate. Moreover, our findings demonstrate that changes in PPARα transcription were associated with epigenomic alterations in H3K4me3 and H3K27me3 histone marks near the PPARα transcription start site. Our findings indicated that offspring from obese rat dams have detrimental alternations to circadian machinery that may contribute to impaired liver metabolism in response to HFD, specifically via reduced PPAR

  11. Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain : the Baltimore Longitudinal Study on Aging

    NARCIS (Netherlands)

    Seidell, J C; Muller, D C; Sorkin, J D; Andres, R.

    The authors followed 775 men (aged 18-98 years) participating in the Baltimore Longitudinal Study in Aging for an average of ten years. Resting metabolic rate and fasting respiratory exchange ratio (RER) were measured by indirect calorimetry on their first visit and related to subsequent weight

  12. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism.

    Science.gov (United States)

    Maki, Kevin C; Phillips-Eakley, Alyssa K; Smith, Kristen N

    2016-05-01

    Findings from epidemiologic studies indicate that there are associations between breakfast consumption and a lower risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome, prompting interest in the influence of breakfast on carbohydrate metabolism and indicators of T2DM risk. The objective of this review was to summarize the available evidence from randomized controlled trials assessing the impact of breakfast on variables related to carbohydrate metabolism and metabolic wellness. Consuming compared with skipping breakfast appeared to improve glucose and insulin responses throughout the day. Breakfast composition may also be important. Dietary patterns high in rapidly available carbohydrate were associated with elevated T2DM risk. Therefore, partial replacement of rapidly available carbohydrate with other dietary components, such as whole grains and cereal fibers, proteins, and unsaturated fatty acids (UFAs), at breakfast may be a useful strategy for producing favorable metabolic outcomes. Consumption of fermentable and viscous dietary fibers at breakfast lowers glycemia and insulinemia. Fermentable fibers likely act through enhancing insulin sensitivity later in the day, and viscous fibers have an acute effect to slow the rate of carbohydrate absorption. Partially substituting protein for rapidly available carbohydrate enhances satiety and diet-induced thermogenesis, and also favorably affects lipoprotein lipids and blood pressure. Partially substituting UFA for carbohydrate has been associated with improved insulin sensitivity, lipoprotein lipids, and blood pressure. Overall, the available evidence suggests that consuming breakfast foods high in whole grains and cereal fiber, while limiting rapidly available carbohydrate, is a promising strategy for metabolic health promotion. © 2016 American Society for Nutrition.

  13. Fluoroacetylcarnitine: metabolism and metabolic effects in mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, J; Davis, E J

    1973-01-01

    The metabolism and metabolic effects of fluoroacetylcarnitine have been investigated. Carnitineacetyltransferase transfers the fluoro-acetyl group of fluoroacetylcarnitine nearly as rapidly to CoA as the acetyl group of acetylcarnitine. Fluorocitrate is then formed by citrate synthase, but this second reaction is relatively slow. The fluorocitrate formed intramitochondrially inhibits the metabolism of citrate. In heart and skeletal muscle mitochondria the accumulated citrate inhibits citrate synthesis and the ..beta..-oxidation of fatty acids. Free acetate is formed, presumably because accumulated acetyl-CoA is hydrolyzed. In liver mitochondria the accumulation of citrate leads to a relatively increased rate of ketogenesis. Increased ketogenesis is obtained also upon the addition of citrate to the reaction mixture.

  14. Endothelial dysfunction and reduced heart rate variability in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elena Nikolaevna Smirnova

    2018-03-01

    Full Text Available According to experts of the World Health Organization (WHO, metabolic syndrome (MS can be considered as pandemy of the XXI century, because its prevalence among the population of developed countries is about 25-35%. In this study with the purpose of complex investigation of the autonomic nervous system and endothelial function we included 66 patients with MS between the ages of 25 and 61 (46.9±9.9 years. A comparison group of apparently healthy individuals (16 individuals, average age of 45.3±2.3 years; P>0.05 was studied. To evaluate the response of microvascular tone, we used the method of wavelet analysis of skin temperature oscillations during cooling of the limb. All patients underwent the study of heart rate variability. The levels of insulin, endothelin-1, and vascular endothelial growth factor were determined using enzyme immunoassay. Patients with MS had significant differences in all metabolic parameters. Our study showed that in the group of MS there is a decrease of the variability of heart rhythm compared with the healthy group. Conducting cold test revealed signs of endothelial dysfunction in the MS group, which was manifested by the decrease of the index of vasodilation in the endothelial and neurogenic frequency range. In the study group we determined the increase in biochemical markers of endothelial dysfunction, which correlated with parameters of vasodilation. Also, the presence of endothelial dysfunction significantly correlated with signs of reduction of the variability of the heart rhythm.

  15. Special K: testing the potassium link between radioactive rubidium (86Rb) turnover and metabolic rate.

    Science.gov (United States)

    Tomlinson, Sean; Mathialagan, Priya D; Maloney, Shane K

    2014-04-01

    The measurement of (86)Rb turnover recently has been suggested as a useful method for measuring field metabolic rate in small animals. We investigated a proposed mechanism of (86)Rb turnover, its analogy to K(+), by comparing the turnover of (86)Rb in a model insect, the rhinoceros beetle Xylotrupes gideon, fed a diet of plum jam or plum jam enriched with K(+) or Rb(+). The turnover of (86)Rb in the beetles on the K(+) and the Rb(+) diets was higher than that for beetles on the jam diet (F2,311=32.4; P=1.58×10(-13)). We also exposed the beetles to different ambient temperatures to induce differences in metabolic rate ( ) while feeding them the jam and K(+) diets. was higher at higher ambient temperature (Ta) for both jam (F1,11=14.56; P=0.003) and K(+) (F1,8=15.39; P=0.004) dietary groups, and the turnover of (86)Rb was higher at higher Ta for both jam (F1,11=10.80; P=0.007) and K(+) (F1,8=12.34; P=0.008) dietary groups. There was a significant relationship between (86)Rb turnover and for both the jam (F1,11=35.00; P=1.0×10(-3)) and the K(+) (F1,8=64.33; P=4.3×10(-5)) diets, but the relationship differed between the diets (F1,19=14.07; P=0.001), with a higher (86)Rb turnover in beetles on the K(+)-enriched than on the jam diet at all Ta. We conclude that (86)Rb turnover is related to K(+) metabolism, and that this is the mechanism of the relationship between (86)Rb turnover and . Studies relating (86)Rb turnover to should maintain dietary [K] as close as possible to that of natural diets for the most accurate calibrations for free-ranging animals.

  16. Metabolic syndrome in patients with ischemic heart disease

    International Nuclear Information System (INIS)

    Yasmin, S.; Naveed, T.; Shakoor, T.

    2008-01-01

    To determine the frequency of metabolic syndrome in patients with Ischemic Heart Disease (IHD). Cross-sectional, descriptive study. A total of 100 subjects with ischemic heart disease, fulfilling the inclusion criteria, were enrolled in the study. Demographic data (age and gender) and the 5 component conditions of the metabolic syndrome were noted. Subjects were physically assessed for the abdominal obesity, based on waist circumference. Fasting blood samples for glucose and lipid profile in first 24 hours after acute coronary insult were drawn and tested in central laboratory. Variables were processed for descriptive statistics. In this study population, 68% were male and 32% were female with mean age of 52 +-13.6 years in men and 56 +- 12.5 years in women. Frequency of metabolic syndrome was 32% in men and 28% in women. It increased with age. The highest rate of metabolic syndrome was in men diagnosed as STEMI (odds ratio: 3.39, 95% CI=1.36-8.41). Frequency of metabolic syndrome was high among the patients with IHD. It supports the potential for preventive efforts in persons with high-risk of IHD. (author)

  17. Estimated glomerular filtration rate function in patients with and without metabolic syndrome

    Directory of Open Access Journals (Sweden)

    María E Lizardo

    2016-06-01

    Full Text Available Introduction: Metabolic syndrome (MS is an independent risk factor, which affects the development of chronic kidney disease, so the glomerular filtration rate (GFR as an indicator of glomerular function in patients with and without MS who attended the outpatient clinic “los Grillitos, sector Caña de Azucar”. Materials and Methods: A comparative, correlational, cross-sectional study was conducted in a non-probability sample of convenience consisting of 60 patients with MS diagnosed according to the criteria Panel ATP III, and 60 apparently healthy individuals, whom the GFR was determined by the Cockcroft-Gault as well as clinical and biochemical parameters for the diagnosis of MS. Results: Out of the total patients evaluated, 37 (30.7% showed alterations that put them in grades G2 and G3 system risk stratification of CKD, of these 18 and 19 corresponded to patients with and without MS respectively. Glomerular Hyperfiltration (> 120 mil / min it was found in both groups 28 (46.7% and 24 (40% cases of patients with and without MS respectively. The glomerular function was strongly correlated with abdominal obesity and high levels of stress arterial. As for the number of criteria and its relationship to the level of kidney damage present, not a firm to increase the latter with respect to the first (p=0.385 trend was observed. Conclusion: The change in the glomerular function is not directly related to the MS but with its components, specifically abdominal obesity and hypertension.

  18. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    Science.gov (United States)

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.

  19. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    Science.gov (United States)

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  20. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.

    Science.gov (United States)

    Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M

    2011-01-15

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.

  1. High School Graduation Rates:Alternative Methods and Implications

    Directory of Open Access Journals (Sweden)

    Jing Miao

    2004-10-01

    Full Text Available The No Child Left Behind Act has brought great attention to the high school graduation rate as one of the mandatory accountability measures for public school systems. However, there is no consensus on how to calculate the high school graduation rate given the lack of longitudinal databases that track individual students. This study reviews literature on and practices in reporting high school graduation rates, compares graduation rate estimates yielded from alternative methods, and estimates discrepancies between alternative results at national, state, and state ethnic group levels. Despite the graduation rate method used, results indicate that high school graduation rates in the U.S. have been declining in recent years and that graduation rates for black and Hispanic students lag substantially behind those of white students. As to graduation rate method preferred, this study found no evidence that the conceptually more complex methods yield more accurate or valid graduation rate estimates than the simpler methods.

  2. The effects of capsaicin and capsaicinoid analogs on metabolic molecular targets in highly energetic tissues and cell types.

    Science.gov (United States)

    Gannon, Nicholas P; Lambalot, Emily L; Vaughan, Roger A

    2016-05-01

    There is increasing interest in dietary chemicals that may provide benefits for pathologies such as diabetes and obesity. Capsaicinoids found in chili peppers and pepper extracts, are responsible for the "hot" or "spicy" sensation associated with these foods. Capsaicinoid consumption is also associated with enhanced metabolism, making them potentially therapeutic for metabolic disease by promoting weight loss. This review summarizes much of the current experimental evidence (ranging from basic to applied investigations) of the biochemical and molecular metabolic effects of capsaicinoids in metabolically significant cell types. Along with influencing metabolic rate, findings demonstrate capsaicinoids appear to alter molecular metabolic signaling, regulate hunger and satiety, blood metabolites, and catecholamine release. Notably, the majority of the experiments summarized herein utilized isolated supplemental or research grade capsaicinoids rather than natural food sources for experimental interventions. Additional work should be conducted using primary food sources of capsaicin to explore pharmacological, physiological, and metabolic benefits of both chronic and acute capsaicin consumption. © 2016 BioFactors, 42(3):229-246, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  3. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    Science.gov (United States)

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. The frequency and severity of metabolic acidosis related to topiramate.

    Science.gov (United States)

    Türe, Hatice; Keskin, Özgül; Çakır, Ülkem; Aykut Bingöl, Canan; Türe, Uğur

    2016-12-01

    Objective We planned a cross-sectional analysis to determine the frequency and severity of metabolic acidosis in patients taking topiramate while awaiting craniotomy. Methods Eighty patients (18 - 65 years) taking topiramate to control seizures while awaiting elective craniotomy were enrolled. Any signs of metabolic acidosis or topiramate-related side effects were investigated. Blood chemistry levels and arterial blood gases, including lactate, were obtained. The severity of metabolic acidosis was defined according to base excess levels as mild or moderate. Results Blood gas analysis showed that 71% ( n = 57) of patients had metabolic acidosis. The frequency of moderate metabolic acidosis was 56% ( n = 45), while that of mild metabolic acidosis was 15% ( n = 12). A high respiratory rate was reported in only 10% of moderately acidotic patients. Conclusions In patients receiving topiramate, baseline blood gas analysis should be performed preoperatively to determine the presence and severity of metabolic acidosis.

  5. Metabolic clearance and blood production rates of estradiol in hyperthyroidism.

    Science.gov (United States)

    Ridgway, E C; Longcope, C; Maloof, F

    1975-09-01

    The metabolic clearance rate of 17beta-estradiol (MCR2), the plasma levels of 17beta-estradiol (E2)1, sex-steroid binding globulin (SSBG), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in 10 hyperthyroid subjects (7 men and 3 women). The blood production rate of 17beta-estradiol (PB2) was calculated for all subjects. Nine of the 10 hyperthyroid subjects had a decreased MCR2 which returned towards normal in 5 of the 6 subjects restudied following therapy. In all 10 subjects the levels of SSBG were increased when they were hyperthyroid and returned toward normal with therapy. It is concluded that the decrease in MCR2 is largely due to the increased binding of 17beta-estradiol to SSBG. In 7 of the 10 hyperthyroid the plasma E2 concentrations were normal whereas 3 had slightly elevated levels. In 8 of the 10 hyperthyroid the PB2 was within the normal range. Only 2 hyperthyroid subjects had slightly elevated PB2. In the 6 subjects who were restudied after therapy, there was no consistent change in PB2 which remained in the normal range in all cases. It is concluded that the MCR2 is decreased in most subjects with hyperthyroidism in association with an increase of SSBG. Despite this change in MCR2 there is no significant change in PB2. The increase in SSBG levels in hyperthyroidism appears to be a direct effect of the elevation of thyroid hormone activity and is not mediated through estrogen.

  6. High prevalence of metabolic syndrome in young Hispanic women: findings from the national Sister to Sister campaign.

    Science.gov (United States)

    Rodriguez, Fátima; Naderi, Sahar; Wang, Yun; Johnson, Caitlin E; Foody, JoAnne M

    2013-04-01

    Hispanics are the fastest growing segment of the U.S. population and have a higher prevalence of cardiometabolic risk factors as compared with non-Hispanic whites. Further data suggests that Hispanics have undiagnosed complications of metabolic syndrome, namely diabetes mellitus, at an earlier age. We sought to better understand the epidemiology of metabolic syndrome in Hispanic women using data from a large, community-based health screening program. Using data from the Sister to Sister: The Women's Heart Health Foundation community health fairs from 2008 to 2009 held in 17 U.S. cities, we sought to characterize how cardiometabolic risk profiles vary across age for women by race and ethnicity. Metabolic syndrome was defined using the updated National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) guidelines, which included three or more of the following: Waist circumference ≥35 inches, triglycerides ≥150 mg/dL, high-density lipoprotein (HDL) <50 mg/dL, systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥85 mmHg, or a fasting glucose ≥100 mg/dL. A total of 6843 community women were included in the analyses. Metabolic syndrome had a prevalence of 35%. The risk-adjusted odds ratio for metabolic syndrome in Hispanic women versus white women was 1.7 (95% confidence interval, 1.4, 2.0). Dyslipidemia was the strongest predictor of metabolic syndrome among Hispanic women. This disparity appeared most pronounced for younger women. Additional predictors of metabolic syndrome included black race, increasing age, and smoking. In a large, nationally representative sample of women, we found that metabolic syndrome was highly prevalent among young Hispanic women. Efforts specifically targeted to identifying these high-risk women are necessary to prevent the cardiovascular morbidity and mortality associated with metabolic syndrome.

  7. Ultra high resolution SFC-MS as a high throughput platform for metabolic phenotyping: application to metabolic profiling of rat and dog bile.

    Science.gov (United States)

    Jones, Michael D; Rainville, Paul D; Isaac, Giorgis; Wilson, Ian D; Smith, Norman W; Plumb, Robert S

    2014-09-01

    Ultra high resolution SFC-MS (on sub-2μm particles) coupled to mass spectrometry has been evaluated for the metabolic profiling of rat and dog bile. The selectivity of the SFC separation differed from that seen in previous reversed-phase UPLC-MS studies on bile, with the order of elution for analytes such as e.g., the bile acids showing many differences. The chromatography system showed excellent stability, reproducibility and robustness with relative standard deviation of less than 1% for retention time obtained over the course of the analysis. SFC showed excellent chromatographic performance with chromatographic peak widths in the order of 3s at the base of the peak. The use of supercritical fluid carbon dioxide as a mobile phase solvent also reduced the overall consumption of organic solvent by a factor of 3 and also reduced the overall analysis time by a factor of 30% compared to reversed-phase gradient LC. SFC-MS appear complementary to RPLC for the metabolic profiling of complex samples such as bile. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Pharmacological treatment and therapeutic perspectives of metabolic syndrome.

    Science.gov (United States)

    Lim, Soo; Eckel, Robert H

    2014-12-01

    Metabolic syndrome is a disorder based on insulin resistance. Metabolic syndrome is diagnosed by a co-occurrence of three out of five of the following medical conditions: abdominal obesity, elevated blood pressures, elevated glucose, high triglycerides, and low high-density lipoprotein-cholesterol (HDL-C) levels. Clinical implication of metabolic syndrome is that it increases the risk of developing type 2 diabetes and cardiovascular diseases. Prevalence of the metabolic syndrome has increased globally, particularly in the last decade, to the point of being regarded as an epidemic. The prevalence of metabolic syndrome in the USA is estimated to be 34% of adult population. Moreover, increasing rate of metabolic syndrome in developing countries is dramatic. One can speculate that metabolic syndrome is going to induce huge impact on our lives. The metabolic syndrome cannot be treated with a single agent, since it is a multifaceted health problem. A healthy lifestyle including weight reduction is likely most effective in controlling metabolic syndrome. However, it is difficult to initiate and maintain healthy lifestyles, and in particular, with the recidivism of obesity in most patients who lose weight. Next, pharmacological agents that deal with obesity, diabetes, hypertension, and dyslipidemia can be used singly or in combination: anti-obesity drugs, thiazolidinediones, metformin, statins, fibrates, renin-angiotensin system blockers, glucagon like peptide-1 agonists, sodium glucose transporter-2 inhibitors, and some antiplatelet agents such as cilostazol. These drugs have not only their own pharmacologic targets on individual components of metabolic syndrome but some other properties may prove beneficial, i.e. anti-inflammatory and anti-oxidative. This review will describe pathophysiologic features of metabolic syndrome and pharmacologic agents for the treatment of metabolic syndrome, which are currently available.

  9. Prevalence of Metabolic Syndrome and Its Individual Components Among Midwestern University Students.

    Science.gov (United States)

    Yahia, Najat; Brown, Carrie A; Snyder, Ericka; Cumper, Stephanie; Langolf, Andrea; Trayer, Chelsey; Green, Chelsea

    2017-08-01

    Michigan has the 17th highest adult obesity rate in the United States. Among college-aged adults between 18 and 25 years old, the rate of obesity was 11.6%. Obesity is a key precedent for the development of metabolic syndrome. Accordingly, the purpose of this study was to examine the prevalence of metabolic syndrome and its individual components among a sample of students at Central Michigan University. A cross-sectional survey was conducted among 462 students, aged 18-25 years, in Spring 2015 and Fall/Spring 2016 semesters. Students were recruited throughout the campus via flyers, in-class, and Blackboard announcements. Biochemical, anthropometric, and blood pressure measurements were taken for all students. Prevalence of metabolic syndrome was estimated based on the National Cholesterol Education Program's Adult Treatment Panel III guidelines. Multivariable analysis was used to assess the prevalence of metabolic risk components. To explore the association between metabolic risk factors and lifestyle behaviors, students filled out a validated online questionnaire related to their eating habits, physical activity, and sleep patterns. Metabolic syndrome was not prevalent in our sample. However, about one-third of the students had at least one metabolic abnormality, and 6.0% had two metabolic abnormalities. The most common metabolic abnormalities were low HDL-cholesterol levels (22.0%) and high waist circumference (12.6%), and elevated serum triglyceride (5.8%). Adjusting for other factors, excess adiposity and high visceral fat scores were associated with increased risk of metabolic risk factors, whereas healthy lifestyle practices such as daily breakfast consumption, eating three meals a day, being active, and not smoking were associated with lower risks for MetS. Given the adverse consequences of undiagnosed metabolic abnormalities, efforts to identify and manage MetS among asymptomatic college students, particularly women, is essential and warrants further

  10. Effects of triiodothyronine on turnover rate and metabolizing enzymes for thyroxine in thyroidectomized rats.

    Science.gov (United States)

    Nagao, Hidenori; Sasaki, Makoto; Imazu, Tetsuya; Takahashi, Kenjo; Aoki, Hironori; Minato, Kouichi

    2014-10-29

    Previous studies in rats have indicated that surgical thyroidectomy represses turnover of serum thyroxine (T4). However, the mechanism of this process has not been identified. To clarify the mechanism, we studied adaptive variation of metabolic enzymes involved in T4 turnover. We compared serum T4 turnover rates in thyroidectomized (Tx) rats with or without infusion of active thyroid hormone, triiodothyronine (T3). Furthermore, the levels of mRNA expression and activity of the metabolizing enzymes, deiodinase type 1 (D1), type 2 (D2), uridine diphosphate-glucuronosyltransferase (UGT), and sulfotransferase were also compared in several tissues with or without T3 infusion. After the T3 infusion, the turnover rate of serum T4 in Tx rats returned to normal. Although mRNA expression and activity of D1 decreased significantly in both liver and kidneys without T3 infusion, D2 expression and activity increased markedly in the brain, brown adipose tissue, and skeletal muscle. Surprisingly, hepatic UGT mRNA expression and activity in Tx rats increased significantly in comparison with normal rats, and returned to normal after T3 infusion. This study suggests that repression of the disappearance of serum T4 in rats after Tx is a homeostatic response to decreased serum T3 concentrations. Additionally, T4 glucuronide is a storage form of T4, but may also have biological significance. These results suggest strongly that repression of deiodination of T4 by D1 in the liver and kidneys plays a major role in thyroid hormone homeostasis in Tx rats, and that hepatic UGT also plays a key role in this mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Measurement of the carrying capacity of benthic habitats using a metabolic-rate based index.

    Science.gov (United States)

    Edgar, G J

    1993-03-01

    Carrying capacities of grazed habitats are typically expressed as numbers or biomass of animals per unit area; however, such parameters are appropriate only when the body size of animals is constant because consumption and other metabolic-rate based parameters such as respiration and production are proportional to body mass raised by a power of ≈0.75 rather than 0 or 1. Habitat carrying levels are therefore better expressed in the form of an index of total community consumption by summing the body masses of individual animals after they have been scaled using a biomass exponent of ≈0.75. A parameter scaled in this way,P 20 , varied in a predictable manner when calculated for the mobile epifaunal assemblages associated with rope fibre habitats placed at marine and estuarine sites;P 20 showed no significant difference between 17 shallow, clear-water sites worldwide, but declined consistently when photosynthesis was reduced.P 20 also did not vary significantly when calculated for the mobile epifaunal communities associated with fourAmphibolis antarctica seagrass habitats in Australia ([Formula: see text] = 100 µg ·g -1 · day -1 ), and reached but did not significantly exceed a ceiling of ≈280 μg · g -1 · day -1 forSargassum plants. These results are consistent with the hypothesis that the production of shallow-water epifaunal communities of grazers is constrained by resource ceilings which can be quantified using metabolic-rate based indices. If this "production ceiling" hypothesis is correct then diffuse competition is generally more important than predation or environmental disturbance in restricting the growth of mobile epifaunal populations.

  12. Metabolic differentiation in biofilms as indicated by carbon dioxide production rates.

    Science.gov (United States)

    Bester, Elanna; Kroukamp, Otini; Wolfaardt, Gideon M; Boonzaaier, Leandro; Liss, Steven N

    2010-02-01

    The measurement of carbon dioxide production rates as an indication of metabolic activity was applied to study biofilm development and response of Pseudomonas sp. biofilms to an environmental disturbance in the form of a moving air-liquid interface (i.e., shear). A differential response in biofilm cohesiveness was observed after bubble perturbation, and the biofilm layers were operationally defined as either shear-susceptible or non-shear-susceptible. Confocal laser scanning microscopy and image analysis showed a significant reduction in biofilm thickness and biomass after the removal of the shear-susceptible biofilm layer, as well as notable changes in the roughness coefficient and surface-to-biovolume ratio. These changes were accompanied by a 72% reduction of whole-biofilm CO2 production; however, the non-shear-susceptible region of the biofilm responded rapidly after the removal of the overlying cells and extracellular polymeric substances (EPS) along with the associated changes in nutrient and O2 flux, with CO2 production rates returning to preperturbation levels within 24 h. The adaptable nature and the ability of bacteria to respond to environmental conditions were further demonstrated by the outer shear-susceptible region of the biofilm; the average CO2 production rate of cells from this region increased within 0.25 h from 9.45 +/- 5.40 fmol of CO2 x cell(-1) x h(-1) to 22.6 +/- 7.58 fmol of CO2 x cell(-1) x h(-1) when cells were removed from the biofilm and maintained in suspension without an additional nutrient supply. These results also demonstrate the need for sufficient monitoring of biofilm recovery at the solid substratum if mechanical methods are used for biofouling control.

  13. Metabolic and mineral conditions of retained placenta in highly productive dairy cows: pathogenesis, diagnostics and prevention – a review

    Directory of Open Access Journals (Sweden)

    Ryszard Mordak

    2017-01-01

    Full Text Available The time around calving in highly productive dairy cows is a critical period in terms of their metabolism, which is connected with high demands of the foetus as well as with the onset of lactation. Retained placenta in cows may have multifactorial aetiology, but in herds which are free from infectious diseases, the most important reasons are; periparturient metabolic changes and disturbances to the internal balance and stress. During the periparturient period, the most important factor causing immune suppression and hypotony of uterus in cows is metabolic stress due to hormonal and nutritional factors, including metabolic fluctuations, negative energy balance, as well as shortage of proteins, minerals, vitamins and antioxidants. This metabolic stress as a result of an imbalance in the internal metabolic homeostasis activates the hypothalamic-pituitary-adrenocortical axis (HPA and increases serum corticosterid (cortisol concentration, especially on the day of calving. Cortisol is a powerful immune suppressive factor that causes depression of leukocyte proliferation and their functions. The periparturient metabolic stress may also stimulate the production of catecholamines, especially adrenalin. Elevated levels of adrenalin activate adrenoreceptors of the myometrium, which in turn cause hypotony or atony of the uterus at calving in cows. Elevated levels of cortisol and adrenalin may significantly inhibit the rejection and expulsion of foetal membranes in cows, resulting in an increased incidence of their retention. These important mechanisms for placental retention in highly productive dairy cows often have primary nutritional metabolic aetiology, but they also occur during secondary metabolic disturbances and metabolic stress during calving. This metabolic and immunological aetiology and pathogenesis of retained placenta usually occur in highly productive periparturient cows on dairy farms in the absence of bovine infectious diseases, which can

  14. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Davis, Maria C; Fiehn, Oliver; Durnford, Dion G

    2013-07-01

    There are several well-described acclimation responses to excess light in green algae but the effect on metabolism has not been thoroughly investigated. This study examines the metabolic changes during photoacclimation to high-light (HL) stress in Chlamydomonas reinhardtii using nuclear magnetic resonance and mass spectrometry. Using principal component analysis, a clear metabolic response to HL intensity was observed on global metabolite pools, with major changes in the levels of amino acids and related nitrogen metabolites. Amino acid pools increased during short-term photoacclimation, but were especially prominent in HL-acclimated cultures. Unexpectedly, we observed an increase in mitochondrial metabolism through downstream photorespiratory pathways. The expression of two genes encoding key enzymes in the photorespiratory pathway, glycolate dehydrogenase and malate synthase, were highly responsive to the HL stress. We propose that this pathway contributes to metabolite pools involved in nitrogen assimilation and may play a direct role in photoacclimation. Our results suggest that primary and secondary metabolism is highly pliable and plays a critical role in coping with the energetic imbalance during HL exposure and a necessary adjustment to support an increased growth rate that is an effective energy sink for the excess reducing power generated during HL stress. © 2013 John Wiley & Sons Ltd.

  15. High School Graduation Rates:Alternative Methods and Implications

    OpenAIRE

    Jing Miao; Walt Haney

    2004-01-01

    The No Child Left Behind Act has brought great attention to the high school graduation rate as one of the mandatory accountability measures for public school systems. However, there is no consensus on how to calculate the high school graduation rate given the lack of longitudinal databases that track individual students. This study reviews literature on and practices in reporting high school graduation rates, compares graduation rate estimates yielded from alternative methods, and estimates d...

  16. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen

    2013-01-01

    by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming...

  17. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism

    Directory of Open Access Journals (Sweden)

    Erica L. Underwood

    2016-01-01

    Full Text Available While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms.

  18. Association of Metabolic Syndrome and Its Components with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Shahpoor Maddah

    2015-12-01

    Full Text Available The association of obesity and other metabolic conditions with osteoarthritis is under debate; however, a strong link between metabolic disturbances is suggested to contribute to increased incidences and progression of osteoarthritis. We examined the association of metabolic syndrome and its components with the incidence of knee osteoarthritis in Iranian population. A community-based study was conducted on a total of 625 Iranian volunteers with the complaint of knee pain. Weight-bearing and anteroposterior plain radiographs of both knees were taken on the day of admission. Metabolic syndrome was diagnosed using the modified Adult Treatment Panel III of the National Cholesterol Education Program criteria. Prevalence rates of metabolic syndrome were 22.5% in males and 11.6% in females (P=0.002. The prevalence rate of knee osteoarthritis was 20.0% in males and 43.8% of females (P<0.001. In both genders, osteoarthritis group had higher serum levels of triglyceride and systolic blood pressure in comparison with non-osteoarthritis group. Women with osteoarthritis had higher Body Mass Index (BMI, however, this association was not observed in men. In females, the presence of osteoarthritis was significantly associated with the presence of metabolic syndrome, with the risk of metabolic syndrome in the osteoarthritis group at 2.187 fold the risk in the non-osteoarthritis group. But, the presence of osteoarthritis was not associated with metabolic syndrome in males. Metabolic syndrome mainly through high BMI is associated with knee osteoarthritis in the Iranian women, but neither metabolic syndrome nor any related components are associated with knee osteoarthritis in men.

  19. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    Directory of Open Access Journals (Sweden)

    Joshua M. Corbin

    2016-07-01

    Full Text Available Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR plays an essential role in the establishment and progression of prostate cancer (PCa, and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context.

  20. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    Science.gov (United States)

    Corbin, Joshua M.; Ruiz-Echevarría, Maria J.

    2016-01-01

    Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context. PMID:27472325

  1. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases.Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients.Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death.Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  2. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases. Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients. Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death. Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  3. Weekend ethanol consumption and high-sucrose diet: resveratrol effects on energy expenditure, substrate oxidation, lipid profile, oxidative stress and hepatic energy metabolism.

    Science.gov (United States)

    Rocha, Katiucha Karolina Honório Ribeiro; Souza, Gisele Aparecida; Seiva, Fábio Rodrigues Ferreira; Ebaid, Geovana Xavier; Novelli, Ethel Lourenzi Barbosa

    2011-01-01

    The present study analyzed the association between weekend ethanol and high-sucrose diet on oxygen consumption, lipid profile, oxidative stress and hepatic energy metabolism. Because resveratrol (RS, 3,5,4'-trans-trihydroxystilbene) has been implicated as a modulator of alcohol-independent cardiovascular protection attributed to red wine, we also determined whether RS could change the damage done by this lifestyle. Male Wistar 24 rats receiving standard chow were divided into four groups (n = 6/group): (C) water throughout the experimental period; (E) 30% ethanol 3 days/week, water 4 days/week; (ES) a mixture of 30% ethanol and 30% sucrose 3 days/week, drinking 30% sucrose 4 days/week; (ESR) 30% ethanol and 30% sucrose containing 6 mg/l RS 3 days/week, drinking 30% sucrose 4 days/week. After 70 days the body weight was highest in ESR rats. E rats had higher energy expenditure (resting metabolic rate), oxygen consumption (VO(2)), fat oxidation, serum triacylglycerol (TG) and very low-density lipoprotein (VLDL) than C. ES rats normalized calorimetric parameters and enhanced carbohydrate oxidation. ESR ameliorated calorimetric parameters, reduced TG, VLDL and lipid hydroperoxide/total antioxidant substances, as well enhanced high-density lipoprotein (HDL) and HDL/TG ratio. Hepatic hydroxyacyl coenzyme-A dehydrogenase (OHADH)/citrate synthase ratio was lower in E and ES rats than in C. OHADH was highest in ESR rats. The present study brought new insights on weekend alcohol consumption, demonstrating for the first time, that this pattern of ethanol exposure induced dyslipidemic profile, calorimetric and hepatic metabolic changes which resemble that of the alcoholism. No synergistic effects were found with weekend ethanol and high-sucrose intake. RS was advantageous in weekend drinking and high-sucrose intake condition ameliorating hepatic metabolism and improving risk factors for cardiovascular damage.

  4. Availability of public goods shapes the evolution of competing metabolic strategies.

    Science.gov (United States)

    Bachmann, Herwig; Fischlechner, Martin; Rabbers, Iraes; Barfa, Nakul; Branco dos Santos, Filipe; Molenaar, Douwe; Teusink, Bas

    2013-08-27

    Tradeoffs provide a rationale for the outcome of natural selection. A prominent example is the negative correlation between the growth rate and the biomass yield in unicellular organisms. This tradeoff leads to a dilemma, where the optimization of growth rate is advantageous for an individual, whereas the optimization of the biomass yield would be advantageous for a population. High-rate strategies are observed in a broad variety of organisms such as Escherichia coli, yeast, and cancer cells. Growth in suspension cultures favors fast-growing organisms, whereas spatial structure is of importance for the evolution of high-yield strategies. Despite this realization, experimental methods to directly select for increased yield are lacking. We here show that the serial propagation of a microbial population in a water-in-oil emulsion allows selection of strains with increased biomass yield. The propagation in emulsion creates a spatially structured environment where the growth-limiting substrate is privatized for populations founded by individual cells. Experimental evolution of several isogenic Lactococcus lactis strains demonstrated the existence of a tradeoff between growth rate and biomass yield as an apparent Pareto front. The underlying mutations altered glucose transport and led to major shifts between homofermentative and heterofermentative metabolism, accounting for the changes in metabolic efficiency. The results demonstrated the impact of privatizing a public good on the evolutionary outcome between competing metabolic strategies. The presented approach allows the investigation of fundamental questions in biology such as the evolution of cooperation, cell-cell interactions, and the relationships between environmental and metabolic constraints.

  5. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    Directory of Open Access Journals (Sweden)

    Rick Hursel

    Full Text Available Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates.To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake.A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d or low protein (0.4 g protein/kg/d energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans.After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001. Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03, synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01 and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001 were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042

  6. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben; Van Schothorst, E. M.; Keijer, J.; Palou, A.; Oliver, P.

    2016-01-01

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  7. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben

    2016-03-22

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  8. High rates of respiratory symptoms and airway disease in mental health inpatients in a tertiary centre.

    Science.gov (United States)

    Burke, Andrew J; Hay, Karen; Chadwick, Alex; Siskind, Dan; Sheridan, Judith

    2018-04-01

    People with severe mental illness (SMI) have a lower life expectancy due in part to a higher prevalence of cardiac and metabolic disease. Less is known of the prevalence of respiratory disease in this group. This cross-sectional, observational study aimed to assess the prevalence of symptoms associated with respiratory disease in patients admitted to an inpatient mental health unit. A convenience sample of 82 inpatients had a structured interview and questionnaire completed. The questionnaire included self-reported diagnoses of common diseases and screening questions designed to detect respiratory disease and sleep disordered breathing. Targeted spirometry was performed on the basis of symptoms and smoking status. Patients reported high rates of respiratory symptoms, including wheezing (38%) and dyspnoea (44%); 52% of patients reported daily tobacco use. Productive cough was significantly associated with tobacco use (P disease (COPD) of whom six did not have a formal diagnosis of COPD previously. People with SMI have high rates of respiratory symptoms with a high prevalence of COPD on spirometry. Half of the COPD cases were not previously diagnosed, suggesting a hidden burden of respiratory disease in patients with SMI. © 2017 Royal Australasian College of Physicians.

  9. Interrelations between glucose-induced insulin response, metabolic indicators, and time of first ovulation in high-yielding dairy cows.

    Science.gov (United States)

    Bossaert, P; Leroy, J L M R; De Vliegher, S; Opsomer, G

    2008-09-01

    High-yielding dairy cows are more susceptible to metabolic and reproductive disorders than low-yielding cows. Insulin plays a pivotal role in the development of both problems. In the present study, we aimed to assess the glucose-induced insulin responses of dairy cows at different time points relative to calving and to relate this to the metabolic status and the time of first ovulation. Twenty-three healthy, multiparous Holstein-Friesian cows with a high genetic merit for milk yield were studied from 14 d prepartum to 42 d postpartum. Intravenous glucose tolerance tests were performed on -14, 14, and 42 d relative to calving to evaluate the plasma insulin and glucose responses to a glucose load, as estimated by the peak concentration, the area under the curve (AUC), and the clearance rates of insulin and glucose. Blood samples were obtained at 3-d intervals and analyzed for glucose, insulin, and nonesterified fatty acids (NEFA). The time of first ovulation was defined by transrectal ultrasonography and plasma progesterone analysis. Glucose-induced insulin AUC and peak concentration decreased and glucose clearance increased during lactation compared with the dry period. Plasma NEFA concentrations were negatively related to insulin AUC and peak concentrations. Fourteen cows ovulated within 42 d postpartum, and the remaining 9 cows suffered from delayed resumption of ovarian function. Survival analysis demonstrated that cows with lower NEFA concentrations during the dry period tended to have earlier resumption of ovarian activity. In conclusion, our data suggest a decreased plasma insulin response to glucose postpartum in high-yielding dairy cows, possibly contributing to metabolic stress during the early postpartum period. It is hypothesized that NEFA impair glucose-induced insulin secretion in dairy cows. Additionally, our results suggest the importance of lipolysis during the transition period as a risk factor for delayed ovulation.

  10. Race, gender, and nicotine metabolism in adolescent smokers.

    Science.gov (United States)

    Rubinstein, Mark L; Shiffman, Saul; Rait, Michelle A; Benowitz, Neal L

    2013-07-01

    Differences in the rate of nicotine metabolism between genders and different races have been hypothesized to contribute to disparities in smoking rate, susceptibility to addiction, and ability to quit smoking. The purpose of this study was to determine the effect of race and gender on the rate of nicotine metabolism as indicated by the nicotine metabolite ratio (NMR) in adolescent smokers. One hundred and fifty-nine adolescent smokers aged 13-17 were given 2mg of deuterium-labeled cotinine (cotinine-d4). The NMR was calculated as the ratio of concentrations of deuterium-labeled 3'-hydroxycotinine (ng/ml) to cotinine-d4 (ng/ml) in saliva and is a validated biomarker of the rate of nicotine metabolism. The sample was 67.3% female and racially mixed. On average, Whites had the fastest rates of metabolism compared with both Blacks/African Americans (p smokers, racial variations in rates of nicotine metabolism were similar to those that have been reported in adult smokers. In contrast to findings in adult smokers, the NMR did not vary significantly by gender or self-reported hormone use.

  11. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xing Xian Yu

    Full Text Available Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4 in peripheral tissues. Treatment of diet-induce obese (DIO mice with FGFR4 antisense oligonucleotides (ASO specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  12. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Science.gov (United States)

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  13. Basal metabolic regulatory responses and rhythmic activity of ...

    African Journals Online (AJOL)

    ... Rattus sp. Low concentrations of kola nut extract stimulated the heart by increasing rate and force of contraction as well as metabolic rate. Higher concentrations reduced rate and amplitude of beat resulting, at still higher concentrations in heart failure. Keywords: Kolanut, extract, basal metabolic rate, mammalian heart ...

  14. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Ngoc Thanh [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Tran, Tuan Kiet [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Department of Civil Engineering and Applied Mechanics, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan, Thu Duc District, Ho Chi Minh City (Viet Nam); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-03-15

    The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs) at high strain rates (5–24 s{sup −} {sup 1}) was investigated. Three types of steel fibers, including twisted, long and short smooth steel fibers, were added by 1.5% volume content in an ultra high performance concrete (UHPC) with a compressive strength of 180 MPa. Two different cross sections, 25 × 25 and 25 × 50 mm{sup 2}, of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs. Although all the three fibers generated strain hardening behavior even at high strain rates, long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate. The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers. The tensile behavior of UHPFRCs at high strain rates was clearly influenced by the specimen size, especially in post-cracking strength.

  15. Size dependence in non-sperm ejaculate production is reflected in daily energy expenditure and resting metabolic rate.

    Science.gov (United States)

    Friesen, Christopher R; Powers, Donald R; Copenhaver, Paige E; Mason, Robert T

    2015-05-01

    The non-sperm components of an ejaculate, such as copulatory plugs, can be essential to male reproductive success. But the costs of these ejaculate components are often considered trivial. In polyandrous species, males are predicted to increase energy allocation to the production of non-sperm components, but this allocation is often condition dependent and the energetic costs of their production have never been quantified. Red-sided garter snakes (Thamnophis sirtalis parietalis) are an excellent model with which to quantify the energetic costs of non-sperm components of the ejaculate as they exhibit a dissociated reproductive pattern in which sperm production is temporally disjunct from copulatory plug production, mating and plug deposition. We estimated the daily energy expenditure and resting metabolic rate of males after courtship and mating, and used bomb calorimetry to estimate the energy content of copulatory plugs. We found that both daily energy expenditure and resting metabolic rate were significantly higher in small mating males than in courting males, and a single copulatory plug without sperm constitutes 5-18% of daily energy expenditure. To our knowledge, this is the first study to quantify the energetic expense of size-dependent ejaculate strategies in any species. © 2015. Published by The Company of Biologists Ltd.

  16. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography

    International Nuclear Information System (INIS)

    Brown, M.A.; Myears, D.W.; Bergmann, S.R.

    1988-01-01

    Noninvasive quantification of regional myocardial metabolism would be highly desirable to evaluate pathogenetic mechanisms of heart disease and their response to therapy. It was previously demonstrated that the metabolism of radiolabeled acetate, a readily utilized myocardial substrate predominantly metabolized to carbon dioxide (CO2) by way of the tricarboxylic acid cycle, provides a good index of oxidative metabolism in isolated perfused rabbit hearts because of tight coupling between the tricarboxylic acid cycle and oxidative phosphorylation. In the present study, in a prelude to human studies, the relation between myocardial clearance of carbon-11 (11C)-labeled acetate and myocardial oxygen consumption was characterized in eight intact dogs using positron emission tomography. Anesthetized dogs were studied during baseline conditions and again during either high or low work states induced pharmacologically. High myocardial extraction and rapid blood clearance of tracer yielded myocardial images of excellent quality. The turnover (clearance) of 11C radioactivity from the myocardium was biexponential with the mean half-time of the dominant rapid phase averaging 5.4 +/- 2.2, 2.8 +/- 1.3 and 11.1 +/- 1.3 min in control, high and low work load studies, respectively. No significant difference was found between the rate of clearance of 11C radioactivity from the myocardium measured noninvasively with positron emission tomography and the myocardial efflux of 11CO2 measured directly from the coronary sinus. The rate of clearance of the 11C radioactivity from the heart correlated closely with myocardial oxygen consumption (r = 0.90, p less than 0.001) as well as with the rate-pressure product (r = 0.95, p less than 0.001). Hence, the rate of oxidation of 11C-acetate can be determined noninvasively with positron emission tomography, providing a quantitative index of oxidative metabolism under diverse conditions

  17. Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Nina V Chaika

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States with a five-year survival rate of 6%. It is characterized by extremely aggressive tumor growth rate and high incidence of metastasis. One of the most common and profound biochemical phenotypes of animal and human cancer cells is their ability to metabolize glucose at high rates, even under aerobic conditions. However, the contribution of metabolic interrelationships between tumor cells and cells of the surrounding microenvironment to the progression of cancer is not well understood. We evaluated differential expression of metabolic genes and, hence, metabolic pathways in primary tumor and metastases of patients with pancreatic adenocarcinoma.We analyzed the metabolic gene (those involved in glycolysis, tri-carboxylic acid pathway, pentose-phosphate pathway and fatty acid metabolism expression profiles of primary and metastatic lesions from pancreatic cancer patients by gene expression arrays. We observed two principal results: genes that were upregulated in primary and most of the metastatic lesions; and genes that were upregulated only in specific metastatic lesions in a site-specific manner. Immunohistochemical (IHC analyses of several metabolic gene products confirmed the gene expression patterns at the protein level. The IHC analyses also revealed differential tumor and stromal expression patterns of metabolic enzymes that were correlated with the metastasis sites.Here, we present the first comprehensive studies that establish differential metabolic status of tumor and stromal components and elevation of aerobic glycolysis gene expression in pancreatic cancer.

  18. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Science.gov (United States)

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  19. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Directory of Open Access Journals (Sweden)

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  20. Intraspecific Allometry of Basal Metabolic Rate : Relations with Body Size, Temperature, Composition, and Circadian Phase in the Kestrel, Falco tinnunculus

    NARCIS (Netherlands)

    Daan, Serge; Masman, Dirkjan; Strijkstra, Arjen; Verhulst, Simon

    1989-01-01

    The relationship between body size and basal metabolic rate (BMR) in homeotherms has been treated in the literature primarily by comparison between species of mammals or birds. This paper focuses on the intraindividual changes in BMR when body mass (W) varies with different maintenance regimens. BMR

  1. Response of melanoma tumor phospholipid metabolism to chloroethyle nitrosourea: a high resolution proton NMR spectroscopy study.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aïcha; Madelmont, Jean-Claude

    2003-07-01

    Phospholipid metabolism is tightly involved in tumor growth regulation and tumor cell survival. The response of phospholipid metabolism to chloroethyle nitrosourea treatment is investigated in a murine B16 melanoma model. Measurements of phospholipid derivatives are performed on intact tumor tissue samples using one- and two-dimensional proton NMR spectroscopy. During the tumor growth inhibition phase under treatment, tumors overexpress phosphocholine, phosphoethanolamine, glycerophosphocholine and glycerophosphoethanolamine, whereas phosphatidylcholine and phosphatidylethanolamine levels are maintained to control levels. During re-growth, which remained quantitatively much below control growth, chloroethyle nitrosourea-treated melanoma tumors overexpress phosphocholine and phosphoethanolamine only. In treated melanoma, phosphatidylcholine levels show an inverse relationship with tumor growth rates. In conclusion, chloroethyle nitrosourea-treated melanoma tumors maintain their phosphatidylcholine levels and exhibit transformed phospholipid metabolism phenotype, by mechanisms that could participate in tumor cell survival.

  2. Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Drew, BG; Carey, AL; Natoli, AK

    2011-01-01

    We recently demonstrated that reconstituted high-density lipoprotein (rHDL) modulates glucose metabolism in humans via both AMP-activated protein kinase (AMPK) in muscle and by increasing plasma insulin. Given the key roles of both AMPK and insulin in fatty acid metabolism, the current study inve...

  3. A validated disease specific prediction equation for resting metabolic rate in underweight patients with COPD

    Directory of Open Access Journals (Sweden)

    Anita Nordenson

    2010-09-01

    Full Text Available Anita Nordenson2, Anne Marie Grönberg1,2, Lena Hulthén1, Sven Larsson2, Frode Slinde11Department of Clinical Nutrition, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; 2Department of Internal Medicine/Respiratory Medicine and Allergology, Sahlgrenska Academy at University of Gothenburg, SwedenAbstract: Malnutrition is a serious condition in chronic obstructive pulmonary disease (COPD. Successful dietary intervention calls for calculations of resting metabolic rate (RMR. One disease-specific prediction equation for RMR exists based on mainly male patients. To construct a disease-specific equation for RMR based on measurements in underweight or weight-losing women and men with COPD, RMR was measured by indirect calorimetry in 30 women and 11 men with a diagnosis of COPD and body mass index <21 kg/m2. The following variables, possibly influencing RMR were measured: length, weight, middle upper arm circumference, triceps skinfold, body composition by dual energy x-ray absorptiometry and bioelectrical impedance, lung function, and markers of inflammation. Relations between RMR and measured variables were studied using univariate analysis according to Pearson. Gender and variables that were associated with RMR with a P value <0.15 were included in a forward multiple regression analysis. The best-fit multiple regression equation included only fat-free mass (FFM: RMR (kJ/day = 1856 + 76.0 FFM (kg. To conclude, FFM is the dominating factor influencing RMR. The developed equation can be used for prediction of RMR in underweight COPD patients.Keywords: pulmonary disease, chronic obstructive, basal metabolic rate, malnutrition, body composition

  4. Metabolic Effects of Cholecystectomy: Gallbladder Ablation Increases Basal Metabolic Rate through G-Protein Coupled Bile Acid Receptor Gpbar1-Dependent Mechanisms in Mice

    Science.gov (United States)

    Cortés, Víctor; Amigo, Ludwig; Zanlungo, Silvana; Galgani, José; Robledo, Fermín; Arrese, Marco; Bozinovic, Francisco; Nervi, Flavio

    2015-01-01

    Background & Aims Bile acids (BAs) regulate energy expenditure by activating G-protein Coupled Bile Acid Receptor Gpbar1/TGR5 by cAMP-dependent mechanisms. Cholecystectomy (XGB) increases BAs recirculation rates resulting in increased tissue exposure to BAs during the light phase of the diurnal cycle in mice. We aimed to determine: 1) the effects of XGB on basal metabolic rate (BMR) and 2) the roles of TGR5 on XGB-dependent changes in BMR. Methods BMR was determined by indirect calorimetry in wild type and Tgr5 deficient (Tgr5-/-) male mice. Bile flow and BAs secretion rates were measured by surgical diversion of biliary duct. Biliary BAs and cholesterol were quantified by enzymatic methods. BAs serum concentration and specific composition was determined by liquid chromatography/tandem mass spectrometry. Gene expression was determined by qPCR analysis. Results XGB increased biliary BAs and cholesterol secretion rates, and elevated serum BAs concentration in wild type and Tgr5-/- mice during the light phase of the diurnal cycle. BMR was ~25% higher in cholecystectomized wild type mice (p <0.02), whereas no changes were detected in cholecystectomized Tgr5-/- mice compared to wild-type animals. Conclusion XGB increases BMR by TGR5-dependent mechanisms in mice. PMID:25738495

  5. Perinatal programming of metabolic dysfunction and obesity-induced inflammation

    DEFF Research Database (Denmark)

    Ingvorsen, Camilla; Hellgren, Lars; Pedersen, Susanne Brix

    The number of obese women in the childbearing age is drastically increasing globally. As a consequence, more children are born by obese mothers. Unfortunately, maternal obesity and/ or high fat intake during pregnancy increase the risk of developing obesity, type-2 diabetes, cardiovascular disease...... and non-alcoholic fatty liver disease in the children, which passes obesity and metabolic dysfunction on from generation to generation. Several studies try to elucidate causative effects of maternal metabolic markers on the metabolic imprinting in the children; however diet induced obesity is also...... associated with chronic low grade inflammation. Nobody have yet investigated the role of this inflammatory phenotype, but here we demonst rate that obesity induced inflammation is reversed during pregnancy in mice, and is therefore less likely to affect the fetal programming of metabolic dysfunction. Instead...

  6. Environmental versatility promotes modularity in genome-scale metabolic networks.

    Science.gov (United States)

    Samal, Areejit; Wagner, Andreas; Martin, Olivier C

    2011-08-24

    The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple

  7. Environmental versatility promotes modularity in genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Wagner Andreas

    2011-08-01

    Full Text Available Abstract Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Results Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Conclusions Our work shows that modularity in metabolic networks can be a by-product of functional

  8. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    Science.gov (United States)

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  9. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth

    Science.gov (United States)

    Kemppainen, Esko; George, Jack; Garipler, Görkem; Tuomela, Tea; Kiviranta, Essi; Soga, Tomoyoshi; Dunn, Cory D.; Jacobs, Howard T.

    2016-01-01

    The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level. PMID:26812173

  10. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth.

    Science.gov (United States)

    Kemppainen, Esko; George, Jack; Garipler, Görkem; Tuomela, Tea; Kiviranta, Essi; Soga, Tomoyoshi; Dunn, Cory D; Jacobs, Howard T

    2016-01-01

    The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.

  11. Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration

    Science.gov (United States)

    Treberg, Jason R.; Munro, Daniel; Banh, Sheena; Zacharias, Pamela; Sotiri, Emianka

    2015-01-01

    Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the balance between production and the consumption of H2O2, the later of which is a function of [H2O2] and follows first order kinetics. Here we test the hypothesis that isolated skeletal muscle mitochondria, from the rat, are able to modulate [H2O2] based upon the interaction between the production of ROS, as superoxide/H2O2, and the H2O2 decomposition capacity. The compartmentalization of detection systems for H2O2 and the intramitochondrial metabolism of H2O2 leads to spacial separation between these two components of the assay system. This results in an underestimation of rates when relying solely on extramitochondrial H2O2 detection. We find that differentiating between these apparent rates found when using extramitochondrial H2O2 detection and the actual rates of metabolism is important to determining the rate constant for H2O2 consumption by mitochondria in kinetic experiments. Using the high rate of ROS production by mitochondria respiring on succinate, we demonstrate that net H2O2 metabolism by mitochondria can approach a stable steady-state of extramitochondrial [H2O2]. Importantly, the rate constant determined by extrapolation of kinetic experiments is similar to the rate constant determined as the [H2O2] approaches a steady state. PMID:26001520

  12. Evaluating the Risk of Metabolic Syndrome Based on an Artificial Intelligence Model

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2014-01-01

    Full Text Available Metabolic syndrome is worldwide public health problem and is a serious threat to people's health and lives. Understanding the relationship between metabolic syndrome and the physical symptoms is a difficult and challenging task, and few studies have been performed in this field. It is important to classify adults who are at high risk of metabolic syndrome without having to use a biochemical index and, likewise, it is important to develop technology that has a high economic rate of return to simplify the complexity of this detection. In this paper, an artificial intelligence model was developed to identify adults at risk of metabolic syndrome based on physical signs; this artificial intelligence model achieved more powerful capacity for classification compared to the PCLR (principal component logistic regression model. A case study was performed based on the physical signs data, without using a biochemical index, that was collected from the staff of Lanzhou Grid Company in Gansu province of China. The results show that the developed artificial intelligence model is an effective classification system for identifying individuals at high risk of metabolic syndrome.

  13. Metabolic, respiratory, and cardiological measurements during exercise and rest

    Science.gov (United States)

    1971-01-01

    Low concentration effects of CO2 on metabolic respiration and circulation were measured during work and at rest. The relationship between heart rate and metabolic rate is examined, as well as calibration procedures, and rate measurement during submaximal and standard exercise tests. Alterations in acid base and electrolytes were found during exhaustive exercise, including changes in ECG and metabolic alkalosis effects.

  14. Effect of nanosilver on metabolism in rainbow trout (Oncorhynchus mykiss): An investigation using different respirometric approches

    DEFF Research Database (Denmark)

    Murray, Laura; Rennie, Michael D.; Svendsen, Jon Christian

    2017-01-01

    gene expression, gill damage, and impaired gas exchange, as well as mortality at high nAg concentrations. The present study reports the effects of nAg on the metabolism of rainbow trout (Oncorhynchus mykiss). Fish were exposed to environmentally relevant concentrations (0.28 ± 0.02 μg/L) and higher (47.......60 ± 5.13 μg/L) for 28 d, after which their standard metabolic rate (SMR), forced maximum metabolic rate (MMRf), and spontaneous maximum metabolic rate (MMRs) were measured. There was no effect observed in SMR, MMRf, or MMRs, suggesting that nAg is unlikely to directly affect fish metabolism. On average......, MMRs tended to be greater than MMRf, and most MMRs occurred when room lighting increased. The timing of MMRf chase protocols was found to affect both MMRf and SMR estimates, in that chasing fish before respirometric experiments caused higher MMRf estimates and lower SMR estimates. Although compounded...

  15. Retrofit Strategies for Incorporating Xenobiotic Metabolism into High Throughput Screening Assays (EMGS)

    Science.gov (United States)

    The US EPA’s ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  16. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seohyoung; Seol, Eunhee; Park, Sunghoon [Department of Chemical and Biochemical Engineering, Pusan National University, Busan 609-735 (Korea); Oh, You-Kwan [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-543 (Korea); Wang, G.Y. [Department of Oceanography, University of Hawaii at Manoa Honolulu, HI 96822 (United States)

    2009-09-15

    Escherichia coli can produce H{sub 2} from glucose via formate hydrogen lyase (FHL). In order to improve the H{sub 2} production rate and yield, metabolically engineered E. coli strains, which included pathway alterations in their H{sub 2} production and central carbon metabolism, were developed and characterized by batch experiments and metabolic flux analysis. Deletion of hycA, a negative regulator for FHL, resulted in twofold increase of FHL activity. Deletion of two uptake hydrogenases (1 (hya) and hydrogenase 2 (hyb)) increased H{sub 2} production yield from 1.20 mol/mol glucose to 1.48 mol/mol glucose. Deletion of lactate dehydrogenase (ldhA) and fumarate reductase (frdAB) further improved the H{sub 2} yield; 1.80 mol/mol glucose under high H{sub 2} pressure or 2.11 mol/mol glucose under reduced H{sub 2} pressure. Several batch experiments at varying concentrations of glucose (2.5-10 g/L) and yeast extract (0.3 or 3.0 g/L) were conducted for the strain containing all these genetic alternations, and their carbon and energy balances were analyzed. The metabolic flux analysis revealed that deletion of ldhA and frdAB directed most of the carbons from glucose to the glycolytic pathway leading to H{sub 2} production by FHL, not to the pentose phosphate pathway. (author)

  17. The Relationship between the Triglyceride to High-Density Lipoprotein Cholesterol Ratio and Metabolic Syndrome.

    Science.gov (United States)

    Shin, Hyun-Gyu; Kim, Young-Kwang; Kim, Yong-Hwan; Jung, Yo-Han; Kang, Hee-Cheol

    2017-11-01

    Metabolic syndrome is associated with cardiovascular diseases and is characterized by insulin resistance. Recent studies suggest that the triglyceride/high-density lipoprotein cholesterol (TG/HDLC) ratio predicts insulin resistance better than individual lipid levels, including TG, total cholesterol, low-density lipoprotein cholesterol (LDLC), or HDLC. We aimed to elucidate the relationship between the TG/HDLC ratio and metabolic syndrome in the general Korean population. We evaluated the data of adults ≥20 years old who were enrolled in the Korean National Health and Nutrition Examination Survey in 2013 and 2014. Subjects with angina pectoris, myocardial infarction, stroke, or cancer were excluded. Metabolic syndrome was defined by the harmonized definition. We examined the odds ratios (ORs) of metabolic syndrome according to TG/HDLC ratio quartiles using logistic regression analysis (SAS ver. 9.4; SAS Institute Inc., Cary, NC, USA). Weighted complex sample analysis was also conducted. We found a significant association between the TG/HDLC ratio and metabolic syndrome. The cutoff value of the TG/HDLC ratio for the fourth quartile was ≥3.52. After adjustment, the OR for metabolic syndrome in the fourth quartile compared with that of the first quartile was 29.65 in men and 20.60 in women (Pmetabolic syndrome.

  18. Evaluation of Specific Metabolic Rates of Major Organs and Tissues: Comparison Between Nonobese and Obese Women

    OpenAIRE

    Wang, ZiMian; Ying, Zhiliang; Bosy-Westphal, Anja; Zhang, Junyi; Heller, Martin; Later, Wiebke; Heymsfield, Steven B.; Müller, Manfred J.

    2011-01-01

    Elia (1992) identified the specific resting metabolic rates (Ki) of major organs and tissues in young adults with normal weight: 200 for liver, 240 for brain, 440 for heart and kidneys, 13 for skeletal muscle, 4.5 for adipose tissue and 12 for residual mass (all units in kcal/kg per day). The aim of the present study was to assess the applicability of Elia’s Ki values for obese adults. A sample of young women (n = 80) was divided into two groups, nonobese (BMI

  19. Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams.

    Science.gov (United States)

    Van Leeuwen, Travis E; Rosenfeld, Jordan S; Richards, Jeffrey G

    2011-09-01

    1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species

  20. Ability of Different Measures of Adiposity to Identify High Metabolic Risk in Adolescents

    Directory of Open Access Journals (Sweden)

    Carla Moreira

    2011-01-01

    Full Text Available Introduction. This study aimed to evaluate the screening performance of different measures of adiposity: body mass index (BMI, waist circumference (WC, and waist-to-height ratio (WHtR for high metabolic risk in a sample of adolescents. Methods. A cross-sectional school-based study was conducted on 517 adolescents aged 15–18, from the Azorean Islands, Portugal. We measured fasting glucose, insulin, total cholesterol (TC, HDL-cholesterol, triglycerides, and systolic blood pressure. HOMA and TC/HDL-C ratio were calculated. For each of these variables, a Z-score was computed by age and sex. A metabolic risk score (MRS was constructed by summing the Z-scores of all individual risk factors. High risk was considered when the individual had ≥1SD of this score. Receiver-operating characteristics (ROC were used. Results. Linear regression analyses showed that, after adjusting for age and pubertal stage, all different measures of adiposity are positively and significantly associated with MRS in both sexes, with exception of WHtR for boys. BMI, WC, and WHtR performed well in detecting high MRS, indicated by areas under the curve (AUC, with slightly greater AUC for BMI than for WC and WHtR in both sexes. Conclusion. All measures of adiposity were significantly associated with metabolic risk factors in a sample of Portuguese adolescents.

  1. Effects of antiseptic mouthwash on resting metabolic rate: A randomized, double-blind, crossover study.

    Science.gov (United States)

    Sundqvist, Michaela L; Lundberg, Jon O; Weitzberg, Eddie

    2016-12-30

    The nitrate-nitrite-nitric oxide pathway has emerged as a significant source of nitric oxide (NO) bioactivity. Dietary intake of inorganic nitrate has a number of cardiovascular effects as well as a decrease in oxygen cost during exercise and a reduction in resting metabolic rate (RMR). Oral bacteria have a key role in bioactivation of inorganic nitrate since they catalyse the conversion of salivary nitrate to the more reactive nitrite anion. Recent studies demonstrate that blood pressure increases with the use of an antiseptic mouthwash, indicating that endogenous, NO-synthase derived nitrate is recycled into nitrite and NO, sufficiently to modulate cardiovascular function. Here we tested if also RMR would be affected by an antiseptic mouthwash. Seventeen healthy normotensive female subjects (23 ± 4 y) participated in this randomized, double-blinded, crossover study. During two 3-day periods separated by 28 days the subjects consumed a diet low in nitrate combined with rinsing their mouth three times daily with a chlorhexidine-containing mouthwash (mouthwash) or placebo mouthwash (placebo) with similar taste but no antiseptic properties. Resting metabolic rate (RMR) was measured by indirect calorimetry and 24 h ambulatory blood pressure recordings were obtained after each intervention together with blood, saliva and urine samples. Treatment with chlorhexidine-containing mouthwash effectively reduced oral conversion of nitrate to nitrite but had no effect on plasma levels of these anions or plasma cGMP. RMR and 24 h ambulatory blood pressure were unaffected by the intervention. We conclude that in young healthy females an antiseptic mouthwash was effective in disrupting oral bacterial nitrate conversion to nitrite, but this was not associated with changes in plasma nitrite, RMR or blood pressure. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  3. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  4. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule

  5. Metabolic clearance and production rates of human growth hormone

    Science.gov (United States)

    Taylor, Andrew L.; Finster, Joseph L.; Mintz, Daniel H.

    1969-01-01

    The metabolic clearance rate (MCR) of human growth hormone (HGH) was determined by the constant infusion to equilibrium technique utilizing HGH-125I. 22 control subjects had a MCR of 229 ±52 ml/min (mean ±SD). No difference was evident between sexes, or between various age groups. Patients with acromegaly demonstrated normal MCR's. Moreover, acute elevations of plasma growth hormone concentrations in normal subjects did not alter the MCR of HGH. The MCR was relatively constant from day to day and within the day when subjects were evaluated in the supine position. In contrast, the assumption of the upright position was associated with a mean 24% decrease in the MCR. These results were contrasted with the MCR of HGH observed in a small number of patients with altered thyroid function or diabetes mellitus. In six patients with hypothyroidism the MCR (131 ±36 ml/min) was significantly decreased (P < 0.001); whereas the MCR in eight patients with hyperthyroidism (240 ±57 ml/min) did not differ from control subjects. The MCR in eight patients with insulin-independent diabetes mellitus (IID) (185 ±41 ml/min) and in eight patients with insulin-dependent diabetes mellitus (IDD) (136 ±31 ml/min) were significantly different from control subjects (P = < 0.05 and P = < 0.001, respectively). These data were interpreted to indicate that the plasma HGH-removing mechanism(s) is not saturated at physiologic plasma HGH levels, that plasma HGH levels alone may not permit distinction between variations in pituitary release of the hormone and its rate of clearance from the plasma, and that the estimation of the MCR of HGH may help clarify the mechanism of abnormal plasma HGH responses to various stimuli. Production rates of HGH (PR) in control subjects (347 ±173 mμg/min) were contrasted with hyperthyroid patients (529 ±242 mμg/min, P < 0.05), hypothyroid patients (160 ±69 mμg/min, P < 0.02), IID (245 ±100 mμg/min, NS), and IDD (363 ±153 mμg/min, NS). Considerable

  6. Cardiovascular and metabolic consequences of the association between chronic stress and high-fat diet in rats.

    Science.gov (United States)

    Simas, Bruna B; Nunes, Everson A; Crestani, Carlos C; Speretta, Guilherme F

    2018-05-01

    Obesity and chronic stress are considered independent risk factors for the development of cardiovascular diseases and changes in autonomic system activity. However, the cardiovascular consequences induced by the association between high-fat diet (HFD) and chronic stress are not fully understood. We hypothesized that the association between HFD and exposure to a chronic variable stress (CVS) protocol for four weeks might exacerbate the cardiovascular and metabolic disturbances in rats when compared to these factors singly. To test this hypothesis, male Wistar rats were divided into four groups: control-standard chow diet (SD; n = 8); control-HFD (n = 8); CVS-SD (n = 8); and CVS-HFD (n = 8). The CVS consisted of repeated exposure of the rats to different inescapable and unpredictable stressors (restraint tress; damp sawdust, cold, swim stress and light cycle inversion). We evaluated cardiovascular function, autonomic activity, dietary intake, adiposity and metabolism. The HFD increased body weight, adiposity and blood glucose concentration (∼15%) in both control and CVS rats. The CVS-HFD rats showed decreased insulin sensitivity (25%) compared to CVS-SD rats. The control-HFD and CVS-HFD rats presented increased intrinsic heart rate (HR) values (∼8%). CVS increased cardiac sympathetic activity (∼65%) in both SD- and HFD-fed rats. The HFD increased basal HR (∼10%). Blood pressure and baroreflex analyzes showed no differences among the experimental groups. In conclusion, the present data indicate absence of interaction on autonomic imbalance evoked by either CVS or HFD. Additionally, HFD increased HR and evoked metabolic disruptions which are independent of stress exposure.

  7. Prevalence of metabolic syndrome and its association with depression in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Suttajit S

    2013-07-01

    Full Text Available Sirijit Suttajit, Sutrak PilakantaDepartment of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, ThailandPurpose: To identify the point prevalence of metabolic syndrome in patients with schizophrenia and to evaluate the association between depressive symptoms and metabolic syndrome in patients with schizophrenia.Patients and methods: Metabolic syndrome was assessed based on an updated definition derived from the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III and the International Diabetes Federation criteria. The 17-item Hamilton Depression Rating Scale (HDRS-17 was used to measure depressive symptoms in 80 patients with schizophrenia. Odds ratios and 95% confidence intervals were calculated using logistic regression for the association between each depressive symptom and metabolic syndrome.Results: The point prevalence rates of metabolic syndrome according to the modified NCEP-ATP III and International Diabetes Federation criteria were 37% and 35%, respectively. The risk of having metabolic syndrome significantly increased in those who were widowed or separated, or had longer duration of illness. Central obesity was the metabolic feature with the highest odds ratios for metabolic syndrome at 19.3. Three out of 17 items of HDRS subscales were found to be significantly associated with metabolic syndrome, including depressed mood, middle insomnia, and retardation with the odds ratios of 3.0, 3.4, and 3.6, respectively.Conclusion: This study showed that the prevalence of metabolic syndrome in patients with schizophrenia was higher than the overall rate but was slightly lower than in the general population in the USA. Central obesity, measured by waist circumference, was found to be highly correlated with metabolic syndrome. Depressed mood, middle insomnia, and retardation were significantly associated with metabolic syndrome in patients with schizophrenia. Waist circumference and screening

  8. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  9. Metabolic rate of nocturnal incubation in female great tits, Parus major, in relation to clutch size measured in a natural environment

    NARCIS (Netherlands)

    de Heij, Maaike E.; van der Graaf, Alexandra J.; Hafner, Dennis; Tinbergen, Joost M.

    2007-01-01

    To study the energetic costs of incubation in relation to clutch size, clutch sizes were manipulated and the metabolic rate of female great tits, Parus major (Linnaeus), during nocturnal incubation (MRinc) was measured using mobile oxygen analysers. Individuals were measured on consecutive nights

  10. High-Mobility Group Box 1 Disrupts Metabolic Function with Cigarette Smoke Exposure in a Ceramide-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Oliver J. Taylor

    2017-05-01

    Full Text Available We have previously found that cigarette smoke disrupts metabolic function, in part, by increasing muscle ceramide accrual. To further our understanding of this, we sought to determine the role of the cytokine high-mobility group box 1 (HMGB1, which is increased with smoke exposure, in smoke-induced muscle metabolic perturbations. To test this theory, we determined HMGB1 from lungs of human smokers, as well as from lung cells from mice exposed to cigarette smoke. We also treated cells and mice directly with HMGB1, in the presence or absence of myriocin, an inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in ceramide biosynthesis. Outcomes included assessments of insulin resistance and muscle mitochondrial function. HMGB1 was significantly increased in both human lungs and rodent alveolar macrophages. Further testing revealed that HMGB1 treatment elicited a widespread increase in ceramide species and reduction in myotube mitochondrial respiration, an increase in reactive oxygen species, and reduced insulin-stimulated Akt phosphorylation. Inhibition of ceramide biosynthesis with myriocin was protective. In mice, by comparing treatments of HMGB1 injections with or without myriocin, we found that HMGB1 injections resulted in increased muscle ceramides, especially C16 and C24, which were necessary for reduced muscle mitochondrial respiration and compromised insulin and glucose tolerance. In conclusion, HMGB1 may be a necessary intermediate in the ceramide-dependent metabolic consequences of cigarette smoke exposure.

  11. Integrative investigation of metabolic and transcriptomic data

    Directory of Open Access Journals (Sweden)

    Önsan Z İlsen

    2006-04-01

    Full Text Available Abstract Background New analysis methods are being developed to integrate data from transcriptome, proteome, interactome, metabolome, and other investigative approaches. At the same time, existing methods are being modified to serve the objectives of systems biology and permit the interpretation of the huge datasets currently being generated by high-throughput methods. Results Transcriptomic and metabolic data from chemostat fermentors were collected with the aim of investigating the relationship between these two data sets. The variation in transcriptome data in response to three physiological or genetic perturbations (medium composition, growth rate, and specific gene deletions was investigated using linear modelling, and open reading-frames (ORFs whose expression changed significantly in response to these perturbations were identified. Assuming that the metabolic profile is a function of the transcriptome profile, expression levels of the different ORFs were used to model the metabolic variables via Partial Least Squares (Projection to Latent Structures – PLS using PLS toolbox in Matlab. Conclusion The experimental design allowed the analyses to discriminate between the effects which the growth medium, dilution rate, and the deletion of specific genes had on the transcriptome and metabolite profiles. Metabolite data were modelled as a function of the transcriptome to determine their congruence. The genes that are involved in central carbon metabolism of yeast cells were found to be the ORFs with the most significant contribution to the model.

  12. Water metabolism in Australian marsupials

    International Nuclear Information System (INIS)

    Hume, I.D.

    1982-01-01

    Several studies are discussed in which tritiated water (TOH) has been used to investigate water metabolism in Australian marsupials, particularly arid-zone species. Equilibration of injected TOH in large kangaroos was slower than in smaller marsupials and similar to that in ruminants and camels, presumably because of the high gut water space of all large forestomach fermenters. Loss of TOH in urine, faeces and insensible water during equilibration was also similar to that in ruminants. Total body water (TBW) was similar whether estimated by equilibration or extrapolation. TBW of small marsupial species (16 g to 6.5 kg body weight) was usually in the range found for small eutherian mammals (56 to 68% of body weight). However, in the larger kangaroos TBW ranged from 73 to 78% of body weight, possibly due to the low body fat content and the high ratio of gut contents to total body weight of kangaroos. In general, the water turnover rate of marsupials is about 30% below that of eutherians; this has been related to their lower metabolic rate. Nevertheless, significant differences in water turnover have been found between some species. It has been suggested that there may be a correlation between the water turnover rates measured under ad libitum water availability and the aridity of the animal's habitat. However, this is not always so; differences in behaviour and in the water content of the natural diet explain why some marsupials with high ad libitum water turnovers can survive in desert environments. The physiological state of the animals (e.g. lactation) has also been shown to affect water turnover, both in the laboratory and in the field. (author)

  13. Cardiorenal metabolic syndrome in the African diaspora: rationale for including chronic kidney disease in the metabolic syndrome definition.

    Science.gov (United States)

    Lea, Janice P; Greene, Eddie L; Nicholas, Susanne B; Agodoa, Lawrence; Norris, Keith C

    2009-01-01

    Chronic kidney disease (CKD) is more likely to progress to end-stage renal disease (ESRD) in African Americans while the reasons for this are unclear. The metabolic syndrome is a risk factor for the development of diabetes, cardiovascular disease, and has been recently linked to incident CKD. Historically, fewer African Americans meet criteria for the definition of metabolic syndrome, despite having higher rates of cardiovascular mortality than Caucasians. The presence of microalbuminuria portends increased cardiovascular risks and has been shown to cluster with the metabolic syndrome. We recently reported that proteinuria is a predictor of CKD progression in African American hypertensives with metabolic syndrome. In this review we explore the potential value of including CKD markers--microalbuminuria/proteinuria or low glomerular filtration rate (GFR)-in refining the cluster of factors defined as metabolic syndrome, ie, "cardiorenal metabolic syndrome."

  14. Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert.

    Science.gov (United States)

    Muñoz-Garcia, Agustí; Larraín, Paloma; Ben-Hamo, Miriam; Cruz-Neto, Ariovaldo; Williams, Joseph B; Pinshow, Berry; Korine, Carmi

    2016-01-01

    Life in deserts is challenging for bats because of their relatively high energy and water requirements; nevertheless bats thrive in desert environments. We postulated that bats from desert environments have lower metabolic rates (MR) and total evaporative water loss (TEWL) than their mesic counterparts. To test this idea, we measured MR and TEWL of four species of bats, which inhabit the Negev desert in Israel, one species mainly restricted to hyper-arid deserts (Otonycteris hemprichii), two species from semi-desert areas (Eptesicus bottae and Plecotus christii), and one widespread species (Pipistrellus kuhlii). We also measured separately, in the same individuals, the two components of TEWL, respiratory water loss (RWL) and cutaneous evaporative water loss (CEWL), using a mask. In all the species, MR and TEWL were significantly reduced during torpor, the latter being a consequence of reductions in both RWL and CEWL. Then, we evaluated whether MR and TEWL in bats differ according to their geographic distributions, and whether those rates change with Ta and the use of torpor. We did not find significant differences in MR among species, but we found that TEWL was lowest in the species restricted to desert habitats, intermediate in the semi-desert dwelling species, and highest in the widespread species, perhaps a consequence of adaptation to life in deserts. Our results were supported by a subsequent analysis of data collected from the literature on rates of TEWL for 35 bat species from desert and mesic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high-fat diet-fed rats.

    Science.gov (United States)

    Shen, Youqing; Xu, Xiangfeng; Yue, Kai; Xu, Guodong

    2015-05-01

    To evaluate the efficacy of mild-intensity endurance, high-intensity interval, and concurrent exercise on preventing high-fat diet-induced obesity. Male rats were divided into five groups, control diet/sedentary group, high-fat diet/sedentary, high-fat diet/endurance exercise, high-fat diet/interval exercise (HI), and high-fat diet/concurrent exercise. All exercise groups were made to exercise for 10 weeks, with matched running distances. Body weight, fat content, blood metabolites, quantitative insulin sensitivity check index (QUICKI), and adipocyte and liver lipid droplet size were assessed, and the expression of fatty acid metabolism-related genes was quantified. All exercise protocols reduced body weight, adiposity, serum triglycerides, and fasting glucose and also improved QUICKI to some extent. However, only HI prevented obesity and its associated pathologies completely. The expression of stearoyl-coenzyme A desaturase-1 was elevated in all rats fed a high-fat diet whereas carnitine palmitoyltransferase 1 (CPT1) expression was increased with exercise. Rev-erbα expression was elevated only in the HI group, which also had the highest level of CPT1 expression. The HI-induced increase in Rev-erbα and CPT1 expression was associated with the complete prevention of diet-induced obesity. Moreover, the increased caloric expenditure achieved with this protocol was preferential over other exercise regimens, and might be used to improve lipid metabolism. © 2015 The Obesity Society.

  16. Calibrated image-derived input functions for the determination of the metabolic uptake rate of glucose with [18F]-FDG PET

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Reichkendler, Michala H.; Larsen, Rasmus

    2014-01-01

    We investigated the use of a simple calibration method to remove bias in previously proposed approaches to image-derived input functions (IDIFs) when used to calculate the metabolic uptake rate of glucose (Km) from dynamic [18F]-FDG PET scans of the thigh. Our objective was to obtain nonbiased, low...

  17. Metabolic consequences of resistive-type exercise

    Science.gov (United States)

    Dudley, G. A.

    1988-01-01

    This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.

  18. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology.

    Science.gov (United States)

    Hoffart, Eugenia; Grenz, Sebastian; Lange, Julian; Nitschel, Robert; Müller, Felix; Schwentner, Andreas; Feith, André; Lenfers-Lücker, Mira; Takors, Ralf; Blombach, Bastian

    2017-09-08

    The productivity of industrial fermentation processes is essentially limited by the biomass specific substrate consumption rate (q S ) of the applied microbial production system. Since q S depends on the growth rate (μ), we highlight the potential of the fastest growing non-pathogenic bacterium, Vibrio natriegens , as novel candidate for future biotechnological processes. V. natriegens grows rapidly in BHIN complex medium with a μ of up to 4.43 h -1 (doubling time of 9.4 min) as well as in minimal medium supplemented with various industrially relevant substrates. Bioreactor cultivations in minimal medium with glucose showed that V. natriegens possesses an exceptionally high q S under aerobic (3.90 ± 0.08 g g -1 h -1 ) and anaerobic (7.81 ± 0.71 g g -1 h -1 ) conditions. Fermentations with resting cells of genetically engineered V. natriegens under anaerobic conditions yielded an overall volumetric productivity of 0.56 ± 0.10 g alanine L -1 min -1 (i.e. 34 g L -1 h -1 ). These inherent properties render V. natriegens a promising new microbial platform for future industrial fermentation processes operating with high productivity. Importance Low conversion rates are one major challenge to realize microbial fermentation processes for the production of commodities operating competitively to existing petrochemical approaches. For this reason, we screened for a novel platform organism possessing superior characteristics to traditionally employed microbial systems. We identified the fast growing Vibrio natriegens which exhibits a versatile metabolism and shows striking growth and conversion rates, as a solid candidate to reach outstanding productivities. Due to these inherent characteristics V. natriegens can speed up common laboratory routines, is suitable for already existing production procedures, and forms an excellent foundation to engineer next generation bioprocesses. Copyright © 2017 American Society for Microbiology.

  19. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth.

    Directory of Open Access Journals (Sweden)

    Esko Kemppainen

    Full Text Available The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.

  20. Carbohydrate-Restriction with High-Intensity Interval Training: An Optimal Combination for Treating Metabolic Diseases?

    Directory of Open Access Journals (Sweden)

    Monique E. Francois

    2017-10-01

    Full Text Available Lifestyle interventions incorporating both diet and exercise strategies remain cornerstone therapies for treating metabolic disease. Carbohydrate-restriction and high-intensity interval training (HIIT have independently been shown to improve cardiovascular and metabolic health. Carbohydrate-restriction reduces postprandial hyperglycemia, thereby limiting potential deleterious metabolic and cardiovascular consequences of excessive glucose excursions. Additionally, carbohydrate-restriction has been shown to improve body composition and blood lipids. The benefits of exercise for improving insulin sensitivity are well known. In this regard, HIIT has been shown to rapidly improve glucose control, endothelial function, and cardiorespiratory fitness. Here, we report the available evidence for each strategy and speculate that the combination of carbohydrate-restriction and HIIT will synergistically maximize the benefits of both approaches. We hypothesize that this lifestyle strategy represents an optimal intervention to treat metabolic disease; however, further research is warranted in order to harness the potential benefits of carbohydrate-restriction and HIIT for improving cardiometabolic health.